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Birkhäuser

Boston • Basel • Berlin



Tyn Myint-U
5 Sue Terrace
Westport, CT 06880
USA

Lokenath Debnath
Department of Mathematics
University of Texas-Pan American
1201 W. University Drive
Edinburgh, TX 78539
USA

Cover design by Alex Gerasev.

Mathematics Subject Classification (2000): 00A06, 00A69, 34B05, 34B24, 34B27, 34G20, 35-01,

35-02, 35A15, 35A22, 35A25, 35C05, 35C15, 35Dxx, 35E05, 35E15, 35Fxx, 35F05, 35F10, 35F15,

35F20, 35F25, 35G10, 35G20, 35G25, 35J05, 35J10, 35J20, 35K05, 35K10, 35K15, 35K55, 35K60,

35L05, 35L10, 35L15, 35L20, 35L25, 35L30, 35L60, 35L65, 35L67, 35L70, 35Q30, 35Q35, 35Q40,

35Q51, 35Q53, 35Q55, 35Q58, 35Q60, 35Q80, 42A38, 44A10, 44A35 49J40, 58E30, 58E50, 65L15,

65M25, 65M30, 65R10, 70H05, 70H20, 70H25, 70H30, 76Bxx, 76B15, 76B25, 76D05, 76D33,

76E30, 76M30, 76R50, 78M30, 81Q05

Library of Congress Control Number: 2006935807

ISBN-10: 0-8176-4393-1 e-ISBN-10: 0-8176-4560-8
ISBN-13: 978-0-8176-4393-5 e-ISBN-13: 978-0-8176-4560-1

Printed on acid-free paper.

c©2007 Birkhäuser Boston
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“True Laws of Nature cannot be linear.”

“The search for truth is more precious than its possession.”

“Everything should be made as simple as possible, but not a bit sim-
pler.”

Albert Einstein

“No human investigation can be called real science if it cannot be demon-
strated mathematically.”

Leonardo Da Vinci

“First causes are not known to us, but they are subjected to simple
and constant laws that can be studied by observation and whose study is
the goal of Natural Philosophy ... Heat penetrates, as does gravity, all the
substances of the universe; its rays occupy all regions of space. The aim of
our work is to expose the mathematical laws that this element follows ... The
differential equations for the propagation of heat express the most general
conditions and reduce physical questions to problems in pure Analysis that
is properly the object of the theory.”

James Clerk Maxwell

“One of the properties inherent in mathematics is that any real progress
is accompanied by the discovery and development of new methods and sim-
plifications of previous procedures ... The unified character of mathematics
lies in its very nature; indeed, mathematics is the foundation of all exact
natural sciences.”

David Hilbert

“ ... partial differential equations are the basis of all physical theorems.
In the theory of sound in gases, liquid and solids, in the investigations
of elasticity, in optics, everywhere partial differential equations formulate
basic laws of nature which can be checked against experiments.”

Bernhard Riemann

“The effective numerical treatment of partial differential equations is
not a handicraft, but an art.”

Folklore

“The advantage of the principle of least action is that in one and the
same equation it relates the quantities that are immediately relevant not
only to mechanics but also to electrodynamics and thermodynamics; these
quantities are space, time and potential.”

Max Planck



“The thorough study of nature is the most ground for mathematical
discoveries.”

“The equations for the flow of heat as well as those for the oscillations of
acoustic bodies and of fluids belong to an area of analysis which has recently
been opened, and which is worth examining in the greatest detail.”

Joseph Fourier

“Of all the mathematical disciplines, the theory of differential equation
is the most important. All branches of physics pose problems which can be
reduced to the integration of differential equations. More generally, the way
of explaining all natural phenomena which depend on time is given by the
theory of differential equations.”

Sophus Lie

“Differential equations form the basis for the scientific view of the
world.”

V.I. Arnold

“What we know is not much. What we do not know is immense.”

“The algebraic analysis soon makes us forget the main object [of our
research] by focusing our attention on abstract combinations and it is only
at the end that we return to the original objective. But in abandoning one-
self to the operations of analysis, one is led to the generality of this method
and the inestimable advantage of transforming the reasoning by mechanical
procedures to results often inaccessible by geometry ... No other language
has the capacity for the elegance that arises from a long sequence of ex-
pressions linked one to the other and all stemming from one fundamental
idea.”

“It is India that gave us the ingenious method of expressing all numbers
by ten symbols, each symbol receiving a value of position, as well as an
absolute value. We shall appreciate the grandeur of the achievement when
we remember that it escaped the genius of Archimedes and Appolonius.”

P.S. Laplace

“The mathematician’s best work is art, a high perfect art, as daring
as the most secret dreams of imagination, clear and limpid. Mathematical
genius and artistic genius touch one another.”

Gȯsta Mittag-Leffler
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Preface to the Fourth Edition

“A teacher can never truly teach unless he is still learning himself. A lamp
can never light another lamp unless it continues to burn its own flame. The
teacher who has come to the end of his subject, who has no living traffic
with his knowledge but merely repeats his lessons to his students, can only
load their minds; he cannot quicken them.”

Rabindranath Tagore
An Indian Poet

1913 Nobel Prize Winner for Literature

The previous three editions of our book were very well received and used
as a senior undergraduate or graduate-level text and research reference in
the United States and abroad for many years. We received many comments
and suggestions from many students, faculty and researchers around the
world. These comments and criticisms have been very helpful, beneficial,
and encouraging. This fourth edition is the result of the input.

Another reason for adding this fourth edition to the literature is the fact
that there have been major discoveries of new ideas, results and methods
for the solution of linear and nonlinear partial differential equations in the
second half of the twentieth century. It is becoming even more desirable for
mathematicians, scientists and engineers to pursue study and research on
these topics. So what has changed, and will continue to change is the nature
of the topics that are of interest in mathematics, applied mathematics,
physics and engineering, the evolution of books such is this one is a history
of these shifting concerns.

