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Preface

This book is intended for a first course, at the senior or beginning

graduate level, in the calculus of variations. It will also be of use to

those interested in self-study.

There are already many excellent books on this topic. I cite a

number of these texts throughout this book. I have added another

book, this book, because I wanted a text that is especially well suited

to the Amath 507 class that I teach at the University of Washington.

My Amath 507 students are typically applied mathematicians,

physicists, and engineers. I have thus included numerous examples

from fields such as mechanics and optics; I have also included many

examples with immediate geometric appeal. Because of my students’

strong interest in applications, I have also introduced constraints ear-

lier than usual.

My students also enjoy learning the history of science. So I have

resisted the temptation of immediately jumping to the most modern

results. I instead follow the historical development of the calculus

of variations. The calculus of variations has an especially rich and

interesting history and a historical approach works exceptionally well

for this subject.

Finally, I teach on a quarter system. So I have taken the oppor-

tunity of writing this book to collect and organize my thoughts on

ix
                

                                                                                                               



x Preface

the calculus of variations in what I hope is a concise and effective

manner.

I am grateful to my Amath 507 students for their enthusiasm and

hard work and for uncovering interesting applications of the calculus

of variations. I owe special thanks to William K. Smith for supervising

my undergraduate thesis in the calculus of variations (35 years ago)

and to Hanno Rund for teaching a fine series of courses on the calculus

of variations during my graduate years. Sadly, these two wonderful

teachers are now both deceased. I thank the fine editors and reviewers

of the American Mathematical Society for their helpful comments.

Finally, I thank my family for their encouragement and for putting

up with the writing of another book.

Mark Kot

                

                                                                                                               



Chapter 1

Introduction

1.1. The brachistochrone

The calculus of variations has a clear starting point. In June of 1696,

John (also known as Johann or Jean) Bernoulli challenged the great-

est mathematicians of the world to solve the following new problem

(Bernoulli, 1696; Goldstine, 1980):

Given points A and B in a vertical plane to find the

path AMB down which a movable point M must, by

virtue of its weight, proceed from A to B in the shortest

possible time.

Imagine a particle M of mass m, in a vertical gravitational field

of strength g, that moves along the curve y = y(x) between the two

points A = (a, ya) and B = (b, yb) (see Figure 1.1). The time of

descent T of the particle is

T =

T∫
0

dt =

L∫
0

dt

ds
ds =

L∫
0

1

v
ds =

b∫
a

1

v

√
1 + y′2 dx , (1.1)

where s is arc length, L is the length of the curve, and v is the speed

of the particle.

If our particle moves without friction, the law of conservation of

mechanical energy guarantees that the sum of the particle’s kinetic

1

                                     

                

                                                                                                               



2 1. Introduction

a b

ya

yb

A

B

x

y

M

Figure 1.1. Curve of descent

energy and potential energy remains constant. If our particle starts

from rest, we may thus write

1

2
mv2 +mgy = mgya . (1.2)

The particle’s speed is then

v =
√
2g(ya − y) . (1.3)

We now wish to find the brachistochrone (from βραχιστoς , short-

est, and χρoνoς , time; John Bernoulli originally, but erroneously,

wrote brachystochrone). That is, we wish to find the curve

y = y(x) ≤ ya (1.4)

that minimizes the integral

T =
1√
2g

b∫
a

√
1 + y′2

ya − y
dx . (1.5)

Several famous mathematicians responded to John Bernoulli’s

challenge. Solutions were submitted by Gottfried Wilhelm Leibniz
                

                                                                                                               



1.1. The brachistochrone 3

(1697), Isaac Newton (1695–7, 1697), John Bernoulli (1697a), James

(or Jakob) Bernoulli (1697), and Guillaume l’Hôpital (1697).

Leibniz provided a geometrical solution. He derived the differen-

tial equation for the brachistochrone but did not specify the result-

ing curve (Goldstine, 1980). Leibniz also suggested that the brachis-

tochrone be called the tachystoptotam (from ταχιστoς , swiftest, and

πιπτειν , to fall). Mercifully, this suggestion was ignored.

Newton’s anonymous solution was published in the Philosophical

Transactions ; it was then reprinted in the Acta Eruditorum . Newton

provided the correct answer but gave no clue to his method. Despite

Newton’s anonymity, John Bernoulli recognized that the work was “ex

ungue Leonem” (from the claw of the Lion) and the Acta Eruditorum

listed Newton in its index of authors.

John Bernoulli provided two solutions. The first solution relied

on an analogy between the mechanical brachistochrone and light.

Bernoulli (1697a) was quite taken with Fermat’s principle of least

time for light and argued that the brachistochrone “is the curve that

a light ray would follow on its way through a medium whose density

is inversely proportional to the velocity that a heavy body acquires

during its fall.” He broke up the optical medium into thin horizontal

layers, chose an appropriate index of refraction, and used Snell’s law of

refraction and calculus to determine the shape of the brachistochrone.

John Bernoulli (1718) described his second solution many years later.

This second solution received little attention at the time but is now

viewed as the first sufficiency proof in the calculus of variations.

James Bernoulli’s solution was not as elegant as that of his young-

er brother, but it contained the key idea of varying only one value of

the solution curve at a time. This idea provided the basis for further

work in the calculus of variations. James Bernoulli called his solution

an oligochrone (from oλιγoς , little, and χρoνoς , time).

We shall see that the brachistochrone is the inverted cycloid

x(φ) = a+R(φ− sin φ) , y(φ) = ya −R (1− cos φ) , (1.6)

where the parameter R is uniquely determined by the initial and

terminal points. This cycloid is the curve traced by a point on the
                

                                                                                                               



4 1. Introduction

0

ya

0 π 2π

Figure 1.2. Cycloid for R = 1
2
ya and a = 0

circumference of a circle of radius R rolling along the bottom of the

horizontal line y = ya (see Figure 1.2).

Huygens (1673, 1986) had previously shown that an inverted cy-

cloid is a tautochrone (from ταυτo or τo αυτo, the same, and χρoνoς,

time): the time for a heavy particle to fall to the bottom of this curve

is independent of the upper starting point. To John Bernoulli’s as-

tonishment, the brachistochrone was Huygens’ tautochrone.

The brachistochrone is one of many problems where we wish to

determine a function, y(x), that minimizes or maximizes the integral

J [y(x)] =

b∫
a

f(x, y(x), y′(x)) dx . (1.7)

Leonhard Euler first devised a systematic method for solving such

problems.

In the remainder of this chapter, we will examine three other

problems that involve minimizing or maximizing integrals. We will

first look at another brachistochrone problem, for travel through the

earth. We will then look at the problem of finding the shortest path

between two points on some general surface. Finally, we will look at

the “soap-film problem,” the problem of minimizing the surface area

of a surface of revolution. All of these problems can be attacked using

the calculus of variations.
                

                                                                                                               



1.2. The terrestrial brachistochrone 5

1.2. The terrestrial brachistochrone

History repeats itself. In August of 1965, Scientific American pub-

lished an article on “High-Speed Tube Transportation” (Edwards,

1965). Edwards proposed tube trains that would fall through the

earth, pulled by gravity and helped along by pneumatic propulsion.

The advantages cited by Edwards included:

(1) It brings most of the tunnel down into deep

bedrock, where the cost of tunneling — by blasting

or by boring — is reduced and incidental earth shifts

are minimized; the rock is more homogeneous in con-

sistency and there is less likelihood of water inflow.

(2) The nuisance to property owners decreases with

depth, so the cost of easements should be lower.

(3) A deep tunnel does not interfere with subways,

building foundations, utilities, or water wells . . . .

(4) The pendulum ride is uniquely comfortable for

the passenger. . . .

Lest you think this pure fantasy, a pneumatic train was con-

structed in New York City, under Broadway, from Warren Street to

Murray Street, in 1870 by Alfred Ely Beach (an early owner of Scien-

tific American). This was New York City’s first subway (Roess and

Sansone, 2013). You can see a drawing of the pneumatic train on the

wallpaper in older Subway Sandwich shops.

Cooper (1966a) then pointed out that straight-line chords lead to

needlessly long trips through the earth. He used the calculus of vari-

ations to derive a differential equation for the fastest tunnels through

the earth and integrated this equation numerically. Venezian (1966),

Mallett (1966), Laslett (1966), and Patel (1967) then found first in-

tegrals and analytic solutions for this problem. See Cooper (1966b)

for a summary.

Let us take a closer look at this terrestrial brachistochrone prob-

lem. Assume that the earth is a homogeneous sphere of radius R.

Consider a section through the earth with polar coordinates centered

at the heart of the earth (see Figure 1.3). Imagine a particle of mass
                

                                                                                                               



6 1. Introduction

x

y

θ
r

A

B

R

R

γ

Figure 1.3. Path through the earth

m that moves between two points, A = (ra, θa) and B = (rb, θb), on

or near the surface of the earth. We now wish to find the planar curve

γ that minimizes the travel time

T =

T∫
0

dt =

∫
γ

dt

ds
ds =

∫
γ

1

v
ds =

∫
γ

1

v

√
dr2 + r2 dθ2 (1.8)

between A and B, where s is arc length and v is the speed of the

particle.

When a particle is outside a uniform spherical shell, the shell

exerts a gravitational force equal to that of an identical point mass at

the center of the shell. A particle inside the shell feels no force (see

Exercise 1.6.3). By integrating over spherical shells of different radii

(Exercise 1.6.4), one can show that the gravitational potential energy

within a spherical and homogeneous earth can be written

V (r) =
1

2

mg

R
r2 , (1.9)

                

                                                                                                               



1.3. Geodesics 7

where g is the magnitude of the gravitational acceleration at the sur-

face of the earth.

For a particle starting at rest at the surface of the earth, conser-

vation of energy now implies that

1

2
mv2 +

1

2

mg

R
r2 =

1

2
mgR (1.10)

so that

v =

√
g(R2 − r2)√

R
. (1.11)

It follows that the total travel time is

T =

√
R

g

θb∫
θa

√(
dr
dθ

)2
+ r2

R2 − r2
dθ . (1.12)

We will look at this problem in greater detail later. We shall

see that the terrestrial brachistochrone is a hypocycloid, the curve

traced by a point on the circumference of a circle of radius either

[R − (SAB/π)] (see Figure 1.4) or of radius SAB/π (see Figure 1.5),

where SAB is the arc length along the surface of the earth between A

and B, as it rolls inside a circle of radius R.

The fastest Amtrak train makes the 400 mile trip between Boston

and Washington, D.C., in six and a half hours. A tube train moving

along a straight-line chord between Boston and Washington would

penetrate 5 miles into the earth and take 42 minutes. The fastest

tube train along a hypocycloid would, in turn, penetrate 125 miles

into the earth and take 10.7 minutes.

1.3. Geodesics

I do not want to give the impression that the calculus of variations is

only brachistochrones. In this and the next section, we will look at

two other classic problems.

A line is the shortest path between two points in a plane. We

also wish to find shortest paths between pairs of points on other,

more general, surfaces. To find these geodesics, we must minimize

arc length.
                

                                                                                                               



8 1. Introduction

x

y

A

B

Figure 1.4. Hypocycloid with inner radius
(
R− SAB

π

)

The simplest case arises when the surface is a level set for one

of the coordinates in a system of orthogonal curvilinear coordinates.

The arc length can then be written using the scale factors of the

coordinate system.

Consider, for example, two points, A and B, on a sphere of radius

R centered at the origin. We wish to join A and B by the shortest,

continuously differentiable curve lying on the sphere. We start by

specifying position,

r(x, y, z) = x i + y j + z k , (1.13)

using the Cartesian coordinates x, y, and z and Cartesian basis vec-

tors i, j, and k. For points on the surface of a sphere, we now switch

to the spherical coordinates r, θ, and φ (see Figure 1.6). Since

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ , (1.14)
                

                                                                                                               



1.3. Geodesics 9

x

y

A

B

Figure 1.5. Hypocycloid with inner radius SAB
π

the position vector r now takes the form

r(r, θ, φ) = r sin θ cos φ i + r sin θ sin φ j + r cos θ k . (1.15)

Since this position vector depends on r, θ, and φ,

dr =
∂r

∂r
dr +

∂r

∂θ
dθ +

∂r

∂φ
dφ . (1.16)

The three partial derivatives on the right-hand side of this equation

are vectors tangent to motions in the r, θ, and φ directions. Thus

dr = hr dr êr + hθ dθ êθ + hφ dφ êφ , (1.17)

where êr, êθ, and êφ are unit vectors in the r, θ, and φ directions and

hr =

∣∣∣∣
∣∣∣∣∂r∂r

∣∣∣∣
∣∣∣∣ = 1 , hθ =

∣∣∣∣
∣∣∣∣∂r∂θ

∣∣∣∣
∣∣∣∣ = r , hφ =

∣∣∣∣
∣∣∣∣ ∂r∂φ

∣∣∣∣
∣∣∣∣ = r sin θ (1.18)

are the scale factors for spherical coordinates.
                

                                                                                                               



10 1. Introduction

x

y

z

r

φ

θ

Figure 1.6. Spherical coordinates

The element of arc length in spherical coordinates is given by

ds =
√
dr · dr =

√
h2
r dr

2 + h2
θ dθ

2 + h2
φ dφ

2 (1.19)

=

√
dr2 + r2 dθ2 + r2 sin2 θ dφ2 .

For a sphere of radius r = R, this element reduces to

ds = R

√
dθ2 + sin2 θ dφ2 . (1.20)

If we assume that φ = φ(θ), finding the curve that minimizes the

arc length between the points A = (θa, φa) and B = (θb, φb) simplifies

to finding the function φ(θ) that minimizes the integral

s =

B∫
A

ds = R

θB∫
θA

√
1 + sin2 θ (dφ/dθ)2 dθ (1.21)

subject to the boundary conditions

φ(θa) = φa , φ(θb) = φb . (1.22)
                

                                                                                                               



1.3. Geodesics 11

We will see, later, that the shortest paths on a sphere are arcs of great

circles.

Unfortunately, we cannot expect every interesting surface to be

the level set for some common coordinate. We may, however, hope to

represent our surface parametrically. We may prescribe the x, y, and

z coordinates of points on the surface using the parameters u and v

and write our surface in the vector form

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k . (1.23)

We can now specify a curve on this surface by prescribing u and v in

terms of a single parameter — call it t — so that

u = u(t) , v = v(t) . (1.24)

The vector

ṙ ≡ dr

dt
=

∂r

∂u
u̇+

∂r

∂v
v̇ (1.25)

is tangent to both the curve and the surface. We find the square of

the distance between two points on a curve by integrating

ds2 = dr · dr =

(
∂r

∂u
du+

∂r

∂v
dv

)
·
(
∂r

∂u
du+

∂r

∂v
dv

)
(1.26)

along the curve. Equation (1.26) is often written

ds2 = E du2 + 2F du dv +Gdv2 , (1.27)

where

E =
∂r

∂u
· ∂r
∂u

, F =
∂r

∂u
· ∂r
∂v

, G =
∂r

∂v
· ∂r
∂v

. (1.28)

The right-hand side of equation (1.27) is called the first funda-

mental form of the surface. The coefficients E(u, v), F (u, v), and

G(u, v) have many names. They are sometimes called first-order fun-

damental magnitudes or quantities. Other times, they are simply

called the coefficients of the first fundamental form.

The distance between the two points A = (ua, va) and B =

(ub, vb) on the curve u = u(t), v = v(t) may now be written

s =

tb∫
ta

√
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2

dt , (1.29)

                

                                                                                                               



12 1. Introduction

with

u(ta) = ua , v(ta) = va , u(tb) = ub , v(tb) = vb . (1.30)

In this formulation, we have two dependent variables, u(t) and v(t),

and one independent variable, t. If v can be written as a function of

u, v = v(u), we can instead rewrite our integral as

s =

ub∫
ua

√
E + 2F

(
dv

du

)
+G

(
dv

du

)2

du (1.31)

with

v(ua) = va, v(ub) = vb . (1.32)

This is now a problem with one dependent variable and one indepen-

dent variable.

To make all this concrete, let us take, as an example, the pseu-

dosphere (see Figure 1.7), half of the surface of revolution generated

by rotating a tractrix about its asymptote. If the asymptote is the

z-axis, we can write the equation for a pseudosphere, parametrically,

as

r(u, v) = a sin u cos v i + a sin u sin v j (1.33)

+ a
(
cos u + ln tan

u

2

)
k .

Since

ru =
∂r

∂u
(1.34)

= (a cos u cos v, a cos u sin v,−a sin u+ a csc u)

and

rv =
∂r

∂v
= (−a sin u sin v, a sin u cos v, 0) , (1.35)

the first-order fundamental quantities reduce to

E = ru · ru = a2 cot2 u , (1.36)

F = ru · rv = 0 , (1.37)

G = rv · rv = a2 sin2 u . (1.38)

                

                                                                                                               



1.3. Geodesics 13

Figure 1.7. Pseudosphere

To determine a geodesic on the pseudosphere, we must thus find

a curve, u = u(t) and v = v(t), that minimizes the arc-length integral

s = a

tb∫
ta

√
cot2 u u̇2 + sin2 u v̇2 dt (1.39)

subject to the boundary conditions

u(ta) = ua , v(ta) = va , u(tb) = ub , v(tb) = vb . (1.40)

Alternatively, we may look for a curve, v = v(u), that minimizes the

integral

s = a

ub∫
ua

√
cot2 u+ sin2 u

(
dv

du

)2

du (1.41)

subject to the boundary conditions

v(ua) = va, v(ub) = vb . (1.42)

For other examples, see Exercise 1.6.6.
                

                                                                                                               



14 1. Introduction

John Bernoulli (1697b) posed the problem of finding geodesics

on convex surfaces. In 1698, he remarked, in a letter to Leibniz, that

geodesics always have osculating planes that cut the surface at right

angles. (An osculating plane is the plane that passes through three

nearby points on a curve as two of these points approach the third

point.) This geometric property is frequently used as the definition

of a geodesic curve, irrespective of whether the curve actually min-

imizes arc length. Later, Euler (1732) derived differential equations

for geodesics on surfaces using the calculus of variations. This was

Euler’s earliest known use of the calculus of variations.

Finding shortest paths is easiest on simple surfaces of revolution.

Geodesics on surfaces of revolution satisfy a simple first integral or

“conservation law” that was first published by Clairaut (1733). Jacobi

(1839), in a tour de force, succeeded in integrating the equations of

geodesics for a more complicated surface, a triaxial ellipsoid.

1.4. Minimal surfaces

We may minimize areas as well as lengths. Consider two points,

y(a) = ya , y(b) = yb , (1.43)

in the plane (see Figure 1.8). We wish to join these two points by a

continuously differentiable curve,

y = y(x) ≥ 0 , (1.44)

in such a way that the surface of revolution, generated by rotating

this curve about the x-axis, has the smallest possible area S. In other

words, we wish to minimize

S = 2π

b∫
a

y(x)

√
1 + y′2 dx . (1.45)

Some of you will recognize this as the “soap-film problem.” Sup-

pose we wish to find the shape of a soap film that connects two wire

hoops. For a soap film with constant film tension, the surface energy

is proportional to the area of the film. Minimizing the surface energy

of the film is thus equivalent to minimizing its surface area (Isenberg,
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x

y

a b

ya

yb

A

B

Figure 1.8. Profile curve

1992; Oprea, 2000). (For a closed soap bubble, without fixed bound-

aries, excess air pressure within the bubble prevents the surface area

of the bubble from shrinking to zero.)

Euler (1744) discovered that the catenoid, the surface generated

by a catenary or hanging chain (see Figure 1.9), minimizes surface

area. As you doubtless know, however, from playing with soap films,

if you pull two parallel hoops too far apart, the catenoid breaks, leav-

ing soap film on the hoops. This was first shown analytically by

Goldschmidt (1831). For two parallel, coaxial hoops of radius r, the

area of a catenoid is an absolute minimum if the distance between

the hoops is less than 1.056 r. This area is a relative minimum for

distances between 1.056 r and 1.325 r. For distances greater than

1.325 r, the catenoid breaks and the solution jumps to the discontin-

uous Goldschmidt solution (two disks).

Joseph Lagrange (1762) then proposed the general problem of

finding a surface, z = f(x, y), with a closed curve C as its boundary,

that has the smallest area. That is, we now wish to minimize a double
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Figure 1.9. Catenoid

integral of the form

S =

∫∫
Ω

√
1 + f2

x + f2
y dx dy (1.46)

(see Exercise 1.6.7), where ∂Ω is the projection of the closed curve

C onto the (x, y) plane and Ω is the interior of this projection. This

problem has been known, starting with Lebesgue (1902), as Plateau’s

problem, in honor of Joseph Plateau’s extensive experiments (Plateau,

1873) with soap films.

Lagrange showed that a surface that minimizes integral (1.46)

must satisfy the minimal surface equation

(1 + f2
y ) fxx − 2 fx fy fxy + (1 + f2

x) fyy = 0 , (1.47)

a quasilinear, elliptic, second-order, partial differential equation. Dif-

ferent constraints on the function f(x, y) (e.g., Exercise 1.6.10) yield

different minimal surfaces.
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Figure 1.10. Helicoid

Jean-Baptiste-Marie-Charles Meusnier (1785) soon gave equation

(1.47) a geometric interpretation. At each point P of a smooth sur-

face, choose a vector normal to the surface, cut the surface with nor-

mal planes (that contain the normal vector but that differ in orien-

tation), and obtain a series of plane curves. For each plane curve,

determine the curvature at P . Find the minimum and maximum

curvatures (from amongst all the plane curves passing through P ).

These are your principal curvatures .

Meusnier showed that the minimal surface equation implies that

the mean curvature (the average of the principal curvatures) is zero

at every point of the minimizing surface. As a result, any surface

with zero mean curvature is typically referred to as a minimal surface,

even if it does not provide an absolute or relative minimum for surface

area. Meusnier also discovered that the catenoid and the helicoid , the

surface formed by line segments perpendicular to the axis of a circular

helix as they go through the helix (see Figure 1.10), satisfy Lagrange’s
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minimal surface equation. (Meusnier, like Lagrange, seemed unaware

of Euler’s earlier analysis of the catenoid.) The study of minimal

surfaces has grown to become one of the richest areas of mathematical

research.

In the remainder of this book, we will look at many other prob-

lems in the calculus of variations.

1.5. Recommended reading

Goldstine (1980), Fraser (2003), Kolmogorov and Yushkevich (1998),

and Kline (1972) provide useful historical surveys of the calculus of

variations.

Icaza Herrera (1994), Sussmann and Willems (1997), and Stein

and Weichmann (2003) have written stimulating historical articles

about the brachistochrone problem. An experimental study of the

brachistochrone (using a “Hot Wheels” car) was carried out by Phelps

et al. (1982).

The original 1697 solutions of John and Jacob Bernoulli can be

found, translated into English, in Struik (1969). John Bernoulli’s

solution was recently reviewed by Erlichson (1999) and reviewed and

generalized by Filobello-Nino et al. (2013).

If the endpoints A and B lie above the surface of the earth, but at

vastly different heights, the gravitational field is no longer constant.

One must instead determine the curve of swiftest descent in an at-

tractive, inverse-square, gravitational field. This problem has been

discovered repeatedly. Recent treatments include those of Singh and

Kumar (1988), Parnovsky (1998), Tee (1999), and Hurtado (2000).

Goldstein and Bender (1986) analyzed the brachistochrone in the

presence of relativistic effects and Farina (1987) showed that John

Bernoulli’s optical method can also be used to solve this relativis-

tic problem. Kamath (1992) determined the relativistic tautochrone

using fractional calculus.

The idea of high-speed tunnels through the earth is quite old.

In Lewis Carroll’s (1894) Sylvie and Bruno Concluded, Mein Herr

describes a system of railway trains, without engines, powered by

gravity:
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“Each railway is in a long tunnel, perfectly straight:

so of course the middle of it is nearer the centre of the

globe than the two ends: so every train runs half-way

down -hill, and that gives it force enough to run the

other half up -hill.”

To which a protagonist replies:

“Thank you. I understand that perfectly,” said Lady

Muriel. “But the velocity, in the middle of the tunnel,

must be something fearful! ”

You can also find a homework problem, about a tunnel-train between

Minneapolis and Chicago, in Brooke and Wilcox (1929). See also

Kirmser (1966).

Edwards’ (1965) article reignited keen interest in gravity-powered

transportation and inspired the articles by Cooper (1966a,b), Venezian

(1966), Mallett (1966), Laslett (1966), and Patel (1967) on the terres-

trial brachistochrone. Aravind (1981) applied John Bernoulli’s optical

method to the terrestrial brachistochrone and Prussing (1976), Chan-

der (1977), McKinley (1979), and Denman (1985) pointed out that

terrestrial brachistochrones are also tautochrones. Stalford and Gar-

rett (1994) analyzed the terrestrial brachistochrone using differential

geometry and optimal control theory.

Struik (1933), Carathéodory (1937), and Kline (1972) summarize

the early history of the study of geodesics. Geodesics are an important

topic in differential geometry (Struik, 1961; Oprea, 2007), Riemann-

ian geometry (Berger, 2003), and geometric modeling (Patrikalakis

and Maekawa, 2002). See Bliss (1902) for examples of geodesics on

a toroidal anchor ring and Sneyd and Peskin (1990) for examples of

geodesic trajectories on general tubular surfaces.

Isenberg (1992) and Oprea (2000) provide interesting and read-

able introductions to the science and mathematics of soap films.

Barbosa and Colares (1986), Nitsche (1989), Fomenko (1990), and

Fomenko and Tuzhilin (1991) do an excellent job of presenting the

history and theory of minimal surfaces.
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1.6. Exercises

1.6.1. Descent time down a cycloidal curve. Show that the de-

scent time down the cycloidal curve

x(φ) = a+R(φ− sin φ) , y(φ) = ya −R(1− cos φ) (1.48)

is

T =

√
R

g
φb , (1.49)

where φb is the angle φ corresponding to the point B = (b, yb). What

is the descent time to the lowest point on the cycloid?

1.6.2. Complementary curves of descent. The authors Mungan

and Lipscombe (2013) recently introduced the term complementary

curves of descent to describe curves that have identical descent times.

(a) Determine the descent time for a straight line (shown in bold in

Figure 1.11).

(b) Rewrite integral (1.5) in polar coordinates assuming, for conve-

nience, that θ increases clockwise.

(c) Determine the descent time for the lower portion of the leminis-

cate

r = 2 c
√
sin θ cos θ (1.50)

(shown in bold in Figure 1.11). Hint:

d

dθ

(
cos1/4 θ

sin1/4 θ

)
= −1

4
cos−3/4 θ sin−5/4 θ . (1.51)

(d) Verify that the lemniscate is complementary to the straight line.

1.6.3. Potential energy due to a spherical shell. The gravita-

tional potential energy between two point masses, M and m, sepa-

rated by a distance r is

V (r) = −GMm

r
, (1.52)

where G is the universal gravitational constant.

Calculate the potential energy of mass m at point P due to the

gravitational attraction of a thin homogeneous spherical shell of mass
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x

y

θ

Figure 1.11. Complementary curves

M , surface (mass) density σ, and radius x by integrating over a set of

ring elements. (See Figure 1.12.) Assume that point P is a distance

r from the center of the shell and that y is the distance between the

ring and point P . Be sure to consider the case when P is inside the

shell (r < x) as well as outside the shell (r > x).

1.6.4. Potential energy inside the earth. Use your results from

the last problem and integrate over shells of appropriate radii to show

that the potential energy of a point mass m in a spherical and homo-

geneous earth can be written, to within an additive constant, as

V (r) =
1

2

mg

R
r2 , (1.53)

where R is the radius of the earth, g is the magnitude of the gravi-

tational acceleration at the surface of the earth, r is the distance of

the point mass from the center of the earth, and ρ is the (volumetric)

density of the earth.
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Figure 1.12. Geometry of a spherical shell

1.6.5. Gauss’s law. Gauss’s flux theorem for gravity states that

the gravitational flux through a closed surface is proportional to the

enclosed mass. Gauss’s theorem can be written in differential form,

using the divergence theorem, as

∇ · g = −4πGρ , (1.54)

where G is the universal gravitational constant, ρ is the (volumetric)

density of the enclosed mass, g = F/m is the gravitational field in-

tensity, m is the mass of a test point, and F is the force on this test

mass.

(a) Use this theorem to determine the force F(r) acting on mass m

at point P due to the gravitational attraction of a thin homo-

geneous spherical shell of mass M , surface density σ, and radius

x. Assume that point P is a distance r from the center of the

shell. Be sure to consider the case where point P is inside the

shell (r < x) as well as outside the shell (r > x).

(b) Assume that F(r) = −dV/dr, where V (r) is the gravitational

potential energy. Integrate the above force (starting at a reference

point at infinity) to rederive the potential energy in Exercise 1.6.1.
                

                                                                                                               



1.6. Exercises 23

(c) Use Gauss’s flux theorem to determine the force F(r) acting on

massm at point P due to the gravitational attraction of a uniform

solid sphere of mass M , density ρ, and radius R. Be sure to

consider the case where point P is inside the shell (r < R) as well

as outside the shell (r > R).

(d) Integrate the above force (starting at a reference point at infinity)

to rederive the potential energy in Exercise 1.6.2.

1.6.6. First fundamental forms. Determine the first fundamental

form for three of the following seven surfaces. The surfaces you may

choose from are:

(a) the helicoid

x = u cos v , y = u sin v , z = a v ; (1.55)

(b) the torus

x = (b+ a cosu) cos v , x = (b+ a cosu) cos v , z = a sinu ; (1.56)

(c) the catenoid

x = a cosh
u

a
cos v , y = a cosh

u

a
sin v , z = u ; (1.57)

(d) the general surface of revolution

x = f(u) cos v , y = f(u) sin v , z = g(u) ; (1.58)

(e) the sphere (with alternate parameterization)

x =
4a2u

4a2 + u2 + v2
, y =

4a2v

4a2 + u2 + v2
, (1.59)

z = a
4a2 − u2 − v2

4a2 + u2 + v2
;

(f) the ellipsoid

x = a cos u cos v , y = b cos u sin v , z = c sin u ; (1.60)

(g) the hyperbolic paraboloid

x = a(u+ v) , y = b(u− v) , z = uv . (1.61)
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1.6.7. Surface area. Consider a surface written in the vector form

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k , (1.62)

where u and v are parameters.

(a) Justify or motivate the surface-area formula

S =

∫∫
||ru × rv|| du dv . (1.63)

(b) Show that the above surface-area formula can also be written as

S =

∫∫ √
EG− F 2 du dv , (1.64)

where E, F , and G are the coefficients of the first fundamental

form.

(c) Write the surface

z = f(x, y) (1.65)

in vector form and show that the above formulas for area imply

that

S =

∫∫
Ω

√
1 + f2

x + f2
y dx dy . (1.66)

1.6.8. Surface area of a hyperbolic paraboloid. Consider the

hyperbolic paraboloid

r(u, v) = u i + v j + uv k . (1.67)

Determine the surface area for that portion of the paraboloid that is

specified by values of u and v that lie in the first quadrant of (u, v)

parameter space between the positive u- and v-axes and the circle

u2 + v2 = 1 . (1.68)

1.6.9. Surface area of a helicoid. Find the area of the portion of

the helicoid

r(u, v) = u cos v i + u sin v j + bv k (1.69)

that is specified by 0 ≤ u ≤ a and 0 ≤ v ≤ 2π.
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Figure 1.13. Scherk’s first minimal surface

1.6.10. Scherk’s minimal surface. Take the minimal surface equa-

tion, equation (1.47), and look for a solution of the form

f(x, y) = g(x) + h(y) . (1.70)

Show that the resulting differential equation is separable. Solve for

g(x) and h(y) to obtain Scherk’s (first) minimal surface,

f(x, y) = c ln

[
cos (x/c)

cos (y/c)

]
. (1.71)

This surface was the first minimal surface discovered after the catenoid

and the helicoid. A piece of this surface, for c = 1, −π/2 < x < π/2,

and −π/2 < y < π/2, is shown in Figure 1.13.

                

                                                                                                               



                

                                                                                                               



Chapter 2

The First Variation

2.1. The simplest problem

Our goal is to minimize (or to maximize) a definite integral of the

form

J [y] =

b∫
a

f(x, y(x), y′(x)) dx (2.1)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (2.2)

I wrote J [y] rather than J(y) to emphasize that we are dealing

with functionals and not just functions. Our definite integral returns

a real number for each function y(x). A functional is an operator that

maps functions to real numbers. Functional analysis was, originally,

the study of functionals. The purpose of the calculus of variations is

to maximize or minimize functionals.

We will encounter functionals that act on all or part of several

well-known function spaces. Function spaces that occur in the calcu-

lus of variations include the following:

(a) C[a, b], the space of real-valued functions that are continuous on

the closed interval [a, b];

27

                                     

                

                                                                                                               



28 2. The First Variation

(b) C1[a, b], the space of real-valued functions that are continuous

and that have continuous derivatives on the closed interval [a, b];

(c) C2[a, b], the space of real-valued functions that are continuous and

that have continuous first and second derivatives on the closed

interval [a, b];

(d) D[a, b], the space of real-valued functions that are piecewise con-

tinuous on the closed interval [a, b]; and

(e) D1[a, b], the space of real-valued functions that are continuous

and that have piecewise continuous derivatives on the closed in-

terval [a, b].

A piecewise continuous function can have a finite number of jump

discontinuities in the interval [a, b]. The right-hand and left-hand

limits of the function exist at the jump discontinuities. A function

that is piecewise continuously differentiable is continuous but may

have a finite number of corners.

We wish to find the extremum of a functional. Extremum is a

word that was first introduced by Paul du Bois-Reymond (1879b).

Du Bois-Reymond got tired of always having to say “maximum or

minimum” and so he introduced a single term, extremum, to talk

about both maxima and minima. The term stuck.

We will take our lead from (ordinary) calculus. We will look for

a condition analogous to setting the first derivative equal to zero in

calculus. The resulting Euler–Lagrange equation is quite important,

so much so that we will derive this equation in three ways. We will

begin with Euler’s heuristic derivation (Euler, 1744) and then move

on to Lagrange’s 1755 derivation (the traditional approach). We will

then consider Paul du Bois-Reymond’s modification of Lagrange’s

derivation (du Bois-Reymond, 1879a).

2.2. Euler’s approach

Leonhard Euler was the first person to systematize the study of vari-

ational problems. His 1744 opus, A Method for Finding Curved Lines

Enjoying Properties of Maximum or Minimum, or Solution of Isoperi-

metric Problems in the Broadest Accepted Sense, is a compendium of

100 special problems. The book also contains a general method for
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x

y

a xk b

Δx

Figure 2.1. Polygonal curves

handling these problems. Euler dropped his method for Lagrange’s

more elegant “method of variations” after receiving Lagrange’s (Au-

gust 12, 1755) letter. Euler also named this subject the calculus of

variations in Lagrange’s honor.

Euler’s essential idea was to first go from a variational problem

to an n-dimensional problem and to then pass to the limit as n → ∞.

We will borrow from the modernized treatment of Euler’s method

found in Elsgolc (1961) and Gelfand and Fomin (1963). See Goldstine

(1980) and Fraser (2003) for more on the original approach.

Let us divide the closed interval [a, b] into n+1 equal subintervals

(see Figure 2.1). We will assume that the subintervals are bounded

by the points

x0 = a, x1, . . . , xn, xn+1 = b . (2.3)

Each subinterval is of width

Δx = xi+1 − xi =
(b− a)

n+ 1
. (2.4)

We will also replace the smooth function y(x) by the polygonal curve

with vertices

(x0,y0), (x1, y1), . . . , (xn, yn), (xn+1, yn+1) . (2.5)
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Here, yi = y(xi). We can now approximate the functional J [y] by the

sum

J(y1, . . . , yn) ≡
n∑

i=0

f

(
xi, yi,

yi+1 − yi
Δx

)
Δx , (2.6)

a function of n variables. (Remember that y0 = ya and yn+1 = yb are

fixed.)

What is the effect of raising or lowering one of the free yi? To

answer this question, let us choose one of the free yi, yk, and take the

partial derivative with respect to yk. Since yk appears in only two

terms in our sum, the partial derivative is just

∂J

∂yk
= fy

(
xk, yk,

yk+1 − yk
Δx

)
Δx (2.7)

+ fy′

(
xk−1, yk−1,

yk − yk−1

Δx

)

− fy′

(
xk, yk,

yk+1 − yk
Δx

)
.

To find an extremum, we would ordinarily set this partial deriva-

tive equal to zero for each k. We also, however, want to take the limit

as n → ∞. In this limit, Δx → 0 and the right-hand side of equation

(2.7) goes to zero. The equation 0 = 0, while true, is, sadly, not very

helpful. To obtain a nontrivial result, we must first divide by Δx,

1

Δx

∂J

∂yk
= fy

(
xk, yk,

yk+1 − yk
Δx

)
(2.8)

− 1

Δx

[
fy′

(
xk, yk,

yk+1 − yk
Δx

)
− fy′

(
xk−1, yk−1,

yk − yk−1

Δx

)]
.

As we now let n → ∞ and Δx → 0, equation (2.8) yields the

variational derivative

δJ

δy
= fy(x, y, y

′)− d

dx
fy′ (x, y, y′) . (2.9)

This variational derivative plays the same role for functionals that

the partial derivative plays for multivariate functions. For a relative

(or local) minimum, we expect this derivative to vanish at each point,
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leaving us with the Euler–Lagrange equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (2.10)

This condition must be modified if the minimizing curve lies on the

boundary rather than in the interior of the region of interest. More-

over, the Euler–Lagrange equation is only a necessary condition, in

the same sense that f ′(x) = 0 is a necessary, but not a sufficient,

condition in calculus.

I should, perhaps, add that the above discussion is misleading to

the extent that the formal notion of a variational or functional deriv-

ative was not introduced until much later, by Vito Volterra (1887),

in the early stages of the development of functional analysis. See the

recommended reading at the end of this chapter for more information

about variational derivatives.

Example 2.1 (Shortest curve in the plane).

Let’s see what the Euler–Lagrange equation has to say about the

shape of the shortest curve between two points, (a, ya) and (b, yb), in

the plane. We clearly wish to minimize the arc-length functional

J [y] =

b∫
a

ds =

b∫
a

√
1 + y′2 dx . (2.11)

The integrand,

f(x, y, y′) =

√
1 + y′2 , (2.12)

does not depend on y and so the Euler–Lagrange equation reduces to

d

dx

(
y′√

1 + y′2

)
= 0 . (2.13)

Integrating once produces

y′√
1 + y′2

= constant (2.14)

and we quickly conclude that

y′ = c , (2.15)
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c a constant. If we integrate once again and set our new constant of

integration to d, we conclude that

y = cx+ d . (2.16)

This is the equation of a straight line. The constants c and d can be

determined from the boundary conditions.

2.3. Lagrange’s approach

Let us return to the problem of minimizing or maximizing the func-

tional

J [y] =

b∫
a

f(x, y(x), y′(x)) dx (2.17)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (2.18)

Euler derived the Euler–Lagrange equation by varying a single ordi-

nate. Lagrange realized that he could derive this same equation while

simultaneously varying all of the (free) ordinates.

x

y

a b

ŷ (x )

ŷ (x ) + h(x )

Figure 2.2. A small variation
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Let us suppose that the function y = ŷ(x) solves our problem.

We now introduce h(x), a small deviation or variation from this ide-

alized solution,

y(x) = ŷ(x) + h(x) (2.19)

(see Figure 2.2), that satisfies

h(a) = 0 and h(b) = 0 . (2.20)

At this point, we need to discuss a subtle point that escaped

Lagrange but that turns out to be rather important. What exactly

do we mean when we say that a variation is small? The usual way to

measure the nearness of two functions is to compute the norm of the

difference of the two functions. There are many possible norms and

we will see that our conclusions about extrema (maxima and minima)

are rather sensitive to which norm we use.

We will use two different norms throughout this course. They are

the weak norm

||h||w = max
[a,b]

|h(x)| (2.21)

and the strong norm

||h|| s = max
[a, b]

|h(x)| + sup
[a,b]

|h′(x) | . (2.22)

x

y

a b

} ε

ŷ (x )

y (x ) = ŷ (x ) + h(x )

Figure 2.3. Strong variation
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The supremum (or least upper bound) is here in case we are work-

ing with functions that are piecewise continuously differentiable. If

our functions are continuously differentiable, the supremum can be

replaced by a maximum.

We will use the weak and strong norms to establish neighborhoods

in function space. Weak and strong norms permit different variations

about the optimal solution. Since the weak norm does not impose

any restriction upon the derivative, an ε-neighborhood in a weakly-

normed space will include strong variations (see Figure 2.3) that differ

significantly from the optimal solution in slope while remaining close

in ordinate.

Strong variations may have arbitrarily large derivatives.

Example 2.2.

The function

h(x) = ε sin
( x

ε2

)
(2.23)

never exceeds ε and yet its derivative,

h′(x) =
1

ε
cos

( x

ε2

)
, (2.24)

may become arbitrarily large as ε is made small.

x

y

a b

y (x ) = ŷ (x ) + h(x )

Figure 2.4. Weak variations
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The strong norm, in contrast, does place a restriction on the size

of the derivative. Stating that

||h||s < ε (2.25)

implies not only

max
[a,b]

|h(x)| < ε (2.26)

but also

sup
[a,b]

|h′(x)| < ε . (2.27)

An ε-neighborhood in a strongly-normed space contains only weak

variations (see Figure 2.4) that are close to the optimal solution in

both ordinate and slope.

Since strong variations are a superset of weak variations, a func-

tion that minimizes a functional relative to nearby strong variations

also minimizes that functional relative to nearby weak variations.

Conversely, a necessary condition for a weak relative minimum is

also a necessary condition for a strong relative minimum. Lagrange’s

approach uses weak variations. This is alright if we want necessary

conditions but is a problem if we want sufficient conditions. In due

course, we will encounter examples of functionals that have minima

relative to weak variations, but not relative to strong variations.

To make Lagrange’s assumption as explicit as possible, we will

consider small weak variations

h(x) = ε η(x) (2.28)

where

η(a) = 0 , η(b) = 0 (2.29)

and h(x) and h′(x) are of the same order of smallness. The function

η(x) is thus assumed to be independent of the parameter ε. As ε

tends to zero, the variation h(x) tends to zero in both ordinate and

slope. For notational convenience, we will also think of the functional

J [y] as a function of ε,

J(ε) ≡ J [ŷ + εη] =

b∫
a

f(x, ŷ + εη, ŷ′ + εη′) dx . (2.30)
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Let us now look at the total variation

ΔJ = J(ε)− J(0) . (2.31)

That is,

ΔJ =

b∫
a

f(x, ŷ + εη, ŷ′ + εη′) dx−
b∫

a

f(x, ŷ, ŷ′) dx (2.32)

=

b∫
a

[f(x, ŷ + εη, ŷ′ + εη′)− f(x, ŷ, ŷ′)] dx .

If f has enough continuous partial derivatives — and we shall

assume that it does — we may expand the total variation in a power

series in ε. Using the usual Taylor expansion, we obtain

ΔJ = δJ +
1

2
δ2J + O(ε3) . (2.33)

Here,

δJ =
dJ(ε)

dε

∣∣∣∣
ε=0

ε (2.34)

= ε

b∫
a

[fy(x, ŷ, ŷ
′) η + fy′ (x, ŷ, ŷ′) η′] dx

is the first variation. Likewise,

δ2J =
d2J(ε)

dε2

∣∣∣∣
ε=0

ε2 (2.35)

= ε2
b∫

a

[fyy(x, ŷ, ŷ
′) η2 + 2 fyy′ (x, ŷ, ŷ′) η η′ + fy′y′ (x, ŷ, ŷ′) η′

2
] dx

is the second variation. For ε sufficiently small, we expect that a

nonvanishing first variation will dominate the right-hand side of total

variation (2.33). Likewise, we expect that a nonvanishing second

variation will dominate higher-order terms.

If J [ŷ] is a relative (or local) minimum, we must have

ΔJ ≥ 0 (2.36)
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for all sufficiently small ε. Since, however, the first variation is odd

in ε, we can change its sign by changing the sign of ε. To prevent this

change in sign, we require that

δJ = 0 . (2.37)

For a minimum, we also require that

δ2J ≥ 0 . (2.38)

If we want a relative maximum, we will, in turn, require

δJ = 0 , δ2J ≤ 0 . (2.39)

It is convenient, at this early stage of the course, to focus on the

first variation. In light of the above arguments, we may safely say:

First variation condition:

A necessary condition for the functional J [y] to have a relative (or

local) minimum or maximum at y = ŷ(x) is that the first variation

of J [y] vanish,

δJ = 0 , (2.40)

for y = ŷ(x) and for all admissible variations η(x).

The first variation,

δJ = ε

b∫
a

[fy(x, ŷ, ŷ
′) η + fy′ (x, ŷ, ŷ′) η′] dx , (2.41)

is rather unwieldy as written. We will rewrite the first variation so as

to factor out the dependence on the admissible variations η(x). There

are two different ways to do this. Both methods involve integration

by parts. We start with Lagrange’s approach.

2.3.1. Lagrange’s simplification. Let us subject the second term

in integrand (2.41) to integration by parts,

b∫
a

fy′ (x, ŷ, ŷ′)η′ dx = η(x)
∂f

∂y′

∣∣∣∣
x= b

x= a

−
b∫

a

η
d

dx

(
∂f

∂y′

)
dx . (2.42)
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Since our variations from the idealized solution vanish at the end-

points of the interval,

η(a) = 0 , η(b) = 0 , (2.43)

our first necessary condition reduces to

ε

b∫
a

η(x)

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
ŷ,ŷ′

dx = 0 (2.44)

for all admissible η(x). The subscript in this last equation signifies

that the expression in square brackets is evaluated at y = ŷ(x) and

y′ = ŷ′(x).

Let us note, right away, that our use of integration by parts, in

this way, pretty much forces us to assume that ŷ(x) is twice differen-

tiable. The partial derivative fy′ is generally a function of y′ (as well

as of y and x) and if y′′ does not exist, the existence of

d

dx

(
∂f

∂y′

)
(2.45)

becomes doubtful. We shall see, momentarily, that Lagrange’s sim-

plification actually forces us to assume that ŷ′′(x) ∈ C[a, b] or ŷ(x) ∈
C2 [a, b].

Lagrange claimed, without proof, that the coefficient of η(x) in

equation (2.44) must vanish, yielding the Euler–Lagrange equation,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (2.46)

Euler pointed out, in a communication to Lagrange, that Lagrange’s

statement was not self-evident and that he really ought to prove that

the coefficient of η(x) must vanish. This proof was eventually sup-

plied by du Bois-Reymond (1879a). Du Bois-Reymond’s result is now

known as the fundamental lemma of the calculus of variations.
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Fundamental lemma of the calculus of variations:

If M(x) ∈ C[a, b] and if

b∫
a

M(x) η(x) dx = 0 (2.47)

for every η(x) ∈ C1 [a, b] such that

η(a) = η(b) = 0 , (2.48)

then

M(x) = 0 (2.49)

for all x ∈ [a, b].

Proof. The proof is by contradiction. Suppose (without loss of gen-

erality) that M(x) is positive at some point in (a, b). M(x) must

then, by continuity, be positive in some interval [x1, x2] within [a, b].

Now (see Figure 2.5), let

η(x) =

{
(x− x1)

2 (x− x2)
2 , x ∈ [x1, x2] ,

0 , x 
∈ [x1, x2] .
(2.50)

Clearly, η(x) ∈ C1[a, b]. With this choice of η(x),

b∫
a

M(x) η(x) dx =

x2∫
x1

M(x)(x− x1)
2(x− x2)

2 dx . (2.51)

Since the integrand is nonnegative,

b∫
a

M(x) η(x) dx > 0 . (2.52)

This in contrary to our original hypothesis and it now follows that

M(x) = 0 , x ∈ (a, b) . (2.53)

The continuity of M(x), in turn, guarantees that M(x) also vanishes

at the endpoints of the interval. ♣
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a x1 x2 b

x

η
(x

)

Figure 2.5. A nonnegative bump

To be able to apply this fundamental lemma of the calculus of

variations, we must be sure that

M(x) =
∂f

∂y
− d

dx

(
∂f

∂y′

)
(2.54)

is continuous on the closed interval [a, b]. If we apply the chain rule,

we may rewrite the right-hand side of this last equation in the ultra-

differentiated form

M(x) =
∂f

∂y
− ∂fy′

∂x

dx

dx
− ∂fy′

∂y

dy

dx
− ∂fy′

∂y′
dy′

dx
(2.55)

= fy − fy′x − fy′y y
′ − fy′y′ y′′ .

To obtain the Euler–Lagrange equation using Lagrange’s simplifica-

tion, we must therefore make the additional assumption that ŷ′′(x) ∈
C[a, b] or that ŷ(x) ∈ C2[a, b].

Having made (or, more honestly, having been forced into) the

assumption that ŷ(x) ∈ C2 [a, b], we can now state the following nec-

essary condition for a relative maximum or minimum:
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Euler–Lagrange condition:

Every ŷ(x) ∈ C2[a, b] that produces a relative extremum of the

integral

J [y] =

b∫
a

f(x, y, y′) dx (2.56)

satisfies the Euler–Lagrange differential equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (2.57)

Lagrange’s simplification forces us to assume that our solutions

have continuous second derivatives. Can we loosen this assumption?

Let us start with the necessary condition that the first variation must

vanish,

δJ [η] = ε

b∫
a

[fy(x, ŷ, ŷ
′) η + fy′(x, ŷ, ŷ′) η′] dx = 0 , (2.58)

and try a different approach.

2.3.2. Du Bois-Reymond’s simplification. Let us now assume

that the functions ŷ(x) and η(x) are merely continuously differen-

tiable, ŷ(x), η(x) ∈ C1[a, b]. Since fy′(x, ŷ, ŷ′) depends on ŷ′(x), this

function need not be differentiable. As a result, we cannot integrate

the second term in integrand (2.41) by parts.

Let us instead integrate the first term in integrand (2.41) by parts.

Doing so, we obtain

b∫
a

fy(x, ŷ, ŷ
′) η dx = [η(x)φ(x)]x= b

x= a −
b∫

a

φ(x) η′(x) dx , (2.59)

where

φ(x) =

x∫
a

fy(u, ŷ(u), ŷ
′(u)) du . (2.60)
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Since we have only assumed the continuity of fy(x, ŷ, ŷ
′) and of η′(x),

this integration by parts is legal. Since

η(a) = η(b) = 0 , (2.61)

necessary condition (2.58) now reduces to

b∫
a

⎛
⎝ ∂f

∂y′
−

x∫
a

∂f

∂y
du

⎞
⎠

ŷ,ŷ′

η′(x) dx = 0 . (2.62)

We clearly need another lemma to progress further. Here it is:

Lemma of du Bois-Reymond:

If M(x) ∈ C[a, b] and

b∫
a

M(x) η′(x) dx = 0 (2.63)

for all η(x) ∈ C1[a, b] such that

η(a) = η(b) = 0 , (2.64)

then

M(x) = c , (2.65)

a constant, for all x ∈ [a, b].

Proof. We may prove this lemma by considering one well-chosen

variation η(x). Let μ denote the mean value of M(x) on the closed

interval [a, b],

μ =
1

(b− a)

b∫
a

M(x) dx . (2.66)

Clearly,

b∫
a

[M(x)− μ] dx = 0 . (2.67)
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Now, consider the variation η(x) defined by the equation

η(x) =

x∫
a

[M(u)− μ] du . (2.68)

It is easy to see that η(x) ∈ C1[a, b]. The function η(x) also vanishes

at x = a and x = b. It is clearly an admissible variation. Moreover,

η′(x) = M(x)− μ . (2.69)

By hypothesis,

b∫
a

M(x) η′(x) dx =

b∫
a

M(x) [M(x)− μ] dx = 0 . (2.70)

Also,

b∫
a

M(x) [M(x)− μ] dx− μ

b∫
a

[M(x)− μ] dx = 0 . (2.71)

But, this last equation may be rewritten

b∫
a

[M(x)− μ]2 dx = 0 . (2.72)

Let x0 ∈ [a, b] be a point where M(x) is continuous. If M(x0) 
=
μ, then there would have to exist a subinterval about x = x0 on which

M(x) 
= μ. But this is clearly impossible in light of our last displayed

equation. Thus M(x) = μ at all points of continuity. It follows that

M(x) is constant for all x ∈ [a, b]. ♣

We now wish to apply this lemma to necessary condition (2.62),

b∫
a

⎛
⎝ ∂f

∂y′
−

x∫
a

∂f

∂y
du

⎞
⎠

ŷ,ŷ′

η′(x) dx = 0 . (2.73)
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Note that

M(x) =
∂f

∂y′
−

x∫
a

∂f

∂y
du (2.74)

is continuous on [a, b] and that the assumptions of the lemma are

satisfied. It now follows that

∂f

∂y′
=

x∫
a

∂f

∂y
du + c (2.75)

for all x ∈ [a, b]. This is known as the integrated form of the Euler–

Lagrange equation.

The right-hand side of equation (2.75) is differentiable. This, in

turn, implies that the left-hand side of equation (2.75) is differentiable

and that ŷ(x) satisfies the Euler–Lagrange equation,

d

dx

(
∂f

∂y′

)
=

∂f

∂y
. (2.76)

In other words, all solutions with continuous first derivatives, not

just those with continuous second derivatives, must satisfy the Euler–

Lagrange equation.

The differentiability of fy′(x, ŷ, ŷ′) can also be used to prove

(Whittemore, 1900–1901) the existence of the second derivative ŷ′′(x)

for all values of x for which fy′y′(x, ŷ, ŷ′) 
= 0.

We will see later that we can weaken the conditions on ŷ(x) and

η(x) even further, so that they are merely piecewise continuously dif-

ferentiable. One can then show that the Euler–Lagrange equation is

satisfied between corners of the solution and that additional condi-

tions must be satisfied at the corners. Determining these conditions

requires additional tools, and so we will defer the topic of corners

until Chapter 10. For the time being, we will focus our attention on

continuously differentiable solutions.
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2.4. Recommended reading

Goldstine (1980), Fraser (1994, 2005a), and Thiele (2007) analyze Eu-

ler’s early contributions to the calculus of variations. Euler’s idea of

using a polygonal curve to approximate the solution of a variational

problem was revived in the 20th century by Russian mathematicians

working on direct methods of solution. In a direct method, you con-

struct a sequence of approximating functions, determine the unknown

values and coefficients in each function using minimization, and let

the sequence of functions converge to the solution. Euler’s approach

suggests the direct method of finite differences (Elsgolc, 1961). Other

direct methods include the Ritz method, which is frequently and inap-

propriately (Leissa, 2005) called the Rayleigh-Ritz method, the Kan-

torovich method, and the Galerkin method. See Forray (1968) for an

introduction to these direct methods.

The theory of the differentiation of functionals has its origins in

the work of Volterra (1887). See Gelfand and Fomin (1963), Hamil-

ton and Nashed (1982, 1995), Kolmogorov and Yushkevich (1998),

and Lebedev and Cloud (2003) for more on variational derivatives.

There are errors in the statements and proofs of the existence of the

variational derivative for the simplest problem of the calculus of vari-

ations in Volterra (1913) and Gelfand and Fomin (1963). These errors

were pointed out and corrected by Bliss (1915) and Hamilton (1980).

Lagrange announced his new approach to the calculus of vari-

ations in a 1755 letter to Euler; his results appeared in print seven

years later (Lagrange, 1762). Fraser (1985) reviews the lengthy corre-

spondence between Joseph Lagrange and Leonhard Euler and traces

the development of Lagrange’s approach to the foundations of the

calculus of variations.

It has been said that the fundamental lemma is like a watch-

dog that guards the entrance gates to the entire classical domain of

the calculus of variations (Dresden, 1932). Many early writers took

the conclusion of the fundamental lemma as self-evident while others

erred in their proof of this lemma. Huke (1931) traces the long and

fascinating history of the fundamental lemma and of the lemma of du

Bois-Reymond.
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In writing this chapter, we leaned heavily on Bolza (1973) and

Sagan (1969). I encourage all students of the calculus of variations to

read these two books.

2.5. Exercises

2.5.1. Euler’s approach. Using Euler’s approach from Section 2.2,

determine polygonal approximations to the curve that minimizes

2∫
0

[(y′)2 + 6x2y] dx (2.77)

subject to

y(0) = 2, y(2) = 4 (2.78)

for n = 1, n = 2, and n = 3. Write down and solve the Euler–

Lagrange equation for this problem. Compare your polygonal ap-

proximations to your solution of the Euler–Lagrange equation.

2.5.2. Another lemma. Let M(x) ∈ C[a, b] be a continuous func-

tion on the closed interval a ≤ x ≤ b that satisfies

b∫
a

M(x) η′′(x) dx = 0 (2.79)

for all η(x) ∈ C2[a, b] satisfying

η(a) = η(b) = η′(a) = η′(b) = 0 . (2.80)

Prove that

M(x) = c0 + c1x (2.81)

for suitable constants c0 and c1. What can you say about c0 and c1?

                

                                                                                                               



Chapter 3

Cases and Examples

3.1. Special cases

We are interested in the Euler–Lagrange equation,

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 , (3.1)

and in the curves that satisfy this equation. We will refer to these

curves as extremals or, more rarely, as stationary points of the func-

tional. The term extremal was introduced by Adolph Kneser (1900).

Do not confuse extremals, solutions of the Euler–Lagrange equation,

with extrema, the term introduced by du Bois-Reymond (1879b) for

maxima or minima.

To write out the Euler–Lagrange equation in its explicit form, we

must take into account the fact that fy′ is a function of three variables,

x, y, and y′, and that y and y′ are functions of x. Therefore

d

dx

(
∂f

∂y′

)
=

∂fy′

∂x

dx

dx
+

∂fy′

∂y

dy

dx
+

∂fy′

∂y′
dy′

dx
(3.2)

so that the Euler–Lagrange equation may be written in the ultra-

differentiated form

fy − fy′x − fy′yy
′ − fy′y′y′′ = 0 . (3.3)

47

                                     

                

                                                                                                               



48 3. Cases and Examples

This means that the Euler–Lagrange equation is, generally speaking,

a second-order ordinary differential equation. Since

y′′ =
1

fy′y′
(fy − fy′x − fy′yy

′) , (3.4)

a great deal will depend on whether fy′y′ vanishes or not. If fy′y′

never vanishes, we have a regular problem. If fy′y′ always vanishes,

we have the first of our special cases.

3.1.1. Degenerate functionals. This case occurs if the integrand

of our functional is either independent of y′,

f(x, y, y′) = M(x, y) , (3.5)

or depends linearly on y′,

f(x, y, y′) = M(x, y) +N(x, y) y′ . (3.6)

(The former is a special case of the latter.) Functionals for which this

is true are referred to as degenerate functionals. The Euler–Lagrange

equation for a degenerate functional takes the form

∂M

∂y
+

∂N

∂y
y′ − ∂N

∂x
− ∂N

∂y
y′ = 0 (3.7)

or
∂M

∂y
− ∂N

∂x
= 0 . (3.8)

This equation does not contain derivatives of the unknown function

and is not a differential equation.

Several subcases arise in practice. In the first subcase, the Euler–

Lagrange equation (3.8) gives rise to one or more curves. One or an-

other of these curves may satisfy the boundary conditions. More com-

monly, however, the curves fail to satisfy one or both of the boundary

conditions and we cannot solve our problem, as specified.

Example 3.1.

The functional

J [y] =

1∫
0

[
1

2
(x− y)2 + (sin y) y′

]
dx (3.9)
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has the Euler–Lagrange equation

y − x = 0 . (3.10)

The solution to this algebraic equation,

y = x , (3.11)

fails to satisfy most boundary conditions.

Example 3.2.

The functional

J [y] =

1∫
−1

cos y dx (3.12)

has the Euler–Lagrange equation

− sin y = 0 . (3.13)

An extremum may occur along one of the horizontal lines

y = nπ , n = 0, ±1, ±2, . . . , (3.14)

but only if the horizontal line satisfies the boundary conditions.

More rarely, the equation

∂M

∂y
=

∂N

∂x
(3.15)

is satisfied identically for any y(x) and the functional is independent

of the path of integration. Indeed, for the integrand

f(x, y, y′) = M(x, y) +N(x, y) y′ , (3.16)

the functional

J [y] =

b∫
a

f(x, y, y′) dx (3.17)

may be rewritten

J [y] =

b∫
a

M(x, y) dx + N(x, y) dy . (3.18)
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Now, if

M(x, y) =
∂S

∂x
, N(x, y) =

∂S

∂y
(3.19)

for some function S(x, y), then

J [y] =

b∫
a

dS = S(b, yb)− S(a, ya) (3.20)

and we have path independence.

Example 3.3.

Consider

J [y] =

1∫
0

(y + xy′) dx (3.21)

subject to the boundary conditions

y(0) = 0 , y(1) = 1 . (3.22)

The Euler–Lagrange equation reduces to the identity

1 = 1 (3.23)

and the integral is independent of the path of integration. Indeed,

1∫
0

(y + xy′) dx =

(1,1)∫
(0,0)

y dx + x dy (3.24)

so that

1∫
0

(y + xy′) dx =

(1,1)∫
(0,0)

d(xy) = xy|(1,1)(0,0) = 1 . (3.25)

We will generally stay away from degenerate functionals. Fortu-

nately, there are more interesting cases ahead.
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3.1.2. No explicit y dependence. Let us now consider integrands

that do not depend on y,

J [y] =

b∫
a

f(x, y′) dx . (3.26)

In this case, the Euler–Lagrange equation reduces to

d

dx

(
∂f

∂y′

)
= 0 (3.27)

or
∂f

∂y′
= c . (3.28)

In mechanics, y is then referred to as a cyclic or ignorable coordinate

and the first integral corresponds to conservation of momentum.

3.1.3. No explicit x dependence. Finally, let us consider inte-

grands that do not depend on x,

J [y] =

b∫
a

f(y, y′) dx . (3.29)

In this case, the Euler–Lagrange equation reduces to

fy −
d

dx
fy′ = fy − fy′yy

′ − fy′y′y′′ = 0 . (3.30)

Now, observe that

d

dx
(f − y′fy′) = fyy

′ + fy′y′′ − y′fy′yy
′ − y′fy′y′y′′ − y′′fy′ (3.31)

= fyy
′ − y′fyy′y′ − y′fy′y′y′′

= (fy − fy′yy
′ − fy′y′y′′) y′ .

Thus
d

dx
(f − y′fy′) = 0 (3.32)

is equivalent to the Euler–Lagrange equation, as long as y′ 
= 0.

This, in turn, implies that the Euler–Lagrange equation has the first

integral

f − y′fy′ = c . (3.33)
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In mechanics, this leads, in the simplest cases, to conservation of

energy. More generally, we will get conservation of the Hamiltonian.

More on this later.

Many well-known problems in the calculus of variations have in-

tegrands that do not depend explicitly on the independent variable

x. Let us consider two examples.

3.2. Case study: Minimal surface of revolution

Let us return to the problem of minimizing the area

J [y] = 2π

b∫
a

y(x)

√
1 + y′2 dx (3.34)

of a surface of revolution subject to the boundary conditions

y(a) = ya , y(b) = yb (3.35)

in the plane.

Since x is not explicitly present in the integrand, we expect the

first integral

f − y′fy′ = α . (3.36)

For this problem, this first integral gives

y

√
1 + y′2 − y′

yy′√
1 + y′2

= α , (3.37)

where I have taken the liberty of absorbing the 2π into the α. This

last equation simplifies to

y√
1 + y′2

= α . (3.38)

For α = 0, y = 0, but y = 0 does not satisfy y′ 
= 0. Indeed,

y = 0 is a spurious solution: you can easily show that y = 0 does not

satisfy the fully expanded Euler–Lagrange equation. For y(x) > 0

and α > 0,

y = α

√
1 + y′2 (3.39)

and there are now several ways to proceed.
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The most direct approach is to square both sides of this equation

and to rearrange terms,

y′
2

=
1

α2
(y2 − α2) , (3.40)

so that

y′ = ± 1

α

√
y2 − α2 . (3.41)

This last equation is separable. There are two roots on the right-

hand side, but they both, ultimately, lead to the same solution. Let

us take the positive root on the right-hand side. After separating

variables, we now have∫
1√

y2 − α2
dy =

1

α

∫
dx . (3.42)

If we let

y = α cosh u (3.43)

and use the facts that

cosh2 u− 1 = sinh2 u (3.44)

and that
d

du
cosh u = sinh u , (3.45)

we obtain the simple integrals∫
du =

1

α

∫
dx (3.46)

and the solution

u =
1

α
(x− β) . (3.47)

Our solution now reduces to the catenary

y(x) = α cosh

(
x− β

α

)
. (3.48)

Since we are now attuned to the usefulness of hyperbolic func-

tions, let me point out that we could also have made the substitution

y′ = sinh u (3.49)

directly into equation (3.39). This then implies that

y = α cosh u . (3.50)
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z

-4 -2 0 2 4

0

2

4

6

Figure 3.1. Solving a transcendental equation

In addition,

dx =
1

y′
dy =

α sinh u du

sinh u
= α du (3.51)

so that

x = αu + β . (3.52)

Eliminating u from parametric equations (3.50) and (3.52) once again

yields equation (3.48) for our catenary.

The constants of integration α and β are determined by the

boundary conditions, but it is not immediately clear how many solu-

tions, if any, arise for a given set of boundary conditions.

To give an idea of what may happen, in the simplest possible

context, let us consider the symmetric boundary conditions

y(−h) = k , y(h) = k . (3.53)
                

                                                                                                               



3.2. Case study: Minimal surface of revolution 55

This forces

k = α cosh

(
−h− β

α

)
= α cosh

(
h− β

α

)
(3.54)

and we may quickly conclude that β = 0 and that

α cosh
h

α
= k . (3.55)

If we let

z ≡ h

α
, (3.56)

we may now write

cosh z = mz , (3.57)

where

m ≡ k

h
. (3.58)

We can draw a catenary between our symmetric boundary con-

ditions if we can find real roots of equation (3.57). This equation is

transcendental, but we can solve it graphically (see Figure 3.1). All

we need to do is to plot the left-hand side and the right-hand side of

equation (3.57) as functions of z and to look for intersections.

For m = k/h sufficiently large, we have two roots and two cate-

naries that satisfy our boundary conditions. If our boundaries are far

enough apart, there are no catenary solutions. These two extremes

are separated by a critical case, m = mc, z = zc, that corresponds to

the double root

cosh zc = mc zc , sinh zc = mc . (3.59)

We can eliminate mc between these two equations to get

tanh zc =
1

zc
, (3.60)

which has the solution

zc ≈ 1.199679 . (3.61)

It now follows that

mc ≈ sinh (1.199679) ≈ 1.508880 . (3.62)
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Figure 3.2. Two catenaries

For m > mc two catenaries solve the boundary conditions. One

of these will be shallow and one of these will be deep. For example,

for

y(−1) = 2 , y(1) = 2 , (3.63)

we have m = 2. The transcendental equation

cosh z = mz (3.64)

now has two roots,

z1 ≈ 0.58939 , z2 ≈ 2.1268 (3.65)
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with

α1 ≈ 1.697 , α2 ≈ 0.47 . (3.66)

Figure 3.2 shows the two catenaries.

We will see later that the deeper of the two catenaries is a spurious

stationary point that is neither a maximum nor a minimum. We will

also see that the shallower of the two catenaries is a relative minimum.

There is another way to view matters (see Figure 3.3). Let us

take our first boundary condition to be

y(0) = 1 . (3.67)

The catenary

y(x) = α cosh

(
x− β

α

)
(3.68)

must now satisfy

1 = α cosh
β

α
. (3.69)

Let us denote

λ =
β

α
(3.70)

so that

α =
1

cosh λ
. (3.71)

Our two-parameter family of catenaries now reduces to the one-param-

eter family

y(x, λ) =
cosh (x cosh λ− λ)

cosh λ
. (3.72)

Since

y′(x, λ) = sinh (x cosh λ− λ) (3.73)

and

y′(0, λ) = − sinh λ , (3.74)

we can clearly obtain all possible initial slopes if we let λ run through

all real numbers.

As we vary λ, we obtain a one-parameter family or “pencil” of

catenaries emanating from (1, 0). The members of this family form

an envelope that passes through the origin. For some parametric

representations of this envelope, see Kimball (1952). Every point P

above this envelope is visited by two different catenaries. One of the

two catenaries touches the envelope before passing on to P . We will
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Figure 3.3. One-parameter family of catenaries

see later that this catenary is not a minimizing curve. The other

catenary, which does not touch the envelope, is a relative minimum.

Points below the envelope cannot be reached by a catenary. When

the point P is on or below the envelope, there is no continuously differ-

entiable curve of the form y = y(x) that generates a relative minimum

surface of revolution. The minimal surface of revolution consists, in-

stead, of two boundary disks (corresponding to the boundary condi-

tions) and the segment of the x-axis between them. This solution is

called the Goldschmidt solution in honor of (Charles Wolfgang) Ben-

jamin Goldschmidt (1831) and his discovery of this solution. This

Goldschmidt solution coexists with our two catenaries when point P

is above the envelope. The Goldschmidt solution may or may not be

the global minimum in these cases.
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3.3. Case study: The brachistochrone

Let us reexamine the brachistochrone problem. The problem was

to minimize the travel time of a mass moving under its own weight

between two points. That is, we want to minimize the integral

T =

b∫
a

1

v
ds =

b∫
a

1

v

√
1 + y′2 dx (3.75)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (3.76)

Remember, this is a conservative system. For a particle starting

from rest,
1

2
mv2 +mgy = mgya (3.77)

and

v =
√

2g(ya − y) . (3.78)

We are thus left with the problem of minimizing

J [y] =
1√
2g

b∫
a

√
1 + y′2

ya − y
dx (3.79)

subject to the boundary conditions.

Let’s make our lives a little easier by letting

z ≡ ya − y (3.80)

so that

J [z] =
1√
2g

b∫
a

√
1 + z′2

z
dx . (3.81)

Since there is no explicit x dependence in this integral, the Euler–

Lagrange equation has the first integral

f − z′
∂f

∂z′
= α (3.82)

or √
1 + z′2√

z
− 1√

z

z′
2√

1 + z′2
= α . (3.83)
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0
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Figure 3.4. Cycloid for R = 1
2
ya and a = 0

This last equation simplifies to

1√
z[1 + (z′)2]

= α . (3.84)

Solving for z′, we find that

dz

dx
=

√
1− α2z

α2z
. (3.85)

This last differential equation is separable,

dx =

√
α2z

1− α2z
dz . (3.86)

Let

z =
1

α2
sin2 θ (3.87)

so that

dz =
2

α2
sin θ cos θ dθ . (3.88)

Our separated differential equation now reduces to

dx =
2

α2

√
sin2 θ

cos2 θ
sin θ cos θ dθ (3.89)

or

α2 dx = 2 sin2 θ dθ = (1− cos 2θ) dθ . (3.90)

It follows that

α2 x = θ − 1

2
sin 2θ + β . (3.91)
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Figure 3.5. One-parameter family of cycloids

Now, remember that

y = ya − z (3.92)

so that

y = ya −
1

α2
sin2 θ = ya −

1

2α2
(1− cos 2θ) . (3.93)

If we let

R ≡ 1

2α2
, φ ≡ 2θ , a =

β

α2
, (3.94)

we may write our solution in the parametric form

x(φ) = a+R (φ− sin φ) , (3.95)

y(φ) = ya −R (1− cos φ) . (3.96)

This is the trace of a circle of radius R rolling on the underside of the

line y = ya (see Figure 3.4); the equation is that of a cycloid.

If we take

x(0) = 0, y(0) = 0 (3.97)

as our left boundary condition, we are left with a one-parameter fam-

ily of cycloids,

x = R (φ− sin φ) , y = −R (1− cos φ) , (3.98)

that form a field of extremals (see Figure 3.5). Each extremal extends

along the x-axis π times its maximum depth. There is one (and only

one) cycloid that passes through the boundary points A = (0, 0) and

B with no cusp between A and B.
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3.4. Geodesics

In Chapter 1, we saw that we can represent a surface as a vector,

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k . (3.99)

Finding the shortest path between two points, A = (ua, va) and B =

(ub, vb), on this surface was then achieved by minimizing the integral

s =

ub∫
ua

√
E + 2F

(
dv

du

)
+G

(
dv

du

)2

du (3.100)

subject to the boundary conditions

v(ua) = va , v(ub) = vb . (3.101)

Here,

E(u, v) =
∂r

∂u
· ∂r
∂u

, F (u, v) =
∂r

∂u
· ∂r
∂v

, (3.102)

G(u, v) =
∂r

∂v
· ∂r
∂v

are the first-order fundamental quantities.

For general surfaces, the resulting Euler–Lagrange equation,

Ev + 2Fvv
′ +Gv(v

′)2

2
√
E + 2Fv′ +G(v′)2

− d

du

[
F +Gv′√

E + 2Fv′ +G(v′)2

]
= 0 , (3.103)

is quite awful. Fortunately, this Euler–Lagrange equation does sim-

plify for some surfaces.

The most important special case is that of a surface of revolution,

which is obtained by rotating a planar curve about an axis. If we

choose the z-axis as the axis of revolution, we may represent the

surface of revolution by the vector

r(u, v) = f(u) cos v i + f(u) sin v j + h(u) k . (3.104)

Varying u while holding v constant yields a meridian of the surface.

Varying v while holding u constant yields a circle of latitude for the

surface.

For this surface of revolution, the first-order fundamental quan-

tities are

E = [f ′(u)]2 + [h′(u)]2 , F = 0 , G = [f(u)]2 . (3.105)
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These quantities do not depend on the dependent variable v. In addi-

tion, F = 0, which implies that the meridians and circles of latitude

intersect orthogonally. As a result, our Euler–Lagrange equation sim-

plifies to

d

du

[
Gv′√

E +G (v′)2

]
= 0 . (3.106)

We thus gain the first integral

Gv′√
E +G (v′)2

= c1 . (3.107)

If we solve for v′(u) and integrate, it now follows that

v(u) = c1

∫ √
E√

G2 − c21G
du + c2 . (3.108)

On occasion, you may encounter problems in which F = 0 and

the independent variable u is missing from the first-order fundamental

quantities. In that case, the Euler–Lagrange equation reduces to√
E +G(v′)2 − G(v′)2√

E +G(v′)2
= c1 . (3.109)

After some simplification, it now follows that

u(v) = c1

∫ √
G√

E2 − c21E
dv + c2 . (3.110)

You will find several problems involving geodesics at the end of this

chapter.

3.5. Recommended reading

We will consider the catenoid in greater detail in Chapter 6. In the

meantime, see Durand (1981) and Ben Amar et al. (1998) for infor-

mation about the stability and oscillation of soap films.

A number of scientists have investigated the collapse of catenoidal

soap-film bridges experimentally. See, in particular, the work of Cryer

and Steen (1992), Chen and Steen (1997), Robinson and Steen (2001),

and Müller and Stannarius (2006).

Although we typically associate soap films with minimal surfaces

such as the catenoid, Criado and Alamo (2010) have shown that
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other variational problems, including the brachistochrone, can also

be solved using soap films.

The classical brachistochrone has a point mass sliding along a

curve. One can also consider brachistochrones for rigid bodies, such

as disks, cylinders, and spheres, rolling down a curve. See Rodgers

(1946), Yang et al. (1987), Akulenko (2009), and Legeza (2010) for

details.

Since the Euler–Lagrange equation for a geodesic on a general

surface is often analytically intractable, scientists commonly use nu-

merical methods to find geodesics. Patrikalakis and Maekawa (2002)

provide a nice overview of numerical techniques for finding geodesics.

3.6. Exercises

3.6.1. Finding extremals. Find extremals for the following func-

tionals (Elsgolc, 1961). All are well-known geometric curve. For each

extremal, name, draw, or describe the curve.

(a)

F [y(x)] =

b∫
a

√
1 + y′2

y
dx. (3.111)

(b)

F [y(x)] =

b∫
a

(y2 + 2xyy′) dx, (3.112)

y(a) = ya and y(b) = yb. (3.113)

(c)

F [y(x)] =

1∫
0

(xy + y2 − 2y2y′) dx, (3.114)

y(0) = 1 and y(1) = 2. (3.115)

(d)

F [y(x)] =

b∫
a

√
y(1 + y′2) dx. (3.116)
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(e)

F [y(x)] =

b∫
a

y′(1 + x2y′) dx. (3.117)

(f)

F [y(x)] =

b∫
a

(y′
2
+ 2yy′ − 16y2) dx. (3.118)

3.6.2. An autonomous equation. A differential equation is au-

tonomous if it does not explicitly depend on or contain the indepen-

dent variables.

(a) Show that the Euler–Lagrange equation for the minimal surface

of revolution problem reduces to the autonomous, nonlinear dif-

ferential equation

1 +

(
dy

dx

)2

− y
d2y

dx2
= 0 . (3.119)

(b) Write y′(x) as a function of y,

y′ = p(y) , (3.120)

so that

y′′ =
dp

dy

dy

dx
= p

dp

dy
. (3.121)

Use this substitution to rederive the first-order equation

y′
2

=
1

α2
(y2 − α2) . (3.122)

3.6.3. A linear equation. Differentiate the first-order equation

y′
2

=
1

α2
(y2 − α2) (3.123)

(from the previous problem) with respect to x to derive a linear,

second-order differential equation. Solve for the general solution to

this ODE and show that it contains three arbitrary constants. Use

equation (3.123) to eliminate one constant and rederive the catenary

of equation (3.48).
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3.6.4. Brachistochrones on a cylinder. Determine the extremals

for the brachistochrone on the cylinder (Vujanovic and Jones, 1989).

Find the minimum-time curve of descent of a particle, under the in-

fluence of gravity, on a vertical circular cylinder of fixed radius r.

Assume that the particle starts from rest, that the force of friction

between the particle and the cylinder is negligible, and that we may

describe the location of the particle in terms of the cylindrical coor-

dinates θ and z.

(a) Write out the functional for this problem with z(θ) as the depen-

dent variable and θ as the independent variable.

(b) Determine the extremals for this problem by solving the Euler-

Lagrange equation for this problem.

(c) What happens to your solution as you “unroll” your cylinder?

3.6.5. Terrestrial brachistochrones. Consider the problem of

minimizing the travel time through the earth,

T =

√
R

g

θb∫
θa

√(
dr
dθ

)2
+ r2

R2 − r2
dθ . (3.124)

(See Figure 1.3.) Determine the extremals for this problem, θ(r), by

solving the Euler–Lagrange equation for this problem.

3.6.6. Geodesics on a right circular cylinder. Let S be the right

circular cylinder

r(θ, z) = a cos θ i + a sin θ j + z k (3.125)

of radius a, with 0 ≤ θ ≤ 2π and −∞ < z < ∞. A curve γ, on the

surface of the cylinder, is given by a function, z = z(θ), that relates

z and θ along γ. We wish to find the geodesic that minimizes the

arc-length integral between two points on the surface of the cylinder.

(a) Write down the arc-length integral for the curve γ.

(b) What is the Euler–Lagrange equation for this integral?

(c) Solve this differential equation and show that your geodesic curves

are arcs of circular helices.
                

                                                                                                               



3.6. Exercises 67

0.25

0.5

0.75

1.0

-1

-0.5

0.0

0.5

1

-1

-0.5

0.0

0.5

1

xy

z

Figure 3.6. Geodesic on a cylinder

3.6.7. Geodesics on a right circular cone. Let S be the right

circular cone

r(r, θ) = r cos θ i + r sin θ j + mr k , (3.126)

with 0 ≤ θ ≤ 2π, r ≥ 0, and m a constant (the slope of the cone). A

curve γ, on the surface of the cone, is given by a function, r = r(θ),

that relates r and θ along γ. We wish to find the geodesic that

minimizes the arc-length integral between two points on the surface

of the cone.

(a) Write down the arc-length integral for the curve γ.

(b) Show that if γ is a geodesic, r = r(θ) must satisfy the differential

equation

(1 +m2)α2

(
dr

dθ

)2

= r2 (r2 − α2) (3.127)

for some suitable constant α (0 ≤ α ≤ r).
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(c) Integrate this differential equation to get the equation

r(θ) =
α

cos
[

(θ+β)√
1+m2

] (3.128)

for a geodesic curve that winds around and up the cone (with

nonconstant radius). Here α and β are appropriate constants of

integration.

3.6.8. Geodesics on a sphere. Let S be a sphere,

r(θ, φ) = R sin θ cos φ i + R sin θ sin φ j + R cos θ k , (3.129)

of radius R, with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. A curve γ, on the

surface of the sphere, is given by a function, φ = φ(θ), that relates

φ and θ along γ. We wish to find the geodesic that minimizes the

arc-length integral between two points on the surface of the sphere.

(a) What is the Euler–Lagrange equation for this problem?

(b) Solve your Euler–Lagrange equation for this problem and show

that the extremals are arcs of great circles.

                

                                                                                                               



Chapter 4

Basic Generalizations

4.1. Higher-order derivatives

We will now consider some simple generalizations of our basic theory.

We will start with functionals that contain a second derivative.

Consider the problem of maximizing or minimizing the integral

J [y] =

b∫
a

f(x, y(x), y′(x), y′′(x)) dx (4.1)

subject to the boundary conditions

y(a) = ya , y(b) = yb , y′(a) = y′a , y′(b) = y′b . (4.2)

This is similar to our standard problem in Chapter 2, except that the

functional now contains a second derivative. The boundary condi-

tions, in turn, prescribe both y(x) and y′(x) at the endpoints.

We will proceed in the usual manner. We will assume that we

have a solution, y = ŷ(x), and add a small weak variation, h(x) =

εη(x), to this solution,

y(x) = ŷ(x) + ε η(x) . (4.3)

If this new function is to satisfy our boundary conditions, η(x) and

its derivative must both vanish at the endpoints,

η(a) = 0 , η(b) = 0 , η′(a) = 0 , η′(b) = 0 . (4.4)

69
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The total variation is now

ΔJ =

b∫
a

f(x, ŷ + εη, ŷ′ + εη′, ŷ′′ + εη′′)− f(x, ŷ, ŷ′, ŷ′′) dx (4.5)

and, if we expand the integrand in a Taylor series in ε and keep terms

of order ε, the first variation is just

δJ = ε

b∫
a

(
∂f

∂y
η +

∂f

∂y′
η′ +

∂f

∂y′′
η′′
)

dx . (4.6)

We may now simplify the first variation by integrating by parts.

Since
b∫

a

η′
∂f

∂y′
dx = η

∂f

∂y′

∣∣∣∣
x= b

x= a

−
b∫

a

η
d

dx

(
∂f

∂y′

)
dx (4.7)

and

b∫
a

η′′
∂f

∂y′′
dx = η′

∂f

∂y′′

∣∣∣∣
x= b

x= a

−
b∫

a

η′
d

dx

(
∂f

∂y′′

)
dx (4.8)

=

[
η′

∂f

∂y′′
− η

d

dx

(
∂f

∂y′′

)] x= b

x= a

+

b∫
a

η
d2

dx2

(
∂f

∂y′′

)
dx ,

the first variation reduces to

δJ = ε

b∫
a

η(x)

[
∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)]
dx (4.9)

+ ε

[(
∂f

∂y′
− d

dx

∂f

∂y′′

)
η

]x= b

x= a

+ ε
∂f

∂y′′
η′
∣∣∣∣
x= b

x= a

.