This new and revised edition preserves the basic content and style of the
third edition published in 1989. As with the previous editions, this book has
been revised primarily as a comprehensive text for senior undergraduates
or beginning graduate students and a research reference for professionals in
mathematics, science and engineering, and other applied sciences. The main
goal of the book is to develop required analytical skills on the part of the



xvi Preface to the Fourth Edition

reader, rather than to focus on the importance of more abstract formulation,
with full mathematical rigor. Indeed, our major emphasis is to provide
an accessible working knowledge of the analytical and numerical methods
with proofs required in mathematics, applied mathematics, physics, and
engineering. The revised edition was greatly influenced by the statements
that Lord Rayleigh and Richard Feynman made as follows:

“In the mathematical investigation I have usually employed such meth-
ods as present themselves naturally to a physicist. The pure mathematician
will complain, and (it must be confessed) sometimes with justice, of defi-
cient rigor. But to this question there are two sides. For, however important
it may be to maintain a uniformly high standard in pure mathematics, the
physicist may occasionally do well to rest content with arguments, which
are fairly satisfactory and conclusive from his point of view. To his mind,
exercised in a different order of ideas, the more severe procedure of the pure
mathematician may appear not more but less demonstrative. And further,
in many cases of difficulty to insist upon highest standard would mean
the exclusion of the subject altogether in view of the space that would be
required.”

Lord Rayleigh

“... However, the emphasis should be somewhat more on how to do the
mathematics quickly and easily, and what formulas are true, rather than
the mathematicians’ interest in methods of rigorous proof.”

Richard P. Feynman

We have made many additions and changes in order to modernize the
contents and to improve the clarity of the previous edition. We have also
taken advantage of this new edition to correct typographical errors, and to
update the bibliography, to include additional topics, examples of applica-
tions, exercises, comments and observations, and in some cases, to entirely
rewrite and reorganize many sections. This is plenty of material in the book
for a year-long course. Some of the material need not be covered in a course
work and can be left for the readers to study on their own in order to prepare
them for further study and research. This edition contains a collection of
over 900 worked examples and exercises with answers and hints to selected
exercises. Some of the major changes and additions include the following:

1. Chapter 1 on Introduction has been completely revised and a new sec-
tion on historical comments was added to provide information about
the historical developments of the subject. These changes have been
made to provide the reader to see the direction in which the subject
has developed and find those contributed to its developments.

2. A new Chapter 2 on first-order, quasi-linear, and linear partial differ-
ential equations, and method of characteristics has been added with
many new examples and exercises.
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3. Two sections on conservation laws, Burgers’ equation, the Schrödinger
and the Korteweg-de Vries equations have been included in Chapter 3.

4. Chapter 6 on Fourier series and integrals with applications has been
completely revised and new material added, including a proof of the
pointwise convergence theorem.

5. A new section on fractional partial differential equations has been added
to Chapter 12 with many new examples of applications.

6. A new section on the Lax pair and the Zakharov and Shabat Scheme
has been added to Chapter 13 to modernize its contents.

7. Some sections of Chapter 14 have been revised and a new short section
on the finite element method has been added to this chapter.

8. A new Chapter 15 on tables of integral transforms has been added in
order to make the book self-contained.

9. The whole section on Answers and Hints to Selected Exercises has been
expanded to provide additional help to students. All figures have been
redrawn and many new figures have been added for a clear understand-
ing of physical explanations.

10. An Appendix on special functions and their properties has been ex-
panded.

Some of the highlights in this edition include the following:

• The book offers a detailed and clear explanation of every concept and
method that is introduced, accompanied by carefully selected worked
examples, with special emphasis given to those topics in which students
experience difficulty.

• A wide variety of modern examples of applications has been selected
from areas of integral and ordinary differential equations, generalized
functions and partial differential equations, quantum mechanics, fluid
dynamics and solid mechanics, calculus of variations, linear and nonlin-
ear stability analysis.

• The book is organized with sufficient flexibility to enable instructors to
select chapters appropriate for courses of differing lengths, emphases,
and levels of difficulty.

• A wide spectrum of exercises has been carefully chosen and included at
the end of each chapter so the reader may further develop both rigorous
skills in the theory and applications of partial differential equations and
a deeper insight into the subject.

• Many new research papers and standard books have been added to the
bibliography to stimulate new interest in future study and research.
Index of the book has also been completely revised in order to include
a wide variety of topics.

• The book provides information that puts the reader at the forefront of
current research.

With the improvements and many challenging worked-out problems and
exercises, we hope this edition will continue to be a useful textbook for
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students as well as a research reference for professionals in mathematics,
applied mathematics, physics and engineering.

It is our pleasure to express our grateful thanks to many friends, col-
leagues, and students around the world who offered their suggestions and
help at various stages of the preparation of the book. We offer special
thanks to Dr. Andras Balogh, Mr. Kanadpriya Basu, and Dr. Dambaru
Bhatta for drawing all figures, and to Mrs. Veronica Martinez for typing
the manuscript with constant changes and revisions. In spite of the best
efforts of everyone involved, some typographical errors doubtless remain.
Finally, we wish to express our special thanks to Tom Grasso and the staff
of Birkhäuser Boston for their help and cooperation.

Tyn Myint-U

Lokenath Debnath
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The theory of partial differential equations has long been one of the most
important fields in mathematics. This is essentially due to the frequent
occurrence and the wide range of applications of partial differential equa-
tions in many branches of physics, engineering, and other sciences. With
much interest and great demand for theory and applications in diverse ar-
eas of science and engineering, several excellent books on PDEs have been
published. This book is written to present an approach based mainly on
the mathematics, physics, and engineering problems and their solutions,
and also to construct a course appropriate for all students of mathemati-
cal, physical, and engineering sciences. Our primary objective, therefore, is
not concerned with an elegant exposition of general theory, but rather to
provide students with the fundamental concepts, the underlying principles,
a wide range of applications, and various methods of solution of partial
differential equations.

This book, a revised and expanded version of the second edition pub-
lished in 1980, was written for a one-semester course in the theory and appli-
cations of partial differential equations. It has been used by advanced under-
graduate or beginning graduate students in applied mathematics, physics,
engineering, and other applied sciences. The prerequisite for its study is a
standard calculus sequence with elementary ordinary differential equations.
This revised edition is in part based on lectures given by Tyn Myint-U at
Manhattan College and by Lokenath Debnath at the University of Central
Florida. This revision preserves the basic content and style of the earlier
editions, which were written by Tyn Myint-U alone. However, the authors
have made some major additions and changes in this third edition in order
to modernize the contents and to improve clarity. Two new chapters added
are on nonlinear PDEs, and on numerical and approximation methods. New
material emphasizing applications has been inserted. New examples and ex-
ercises have been provided. Many physical interpretations of mathematical
solutions have been added. Also, the authors have improved the exposition
by reorganizing some material and by making examples, exercises, and ap-
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plications more prominent in the text. These additions and changes have
been made with the student uppermost in mind.