We have seen that we must have δJ = 0 for a relative maximum

or minimum. If y(x) and y′(x) are prescribed at x = a and x = b,

then η(x) and its derivative vanish at those endpoints, and the last

two terms in equation (4.9) vanish. It now follows that ŷ(x) must

satisfy the fourth-order equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
= 0 . (4.10)
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Equation (4.10) simplifies for a number of special cases. These cases

include degenerate functionals and first integrals. See Exercises 4.10.1,

4.10.2, and 4.10.3 for details.

For many applications (see, for example, the next section), y(x)

and y′(x) are left unprescribed at one (or both) endpoints. The func-

tions η(x) and η′(x) need not vanish at those endpoints. To force

our first variation to vanish, we must then augment our fourth-order

Euler–Lagrange equation with “natural” boundary conditions. If y is

unprescribed at an endpoint, we require that

∂f

∂y′
− d

dx

(
∂f

∂y′′

)
= 0 (4.11)

at that endpoint. If y′ is unprescribed at an endpoint, we require that

∂f

∂y′′
= 0 (4.12)

at that endpoint. We will discuss natural boundary conditions and

other endpoint conditions more fully in Chapter 9.

The arguments that led to equation (4.10) can also be extended

to integrals,

J =

b∫
a

f(x, y(x), y′(x), . . . , y(n)(x)) dx , (4.13)

that contain derivatives of order n. I leave it to you (see Exercise

4.10.4) to show that ŷ(x) must now satisfy the Euler–Poisson equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
+ · · ·+ (−1)n

dn

dxn

[
∂f

∂y(n)

]
= 0 , (4.14)

a differential equation of order 2n.

4.2. Case study: The cantilever beam

The principle of minimum (total) potential energy is an important

tool in solid mechanics. This principle is used for elastic systems

that experience conservative internal and external forces and that

lie, at rest, in stable equilibrium. The principle states that the total

potential energy for such a system is a minimum with respect to all
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small displacements that satisfy the given boundary conditions. This

principle is used to derive the shape of an elastic body.

To be sure that we are speaking the same language, remember

that an elastic body is a deformable solid body whose deformations

disappear after the forces that caused the deformations have been

removed. Elastic bodies return to their original shape. In linear the-

ories of elasticity, we assume that deformations and strains are small

and that stress and strain are linearly related. A conservative force,

in turn, is one that always does the same work moving a particle be-

tween two given points, irrespective of the path. Conservative forces

conserve mechanical energy and can be derived from scalar potentials.

In a moment, we will derive the equation for the shape of a can-

tilever beam (fixed at one end and free at the other) under a uniform

load. In this example, the external force is a familiar one: gravity.

The internal forces arise from strains within the beam. The total

potential energy has two components: elastic strain energy and grav-

itational potential energy. We will start with the strains and the

strain energy within a bent beam.

Consider a straight beam of uniform cross section (see Figure

4.1). We will subject this beam to pure bending. We will assume

that this bending occurs in the (x, y) plane, that there is no lateral

shearing stress, and that each transverse section of the bar, initially

plane, remains plane and perpendicular to the longitudinal fibers of

the bar. These are standard assumptions for Bernoulli–Euler beam

theory.

As the beam bends (see Figure 4.2), longitudinal fibers above

the original x-axis shorten, while longitudinal fibers below the x-axis

lengthen. We will assume that the center fiber, the neutral axis,

remains unstrained. For convenience, let R be the radius of curvature

of this neutral axis.

What is the strain, after bending, of a typical fiber? Consider

fiber CG, located a distance u above the neutral axis. Before bending,

this fiber is the same length as BF ,

CG = BF = RΔθ . (4.15)
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Figure 4.1. Straight beam

After bending, this fiber is shorter,

CG = (R− u)Δθ . (4.16)

The strain ε is simply the proportional change in length,

ε = − uΔθ

RΔθ
= − u

R
. (4.17)

The minus sign indicates that fibers above the neutral axis shorten

and that fibers below the neutral axis, where u is negative, lengthen.

The above formula for the strain contains the reciprocal of the

radius of curvature. This is just the curvature, or the rate of change

of direction of the neutral axis with arc length. The curvature can be

written

κ(x) =
y′′

(1 + y′2)3/2
(4.18)

(see Exercise 4.10.5), where y(x) is the vertical displacement of the

neutral axis. Thus, the strain is

ε = − u y′′

(1 + y′2)3/2
. (4.19)

For a linearly elastic beam, Hooke’s law is valid and the stress in

fiber CG is

σ = E ε (4.20)
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Figure 4.2. Bent beam

where E is Young’s modulus. The stress in the fibers engenders a

strain energy density,

U0 =

ε∫
0

σ dε =

ε∫
0

E ε dε (4.21)

=
E

2
ε2 =

E

2

(u y′′)2

(1 + y′2)3
.

Integrating this strain energy density over the volume of the bent

beam, in turn, gives us the total strain energy,

U =

∫
V

U0 dV =

l∫
0

∫
A

U0 dAds . (4.22)
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Figure 4.3. Cantilever beam

Substituting U0 and

ds =

√
1 + y′2 dx (4.23)

now gives us

U =
EI

2

b∫
0

y′′
2

(1 + y′2)5/2
dx , (4.24)

where

I =

∫
A

u2 dA (4.25)

is the moment of inertia of the cross section of the beam with re-

spect to the centroidal z-axis. The limit of integration b is, to a first

approximation, equal to l.

Finally, consider a uniform elastic cantilever beam (fixed at one

end and free at the other) under a uniform load (see Figure 4.3). For

convenience, we will now consider the y-axis to be in the downward

direction, so that we have positive deflections. You may think of

the cantilever beam as a high-dive board with someone lying on the

board.
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We have seen that the bending of the beam (about the neutral

line of the beam) results in the strain energy

U =
EI

2

b∫
0

y′′
2

(1 + y′2)5/2
dx , (4.26)

where y(x) is the deflection of the beam, E is Young’s modulus, and

I is the moment of inertia about the centroidal axis. The loss in

potential energy due to the external, distributed load q is, in turn,

−
l∫

0

q y ds . (4.27)

The total potential energy of the deformed system can thus be written

as

V =

b∫
0

[
EI

2

y′′
2

(1 + y′2)5/2
− q y (1 + y′

2
)1/2

]
dx. (4.28)

This integral is sufficiently complicated that the resulting differ-

ential equation for the extremal is also quite complicated. However,

if we assume that the beam deflection is small, we can neglect second-

degree terms in y′(x) and write

V ≈
b∫

0

(
EI

2
y′′

2 − q y

)
dx . (4.29)

The Euler–Poisson equation for this integral reduces to

EI y′′′′ − q = 0 . (4.30)

The boundary conditions at the clamped end are

y(0) = 0 , y′(0) = 0 . (4.31)

There are no predefined boundary conditions at the unsupported end.

We must instead use the natural boundary conditions. The natural

boundary conditions reduce to

EI y′′′(b) = 0 , EI y′′(b) = 0 . (4.32)
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4.3. Multiple unknown functions

The next generalization concerns integrals that contain multiple de-

pendent variables. In particular, consider an integral,

J [y1, . . . , yn] =

b∫
a

f(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx , (4.33)

that contains n twice continuously differentiable functions, y1(x), . . . ,

yn(x), that satisfy the boundary conditions

yi(a) = yia , yi(b) = yib (4.34)

for i = 1, . . . , n.

If n = 2, we will often find it convenient, in later sections, to

assign distinct names to the two dependent variables, e.g., y(x) and

z(x). If, in contrast, n > 2, or if we are talking about the general

case, we will use subscripts for the dependent variables, as in equation

(4.33). Also, in order to save effort and ink, we will often use vector

notation for the dependent variables and their derivatives,

y(x) = [y1(x), . . . , yn(x)] , y′(x) = [y′1(x), . . . , y
′
n(x)] , (4.35)

and for optimal solutions and their derivatives,

ŷ(x) = [ŷ1(x), . . . , ŷn(x)] , ŷ′(x) = [ŷ′1(x), . . . , ŷ
′
n(x)] . (4.36)

For now, we will assume that the dependent variables are indepen-

dent of one another, with no a priori constraints. We will consider

constraints in Chapter 5.

We will consider weak variations,

hi(x) = ε ηi(x) , (4.37)

that vanish at x = a and x = b,

ηi(a) = 0 , ηi(b) = 0 , (4.38)

for i = 1, . . . , n. We will often use vector notation for weak variations

and their derivatives.

To find necessary conditions for the functional to have an ex-

tremum, we once again consider the total variation

ΔJ = J [ŷ + h]− J [ŷ] (4.39)
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relative to an assumed solution. Thus,

ΔJ =

b∫
a

f(x, ŷ + εη, ŷ′ + εη′)− f(x, ŷ, ŷ′) dx (4.40)

so that

ΔJ = δJ +
1

2
δ2J + O(ε3) (4.41)

where

δJ = ε

b∫
a

n∑
i=1

(fyi
ηi + fy′

i
η′i) dx . (4.42)

Since all the increments ηi(x) are independent, we can choose any

one of these increments arbitrarily (as long as the boundary conditions

are satisfied) while keeping all of the other increments equal to zero.

The necessary condition δJ = 0 thus yields

ε

b∫
a

(fyi
ηi + fy′

i
η′i) dx = 0 (4.43)

for i = 1, . . . , n. Using the fundamental lemma of the calculus of

variations or, more generally, the du Bois-Reymond lemma, we obtain

a system of Euler–Lagrange equations,

∂f

∂yi
− d

dx

(
∂f

∂y′i

)
= 0 (4.44)

for i = 1, . . . , n.

With multiple dependent variables, it is more important than

ever to use first integrals to simplify the Euler–Lagrange equations.

If a dependent variable, yi(x), is missing from the integrand (4.33),

the corresponding Euler–Lagrange equation simplifies to

∂f

∂y′i
= c . (4.45)

Similarly, if the independent variable x is missing from the inte-

grand (4.33), the first term on the right side of

df

dx
=

∂f

∂x
+

n∑
i=1

(
∂f

∂yi
y′i +

∂f

∂y′i
y′′i

)
(4.46)
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disappears:

df

dx
=

n∑
i=1

(
∂f

∂yi
y′i +

∂f

∂y′i
y′′i

)
. (4.47)

Using our Euler–Lagrange equations, we may rewrite this last equa-

tion as

df

dx
=

n∑
i=1

[
d

dx

(
∂f

∂y′i

)
y′i +

∂f

∂y′i
y′′i

]
(4.48)

=

n∑
i=1

d

dx

(
∂f

∂y′i
y′i

)
.

It now follows that

d

dx

(
f −

n∑
i=1

∂f

∂y′i
y′i

)
= 0 (4.49)

and that

f −
n∑

i=1

∂f

∂y′i
y′i = c (4.50)

is a first integral.

4.4. Lagrangian mechanics

Problems with multiple dependent variables are especially common

in mechanics, the science that studies the motion of material bodies.

This science has a long history (Dugas, 1988). Newton laid the foun-

dations for classical mechanics with his laws. Newtonian mechanics,

which is built around vector quantities such as force, momentum, and

acceleration, is quite general but can be unwieldy. Later scientists,

most notably Joseph-Louis Lagrange and William Hamilton, refor-

mulated mechanics so as to simplify matters. In this section, we will

study Lagrangian mechanics (from a calculus of variations perspec-

tive). In a later section, we will study Hamiltonian mechanics.

Before proceeding, we must first consider some new notation. In

classical mechanics, we are usually interested in the time evolution

of dynamical systems. So time, t, is our independent variable. We

also have dependent variables that specify the configuration of a me-

chanical system. These dependent variables need not be Cartesian
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coordinates. They can, for example, be angles or arc lengths. Me-

chanicians frequently denote their dependent variables, generically, as

qi(t) and call them generalized coordinates.

For now, assume that we have chosen generalized coordinates that

eliminate superfluous coordinates and explicit geometric constraints.

(This is not always possible.) Thus, for a simple pendulum, which

has one degree of freedom, we will use a single angle, rather than two

Cartesian coordinates and a constraint on the length of the pendulum.

For a double pendulum, with two degrees of freedom, we will use two

angles rather than four Cartesian coordinates and two constraints.

And, for a rigid body, with six degrees of freedom, we can use three

coordinates to specify the center of the body and three Euler angles

to specify the orientation of the body.

The generalized coordinates have time derivatives. We will denote

these derivatives by q̇i(t). Using a dot to signify a time derivative goes

back to Newton and is still common in mechanics. Pulling everything

together, our changes in notation are

x → t , yi(x) → qi(t) , y′i(x) → q̇i(t) . (4.51)

For convenience, we will also use vector notation as needed.

The key advantage of Lagrangian mechanics is that we can often

derive equations of motion using scalar quantities such as kinetic en-

ergy and potential energy. These scalar quantities are easier to work

with than the vector quantities, force, momentum, and acceleration,

that are part of Newtonian mechanics.

To keep things simple, consider a mechanical system in which

all of the applied forces are derivable from a (time-dependent) scalar

potential. Assume that we have a set of (independent) generalized

coordinates that describes the configuration of this mechanical sys-

tem; that we can express the kinetic energy T of this system in terms

of the generalized coordinates, their first derivatives, and time; and

that we can express the potential energy V of the system in terms of

the generalized coordinates and time. Now form the Lagrangian

L(t,q, q̇) ≡ T (t,q, q̇)− V (t,q) (4.52)
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and the time integral of the Lagrangian1 along a path,

S[q] =

tb∫
ta

L(t,q, q̇) dt . (4.53)

Using these ingredients, Hamilton (1834, 1835) formulated the

following important principle:

Hamilton’s principle:

The motion of a mechanical system from q(ta) = qa to q(tb) = qb

is such that the first variation of the integral

S[q] =

tb∫
ta

L(t,q, q̇) dt (4.54)

is zero.

Imagine a mechanical system that moves from a given configura-

tion at time ta to another specified configuration at time tb. Imagine

trajectories that take you between the two endpoints in the stipu-

lated time. Hamilton’s principle states that the true trajectory, q̂(t),

makes Hamilton’s action stationary, δS = 0. In other words, the

system follows the Euler–Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 (4.55)

for i = 1, . . . , n.

Although a true trajectory makes Hamilton’s action stationary,

it need not make the action a minimum or a maximum. Phrased an-

other way, observed trajectories are extremals (solutions of the Euler–

Lagrange equations), but they do not necessarily yield extrema (max-

ima or minima) of Hamilton’s action. At the same time, Hamilton’s

action is minimized in some cases. See Gelfand and Fomin (1963),

Smith and Smith (1974), and Gray and Taylor (2007) for examples

and discussion and see Joglekar and Tham (2011) for illustrations of

1There is no standard name for this integral. Many people refer to it, confusingly,
as the action (confusingly because there is also an older integral, due to Maupertuis,
named action). Others are more careful and say Hamilton’s action. Hamilton’s first
principle function is another common name.
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Figure 4.4. Simple pendulum

action landscapes. The situation is a bit like that in ordinary calculus,

where setting a first derivative equal to zero might get you a saddle

point rather than a minimum or a maximum. In this case, however,

the saddle point has meaning.

Example 4.1 (Simple pendulum).

Consider a simple pendulum (see Figure 4.4) consisting of a mass

m at the end of a weightless string or rigid rod of length l that swings

back and forth in a vertical plane. We will use θ, the angle that the

string makes with the vertical, as our generalized coordinate. The

kinetic energy of the mass is

T =
1

2
mv2 =

1

2
m(lθ̇)2 . (4.56)

Its potential energy is

V (θ) = mgl(1− cos θ) . (4.57)
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The Lagrangian for this system is

L = T − V =
1

2
ml2θ̇2 −mgl (1− cos θ) (4.58)

and the Euler–Lagrange equation is

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 (4.59)

or

ml2 θ̈ = −mgl sin θ . (4.60)

This is the equation of motion of the mass.

Since there is no explicit time dependence in our Lagrangian, we

also have the first integral

L− θ̇
∂L

∂θ̇
= −E , (4.61)

or
1

2
ml2 θ̇2 +mgl (1− cos θ) = E , (4.62)

where E is the total energy of the system.

While the Lagrangian will produce the right equations of motion,

it may not be the only integrand to do so in any particular instance.

Consider, for example, a simple harmonic oscillator (with mass and

spring constant one) with the equation of motion

ẍ+ x = 0 . (4.63)

Here, the displacement x(t) is our generalized coordinate. You can

derive this equation of motion using the Lagrangian

L(t, x, ẋ) = T (ẋ)− V (x) =
1

2
ẋ2 − 1

2
x2 , (4.64)

but you can also derive equation (4.63) using the Euler–Lagrange

equation and the integrand

f(t, x, ẋ) =
1

x2
(x cos t− ẋ sin t) ln

(
x cos t− ẋ sin t

x sin t+ ẋ cos t

)
(4.65)

(Sarlet, 1981) or the integrand

f(t, x, ẋ) =
ẋ

x
atan

(
ẋ

x

)
− 1

2
ln

[
x2

(
1 +

ẋ2

x2

)]
(4.66)

(Della Riccia, 1982).
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Finding integrands that lead, by means of the calculus of varia-

tions, to a given set of differential equations is known as the inverse

problem of Lagrangian mechanics or as the inverse problem of the

calculus of variations. Reformulating differential equations as a vari-

ational problem can be useful: it can lead to new first integrals or to

direct numerical methods for solving the equations.

It is easy to shed some light on the inverse problem for a system

with one degree of freedom. Let us suppose that we wish to find the

integral

J [x] =

tb∫
ta

f(t, x, ẋ) dt (4.67)

that produces the equation of motion

ẍ = g(t, x, ẋ) . (4.68)

The Euler–Lagrange equation for this system can be written in the

ultradifferentiated form

ẍ
∂2f

∂ẋ2
+ ẋ

∂2f

∂ẋ∂x
+

∂2f

∂ẋ∂t
− ∂f

∂x
= 0 . (4.69)

Let us take the partial derivative of this equation with respect to ẋ.

The resulting equation is

∂

∂ẋ

(
g
∂2f

∂ẋ2

)
+ ẋ

∂3f

∂ẋ2∂x
+

∂3f

∂ẋ2∂t
= 0 , (4.70)

where I have replaced ẍ with g(t, x, ẋ). This equation is actually a

first-order partial differential equation in

M(t, x, ẋ) ≡ ∂2f

∂ẋ2
(4.71)

that can be written

∂

∂ẋ
(gM) + ẋ

∂M

∂x
+

∂M

∂t
= 0 . (4.72)

This equation is sometimes known as Jacobi’s equation of the last

multiplier, with M(t, x, ẋ) as the last multiplier.

In many cases, particular solutions of equation (4.72) are easy to

find, even if the general solution is hard to find. Once a nontrivial

solution of equation (4.72) has been found, definition (4.71) implies
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that we can integrate M(t, x, ẋ) twice with respect ẋ to obtain ap-

propriate integrands. The resulting constants of integration are not

arbitrary but must be chosen so that f(t, x, ẋ) still satisfies our Euler–

Lagrange equation. See Vujanovic and Jones (1989) for examples and

for further information regarding the inverse problem of the calculus

of variations.

We still haven’t attacked a real mechanics problem with multiple

dependent variables. Let’s try one now.

4.5. Case study: The spherical pendulum

Let us consider a pendulum, consisting of a mass m at the end of a

weightless string or rigid rod of length l, with two degrees of freedom

(see Figure 4.5). Because of the string, the mass is constrained to

move on the surface of a sphere. We will let θ, the angle from the

downward vertical, and φ, the azimuthal angle, be our generalized

coordinates.

In this coordinate system, the scale factors are

hθ = l , hφ = l sin θ (4.73)

and the kinetic energy is

T =
1

2
mv2 =

1

2
m[(hθθ̇)

2 + (hφφ̇)
2] (4.74)

=
1

2
ml2 (θ̇2 + φ̇2 sin2 θ) .

The potential energy, in turn, is the same as that for the plane pen-

dulum,

V (θ) = mgl (1− cos θ) . (4.75)

The Lagrangian is thus

L =
1

2
ml2(θ̇2 + φ̇2 sin2 θ)−mgl (1− cos θ) . (4.76)

There are two equations of motion,

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 ,

∂L

∂φ
− d

dt

(
∂L

∂φ̇

)
= 0 , (4.77)

one for each degree of freedom.
                

                                                                                                               



86 4. Basic Generalizations

x

y
l

m

θ

φ

Figure 4.5. Spherical pendulum

We may look for the usual first integrals. If a coordinate qi fails

to appear in the Lagrangian, it is ignorable and

∂L

∂q̇i
= pqi , (4.78)

pqi a constant. If the Lagrangian is autonomous, with no explicit

dependence on t,

L−
n∑

i=1

q̇i
∂L

∂q̇i
= −E , (4.79)

with E a constant.

For the spherical pendulum, φ, which does not appear in the

Lagrangian, is an ignorable coordinate. It follows that

∂L

∂φ̇
= ml2 φ̇ sin2 θ = pφ . (4.80)

The Lagrangian is also autonomous so that

L− θ̇
∂L

∂θ̇
+ φ̇

∂L

∂φ̇
= −E . (4.81)
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Thus

1

2
ml2(θ̇2 + φ̇2 sin2 θ) +mgl (1− cos θ) = E , (4.82)

where E is the total mechanical energy of the system.

We may eliminate φ̇ from this last expression using the first in-

tegral for our ignorable variable,

1

2
ml2θ̇2 +

p2φ

2ml2 sin2 θ
+mgl (1− cos θ) = E . (4.83)

This last equation only contains the variables θ and θ̇ and can be

reduced to quadratures. Indeed, one can write an effective potential

for the motion,

U(θ) = mgl (1− cos θ) +
p2φ

2ml2 sin2 θ
, (4.84)

so that

1

2
ml2 θ̇2 = E − U(θ) . (4.85)

Since the left-hand side of this equation is nonnegative, the motion is

confined to those values of θ such that

U(θ) ≤ E . (4.86)

To see what is going on (or around), we may plot the effective

potential U(θ) as a function of θ. For pφ = 0, the potential curve

is that of a simple pendulum. It has a minimum at θ = 0 and a

maximum at θ = π. For pφ 
= 0, the effective potential has a minimum

at an angle, θ∗, that is the root of

dU

dθ
= mgl sin θ −

p2φ cos θ

ml2 sin3 θ
= 0 . (4.87)

It is clear, from this equation, that 0 < θ∗ < π/2 and that θ∗ ap-

proaches π/2 as pφ approaches infinity. For E > U(θ∗), θ oscillates

between a minimum and a maximum value while the mass swings

about the vertical or z-axis.
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Figure 4.6. Effective potential

4.6. Hamiltonian mechanics

Now is a good time to introduce some additional ideas from mechan-

ics that are useful throughout the calculus of variations. In general,

the Euler–Lagrange equations are a system of n second-order differ-

ential equations. It is often convenient to rewrite these equations as a

system of 2n first-order differential equations. There are many ways

to do this, but there is one particularly useful set of transformations,

closely related to our standard first integrals, that gives rise to the

Hamiltonian formulation of mechanics.

Let us introduce the canonical momenta

pi = pi(t,q, q̇) ≡ ∂

∂q̇i
L(t,q, q̇) (4.88)

for i = 1, . . . , n. In what follows, we will refer to both the variables

pi and the functions pi(t,q, q̇). Pay careful attention.
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Ideally, we can now rewrite the time derivatives of the generalized

coordinates as functions of time t, the generalized coordinates q, and

the canonical momenta p,

q̇i = q̇i(t,q,p) . (4.89)

By the implicit function theorem, this is possible (at least locally) if

the matrix [
∂pi
∂qj

]
=

[
∂2L(t,q, q̇)

∂q̇i∂q̇j

]
, (4.90)

with row index i = 1, . . . , n and column index j = 1, . . . , n, is nonsin-

gular (has nonzero determinant).

Let us now create the Hamiltonian, by means of the Legendre

transformation

H(t,q,p) ≡ p · q̇(t,q,p)− L(t,q, q̇(t,q,p)) (4.91)

=

[
n∑

i=1

piq̇i(t,q,p)

]
− L(t,q, q̇(t,q,p)) .

The Legendre transformation is involutive (it is its own inverse), and

it is easy to see that

L(t,q, q̇) = p(t,q, q̇) · q̇−H(t,q,p(t,q, q̇)) (4.92)

=

[
n∑

i=1

pi(t,q, q̇) q̇i

]
−H(t,q,p(t,q, q̇)) .

See Zia et al. (2009) for more on the Legendre transformation.

What are the equations of motion in terms of the Hamiltonian?

Let us begin by taking the partial derivative

∂H

∂pi
= q̇i(t,q,p) (4.93)

+

n∑
j =1

[
pj

∂

∂pi
q̇j(t,q,p)−

∂L

∂qj

∂qj
∂pi

− ∂L

∂q̇j

∂

∂pi
q̇j(t,q,p)

]
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so that

∂H

∂pi
= q̇i(t,q,p) (4.94)

+

n∑
j =1

[(
pj −

∂L

∂q̇j

)
∂

∂pi
q̇j(t,q,p)−

∂L

∂qj

∂qj
∂pi

]
.

The first term in the square brackets vanishes because of our definition

of the canonical momenta while the second term in the square brackets

vanishes because the qi and the pi are independent variables in the

Hamiltonian framework.

Let us now look at the partial derivative

∂H

∂qi
=

n∑
j =1

[
pj

∂

∂qi
q̇j(t,q, q̇) +

∂pj
∂qi

q̇j(t,q, q̇)

]
(4.95)

− ∂L

∂qi
−

n∑
j =1

∂L

∂q̇j

∂

∂qi
q̇j(t,q, q̇) .

The first and fourth terms on the right-hand side cancel because of our

definition of the canonical momenta while the second term vanishes

because of the independence of the qi and the pi. Finally, the ∂L/∂qi
are equal to ṗi by the Euler–Lagrange equations.

Combining these results, we obtain

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (4.96)

for i = 1, . . . , n. These equations are the famous canonical or Hamil-

tonian equations of motion. These 2n canonical equations are equiv-

alent to the n Euler–Lagrange equations.

Example 4.2 (Harmonic oscillator).

Consider a mass m at the end of a horizontal spring with spring

constant k. The kinetic energy

T (ẋ) =
1

2
mẋ2 (4.97)

and the potential energy

V (x) =
1

2
k x2 (4.98)
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lead to the Lagrangian

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2 . (4.99)

The Euler–Lagrange equation is simply

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0 (4.100)

or

mẍ = −kx . (4.101)

The canonical momentum for the harmonic oscillator is

p = p(ẋ) =
∂L

∂ẋ
= mẋ (4.102)

and we may write the velocity ẋ, in terms of the momentum, as

ẋ = ẋ(p) =
p

m
. (4.103)

Using the Legendre transformation, the Hamiltonian is

H(x, p) = p ẋ(p)− L(x, ẋ(p)) =
p2

m
−
(

p2

2m
− 1

2
kx2

)
(4.104)

or

H(x, p) =
p2

2m
+

1

2
kx2 . (4.105)

For this Hamiltonian, the canonical equations imply that

ẋ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂x
= −kx . (4.106)

Our interest is not in the canonical equations per se, but in the

fact that expressions identical to or similar to the canonical momenta

and the Hamiltonian frequently occur in the calculus of variations.

Consider, for example, our standard first integrals. If a cyclic or

ignorable coordinate, qi, is missing from the Hamiltonian, then, by

the second canonical equation,

ṗi = −∂H

∂qi
= 0 (4.107)

so that pi is constant. This is the canonical analog of first integral

(4.45).
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Next, consider the case where our Lagrangian has no explicit

time dependence. Then, by equations (4.88) and (4.91), our canonical

momenta and Hamiltonian have no explicit time dependence. As a

result,

dH

dt
=

n∑
i=1

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

)
+

∂H

∂t
(4.108)

simplifies to

dH

dt
=

n∑
i=1

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

)
. (4.109)

Along our extremals, however, the canonical equations are satisfied.

So, if we substitute q̇i and ṗi from equation (4.96), dH/dt = 0. Thus,

if there is no explicit time dependence, our Hamiltonian is a constant

of motion. This is the canonical analog of conservation law (4.50).

The Hamiltonian, strictly speaking, is a function of time, the

generalized coordinates, and the canonical momenta. The closely

related function

h(t,q, q̇) =

(
n∑

i=1

∂L

∂q̇i
q̇i

)
− L(t,q, q̇) , (4.110)

which appears frequently in Lagrangian mechanics, has different ar-

guments but is identical in value to the Hamiltonian. It is sometimes

called the energy function (Goldstein, 1980) to distinguish it from the

Hamiltonian. Constancy of the energy function is sometimes called

the Jacobi conservation law or the Jacobi integral (Goldstein, 1980;

Vujanovic and Jones, 1989; Vujanovic and Atanackovic, 2004). In

some sense, the energy function is merely a surrogate for the Hamil-

tonian. The Hamiltonian, the canonical momenta, and their stand-ins

will appear frequently throughout this course.

You will find more opportunities to work with mechanics prob-

lems with multiple dependent variables in the exercises at the end

of the chapter. Don’t, however, think that mechanics is the only

place where multiple dependent variables arise. Indeed, let us briefly

discuss some optics.
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4.7. Ray optics

Ray optics is the simplest theory of light. In this theory, light travels

as rays through an optical medium. An optical medium is character-

ized by its refractive index, n ≥ 1. This index is the ratio of the speed

of light in free space, c, to that in the medium, v. The time T taken

by light to travel a distance d is thus

T =
d

v
=

nd

c
. (4.111)

This time is proportional to nd, which is known as the optical path

length.

In an inhomogeneous medium, the refractive index is a function

of position,

n = n(x, y, z) . (4.112)

The optical path length in an inhomogeneous medium is thus given

by

c T =

∫
n(x, y, z) ds =

∫
n(x, y, z)

√
dx2 + dy2 + dz2 (4.113)

where the integral is taken over the given path or curve. Fermat’s

principle states that an optical ray, traveling between two points,

follows a path that causes the travel time and the optical path length

to be stationary relative to neighboring paths.

If the optical medium has a preferred axis (see the next example),

you may use the corresponding spatial coordinate as your independent

variable. If you don’t want to single out one of the spatial coordinates,

you may instead use time (or, more generally, some arbitrary stepping

parameter) as your independent variable. The optical path length is

then

c T =

∫
n(x, y, z)

ds

dt
dt =

∫
n(x, y, z)

√
ẋ2 + ẏ2 + ż2 dt . (4.114)

Since time does not explicitly appear in our integrand, you may be

tempted to write the corresponding first integral. Unfortunately, our

integrand is positive-homogeneous of degree one in its derivatives and

for such problems the first integral is always a tautology. (We will
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discuss homogeneous problems in more detail in Chapter 8.) Fortu-

nately, the Euler–Lagrange equations,

ṡ
∂n

∂x
− d

dt

(
nẋ

ṡ

)
= 0 , ṡ

∂n

∂y
− d

dt

(
nẏ

ṡ

)
= 0 , (4.115)

ṡ
∂n

∂z
− d

dt

(
nż

ṡ

)
= 0

or
∂n

∂x
− d

ds

(
n
dx

ds

)
= 0 ,

∂n

∂y
− d

ds

(
n
dy

ds

)
= 0 , (4.116)

∂n

∂z
− d

ds

(
n
dz

ds

)
= 0 ,

are more helpful.

Physicists often write the last system of equations in the vector

form
d

ds

(
n
dr

ds

)
= ∇n . (4.117)

This equation, known as the ray equation, is meant to be an opti-

cal analog to Newton’s law (Evans and Rosenquist, 1986), with ∇n

playing the role of force and the term in parentheses playing the role

of momentum. In a homogeneous medium, with the n a constant,

the ray equation reduces to r′′(s) = 0. In other words, light rays

are straight lines in a homogeneous medium. Life is more interesting

when the refractive index varies.

Example 4.3 (Fiber optics).

An optical fiber is a cylindrical waveguide made of a low-loss ma-

terial such as silica glass. Light is guided through a central core that

is embedded in an outer cladding. This cladding has lower refractive

index than the core. Light rays that graze the core-cladding bound-

ary at a shallow angle undergo total internal reflection and are guided

through the core.

Conventional fibers have constant refractive indices in the core

and the cladding and are known as step-index fibers. There are also

graded-index fibers that have a refractive index that decreases con-

tinuously from its center of the fiber. What is the path of light in a

graded-index fiber?
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Let’s attack this problem using cylindrical coordinates, with z

as the coordinate along the axis of the fiber. According to Fermat’s

principle, the path connecting two arbitrary points, (r1, θ1, z1) and

(r2, θ2, z2), makes the optical path length

c T =

∫
n(r)

√
dr2 + (r dθ)2 + dz2 (4.118)

stationary. If we choose z as the independent variable, our path length

becomes

c T =

z2∫
z1

n(r)
√
(r′)2 + (rθ′)2 + 1 dz (4.119)

where

r′ =
dr

dz
and θ′ =

dθ

dz
. (4.120)

The functions r(z) and θ(z) that describe the path with the fiber

satisfy the two Euler–Lagrange equations

∂f

∂r
− d

dz

(
∂f

∂r′

)
= 0 ,

∂f

∂θ
− d

dz

(
∂f

∂θ′

)
= 0 , (4.121)

where

f = n(r)
√
(r′)2 + (rθ′)2 + 1 . (4.122)

Since θ is a cycle or ignorable variable, we obtain, as one first

integral,

∂f

∂θ′
=

n(r) r2 θ′√
(r′)2 + (rθ′)2 + 1

= α . (4.123)

In addition, since z does not appear explicitly in our integrand,

f − r′
∂f

∂r′
− θ′

∂f

∂θ′
=

n(r)√
(r′)2 + (rθ′)2 + 1

= β (4.124)

is another first integral. These two coupled, first-order, ordinary dif-

ferential equations enable us to determine r(z) and θ(z) and to de-

termine the path of light through a graded-index optic fiber.

If, in first integral (4.123), θ′(0) = 0, then α = 0 and θ′(z) = 0

for all z. Rays then remain within a constant θ plane that passes

through the axis of symmetry; these rays are known as meridional

rays. For θ′ = 0, equation (4.124) then simplifies significantly.
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4.8. Double integrals

Finally, consider the problem of minimizing a functional of the form

J [u] =

∫∫
A

f(x, y, u, ux, uy) dx dy , (4.125)

where u = u(x, y) is a function of both x and y, subject to the bound-

ary condition

u(x, y) = u0(x, y) (4.126)

for all points (x, y) on the boundary curve ∂A .

Let us now suppose that u = û(x, y) solves this problem and that

εη(x, y) is a weak variation,

u(x, y) = û(x, y) + ε η(x, y) , (4.127)

with

η(x, y) = 0 (4.128)

u(x , y )

∂A

A

x

y

z

Figure 4.7. Function of two variables
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at all points of ∂A. The total variation is now

ΔJ [u] = J [u]− J [û] = J [û+ ε η]− J [û] (4.129)

or

ΔJ [u] =

∫∫
A

f(x, y, û+ εη, ûx + εηx, ûy + εηy) dx dy (4.130)

−
∫∫
A

f(x, y, û, ûx, ûy) dx dy .

If we expand this total variation in a Taylor series in ε in the

usual way, we obtain

ΔJ = δJ +
1

2
δ2J + · · · (4.131)

where

δJ = ε

∫∫
A

(
∂f

∂u
η +

∂f

∂ux
ηx +

∂f

∂uy
ηy

)
dx dy . (4.132)

Note that

∂f

∂ux
ηx =

∂

∂x

(
η

∂f

∂ux

)
− η

∂

∂x

(
∂f

∂ux

)
, (4.133)

∂f

∂uy
ηy =

∂

∂y

(
η

∂f

∂uy

)
− η

∂

∂y

(
∂f

∂uy

)
. (4.134)

The first variation may, in other words, be rewritten as

δJ = ε

∫∫
A

[
∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)]
η dx dy (4.135)

+ ε

∫∫
A

[
∂

∂x

(
η

∂f

∂ux

)
+

∂

∂y

(
η

∂f

∂uy

)]
dx dy .

The second integral in the last equation can be transformed to a

line integral over ∂A using Green’s theorem,∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂A

P dx + Q dy . (4.136)
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It now follows that

δJ = ε

∫∫
A

[
∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)]
η dx dy (4.137)

+ ε

∫
∂A

(
−η

∂f

∂uy

)
dx +

(
η
∂f

∂ux

)
dy .

Since η(x, y) vanishes on ∂A and since η(x, y) is otherwise arbitrary,

the Euler–Lagrange equation is now the partial differential equation

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
= 0 . (4.138)

Example 4.4 (Plateau’s problem).

Consider the surface area integral

J [u] =

∫∫
A

√
1 + u2

x + u2
y dx dy . (4.139)

This leads to the partial differential equation

∂

∂x

⎛
⎝ ux√

1 + u2
x + u2

y

⎞
⎠+

∂

∂y

⎛
⎝ uy√

1 + u2
x + u2

y

⎞
⎠ = 0 , (4.140)

which simplifies to

(1 + u2
y) uxx − 2ux uy uxy + (1 + u2

x) uyy

(1 + u2
x + u2

y)
3/2

= 0 (4.141)

or

(1 + u2
y) uxx − 2ux uy uxy + (1 + u2

x) uyy = 0 . (4.142)

This is the minimal surface equation that we considered in Chapter 1.

For small deflections, this equation may be approximated by Laplace’s

equation.

In Chapter 1, we also saw that the minimal surface equation can

be given a geometric interpretation. At each point P of our surface,

choose a vector normal to the surface, cut the surface with normal

planes (that contain the normal vector but that differ in orientation),

and obtain a series of plane curves. For each plane curve, determine

the curvature at P . Find the minimum and maximum curvatures,
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κmin and κmax, from amongst all the plane curves passing through P .

These are your principal curvatures.

Instructors of differential geometry courses often prove that the

mean curvature,

H =
κmax + κmin

2
, (4.143)

the average of the maximum and minimum normal curvatures, is just

H =
(1 + u2

y) uxx − 2ux uy uxy + (1 + u2
x) uyy

2 (1 + u2
x + u2

y)
3/2

. (4.144)

Hence, the mean curvature is zero at every point of a minimizing

surface: at each point, the surface is either flat or looks like a saddle.

Surfaces with zero mean curvature are traditionally called minimal

surfaces, whether they minimize area or not. Those that do minimize

area are then said to be stable minimal surfaces.

A new spatial variable can also help one construct a Lagrangian

for a problem with a continuum of generalized coordinates. One then

talks of the Lagrangian density with respect to this new spatial vari-

able.

Example 4.5 (D’Alembert’s wave equation).

Consider a string of infinitesimal thickness and line density ρ that

is stretched with constant tensile force (tension) τ between x = 0 and

x = l. Let u(t, x) be the vertical displacement of this string.

The kinetic energy of the string is

T =
1

2

l∫
0

ρ u2
t dx . (4.145)

Let us now consider a small element of the string of length Δx. As

we displace this element, we stretch it by an amount

Δs−Δx =

⎡
⎣
√

1 +

(
∂u

∂x

)2

− 1

⎤
⎦Δx , (4.146)
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where Δs is the arc length of the stretched string. Using a binomial

series,

Δs−Δx ≈ 1

2

(
∂u

∂x

)2

Δx . (4.147)

The potential energy of the string is thus

V =
τ

2

l∫
0

u2
x dx . (4.148)

The above kinetic and potential energies suggest the Lagrangian

density

L(t, x, u, ut, ux) =
1

2
ρ u2

t − 1

2
τ u2

x , (4.149)

the Lagrangian

L =

l∫
0

L(t, x, u, ut, ux) dx , (4.150)

and the functional

tb∫
ta

l∫
0

L(t, x, u, ut, ux) dx dt . (4.151)

The Euler–Lagrange equation for this double integral,

∂L
∂u

− ∂

∂t

∂L
∂ut

− ∂

∂x

∂L
∂ux

= 0 , (4.152)

reduces to the wave equation

ρ
∂2u

∂t2
= τ

∂2u

∂x2
. (4.153)

Many linear and nonlinear wave equations are derived using vari-

ational principles. The calculus of variations for multiple integrals is

an active and ongoing area of research.
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4.9. Recommended reading

For further discussion of problems with second-order derivatives, two

or more dependent variables, and/or double integrals, see the classic

and encyclopedic book by Forsyth (1927).

Problems with second-order derivatives commonly appear in solid

mechanics. For more on variational methods in solid mechanics, see

the books by Haichang (1984), Wan (1995), Reddy (2002), Wallerstein

(2002), and Rao (2007).

The literature on variational methods in analytical (Lagrangian

and Hamiltonian) mechanics is substantial. One of the most enjoy-

able books on the topic is due to Lanczos (1974). This book has

been reprinted as an affordable Dover paperback. Other useful books

include Yourgrau and Mandelstam (1968), Tabarrok and Rimrott

(1994), Vujanovic and Atanackovic (2004), and Basdevant (2007).

Nakane and Fraser (2002) provide a detailed analysis of Hamilton’s

1834 and 1835 papers. See Mercier (1959) and Moiseiwitsch (1966)

for more on Lagrangian densities.

Lemons (1997) provides a gentle introduction to the calculus

of variations in ray optics while Stavroudis (1972), Born and Wolf

(1999), Lakshminarayanan et al. (2002), and Stavroudis (2006) con-

sider this topic in greater detail. Marchand (1978) provides an over-

view of graded-index optics; Okoshi (1982) covers optical fibers.

Fermat’s principle is used in ray acoustics, seismology, and other

fields besides ray optics. Slawinski (2010) shows how seismic problems

in elastic continua can be formulated and solved using the calculus of

variations. Kimball and Story (1998) discuss how Fermat’s principle

can be used in sailing.