The first chapter gives an introduction to partial differential equations.
The second chapter deals with the mathematical models representing phys-
ical and engineering problems that yield the three basic types of PDEs.
Included are only important equations of most common interest in physics
and engineering. The third chapter constitutes an account of the classifi-
cation of linear PDEs of second order in two independent variables into
hyperbolic, parabolic, and elliptic types and, in addition, illustrates the de-
termination of the general solution for a class of relatively simple equations.

Cauchy’s problem, the Goursat problem, and the initial boundary-value
problems involving hyperbolic equations of the second order are presented in
Chapter 4. Special attention is given to the physical significance of solutions
and the methods of solution of the wave equation in Cartesian, spherical
polar, and cylindrical polar coordinates. The fifth chapter contains a fuller
treatment of Fourier series and integrals essential for the study of PDEs.
Also included are proofs of several important theorems concerning Fourier
series and integrals.

Separation of variables is one of the simplest methods, and the most
widely used method, for solving PDEs. The basic concept and separability
conditions necessary for its application are discussed in the sixth chap-
ter. This is followed by some well-known problems of applied mathematics,
mathematical physics, and engineering sciences along with a detailed anal-
ysis of each problem. Special emphasis is also given to the existence and
uniqueness of the solutions and to the fundamental similarities and differ-
ences in the properties of the solutions to the various PDEs. In Chapter
7, self-adjoint eigenvalue problems are treated in depth, building on their
introduction in the preceding chapter. In addition, Green’s function and its
applications to eigenvalue problems and boundary-value problems for or-
dinary differential equations are presented. Following the general theory of
eigenvalues and eigenfunctions, the most common special functions, includ-
ing the Bessel, Legendre, and Hermite functions, are discussed as exam-
ples of the major role of special functions in the physical and engineering
sciences. Applications to heat conduction problems and the Schrödinger
equation for the linear harmonic oscillator are also included.

Boundary-value problems and the maximum principle are described in
Chapter 8, and emphasis is placed on the existence, uniqueness, and well-
posedness of solutions. Higher-dimensional boundary-value problems and
the method of eigenfunction expansion are treated in the ninth chapter,
which also includes several applications to the vibrating membrane, waves
in three dimensions, heat conduction in a rectangular volume, the three-
dimensional Schrödinger equation in a central field of force, and the hydro-
gen atom. Chapter 10 deals with the basic concepts and construction of
Green’s function and its application to boundary-value problems.
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Chapter 11 provides an introduction to the use of integral transform
methods and their applications to numerous problems in applied mathe-
matics, mathematical physics, and engineering sciences. The fundamental
properties and the techniques of Fourier, Laplace, Hankel, and Mellin trans-
forms are discussed in some detail. Applications to problems concerning
heat flows, fluid flows, elastic waves, current and potential electric trans-
mission lines are included in this chapter.

Chapters 12 and 13 are entirely new. First-order and second-order non-
linear PDEs are covered in Chapter 12. Most of the contents of this chapter
have been developed during the last twenty-five years. Several new nonlinear
PDEs including the one-dimensional nonlinear wave equation, Whitham’s
equation, Burgers’ equation, the Korteweg–de Vries equation, and the non-
linear Schrödinger equation are solved. The solutions of these equations are
then discussed with physical significance. Special emphasis is given to the
fundamental similarities and differences in the properties of the solutions
to the corresponding linear and nonlinear equations under consideration.

The final chapter is devoted to the major numerical and approximation
methods for finding solutions of PDEs. A fairly detailed treatment of ex-
plicit and implicit finite difference methods is given with applications The
variational method and the Euler–Lagrange equations are described with
many applications. Also included are the Rayleigh–Ritz, the Galerkin, and
the Kantorovich methods of approximation with many illustrations and
applications.

This new edition contains almost four hundred examples and exercises,
which are either directly associated with applications or phrased in terms
of the physical and engineering contexts in which they arise. The exercises
truly complement the text, and answers to most exercises are provided at
the end of the book. The Appendix has been expanded to include some basic
properties of the Gamma function and the tables of Fourier, Laplace, and
Hankel transforms. For students wishing to know more about the subject
or to have further insight into the subject matter, important references are
listed in the Bibliography.

The chapters on mathematical models, Fourier series and integrals, and
eigenvalue problems are self-contained, so these chapters can be omitted for
those students who have prior knowledge of the subject.

An attempt has been made to present a clear and concise exposition
of the mathematics used in analyzing a variety of problems. With this in
mind, the chapters are carefully organized to enable students to view the
material in an orderly perspective. For example, the results and theorems
in the chapters on Fourier series and integrals and on eigenvalue problems
are explicitly mentioned, whenever necessary, to avoid confusion with their
use in the development of PDEs. A wide range of problems subject to
various boundary conditions has been included to improve the student’s
understanding.

In this third edition, specific changes and additions include the following:
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1. Chapter 2 on mathematical models has been revised by adding a list of
the most common linear PDEs in applied mathematics, mathematical
physics, and engineering science.

2. The chapter on the Cauchy problem has been expanded by including the
wave equations in spherical and cylindrical polar coordinates. Examples
and exercises on these wave equations and the energy equation have
been added.

3. Eigenvalue problems have been revised with an emphasis on Green’s
functions and applications. A section on the Schrödinger equation
for the linear harmonic oscillator has been added. Higher-dimensional
boundary-value problems with an emphasis on applications, and a sec-
tion on the hydrogen atom and on the three-dimensional Schrödinger
equation in a central field of force have been added to Chapter 9.

4. Chapter 11 has been extensively reorganized and revised in order to
include Hankel and Mellin transforms and their applications, and has
new sections on the asymptotic approximation method and the finite
Hankel transform with applications. Many new examples and exercises,
some new material with applications, and physical interpretations of
mathematical solutions have also been included.

5. A new chapter on nonlinear PDEs of current interest and their applica-
tions has been added with considerable emphasis on the fundamental
similarities and the distinguishing differences in the properties of the
solutions to the nonlinear and corresponding linear equations.

6. Chapter 13 is also new. It contains a fairly detailed treatment of explicit
and implicit finite difference methods with their stability analysis. A
large section on the variational methods and the Euler–Lagrange equa-
tions has been included with many applications. Also included are the
Rayleigh–Ritz, the Galerkin, and the Kantorovich methods of approxi-
mation with illustrations and applications.

7. Many new applications, examples, and exercises have been added to
deepen the reader’s understanding. Expanded versions of the tables of
Fourier, Laplace, and Hankel transforms are included. The bibliography
has been updated with more recent and important references.

As a text on partial differential equations for students in applied mathe-
matics, physics, engineering, and applied sciences, this edition provides the
student with the art of combining mathematics with intuitive and physical
thinking to develop the most effective approach to solving problems.

In preparing this edition, the authors wish to express their sincere
thanks to those who have read the manuscript and offered many valuable
suggestions and comments. The authors also wish to express their thanks
to the editor and the staff of Elsevier–North Holland, Inc. for their kind
help and cooperation.

Tyn Myint-U

Lokenath Debnath
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Introduction

“If you wish to foresee the future of mathematics, our proper course is to
study the history and present condition of the science.”

Henri Poincaré

“However varied may be the imagination of man, nature is a thousand times
richer, ... Each of the theories of physics ... presents (partial differential)
equations under a new aspect ... without the theories, we should not know
partial differential equations.”

Henri Poincaré

1.1 Brief Historical Comments

Historically, partial differential equations originated from the study of sur-
faces in geometry and a wide variety of problems in mechanics. During the
second half of the nineteenth century, a large number of famous mathe-
maticians became actively involved in the investigation of numerous prob-
lems presented by partial differential equations. The primary reason for this
research was that partial differential equations both express many funda-
mental laws of nature and frequently arise in the mathematical analysis of
diverse problems in science and engineering.

The next phase of the development of linear partial differential equa-
tions was characterized by efforts to develop the general theory and various
methods of solution of linear equations. In fact, partial differential equa-
tions have been found to be essential to the theory of surfaces on the one
hand and to the solution of physical problems on the other. These two ar-
eas of mathematics can be seen as linked by the bridge of the calculus of
variations. With the discovery of the basic concepts and properties of dis-
tributions, the modern theory of linear partial differential equations is now
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well established. The subject plays a central role in modern mathematics,
especially in physics, geometry, and analysis.

Almost all physical phenomena obey mathematical laws that can be
formulated by differential equations. This striking fact was first discovered
by Isaac Newton (1642–1727) when he formulated the laws of mechanics
and applied them to describe the motion of the planets. During the three
centuries since Newton’s fundamental discoveries, many partial differential
equations that govern physical, chemical, and biological phenomena have
been found and successfully solved by numerous methods. These equations
include Euler’s equations for the dynamics of rigid bodies and for the mo-
tion of an ideal fluid, Lagrange’s equations of motion, Hamilton’s equations
of motion in analytical mechanics, Fourier’s equation for the diffusion of
heat, Cauchy’s equation of motion and Navier’s equation of motion in elas-
ticity, the Navier–Stokes equations for the motion of viscous fluids, the
Cauchy–Riemann equations in complex function theory, the Cauchy–Green
equations for the static and dynamic behavior of elastic solids, Kirchhoff’s
equations for electrical circuits, Maxwell’s equations for electromagnetic
fields, and the Schrödinger equation and the Dirac equation in quantum
mechanics. This is only a sampling, and the recent mathematical and sci-
entific literature reveals an almost unlimited number of differential equa-
tions that have been discovered to model physical, chemical and biological
systems and processes.

From the very beginning of the study, considerable attention has been
given to the geometric approach to the solution of differential equations.
The fact that families of curves and surfaces can be defined by a differ-
ential equation means that the equation can be studied geometrically in
terms of these curves and surfaces. The curves involved, known as charac-
teristic curves, are very useful in determining whether it is or is not possible
to find a surface containing a given curve and satisfying a given differen-
tial equation. This geometric approach to differential equations was begun
by Joseph-Louis Lagrange (1736–1813) and Gaspard Monge (1746–1818).
Indeed, Monge first introduced the ideas of characteristic surfaces and char-
acteristic cones (or Monge cones). He also did some work on second-order
linear, homogeneous partial differential equations.

The study of first-order partial differential equations began to receive
some serious attention as early as 1739, when Alex-Claude Clairaut (1713–
1765) encountered these equations in his work on the shape of the earth.
On the other hand, in the 1770s Lagrange first initiated a systematic study
of the first-order nonlinear partial differential equations in the form

f (x, y, u, ux, uy) = 0, (1.1.1)

where u = u (x, y) is a function of two independent variables.
Motivated by research on gravitational effects on bodies of different

shapes and mass distributions, another major impetus for work in partial
differential equations originated from potential theory. Perhaps the most
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important partial differential equation in applied mathematics is the poten-
tial equation, also known as the Laplace equation uxx +uyy = 0, where sub-
scripts denote partial derivatives. This equation arose in steady state heat
conduction problems involving homogeneous solids. James Clerk Maxwell
(1831–1879) also gave a new initiative to potential theory through his fa-
mous equations, known as Maxwell’s equations for electromagnetic fields.

Lagrange developed analytical mechanics as the application of partial
differential equations to the motion of rigid bodies. He also described the
geometrical content of a first-order partial differential equation and de-
veloped the method of characteristics for finding the general solution of
quasi-linear equations. At the same time, the specific solution of physical
interest was obtained by formulating an initial-value problem (or a Cauchy
Problem) that satisfies certain supplementary conditions. The solution of an
initial-value problem still plays an important role in applied mathematics,
science and engineering. The fundamental role of characteristics was soon
recognized in the study of quasi-linear and nonlinear partial differential
equations. Physically, the first-order, quasi-linear equations often represent
conservation laws which describe the conservation of some physical quanti-
ties of a system.