4.10. Exercises

4.10.1. A degenerate case. Prove (Forsyth, 1927) that, for

f(x, y, y′, y′′) = M(x, y, y′) +N(x, y, y′) y′′ , (4.154)

equation (4.10) reduces to a differential equation of, at most, order

two.
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4.10.2. An identity. Show (Forsyth, 1927) that, for equation (4.10)

to be an identity rather than a differential equation, we must have

f(x, y, y′, y′′) =
∂S

∂x
+

∂S

∂y
y′ +

∂S

∂y′
y′′ , (4.155)

where S is any function of x, y, and y′.

4.10.3. First integrals. Prove (van Brunt, 2004) that

(a) if f(x, y, y′, y′′) does not depend on y explicitly, equation (4.10)

has the first integral

d

dx

(
∂f

∂y′′

)
− ∂f

∂y′
= c , (4.156)

c a constant, and that

(b) if f(x, y, y′, y′′) does not depend on x explicitly, equation (4.10)

has the first integral

y′′
∂f

∂y′′
− y′

[
d

dx

(
∂f

∂y′′

)
− ∂f

∂y′

]
− f = c , (4.157)

with c again a constant.

4.10.4. Derivation of the Euler–Poisson equation. Prove for

an integral

J =

b∫
a

f(x, y(x), y′(x), . . . , y(n)(x)) dx (4.158)

that contains derivatives of order n that ŷ(x) must satisfy the Euler–

Poisson equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
+ · · ·+ (−1)n

dn

dxn

[
∂f

∂y(n)

]
= 0 . (4.159)

4.10.5. Curvature in the plane. The curvature κ of a plane curve

y(x) is the instantaneous rate of change of the slope angle φ, from

the x-axis to the tangent to the curve, with respect to arc length s.

Starting with this definition, show that

κ(x) =
y′′(x)

(1 + y′2)3/2
. (4.160)
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mg

θ

a

ω

Figure 4.8. A rotating hoop

4.10.6. The cantilever beam. Solve Euler–Poisson equation (4.30)

for the cantilever beam, apply the boundary conditions, and deter-

mine the deflection of the beam. How large is the deflection at the

end of the beam?

4.10.7. Beam on an elastic foundation. Consider a cantilever

beam with a uniform distributed load that rests on an elastic foun-

dation. Assume that the elastic foundation provides a restoring force

that is proportional to the displacement of the beam. Write down

total potential energy for this system. Determine the Euler–Poisson

equation and the boundary conditions for this problem.

4.10.8. A rotating hoop.

A bead of mass m slides, without friction, on a circular hoop of

radius a. The hoop lies in a vertical plane that is constrained to rotate

about the hoop’s vertical diameter with constant angular velocity ω.
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(a) Using the generalized coordinate θ, determine the kinetic energy

T , the potential energy V , and the Lagrangian function L = T−V

for the bead.

(b) Determine a first integral for this problem. Show that the first

integral does not correspond to the total energy T +V . The total

energy is evidently not constant for this problem. Discuss why

this might be the case.

4.10.9. Phase portrait for the rotating hoop. Ignore the first

integral in the (above) problem of the bead on the rotating hoop.

(a) Instead, use the Euler–Lagrange equation to write the equation

of motion of the bead as a second-order differential equation.

(b) Introduce the new variable φ = θ̇ and rewrite the equation of

motion for the bead as two first-order differential equations (for

θ̇ and φ̇).

(c) The bead is at equilibrium if θ̇ = 0 and φ̇ = 0. Find all possible

equilibria for the bead. How do the equilibria depend on ω?

Discuss any bifurcations that arise as you change the angular

velocity ω?

(d) Draw (θ, φ) phase portraits for your system. Be sure to draw

phase portraits on each side of any bifurcation points that you

have found.

4.10.10. The pendulum revisited. The angle θ was a convenient

choice for the generalized coordinate for the simple pendulum, but it

is certainly not the only possibility. Take the horizontal displacement

of the mass,

x = l sin θ , (4.161)

as your new generalized coordinate. Write down the kinetic energy,

the potential energy, the Lagrangian, the Euler–Lagrange equation,

and the energy integral for the simple pendulum in terms of this new

coordinate. Your final answers may contain m, g, l, x, ẋ, and ẍ, but

not y or θ.
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4.10.11. Motion on a paraboloid. Consider a particle of mass m

that moves, without friction, on the smooth paraboloid

z = x2 + y2 (4.162)

while experiencing the constant force of gravity.

(a) Write down the Lagrangian for this system using the Cartesian

coordinates x and y as your generalized coordinates. Determine

the equations of motion and simplify, taking advantage of obvious

first integrals.

(b) Write down the Lagrangian for this system using the cylindrical

coordinates r and θ as your generalized coordinates. Determine

the equations of motion and simplify, taking advantage of obvious

first integrals.

4.10.12. Differentiating the Hamiltonian. Starting with defini-

tion (4.91), show that

dH

dt
= −∂L

∂t
(4.163)

along extremals.

4.10.13. The spherical pendulum revisited. Formulate the ca-

nonical momenta and the Hamiltonian and determine the canonical

equations of motion for the spherical pendulum.

4.10.14. Meridional rays. Determine the shape of the meridional

rays for a cylindrical optical fiber that has the refractive index

n2(r) = n2
0 (γ

2 − r2) . (4.164)

The coordinate r is the distance from the axis of the fiber.

4.10.15. Triple integrals. The Euler–Lagrange equation for dou-

ble integrals generalizes easily to triple integrals. Extend the argu-

ment in the lecture notes and show that the Euler–Lagrange equation

for a functional of the form

J [u] =

∫∫∫
V

f(x, y, z, u, ux, uy, uz) dx dy dz (4.165)
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reduces to

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
− ∂

∂z

(
∂f

∂uz

)
= 0 . (4.166)

What vector-analysis identity did you need to use to prove your re-

sult?

4.10.16. Vibration of a drumhead. Derive the equation for the

vibration of a (two-dimensional) drumhead in both (a) Cartesian co-

ordinates and (b) polar coordinates. Assume that the Lagrangian

density of the drumhead can be written

L =
1

2
σu2

t − 1

2
τ (∇u)2 , (4.167)

where (∇u)2 ≡ (∇u) ·(∇u), σ is the areal mass density (with units of

mass per area), and τ is the surface tension or surface energy density

(with dimensions of force per length or energy per area).

4.10.17. Free oscillations of a diving board. A uniform diving

board of mass density ρ and cross-sectional area A has kinetic energy

T =
ρA

2

l∫
0

u2
t dx (4.168)

and potential energy

V =
EI

2

l∫
0

u2
xx dx , (4.169)

where E is Young’s modulus and I is the moment of inertia. Find

the partial differential equation for the free oscillations of the diving

board. The boundary conditions are u = ux = 0 at the left end and

uxx = uxxx = 0 at the right end. Find the frequency of the lowest

mode of oscillation.

                

                                                                                                               



Chapter 5

Constraints

5.1. Types of constraints

So far, we have avoided problems with side conditions. Variations

may, in fact, be constrained. There are several classes of constraints

that appear in the calculus of variations.

5.1.1. Isoperimetric constraints. In addition to the usual func-

tional,

J [y] =

b∫
a

f(x, y, y′) dx , (5.1)

and boundary conditions,

y(a) = ya, y(b) = yb , (5.2)

we may also have one or more integral conditions of the form

K[y] =

b∫
a

g(x, y, y′) dx = l . (5.3)

These integral conditions are called isoperimetric constraints.

Example 5.1 (Queen Dido’s problem).

Find (see Figure 5.1), among all curves of length l in the upper

half-plane passing through (−a, 0) and (a, 0), the one that, together

107

                                     

                

                                                                                                               



108 5. Constraints

− a 0 + a

Figure 5.1. Queen Dido’s domain?

with interval [−a, a], encloses the largest area. To solve this problem,

we must maximize

J [y] =

+a∫
−a

y dx (5.4)

subject to the boundary conditions

y(−a) = 0 , y(+a) = 0 (5.5)

and the isoperimetric constraint

K[y] =

+a∫
−a

√
1 + y′2 dx = l . (5.6)

Example 5.2 (Catenary).

A heavy, uniform, and flexible chain of length l hangs in equi-

librium, under gravity, from two fixed points A and B. Find the

equation of the curve assumed by the chain.

In this problem, we wish to minimize the potential energy,

J [y] = ρg

b∫
a

y

√
1 + y′2 dx , (5.7)

subject to the boundary conditions

y(a) = ya , y(b) = yb (5.8)
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and the integral condition

K[y] =

b∫
a

√
1 + y′2 dx = l . (5.9)

5.1.2. Holonomic constraints. In a variational problem with sev-

eral dependent variables, a geometric restriction of the form

g(x, y1, . . . , yn) = 0 (5.10)

is known as a finite, positional, or holonomic constraint. A variational

problem may have several holonomic constraints. Thus, we may wish

to minimize or maximize a functional with n dependent variables,

J [y1, . . . , yn] =

b∫
a

f(x, y1, . . . , y
′
1, . . . , y

′
n) dx , (5.11)

2n boundary conditions,

yi(a) = yia , yi(b) = yib , i = 1, . . . , n , (5.12)

and m positional constraints,

gj(x, y1, . . . , yn) = 0 , j = 1, . . . ,m . (5.13)

Holonomic constraints are especially common in mechanics, where

time is commonly the independent variable and the generalized coor-

dinates are often the dependent variables.

Example 5.3 (Atwood’s machine).

Consider two masses, connected by a string of length l, hung over

a pulley of height h (see Figure 5.2). The potential energy for this

problem is

V = m1g(h− y1) +m2g(h− y2) . (5.14)

The Lagrangian is thus

L = T − V (5.15)

or

L =
1

2
(m1ẏ

2
1 +m2ẏ

2
2)− g[m1(h− y1) +m2(h− y2)] . (5.16)
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h

m1

m2

y1
y2

Figure 5.2. Atwood’s machine

The functional is

J [y1, y2] =

tb∫
ta

L(y1, y2, ẏ1, ẏ2) dt , (5.17)

but it is subject to the holonomic constraint

g(y1, y2) = y1 + y2 − l = 0 . (5.18)

Although our functional contains both y1(t) and y2(t), our holonomic

constraint implies that these two variables are not independent: our

system has only one degree of freedom.

5.1.3. Nonholonomic constraints. We may also be forced to con-

sider a functional with n dependent variables,

J [y1, . . . , yn] =

b∫
a

f(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx , (5.19)

2n boundary conditions,

yi(a) = yia , yi(b) = yib , i = 1, . . . , n , (5.20)
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and m differential-equation constraints of the form

gj(x, y1, . . . , yn, y
′
1, . . . , y

′
n) = 0 , j = 1, . . . ,m . (5.21)

We are specifically interested in those constraints that cannot be re-

duced to holonomic constraints by integration. That is, we are inter-

ested in nonholonomic constraints.

In the simplest case, a differential-equation constraint,

g(x,y,y′) = 0 , (5.22)

is linear in its derivatives,

g(x,y,y′) = a(x,y) +
n∑

i=1

bi(x,y) y
′
i = 0 . (5.23)

This constraint is exact if there exists a function G(x,y) such that

dG

dx
=

∂G

∂x
+

n∑
i=1

∂G

∂yi
y′i = g(x,y,y′) . (5.24)

For this to be true, we clearly require

∂G

∂x
= a(x,y) ;

∂G

∂yi
= bi(x,y) , i = 1, . . . , n . (5.25)

The necessary and sufficient conditions for equation (5.23) to be exact

are that

∂a

∂yi
=

∂bi
∂x

,
∂bi
∂yj

=
∂bj
∂yi

, i, j = 1, . . . , n , (5.26)

which is equivalent to the order of differentiation not mattering in the

mixed partials of G(x,y). In general, constraint (5.23) is integrable

(and hence holonomic) if it is either exact or becomes exact after

multiplication by an integrating factor μ(x,y).

Example 5.4 (A rolling penny).

Consider a vertical penny that rolls without slipping (see Figure

5.3). Let (x, y) be the coordinates of the point of contact with the

surface, let φ be the angle of rotation about the axis of the penny,

and let θ be the angle between the axis of the penny and the x-axis.

If the penny has radius r and is rolling with speed

v = r
dφ

dt
, (5.27)
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θ

φ

x

y

z

Figure 5.3. A rolling penny

the rate of change of the x and y coordinates are

dx

dt
= v sin θ ,

dy

dt
= −v cos θ . (5.28)

It now follows that

dx

dt
− r sin θ

dφ

dt
= 0 ,

dy

dt
+ r cos θ

dφ

dt
= 0 . (5.29)

These are nonholonomic constraints for the four coordinates x, y, θ,

and φ. There is no way to integrate these equations for, say, θ and

φ in terms of x and y short of determining the actual motion of the

penny. Indeed, there are many possible orientations of the coin, θ

and φ, for the same point of contact, (x, y).

5.1.4. One-sided or inequality constraints. We can also con-

sider functionals of the form

J [y] =

b∫
a

f(x, y, y′) dx (5.30)

with boundary conditions

y(a) = ya , y(b) = yb (5.31)

and a positional inequality constraint of the form

g(x, y) ≥ 0 . (5.32)
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Frosh

Pond

G B

Figure 5.4. Mt. Rainier vista

Example 5.5 (Frosh Pond).

Consider the problem of minimizing the distance between Guggen-

heim and Bagley Halls on the University of Washington campus with-

out going through Frosh Pond (see Figure 5.4). We wish to minimize

the functional

J [y] =

b∫
a

√
1 + y′2 dx (5.33)

subject to the boundary conditions

y(a) = ya , y(b) = yb (5.34)

and the pointwise inequality constraint

x2 + y2 − r2 ≥ 0 , (5.35)

where r is the radius of the pond.

It would be fun to consider all of these constraints. We do, how-

ever, have a limited amount of space and time and so we will focus

on isoperimetric and holonomic constraints. Before doing so, let us

first recall Lagrange multipliers.
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5.2. Lagrange multipliers

In order to handle constraints, we will need to use Lagrange multi-

pliers, which were developed by Lagrange to deal with problems in

mechanics and the calculus of variations (Fraser, 1992). Let us recall

the key geometric idea behind Lagrange multipliers by means of a

simple finite-dimensional example.

Example 5.6.

Let us find the dimensions, x and y, of the rectangle having the

smallest perimeter among all rectangles having fixed area A. We

clearly wish to minimize

f(x, y) = 2 (x+ y) (5.36)

subject to the constraint

g(x, y) = xy −A = 0 . (5.37)

Figure 5.5 shows a graphical solution to this problem.

We want the lowest level curve of f that is consistent with our

constraint. This occurs at a point of tangency between the level curves

of f and the constraint curve g. At this point, the normals to both

level curves are parallel,

∇f = λ∇g (5.38)

so that

∇ (f − λg) = 0 . (5.39)

As you can imagine, ∇g = 0 is a disaster for this approach since we

can then no longer define the direction of the normal for the constraint

curve.

Here is another, more formal, way to view the situation. Our

constraint, g(x, y) = 0, implicitly defines a curve. Let us parameterize

our position on this curve with a single independent variable, say t.

That is, let us describe our position on this curve with the smooth

vector-valued function

r(t) = [x(t), y(t)] . (5.40)

We will assume that the curve is regular so that ṙ 
= 0.
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x

y

x y − A = 0

level cur ves of f

Figure 5.5. Geometry of Lagrange multipliers

A necessary condition for f(x, y) to have local extremum along

the constraint curve is

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 0 . (5.41)

Since

g(x(t), y(t)) = 0 , (5.42)

it also follows that

d

dt
g(x(t), y(t)) =

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt
= 0 . (5.43)

If gx and gy are not both zero, i.e., if ∇g 
= 0, we can thus solve for

either ẋ or ẏ from the last displayed equation. (This is just a variant

of the implicit function theorem.) Suppose, for example, that gy 
= 0.

Then
dy

dt
= − (∂g/∂x)

(∂g/∂y)

dx

dt
(5.44)
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-1 1

-0.5

0.0
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Figure 5.6. Lemniscate

and our necessary condition, equation (5.41), reduces to

dx/dt

∂g/∂y

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
= 0 . (5.45)

We have assumed that our curve is regular and that ẋ and ẏ do

not simultaneously vanish. It now follows that

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 0 . (5.46)

We may rewrite this last condition as

∇f ×∇g =

∣∣∣∣∣∣
i j k

fx fy 0

gx gy 0

∣∣∣∣∣∣ = 0 . (5.47)

∇f and ∇g are thus parallel. It follows that

∇f = λ∇g (5.48)

and that

∇(f − λg) = 0 (5.49)

for some constant λ.

A problem with this approach occurs in those instances when

g(x, y) has a singular point. For example, the gradient of the lemnis-

cate

g(x, y) = (x2 + y2)2 − 2 (x2 − y2) = 0 (5.50)

(see Figure 5.6) is not normal to the curve at the origin. We would also

find it hard to write either y(x) or x(y) in the immediate neighborhood
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of (x, y) = (0, 0). We need to be careful to exclude pathologies such

as this.

We will therefore assume that f(x, y) and g(x, y) are differentiable

in a neighborhood of the points of the regular curve g(x, y) = 0 and

that at least one partial derivative of g, either gx or gy, is nonzero at

every point of the curve g(x, y) = 0. As a result, ∇g 
= 0 along the

curve.

With these assumptions, we now conclude:

Lagrange multiplier rule:

If the function z = f(x, y) has a relative extremum on the curve

g(x, y) = 0 at the point (x0, y0), then there exists a constant λ

and a function

F (x, y) ≡ f(x, y)− λ g(x, y) (5.51)

such that
∂F

∂x
(x0, y0) = 0 ,

∂F

∂y
(x0, y0) = 0 (5.52)

and

g(x0, y0) = 0 . (5.53)

We now need to generalize this result to the calculus of variations.

This can happen in a number of different ways depending on the

nature of the constraint.

5.3. Isoperimetric constraints

Let us start with the simplest problem, one with an integral con-

straint. We are interested in finding the extremum of the functional

J [y] =

b∫
a

f(x, y, y′) dx (5.54)

subject to boundary conditions

y(a) = ya , y(b) = yb (5.55)
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and the added restriction that

K[y] =

b∫
a

g(x, y, y′) dx = l . (5.56)

We will, as usual, assume that there is a solution and we will embed

the assumed local extremum, ŷ(x), in a family of varied curves.

An arbitrary one-parameter family of variations will not, by itself,

work since the resulting curves may not satisfy the integral constraint.

We will instead give ourselves some extra freedom and introduce the

two-parameter family

y(x) = ŷ(x) + ε1 η1(x) + ε2 η2(x) . (5.57)

The weak variations η1(x) and η2(x) are independent and arbitrary

save for the fact that

η1(a) = η2(a) = 0 , η1(b) = η2(b) = 0 . (5.58)

Constraint equation (5.56) is satisfied at ε1 = ε2 = 0, by assumption.

We can think of ε1 as small, but arbitrary, and ε2 as a “correction

term,” guaranteed by the implicit function theorem, that ensures that

the integral constraint is satisfied. Alternatively, we can think of ε2 as

small and arbitrary and ε1 as the correction term. Either way, because

ε1 and ε2 are related by our constraint equation, we ultimately have

only one free and arbitrary parameter.

The two parameters ε1 and ε2 allow us to work with functions

instead of functionals. Evaluating our two functionals along the spec-

ified y(x) gives us, in effect, the functions

J(ε1, ε2) =

b∫
a

f(x, y, y′) dx , (5.59)

K(ε1, ε2) =

b∫
a

g(x, y, y′) dx = l . (5.60)

This, however, is just our old finite-dimensional calculus problem; we

may now apply Lagrange multipliers.

Let

I ≡ J − λK , F ≡ f − λ g . (5.61)
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Since ε1 = ε2 = 0 corresponds to our supposed extremum, there

should be a constant λ such that

∂I

∂ε1
=

∂I

∂ε2
= 0 (5.62)

at (ε1, ε2) = (0, 0). We expect this to be true as long as the ∂K/∂εi
do not both vanish.

For the functional I,

∂I

∂εi
=

b∫
a

(
∂F

∂y

∂y

∂εi
+

∂F

∂y′
∂y′

∂εi

)
dx (5.63)

=

b∫
a

(
∂F

∂y
ηi +

∂F

∂y′
η′i

)
dx .

After integrating by parts, we now have

∂I

∂εi
=

b∫
a

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
ηi(x) dx . (5.64)

Applying

∂I

∂ε1
=

∂I

∂ε2
= 0 (5.65)

at

(ε1, ε2) = (0, 0) , (5.66)

it now follows that{
∂(f − λg)

∂y
− d

dx

[
∂(f − λg)

∂y′

]}
ŷ,ŷ′

= 0 . (5.67)

In effect, all we have to do is to consider f − λg, with λ con-

stant, and proceed as before. More precisely, we will follow Euler’s

(isoperimetric) rule (Pars, 1962; Clegg, 1968):

(1) First find the extremals for the integral

b∫
a

[f(x, y, y′)− λ g(x, y, y′)] dx , (5.68)
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for constant λ, in the form

y = y(x, λ, c1, c2) , (5.69)

where c1 and c2 are constants.

(2) Then choose λ, c1, and c2 so that

(a) the extremal satisfies the boundary conditions

y(a) = ya , y(b) = yb , (5.70)

(b) the extremal gives K the value l.

There are thus three conditions for the three constants λ, c1, and c2.

In general, we expect the above method to work as long y = ŷ(x) is

not an extremal of K[y].

5.4. Case study: Queen Dido’s problem

Let us reconsider the problem of maximizing the area

J [y] =

+a∫
−a

y dx (5.71)

subject to the boundary conditions

y(−a) = 0 , y(+a) = 0 (5.72)

and the integral constraint

K[y] =

+a∫
−a

√
1 + y′2 dx = l . (5.73)

There is only one constraint in this problem and so we expect one

Lagrange multiplier. So, let us introduce

J − λK =

+a∫
−a

y − λ

√
1 + y′2 dx . (5.74)

The variable x is not explicitly present and we could write down a

first integral, but this problem proceeds equally smoothly — try it
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both ways — if we write down the full Euler–Lagrange equation

1 + λ
d

dx

(
y′√

1 + y′2

)
= 0 , (5.75)

which immediately integrates to

λy′√
1 + y′2

= −(x− c1) . (5.76)

Solving for y′ and separating variables produces

dy = ± (x− c1)√
λ2 − (x− c1)2

dx , (5.77)

which integrates out to

y = ±
√

λ2 − (x− c1)2 + c2 . (5.78)

This last equation simplifies to the equation of a circle with center

(c1, c2) and radius λ,

(x− c1)
2 + (y − c2)

2 = λ2 . (5.79)

Given the symmetry of the problem, it is easy to show that c1 = 0.

To determine c2 and λ, we may look at the geometry of the problem.

From Figure 5.7,

λ sin θ = a , λ θ =
l

2
(5.80)

so that

sin θ =
2a

l
θ . (5.81)

This transcendental equation can be solved graphically (see Figure

5.8). With θ in hand,

λ = a csc θ , c2 = a cot θ . (5.82)

We will return to this problem when we talk about parametric prob-

lems.
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Figure 5.7. Geometry of Queen Dido’s problem
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Figure 5.8. Graphical solution of u
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5.5. Case study: Euler’s elastica

Isoperimetric constraints also arise in the study of functionals with

higher-order derivatives, such as those that arise in solid mechanics.

In his 1744 book, Euler tackled the problem of minimizing the elastic

strain energy of an elastic rod of fixed length with fixed boundary

conditions.

In our discussion of the cantilever beam in Chapter 4, we as-

sumed that beam deflections were small, so that we could neglect

second-degree terms in y′(x). Euler chose to keep these second-degree

terms so that he could study large deflections. He instead dropped

the effects of gravity. This, in turn, allowed him to ignore several

parameters. He thus considered the problem of minimizing the func-

tional

J [y] =

b∫
a

f(x, y, y′, y′′) dx =

b∫
a

(y′′)2

(1 + y′2)5/2
dx (5.83)

subject to the constraint

K[y] =

b∫
a

g(x, y, y′) dx =

b∫
a

√
1 + y′2 dx = l (5.84)

and the boundary conditions

y(a) = ya , y′(a) = y′a , y(b) = yb , y′(b) = y′b . (5.85)

We may now proceed in the usual manner. Let

I ≡ J − λK (5.86)

and

F ≡ f(x, y, y′, y′′)− λ g(x, y, y′) (5.87)

=
(y′′)2

(1 + y′2)5/2
− λ

√
1 + y′2 .

Since our integrand contains a second derivative, we expect our Euler–

Poisson equation,

∂F

∂y
− d

dx

(
∂F

∂y′

)
+

d2

dx2

(
∂F

∂y′′

)
= 0 , (5.88)
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to produce a fourth-order differential equation. Euler made quick

work of this fourth-order differential equation by integrating it three

times. Let us follow his path in doing so.

Since our integrand F (x, y, y′, y′′) does not contain y(x), we can

now write our Euler–Poisson equation as

− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
+ λ

d

dx

(
∂g

∂y′

)
= 0 , (5.89)

which, after integration, yields

P − dQ

dx
− λ

y′√
1 + y′2

= β , (5.90)

where

P ≡ ∂f

∂y′
= − 5y′(y′′)2

(1 + y′2)7/2
(5.91)

and

Q ≡ ∂f

∂y′′
=

2y′′

(1 + y′2)5/2
. (5.92)

One integration down.

Now, this is probably as far as most mathematicians would have

gotten with this problem. Fortunately, Euler had a few more tricks

up his sleeves. Multiplying equation (5.90) by

dy′ = y′′ dx (5.93)

produces

P dy′ − y′′ dQ− λ
y′dy′√
1 + y′2

= β dy′ . (5.94)

Since

df = P dy′ +Qdy′′ , (5.95)

we may add

df − P dy′ −Qdy′′ = 0 (5.96)

to equation (5.94) to obtain

df − (Qdy′′ + y′′ dQ) = λ
y′dy′√
1 + y′2

+ β dy′ . (5.97)

Integrating this last equation produces

f − y′′ Q = λ

√
1 + y′2 + β y′ + γ , (5.98)
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Figure 5.9. An elastica of class 2

where γ is a new constant of integration. Evaluating the left-hand

side of this last equation produces

− (y′′)2

(1 + y′2)5/2
= λ

√
1 + y′2 + β y′ + γ (5.99)

while solving for y′′ (while flipping the signs of λ, β, and γ) now yields

y′′ =
dy′

dx
= (1 + y′

2
)5/4

(
λ

√
1 + y′2 + β y′ + γ

)1/2

. (5.100)

Two integrations down.
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Figure 5.10. An elastica of class 4

Euler now observed that

d

dy′

[
2 (λ

√
1 + y′2 + β y′ + γ)1/2

(1 + y′2)1/4

]
(5.101)

=
β − γ y′

(1 + y′2)5/4(λ
√
1 + y′2 + β y′ + γ)1/2

so that, using equation (5.100),

d

dy′

[
2 (λ

√
1 + y′2 + β y′ + γ)1/2

(1 + y′2)1/4

]
= (β − γy′)

dx

dy′
. (5.102)

Both sides can now be integrated to produce

2 (λ
√
1 + y′2 + β y′ + γ)1/2

(1 + y′2)1/4
= βx− γy + δ , (5.103)

where δ is a new constant of integration. Three integrations down.
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Figure 5.11. An elastica of class 6

Rotating and translating the coordinate system allows us to

choose a coordinate system in which γ = 0 and δ = 0. With this

simplification, we can now solve for y′(x) to obtain

y′(x) =
β2x2 − 4λ√

16β2 − (β2x2 − 4λ)2
. (5.104)

The substitutions

λ =
4m

a2
, β =

4n

a2
(5.105)

give us the slightly tidier

y′(x) =
n2x2 −ma2√

n2a4 − (n2x2 −ma2)2
. (5.106)
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Euler then moved the coordinates back into a general position so that

y′(x) =
α+ βx+ γx2√

a4 − (α+ βx+ γx2)2
, (5.107)

where α, β, and γ are now new constants. With this y′(x) in hand,

we can also write a differential equation for the arc length s(x) of the

curve,

s′(x) =

√
1 + y′2 =

a2√
a4 − (α+ βx+ γx2)2

. (5.108)

The above equations yield elliptic integrals, but elliptic functions

were unknown in 1744. Even so, Euler proceeded to classify the many

curves that emerge from the above equations. To do so, Euler took a

version of equation (5.107),

y′(x) =
α+ x2√

a4 − (α+ x2)2
, (5.109)

where the origin (see Figure 5.9) is at A and the y-axis is downwards.

He also set

(a2 − α) = c2 (5.110)

so that

y′(x) =
a2 − c2 + x2√

(c2 − x2) (2a2 − c2 + x2)
, (5.111)

s′(x) =
a2√

(c2 − x2) (2a2 − c2 + x2)
. (5.112)

With these derivatives, it is clear that the curve y(x) lies between

x = ±c and that the slope of y(x) at x = ±c is infinite. One can now

sketch the portions AC and AC of the elastica using the formula for

y′(x). Euler, moreover, showed that CB is a reflection of CA about

the line CD and that CB is a reflection of CA about CD. This

allowed Euler to fill in the rest of the periodic elastica.

The form of the elastica depends on the precise values of c and a.

Euler identified nine classes of solution curves. Figures 5.9, 5.10, and

5.11 are examples of classes 2, 4, and 6. Class 2 occurs for 0 < c < a.

For this set of c values, the elastica appears sinusoidal. Class 4 occurs

for a < c < a
√
1.651868. For c = a

√
1.651868, the points A and B

coincide and the elastica becomes a figure eight. This figure eight
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(lemnoid or lemniscoid) is Euler’s class 5. Finally, class 6 occurs for

a
√
1.651868 < c < a

√
2. In this case, point B has crossed past

point A.

5.6. Holonomic constraints

Let us now consider a functional

J [y, z] =

b∫
a

f(x, y, z, y′, z′) dx (5.113)

with two dependent variables y(x) and z(x), boundary conditions

y(a) = ya , y(b) = yb , z(a) = za , z(b) = zb , (5.114)

and a simple holonomic constraint

g(x, y, z) = 0 . (5.115)

We will assume that there are two functions, ŷ(x) and ẑ(x), that

minimize the functional for the given conditions. If we perturb ŷ(x),

y(x) = ŷ(x) + ε η1(x) , (5.116)

with an η1(x) that satisfies

η1(a) = η1(b) = 0 , (5.117)

ẑ(x) will also experience a perturbation,

z(x) = ẑ(x) + η2(x, ε) , (5.118)

because of the positional constraint. In other words, the variations in

y and z are not independent.

One can easily show that

η2(x, 0) = 0 (5.119)

and that

η2(a, ε) = η2(b, ε) = 0 . (5.120)

In addition, because of our holonomic constraint,

g(x, ŷ + ε η1, ẑ + η2) = 0. (5.121)
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If we differentiate this equation with respect to ε, we also find that

∂g

∂y
η1 +

∂g

∂z

∂η2
∂ε

= 0 , (5.122)

which will soon prove helpful. This equation is true in general and

we certainly expect it to be true at ε = 0.

By assumption, J [y, z] has an extremum for ε = 0. Let us there-

fore examine ⎡
⎣ d

dε

b∫
a

f(x, y, z, y′, z′) dx

⎤
⎦
ε=0

= 0 . (5.123)

We now get

b∫
a

[(
∂f

∂y
η1 +

∂f

∂y′
η′1

)
+

(
∂f

∂z

∂η2
∂ε

+
∂f

∂z′
∂η′2
∂ε

)]
ε=0

dx = 0 .

(5.124)

After the usual integration by parts,

b∫
a

{[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η1 +

[
∂f

∂z
− d

dx

(
∂f

∂z′

)]
· ∂η2
∂ε

}
ε=0

dx = 0 .

(5.125)

That is all that we can say unless we can somehow remove the

troublesome ∂η2/∂ε. Fortunately, because of equation (5.122), we can

solve for ∂η2/∂ε (at ε = 0). Indeed, as long as gz ≡ ∂g/∂z 
= 0 along

our extremal,
∂η2
∂ε

= −gy
gz

η1 . (5.126)

(If gz = 0, but gy ≡ ∂g/∂y 
= 0, we can reverse the role of η1 and η2.

If both partial derivatives vanish along our extremal, we are out of

luck.)

It now follows that

b∫
a

η1(x)

[
fy −

d

dx
fy′ − gy

gz

(
fz −

d

dx
fz′

)]
ŷ,ŷ′,ẑ,ẑ′

dx = 0 . (5.127)

The subscript on the right square bracket in this last equation signifies

that the expression in square brackets is evaluated at y = ŷ(x), y′ =
                

                                                                                                               



5.6. Holonomic constraints 131

ŷ′(x), z = ẑ(x), and z′ = ẑ′(x). Since η1(x) is arbitrary, the equations

fy −
d

dx
fy′ − gy

gz

(
fz −

d

dx
fz′

)
= 0 (5.128)

and
fy − d

dxfy′

gy
=

fz − d
dxfz′

gz
(5.129)

must be satisfied along an extremal.

The common value of the above ratios is some function of x. If

we denote this function by λ(x), it now follows that

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 ,

∂F

∂z
− d

dx

(
∂F

∂z′

)
= 0 , (5.130)

where

F = f(x, y, z, y′, z′)− λ(x) g(x, y, z) . (5.131)

Equations (5.130) provide two differential equations for the three un-

known functions ŷ(x), ẑ(x), and λ(x). The constraint equation

g(x, ŷ, ẑ) = 0 (5.132)

provides the third equation. Note that our Lagrange multiplier λ(x)

is now a function of x. Our holonomic constraint gives us a λ at each

value of x.

Sometimes the meaning of the Lagrange multiplier is unimpor-

tant. In other problems, it is of critical importance. In mechanics,

there is a special meaning that is usually attached to the Lagrange

multiplier in the case of holonomic constraints. Note that for a La-

grangian,

L(t,q, q̇) = T (t,q, q̇)− V (t,q) , (5.133)

with a holonomic constraint equation, the ith Euler–Lagrange equa-

tion looks like

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
− λ(t)

∂g

∂qi
= 0 . (5.134)

The last term on the left-hand side looks much like the force, −∂V /∂qi,

due to a potential. As a result, the last term on the left-hand side of

equation (5.134) is often thought of as the constraint force in the qi
direction.
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Lagrange multipliers generalize naturally to problems with sev-

eral isoperimetric or holonomic constraints and, in addition, to prob-

lems with nonholonomic constraints. A notorious exception occurs in

mechanics. Hamilton’s principle was originally derived for holonomic

constraints (using d’Alembert’s principle), and Hertz (1899), in a sem-

inal work, showed that Hamilton’s principle, as generally written, is

not valid for nonholonomic constraints. Hölder fixed the problem,

but at the cost of reformulating Hamilton’s principle so that it is no

longer a problem in the calculus of variations. See Capon (1952), Jef-

freys (1954), Pars (1954), Rumiantsev (1982), Flannery (2005), and

Lützen (2005) for further details and discussion.

It is also worth noting that an isoperimetric constraint,

K[y] =

b∫
a

g(x, y, y′) dx = l , (5.135)

can be rewritten as a differential-equation constraint,

z′ = g(x, y, y′) , (5.136)

with the new variable z and the boundary conditions

z(a) = 0 , z(b) = l . (5.137)

The corresponding F is then just

F ≡ f − λ(x) [z′ − g(x, y, y′)] (5.138)

and the corresponding Euler–Lagrange equation in z,

∂F

∂z
− d

dx

(
∂F

∂z′

)
= 0 , (5.139)

implies that

dλ

dx
= 0 (5.140)

or that

λ = constant . (5.141)

Before leaving constraints, let us work though a detailed example

of a mechanical system with a holonomic constraint.
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5.7. Case study: A sliding rod

Consider two particles, of mass m, connected by a rigid but massless

rod of length l (see Figure 5.12). We will assume that both parti-

cles move without friction. Particle A moves along the y-axis, while

particle B moves along the x-axis. We wish to derive the differen-

tial equations of motion for the two particles. We may derive these

equations in three different ways.

Method 1:

Let us first use the holonomic constraint

g(x, y) = x2 + y2 − l2 = 0 (5.142)

as an explicit constraint. The kinetic energy is

T =
1

2
m (ẋ2 + ẏ2) , (5.143)

the potential energy is

V = mgy , (5.144)

A

m

m

B

l

θ

y

x

Figure 5.12. A sliding rod
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and the Lagrangian is

L = T − V =
1

2
m (ẋ2 + ẏ2)−mgy . (5.145)

We now form the new function

F = L− λ(t) g(x, y) , (5.146)

which takes the form

F =
1

2
m (ẋ2 + ẏ2)−mgy − λ(t) (x2 + y2 − l2) . (5.147)

Our two Euler–Lagrange equations,

∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0 and

∂F

∂y
− d

dt

(
∂F

∂ẏ

)
= 0 , (5.148)

simplify to

mẍ = −2λx mÿ = −2λy −mg . (5.149)

We also need to use our constraint equation. Differentiating our

constraint equation once,

2xẋ+ 2yẏ = 0 , (5.150)

and then twice, we get, after dividing by two,

x ẍ+ y ÿ + ẋ2 + ẏ2 = 0 . (5.151)

Substituting our accelerations and solving for λ produces

λ =
m

2l2
[−gy + (ẋ2 + ẏ2] . (5.152)

This expression for λ may be substituted back into our two Euler–

Lagrange equations to produce

ẍ =
x

l2
[gy − (ẋ2 + ẏ2)] (5.153)

and

ÿ =
y

l2
[gy − (ẋ2 + ẏ2)]− g . (5.154)

Method 2:

A second approach is to work with a single generalized coordinate

that has the constraint built in. The angle θ is an obvious choice.

Since

x = l sin θ , y = l cos θ , (5.155)

ẋ = l cos θ θ̇ , ẏ = −l sin θ θ̇ ,
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the kinetic energy is

T =
1

2
m (ẋ2 + ẏ2) =

1

2
ml2 θ̇2 , (5.156)

the potential energy is

V = mgy = mgl cos θ , (5.157)

and the Lagrangian is

L =
1

2
ml2 θ̇2 −mgl cos θ . (5.158)

The single Euler–Lagrange equation,

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 , (5.159)

now reduces to

ml2θ̈ −mgl sin θ = 0 . (5.160)

Method 3:

A third approach is to use the constraint equation to eliminate

one of the dependent variables. We may, for example, eliminate x

and its derivatives. Thus

x =
√

l2 − y2 (5.161)

and

ẋ =
−yẏ√
l2 − y2

. (5.162)

The kinetic energy is now

T =
1

2
m ẏ2

(
y2

l2 − y2
+ 1

)
=

1

2
m ẏ2

(
l2

l2 − y2

)
(5.163)

while the potential energy is just

V = mgy . (5.164)

A little bit of effort now leads to the differential equation

ml2
[

ÿ

l2 − y2
+

yẏ2

(l2 − y2)2

]
+mg = 0 . (5.165)

The second method gave us the tidiest solution. However, the first

method provided us additional information about the compressive

force in the rod, 2λl, with x and y components 2λx and 2λy, that is

lost in the second method.
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5.8. Recommended reading

Fraser (1992) reviews the early history of isoperimetric problems in

the calculus of variations.

Oldfather et al. (1933) translated Euler’s famous appendix on

elastic curves into English. Truesdell (1960) and Heyman (1996) pro-

vide detailed descriptions of Euler’s analysis of the elastica. Finally,

Truesdell (1983), Fraser (1991), Heyman (1998), D’Antonio (2007),

and Goss (2009) put the elastica into historical context.

Bliss (1930) is a good starting point for more on nonholonomic

constraints and the calculus of variations.

See Petrov (1968) or Smith (1974) for an introduction to varia-

tional problems with inequality constraints. Problems with inequal-

ity constraints can often be turned into problems with equality con-

straints using slack variables (Valentine, 1937).

5.9. Exercises

5.9.1. A simple constraint. Find the curve y(x) that minimizes

J =
1

2

1∫
0

y′
2
dx (5.166)

subject to the constraint

K =

1∫
0

y dx =
1

6
(5.167)

and the boundary conditions

y(0) = 0 and y(1) = 0 . (5.168)

5.9.2. A hanging chain. A heavy, uniform, and flexible chain of

linear density ρ, shape y(x), and length

l =

+a∫
−a

√
1 + y′2 dx (5.169)
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x

y

g

m

Figure 5.13. A parabolic wire

hangs in equilibrium, under the force of gravity, between the two

points A = (−a, h) and B = (a, h). Determine y(x). What can you

say about the constants of integration?

5.9.3. Particle on a parabolic wire.

A particle of massm slides down a parabolic wire under the action

of gravity. The equation for the wire is y = x2.

(a) Determine the equations of motion for this system using Lagrange

multipliers.

(b) Determine the equation of motion for this system using the con-

straint equation to eliminate y from the problem.

5.9.4. Atwood’s machine.

(a) Determine the equations of motion (the equations for ÿ1 and ÿ2)

for Atwood’s machine using Lagrange multipliers. Determine and

interpret the Lagrange multiplier λ.
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(b) Determine the equation for ÿ1 by using the constraint equation

y1 + y2 − l = 0 (5.170)

to eliminate y2 from the problem.

5.9.5. Motion on a paraboloid revisited. Consider a particle of

mass m that moves, without friction, on a smooth paraboloid while

experiencing the constant force of gravity. Take

g(r, θ, z) = z − r2 = 0 (5.171)

as your constraint equation. Write the Lagrangian for this system

using cylindrical coordinates (r, θ, z) as your generalized coordinates.

Augment your Lagrangian with your constraint equation and deter-

mine your equations of motion. Use your constraint equation to de-

termine the Lagrange multiplier and to eliminate the multiplier from

your equations of motion.