In its early stages of development, the theory of second-order linear par-
tial differential equations was concentrated on applications to mechanics
and physics. All such equations can be classified into three basic categories:
the wave equation, the heat equation, and the Laplace equation (or po-
tential equation). Thus, a study of these three different kinds of equations
yields much information about more general second-order linear partial
differential equations. Jean d’Alembert (1717–1783) first derived the one-
dimensional wave equation for vibration of an elastic string and solved this
equation in 1746. His solution is now known as the d’Alembert solution. The
wave equation is one of the oldest equations in mathematical physics. Some
form of this equation, or its various generalizations, almost inevitably arises
in any mathematical analysis of phenomena involving the propagation of
waves in a continuous medium. In fact, the studies of water waves, acoustic
waves, elastic waves in solids, and electromagnetic waves are all based on
this equation. A technique known as the method of separation of variables is
perhaps one of the oldest systematic methods for solving partial differential
equations including the wave equation. The wave equation and its meth-
ods of solution attracted the attention of many famous mathematicians in-
cluding Leonhard Euler (1707–1783), James Bernoulli (1667–1748), Daniel
Bernoulli (1700–1782), J.L. Lagrange (1736–1813), and Jacques Hadamard
(1865–1963). They discovered solutions in several different forms, and the
merit of their solutions and relations among these solutions were argued in a
series of papers extending over more than twenty-five years; most concerned
the nature of the kinds of functions that can be represented by trigonomet-
ric (or Fourier) series. These controversial problems were finally resolved
during the nineteenth century.
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It was Joseph Fourier (1768–1830) who made the first major step to-
ward developing a general method of solutions of the equation describing
the conduction of heat in a solid body in the early 1800s. Although Fourier
is most celebrated for his work on the conduction of heat, the mathemati-
cal methods involved, particularly trigonometric series, are important and
very useful in many other situations. He created a coherent mathematical
method by which the different components of an equation and its solution
in series were neatly identified with the different aspects of the physical
solution being analyzed. In spite of the striking success of Fourier analysis
as one of the most useful mathematical methods, J.L. Lagrange and S.D.
Poisson (1781–1840) hardly recognized Fourier’s work because of its lack
of rigor. Nonetheless, Fourier was eventually recognized for his pioneering
work after publication of his monumental treatise entitled La Théorie Au-
atytique de la Chaleur in 1822.

It is generally believed that the concept of an integral transform origi-
nated from the Integral Theorem as stated by Fourier in his 1822 treatise.
It was the work of Augustin Cauchy (1789–1857) that contained the expo-
nential form of the Fourier Integral Theorem as

f (x) =
1

2π

∫ ∞

−∞
eikx

[∫ ∞

−∞
e−ikξ f (ξ) dξ

]
dk. (1.1.2)

This theorem has been expressed in several slightly different forms to better
adapt it for particular applications. It has been recognized, almost from the
start, however, that the form which best combines mathematical simplicity
and complete generality makes use of the exponential oscillating function
exp (ikx). Indeed, the Fourier integral formula (1.1.2) is regarded as one
of the most fundamental results of modern mathematical analysis, and it
has widespread physical and engineering applications. The generality and
importance of the theorem is well expressed by Kelvin and Tait who said:
“ ... Fourier’s Theorem, which is not only one of the most beautiful results
of modern analysis, but may be said to furnish an indispensable instrument
in the treatment of nearly every recondite question in modern physics.
To mention only sonorous vibrations, the propagation of electric signals
along a telegraph wire, and the conduction of heat by the earth’s crust, as
subjects in their generality intractable without it, is to give but a feeble
idea of its importance.” This integral formula (1.1.2) is usually used to
define the classical Fourier transform of a function and the inverse Fourier
transform. No doubt, the scientific achievements of Joseph Fourier have not
only provided the fundamental basis for the study of heat equation, Fourier
series, and Fourier integrals, but for the modern developments of the theory
and applications of the partial differential equations.

One of the most important of all the partial differential equations in-
volved in applied mathematics and mathematical physics is that associated
with the name of Pierre-Simon Laplace (1749–1827). This equation was
first discovered by Laplace while he was involved in an extensive study of
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gravitational attraction of arbitrary bodies in space. Although the main
field of Laplace’s research was celestial mechanics, he also made important
contributions to the theory of probability and its applications. This work
introduced the method known later as the Laplace transform, a simple and
elegant method of solving differential and integral equations. Laplace first
introduced the concept of potential , which is invaluable in a wide range of
subjects, such as gravitation, electromagnetism, hydrodynamics, and acous-
tics. Consequently, the Laplace equation is often referred to as the potential
equation. This equation is also an important special case of both the wave
equation and the heat equation in two or three dimensions. It arises in the
study of many physical phenomena including electrostatic or gravitational
potential, the velocity potential for an imcompossible fluid flows, the steady
state heat equation, and the equilibrium (time independent) displacement
field of a two- or three-dimensional elastic membrane. The Laplace equa-
tion also occurs in other branches of applied mathematics and mathematical
physics.

Since there is no time dependence in any of the mathematical problems
stated above, there are no initial data to be satisfied by the solutions of
the Laplace equation. They must, however, satisfy certain boundary con-
ditions on the boundary curve or surface of a region in which the Laplace
equation is to be solved. The problem of finding a solution of Laplace’s
equation that takes on the given boundary values is known as the Dirichlet
boundary-value problem, after Peter Gustav Lejeune Dirichlet (1805–1859).
On the other hand, if the values of the normal derivative are prescribed
on the boundary, the problem is known as Neumann boundary-value prob-
lem, in honor of Karl Gottfried Neumann (1832–1925). Despite great efforts
by many mathematicians including Gaspard Monge (1746–1818), Adrien-
Marie Legendre (1752–1833), Carl Friedrich Gauss (1777–1855), Simeon-
Denis Poisson (1781–1840), and Jean Victor Poncelet (1788–1867), very
little was known about the general properties of the solutions of Laplace’s
equation until 1828, when George Green (1793–1841) and Mikhail Ostro-
gradsky (1801–1861) independently investigated properties of a class of so-
lutions known as harmonic functions. On the other hand, Augustin Cauchy
(1789–1857) and Bernhard Riemann (1826–1866) derived a set of first-order
partial differential equations, known as the Cauchy–Riemann equations, in
their independent work on functions of complex variables. These equations
led to the Laplace equation, and functions satisfying this equation in a
domain are called harmonic functions in that domain. Both Cauchy and
Riemann occupy a special place in the history of mathematics. Riemann
made enormous contributions to almost all areas of pure and applied math-
ematics. His extraordinary achievements stimulated further developments,
not only in mathematics, but also in mechanics, physics, and the natural
sciences as a whole.

Augustin Cauchy is universally recognized for his fundamental contribu-
tions to complex analysis. He also provided the first systematic and rigorous
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investigation of differential equations and gave a rigorous proof for the exis-
tence of power series solutions of a differential equation in the 1820s. In 1841
Cauchy developed what is known as the method of majorants for proving
that a solution of a partial differential equation exists in the form of a power
series in the independent variables. The method of majorants was also in-
troduced independently by Karl Weierstrass (1815–1896) in that same year
in application to a system of differential equations. Subsequently, Weier-
strass’s student Sophie Kowalewskaya (1850–1891) used the method of ma-
jorants and a normalization theorem of Carl Gustav Jacobi (1804–1851) to
prove an exceedingly elegant theorem, known as the Cauchy–Kowalewskaya
theorem. This theorem quite generally asserts the local existence of solu-
tions of a system of partial differential equations with initial conditions on
a noncharacteristic surface. This theorem seems to have little practical im-
portance because it does not distinguish between well-posed and ill-posed
problems; it covers situations where a small change in the initial data leads
to a large change in the solution. Historically, however, it is the first exis-
tence theorem for a general class of partial differential equations.