5.9.6. Geodesics on a cylinder revisited. The equation

g(x, y, z) = x2 + y2 − 1 = 0 (5.172)

defines a right circular cylinder. Use Lagrange multipliers to show

that the geodesics on the cylinder are helices.

                

                                                                                                               



Chapter 6

The Second Variation

6.1. Introduction

In the last two chapters, we focused on generalizing the Euler–La-

grange equation to functionals with higher derivatives, multiple de-

pendent variables, two independent variables, or constraints. Let us

now return to the simple problem of minimizing or maximizing the

functional

J [y] =

b∫
a

f(x, y(x), y′(x)) dx (6.1)

with the boundary conditions

y(a) = ya , y(b) = yb . (6.2)

How do we know whether we are dealing with a maximum or a min-

imum? Also, are there other necessary conditions besides the Euler–

Lagrange equation?

Suppose that the function y = ŷ(x), ŷ(x) ∈ C1[a, b], solves our

problem and that h(x) is a small deviation or variation from this

idealized solution,

y(x) = ŷ(x) + h(x) , (6.3)

that satisfies

h(a) = 0 and h(b) = 0 (6.4)

139
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x

y

a b

ŷ (x )

ŷ (x ) + h(x )

Figure 6.1. A small variation

(see Figure 6.1). For the time being, we will continue to use the strong

norm. That is, we will restrict our attention to weak variations,

h(x) = ε η(x) , (6.5)

η ∈ C1[a, b], that satisfy the boundary conditions

η(a) = 0 , η(b) = 0 . (6.6)

By assumption, η(x) and η′(x) are of the same order of smallness.

That is, the function η(x) is assumed to be independent of ε so that,

as ε goes to zero, the variation h(x) tends to zero in both ordinate

and slope.

Let us now take another look at the total variation

ΔJ ≡ J [y]− J [ŷ] = J [ŷ + h]− J [ŷ] . (6.7)

For our simple functional, equation (6.1), and weak variation (6.5),

ΔJ =

b∫
a

f(x, ŷ + εη, ŷ′ + εη′) dx−
b∫

a

f(x, ŷ, ŷ′) dx (6.8)

=

b∫
a

[f(x, ŷ + εη, ŷ′ + εη′)− f(x, ŷ, ŷ′)] dx .
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You will remember that we expanded the total variation in a Taylor

series in ε and obtained

ΔJ = δJ +
1

2
δ2J + O(ε3) , (6.9)

where we called

δJ = ε

b∫
a

[fy(x, ŷ, ŷ
′) η + fy′(x, ŷ, ŷ′) η′] dx (6.10)

the first variation and

δ2J = ε2
b∫

a

[fyy(x, ŷ, ŷ
′)η2 + 2 fyy′(x, ŷ, ŷ′)ηη′ + fy′y′(x, ŷ, ŷ′)η′

2
] dx

(6.11)

the second variation.

We have already imposed the condition that

δJ = 0 . (6.12)

It now follows that

ΔJ =
1

2
δ2J +O(ε3) . (6.13)

For sufficiently small ε, the total variation is dominated by the second

variation. It thus follows that:

Second-variation condition:

For the functional J [y] to have a relative minimum (maximum) at

y = ŷ(x), ŷ(x) ∈ C1[a, b], it is necessary that the second variation

be positive (negative) or zero,

δ2J ≥ 0 (≤ 0) , (6.14)

for all weak η(x) ∈ C1[a, b] that vanish at a and b.

Note that we have assumed that our extremals are continuously

differentiable and that our variations are continuously differentiable

and weak. These assumptions can and have been weakened. We are,

however, following the historical order of events: the second varia-

tion was investigated before scientists thought about solutions with

corners or about strong variations.
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6.2. Legendre’s condition

For convenience, rewrite the second variation as

δ2J = ε2
b∫

a

(P η2 + 2Qηη′ +Rη′
2
) dx , (6.15)

where

P ≡ fyy(x, ŷ, ŷ
′) , Q ≡ fyy′ (x, ŷ, ŷ′) , R = fy′y′(x, ŷ, ŷ′) . (6.16)

To make progress, we will transform the second variation into a

more convenient form. There are several possible approaches. For

historical reasons, we will follow Legendre (1788). Warning : There

are problems with this approach. These were pointed out, early on,

by Lagrange (1797). We will proceed carefully and consider both the

benefits of and the problems with Legendre’s approach.

For any w ∈ C1[a, b],

b∫
a

d

dx
[w(x) η2(x)] dx = w(x) η2(x)

∣∣x= b

x= a
= 0 (6.17)

since the variation η(x) vanishes at a and b. If we expand the inte-

grand and add it to the second variation, we obtain

δ2J = ε2
b∫

a

[(P + w′) η2 + 2 (Q+ w) η η′ +Rη′
2
] dx . (6.18)

We may now complete the square within the integrand:

δ2J = ε2
b∫

a

{
R

(
η′ +

Q+ w

R
η

)2

+

[
(P + w′)− (Q+ w)2

R

]
η2

}
dx .

(6.19)

Up until now, we have not put any restriction on w(x). Let us

now impose the obvious restriction

w′ = −P +
(Q+ w)2

R
(6.20)
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so that

δ2J = ε2
b∫

a

R

(
η′ +

Q+ w

R
η

)2

dx . (6.21)

To the extent that (
η′ +

Q+ w

R
η

)2

(6.22)

is nonnegative, it appears that the sign of the second variation is

determined by the sign of R. Legendre claimed that R must not

change sign in [a, b] if we are to have a relative extremum. This

necessary condition is now known as Legendre’s condition. Legendre

also claimed that if R is nonzero and of one sign (the strengthened

Legendre condition), δ2J is of the same sign as R (a sufficient con-

dition). Legendre was correct about his necessary condition, but he

was mistaken about his sufficient condition (Legendre’s fallacy). The

defect in Legendre’s logic was pointed out by Lagrange (1797): Le-

gendre’s transformation assumes that differential equation (6.20) has

a solution w that exists on the entire interval [a, b]. There are, of

course, existence theorems for ordinary differential equations, but for

a nonlinear differential equation such as this, they only guarantee a

solution locally, not on an entire interval.

Example 6.1.

Let

P = −1, Q = 0, R = 1, (6.23)

so that

w′ = 1 + w2 (6.24)

and let us take the initial condition

w(0) = 0 . (6.25)

Since the right-hand side of equation (6.24) is continuous as a function

of x and w and has a continuous partial derivative with respect to w

in the vicinity of x = 0 and w = 0, we can expect a unique solution

in some neighborhood of (0, 0). The function

w(x) = tan x (6.26)
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is this solution. This solution fails to exist at x = ±π/2. This is our

first hint that the length of the interval [a, b] may make a difference.

Let us salvage what we can before moving on:

Legendre’s condition:

A necessary condition for the functional J [y] to have a relative

minimum (maximum) at y = ŷ(x) is that

R(x) ≡ ∂2f

∂y′2
(x, ŷ(x), ŷ′(x)) ≥ 0 (≤ 0) (6.27)

in [a, b].

In the following proof and in the remainder of this chapter, we

will assume, for convenience, that we are talking about minima. Feel

free to work through the corresponding arguments for maxima.

Proof. Suppose, instead, that

R(c) < 0 (6.28)

for some value c in the interval (a, b). Since R(x) is continuous, there

is a closed interval, [c − δ1, c + δ1], within [a, b], where R(x) < 0. It

also follows that there is another closed interval, [c−δ2, c+δ2], within

[a, b], where the differential equation

w′ = −P +
(Q+ w)2

R
(6.29)

has a continuously differentiable solution w(x). Let [x1, x2] be the

smaller of these two intervals and choose η(x) so that

η(x) = 0 , x 
∈ (x1, x2) , (6.30)

η(x) 
= 0 , x ∈ (x1, x2) . (6.31)

Since η ∈ C1[a, b],

η(x1) = η(x2) = 0 and η′(x1) = η′(x2) = 0 . (6.32)
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For this particular η(x),

δ2J = ε2
x2∫

x1

(P η2 + 2Qηη′ +Rη′
2
) dx . (6.33)

For this interval of integration, we may safely apply Legendre’s trans-

formation, so that

δ2J = ε2
x2∫

x1

R

(
η′ +

Q+ w

R
η

)2

dx , (6.34)

which is clearly nonpositive.

If equation (6.34) were to vanish, we would require

η′(x) +
Q+ w

R
η(x) ≡ 0 (6.35)

for x1 ≤ x ≤ x2 since R(x) < 0 on this interval. This linear, first-

order differential equation and the boundary condition η(x1) = 0

would then imply that η(x) ≡ 0 for x1 < x < x2. Since we have

chosen η(x) so that it is nonzero on this open interval, we may safely

conclude that the integral on the right-hand side of equation (6.34)

is negative.

We have shown that if R(c) is negative, we can come up with an

arbitrarily small variation that causes

δ2J < 0 . (6.36)

This is incompatible with the existence of a minimum. We therefore

require

R(x) ≥ 0 (6.37)

in [a, b]. ♣

There are exceptional cases in which R(x) has isolated zeros in

the interval [a, b]. In most cases of interest, R(x) > 0 or R(x) < 0

everywhere in the interval [a, b].
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Example 6.2 (Geodesics in the plane).

Let

J [y] =

b∫
a

√
1 + y′2 dx . (6.38)

Since
∂2f

∂y′2
=

1

(1 + y′2)3/2
=

1

(1 +m2)3/2
(6.39)

for lines of slope m, it follows that

∂2f

∂y′2

∣∣∣∣
ŷ(x)

> 0 (6.40)

and that our extremals are not maxima but may still be minima.

Example 6.3 (Minimal surface of revolution).

For

J [y] =

b∫
a

y

√
1 + y′2dx , (6.41)

we have
∂2f

∂y′2
=

y

(1 + y′2)3/2
. (6.42)

This is positive if y(x) > 0. All of our extremals — there may be

two, one, or zero solutions for each set of boundary conditions — are

potential minima.

Example 6.4 (Geodesics on a sphere).

For

J [φ] = R

θ2∫
θ1

√
1 + sin2 θ

(
dφ

dθ

)2

dθ , (6.43)

we have
∂2f

∂φ′2 =
sin2 θ

[1 + sin2 θ (φ′)2]3/2
> 0 (6.44)

so that arcs of great circles are, potentially, minima.
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6.3. Jacobi’s condition

Legendre attempted to show that the strengthened Legendre condi-

tion is a sufficient condition for relative minimum. His reasoning was

flawed. He had, as pointed out by Lagrange, implicitly assumed that

equation (6.20) has a solution that is finite and continuous over the

entire interval [a, b]. This may not be true. It is clear, therefore, that

we need to study differential equation (6.20) in greater detail. In the

course of studying this equation, we will uncover new (necessary and

sufficient) conditions for a weak relative minimum.

Differential equation (6.20),

w′ = −P +
(Q+ w)2

R
, (6.45)

is a Riccati equation. You may not remember much about Riccati

equations. So here are some basic facts about these equations. A

Riccati equation is any differential equation of the general form

y′ = a(x)y2 + b(x)y + c(x) . (6.46)

If a(x) = 0, Riccati’s equation reduces to a linear equation; for c(x) =

0, we get a Bernoulli equation.

In most cases, we cannot solve Riccati equations in closed form.

If, however, we know one particular solution, the general solution can

be calculated. Indeed, let yp(x) be a particular solution to Riccati

equation (6.46),

y′p = ay2p + byp + c . (6.47)

Introduce a new variable z(x) that measures the difference between

the general solution and the particular solution,

z(x) ≡ y(x)− yp(x) . (6.48)

It quickly follows that

z′ = az2 + (2ayp + b)z . (6.49)

This last equation is a Bernoulli equation; it can be solved exactly.
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6.3.1. The Jacobi equation. One of the reasons that Riccati equa-

tions are important is that every linear, second-order, homogeneous,

ordinary differential equation can be turned into a Riccati equation,

and vice versa. To turn equation (6.45) into a linear, second-order

differential equation, we introduce

w(x) = −Q−R
u′(x)

u(x)
, (6.50)

under the assumption that

u(x) 
= 0 , x ∈ [a, b] . (6.51)

The resulting equation,

d

dx
(Ru′) + (Q′ − P ) u = 0 , (6.52)

is known as the Jacobi equation, after Carl Gustav Jacob Jacobi

(1804–1851). It may also be rewritten as

d2u

dx2
+

R′

R

du

dx
+

(Q′ − P )

R
u = 0 . (6.53)

In terms of u, the second variation,

δ2J = ε2
b∫

a

R

(
η′ +

Q+ w

R
η

)2

dx , (6.54)

now simplifies to

δ2J = ε2
b∫

a

R

(
η′ − u′

u
η

)2

dx . (6.55)

Having introduced the Jacobi equation and having transformed

the second variation using solutions of the Jacobi equation, we can

now state a simple sufficiency condition that guarantees that the sec-

ond variation is positive definite:
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A weak sufficiency condition:

For y = ŷ(x), if

(a) R(x) > 0, for all x ∈ [a, b], and

(b) the Jacobi equation has a solution u = u(x) 
= 0, for all x ∈
[a, b],

then δ2J is positive definite. That is, δ2J > 0 for every admissible

weak variation η(x) that is not identically zero.

Proof. If the Jacobi equation has a solution that does not vanish any-

where on the entire interval [a, b], we can carry out Legendre’s trans-

formation of the second variation, as described above. For R(x) > 0,

the second variation can vanish only if

η′ − u′

u
η ≡ 0 (6.56)

for all x ∈ [a, b]. Since

η(a) = 0 , η(b) = 0 , (6.57)

and since u(x) does not vanish at these endpoints, the only solution

to this linear, first-order differential equation is

η(x) = 0 . (6.58)

♣

If every solution of the Jacobi equation vanishes for at least one point

of [a, b], we will not be able to carry out Legendre’s transformation

of the second variation over the whole interval. At the very least, we

will then lose our sufficiency condition for the positive definiteness

of the second variation. Worse yet, if there are two points of [a, b)

where a nontrivial solution of the Jacobi equation vanishes, the second

variation can, in general, be made negative. This will ultimately lead

to a new necessary condition for a weak relative minimum.

We have gone through a number of gyrations to derive the Jacobi

equation. We will shortly solve Jacobi’s equation. Before doing so,

however, let’s take a brief, seemingly unrelated, detour and see yet
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another way in which this equation arises. This detour will also pro-

vide us an alternative way of writing the second variation that will

prove useful later in this chapter.

Accordingly, let us write the integrand of the second variation as

a function of η and η′,

δ2J = ε2
b∫

a

(P η2 + 2Qη η′ +Rη′
2
) dx (6.59)

= ε2
b∫

a

2Ω(η, η′) dx .

Since the integrand is homogeneous of degree two in η and η′, it

quickly follows that

2Ω = η
∂Ω

∂η
+ η′

∂Ω

∂η′
. (6.60)

(You may recognize this statement as a simple example of Euler’s

identity for homogeneous functions. We will discuss this identity,

more fully, in Chapter 8.)

We may now write the second variation as

δ2J = ε2
b∫

a

(
η
∂Ω

∂η
+ η′

∂Ω

∂η′

)
dx . (6.61)

If we integrate the second term in the integral by parts, using the fact

that η(x) vanishes at the endpoints, we obtain

δ2J = ε2
b∫

a

η

[
∂Ω

∂η
− d

dx

(
∂Ω

∂η′

)]
dx . (6.62)

Interestingly,

∂Ω

∂η
− d

dx

(
∂Ω

∂η′

)
= (P −Q′) η − d

dx
(Rη′) ≡ Ψ(η) (6.63)

so that

δ2J = ε2
b∫

a

ηΨ(η) dx . (6.64)
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Ψ(η) is just the negative of the Jacobi equation (with η(x) as the

dependent variable). It is often said that the Jacobi equation is the

Euler–Lagrange equation of the secondary or accessory variational

problem. Keep equation (6.64) in mind. We will need this equation

shortly.

6.3.2. Solutions of the Jacobi equation. It is clear that we must

solve the Jacobi equation. Fortunately, Jacobi (1837) invented an

amazing method of solution. He showed that the general solution of

the Jacobi equation can be derived by straightforward differentiation

of the general solution of the Euler–Lagrange equation.

Suppose that we have the general solution,

y = ŷ(x, α, β) , (6.65)

to the Euler–Lagrange equation that arises out of the first variation.

Since the Euler–Lagrange equation is a second-order differential equa-

tion, this general solution contains the two constants of integration α

and β.

If we insert this general solution into the Euler–Lagrange equa-

tion, we obtain

∂f

∂y
(x, ŷ(x, α, β), ŷ′(x, α, β)) (6.66)

− d

dx

[
∂f

∂y′
(x, ŷ(x, α, β), ŷ′(x, α, β))

]
= 0 .

This identity is satisfied for all values of x, α, and β, and we are

therefore free to differentiate this identity with respect to either α or

β. We will do so for α, taking the additional liberty of reversing the

order of differentiation between x and α:

∂2f

∂y2
∂ŷ

∂α
+

∂2f

∂y ∂y′
∂ŷ′

∂α
− d

dx

(
∂2f

∂y′ ∂y

∂ŷ

∂α
+

∂2f

∂y′2
∂ŷ′

∂α

)
= 0 . (6.67)

We may now rewrite this as

P
∂ŷ

∂α
+Q

∂ŷ′

∂α
− d

dx

(
Q

∂ŷ

∂α
+R

∂ŷ′

∂α

)
= 0 (6.68)

or

(P −Q′)
∂ŷ

∂α
+ (Q−Q)

∂ŷ′

∂α
− d

dx

(
R

∂ŷ′

∂α

)
= 0 . (6.69)
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This simplifies to

(P −Q′)
∂ŷ

∂α
− d

dx

(
R

∂ŷ′

∂α

)
= 0 . (6.70)

But this is just the Jacobi equation with

u =
∂ŷ

∂α
and u′ =

∂ŷ′

∂α
. (6.71)

We could just as easily have differentiated with respect to β. It

appears that we have proven the following important theorem:

Jacobi’s theorem:

If y = ŷ(x, α, β) is the general solution of an Euler–Lagrange equa-

tion, then the corresponding Jacobi equation,

d

dx
(Ru′) + (Q′ − P )u = 0 , (6.72)

has the two particular solutions

u1(x) =
∂ŷ

∂α
and u2(x) =

∂ŷ

∂β
. (6.73)

These two solutions are, in general, linearly independent. The

general solution of Jacobi’s differential equation is, typically,

u(x) = c1 u1(x) + c2 u2(x) . (6.74)

6.3.3. Jacobi’s criterion. Let us now look at one particularly con-

venient solution of Jacobi’s equation:

Δ(x, a) = u2(a) u1(x)− u1(a) u2(x) . (6.75)

This solution has been chosen so that it vanishes at x = a.

If the next zero of Δ(x, a), x = a, occurs past x = b (see Figure

6.2), we can safely construct a solution u(x) that does not vanish

on the closed interval [a, b] by considering Δ(x, a− ε) for sufficiently

small ε. We are then guaranteed, by our weak sufficiency condition,

that δ2J > 0 for all admissible and nonvanishing η(x).
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a b a

x

Δ(x , a)

Figure 6.2. a > b

a a = b

x

Δ(x , a)

Figure 6.3. a = b

If the next zero, x = a, occurs at x = b (see Figure 6.3), the situ-

ation changes dramatically. We can now find a nontrivial, admissible

variation that causes the second variation to vanish. To see this, first

note that restriction (6.51) implies that we can no longer write the

second variation as

δ2J = ε2
b∫

a

R

(
η′ − u′

u
η

)2

dx . (6.76)

We can, however, still use equation (6.64) to write the second varia-

tion as

δ2J = ε2
b∫

a

ηΨ(η) dx . (6.77)

If we now choose η(x) to be a multiple of u(x) = Δ(x, a), η(x) satisfies

the boundary conditions η(a) = η(b) = 0. For this choice, moreover,

Ψ(η) ≡ 0 so that the second variation vanishes.
                

                                                                                                               



154 6. The Second Variation

Once the second variation vanishes for nontrivial η(x), the sign

of the total variation, ΔJ , depends on the sign of the third variation,

δ3J , which is of odd power in ε. In general, the third variation can

be made negative by choosing the sign of ε appropriately. If the third

variation should (miraculously) be equal to zero, we would need to

look at the fourth variation.

Jacobi asserted, but did not prove, that there will be no minimum

if the next zero of Δ(x, a), at x = a, occurs before x = b. In 1855,

J. Bertrand conjectured that Jacobi may have overstated his results

and that while b < a may be useful as part of a sufficiency condition,

it may not be necessary. In the same year, however, Ossian Bonnet

showed, in the context of geodesics, that the second variation can be

made negative if a < b. See Todhunter (2005) for details. The earliest

general proof of the necessity of Jacobi’s condition is due to Erdmann

(1878).

Questions about the necessity of Jacobi’s condition arose late

enough that most proofs use varied curves with corners (which we

have, so far, ignored) instead of weak, continuously differentiable vari-

ations. One of the few proofs that does work for weak, continuously

differentiable variations is the proof of Gelfand and Fomin (1963) and

van Brunt (2004), which relies on a homotopy argument.

Basically, these authors assume a one-parameter family of positive-

definite functionals of the form

K(μ) = μ δ2J + (1− μ) ε2
b∫

a

η′
2
dx , (6.78)

where μ ∈ [0, 1). For μ = 0, K(μ) reduces to a simple quadratic

functional and Δ(x, a) does not vanish inside (a, b). (Verify this.)

Gelfand and Fomin (1963) and van Brunt (2004) then prove that a

zero of Δ(x, a) does not enter (a, b) as one increases μ from 0 to 1.

They thereby show that the only way that we can have a relative

minimum is if Δ(x, a) has no zero in (a, b). This is more than we

want to prove in an introduction to the subject. So, let me instead

refer you to the appropriate textbooks and state the main conclusion.
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Jacobi’s condition:

A necessary condition for a relative minimum (maximum) is that

Δ(x, a) 
= 0 (6.79)

for all values of x in the open interval a < x < b.

6.3.4. Conjugate points. The first zero, x = a, of Δ(x, a) that

follows x = a is so important that we say that a is conjugate to a.

The point A on the extremal with abscissa a is, in turn, conjugate1

to the point A with abscissa a.

There are two ways to determine conjugate points.

Analytic method:

The value a satisfies the equation

Δ(a, a) = u2(a) u1(a)− u1(a) u2(a) = 0 . (6.80)

It follows that
u1(a)

u2(a)
=

u1(a)

u2(a)
(6.81)

and that
∂ŷ
∂α
∂ŷ
∂β

∣∣∣∣∣
x= a

=
∂ŷ
∂α
∂ŷ
∂β

∣∣∣∣∣
x= a

. (6.82)

Here, we have used Jacobi’s result that one can obtain particular solu-

tions of Jacobi’s equation by differentiating a two-parameter general

solution of the corresponding Euler–Lagrange equation with respect

to the parameters. The last displayed equation can, in some instances,

be solved for x = a.

Geometrical method:

Let u(x) be a solution of the Jacobi equation, let ŷ(x, α, β) be the

general solution of the corresponding Euler–Lagrange equation, and

let γ be a constant. Consider the two curves

y = ŷ(x, α, β) and y = ŷ(x, α, β) + γ u(x) . (6.83)

1Many investigators refer to both a and A as conjugate points while other investi-

gators distinguish between the conjugate value a and the conjugate point A. Similarly,
some investigators call any zero of Δ(x, a) that follows x = a a conjugate point while
other investigators reserve this term for the first such zero.
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These two curves intersect whenever

u(x) = 0 . (6.84)

If these two curves intersect at A, they will also intersect at the con-

jugate point, A.

Now, consider two nearby extremals,

y = ŷ(x, α, β) (6.85)

and

y = ŷ(x, α+Δα, β) , (6.86)

for Δα small. Ignoring higher-order terms, the second extremal may

be approximated by

y = ŷ(x, α, β) +
∂ŷ

∂α
Δα (6.87)

or

y = ŷ(x, α, β) + Δα · u1(x) . (6.88)

It now stands to reason that if neighboring extremals (6.85) and (6.86)

intersect at A, they will also intersect at or, because of the approxi-

mation, near the conjugate point A.

Let’s make all of this a little more precise. Let us reduce our two-

parameter family of extremals to a one-parameter family of extremals,

y = ŷ(x, c) , (6.89)

by restricting our attention to a pencil of extremals emanating out of

the fixed point A = (a, ya) (see Figure 6.4). Let us now consider two

“neighboring” curves,

y = ŷ(x, c) and y = ŷ(x, c+Δc) , (6.90)

of this one-parameter family.

These two extremals intersect if they share the same coordinates.

We can use the equation

ŷ(x, c+Δc) = ŷ(x, c) (6.91)

to determine the abscissa of the point of intersection and the equation

y = ŷ(x, c) (6.92)
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a

ya A

Figure 6.4. Envelope

to then determine the ordinate. We may also rewrite these conditions

as

y = ŷ(x, c) (6.93)

and
ŷ(x, c+Δc)− ŷ(x, c)

Δc
= 0 . (6.94)

Here, we have divided by Δc so that we can get a nontrivial result in

the limit as Δc goes to zero.

In that limit,

y = ŷ(x, c) ,
∂ŷ

∂c
(x, c) = 0 , (6.95)

we capture our conjugate point. But, this is also the c-discriminant,

the set of equations that specifies the envelope of our one-parameter

family. Thus, if a family of extremals, emanating from a point A, has

an envelope, the conjugate point for a member of this family is the

point of contact of that extremal with the envelope.
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Example 6.5.

Consider the functional

J [y] =

b∫
0

(y′
2 − y2) dx (6.96)

with 0 < b < π and the boundary conditions

y(0) = 0, y(b) = 1 . (6.97)

The Euler–Lagrange equation for this problem is just

y′′ + y = 0 . (6.98)

The general, two-parameter, solution to this equation is

ŷ(x, α, β) = α sin x+ β cos x . (6.99)

Upon applying the boundary conditions, we discover that

α =
1

sin b
and β = 0 . (6.100)

This leaves us with the extremal

ŷ(x) =
sin x

sin b
(6.101)

(see Figure 6.5).

Upon checking the Legendre condition, we discover that

∂2f

∂y′2
= 2 > 0 . (6.102)

The strengthened Legendre condition is satisfied.

Since

P = fyy(x, ŷ, ŷ
′) = −2 , (6.103)

Q = fyy′(x, ŷ, ŷ′) = 0 , (6.104)

R = fy′y′(x, ŷ, ŷ′) = 2 , (6.105)

Jacobi’s equation,

d

dx
(Ru′) + (Q′ − P ) u = 0 , (6.106)

reduces to

u′′ + u = 0 . (6.107)
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Figure 6.5. One-parameter family of extremals

Jacobi’s direct method of solution,

u(x) = c1 u1(x) + c2 u2(x) = c1
∂ŷ

∂α
+ c2

∂ŷ

∂β
, (6.108)

generates the obvious general solution to this equation,

u(x) = c1 sin x+ c2 cos x . (6.109)

We can now determine the conjugate value analytically. The

value a satisfies
u1(a)

u2(a)
=

u1(a)

u2(a)
, (6.110)

which, in this case, yields

sin a

cos a
=

sin 0

cos 0
(6.111)

or

tan a = tan 0 = 0 . (6.112)

It follows that

a = π . (6.113)

We can also determine the conjugate point graphically by looking

at a one-parameter family of extremals,

y(x) = α sin x , (6.114)
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emanating out of the origin (see Figure 6.5). It is clear that the “true”

extremal and its close neighbors intersect at a = π.

6.4. Case study: The catenoid revisited

Let us return now to the problem of minimizing the area

J [y] = 2π

b∫
a

y(x)

√
1 + y′2 dx (6.115)

of a surface of revolution subject to the boundary conditions

y(a) = ya , y(b) = yb (6.116)

in the plane. We saw, much earlier, that our general solution for this

problem is the catenary

ŷ(x) = α cosh

(
x− β

α

)
. (6.117)

To apply Legendre’s test, we must determine the sign of

∂2f

∂y′2
=

y

(1 + y′2)3/2
(6.118)

along our solution. For

y(x) = α cosh

(
x− β

α

)
, (6.119)

we have
∂2f

∂y′2
=

α

cosh2
(

x−β
α

) . (6.120)

So, for α > 0, we are talking about minima.

There are several ways to look for conjugate points and to check

Jacobi’s condition for our catenary. We can certainly take the geo-

metric approach. If we, for example, impose the single boundary

condition y(0) = 1, our catenary must now satisfy

1 = α cosh
β

α
. (6.121)

Let us denote λ = β/α so that

α =
1

cosh λ
. (6.122)
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Figure 6.6. One-parameter family of catenaries

Our two-parameter family of catenaries now reduces to the one-param-

eter family

y(x, λ) =
cosh (x cosh λ− λ)

cosh λ
. (6.123)

As we vary λ (see Figure 6.6), we obtain a one-parameter family

or “pencil” of catenaries emanating from (1, 0). The members of this

family form an envelope that passes through the origin. Every point

P above this envelope is visited by two different catenaries. One of

the two catenaries touches the envelope before passing on to P . We

have seen that this catenary cannot be a minimizing curve. The other

catenary, which does not touch the envelope, is a relative minimum.
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We can also take an analytic approach. As a prelude, consider

the symmetric boundary conditions

y(−h) = k , y(h) = k . (6.124)

These boundary conditions imply that β = 0 so that catenary (6.117)

satisfies

α cosh
−h

α
= k = α cosh

h

α
. (6.125)

If we let

z ≡ h

α
, (6.126)

we may write

cosh z = mz , (6.127)

where

m ≡ k

h
. (6.128)

For m = k/h sufficiently large, we have two roots and two cate-

naries that satisfy our boundary conditions. If our boundaries are far

enough apart, there are no catenary solutions. These two extremes

are separated by a critical case, m = mc, z = zc, that corresponds to

the double root

cosh zc = mc zc , sinh zc = mc . (6.129)

We can eliminate mc between these two equations to get

coth zc = zc , (6.130)

which has the solution

zc ≈ 1.199679 . (6.131)

It now follows that

mc ≈ sinh (1.199679) ≈ 1.508880 . (6.132)

For m > mc ≈ 1.508880, we have two roots (Figure 6.7) and two

catenaries (Figure 6.8) that satisfy our boundary conditions. One

catenary is shallow and one is deep. I suggested earlier that the

deep solution is a spurious solution while the shallow catenary is a

weak relative minimum. Let us see what our analytic conjugate-point

criterion has to say about this problem.
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Figure 6.7. Two roots

The two linearly independent solutions of Jacobi’s equation are

u1(x) =
∂ŷ

∂α
(6.133)

= cosh

(
x− β

α

)
−
(
x− β

α

)
sinh

(
x− β

α

)

and

u2(x) =
∂ŷ

∂β
= − sinh

(
x− β

α

)
. (6.134)

We can now find the a that is conjugate to x = a by solving the

equation

u1(a)

u2(a)
=

u1(a)

u2(a)
. (6.135)

This equation reduces to

z − coth z = z − coth z , (6.136)
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Figure 6.8. Two catenaries

where, now,

z ≡ a− β

α
and z ≡ a− β

α
. (6.137)

Since the plot of z − coth z (see Figure 6.9) increases monotonically

from −∞ to +∞ in both the left-half and the right-half planes, we

see that there is one positive z for every negative value of z.

We also see that z is bigger (in magnitude) than z above the

z-axis and smaller than z below the z-axis. The left branch of the

function z − coth z intersects the z-axis at

zc = −1.199679 . (6.138)

For our symmetric boundary conditions

y(−h) = k , y(h) = k , (6.139)

β = 0, and we now take z to be negative,

z =
a

α
= −h

α
. (6.140)
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Figure 6.9. Plot of z − coth z

For these boundary conditions, Jacobi’s condition is violated for z <

zc since it then follows that |a| < |a|. For this symmetric problem,

our high α solution satisfies Jacobi’s condition and our low α solution

violates Jacobi’s condition.

We can also find the conjugate point A of a point A on the cate-

nary

ŷ(x) = α cosh

(
x− β

α

)
(6.141)

using a simple geometric construction, starting with our analytic cri-

terion. In particular, Lindelöf and Moigno (1861) showed that the

tangents to the catenary at A and A meet on the x-axis.

To see this, consider our simple catenary (see Figure 6.10). The

vertex of the catenary is V and the point U that lies on the x-axis

beneath the vertex is a distance β from the origin. Let us now pick a

point P on the catenary, with abscissa x. Let M be the point directly
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O
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Figure 6.10. A simple geometric construction

underneath P on the x-axis and let T be the point of intersection of

the tangent to the catenary at P with the x-axis. It now follows that

TM =
MP

tan MTP
=

α cosh
(

x−β
α

)
sinh

(
x−β
α

) . (6.142)

Thus,

UT

α
=

UM − TM

α
=

(
x− β

α

)
− coth

(
x− β

α

)
. (6.143)

But, by equation (6.136), the tangents to the catenary at A and A

then meet at the same point on the x-axis.

For example, for the deep catenary shown in Figure 6.8, with

α = 0.47 and

z = −h

α
= − 1

α
≈ −2.1276 , (6.144)
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Figure 6.11. Conjugate point for a deep catenary

we see that

z < zc = −1.199679 . (6.145)

Our catenary should, in other words, violate Jacobi’s condition. Fig-

ure 6.11 shows that the deep catenary extends far beyond conjugate

point A.

6.5. Recommended reading

Many books on the calculus of variations discuss the second variation.

See, for example, Akhiezer (1962, 1988), Bolza (1973), Brechtken-

Manderscheid (1991), Forsyth (1927), Fox (1950), Gelfand and Fomin

(1963), Sagan (1969), and van Brunt (2004).

Refer to Fraser (2005b) for more about the importance of La-

grange (1797) and for more about Lagrange’s critique of Legendre

(1788). Goldstine (1980), Kolmogorov and Yushkevich (1998), and
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Todhunter (2005) review the history of the study of the second vari-

ation. See Todhunter (2005) for an English translation of Jacobi

(1837).

O’Reilly and Peters (2011) describe the use of the second variation

to determine the stability of elastic systems.

Morse (1934) extended Jacobi’s condition by using the number

of conjugate points as an index that quantifies the dimension of the

space for which δ2J is negative. See Milnor (1963) for more on Morse

theory and see the recent review article by Manning (2009) for a

related perspective.

The theory of conjugate points has been extended to variational

problems with isoperimetric constraints (Bolza, 1973). The notion of

an index has also been extended to isoperimetric problems and has

been used to study the stability of capillary surfaces (Gillette and

Dyson, 1971; Lowry and Steen, 1995), DNA minicircles (Manning

et al., 1998), twisted elastic struts (Hoffman et al., 2002), and twisted

elastic loops (Hoffman, 2005).

6.6. Exercises

6.6.1. Third variation. Consider a functional of the form

J [y] =

b∫
a

f(x, y(x), y′(x)) dx . (6.146)

Derive an expression for the third variation of J [y].

6.6.2. Higher-order derivatives. Consider a functional of the form

J [y] =

b∫
a

f(x, y(x), y′(x), y′′(x)) dx . (6.147)

Derive an expression for the second variation of J [y].

6.6.3. A falling body with drag. Consider a small, heavy, falling

body that experiences air resistance. Assume that the positive direc-

tion is downward. Solve the first-order differential equation for this
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body,

m
dv

dt
≡ mg − b v2 , (6.148)

as a Riccati equation (rather than, for example, as a separable equa-

tion). Hint: Use the fact that the terminal velocity is a particular

solution.

6.6.4. Legendre and Jacobi conditions. Minimize the integral

J [y] =

2∫
1

x2y′
2
dx (6.149)

with the boundary conditions

y(1) = 0 , y(2) = 1 . (6.150)

Apply the Legendre condition and the Jacobi condition to determine

if your solution is a weak minimum. Determine and draw the one-

parameter family of extremals that emanate out of the left boundary

point and determine the envelope of this family of extremals. What

can you conclude?

6.6.5. Parabola of safety. For a simple projectile, fired from the

origin, the Lagrangian is

L =
1

2
m (ẋ2 + ẏ2)−mg y , (6.151)

where g is the acceleration due to gravity.

(a) Use Hamilton’s principle to derive the equations of motion of the

projectile.

(b) Show that the trajectory, corresponding to the initial conditions

x(0) = 0 , y(0) = 0 , ẋ(0) = V cos α , ẏ(0) = V sin α , (6.152)

is the parabola

y(x) = x tan α− g sec2 α

2V 2
x2 . (6.153)

(c) Find the envelope of the parabolas that arise as you vary the

launch angle α while holding the launch speed V fixed.
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6.6.6. Finding conjugates. Consider the variational problem

J [y] =

1∫
0

√
y (1 + y′2) dx (6.154)

with boundary conditions

y(0) = 2 and y(1) = 5 . (6.155)

Find the extremals that satisfy the given boundary conditions. De-

termine whether the extremals satisfy Jacobi’s necessary condition.

                

                                                                                                               



Chapter 7

Review and Preview

7.1. Introduction

We have looked at a number of classical tests that help us find and

characterize weak relative minima. Most of these tests are necessary

conditions. These same tests also appear, either in their original form

or as strengthened conditions, in discussing sufficient conditions for

weak relative minima. It can all be very confusing. Let us take this

opportunity to examine a series of necessary and sufficient conditions

for weak relative minima, under the simplest possible assumptions.

These necessary and sufficient conditions generalize, in natural

ways, to problems with more than one dependent variable, more than

one independent variable, higher derivatives, constraints, and a va-

riety of other, more complicated, problems. We will briefly examine

the conditions for problems with two dependent variables. See Fox

(1950) and Forsyth (1927) for details and for further generalizations.

Finally, we will briefly consider some topics that will appear in

the second half of this book.
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7.2. Necessary conditions

Consider the functional

J [y] =

b∫
a

f(x, y, y′) dx (7.1)

with the boundary conditions

y(a) = ya , y(b) = yb . (7.2)

In order for a continuously differentiable function ŷ(x) to be a

minimum relative to all allowable weak variations, we need to satisfy

three necessary conditions. These are as follows:

(a) The function ŷ(x) must be an extremal. It must satisfy the Euler–

Lagrange equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (7.3)

(b) The Legendre condition,

∂2f

∂y′2
≥ 0 , (7.4)

must be satisfied along ŷ(x).

(c) The Jacobi condition,

Δ(x, a) = u2(a) u1(x)− u1(a) u2(x) 
= 0, (7.5)

must be satisfied for all values a < x < b. Here u1(x) and u2(x)

are two, linearly independent, solutions of the Jacobi equation,

d

dx
(Ru′) + (Q′ − P ) u = 0 , (7.6)

with

P ≡ fyy(x, ŷ, ŷ
′) , Q ≡ fyy′(x, ŷ, ŷ′) , R = fy′y′(x, ŷ, ŷ′) . (7.7)

Equivalently, ŷ(x) should not have any conjugate points between

a and b.
                

                                                                                                               



7.4. Two dependent variables 173

7.3. Sufficient conditions

In order for a continuously differentiable function ŷ(x) to be a mini-

mum relative to all allowable weak variations, it is sufficient that we

satisfy three conditions. These are as follows:

(a) The function ŷ(x) is an extremal. It satisfies the Euler–Lagrange

equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (7.8)

(b) The strengthened Legendre condition,

∂2f

∂y′2
> 0 , (7.9)

is satisfied along ŷ(x).

(c) The strengthened Jacobi condition,

Δ(x, a) = u2(a) u1(x)− u1(a) u2(x) 
= 0, (7.10)

for all a < x ≤ b, is satisfied.

7.4. Two dependent variables

For a functional of the form

J [y, z] =

b∫
a

f(x, y, z, y′, z′) dx (7.11)

with two dependent variables, y(x) and z(x), and fixed boundary con-

ditions, most of the concepts we have already introduced generalize

in natural ways:

(a) Extremals must now satisfy a coupled system of Euler–Lagrange

equations of the form

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 ,

∂f

∂z
− d

dx

(
∂f

∂z′

)
= 0 . (7.12)
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(b) For a minimum, our old strengthened Legendre condition is re-

placed by a new pair of conditions that state that

∂2f

∂y′2
> 0 ,

∂2f

∂z′2
> 0 (7.13)

and that ∣∣∣∣∣∣∣∣∣∣

∂2f

∂y′2
∂2f

∂z′∂y′

∂2f

∂y′∂z′
∂2f

∂z′2

∣∣∣∣∣∣∣∣∣∣
> 0 (7.14)

or, equivalently, that

∂2f

∂y′2
∂2f

∂z′2
−
(

∂2f

∂y′ ∂z′

)2

> 0 (7.15)

along the extremals ŷ(x) and ẑ(x).

(c) There are two accessory or secondary characteristic equations,

∂Ω

∂ξ
− d

dx

(
∂Ω

∂ξ̇

)
= 0 ,

∂Ω

∂η
− d

dx

(
∂Ω

∂η̇

)
= 0 , (7.16)

that replace the Jacobi equation. Here, Ω is an ugly but homo-

geneous quadratic function of the variations ξ(x) and η(x) and

their derivatives ξ′(x) and η′(x). In particular,

2Ω =
∂2f

∂y2
ξ2 + 2

∂2f

∂y ∂z
ξ η +

∂2f

∂z2
η2 (7.17)

+ 2

(
∂2f

∂y ∂y′
ξ ξ′ +

∂2f

∂y ∂z′
ξ η′ +

∂2f

∂y′ ∂z
ξ′ η +

∂2f

∂z ∂z′
η η′

)

+
∂2f

∂y′2
ξ′

2
+ 2

∂2f

∂y′ ∂z′
ξ′ η′ +

∂2f

∂z′2
η′

2
,

where the partial derivatives are evaluated along extremals. See

Forsyth (1927) for details.

Fortunately, the solutions to these two equations can be derived

from the general solutions of the two Euler–Lagrange equations.

If the two Euler–Lagrange equations have solutions of the form

y(x) = φ(x, α, β, γ, δ) , z(x) = ψ(x, α, β, γ, δ) , (7.18)
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where α, β, γ, and δ are constants of integration, the solutions

to the two accessory equations can be written in terms of partial

derivatives of the general solutions to the Euler–Lagrange equa-

tions,

ξ(x) = c1φα(x) + c2φβ(x) + c3φγ(x) + c4φδ(x) , (7.19)

η(x) = c1ψα(x) + c2ψβ(x) + c3ψγ(x) + c4ψδ(x) , (7.20)

where we now, for conciseness, list the independent variable x as

the sole argument.

The range of integration, beginning at a, must not extend as far

as the conjugate of a. This conjugate is the smallest value of a,

greater than a, that is a root of the equation

Δ(a, a) =

∣∣∣∣∣∣∣∣
φα(a) φβ(a) φγ(a) φδ(a)

ψα(a) ψβ(a) ψγ(a) ψδ(a)

φα(ā) φβ(ā) φγ(ā) φδ(ā)

ψα(ā) ψβ(ā) ψγ(ā) ψδ(ā)

∣∣∣∣∣∣∣∣
= 0 , (7.21)

where the subscripts on φ and ψ imply partial differentiation with

respect to the designated parameter.

In terms of geometry, you should consider a two-parameter family

of orbits emanating out of a point. You will, once again, need to

look at intersections between nearby orbits.

7.5. History and preview

Jacobi’s 1837 paper was, in many ways, the high point of the classical

phase of the calculus of variations. During this phase, mathematicians

implicitly, and perhaps unconsciously, assumed that they were dealing

with (once or twice) continuously differentiable extremals and weak

variations. During the second half of the 19th century, mathemati-

cians such as Isaac Todhunter, G. Erdmann, and Karl Weierstrass

reexamined the assumptions underlying the calculus of variations,

put the calculus of variations on a more rigorous footing, and learned

to deal with corners and strong variations. The role of Weierstrass

was particularly important.

Isaac Todhunter (1871), an English mathematician, first drew at-

tention to solutions of variational problems with corners in his 1871
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book. At corners, the derivatives of the solutions change discontin-

uously; Todhunter called the solutions themselves “discontinuous.”

Unfortunately, Todhunter was unable to derive analytic conditions

that held at the corners. Weierstrass found corner conditions for ex-

tremals as early as 1865 but did not publish these conditions. (Weier-

strass’s derivations appeared much later, after his death, when his

lectures were published. Nevertheless, Weierstrass’s lectures were ex-

tremely influential at the time they were delivered.) Corner condi-

tions first appeared in print in a paper by Erdmann (1877). We now

talk of the Weierstrass–Erdmann corner conditions. Once we allow

solutions to have corners, it is only a small (but important) step to

allow nearby curves to have corners or large derivatives. Weierstrass

developed this theory of strong variations.

Corner conditions arose historically out of variable-endpoint con-

ditions. As a result, it will take us a little while to get to corner

conditions. We will first follow Weierstrass by taking a parametric

approach. In order to gain greater generality, Weierstrass regarded

the variables x and y for a plane curve as functions of a parameter t.

This is in contrast to the ordinary approach in which x is the indepen-

dent variable and y is the dependent variable. The approach will seem

a little peculiar at first, but it will allow us to derive a particularly

nice pair of variable-endpoint conditions. We need variable-endpoint

conditions for problems in which boundary conditions are not fixed.

With variable-endpoint conditions in hand, we can quickly derive cor-

ner conditions. We can then move on to a new necessary condition,

due to Weierstrass, for an extremum relative to strong variations.

Finally, we can consider field theory and sufficient conditions for an

extremum relative to strong variations.

7.6. Recommended reading

Kolmogorov and Yushkevich (1998) and Fraser (2003) discuss the

contributions of Todhunter, Erdmann, and Weierstrass to the calculus

of variations. See Johnson (1996) for a biography of Isaac Todhunter.

                

                                                                                                               



Chapter 8

The Homogeneous
Problem

8.1. Integrals in parametric form

We will now follow Weierstrass by replacing the explicit representa-

tion

y = y(x) (8.1)

with a parametric representation,

x = x(t) , y = y(t) , (8.2)

when minimizing or maximizing a functional. This important gener-

alization enables us to search for our solutions amongst regular curves,

such as circles and vertical lines, rather than just amongst functions.

Let us consider our simplest integral,

J [y] =

b∫
a

f(x, y, y′) dx , (8.3)

with the boundary conditions

y(a) = ya , y(b) = yb . (8.4)

We will now let

x = x(t) , y = y(t) (8.5)
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for ta ≤ t ≤ tb with

x(ta) = a , y(ta) = ya , x(tb) = b , y(tb) = yb . (8.6)

For future convenience, we will assume that x(t) and y(t) are con-

tinuously differentiable functions whose derivatives, ẋ(t) and ẏ(t), do

not simultaneously vanish,

ẋ2 + ẏ2 > 0 , (8.7)

anywhere on our closed interval ta ≤ t ≤ tb.

Since

y′ =
dy

dx
=

ẏ

ẋ
, dx = ẋ dt , (8.8)

integral (8.3) can now be replaced by

J [γ] =

tb∫
ta

f

(
x(t), y(t),

ẏ(t)

ẋ(t)

)
ẋ(t) dt , (8.9)

where γ(t) = [x(t), y(t)] is the curve corresponding to our parame-

terization. We are now dealing with a problem with two dependent

variables. Our new integrand,

F (x, y, ẋ, ẏ) ≡ f

(
x(t), y(t),

ẏ(t)

ẋ(t)

)
ẋ(t) , (8.10)

does, moreover, have two special properties:

(a) F does not have any explicit dependence on the independent vari-

able t.

(b) F is homogeneous of degree one in the two derivatives ẋ and ẏ in

the sense that

F (x, y, kẋ, kẏ) = f

(
x(t), y(t),

kẏ(t)

kẋ(t)

)
kẋ(t) (8.11)

= k f

(
x(t), y(t),

ẏ(t)

ẋ(t)

)
ẋ(t)

= k F (x, y, ẋ, ẏ)

for all k.

In addition to direct parametric analogs of our simplest nonpara-

metric problem, we will, on occasion, want to consider problems that

are formulated, from the start, as parametric problems. In some of
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these problems, the integrand is not homogeneous of degree one but

is positively homogeneous of degree one in its two derivatives. For

example, in many geometric problems the arc length may be written

tb∫
ta

F (x, y, ẋ, ẏ) dt =

tb∫
ta

√
ẋ2 + ẏ2 dt . (8.12)

In this case, the integrand satisfies

F (x, y, kẋ, kẏ) = |k|
√

ẋ2 + ẏ2 . (8.13)

Thus,

F (x, y, kẋ, kẏ) = k
√

ẋ2 + ẏ2 (8.14)

for k > 0, but

F (x, y, kẋ, kẏ) = −k
√

ẋ2 + ẏ2 (8.15)

for k < 0. Integrands that satisfy equation (8.14) for k > 0 are pos-

itively homogeneous of degree one in their derivatives. Integrands

that are homogeneous of degree one in their derivatives are automat-

ically positively homogeneous of degree one in their derivatives. In

this section, we are only interested in parametric problems that are

(at least) positively homogeneous of degree one in their derivatives.

The above properties are important. Let

tb∫
ta

F (x, y, ẋ, ẏ) dt (8.16)

be a functional (a) whose integrand does depend explicitly on t and

(b) that is positively homogeneous of degree one in its two derivatives.

These problems are called homogeneous problems, for obvious reasons.

Ordinarily, changing independent variables would have a big effect on

the form of an integrand. For our problem, however, let

t = t(τ ) (8.17)

be an (orientation-preserving) change of independent variables that

satisfies
dt

dτ
> 0 (8.18)
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for all ta < t < tb. Clearly,

tb∫
ta

F (x, y, ẋ, ẏ) dt =

τb∫
τa

F (x, y, ẋ, ẏ)
dt

dτ
dτ , (8.19)

where t(τa) = ta and t(τb) = tb, and it now follows, using positive

homogeneity, that

tb∫
ta

F (x, y, ẋ, ẏ) dt =

τb∫
τa

F

(
x, y, ẋ

dt

dτ
, ẏ

dt

dτ

)
dτ (8.20)

=

τb∫
τa

F

(
x, y,

dx

dτ
,
dy

dτ

)
dτ .

Thus, reparameterizing did not change the form of our integrand.

As a result, our functional depends only upon the trace of a curve

and not on its explicit parametrization. This is good. There may be

many equivalent parameterizations for the same simple variational

problem and we do not want a simple reparameterization to change

our answers.

8.2. Euler–Lagrange equations

In one sense, homogeneous problems are easy to solve. Any contin-

uously differentiable solution must satisfy the two Euler–Lagrange

equations

∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0 ,

∂F

∂y
− d

dt

(
∂F

∂ẏ

)
= 0 . (8.21)

These two equations cannot, however, be entirely independent. Af-

ter all, the original nonparametric problem had only a single Euler–

Lagrange equation. We will see that the above two Euler–Lagrange

equations depend on each other quite strongly — because of the spe-

cial properties on F (x, y, ẋ, ẏ).

Now, we have seen that F does not have any explicit dependence

on t. Why then have we not used the traditional first integral

ẋ
∂F

∂ẋ
+ ẏ

∂F

∂ẏ
− F = c ? (8.22)
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To answer this question, let us begin with a minor detour.

Euler’s identity:

If F (x, y, ẋ, ẏ) is positively homogeneous of degree one in its

derivatives, then F satisfies

ẋ Fẋ(x, y, ẋ, ẏ) + ẏ Fẏ(x, y, ẋ, ẏ) = F (x, y, ẋ, ẏ) . (8.23)

Proof. If we start with our homogeneity condition,

F (x, y, kẋ, kẏ) = k F (x, y, ẋ, ẏ) , (8.24)

and differentiate with respect to k, we obtain

ẋ Fẋ(x, y, kẋ, kẏ) + ẏ Fẏ(x, y, kẋ, kẏ) = F (x, y, ẋ, ẏ) . (8.25)

This equation is true for all k > 0, and so it is true for any k > 0. If

we now set k = 1, we have our identity. ♣

If the independent variable t does not appear explicitly in our

integrand, the expression

ẋ Fẋ + ẏ Fẏ − F (8.26)

is a constant of motion. For a homogeneous problem, however, this

expression is, by Euler’s identity, identically zero. The statement that

zero is a constant is true, but not particularly informative.

Although expression (8.26) did not buy us a meaningful first in-

tegral, it is still helpful. Using straightforward differentiation (see

Exercise 8.6.1), one can easily show that

d

dt
(ẋ Fẋ + ẏ Fẏ − F ) = ẋ

(
d

dt
Fẋ − Fx

)
+ ẏ

(
d

dt
Fẏ − Fy

)
. (8.27)

For the homogeneous problem, the left-hand side is identically zero

so that

ẋ

(
d

dt
Fẋ − Fx

)
+ ẏ

(
d

dt
Fẏ − Fy

)
= 0 . (8.28)

This equation is always true, not just along extremals. So, if a

pair of functions x(t) and y(t) satisfies the first Euler–Lagrange equa-

tion, it will automatically satisfy the second Euler–Lagrange equation,

unless ẏ = 0. Likewise, if this pair satisfies the second Euler–Lagrange
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equation, it will automatically satisfy the first Euler–Lagrange equa-

tion, unless ẋ = 0. The two Euler–Lagrange equations do define a

curve, but they do not, because of their lack of independence, pick

out a particular parametric representation for that curve. (In addi-

tion, you should hesitate to accept any horizontal or vertical line as a

solution until you have verified that it satisfies both Euler–Lagrange

equations.)

Although the two Euler–Lagrange equations are dependent, one

Euler–Lagrange equation may still be much easier to work with than

the other. Later, we will see an example where it is convenient to

work with both Euler–Lagrange equations simultaneously. For the

moment, however, let us see if we can replace our two dependent

Euler–Lagrange equations with a single symmetric equation.

8.3. The Weierstrass equation

Weierstrass reasoned that since the two Euler–Lagrange equations are

not independent, he could replace them with a single equation that is

symmetric in x and y. There is nothing pretty about the derivation of

this symmetric equation, but it does provide an interesting alternative

to the two Euler–Lagrange equations.

Let us start then with Euler’s identity,

ẋ Fẋ + ẏ Fẏ = F . (8.29)

If we take the partial derivative of this equation with respect to ẋ, it

quickly follows that

ẋ
∂2F

∂ẋ2
+ ẏ

∂2F

∂ẋ ∂ẏ
= 0 . (8.30)

If we instead take the partial derivative with respect to ẏ, we get

ẋ
∂2F

∂ẋ ∂ẏ
+ ẏ

∂2F

∂ẏ2
= 0 . (8.31)

From the first of these two equations, we have that

∂2F

∂ẋ2
:
∂2F

∂ẋ ∂ẏ
=

ẏ

−ẋ
=

ẏ2

−ẋẏ
(8.32)
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while, from the second,

∂2F

∂ẋ ∂ẏ
:
∂2F

∂ẏ2
=

−ẏ

ẋ
=

−ẋẏ

ẋ2
. (8.33)

Thus
∂2F

∂ẋ2
:
∂2F

∂ẋ ∂ẏ
:
∂2F

∂ẏ2
= ẏ2 : −ẋẏ : ẋ2 . (8.34)

It now follows that there is a function F1 such that

∂2F

∂ẋ2
= F1ẏ

2 ,
∂2F

∂ẋ ∂ẏ
= −F1ẋẏ ,

∂2F

∂ẏ2
= F1ẋ

2 (8.35)

and that

F1(x, y, ẋ, ẏ) =
Fẋẋ + Fẏẏ

ẋ2 + ẏ2
= −Fẋẏ

ẋẏ
(8.36)

(with ẋ2 + ẏ2 > 0). The function F1 will play an important role in

our final equation.

Let us now take one of our Euler–Lagrange equations, say

∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0 . (8.37)

Since F has both x and y as dependent variables, the ultradifferenti-

ated form of this equation is

Fx − Fẋx ẋ− Fẋy ẏ − Fẋẋ ẍ− Fẋẏ ÿ = 0. (8.38)

Since the partial derivative, with respect to x, of Euler’s identity is

Fx = Fxẋ ẋ+ Fxẏ ẏ , (8.39)

we substitute this into our ultradifferentiated equation to obtain

(Fxẏ − Fẋy) ẏ − Fẋẋ ẍ− Fẋẏ ÿ = 0 . (8.40)

Finally if we substitute for Fẋẋ and Fẋẏ in terms of F1, we obtain

ẏ [Fxẏ − Fẋy + F1(ẋÿ − ẏẍ)] = 0 . (8.41)

If we had started with the other Euler–Lagrange equation, we

would have concluded that

−ẋ [Fxẏ − Fẋy + F1(ẋÿ − ẏẍ)] = 0 (8.42)

and since

ẋ2 + ẏ2 > 0 , (8.43)
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by assumption, we conclude that

Fxẏ − Fẋy + F1(ẋÿ − ẏẍ) = 0 . (8.44)

This is Weierstrass’s symmetric form of the Euler–Lagrange equation

for the parametric problem.

To use the Weierstrass equation, we can, for example, express x

as any convenient function of t, substitute x(t) into equation (8.44),

and then solve for y in terms of t. The geometrical meaning of the

equation is that it determines the curvature

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
(8.45)

when the position, (x, y), and the slope, ẏ/ẋ, are known. Indeed, for

an extremal,

κ = − Fxẏ − Fyẋ

F1(ẋ2 + ẏ2)3/2
. (8.46)

We have only talked about the first variation for homogeneous

problems. We can also attack the second variation for a paramet-

ric formulation. For example, we can show that the usual Legendre

condition, that
∂2f

∂y′2
≥ 0 (8.47)

for a minimum, is now replaced by the condition that

F1(x, y, ẋ, ẏ) ≡ Fẋẋ + Fẏẏ

ẋ2 + ẏ2
≥ 0 (8.48)

for a minimum. See Bolza (1973) or Hancock (1904) for more about

the second variation for the homogeneous problem.

Example 8.1 (Geodesics in the plane).

Consider the integral

J [γ] =

tb∫
ta

√
ẋ2 + ẏ2 dt (8.49)

subject to the boundary conditions

x(ta) = a , y(ta) = ya , x(tb) = b , y(tb) = yb . (8.50)
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The integrand F is clearly positively homogeneous of the first degree

in the derivatives.

Let us quickly verify an important claim made earlier. Since

ẋ Fẋ + ẏ Fẏ − F =
ẋ2√

ẋ2 + ẏ2
+

ẏ2√
ẋ2 + ẏ2

−
√
ẋ2 + ẏ2 , (8.51)

it is, in fact, the case that

ẋ Fẋ + ẏ Fẏ − F = 0 . (8.52)

Since x and y do not appear explicitly in our integrand, the two

Euler–Lagrange equations reduce to

∂F

∂ẋ
=

ẋ√
ẋ2 + ẏ2

= α ,
∂F

∂ẏ
=

ẏ√
ẋ2 + ẏ2

= β , (8.53)

where α and β are constants. A trivial solution of the first Euler–

Lagrange equation is ẏ = 0. This also satisfies the second Euler–

Lagrange equation (although it did not have to). Another trivial

solution of the first Euler–Lagrange equation is ẋ = 0. This triv-

ial solution did have to satisfy the second Euler–Lagrange equation.

These trivial solutions give us horizontal and vertical lines.

More generally,(
ẏ√

ẋ2+ẏ2

)
(

ẋ√
ẋ2+ẏ2

) =
dy

dx
=

β

α
= m, (8.54)

which gives us the lines

y = mx+ c (8.55)

as possible extremals. For a real problem, we would now use our

boundary conditions to determine m and c.

The Weierstrass equation for this problem is

ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
= 0 ; (8.56)

our extremals must have zero curvature, κ = 0, everywhere. We

conclude, once again, that our extremals are lines. If we arbitrarily

set

x(t) = t , (8.57)
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then the Weierstrass equation reduces to

ÿ = 0 . (8.58)

Two integrations give us

y = mt+ c (8.59)

or

y = mx+ c . (8.60)

8.4. Case study: The parametric Queen Dido
problem

Consider the problem of maximizing the circumscribed area of a

closed curve,

J [x, y] =

t1∫
t0

1

2
(x ẏ − y ẋ) dt , (8.61)

subject to the boundary conditions

x(t0) = +a, y(t0) = 0, x(t1) = −a, y(t1) = 0 (8.62)

and the integral constraint

K[x, y] =

t1∫
t0

√
ẋ2 + ẏ2 dt = l . (8.63)

There is only one constraint in this problem and so we expect one

Lagrange multiplier. Let us therefore introduce

J − λK =

t1∫
t0

[
1

2
(x ẏ − y ẋ)− λ

√
ẋ2 + ẏ2

]
dt . (8.64)

Since this integrand is positively homogeneous of degree one in its

derivatives, we are dealing with a homogeneous problem.

The Weierstrass equation, you will remember, takes the form

Fxẏ − Fyẋ + F1(ẋÿ − ẏẍ) = 0 , (8.65)

where

F1 =
Fẋẋ + Fẏẏ

ẋ2 + ẏ2
= −Fẋẏ

ẋẏ
. (8.66)
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For our integrand,

Fxẏ =
1

2
, Fyẋ = −1

2
, (8.67)

and

F1 = − λ

(ẋ2 + ẏ2)3/2
, (8.68)

so that

1− λ
(ẋÿ − ẏẍ)

(ẋ2 + ẏ2)3/2
= 0 (8.69)

or

κ =
1

λ
. (8.70)

Since the extremals have a constant curvature of one over λ, they also

have a constant radius of curvature of λ and are circles of radius λ.

We can draw the same conclusions from the two Euler–Lagrange

equations

1

2
ẏ +

1

2

d

dt
(y)− λ

[
− d

dt

(
ẋ√

ẋ2 + ẏ2

)]
= 0 , (8.71)

−1

2
ẋ− 1

2

d

dt
(x)− λ

[
− d

dt

(
ẏ√

ẋ2 + ẏ2

)]
= 0 . (8.72)

If we multiply through by dt/ds, where s is arc length, the two

Euler–Lagrange equations quickly simplify to

dy

ds
+ λ

d2x

ds2
= 0 , −dx

ds
+ λ

d2y

ds2
= 0 . (8.73)

These equations have the solution

x = α+ γ sin
( s
λ
+ δ
)
, y = β − γ cos

( s
λ
+ δ
)
, (8.74)

where α, β, γ, and δ are four constants of integration. This solution

corresponds to a circle of radius γ centered at (α, β). For fixed a,

different perimeters l determine different circular arcs.

From the symmetry of the problem, it is clear that α = 0. Ap-

plying the constraint to the solution makes it clear that λ = γ, as

expected. The solutions now take the simpler form

x = γ sin

(
s

γ
+ δ

)
, y = β − γ cos

(
s

γ
+ δ

)
. (8.75)
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−a +a

Figure 8.1. Different circular arcs

The boundary conditions, in turn, imply that

a = γ sin δ , −a = γ sin

(
l

γ
+ δ

)
(8.76)

and

β = γ cos δ , β = γ cos

(
l

γ
+ δ

)
. (8.77)

It now follows that
l

γ
+ δ = 2π − δ (8.78)

so that

δ = π − l

2γ
. (8.79)

Our solution may now be written as

x = γ sin

(
l

2γ
− s

γ

)
, y = β + γ cos

(
l

2γ
− s

γ

)
(8.80)

(see Figure 8.1) and our boundary conditions are now just

a = γ sin

(
l

2γ

)
, −β = γ cos

(
l

2γ

)
. (8.81)
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0 π /2 u π

0

0.5

1.0

1.5

Figure 8.2. Graphical solution of u

Let

u ≡ l

2γ
(8.82)

so that

γ =
l

2u
. (8.83)

The first boundary condition may now be rewritten as

2a

l
u = sin u . (8.84)

This equation can be solved graphically (see Figure 8.2) for u and for

the radius γ. It is clear that 0 < u ≤ π if l > 2a. With u and the

radius γ in hand, the y coordinate of the center of the circle is simply

β = − l

2

cos u

u
. (8.85)

8.5. Recommended reading

Several books cover the homogeneous or parametric problem of the

calculus of variations. See, for example, the books authored by Bolza

(1973), Brechtken-Manderscheid (1991), Clegg (1968), Hancock (1904),

Pars (1962), and Sagan (1969). The book by Hancock (1904) is based

on the lectures of H. A. Schwarz and Karl Weierstrass and takes a

strongly parametric approach to the calculus of variations.
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Bliss (1916) and Hestenes (1934) analyze the second variation

and Jacobi’s condition for parametric problems.

In classical mechanics, the Hamiltonian is identically zero for ho-

mogeneous problems. As a result, one can no longer derive the canon-

ical equations in the usual way. Forbes (1991) reviews proposed so-

lutions to this problem.

Parametric problems are especially common in optics. See, for

example, Stavroudis (2006).

8.6. Exercises

8.6.1. Some differentiation. Show that

d

dt
(ẋ Fẋ + ẏ Fẏ − F ) = ẋ

(
d

dt
Fẋ − Fx

)
+ ẏ

(
d

dt
Fẏ − Fy

)
. (8.86)

8.6.2. Minimal surface of revolution revisited. Reformulate

the problem of the minimal surface of revolution (the soap-film prob-

lem) as a homogeneous problem. Why might one of the two Euler–

Lagrange equations for this problem be better than the other? Find

the extremal arc for this (homogeneous) problem using your Euler–

Lagrange equations. What is the Weierstrass equation for this prob-

lem?

8.6.3. Weierstrass equation. Determine F1(x, y, ẋ, ẏ) and find the

Weierstrass equation for the following integrands:

(a)

F (x, y, ẋ, ẏ) = n(x, y)
√
ẋ2 + ẏ2 , (8.87)

(b)

F (x, y, ẋ, ẏ) =
ẏ2

ẋ
, (8.88)

(c)

F (x, y, ẋ, ẏ) =
ẋ2 + ẏ2√

2(ẋ2 + ẏ2) + ẋ
. (8.89)

                

                                                                                                               



Chapter 9

Variable-Endpoint
Conditions

9.1. Natural boundary conditions

In most of the problems that we have considered, we have specified

both boundary conditions. Sometimes, you will need to determine one

or more boundary conditions as part of the optimization problem.

Example 9.1 (Zermelo’s navigation problem).

Consider a boat crossing a river (see Figure 9.1). The river has

parallel and straight banks, b units apart. We will take the left bank

to be the y-axis. We will assume that the downstream current has a

speed that depends on the x coordinate,

v = v(x) , (9.1)

and that the boat has a constant speed c (c > v) in still water so

that the rate of change of position of the boat is

dx

dt
= c cos θ , (9.2)

dy

dt
= v(x) + c sin θ , (9.3)

where

θ = θ(x) (9.4)

191
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x

y

0 b

y (x )

Figure 9.1. Crossing a river

is the steering angle of the boat. Let us imagine that the boat starts

at the origin. What curve,

y = y(x) , (9.5)

minimizes the travel time across the river?

The crossing time satisfies

T =

b∫
0

dt

dx
dx =

b∫
0

1

c cos θ
dx . (9.6)

To put this problem into standard form, we must rewrite our inte-

grand as a function of v, c, and, most importantly, y′. Since

y′ =
dy/dt

dx/dt
=

v + c sin θ

c cos θ
, (9.7)

we may write

y′ · c cos θ − v = ± c
√
1− cos2 θ . (9.8)
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After squaring both sides,

c2 cos2 θ y′
2 − 2 v c cos θ y′ + v2 = c2(1− cos2 θ) , (9.9)

and simplifying, we get

(c2 − v2)
1

cos2 θ
+ 2 v y′ c

1

cos θ
− c2 (1 + y′

2
) = 0 . (9.10)

Solving for the reciprocal of cos θ, we find that

T =

b∫
0

√
c2 (1 + y′2)− v2(x)− v(x) y′

c2 − v2(x)
dx , (9.11)

where v(x) is a known function of x.

We have only specified one boundary condition for this problem,

at the beginning point

y(0) = 0 . (9.12)

The endpoint can be anywhere along the opposite bank, x = b. Dif-

ferent terminal points will yield different smallest crossing times. Part

of the problem is to choose the right terminal point. After all, the

problem, as posed, is simply to cross the river as quickly as possible.

We’re willing to land anywhere to achieve this goal.

With this example in mind, let us minimize

J [y] =

b∫
a

f(x, y, y′) dx (9.13)

with the x coordinates of the endpoints given, but the y coordinates

unspecified.

We have seen that the first variation is just

δJ = ε

b∫
a

[fy(x, ŷ, ŷ
′) η + fy′ (x, ŷ, ŷ′) η′] dx . (9.14)

We will, as usual, integrate by parts. For convenience, let us follow

Lagrange’s approach. It now follows that

b∫
a

fy′(x, ŷ, ŷ′) η′ dx = η(x)
∂f

∂y′

∣∣∣∣
x= b

x= a

−
b∫

a

η
d

dx

(
∂f

∂y′

)
dx (9.15)
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so that the first variation takes the form

δJ = ε η(x)
∂f

∂y′

∣∣∣∣
x= b

x= a

+ ε

b∫
a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η(x) dx . (9.16)

The first variation must vanish for all η(x). Since this includes

all η(x) that vanish at the endpoints, the Euler–Lagrange equation

must still be satisfied. If the left boundary condition is unspecified,

η(x) need not vanish at x = a and we instead require that

∂f

∂y′
(a, ŷ(a), ŷ′(a)) = 0 . (9.17)

Similarly, if the right boundary condition is unspecified, η(x) need

not vanish at x = b and we demand that

∂f

∂y′
(b, ŷ(b), ŷ′(b)) = 0 . (9.18)

These two equations are often referred to as natural boundary con-

ditions. This is because these two conditions arise “naturally” in a

problem that, at the outset, is not equipped with boundary condi-

tions.

Example 9.2 (Zermelo’s problem (continued)).

Let us now find the trajectory y = y(x) that minimizes the travel

time,

T =

1∫
0

f(x, y, y′) dx (9.19)

=

1∫
0

√
c2 (1 + y′2)− v2(x)− v(x) y′

c2 − v2(x)
dx ,

across a river of width b = 1.

Since the integrand is independent of y, the Euler–Lagrange equa-

tion reduces to
∂f

∂y′
= α (9.20)
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with α a constant. Thus

1

c2 − v2

⎡
⎣ c2 y′√

c2 (1 + y′2)− v2(x)
− v

⎤
⎦ = α . (9.21)

However, since the right boundary condition is unspecified, the nat-

ural boundary condition implies that

∂f

∂y′

∣∣∣∣
x=1

= 0 (9.22)

so that α = 0 and

1

c2 − v2

⎡
⎣ c2 y′√

c2 (1 + y′2)− v2(x)
− v

⎤
⎦ = 0 . (9.23)

This simplifies to

c y′ = ±v(x) . (9.24)

For the positive root, the crossing time,

T =
1

c
, (9.25)

is inversely proportional to the speed of the vessel. For the negative

root,

T =
1

c

1∫
0

c2 + v2(x)

c2 − v2(x)
dx , (9.26)

with an integral that is greater than one. Since we would like to

minimize the crossing time, we will take the positive root.

For a parabolic velocity profile,

v(x) = x (1− x) , (9.27)

integrating the positive y′ root produces

y =
1

c

∫
v(x) dx =

1

c

∫
(x− x2) dx (9.28)

=
1

c

(
x2

2
− x3

3

)
+ β ,

but, from the boundary condition at (0, 0), β = 0 and

y =
1

c

(
x2

2
− x3

3

)
. (9.29)
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The ideal landing spot is clearly(
1 ,

1

6c

)
. (9.30)

Example 9.3.

Consider a functional of the form

J [y] =

b∫
a

k(x, y)

√
1 + y′2 dx (9.31)

with the left boundary condition specified,

y(a) = ya , (9.32)

but with the right boundary condition, at x = b, unspecified. Note

that setting

k(x, y) =
1
√
y

(9.33)

leads to the brachistochrone problem while setting

k(x, y) = y (9.34)

produces the minimal surface of revolution problem.

For general k(x, y),

∂f

∂y′

∣∣∣∣
x= b

=
k(x, y)y′√
1 + y′2

∣∣∣∣∣
x= b

= 0 (9.35)

implies that

y′(b) = 0 . (9.36)

This means that the extremal must hit the boundary x = b at a right

angle. This is enough information to determine yb.

We can easily extend our discussion of natural boundary condi-

tions to homogeneous problems in parametric form. For an integrand

of the form

F (x, y, ẋ, ẏ) , (9.37)

we require
∂F

∂ẏ

∣∣∣∣
x= b

= 0 (9.38)
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if the solution has to end on the vertical line

x = b . (9.39)

If the solution has to end on the horizontal line

y = c , (9.40)

we instead require that

∂F

∂ẋ

∣∣∣∣
y= c

= 0 . (9.41)

We will see how these results arise in the next section.

9.2. Transversality conditions

Natural boundary conditions allow us to determine the correct bound-

ary condition for an endpoint constrained to lie on the vertical line

x = b . (9.42)

We would like to do better. Ideally, we want to determine the correct

boundary condition for an endpoint constrained to lie along some

general curve. To put this in the context of Zermelo’s navigation

problem, few rivers have straight banks. How do we handle rivers

with curved banks?

In determining natural boundary conditions, we allowed the or-

dinate of the endpoint to vary. We now want both the abscissa and

the ordinate to vary. It will be easiest if we can do this in a way

that treats x and y as equals. So, rather than writing the functional

in the ordinary way, we will revert to writing our functional in the

parametric form

J [γ] =

tb∫
ta

F (x, y, ẋ, ẏ) dt . (9.43)

F (x, y, ẋ, ẏ) here is, as usual, positively homogeneous of degree one

in the two derivatives ẋ and ẏ.

Suppose that our endpoints are constrained to lie on two curves,

Ca and Cb (see Figure 9.2). We assume that there is a curve

x(t) = x̂(t) , y(t) = ŷ(t) , ta ≤ t ≤ tb, (9.44)
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t = ta t = tb

[x̂ (t ), ŷ (t )]

[x̂ (t ) + εξ (t ), ŷ (t ) + εη(t )]

Ca

Cb

Figure 9.2. Variable endpoints

that minimizes our functional and we will now consider small devia-

tions or variations that result in curves,

x(t) = x̂(t) + ε ξ(t) , (9.45)

y(t) = ŷ(t) + ε η(t) , (9.46)

that also have their endpoints on Ca and Cb.

We will assume that the parametric representation of each varied

curve is such that parameter values at the endpoints are always t = ta
and t = tb. This need not be so. A neighboring curve could be defined

in terms of the parameter τ on the interval

τa ≤ τ ≤ τb . (9.47)

Nevertheless, we saw, early in our discussion of the homogeneous

problem, that the value of the functional depends only upon the trace

of the curve and not on the explicit parameterization. Hence, we can

always impose the parameter transformation

t = ta +
(tb − ta) (τ − τa)

τb − τa
(9.48)

and force our assumption to be true. The point of this assumption

is that we want to consider variations in x and y, but not in the

independent variable t.
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Proceeding in the usual manner, we now consider the total vari-

ation

ΔJ =

tb∫
ta

F (x̂+ εξ, ŷ + εη, ˙̂x+ εξ̇, ˙̂y + εη̇) dt (9.49)

−
tb∫

ta

F (x̂, ŷ, ˙̂x, ˙̂y) dt .

If we expand the total variation in a Taylor series in ε and keep the

terms that are first order in ε, we obtain the first variation

δJ = ε

tb∫
ta

(
∂F

∂x
ξ +

∂F

∂ẋ
ξ̇ +

∂F

∂y
η +

∂F

∂ẏ
η̇

)
dt . (9.50)

We may integrate two of the terms in this integral by parts following

Lagrange’s approach,

tb∫
ta

∂F

∂ẋ
ξ̇ dt =

∂F

∂ẋ
ξ

∣∣∣∣
t= tb

t= ta

−
tb∫

ta

ξ
d

dt

(
∂F

∂ẋ

)
dt , (9.51)

tb∫
ta

∂F

∂ẏ
η̇ dt =

∂F

∂ẏ
η

∣∣∣∣
t= tb

t= ta

−
tb∫

ta

η
d

dt

(
∂F

∂ẏ

)
dt , (9.52)

to obtain

δJ = ε

tb∫
ta

{
ξ

[
∂F

∂x
− d

dt

(
∂F

∂ẋ

)]
+ η

[
∂F

∂y
− d

dt

(
∂F

∂ẏ

)]}
dt (9.53)

+ ε

(
∂F

∂ẋ
ξ +

∂F

∂ẏ
η

)t= tb

t= ta

.

The first variation must vanish for all weak variations, ξ(t) and

η(t), that lie on the curves Ca and Cb. This includes variations that

vanish at the endpoints,

ξ(ta) = ξ(tb) = 0 , η(ta) = η(tb) = 0 , (9.54)
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and so we quickly recover the two Euler–Lagrange equations

∂F

∂x
− d

dt

(
∂F

∂ẋ

)
= 0 ,

∂F

∂y
− d

dt

(
∂F

∂ẏ

)
= 0 . (9.55)

Thus, for extremals,

δJ = ε

(
∂F

∂ẋ
ξ +

∂F

∂ẏ
η

)t= tb

t= ta

. (9.56)

Now, if the right endpoint is, for example, constrained to lie on

a vertical line, then ξ(tb) = 0, η(tb) is free, and we must impose the

condition
∂F

∂ẏ

∣∣∣∣
t= tb

= 0 . (9.57)

If, however, the right endpoint is constrained to lie on a horizontal

line, then η(tb) = 0, ξ(tb) is free, and we must instead impose the

condition
∂F

∂ẋ

∣∣∣∣
t= tb

= 0 . (9.58)

In these cases, we obtain the natural boundary conditions.

More generally, the right endpoint may be constrained to lie along

the simple curve Cb. The quantities ξ(tb) and η(tb) may both be

nonzero, but they are not independent since they correspond to si-

multaneous changes in x and y along the curve Cb. Indeed, if the

curve Cb has the parametric representation

x = φ(u) , y = ψ(u) (9.59)

and if u0 is the value of u such that

φ(u0) = x̂(tb) , ψ(u0) = ŷ(tb) , (9.60)

then

ε ξ(tb) ≈ φ′(u0) du , ε η(tb) ≈ ψ′(u0) du (9.61)

and [
∂F

∂ẋ
φ′(u0) +

∂F

∂ẏ
ψ′(u0)

]
t= tb

= 0 . (9.62)

This is a transversality condition that may be used to determine the

terminal endpoint. An analogous condition may be obtained for a

variable beginning point.
                

                                                                                                               



9.2. Transversality conditions 201

A transversality condition for a homogeneous problem can easily

be used to derive a transversality condition for a problem in ordinary

form. (This is arguably the simplest way of doing so.) Indeed, for

ẋ > 0,

F (x, y, ẋ, ẏ) = ẋ F

(
x, y, 1,

ẏ

ẋ

)
= f(x, y, y′) ẋ (9.63)

with the first equality following from the positive homogeneity of F for

ẋ and ẏ. (This equality is more generally true for ẋ 
= 0 for functions

F that are homogeneous in ẋ and ẏ.) In the second equality, the third

argument of F is, in effect, dropped; the partial of F with respect to

its fourth argument is equivalent to the partial of f with respect to

its third argument. Thus

∂F

∂ẋ
= F

(
x, y, 1,

ẏ

ẋ

)
− ẋẏ

ẋ2
Fẏ

(
x, y, 1,

ẏ

ẋ

)
(9.64)

= f(x, y, y′)− y′
∂f

∂y′
(x, y, y′)

and
∂F

∂ẏ
=

ẋ

ẋ
Fẏ

(
x, y, 1,

ẏ

ẋ

)
(9.65)

=
∂f

∂y′
(x, y, y′) .

The transversality condition[
∂F

∂ẋ
φ′(u0) +

∂F

∂ẏ
ψ′(u0)

]
t= tb

= 0 (9.66)

now takes the form[(
f − y′

∂f

∂y′

)
φ′(u0) +

∂f

∂y′
ψ′(u0)

]
t= tb

= 0. (9.67)

If the terminal curve is specified as a function,

y = g(x) , (9.68)

rather than parametrically, then

ψ′(u0)

φ′(u0)
= g′(b) ≈ δy

δx

∣∣∣∣
x= b

(9.69)
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for x̂(tb) = b. (We are using δx and δy to represent the variation in

x and y along the boundary curve.) As a result, the transversality

condition simplifies to

φ′(u0)

[(
f − y′

∂f

∂y′

)
+ g′

∂f

∂y′

]
x= b

= 0 (9.70)

or [(
f − y′

∂f

∂y′

)
δx+

∂f

∂y′
δy

]
x= b

= 0 . (9.71)

This transversality condition may be used to determine the ter-

minal endpoint. A similar condition holds for the initial endpoint and

the most general version of the transversality condition that we can

write down for the standard or ordinary problem is[(
f − y′

∂f

∂y′

)
δx+

∂f

∂y′
δy

]x= b

x= a

= 0 . (9.72)

We can make one final simplification, for problems in classical

mechanics. Remember that in a one degree of freedom problem in

Lagrangian mechanics, time t is the independent variable, the gen-

eralized coordinate q(t) might be our dependent variable, and the

Lagrangian L(t, q, q̇) is our integrand,

x → t , y(x) → q(t) , f(x, y, y′) → L(t, q, q̇) . (9.73)

Let us now shift to a Hamiltonian formulation, with

p =
∂

∂q̇
L(t, q, q̇) , (9.74)

as the momentum and

H(t, q, p) = p q̇(t, q, p)− L(t, q, q̇(t, q, p)) (9.75)

as the Hamiltonian. The transversality condition now takes the form

(p δq −H δt)t= tb
t= ta

= 0 . (9.76)

This readily generalizes to the case of n dependent variables, qi(t),

with t as the independent variable:[(
n∑

i=1

pi δqi

)
−H δt

]t= tb

t= ta

= 0 . (9.77)
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The homogeneous problem can be thought of as a special case of

this problem where the Hamiltonian is identically equal to zero. For

this special case, we come back, full circle, to a transversality condi-

tion that looks like the sum of a set of natural boundary conditions.

We’ve been looking at quite a bit of theory. So, let us consider

a pair of examples. The first example is fairly concrete. The second

example is extremely concrete.

Example 9.4 (Fermat-type integrals).

Consider

J [y] =

b∫
a

k(x, y)

√
1 + y′2 dx . (9.78)

You will remember that setting

k(x, y) =
1
√
y

(9.79)

leads to the brachistochrone problem, while setting

k(x, y) = y (9.80)

produces the minimal surface of revolution problem.

For this problem,

∂f

∂y′
= k(x, y)

y′√
1 + y′2

=
y′f

1 + y′2
. (9.81)

Thus, the transversality condition at b, for a terminal curve y = g(x),[(
f − y′

∂f

∂y′

)
+ g′

∂f

∂y′

]
x= b

= 0 , (9.82)

gives [(
f − y′

y′ f

1 + y′2

)
+ g′

y′f

1 + y′2

]
x= b

= 0 . (9.83)

Upon simplifying this transversality condition, we find that[
f(1 + y′g′)

1 + y′2

]
x= b

= 0 (9.84)

and that

y′(b) = − 1

g′(b)
, (9.85)
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where y′(b) is the slope of the extremal at the terminal endpoint

and g′(b) is the slope of the boundary curve at its intersection with

the extremal. Our last equation implies that these two curves must

be perpendicular or orthogonal at this intersection. This geometric

condition is enough to determine the terminal condition.

Example 9.5.