The general theory of partial differential equations was initiated by A.R.
Forsyth (1858–1942) in the fifth and sixth volumes of his Theory of Differ-
ential Equations and by E.J.B. Goursat (1858–1936) in his book entitled
Cours d’ analyse mathematiques (1918) and his Lecons sur l’ integration
des equations aux dérivées, volume 1 (1891) and volume 2 (1896). Another
notable contribution to this subject was made by E. Cartan’s book, Lecons
sur les invariants intégraux, published in 1922. Joseph Liouville (1809–
1882) formulated a more tractable partial differential equation in the form

uxx + uyy = k exp (au) , (1.1.3)

and obtained a general solution of it. This equation has a large number of
applications. It is a special case of the equation derived by J.L. Lagrange for
the stream function ψ in the case of two-dimensional steady vortex motion
in an incompossible fluid, that is,

ψxx + ψyy = F (ψ) , (1.1.4)

where F (ψ) is an arbitrary function of ψ. When ψ = u and F (u) = keau,
equation (1.1.4) reduces to the Liouville equation (1.1.3). In view of the
special mathematical interest in the nonhomogeneous nonlinear equation
of the type (1.1.4), a number of famous mathematicians including Henri
Poincaré, E. Picard (1856–1941), Cauchy (1789–1857), Sophus Lie (1842–
1899), L.M.H. Navier (1785–1836), and G.G. Stokes (1819–1903) made
many major contributions to partial differential equations.

Historically, Euler first solved the eigenvalue problem when he devel-
oped a simple mathematical model for describing the the ‘buckling’ modes
of a vertical elastic beam. The general theory of eigenvalue problems for
second-order differential equations, now known as the Sturm–Liouville The-
ory , originated from the study of a class of boundary-value problems due to
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Charles Sturm (1803–1855) and Joseph Liouville (1809–1882). They showed
that, in general, there is an infinite set of eigenvalues satisfying the given
equation and the associated boundary conditions, and that these eigen-
values increase to infinity. Corresponding to these eigenvalues, there is an
infinite set of orthogonal eigenfunctions so that the linear superposition
principle can be applied to find the convergent infinite series solution of
the given problem. Indeed, the Sturm–Liouville theory is a natural gener-
alization of the theory of Fourier series that greatly extends the scope of
the method of separation of variables. In 1926, the WKB approximation
method was developed by Gregor Wentzel, Hendrik Kramers, and Marcel-
Louis Brillouin for finding the approximate eigenvalues and eigenfunctions
of the one-dimensional Schrödinger equation in quantum mechanics. This
method is now known as the short-wave approximation or the geometrical
optics approximation in wave propagation theory.

At the end of the seventeenth century, many important questions and
problems in geometry and mechanics involved minimizing or maximiz-
ing of certain integrals for two reasons. The first of these were several
existence problems, such as, Newton’s problem of missile of least resis-
tance, Bernoulli’s isoperimetric problem, Bernoulli’s problem of the brachis-
tochrone (brachistos means shortest, chronos means time), the problem of
minimal surfaces due to Joseph Plateau (1801–1883), and Fermat’s principle
of least time. Indeed, the variational principle as applied to the propaga-
tion and reflection of light in a medium was first enunciated in 1662 by one
of the greatest mathematicians of the seventeenth century, Pierre Fermat
(1601–1665). According to his principle, a ray of light travels in a homoge-
neous medium from one point to another along a path in a minimum time.
The second reason is somewhat philosophical, that is, how to discover a
minimizing principle in nature. The following 1744 statement of Euler is
characteristic of the philosophical origin of what is known as the principle
of least action: “As the construction of the universe is the most perfect
possible, being the handiwork of all-wise Maker, nothing can be met with
in the world in which some maximal or minimal property is not displayed.
There is, consequently, no doubt but all the effects of the world can be
derived by the method of maxima and minima from their final causes as
well as from their efficient ones.” In the middle of the eighteenth century,
Pierre de Maupertius (1698–1759) stated a fundamental principle, known
as the principle of least action, as a guide to the nature of the universe.
A still more precise and general formulation of Maupertius’ principle of
least action was given by Lagrange in his Analytical Mechanics published
in 1788. He formulated it as

δS = δ

∫ t2

t1

(2T ) dt = 0, (1.1.5)

where T is the kinematic energy of a dynamical system with the constraint
that the total energy, (T + V ), is constant along the trajectories, and V is
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the potential energy of the system. He also derived the celebrated equation
of motion for a holonomic dynamical system

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi, (1.1.6)

where qi are the generalized coordinates, q̇i is the velocity, and Qi is the
force. For a conservative dynamical system, Qi = − ∂V

∂qi
, V = V (qi),

∂V
∂q̇i

= 0,

then (1.1.6) can be expressed in terms of the Lagrangian, L = T − V , as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (1.1.7)

This principle was then reformulated by Euler in a way that made it useful
in mathematics and physics.

The work of Lagrange remained unchanged for about half a century until
William R. Hamilton (1805–1865) published his research on the general
method in analytical dynamics which gave a new and very appealing form to
the Lagrange equations. Hamilton’s work also included his own variational
principle. In his work on optics during 1834–1835, Hamilton elaborated a
new principle of mechanics, known as Hamilton’s principle, describing the
stationary action for a conservative dynamical system in the form

δA = δ

∫ t1

t0

(T − V ) dt = δ

∫ t1

t0

L dt = 0. (1.1.8)

Hamilton’s principle (1.1.8) readily led to the Lagrange equation (1.1.6). In
terms of time t, the generalized coordinates qi, and the generalized momenta
pi = (∂L/q̇i) which characterize the state of a dynamical system, Hamilton
introduced the function

H (qi, pi, t) = piq̇i − L (qi, pi, t) , (1.1.9)

and then used it to represent the equation of motion (1.1.6) as a system of
first order partial differential equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂q̇i
. (1.1.10)