Let us find the extremum for the functional

J [y] =

b∫
a

(1 + y′
2
) dx (9.86)

subject to the initial condition

y(0) = 0 (9.87)

and the terminal condition that the extremal must intersect

y =
1

x
(9.88)

for some, as yet, undetermined x = b.

The extrema satisfy

y = mx+ c (9.89)

and the first boundary condition implies that this equation simplifies

to

y = mx . (9.90)

The transversality condition is now[(
f − y′

∂f

∂y′

)
δx+

∂f

∂y′
δy

]
x= b

= 0 (9.91)

or [
(1− y′

2
)δx+ 2 y′ δy

]
x= b

= 0 . (9.92)

Along the right boundary curve,

δy ≈ − 1

x2
δx (9.93)

so that [
(1− y′

2
) δx− 2 y′

x2
δx

]
x= b

= 0 . (9.94)
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0 1 2

0

1

2

x

y

Figure 9.3. Transversal intersection

This reduces to the transversality condition

2
m

b2
+m2 − 1 = 0 (9.95)

for our extremals.

Since the extremal and the boundary curve must intersect at

x = b, it follows that

mb =
1

b
(9.96)

or

m =
1

b2
. (9.97)

This last equation and the transversality condition, together, imply

that

3m2 − 1 = 0 (9.98)
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or

m =
1√
3
. (9.99)

It also follows that

b = (3)1/4 . (9.100)

In this case, the extremal and right boundary curve are not or-

thogonal at their intersection (see Figure 9.3). If they were, the in-

tersection would be at (1, 1). However, they are still transversal.

9.3. Focal points

Conjugate points for fixed-endpoint problems give way to focal points

for variable-endpoint problems.

The general solution,

y = ŷ(x, α, β) , (9.101)

to the Euler–Lagrange equation has two constants of integration. For

a fixed-endpoint problem, this two-parameter family of extremals sim-

plifies to a one-parameter family of extremals that satisfy the left

boundary condition. This one-parameter family may have an enve-

lope. The conjugate point for an extremal is the point of contact

between the extremal and its envelope.

For a variable-endpoint problem, the extremals that satisfy a

transversality condition and that emanate out of a boundary curve

(see Figure 9.4) may also possess an envelope. The focal point for

an extremal is the point of contact between the extremal and this

envelope. An extremal will not minimize or maximize a functional if

the abscissa of the focal point lies within the interval of integration.

9.4. Case study: Neile’s parabola

To find the shortest distance from a point, (b, yb), lying above the

parabola y = x2 to that parabola, we need to consider the functional

J [y] =

b∫
a

√
1 + y′2 dx (9.102)
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Boundar y Cur ve

Past focal point

Envelope

Figure 9.4. Envelope of focal points

along with the boundary conditions

y(a) = a2 , y(b) = yb . (9.103)

The extremals for this problem are straight lines. Since this is a

Fermat-type integral, transversality reduces to orthogonality. Here is

a one-parameter family of lines that are orthogonal to the parabola:

y = − x

2c
+

(
1

2
+ c2

)
. (9.104)

This line intersects the parabola at a point,

x = c , y = c2 , (9.105)

where the slope of the parabola is 2c.

Does this family of extremals have an envelope? Yes. Let’s com-

pute it. The c-discriminant is determined by the two equations

y = − x

2c
+

(
1

2
+ c2

)
(9.106)

and
∂y

∂c
=

x

2c2
+ 2 c = 0 . (9.107)
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It now follows that our envelope is given, parametrically, as

x = −4 c3 , y = 3 c2 +
1

2
(9.108)

or, in explicit form, as

y =
3

4
(2x)2/3 +

1

2
. (9.109)

This envelope is known as Neile’s semicubical parabola (see Fig-

ure 9.5). This evolute of a parabola was discovered by William Neile

in 1659. It was the first nontrivial algebraic curve to be rectified (to

have its arc length calculated).

-2 -1 0 1 2

0

1

2

3

4

Figure 9.5. Neile’s semicubical parabola
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-2 -1 0 1 2

0

1

2

3

(b, yb )

global minimumlocal minimum

Figure 9.6. Local and global minima

Looking at Figure 9.5, we see that there are three extremals pass-

ing through each point above the evolute and only one extremal pass-

ing through each point below the evolute. We expect that a straight-

line extremal will be a weak relative minimum if it does not pass

through a focal point on its way to the point (b, yb), but that it will

fail to be a minimum if it does pass through its focal point. Above the

evolute, two extremals are relative minima while one is not. Figure

9.6 illustrates the situation.

We can think of this picture as describing the strategies that a

sailor on Lake Michigan might consider. There is a closest point on

the near shore (a global minimum), a closest point on the far shore (a

local minimum), and a spurious extremal that leads to Gary, Indiana.
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x

-2 -1 0 1 2

d

0

1
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3

4

(b, yb ) = (0. 8, 2. 0)

Figure 9.7. Distances from shore to (0.8, 2.0)

It is easy to verify these conclusions by evaluating the function

d(x) =
√
(x− b)2 + (x2 − yb)2 (9.110)

for the distance from the point (b, yb) to a point on the parabola,

(x, x2), for various values of x.

For (b, yb) = (0.8, 2.0) (see Figure 9.7), c = 1.341 is the abscissa of

the global minimum on the near shore and c = −1.0595 is the abscissa

of the local minimum on the far shore. The extremal corresponding

to c = −0.2815 clearly fails to produce a minimum. Indeed it seems

to produce a local maximum, but don’t take this too seriously; there

are many curves other than straight lines that give longer distances.
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x

-2 -1 0 1 2

d

0

1

2

3

4

(b, yb ) = (1 / 2, 5/4)

Figure 9.8. Distances from shore to (1/2, 5/4)

For a point right on the envelope, say for at (0.5, 1.25) (see Figure

9.8), there is global minimum for c = 1 but no other relative minimum.

The plot of distance does, however, have an inflection point.

9.5. Recommended reading

We borrow heavily in this chapter from the examples and the dis-

cussion in Sagan (1969). See Ebbinghaus (2007) and Carathéodory

(2002) for more on Zermelo’s navigation problem.

Mertens and Mingramm (2008) examine the brachistochrone

problem with variable endpoints. They look for the fastest curve

of descent between a point and a given curve or between two given

curves. Smith (1974) uses a natural boundary condition to help design
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a thrilling amusement park chute-the-chute. Edelen (1981) reviews

the proper use of transversality conditions in elastostatics.

Merrill (1919) considers necessary and sufficient conditions for an

extremum for an isoperimetric problem with variable endpoints.

9.6. Exercises

9.6.1. Steering angle. Determine the steering strategy

θ = θ(x) (9.111)

for Zermelo’s problem with the parabolic velocity profile v = x(1−x).

Is your answer surprising? Why or why not?

9.6.2. The brachistochrone to a vertical line. Find the curve

that minimizes the travel time of a heavy particle that starts at rest

at the origin and that moves, under the force of gravity, to a given

vertical line x = b. Assume that all points are in the same plane.

9.6.3. Shortest distance. Use the calculus of variations to find the

shortest distance from the origin, (x, y) = (0, 0), to the circle

(x− 1)2 + (y − 2)2 = 1 . (9.112)

9.6.4. From a line to a circle. Use transversality conditions at

both ends to find the shortest distance between the line

y = x (9.113)

and the circle

x2 + (y − 3)2 = 1 . (9.114)

9.6.5. From a parabola to a line. Find the shortest distance be-

tween the parabola

y = x2 (9.115)

and the straight line

x− y = 5 . (9.116)
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9.6.6. A transversality condition. Find the extremals for the

functional

J [y] =

b∫
0

√
1 + y′2

y
dx (9.117)

subject to the boundary condition

y(0) = 0 (9.118)

and to the condition that the right endpoint, (b, yb), can move along

the circumference of the circle

(x− 9)2 + y2 = 9 . (9.119)

                

                                                                                                               



                

                                                                                                               



Chapter 10

Broken Extremals

10.1. The Weierstrass–Erdmann corner
conditions

So far, we have only dealt with continuously differentiable extremals.

Our transversality conditions allow us to do better.

Example 10.1.

Consider the functional

J [y] =

+1∫
−1

y2 (1− y′)2 dx (10.1)

subject to the boundary conditions

y(− 1) = 0 , y(+1) = 1 . (10.2)

The independent variable x does not appear in the integrand. The

corresponding first integral quickly reduces to

y2 (1− y′
2
) = α . (10.3)

It looks like

y′ = 0 , y =
√
α (10.4)

215
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is a solution, but this is a spurious solution of the first integral unless

y = 0. More generally, the solutions are hyperbolas. These hyperbo-

las include the degenerate hyperbola y = x. Let us key in on the two

solutions

y = 0 , y = x . (10.5)

Both of these two solutions make the functional zero. You cannot

do better, since the integral is clearly nonnegative. Unfortunately,

neither of these two solutions satisfies the boundary conditions.

Let us instead consider the function

y =

{
0 , −1 ≤ x ≤ 0 ,

x , 0 ≤ x ≤ 1 .
(10.6)

This function satisfies the boundary conditions. It also causes the

integral to vanish. This function is not, however, a continuously dif-

ferentiable solution of the Euler–Lagrange equation. Each section of

this function is, however, a continuously differentiable solution of the

Euler–Lagrange equation.

The optimal solution in the above example was piecewise contin-

uously differentiable rather than continuously differentiable. In other

words, it had a corner. In the above example, the corner was at the

origin. In general, we need to locate a corner (c, yc) for the functional

J [y] =

b∫
a

f(x, y, y′) dx (10.7)

from first principles. To do this, we will rewrite J [y] as the sum of

two functionals,

J [y] = J1[y] + J2[y] (10.8)

=

c∫
a

f(x, y, y′) dx+

b∫
c

f(x, y, y′) dx ,

so that we can break the first variation, δJ , into two components,

δJ = δJ1 + δJ2 . (10.9)

The endpoints at a and b are fixed. We require that y(x) be

continuous (but not continuously differentiable) at c. The curves
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y(x) must be extremals on the segments [a, c] and [c, b], and so the

contribution to the first variation from the interior of each interval

vanishes. That leaves the two contributions that arise at x = c from

varying the right endpoint of J1[y] and the left endpoint of J2[y].

Using transversality conditions, we can write these contributions

as

δJ1 =

[(
f − y′

∂f

∂y′

)
δx+

∂f

∂y′
δy

]
x= c− 0

(10.10)

and

δJ2 = −
[(

f − y′
∂f

∂y′

)
δx+

∂f

∂y′
δy

]
x= c+0

. (10.11)

Here, the subscript x = c− 0 indicates that we need to take the limit

(of the expression in parentheses) as x approaches c from the left.

The subscript x = c + 0, in turn, signifies that we need to take the

limit from the right.

We require, as usual, that

δJ = δJ1 + δJ2 = 0 . (10.12)

It follows that

(
f − y′

∂f

∂y′

)x= c−0

x= c+0

δc+
∂f

∂y′

∣∣∣∣
x= c−0

x= c+0

δyc = 0 . (10.13)

Since δc and δyc are arbitrary, we must now impose the conditions

∂f

∂y′

∣∣∣∣
x= c−0

=
∂f

∂y′

∣∣∣∣
x= c+0

, (10.14)

(
f − y′

∂f

∂y′

)
x= c−0

=

(
f − y′

∂f

∂y′

)
x= c+0

. (10.15)

These two conditions are known as the Weierstrass–Erdmann (cor-

ner) conditions.
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Let us tally constants of integration. We have two extremals,

each with two constants of integration, for a total of four constants of

integration. The boundary conditions at x = a and x = b determine

two of these four constants. The twoWeierstrass–Erdmann conditions

determine the other two constants.

Example 10.2.

Let us revisit the functional

J [y] =

+1∫
−1

f(x, y, y′) dx =

+1∫
−1

y2(1− y′)2 dx (10.16)

with boundary conditions

y(−1) = 0 , y(+1) = 1 . (10.17)

The first integral

f − y′
∂f

∂y′
= α (10.18)

implies that

y2(1− y′
2
) = α . (10.19)

The trivial solution,

y = 0 , (10.20)

is a true solution of the full Euler–Lagrange equation. For y 
= 0,

y′ = ±
√
1− α

y2
. (10.21)

We thus have several possible solution curves. At corners, we switch

from one solution curve to another.

Let us now look at

∂f

∂y′
= −2y2(1− y′) (10.22)

and

f − y′
∂f

∂y′
= y2(1− y′

2
) . (10.23)

Since y(x) is continuous, it follows, from the first Weierstrass–Erd-

mann corner condition, that y′(x) is also continuous, unless yc =

y(c) = 0. For y(c) = 0, y′ may be discontinuous with y = 0 to the left

of the corner and y′ = 1 to the right of the corner. This combination
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y ′

f [c , y (c ), y ′ ]

y ′(c − 0) y ′(c + 0)

Figure 10.1. Indicatrix

of values will also satisfy the second Weierstrass–Erdmann corner

condition. Thus, the broken solution,

y =

{
0 , −1 ≤ x ≤ 0 ,

x , 0 ≤ x ≤ 1 ,
(10.24)

is consistent with the Weierstrass–Erdmann corner conditions.

The Weierstrass–Erdmann corner conditions have a simple geo-

metric interpretation. If you plot f(x, y, y′) as a function of y′, for

fixed values of x and y, you get a curve known as the characteris-

tic (Sagan, 1969) or indicatrix (Akhiezer, 1962; Gelfand and Fomin,

1963). See Figure 10.1. The first corner condition tells us that the

slopes of the tangents to the indicatrix at the points y′(c − 0) and

y′(c + 0) must be the same,

∂f

∂y′
(c, y(c), y′(c− 0)) =

∂f

∂y′
(c, y(c), y′(c+ 0)) . (10.25)
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We will call this common slope p(c). Since the two tangents have the

same slope, they must be parallel. The second corner condition,(
f − y′

∂f

∂y′

)
x= c−0

=

(
f − y′

∂f

∂y′

)
x= c+0

, (10.26)

can be rewritten as

f(c, y(c), y′(c+ 0)) = f(c, y(c), y′(c− 0)) (10.27)

+ p(c) [y′(c+ 0)− y′(c− 0)] .

It now follows that the two tangents must be the same line.

We see the following:

(1) a corner can occur at (x, y) = [c, y(c)] only if the corresponding

indicatrix has a tangent that touches two or more points and that

(2) a corner is immediately ruled out if f is strictly convex,

∂2f

∂y′2
(c, y(c), y′) > 0 , (10.28)

or concave,

∂2f

∂y′2
(c, y(c), y′) < 0 , (10.29)

(for all y′).

Example 10.3.

The integrand

f(x, y, y′) = y2(1− y′)2 (10.30)

has two, qualitatively different, characteristics (see Figure 10.2). For

y 
= 0, the characteristic is strictly convex. For y = 0, the character-

istic is a horizontal line. Only in the latter case can we satisfy the

Weierstrass–Erdmann corner conditions.
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y ′

f

y ′

f

y ≠ 0
y = 0

Figure 10.2. Characteristics for y2(1− y′)2

Example 10.4.

For the integrand

f(x, y, y′) = y

√
1 + y′2 (10.31)

it is easy to show that

fy′y′ =
y

(1 + y′2)3/2
. (10.32)

It follows that a minimal surface of revolution cannot have a corner

unless y = 0.

Example 10.5.

Consider the functional

J [y] =

2∫
0

f(x, y, y′) dx =

2∫
0

(y′ + 1)2y′
2
dx (10.33)

with the boundary conditions

y(0) = 1 , y(2) = 0 . (10.34)

Let us approach this problem one step at a time. What are the

extremals? Since the integrand is missing explicit dependence on both

x and y, there are two obvious first integrals. Since y is a cyclic or

ignorable coordinate,

∂f

∂y′
= 4 y′

3
+ 6 y′

2
+ 2 y′ = c . (10.35)
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It follows that y′ must be a constant and that

y = mx+ b . (10.36)

Applying the boundary conditions, we obtain the continuously differ-

entiable solution

ŷ(x) = −1

2
x+ 1 . (10.37)

How about solutions with corners? Since the integrand f is inde-

pendent of x and y, we get a single characteristic for all choices of x

and y. Plotting the indicatrix (see Figure 10.3), we see that we have

one line of double tangency with

y′ = −1 and y′ = 0 (10.38)

at the points of tangency. Moreover, this occurs for all choices of x

and y. Indeed, since

∂f

∂y′
= 4 y′

3
+ 6 y′

2
+ 2 y′ (10.39)

= 2 y′(2y′ + 1)(y′ + 1)

and

f − y′
∂f

∂y′
= −(3y′

4
+ 4y′

3
+ y′

2
) (10.40)

= −y′
2
(3y′ + 1)(y′ + 1) ,

it is clear that choosing y′ = 0 from one direction and y′ = −1

from the other will keep both of these two expressions continuous.

Every piecewise continuously differentiable solution must, therefore,

be composed of straight-line segments making the angles 0 or −π/4

with the positive x-axis.

There are two broken extremals with one corner (see Figure 10.4).

There are, however, an infinite number of solutions with more than

one corner. All of the broken extremals reduce the definite integral

to zero; they are (improper) absolute minima.
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-1.5 -1.0 -0.5 0.0 0.5

y ′0.0

0.1

0.2

f

Figure 10.3. Characteristic for (y′ + 1)2 y′2

0.0 1.0 2.0

x0.0

0.5

1.0

y

Figure 10.4. Broken extremals
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10.2. Carathéodory’s indicatrix

Let us return to the homogeneous problem. Remember that we first

rewrote the functional

J [y] =

b∫
a

f(x, y, y′) dx , (10.41)

for the ordinary problem, as

J [γ] =

tb∫
ta

F (x, y, ẋ, ẏ) dt , (10.42)

for the homogeneous or parametric problem, with

F (x, y, ẋ, ẏ) ≡ f

(
x(t), y(t),

ẏ(t)

ẋ(t)

)
ẋ(t) . (10.43)

For this homogeneous problem, it is easy to show that the two corner

conditions are
∂F

∂ẋ

∣∣∣∣
t= tc−0

=
∂F

∂ẋ

∣∣∣∣
t= tc+0

, (10.44)

∂F

∂ẏ

∣∣∣∣
t= tc−0

=
∂F

∂ẏ

∣∣∣∣
t= tc+0

. (10.45)

What is the parametric analog of the characteristic?

To answer that question, we will need to assume that F is positive

definite, with

F (x, y, ẋ, ẏ) > 0 (10.46)

for all

ẋ2 + ẏ2 > 0 (10.47)

in some neighborhood of a given x and y. This is a restriction on

what integrands we may consider, but many homogeneous problems

satisfy this condition.

Let us now look at a level curve of F in the (ẋ, ẏ) plane. The

curve

F (x0, y0, ẋ, ẏ) = 1 (10.48)
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is called Carathéodory’s indicatrix at (x0, y0). Why did we choose

this particular level curve? Well, F is homogeneous in ẋ and ẏ. Any

other level curve

F (x0, y0, ẋ, ẏ) = c (10.49)

can be rewritten as

F

(
x0, y0,

ẋ

c
,
ẏ

c

)
= 1 (10.50)

and can thus be thought of as a rescaled version of Carathéodory’s

indicatrix. The size of level curves of F can vary, but their shape is

always the same. In that sense, Carathéodory’s indicatrix is as good

as any other level curve.

Let us now introduce polar coordinates,

ẋ = r cos θ , ẏ = r sin θ . (10.51)

You should note that

y′ =
ẏ

ẋ
= tan θ (10.52)

and that we may obtain all possible slopes y′ by varying θ. With

polar coordinates, Carathéodory’s indicatrix now takes the form

F (x0, y0, r cos θ, r sin θ) = 1 . (10.53)

Since F is positively homogeneous of degree one in its derivatives, we

can factor out r,

r F (x0, y0, cos θ, sin θ) = 1 . (10.54)

It now follows that our level curve can be written in the polar form

r =
1

F (x0, y0, cos θ, sin θ)
. (10.55)

Since the trigonometric functions in F are 2π-periodic functions,

Carathéodory’s indicatrix is a closed curve. It is easy to see that this

closed curve contains the origin. We shall soon think of the angles θ

(and slopes y′) for points on Carathéodory’s indicatrix as the angles

(and slopes) of the endpoints of extremals.
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Example 10.6.

Let

F (x, y, ẋ, ẏ) = k(x, y)
√
ẋ2 + ẏ2 , (10.56)

for

k(x, y) > 0 . (10.57)

Carathéodory’s indicatrix,

F (x0, y0, ẋ, ẏ) = 1 , (10.58)

is, in this case,

k(x0, y0)
√
ẋ2 + ẏ2 = 1 (10.59)

or

ẋ2 + ẏ2 =
1

k2(x0, y0)
. (10.60)

This is a circle for every point (x0, y0). In polar form,

r =
1

F (x0, y0, cos θ, sin θ)
=

1

k(x0, y0)
. (10.61)

For the characteristic or indicatrix, a corner corresponded to a

double tangency in y′. A corner was possible only if a line was tangent

to the characteristic for two different values of y′. For Carathéodory’s

indicatrix, a corner corresponds to a double tangency in θ. The basic

idea is simple, but getting there takes a bit of effort.

Carathéodory’s indicatrix is a level curve of F in the (ẋ, ẏ) plane.

In this plane,

∇F =

(
∂F

∂ẋ
,
∂F

∂ẏ

)
. (10.62)

This vector is orthogonal to the indicatrix at a point, (ẋ, ẏ), of the

indicatrix.

Suppose that we have a variable-endpoint problem and that we

specify that the extremal must terminate on the curve

x = φ(u) , y = ψ(u) . (10.63)

Suppose that this occurs at

x0 = φ(u0) , y0 = ψ(u0) . (10.64)
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Then the transversality condition reads

∂F

∂ẋ
φ′(u0) +

∂F

∂ẏ
ψ′(u0) = 0 . (10.65)

This may be rewritten as(
∂F

∂ẋ
,
∂F

∂ẏ

)
· (φ′(u0), ψ

′(u0)) = 0 (10.66)

so that (
∂F

∂ẋ
,
∂F

∂ẏ

)
⊥ (φ′(u0), ψ

′(u0)) . (10.67)

Since ∇F is also orthogonal to the tangent line to the indicatrix at a

given point, (ẋ, ẏ), of the indicatrix, it follows that

(φ′(u0), ψ
′(u0)) (10.68)

is parallel to a tangent line of the indicatrix. This tangent line de-

termines, at its point of tangency, the angle θ and the slope y′ of the

extremal at its intersection with the boundary curve.

How about the geometric relationship between Carathéodory’s

indicatrix and our corner conditions? Let us work through this care-

fully since this is what we are really after. The tangent line to the

indicatrix at the point (ẋ0, ẏ0) satisfies

(ẋ− ẋ0, ẏ − ẏ0) · [Fẋ(x0, y0,ẋ0, ẏ0), Fẏ(x0, y0,ẋ0, ẏ0)] = 0 (10.69)

or

(ẋ− ẋ0)Fẋ(x0, y0,ẋ0, ẏ0) + (ẏ − ẏ0)Fẏ(x0, y0,ẋ0, ẏ0) = 0 . (10.70)

We can simplify this last equation. Since positively homogeneous

functions such as F satisfy Euler’s identity,

ẋ Fẋ(x, y, ẋ, ẏ) + ẏ Fẏ(x, y, ẋ, ẏ) = F (x, y, ẋ, ẏ) , (10.71)

we may write

ẋ0 Fẋ(x0, y0, ẋ0, ẏ0) + ẏ0 Fẏ(x0, y0, ẋ0, ẏ0) (10.72)

= F (x0, y0, ẋ0, ẏ0) .

But, (ẋ0, ẏ0) is a point on the indicatrix, so that

F (x0, y0, ẋ0, ẏ0) = 1 . (10.73)
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As a result, the equation of our tangent line simplifies to

ẋ Fẋ(x0, y0,ẋ0, ẏ0) + ẏ Fẏ(x0, y0,ẋ0, ẏ0) = 1 . (10.74)

Let us introduce one other useful fact. Fẋ and Fẏ are homoge-

neous of degree zero in their derivatives. To see this, start with the

positive homogeneity of F ,

F (x, y, λẋ, λẏ) = λF (x, y, ẋ, ẏ) (10.75)

and differentiate with respect to ẋ,

Fẋ(x, y, λẋ, λẏ)λ = λFẋ(x, y, ẋ, ẏ) . (10.76)

Canceling a λ on each side, we get

Fẋ(x, y, λẋ, λẏ) = Fẋ(x, y, ẋ, ẏ) , (10.77)

our desired result. Proceed analogously for Fẏ. The homogeneity

of degree zero of Fẋ and Fẏ in their derivatives means that we can

always write

Fẋ(x, y, r cos θ, r sin θ) = Fẋ(x, y, cos θ, sin θ) , (10.78)

Fẏ(x, y, r cos θ, r sin θ) = Fẏ(x, y, cos θ, sin θ) . (10.79)

We may thus write the equation for the tangent line to our indicatrix,

equation (10.74), as

ẋ Fẋ(x0, y0, cos θ0, sin θ0)+ ẏ Fẏ(x0, y0, cos θ0, sin θ0) = 1 . (10.80)

Okay, we are now all set. Suppose that we have a corner at

(x0, y0), that the angle of an incoming extremal is θ1, and that the

angle of the outgoing extremal is θ2. Then our corner conditions

imply that

Fẋ(x0, y0, cos θ1, sin θ1) = Fẋ(x0, y0, cos θ2, sin θ2) , (10.81)

Fẏ(x0, y0, cos θ1, sin θ1) = Fẏ(x0, y0, cos θ2, sin θ2) . (10.82)

(Notice that we have used the fact that Fẋ and Fẏ are homogeneous

of degree zero in their derivatives to eliminate the radii from the argu-

ments ẋ and ẏ.) Looking back at the equation (10.80) for the tangent

line to our indicatrix, we see that the points on our indicatrix corre-

sponding to angles θ1 and θ2 have the same tangent line. A corner

shows up in Carathéodory’s indicatrix as a line of double tangency.
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Example 10.7.

Consider the functional

J [x(t), y(t)] =

(−1,0)∫
(0,0)

ẋ2 + ẏ2√
2 (ẋ2 + ẏ2) + ẋ

dt . (10.83)

This is clearly a homogeneous problem since the integrand,

F (x, y, ẋ, ẏ) =
ẋ2 + ẏ2√

2(ẋ2 + ẏ2) + ẋ
, (10.84)

is positively homogeneous of degree one in the derivatives.

One can show that the extremals for his problem are straight

lines. One obvious extremal that satisfies the boundary conditions is

x = −t, y = 0 , 0 ≤ t ≤ 1, (10.85)

with

J [x(t), y(t)] =

1∫
0

1√
2− 1

dt =
√
2 + 1 . (10.86)

Are there any other possible solutions, say with corners?

The polar form of the indicatrix,

r =
1

F (x, y, cos θ, sin θ)
, (10.87)

gives us

r =
√
2 + cos θ . (10.88)

This is a special case of the limaçon (snail) of Pascal (see Figure 10.5).

This curve has a double vertical tangent when

r =
b

cos θ
=

√
2 + cos θ (10.89)

or

cos2 θ +
√
2 cos θ − b = 0 . (10.90)

This occurs when

cos θ =
−
√
2±

√
2 + 4b

2
. (10.91)
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1 2

-1.5

-1

-0.5

0.5

1

1.5

Figure 10.5. Pascal’s snail

This equation has a double root when

b = −1

2
, (10.92)

which implies that

cos θ = −
√
2

2
. (10.93)

It now follows that

θ =
3π

4
,
5π

4
. (10.94)

A corner is thus possible at every point of the (x, y) plane if the

extremal goes into the corner at an angle of 3π/4 relative to the

positive x-axis and leaves the corner at an angle of 5π/4 or if it goes

into the corner at an angle of 5π/4 and leaves the corner at an angle

of 3π/4.

Let us now look for broken extremals that connect (−1, 0) and

(0, 0). These broken-extremal solutions are make up of line segments
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-1

-0.5

0.5

γ1

γ2

γ3

Figure 10.6. Broken-extremal solutions

that enter or leave corners at angles of 3π/4 or 5π/4 (see Figure 10.6).

For γ1, with one corner at (−0.5, 0.5),

x(t) = −t , y(t) = t (10.95)

for 0 ≤ t ≤ 1/2, but

x(t) = −t , y(t) = −t+ 1 (10.96)

for 1/2 ≤ t ≤ 1. Thus

J [γ1] =

1∫
0

2

2− 1
dt = 2 (10.97)

and we do better using a broken extremal rather than an unbroken

extremal.

10.3. Recommended reading

Broken extremals, i.e., solutions to problems in the calculus of vari-

ations with corners, are also called discontinuous solutions or ex-

tremaloids. See Graves (1930a) for an early review paper on dis-

continuous solutions and Bolza (1908), Dresden (1908), and Graves
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(1930b) for the extension of the Jacobi condition to curves with cor-

ners.

We borrowed heavily from the book by Sagan (1969) in our treat-

ment of Carathéodory’s indicatrix. For more on Carathéodory’s in-

dicatrix, see also Dresden (1907).

10.4. Exercises

10.4.1. One corner. Find a solution with one corner point for the

problem of minimizing

4∫
0

(y′ − 1)2 (y′ + 1)2 dx (10.98)

subject to the boundary conditions

y(0) = 0 , y(4) = 2 . (10.99)

10.4.2. Hunting corners. Consider the functional

J [y] =

b∫
a

(y′
2
+ 2xy − y2) dx (10.100)

subject to the boundary conditions

y(a) = ya, y(b) = yb . (10.101)

What kind of corner solutions exist for this problem?

10.4.3. At a loss for corners. Consider the functional

J [y] =

b∫
a

(y′
2
+ xy′ + x2) dx (10.102)

subject to the boundary conditions

y(a) = ya, y(b) = yb . (10.103)

Show that extremals must be smooth as a consequence of the corner

conditions.
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10.4.4. Cutting corners. Consider the functional

J [y] =

b∫
a

(y′ − 6y′
2
) dx (10.104)

subject to the boundary conditions

y(a) = ya, y(b) = yb . (10.105)

Use the corner conditions to determine whether this integral has ex-

tremals with corners.

                

                                                                                                               



                

                                                                                                               



Chapter 11

Strong Variations

11.1. Troubles with weak variations

The Euler–Lagrange equation, the strengthened Legendre condition,

and the strengthened Jacobi condition are sufficient conditions for

a weak relative minimum. This was the highwater mark of classi-

cal (pre-Weierstrassian) calculus of variations. Unfortunately, these

conditions are not, by themselves, sufficient for a strong relative min-

imum. The root of the problem can already be seen in a corner

problem that we previously considered in Chapter 10.

Example 11.1.

Consider the functional

J [y] =

b∫
a

(y′ + 1)2y′
2
dx (11.1)

with the boundary conditions

y(a) = ya , y(b) = yb . (11.2)

Since the dependent variable is missing, the Euler–Lagrange equa-

tion for this problem reduces to

∂f

∂y′
= 4y′

3
+ 6y′

2
+ 2y′ = α . (11.3)

235
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It follows that y′ must be a constant and that the extremal for this

problem is the straight line

y = mx+ k (11.4)

that connects the two boundary points.

Let’s look at Legendre’s test. For our extremal,

R =
∂2f

∂y′2
= 2(6m2 + 6m+ 1) (11.5)

(see Figure 11.1). Where is R positive or negative? Let m1 and m2

be the two roots of the equation

6m2 + 6m+ 1 = 0 . (11.6)

Solving for the roots,

m1,2 =
−6±

√
36− 24

12
=

−3±
√
3

6
, (11.7)

we see that

m1 = −0.788675 , m2 = −0.21132 . (11.8)

Moreover, since R is a concave-up function of m, it follows that R > 0

for m < m1 or m > m2 , but that R < 0 for m1 < m < m2 . Thus, the

strengthened Legendre condition for a minimum is satisfied for m <

m1 or for m > m2 and the corresponding condition for a maximum

is satisfied for m1 < m < m2

For the Jacobi condition, it is sufficient to note that

u(x) = c1u1(x) + c2u2(x) = c1
∂y

∂m
+ c2

∂y

∂k
= c1x+ c2 (11.9)

is the general solution to Jacobi’s equation and that

Δ(x, a) = u2(a) u1(x)− u1(a) u2(x) (11.10)
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-1 m1 m2

-1

1

m

Figure 11.1. Plot of R

reduces to

Δ(x, a) = (x− a) . (11.11)

This solution vanishes at x = a but does not vanish again. There is no

conjugate point and the strengthened Legendre condition is satisfied.

Our extremal satisfies the sufficiency conditions for a weak rel-

ative minimum for m < m1 and for m > m2. It satisfies the cor-

responding sufficiency conditions for a weak relative maximum for

m1 < m < m2. Nevertheless, the extremal is not a minimum or a

maximum (relative to strong variations) for −1 < m < 0.

The situation is most clearly seen with respect to minima. Con-

sider the straight line

y = −1

5
x+ 2 , 0 ≤ x ≤ 5 , (11.12)

that is the extremal for the boundary conditions

y(0) = 2 , y(5) = 1 . (11.13)

In any, arbitrarily small, weak-norm, strong-variation neighborhood

of this extremal we can do better by joining our endpoints with a

broken line consisting of line segments of slope 0 and −1 (as suggested
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0 1 2 3 4 5
0

1

2

3

x

y

y

y + ε

y − ε

Figure 11.2. Broken variation about an extremal

by the characteristic or indicatrix). This broken curve will be mapped

by the functional to zero, which is clearly the minimum for J .

You may argue that using a broken extremal is somehow un-

fair. However, we can always smooth the corners of this extremal to

produce a continuously differentiable function whose integral is arbi-

trarily close to zero. The real problem is that the derivative of the

difference between the broken extremal and the continuously differ-

entiable straight-line extremal does not go to zero as ε goes to zero.

There will always be parts of this difference with slope

−1−
(
−1

5

)
= −4

5
. (11.14)

Don’t think that the problem is tied exclusively to the existence

of broken extremals. In effect, broken extremals are the tip of the

iceberg. Once we allow broken extremals, it is only a small concep-

tual step to allow nearby comparison curves to have corners or large

derivatives. That is, it is only a very small step to then consider strong

variations. So, here is another, even more disturbing, example.
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-2 -1 0 1 2

-1

0

1

Figure 11.3. Indicatrix

Example 11.2.

Consider the functional

J [y] =

1∫
0

(y′
2
+ y′

3
) dx (11.15)

with boundary conditions

y(0) = 0 , y(1) = 0 . (11.16)

The first integral for this problem is

∂f

∂y′
= 2y′ + 3y′

2
= α . (11.17)

It follows that y′ is a constant and that the extremal is the straight

line

y = 0 for 0 < x < 1 . (11.18)

Along this extremal, J [y] is equal to zero.
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1 − r 1

x

y

s

Figure 11.4. A jagged variation

For this extremal,

R =
∂2f

∂y′2

∣∣∣∣
y=0

= 2 (11.19)

and so the strengthened Legendre condition for a minimum is satis-

fied. Also,

Δ(x, 0) = x , (11.20)

there is no conjugate point, and the strengthened Jacobi condition is

satisfied. All of the conditions for weak relative minimum are satisfied.

In addition, this problem has no broken extremals. A quick plot of

the characteristic (see Figure 11.3) shows that there is no tangent line

that is tangent to two distinct points of the characteristic.

In spite of all this, J [y] can be made negative. Consider the

function

y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s x

1− r
, 0 ≤ x ≤ 1− r ,

s (1− x)

r
, 1− r ≤ x ≤ 1

(11.21)

(see Figure 11.4). For this function

J [y] =

1−r∫
0

s2

(1− r)2

(
1 +

s

1− r

)
dx+

1∫
1−r

s2

r2

(
1− s

r

)
dx (11.22)
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s = 0. 5

Figure 11.5. J [y] for a sawtooth variation

so that

J [y] =
s2

r(1− r)

[
1 +

sr

(1− r)
− s(1− r)

r

]
. (11.23)

The last term can be made more negative than other terms by making

r sufficiently small. Figure 11.5 shows a plot of this function for a

typical value of s.

In this example, as we make the slope of the declining portion

of our jagged or “sawtooth” variation more negative, we outperform

our x-axis extremal. This occurs in spite of the fact that the x-axis

extremal is a weak relative minimum. Our jagged sawtooth function

is typical of the strong variations introduced by Weierstrass in 1879.

All of the earliest workers in the calculus of variations assumed

that slopes of variations tend to zero as their ordinates vanish. In fact,

there is no reason why the vanishing of the ordinate should imply the

vanishing of the slope. In dealing with strong variations, we still keep
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all of our previous necessary conditions. At the same time, our old

necessary conditions are not enough for strong variations. We need

at least one new condition.

There is an additional condition. It is due to and named after

Weierstrass. Weierstrass realized that he could account for strong

variations using the transversality condition. (To the extent that the

transversality condition arose in the context of the first variation,

you could argue that Weierstrass still relied on weak variations. We

will fix this in the next chapter.) Let us look at this new necessary

condition.

11.2. Weierstrass’s condition

Let us imagine that we have an extremal, y = ŷ(x), without corners

(see Figure 11.6). Let point 1, with coordinates (x1, y1), be on this

curve, and let point 3, with coordinates (x3, y3), be on this curve to

the right of point 1. Let an arbitrary admissible curve, y = h(x),

intersect the extremal at point 1. Let point 2, with abscissa x1 + σ

be a point on y = h(x), to the right of point 1. Note that the slope of

curve y = h(x) at point 1 — call it q — differs, in general, by a finite

amount from the slope of ŷ(x) at point 1. This remains true even if

we were to move point 2 closer to point 1 along y = h(x). Let y23(x)

be the extremal that connects points 2 and 3.

We will write I12 to denote the value of our integral between

points 1 and 2 along the arc y12, I23 to denote the value of our integral

between points 2 and 3 along y23(x), and I13 to denote the value of our

integral between points 1 and 3 along ŷ(x). By the variable-endpoint

formula, we have

I23 − I13 = −
[(

f − y′
∂f

∂y′

)
+ q

∂f

∂y′

]
σ . (11.24)

The values x, y, and y′ in this expression are evaluated along ŷ, at

point 1. For small σ, we also have

I12 = f(x1, ŷ1, q) σ . (11.25)
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h(x )
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ŷ (x )

y23(x )
y12(x )

Figure 11.6. A strong variation

For the variation of the integral, we may thus write

I12 + I23 − I13 (11.26)

=

[
f(x1, ŷ1, q)− f(x1, ŷ1, ŷ

′
1)−

∂f

∂y′
(x1, ŷ1, ŷ

′
1)(q − ŷ′1)

]
σ .

This expression must be nonnegative if ŷ(x) is to be a minimum.

The point 1 was arbitrary in the above discussion. This being

the case, let us consider

E(x, y, p, q) = f(x, y, q)− f(x, y, p)− ∂f

∂y′
(x, y, p)(q − p) . (11.27)

This functions is known as the Weierstrass E-function or as the

Weierstrass excess function. (The variable p here is not momen-

tum.) We may now write a new necessary condition in terms of this

function.
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y ′

f [x , y (x ), y ′ ]

ŷ ′ q

E

Figure 11.7. Weiertrass meets the indicatrix

Weierstrass’s condition:

For the functional J [y] to have a strong relative minimum (maxi-

mum) at y = ŷ(x) we must have that

E(x, ŷ, ŷ′, q) ≥ 0 (≤ 0) (11.28)

at every point of y = ŷ(x) and for every finite value of q.

Weierstrass’s condition has a simple geometric interpretation. Let

us plot the characteristic or indicatrix for our problem (see Figure

11.7). The Weierstrass condition,

E(x, ŷ, ŷ′, q) ≥ 0 , (11.29)

implies that the characteristic must lie above — or at least not below

— the tangent line through ŷ′. This is a local convexity requirement

on the integrand.

Here is a small table that lists all of the necessary conditions for

a strong relative extremum that we have collected:
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Necessary conditions for a strong extremum:

(a) Euler–Lagrange condition

(b) Legendre condition

(c) Jacobi condition

(d) Weierstrass condition

Let us now look at some simple examples of using Weierstrass’s nec-

essary condition.

Example 11.3.

We previously studied the functional

J [y] =

b∫
0

f(x, y, y′) dx =

b∫
0

(y′
2 − y2) dx (11.30)

for 0 < b < π and for the boundary conditions

y(0) = 0 , y(b) = 1 (11.31)

and concluded that the extremal

ŷ(x) =
sin x

sin b
(11.32)

satisfies all the criteria to be a weak relative minimum. Let us now

check Weierstrass’s condition. For this problem, the excess function

is

E(x, ŷ, ŷ′, q) = f(x, ŷ, q)− f(x, ŷ, ŷ′)− ∂f

∂y′
(x, ŷ, ŷ′)(q − ŷ′) (11.33)

= (q2 − ŷ2)− [(ŷ′)2 − ŷ2]− 2 ŷ′ (q − ŷ′)

= q2 − 2 q ŷ′ + (ŷ′)2

= (q − ŷ′)2 .

It is thus clear that

E(x, ŷ, ŷ′, q) ≥ 0 (11.34)

and that Weierstrass’s condition is satisfied.
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Example 11.4.

For the functional

J [y] =

1∫
0

(y′
2
+ y′

3
) dx (11.35)

with boundary conditions

y(0) = 0 , y(1) = 0 , (11.36)

we saw that the extremal of interest,

ŷ(x) = 0 for 0 < x < 1 , (11.37)

is a line of zero slope. The Weierstrass excess function for this ex-

tremal reduces to

E(x, ŷ, ŷ′, q) = q2(1 + q) (11.38)

and it is clear that the excess function can be of either sign, depending

on the sign and magnitude of q. Weierstrass’s necessary condition is

not satisfied and the extremal y = 0 is not a strong relative minimum.