These equations are known as the celebrated Hamilton canonical equa-
tions of motion, and the function H (qi, pi, t) is referred to as the Hamilto-
nian which is equal to the total energy of the system. Following the work
of Hamilton, Karl Jacobi, Mikhail Ostrogradsky (1801–1862), and Henri
Poincaré (1854–1912) put forth new modifications of the variational princi-
ple. Indeed, the action integral S can be regarded as a function of general-
ized coordinates and time provided the terminal point is not fixed. In 1842,
Jacobi showed that S satisfies the first-order partial differential equation
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∂S

∂t
+ H

(
qi,

∂S

∂qi
, t

)
= 0, (1.1.11)

which is known as the Hamilton–Jacobi equation. In 1892, Poincaré defined
the action integral on the trajectories in phase space of the variable qi and
pi as

S =

∫ t1

t0

[piq̇i − H (pi, qi)] dt, (1.1.12)

and then formulated another modification of the Hamilton variational prin-
ciple which also yields the Hamilton canonical equations (1.1.10). From
(1.1.12) also follows the celebrated Poincaré–Cartan invariant

I =

∮

C

(piδqi − Hδt) , (1.1.13)

where C is an arbitrary closed contour in the phase space.
Indeed, the discovery of the calculus of variations in a modern sense

began with the independent work of Euler and Lagrange. The first neces-
sary condition for the existence of an extremum of a functional in a domain
leads to the celebrated Euler–Lagrange equation. This equation in its var-
ious forms now assumes primary importance, and more emphasis is given
to the first variation, mainly due to its power to produce significant equa-
tions, than to the second variation, which is of fundamental importance
in answering the question of whether or not an extremal actually provides
a minimum (or a maximum). Thus, the fundamental concepts of the cal-
culus of variations were developed in the eighteenth century in order to
obtain the differential equations of applied mathematics and mathemati-
cal physics. During its early development, the problems of the calculus of
variations were reduced to questions of the existence of differential equa-
tions problems until David Hilbert developed a new method in which the
existence of a minimizing function was established directly as the limit of
a sequence of approximations.

Considerable attention has been given to the problem of finding a neces-
sary and sufficient condition for the existence of a function which extremized
the given functional. Although the problem of finding a sufficient condition
is a difficult one, Legendre and C.G.J. Jacobi (1804–1851) discovered a
second necessary condition and a third necessary condition respectively.
Finally, it was Weierstrass who first provided a satisfactory foundation to
the theory of calculus of variations in his lectures at Berlin between 1856
and 1870. His lectures were essentially concerned with a complete review
of the work of Legendre and Jacobi. At the same time, he reexamined
the concepts of the first and second variations and looked for a sufficient
condition associated with the problem. In contrast to the work of his pre-
decessors, Weierstrass introduced the ideas of ‘strong variations’ and ‘the
excess function’ which led him to discover a fourth necessary condition
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and a satisfactory sufficient condition. Some of his outstanding discoveries
announced in his lectures were published in his collected work. At the con-
clusion of his famous lecture on ‘Mathematical Problems’ at the Paris Inter-
national Congress of Mathematicians in 1900, David Hilbert (1862–1943),
perhaps the most brilliant mathematician of the late nineteenth century,
gave a new method for the discussion of the minimum value of a functional.
He obtained another derivation of Weierstrass’s excess function and a new
approach to Jacobi’s problem of determining necessary and sufficient con-
ditions for the existence of a minimum of a functional; all this without the
use of the second variation. Finally, the calculus of variations entered the
new and wider field of ‘global’ problems with the original work of George
D. Birkhoff (1884–1944) and his associates. They succeeded in liberating
the theory of calculus of variations from the limitations imposed by the
restriction to ‘small variations’, and gave a general treatment of the global
theory of the subject with large variations.

In 1880, George Fitzgerald (1851–1901) probably first employed the vari-
ational principle in electromagnetic theory to derive Maxwell’s equations
for an electromagnetic field in a vacuum. Moreover, the variational principle
received considerable attention in electromagnetic theory after the work of
Karl Schwarzchild in 1903 as well as the work of Max Born (1882–1970)
who formulated the principle of stationary action in electrodynamics in
a symmetric four-dimensional form. On the other hand, Poincaré showed
in 1905 that the action integral is invariant under the Lorentz transfor-
mations. With the development of the special theory of relativity and the
relativistic theory of gravitation in the beginning of the twentieth century,
the variational principles received tremendous attention from many great
mathematicians and physicists including Albert Einstein (1879–1955), Hen-
drix Lorentz (1853–1928), Hermann Weyl (1885–1955), Felix Klein (1849–
1925), Amalie Noether (1882–1935), and David Hilbert. Even before the
use of variational principles in electrodynamics, Lord Rayleigh (1842–1919)
employed variational methods in his famous book, The Theory of Sound,
for the derivation of equations for oscillations in plates and rods in order to
calculate frequencies of natural oscillations of elastic systems. In his pioneer-
ing work in the 1960’s, Gerald Whitham first developed a general approach
to linear and nonlinear dispersive waves using a Lagrangian. He success-
fully formulated the averaged variational principle, which is now known as
the Whitham averaged variational principle, which was employed to derive
the basic equations for linear and nonlinear dispersive wave propagation
problems. In 1967, Luke first explicitly formulated a variational principle
for nonlinear water waves. In 1968, Bretherton and Garret generalized the
Whitham averaged variational principle to describe the conservation law for
the wave action in a moving medium. Subsequently, Ostrovsky and Peli-
novsky (1972) also generalized the Whitham averaged variational principle
to nonconservative systems.
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With the rapid development of the theory and applications of differen-
tial equations, the closed form analytical solutions of many different types
of equations were hardly possible. However, it is extremely important and
absolutely necessary to provide some insight into the qualitative and quan-
titative nature of solutions subject to initial and boundary conditions. This
insight usually takes the form of numerical and graphical representatives of
the solutions. It was E. Picard (1856–1941) who first developed the method
of successive approximations for the solutions of differential equations in
most general form and later made it an essential part of his treatment of
differential equations in the second volume of his Traité d’Analyse published
in 1896. During the last two centuries, the calculus of finite differences in
various forms played a significant role in finding the numerical solutions of
differential equations. Historically, many well known integration formulas
and numerical methods including the Euler–Maclaurin formula, Gregory
integration formula, the Gregory–Newton formula, Simpson’s rule, Adam–
Bashforth’s method, the Jacobi iteration, the Gauss–Seidel method, and the
Runge–Kutta method have been developed and then generalized in various
forms.