Example 11.5.

For the functional

J [y] =

b∫
a

(y′ + 1)2y′
2
dx , (11.39)

the extremals are straight lines of slope m. The excess function for

this set of extremals is just

E(x, ŷ, ŷ′, q) = q2(q + 1)2 −m2(m+ 1)2 (11.40)

− 2m(m+ 1)(2m+ 1)(q −m)

= (q −m)2 [q2 + 2(m+ 1)q + (3m2 + 4m+ 1)] .

The sign of the excess function is controlled by the expression

in square brackets. This expression is a quadratic in q that has a

minimum at

q = −(m+ 1) . (11.41)
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(To the extent that we are dealing with a minimum, it should be

immediately apparent that Weierstrass’s condition for a maximum is

not satisfied.) At this value of q, the expression in square brackets

simplifies to

m(m+ 1) . (11.42)

For m < −1 or m > 0, this minimum is positive and Weierstrass’s

necessary condition for a minimum is satisfied. For −1 < m < 0,

this minimum is negative and Weierstrass’s condition for a minimum

(relative to strong variations) is not satisfied.

11.3. Case study: Newton’s problem

Weierstrass’s use of strong variations and the excess function did not

occur in a vacuum. Rather, they occurred as part of Weierstrass’s

effort to understand a classic problem that had plagued the calculus

of variations in the second half of the 19th century. That classic

conundrum was Newton’s problem of finding the solid of revolution

that moves through an inviscid and incompressible fluid with least

resistance.

Newton formulated his problem in 1685. Newton then published

this problem, and his solution, in his famous Principia Mathematica

of 1687 — nine years before John Bernoulli’s brachistochrone chal-

lenge of 1696. So, Newton’s problem has a legitimate claim to being

the first genuine problem of the calculus of variations. Nevertheless,

Newton’s problem did not have the same immediate impact that the

brachistochrone had.

Newton published his solution with no hint as to his method of

solution and it is fair to say that Newton’s solution mystified the Eu-

ropean mathematical community (Goldstine, 1980). Finally, David

Gregory persuaded Newton to write out his method of solution; Gre-

gory then presented lectures on this material at Oxford. Let us now

look at Newton’s problem in detail to see why it proved so trouble-

some to mathematicians.

Let us assume that a solid of revolution moves, with constant

velocity v, through a perfectly inviscid and incompressible fluid (see
                

                                                                                                               



248 11. Strong Variations

x

y
v

→
n

θ

Figure 11.8. Newton’s problem

Figure 11.8). The solid moves in the direction of its axis of rota-

tion, which we will take, for convenience, as the y-axis. There is,

by assumption, no friction between the solid body and the fluid, but

we follow Newton in assuming that the resistance on any element of

surface is proportional to the square of the normal component of the

velocity.

Since we are dealing with a surface of revolution, a small ring of

surface has the area

2πx ds = 2πx

√
1 + y′2 dx , (11.43)

where x is the radius and ds is the element of arc length for our

solution curve, y = y(x), for that ring. The component of velocity

in the normal direction to the surface is v cos θ and the resistance in

the normal direction offered by the zone is therefore

v2 cos2 θ · 2πx
√
1 + y′2 dx . (11.44)

This quantity is multiplied by cos θ once again, to give the portion of

the resistance in the y direction, since the x component of the resis-

tance serves merely to pinch the solid. Thus, the relevant resistance

is proportional to the integral of

2πv2x cos3 θ

√
1 + y′2 dx . (11.45)
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It is easy to show, moreover, that

cos θ =
1√

1 + y′2
(11.46)

so that the total resistance is proportional to

J [y] =

∫
x

1 + y′2
dx . (11.47)

I have left the limits of integration and the boundary conditions un-

specified, for reasons that will become clear shortly.

The above integrand does not have any explicit y dependence and

so we can immediately write down the first integral

∂f

∂y′
= − 2xy′

(1 + y′2)2
= 2 c (11.48)

with the constant of integration 2c. As a result,

− x y′

(1 + y′2)2
= c . (11.49)

In general, for nonzero c, we must now solve a quartic equation if

we wish to solve for y′. Rather than taking that direct approach, we

will instead determine a parametric solution. Figure 11.8 shows the

putative solution curve decreasing in y and increasing in x for x > 0.

For consistency, we now let

p ≡ −dy

dx
(11.50)

so that c and p are positive (in Figure 11.8) for x > 0. Our first

integral, equation (11.48), now implies that

x = c
(1 + p2)2

p
. (11.51)

Moreover, since

dy = −p dx , (11.52)

it quickly follows that

dy = c

(
1

p
− 2p− 3p3

)
(11.53)
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and that

y = y0 + c

(
ln p− p2 − 3

4
p4
)

. (11.54)

Equations (11.51) and (11.54) define a possible solution curve.

What does the trace of this curve look like? Notice that

dx

dp
= c

(1 + p2)(3p2 − 1)

p2
, (11.55)

dy

dp
= −c

(1 + p2)(3p2 − 1)

p
(11.56)

and that both of these derivatives vanish at

p =

√
3

3
. (11.57)

We may thus expect a cusp (or some other, higher-order singularity)

at this value of p, at the coordinates

x =
16
√
3

9
c , y = y0 −

(
1

2
ln 3 +

5

12

)
c . (11.58)

Figure 11.9 shows our solution curve plotted for c = 0.75 and

y0 = 5. We do indeed see two branches coming together at a cusp.

The upper branch results from small values of p: this branch comes

in from x = ∞ (at p = 0) into the cusp (at p =
√
3/3). The lower

branch corresponds to higher values of p: the lower branch starts at

the cusp, for p =
√
3/3, and goes off to y = −∞, as p increases.

If we look at the parametric and geometric form of the solution

curve, we also see that some boundary conditions are incompatible

with this curve and with this problem. Based on Figure 11.8, you

might have guessed that we would have boundary points on each

axis,

y(0) = h , y(w) = 0 , (11.59)

so that we specify the height h and width (or radius) w of the solid.

Unfortunately, imposing the boundary condition y(0) = h would then

force c = 0 and y = y0 = h, which would not, in general, satisfy

the second boundary condition. Indeed, for the solution of Newton’s

problem to make sense, we must modify the problem, as Newton did,

so that the first boundary point is off the y-axis (see Figure 11.10).

We must, in other words, turn the problem into one of determining
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Figure 11.9. Two branches and a cusp

the profile of the shoulder of the solid of revolution that minimizes

resistance, with the very tip of the projectile prespecified. Newton

took this tip to be flat. Our new boundary conditions are

y(a) = h , y(w) = 0, (11.60)

with a > 0.

We now have boundary conditions that our solution curve can

satisfy. At the same time, our solution curve has two branches. We

need to verify which, if either, of the two branches corresponds to a

minimum. Let us start with the Legendre condition. Since

∂2f

∂y′2
=

2x(3y′
2 − 1)

(1 + y′2)3
=

2x(3p2 − 1)

(1 + p2)3
, (11.61)

we see that the lower branch, corresponding to p ≥
√
3/3, is con-

sistent with a weak relative minimum, but that the upper branch,

corresponding to 0 < p ≤
√
3/3, is consistent with a weak relative
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x

y

0 a w

(a, h)

Figure 11.10. The revised problem

maximum. Verifying the Jacobi condition is more difficult, but with

due diligence one can, in fact, show that the Jacobi test imposes no

limit on the range of a solution that starts on the lower branch of our

cusped solution curve.

We have a solution, Newton’s solution, that satisfies all the neces-

sary conditions and, more often than not, all the sufficient conditions

for a weak relative minimum. And yet, it has been known, since

the 18th century, that one can construct solids of revolution that

have less resistance than the solid suggested by Newton. The first to

call attention to this fact appears to have been Guillaume de Saint-

Jacques de Silvabelle, the director of the observatory in Marseilles.

Legendre noted this in his famous paper on the Legendre condition

(Legendre, 1788). In 1760, Saint-Jacques de Silvabelle claimed that

he could draw a polygonal line (see Figure 11.11) that generated less

resistance than the solution of the Euler–Lagrange equation. If we

reexamine our original integral, equation (11.47), Saint-Jacques de

Silvabelle’s claim makes good sense: by making y′(x) large enough,

we can make our integrand and integral arbitrarily small.

By the middle of the 19th century, Newton’s problem was viewed

as paradoxical. Mathematicians responded by expelling this problem
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x

y

0 a w

Figure 11.11. A polygonal profile

from their textbooks (Kolmogorov and Yushkevich, 1998). In hind-

sight, it is easy to see that Saint-Jacques de Silvabelle’s solution con-

sists of strong variations and that the conditions of Euler, Legendre,

and Jacobi do not necessarily guarantee a minimum relative to strong

variations. Indeed, if we look at the Weierstrass excess function for

this problem,

E(x, ŷ, ŷ′, q) = f(x, ŷ, q)− f(x, ŷ, ŷ′)− ∂f

∂y′
(x, ŷ, ŷ′)(q − ŷ′) (11.62)

=
x (q − ŷ′)2 [2ŷ′q + (ŷ′)2 − 1]

[1 + (ŷ′)2]2 (1 + q2)
,

we see that we cannot force the excess function to be nonnegative for

all choices of q. As a result, the integral possesses a weak minimum,

but not a strong minimum. Weierstrass needed to expand the theory

of the calculus of variations to account for the difficulties associated
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with Newton’s problem. He did so, in his lectures, by introducing

strong variations and his excess function.

11.4. Recommended reading

See Graves (1934) for an alternative derivation of Weierstrass’s nec-

essary condition.

Kolmogorov and Yushkevich (1998) discuss the importance of

Newton’s problem to the calculus of variations. Newton’s problem

continues to fascinate scientists. Recent papers that consider this

problem include Buttazzo and Kawohl (1993), Horstmann et al. (2002),

Lachand-Robert and Oudet (2005), Silva and Torres (2006), and

Cruz-Sampedro and Tetlalmatzi-Montiel (2014). There are many oth-

ers. See Miele (1965) for related problems in aerodynamics.

11.5. Exercises

11.5.1. Checking necessary conditions. Consider the integral

J [y] =

b∫
a

y2(1− y′
2
) dx . (11.63)

Show that the Legendre and Weierstrass necessary conditions for a

local maximum are satisfied by all extremals.

11.5.2. A cubic integrand. Consider the integral

J [y] =

1∫
0

y′
3
dx (11.64)

with the boundary conditions

y(0) = 0 , y(1) = 1 . (11.65)

Show that ŷ(x) = x is an extremal that satisfies the Legendre condi-

tion but not the Weierstrass condition for a local minimum.

                

                                                                                                               



Chapter 12

Sufficient Conditions

12.1. Introduction

The necessary conditions of Euler, Legendre, and Jacobi were pub-

lished in 1744, 1788, and 1837. These conditions are not, by them-

selves, sufficient conditions for a strong relative minimum. In 1879,

Weierstrass added a fourth necessary condition, built upon his ex-

cess function. Weierstrass also realized that he could strengthen and

combine the four necessary conditions to derive a package of suffi-

cient conditions that do guarantee the presence of a strong relative

minimum.

In 1900, David Hilbert simplified the proof of Weierstrass’s suf-

ficient conditions. Our goal, in this chapter, is to understand Weier-

strass’s sufficient conditions and Hilbert’s proof of these sufficient con-

ditions. We will then look at Carathéodory’s method of equivalent

variational problems. Carathéodory’s elegant method is sometimes

called the royal road to the calculus of variations. To follow Hilbert’s

and Carathéodory’s approaches, we must first understand what is

meant by a “field of extremals.”

255
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12.2. Fields of extremals

Let D be a domain in the (x, y) plane and let

y = φ(x, c) (12.1)

be a one-parameter family of curves that covers D. If one, and only

one, member of this family passes through each point of D, then this

family of curves is called a proper field on the domain D. The fact

that a field is proper implies that there exists a single-valued function,

c = ψ(x, y) , (12.2)

such that

y = φ(x, ψ(x, y)) (12.3)

for every point in our domain.

For a proper field, the slope of the tangent to the curve y = φ(x, c)

at each point now defines a function, p(x, y), that we call the slope of

the field. This slope is defined, analytically, by the two equations

p(x, y) =
∂φ

∂x
(x, c) , c = ψ(x, y) . (12.4)

Example 12.1.

Consider the unit disk

x2 + y2 ≤ 1 . (12.5)

The set of parallel straight lines

y = x+ c (12.6)

is a proper field on the disk with slope p(x, y) = 1 (see Figure 12.1).

The function ψ(x, y) is simply

c = ψ(x, y) = y − x . (12.7)

The one-parameter family of parabolas

y = (x− c)2 − 1 (12.8)

is not, in contrast, a proper field on the disk since two parabolas may,

in general, pass through the same point.
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x

y

Figure 12.1. A proper field

If all the curves of a one-parameter family of curves pass through

the same point and form a pencil of curves, they do not, of course,

form a proper field. If, however, these curves cover the whole domain

D and never intersect each other except at the center or nib of the

pencil, the curves are said to constitute a central field.

Example 12.2.

The pencil of sine curves

y = φ(x, c) = c sin x (12.9)

(see Figure 12.2) is a central field for sufficiently small neighborhoods

of the strip 0 ≤ x ≤ b, for b < π. It is a proper field for the strip

a ≤ x ≤ b, for a > 0 and b < π.
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0 a b π

x

y

Figure 12.2. A pencil of sine curves

If we have a proper or central field that is also a one-parameter

family of extremals for a variational problem, we have a field of ex-

tremals.

Our ability to cover a domain with a field of extremals is closely

related to the Jacobi condition. For simple problems, the easiest way

to generate a one-parameter family of extremals is to start with the

general solution of the Euler–Lagrange equation and to impose one

of the boundary conditions, say at point A. This then gives us a one-

parameter family of extremals, y = φ(x, c), emanating from point

A. One of these extremals may also satisfy the second boundary

condition at, say, point B. Let us call this extremal ŷ(x). We have

seen, in Chapter 6, that two infinitesimally close members of a one-

parameter family emanating from A will intersect at a conjugate point

lying on the envelope of the family of curves (see Figure 12.3). The

conjugate point lies on the c-discriminant defined by the two equations

y = φ(x, c) ,
∂y

∂c
(x, c) = 0 . (12.10)
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a

ya A

Figure 12.3. An envelope

If extremal ŷ(x) does not touch this envelope, nearby extremals (suf-

ficiently close members of our one-parameter family) do not intersect

ŷ(x). We then have a central field that includes ŷ(x) and that covers

some neighborhood of ŷ(x). If ŷ(x) does touch the envelope, nearby

extremals will intersect ŷ(x) and we do not have a field. We must

thus satisfy the Jacobi condition, actually the strengthened Jacobi

condition, in order to have a field of extremals around a prescribed

extremal.

For a field of extremals, we can say more about the slope of the

field, p(x, y). Differentiating slope equations (12.4), we see that

px = φxx + φxc cx , py = φxc cy . (12.11)

Straightforward implicit differentiation of field equation (12.1), in

turn, implies that

cx = −φx

φc
, cy =

1

φc
. (12.12)
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From our slope equations (12.4) and derivatives (12.11) and (12.12),

it now follows that

px + p py = φxx . (12.13)

Since φ(x, c), however, is an extremal and satisfies the Euler–Lagrange

equation for every value of c, we know, from the ultradifferentiated

form of Chapter 3, that

fy′y′φxx + fy′yφx + fy′x − fy = 0 . (12.14)

Here, the arguments of the partial derivatives of the integrand f of

our functional are x, φ(x, c), and φx(x, c). It now follows that the

slope p(x, y) must satisfy the first-order partial differential equation

(px + ppy)fy′y′ + pfy′y + fy′x − fy = 0 . (12.15)

We will see this same partial differential equation arise, in a very

different way, in the next section.

12.3. Hilbert’s invariant integral

Let us return to the problem of finding the extremum of the functional

J [y] =

b∫
a

f(x, y(x), y′(x)) dx (12.16)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (12.17)

We will assume that we have found an extremal, y = ŷ(x), that sat-

isfies both boundary conditions and that this extremal is surrounded

by a field of extremals. This implies that y = ŷ(x) satisfies both the

Euler–Lagrange equation and the strengthened Jacobi condition.

Let us now examine the total variation

ΔJ = J [y]− J [ŷ] (12.18)

or

ΔJ =

b∫
a

f(x, y(x), y′(x)) dx−
b∫

a

f(x, ŷ(x), ŷ′(x)) dx (12.19)
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for curves, y = y(x), that satisfy our boundary conditions and that

lie in the domain covered by our field. We require ΔJ ≥ 0 for a

minimum and ΔJ ≤ 0 for a maximum. In Chapter 2, we wrote

y(x) = ŷ(x) + ε η(x) and expanded the total variation in a power

series in ε. We are no longer free to follow this approach since we are

now allowing strong variations and have no guarantee that η′(x) is

small.

We will instead follow Hilbert (1902) and replace the second inte-

gral in equation (12.19) by an equivalent, path-independent integral,

b∫
a

Φ(x, y(x), y′(x)) dx . (12.20)

We want this integral to assume the value J [ŷ(x)], not just for y =

ŷ(x), but for all y = y(x) that satisfy our boundary conditions

and that lie in the domain covered by our field. What form should

Φ(x, y, y′) take?

Hilbert took Φ(x, y, y′) to be of the general form

Φ(x, y, y′) = f(x, y, p) + (y′ − p)fy′(x, y, p) , (12.21)

with p = p(x, y) an, as yet, undetermined function of x and y. Note

that Φ(x, y, y′) is of the general form

Φ(x, y, y′) = M(x, y) +N(x, y) y′ , (12.22)

with, in this instance,

M(x, y) = f(x, y, p)− p fy′ (x, y, p) , (12.23)

N(x, y) = fy′(x, y, p) . (12.24)

We saw, in Chapter 3, that integrands of this form yield path-

independent integrals if

∂M

∂y
=

∂N

∂x
. (12.25)

Since
∂M

∂y
= fy − p (fy′y + fy′y′py) (12.26)
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and

∂N

∂x
= fy′x + fy′y′px , (12.27)

we now demand that p = p(x, y) satisfy

(px + p py)fy′y′ + pfy′y + fy′x − fy = 0 . (12.28)

This equation is identical, however, to the partial differential equation

for the slope of our field of extremals, equation (12.15). So, if we

choose p = p(x, y) to be this slope, the integral

b∫
a

[f(x, y, p) + (y′ − p)fy′(x, y, p)] dx (12.29)

is path-independent. We let p = p(x, y) be the slope of our field of

extremals in all that follows.

For y = ŷ(x) and y′ = ŷ′(x), we now have p(x, y) = ŷ′(x) (along

y = ŷ(x)) and integral (12.29) reduces to J [ŷ]. Since integral (12.29)

is path-independent, it also has the value J [ŷ] for all curves, y =

y(x), that satisfy our boundary conditions and that lie in the domain

covered by our field.

12.4. Weierstrass’s E-function revisited

If we now replace the second integral in total variation (12.19) with

Hilbert’s invariant integral, equation (12.29), we find that

ΔJ =

b∫
a

[f(x, y, y′)− f(x, y, p)− (y′ − p)fy′(x, y, p)] dx , (12.30)

where the integration is now over an arbitrary admissible curve that

lies in the domain covered by our field of extremals. Our integrand,

however, is none other than the Weierstrass excess function,

E(x, y, p, y′) = f(x, y, y′)− f(x, y, p)− (y′ − p)fy′(x, y, p) , (12.31)
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and so we may now write

ΔJ =

b∫
a

E(x, y, p, y′) dx . (12.32)

We now require that the excess function be nonnegative as part

of a sufficient condition for a minimum. For, if E(x, y, p, y′) ≥ 0, then

ΔJ ≥ 0. For a maximum, we instead require that the excess function

be nonpositive since, if E(x, y, p, y′) ≤ 0, then ΔJ ≤ 0.

For a weak extremum, one or the other of these conditions must

be satisfied for all x and y that are close to the extremal ŷ(x) and

for all values of y′(x) that are close to p(x, y) = ŷ′(x). Adding these

new conditions to our earlier requirements provides us with sufficient

conditions for weak extrema.

Sufficient conditions for a weak extremum:

(1) ŷ(x) is an extremal, i.e., a solution of the Euler–Lagrange

equation, satisfying the prescribed boundary conditions.

(2) The extremal ŷ(x) can be embedded in a field of extremals.

(This condition can be replaced by the strengthened Jacobi

condition.)

(3) The Weierstrass excess function, E(x, y, p, y′), is of constant

sign for all (x, y) sufficiently close to the extremal ŷ(x) and

for all values of y′(x) sufficiently close to p(x, y) = ŷ′(x). For

a minimum, we need E(x, y, p, y′) ≥ 0; for a maximum, we

need E(x, y, p, y′) ≤ 0.

For a strong extremum, we once again require E ≥ 0 (for a min-

imum) or E ≤ 0 (for a maximum) for all values of x and y that are

close to the extremal ŷ(x), but now for all y′(x), not just for those

close to p(x, y) = ŷ′(x). Adding these new conditions to our earlier re-

quirements provides us with sufficient conditions for strong extrema.
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Sufficient conditions for a strong extremum:

(1) ŷ(x) is an extremal, i.e., a solution of the Euler–Lagrange

equation, satisfying the prescribed boundary conditions.

(2) The extremal ŷ(x) can be embedded in a field of extremals.

(This condition can be replaced by the strengthened Jacobi

condition.)

(3) The Weierstrass excess function, E(x, y, p, y′), is of constant

sign for all (x, y) sufficiently close to the extremal ŷ(x) and for

all values of y′(x). For a minimum, we need E(x, y, p, y′) ≥ 0;

for a maximum, we need E(x, y, p, y′) ≤ 0.

Example 12.3.

Consider the functional

J [y] =

1∫
0

y′
3
dx (12.33)

with the boundary conditions

y(0) = 0 , y(1) = 1 . (12.34)

Since the dependent variable is missing, the Euler–Lagrange equa-

tion for this problem reduces to

∂f

∂y′
= 3y′

2
= α . (12.35)

It follows that y′ must be a constant. The extremals for this problem

are thus straight lines of the form

y = mx+ k . (12.36)

We are especially interested in the extremal,

ŷ(x) = x , (12.37)

that connects the two boundary points. The pencil of lines

y = mx (12.38)

with center (0, 0) is a central field that includes ŷ(x) = x. The slope

field for this field is p(x, y) = m. Along ŷ(x) = x, p(x, y) = 1.
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-1

0

1
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y (x )

ŷ (x )

Figure 12.4. A broken line

The Weierstrass excess function for this problem is

E(x, y, p, y′) = f(x, y, y′)− f(x, y, p)− (y′ − p)fy′(x, y, p) (12.39)

= y′
3 −m3 − 3m2(y′ −m)

= (y′ −m)2(y′ + 2m) .

For y′ close to m = 1, E ≥ 0 and all of the sufficient conditions for a

weak relative minimum are satisfied. Therefore, ŷ(x) = x is a weak

relative minimum. At the same time, ŷ(x) = x is not a strong relative

minimum: if y′ is arbitrary, the sign of the excess function will not

remain constant.

Indeed, let us compare the value of the functional along the ex-

tremal ŷ(x) = x with the value of our functional along the broken

curve

y =

{
−5x , 0 ≤ x ≤ 0.2 ,

2.5x− 1.5 , 0.2 ≤ x ≤ 1
(12.40)
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(see Figure 12.4). Along ŷ = x,

J [ŷ(x)] =

1∫
0

1 dx = 1 . (12.41)

Along the broken curve,

J [y(x)] =

0.2∫
0

(−5)3 dx+

1∫
0.2

(2.5)3 dx = −12.5 . (12.42)

Clearly, J [y(x)] < J [ŷ(x)].

Checking sufficiency using the Weierstrass excess function can be

cumbersome. It is useful, therefore, to have a simpler condition. We

saw, in Chapter 11, that the Weierstrass condition is, in effect, a local

convexity condition on the integrand of our variational problem. For

purposes of proving sufficiency, we can replace local convexity with a

stronger condition, global convexity. Here, for example, is a nice set

of sufficient conditions for a strong minimum.

Sufficient conditions for a strong minimum:

(1) ŷ(x) is an extremal, i.e., a solution of the Euler–Lagrange

equation, satisfying the prescribed boundary conditions.

(2) The extremal ŷ(x) contains no conjugate points.

(3) At all points on and in some neighborhood of the extremal

and for all finite values of y′,

∂2f

∂y′2
(x, y, y′) > 0 . (12.43)

Note the distinction between condition (12.43) and the strength-

ened Legendre condition. Inequality (12.43) must apply for all y′,

not just those along the actual extremal.

Example 12.4.

For Fermat-type integrals with integrands of the form

f = g(x, y)

√
1 + y′2 , (12.44)
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it is easy to show that

∂2f

∂y′2
=

g(x, y)

(
√
1 + y′2)3

. (12.45)

Hence every extremal which does not contain a conjugate point pro-

vides a strong relative minimum provided that

g(x, y) > 0 (12.46)

along the extremal. This general class of integrals includes distance,

the brachistochrone, and the minimal surface of revolution.

12.5. The royal road

Carathéodory (1935) introduced the method of equivalent variational

problems. This method is one of the quickest and most elegant ways of

deriving sufficient conditions for the calculus of variations, so much

so that Carathéodory’s method has been called the royal road to

the calculus of variations (Boerner, 1953). Carathéodory’s method

also highlights the connection between the calculus of variations and

classical Hamilton–Jacobi theory. Let us traverse the royal road.

Let us start with the problem of minimizing the functional

J [y] =

b∫
a

f(x, y(x), y′(x)) dx (12.47)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (12.48)

Let S(x, y) be any twice continuously differentiable function and let

C be any piecewise continuously differentiable contour, y = y(x), that

satisfies boundary conditions (12.48). Along the contour C,

b∫
a

(
∂S

∂x
+

∂S

∂y
y′
)

dx =

b∫
a

dS

dx
dx (12.49)

= S(b, yb)− S(a, ya) .

Let us next introduce

f∗(x, y, y′) ≡ f(x, y, y′)− ∂S

∂x
− ∂S

∂y
y′ . (12.50)
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Along C, the functional

J∗[y] =

b∫
a

f∗(x, y, y′) dx (12.51)

=

b∫
a

f(x, y, y′) dx− [S(b, yb)− S(a, ya)]

differs from our original functional, J [y], by a mere constant. Any

contour that minimizes J [y] thus also minimizes J∗[y]. The two vari-

ational problems, with integrands f(x, y, y′) and f∗(x, y, y′), are said

to be equivalent.

Every possible S(x, y) generates an equivalent variational prob-

lem. Carathéodory sought an S(x, y) and the slope of a field p(x, y)

that make the new variational problem especially easy to solve. In

particular, he demanded that S(x, y) and p(x, y) be chosen so that

f∗(x, y, y′) = 0 , for y′ = p(x, y) , (12.52)

f∗(x, y, y′) ≥ 0 , for y′ 
= p(x, y) , (12.53)

or, equivalently, so that

f(x, y, y′)− ∂S

∂x
− ∂S

∂y
y′ = 0 , for y′ = p(x, y) , (12.54)

f(x, y, y′)− ∂S

∂x
− ∂S

∂y
y′ ≥ 0 , for y′ 
= p(x, y) , (12.55)

for all x and y (or at least all x and y sufficiently close to the solution).

If we want to minimize functional (12.51), it is now enough to

choose, as our solution, the curve that satisfies

y′ = p(x, y) (12.56)

subject to the boundary conditions

y(a) = ya , y(b) = yb . (12.57)

Along this minimizing curve,

b∫
a

f(x, y, y′) dx = S(b, yb)− S(a, ya) . (12.58)
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Since the functional f∗(x, y, y′) assumes a minimum for y′ =

p(x, y), the derivative of the left-hand side of equation (12.54) with

respect to y′ must vanish for y′ = p(x, y). It now follows that

∂S

∂y
=

∂f

∂y′
(x, y, p(x, y)) . (12.59)

Equation (12.54) may now, in turn, be written as

∂S

∂x
= f(x, y, p(x, y))− p(x, y)

∂f

∂y′
(x, y, p(x, y)) . (12.60)

Carathéodory thought these last two equations so important that he

called them the fundamental equations of the calculus of variations.

Others call them the Carathéodory equations.

If the Carathéodory equations, equations (12.59) and (12.60), are

used to eliminate Sx and Sy in inequality (12.55), this inequality

simplifies to

f(x, y, y′)− f(x, y, p)− (y′ − p) fy′(x, y, p) ≥ 0 . (12.61)

That inequality can be rewritten, in terms of the Weierstrass excess

function, as

E(x, y, p, y′) ≥ 0 . (12.62)

This inequality should look familiar; it was one of the conditions for

a strong minimum from the last section.

We still need to characterize S(x, y) and p(x, y) more fully. Let

us introduce the new variable

z ≡ ∂f

∂y′
(x, y, p) . (12.63)

We may now solve for p in terms of z and introduce the Hamiltonian

function

H(x, y, z) = z p− f(x, y, p) . (12.64)

(This is the usual Legendre transformation that we first saw in Chap-

ter 4, but with z now playing the role of the canonical momentum.) It

now follows, from Carathéodory’s equations, that S(x, y) must satisfy

the partial differential equation

∂S

∂x
+H

(
x, y,

∂S

∂y

)
= 0 . (12.65)

Equation (12.65) is known as the Hamilton–Jacobi equation.
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If we can solve the Hamilton–Jacobi equation for S(x, y), then

our canonical momentum is, in light of equations (12.59) and (12.63),

z =
∂S

∂y
. (12.66)

This variable determines the slope p(x, y) of our field,

y′ = p(x, y) =
∂H

∂z

(
x, y,

∂S

∂y

)
. (12.67)

We can integrate this slope, subject to boundary conditions (12.48),

to minimize our functional and solve our problem.

Taking the ordinary derivative of equation (12.66) gives

z′ =
∂2S

∂x∂y
+

∂2S

∂y2
y′ . (12.68)

Taking the partial derivative of the Hamilton–Jacobi equation with

respect to y gives

∂2S

∂x∂y
+

∂H

∂y
+

∂H

∂z

∂2S

∂y2
= 0 . (12.69)

Combining these two equations gives

z′ = −∂H

∂y

(
x, y,

∂S

∂y

)
. (12.70)

Equation (12.67) and (12.70) are the canonical or Hamiltonian equa-

tions. The solution generated using the Hamilton–Jacobi equation is

thus an extremal, a solution of the Euler–Lagrange equation. It is

usually easiest to integrate the Euler–Lagrange equation directly, but

the Hamilton–Jacobi equation provides us, in some instances, with

an alternative means of obtaining this solution.

Example 12.5.

Consider the problem of minimizing the distance,

J [y] =

b∫
0

√
1 + y′2 dx , (12.71)

between the origin and the point (b, yb). That is, we wish to minimize

our functional subject to the boundary conditions

y(0) = 0 and y(b) = yb . (12.72)
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For this problem, we begin by introducing the new variable

z =
∂f

∂y′
(x, y, p) =

p√
1 + p2

(12.73)

so that

p =
z√

1− z2
. (12.74)

Our Hamiltonian now takes the form

H(x, y, z) = z p− f(x, y, p) (12.75)

=
z2√
1− z2

−
√
1 +

z2

1− z2

= −
√
1− z2

and our Hamilton–Jacobi equation is just

∂S

∂x
−

√
1−

(
∂S

∂y

)2

= 0 (12.76)

or (
∂S

∂x

)2

+

(
∂S

∂y

)2

= 1 . (12.77)

Let us look for a solution that satisfies(
∂S

∂x

)2

= α ,

(
∂S

∂y

)2

= 1− α . (12.78)

Given these equations, it quickly follows that

∂S

∂x
=

√
α (12.79)

so that

S(x, y) =
√
αx+ g(y) . (12.80)

Likewise,
∂S

∂y
=

√
1− α (12.81)

so that

S(x, y) =
√
1− α y + h(x) . (12.82)

Comparing these two solutions, we see that

S(x, y) =
√
αx+

√
1− αy + β . (12.83)

                

                                                                                                               



272 12. Sufficient Conditions

Because of equation (12.58), S(x, y), for this problem, is just the

distance between the origin and the point (x, y). We thus want a

solution to our Hamilton–Jacobi equation that satisfies

S(x, 0) = |x| , S(0, y) = |y| . (12.84)

Sadly, there are no values of α and β that will make solution (12.83)

satisfy these conditions. Fortunately, there is another solution, a

singular integral, lurking nearby.

To obtain this singular integral, we must take the envelope of

solution (12.83) by eliminating α between equation (12.83) and the

equation

∂S

∂α
=

x

2
√
α
− y

2
√
1− α

= 0 . (12.85)

This last equation implies that

α =
x2

x2 + y2
(12.86)

and, if we substitute this expression for α into solution (12.83), we

find that

S(x, y) =
√
x2 + y2 + β . (12.87)

For β = 0, we now have no trouble satisfying equations (12.84). For

this problem, S(x, y) is, unsurprisingly, the Euclidean distance.

It now quickly follows that

z =
∂S

∂y
=

y√
x2 + y2

(12.88)

and, by equation (12.73), that

p =
z√

1− z2
=

y

x
. (12.89)
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If we integrate the slope of our field,

dy

dx
= p(x, y) =

y

x
, (12.90)

subject to boundary conditions (12.72), we find, again unsurprisingly,

that our solution is the straight line

y(x) =
yb
b
x . (12.91)

Carathéodory’s method of equivalent variational problems quickly

leads to the Euler–Lagrange equation and to Weierstrass’s condition

and is the starting point for many modern investigations of the cal-

culus of variations.

12.6. Recommended reading

Thiele (1997) and Fraser (2009) provide useful historical surveys of

sufficient conditions and of field theory in the calculus of variations.

David Hilbert introduced his invariant integral as part of Problem

23 of his famous lecture at the International Congress of Mathematics

in Paris in 1900. Osgood (1901) wrote a fine summary of Hilbert’s

method a short time later. See also Hedrick (1902). Hilbert’s lecture

was soon translated into English (Hilbert, 1902) and still makes for

fascinating reading.

Carathéodory’s method of equivalent variational problems can, of

course, be found in his well-known book (Carathéodory, 1935, 2002).

Maurin (1997) provides an exceptionally thorough overview of the

royal road. The history of Carathéodory’s contribution is discussed in

Pesch and Bulirsch (1994), Thiele (1997), and Fraser (2009). Carlson

(2002) compares Carathéodory’s method with that of Leitmann.

Anderson and Arthurs (1999) show how to solve the Hamilton–

Jacobi equation for the brachistochrone problem. For more on the

Hamilton–Jacobi equation and the calculus of variations, see Rund

(1966).

Carathéodory’s method and the Hamilton–Jacobi equation pro-

vide a bridge between the calculus of variations and its successors, dy-

namic programming and optimal control theory. See Dreyfus (1965)
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for more on the connection between the calculus of variations and dy-

namic programming and Snow (1967) and Pesch and Bulirsch (1994)

on the connection between Carathéodory’s method and optimal con-

trol theory.

12.7. Exercises

12.7.1. Hamilton–Jacobi equation for the brachistochrone.

Consider an integral of the form

J [y] =

b∫
a

√
1 + y′2

ya − y
dx (12.92)

and show that it leads to the Hamilton–Jacobi equation(
∂S

∂x

)2

+

(
∂S

∂y

)2

=
1

y
. (12.93)

12.7.2. Weak and strong extrema. Find and classify the extrema

of the following functionals (Elsgolc, 1961):

(a)

J [y] =

2∫
0

(xy′ + y′
2
) dx , (12.94)

y(0) = 1 , y(2) = 0 . (12.95)

(b)

J [y] =

a∫
0

(y′
2
+ 2yy′ − 16y2) dx , (12.96)

a > 0 , y(0) = 0 , y(a) = 0 . (12.97)

(c)

J [y] =

2∫
−1

y′(1 + x2y′) dx , (12.98)

y(−1) = 1 , y(2) = 4 . (12.99)
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(d)

J [y] =

2∫
1

y′(1 + x2y′) dx , (12.100)

y(1) = 3 , y(2) = 5 . (12.101)

(e)

J [y] =

2∫
−1

y′(1 + x2y′) dx , (12.102)

y(−1) = y(2) = 1 . (12.103)

(f)

J [y] =

π/4∫
0

(4y2 − y′
2
+ 8y) dx , (12.104)

y(0) = −1 , y(π/4) = 0 . (12.105)

(g)

J [y] =

2∫
1

(x2y′
2
+ 12y2) dx , (12.106)

y(1) = 1 , y(2) = 8 . (12.107)

(h)

J [y] =

x1∫
x0

1 + y2

y′2
dx , (12.108)

y(x0) = y0 , y(x1) = y1 . (12.109)

(i)

J [y] =

1∫
0

(y′
2
+ y2 + 2y e2x) dx , (12.110)

y(0) =
1

3
, y(1) =

1

3
e2 . (12.111)
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(j)

J [y] =

π/4∫
0

(y2 − y′
2
+ 6 y sin 2x) dx , (12.112)

y(0) = 0 , y(π/4) = 1 . (12.113)

(k)

J [y] =

x1∫
0

1

y′
dx , (12.114)

y(0) = 0 , y(x1) = y1 , x1 > 0 , y1 > 0 . (12.115)

(l)

J [y] =

x1∫
0

1

y′2
dx , (12.116)

y(0) = 0 , y(x1) = y1 , x1 > 0 , y1 > 0 . (12.117)

(m)

J [y] =

2∫
1

x3

y′2
dx , (12.118)

y(1) = 1 , y(2) = 4 . (12.119)

(n)

J [y] =

3∫
1

(12xy + y′
2
) dx , (12.120)

y(1) = 0 , y(3) = 26 . (12.121)
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des problémes sur des isopérimetrés; avec une nouvelle méthode
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Physique, (1786):7–37, 1788.

V. P. Legeza. Brachistochrone for a rolling cylinder. Mechanics of

Solids, 45:27–33, 2010.

G. W. Leibniz. Communicatio suæ pariter, duarumque alienarum ad

edendum sibi primum a Dn. Jo. Bernoullio, deinde a Dn. Marchione

Hospitalio communicatarum solutionum problematis curvæ celer-

rimi descensus a Dn. Jo. Bernoullio geometris publice propositi, una

cum solutione sua problematis alterius ab eodem postea propositi.

Acta Eruditorum, 16:201–205, 1697.

A. W. Leissa. The historical bases of the Rayleigh and Ritz methods.

Journal of Sound and Vibration, 287:961–978, 2005.
                

                                                                                                               



288 Bibliography

D. S. Lemons. Perfect Form: Variational Principles, Methods, and

Applications in Elementary Physics. Princeton University Press,

Princeton, New Jersey, USA, 1997.
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weak, 33, 237

optical path length, 93
optics, 190

optimal control theory, 273

osculating planes, 14

parabola of safety, 169
parabolic wire, 137

paraboloid, 105, 138

pencil, 57, 161, 257, 264
pendulum

double, 80
simple, 80, 82, 87, 104

spherical, 85, 86, 105

positive homogeneity, 179, 181,
185, 186, 197, 201, 225, 228

principle

Fermat’s, 3, 93, 95, 101
Hamilton’s, 81, 132, 169

of minimum total potential
energy, 71
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problem
homogeneous, 177–181, 184, 186,

189, 190, 196, 198, 201, 224

isoperimetric, 212
Newton’s, 247, 250, 252, 254

parametric, 179, 184, 189, 190,
224

parametric Queen Dido, 186
Plateau’s, 16, 98

Queen Dido’s, 107, 120

soap-film, 14, 190
Zermelo’s navigation, 191, 194,

197, 211, 212

pseudosphere, 12

ray equation, 94

ray optics, 93, 101
refractive index, 93, 94

regular curve, 177

regular problem, 48
Riccati equation, 147, 169

rolling penny, 111
rotating hoop, 103

royal road, 255, 267–273

Scherk’s minimal surface, 25

slack variables, 136
sliding rod, 133

slope of the field, 256

soap film(s), 19, 63, 64
solid of revolution, 247, 251, 252

stationary point, 47

strain energy, 74, 76
strain energy density, 74

surface area, 4, 15, 17, 24, 98, 248

tautochrone, 4, 18, 19

tube trains, 5, 7, 19

variation, 33, 139
first, 36, 37, 41, 70, 71, 81, 97,

141, 151, 184, 193, 194, 199,
216, 217

fourth, 154

second, 36, 141–143, 148–150,
153, 154, 167, 168, 184, 190

strong, 34, 35, 141, 175, 176, 235,

237, 238, 241, 242, 247, 253
third, 154, 168

total, 36, 70, 77, 97, 140, 141,
199, 260–262

weak, 35, 69, 77, 96, 118, 140,
149, 172, 173, 175, 199, 235,
242

variational derivative, 30, 31, 45

Weierstrass E-function, 243
Weierstrass equation, 182, 184–186,

190
Weierstrass excess function, 243,

245, 246, 253, 262–266, 269
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www.ams.org/bookpages/stml-72

AMS on the Web
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This book is intended for a first course in the calculus of variations, at the 
senior or beginning graduate level. The reader will learn methods for finding 
functions that maximize or minimize integrals. The text lays out important 
necessary and sufficient conditions for extrema in historical order, and it illus-
trates these conditions with numerous worked-out examples from mechanics, 
optics, geometry, and other fields.

The exposition starts with simple integrals containing a single independent 
variable, a single dependent variable, and a single derivative, subject to weak 
variations, but steadily moves on to more advanced topics, including multi-
variate problems, constrained extrema, homogeneous problems, problems 
with variable endpoints, broken extremals, strong variations, and sufficiency 
conditions. Numerous line drawings clarify the mathematics.

Each chapter ends with recommended readings that introduce the student 
to the relevant scientific literature and with exercises that consolidate under-
standing.
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