With the development of modern calculators and high-speed electronic
computers, there has been an increasing trend in research toward the numer-
ical solution of ordinary and partial differential equations during the twen-
tieth century. Special attention has also given to in depth studies of conver-
gence, stability, error analysis, and accuracy of numerical solutions. Many
well-known numerical methods including the Crank–Nicolson methods, the
Lax–Wendroff method, Richtmyer’s method, and Stone’s implicit iterative
technique have been developed in the second half of the twentieth century.
All finite difference methods reduce differential equations to discrete forms.
In recent years, more modern and powerful computational methods such
as the finite element method and the boundary element method have been
developed in order to handle curved or irregularly shaped domains. These
methods are distinguished by their more general character, which makes
them more capable of dealing with complex geometries, allows them to
use non-structured grid systems, and allows more natural imposition of the
boundary conditions.

During the second half of the nineteenth century, considerable attention
was given to problems concerning the existence, uniqueness, and stability
of solutions of partial differential equations. These studies involved not
only the Laplace equation, but the wave and diffusion equations as well,
and were eventually extended to partial differential equations with variable
coefficients. Through the years, tremendous progress has been made on
the general theory of ordinary and partial differential equations. With the
advent of new ideas and methods, new results and applications, both an-
alytical and numerical studies are continually being added to this subject.
Partial differential equations have been the subject of vigorous mathemat-
ical research for over three centuries and remain so today. This is an active
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area of research for mathematicians and scientists. In part, this is moti-
vated by the large number of problems in partial differential equations that
mathematicians, scientists, and engineers are faced with that are seemingly
intractable. Many of these equations are nonlinear and come from such
areas of applications as fluid mechanics, plasma physics, nonlinear optics,
solid mechanics, biomathematics, and quantum field theory. Owing to the
ever increasing need in mathematics, science, and engineering to solve more
and more complicated real world problems, it seems quite likely that partial
differential equations will remain a major area of research for many years
to come.

1.2 Basic Concepts and Definitions

A differential equation that contains, in addition to the dependent variable
and the independent variables, one or more partial derivatives of the de-
pendent variable is called a partial differential equation. In general, it may
be written in the form

f (x, y, . . . , u, ux, uy, . . . , uxx, uxy, . . .) = 0, (1.2.1)

involving several independent variables x, y, . . ., an unknown function u of
these variables, and the partial derivatives ux, uy, . . ., uxx, uxy, . . ., of the
function. Subscripts on dependent variables denote differentiations, e.g.,

ux = ∂u/∂x, uxy = ∂2/∂y ∂x.

Here equation (1.2.1) is considered in a suitable domain D of the n-
dimensional space Rn in the independent variables x, y, . . .. We seek func-
tions u = u (x, y, . . .) which satisfy equation (1.2.1) identically in D. Such
functions, if they exist, are called solutions of equation (1.2.1). From these
many possible solutions we attempt to select a particular one by introducing
suitable additional conditions.

For instance,

uuxy + ux = y,

uxx + 2yuxy + 3xuyy = 4 sinx, (1.2.2)

(ux)
2

+ (uy)
2

= 1,

uxx − uyy = 0,

are partial differential equations. The functions

u (x, y) = (x + y)
3
,

u (x, y) = sin (x − y) ,

are solutions of the last equation of (1.2.2), as can easily be verified.
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The order of a partial differential equation is the order of the highest-
ordered partial derivative appearing in the equation. For example

uxx + 2xuxy + uyy = ey

is a second-order partial differential equation, and

uxxy + xuyy + 8u = 7y

is a third-order partial differential equation.
A partial differential equation is said to be linear if it is linear in the

unknown function and all its derivatives with coefficients depending only
on the independent variables; it is said to be quasi-linear if it is linear in
the highest-ordered derivative of the unknown function. For example, the
equation

yuxx + 2xyuyy + u = 1

is a second-order linear partial differential equation, whereas

uxuxx + xuuy = sin y

is a second-order quasi-linear partial differential equation. The equation
which is not linear is called a nonlinear equation.

We shall be primarily concerned with linear second-order partial dif-
ferential equations, which frequently arise in problems of mathematical
physics. The most general second-order linear partial differential equation
in n independent variables has the form

n∑

i,j=1

Aijuxixj +

n∑

i=1

Biuxi + Fu = G, (1.2.3)

where we assume without loss of generality that Aij = Aji. We also assume
that Bi, F , and G are functions of the n independent variables xi.

If G is identically zero, the equation is said to be homogeneous; otherwise
it is nonhomogeneous.

The general solution of a linear ordinary differential equation of nth or-
der is a family of functions depending on n independent arbitrary constants.
In the case of partial differential equations, the general solution depends on
arbitrary functions rather than on arbitrary constants. To illustrate this,
consider the equation

uxy = 0.

If we integrate this equation with respect to y, we obtain

ux (x, y) = f (x) .
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A second integration with respect to x yields

u (x, y) = g (x) + h (y) ,

where g (x) and h (y) are arbitrary functions.
Suppose u is a function of three variables, x, y, and z. Then, for the

equation

uyy = 2,

one finds the general solution

u (x, y, z) = y2 + yf (x, z) + g (x, z) ,

where f and g are arbitrary functions of two variables x and z.
We recall that in the case of ordinary differential equations, the first task

is to find the general solution, and then a particular solution is determined
by finding the values of arbitrary constants from the prescribed conditions.
But, for partial differential equations, selecting a particular solution satis-
fying the supplementary conditions from the general solution of a partial
differential equation may be as difficult as, or even more difficult than, the
problem of finding the general solution itself. This is so because the gen-
eral solution of a partial differential equation involves arbitrary functions;
the specialization of such a solution to the particular form which satis-
fies supplementary conditions requires the determination of these arbitrary
functions, rather than merely the determination of constants.

For linear homogeneous ordinary differential equations of order n, a
linear combination of n linearly independent solutions is a solution. Unfor-
tunately, this is not true, in general, in the case of partial differential equa-
tions. This is due to the fact that the solution space of every homogeneous
linear partial differential equation is infinite dimensional. For example, the
partial differential equation

ux − uy = 0 (1.2.4)

can be transformed into the equation

2uη = 0

by the transformation of variables

ξ = x + y, η = x − y.

The general solution is

u (x, y) = f (x + y) ,

where f (x + y) is an arbitrary function. Thus, we see that each of the
functions
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(x + y)
n

,

sin n (x + y) ,

cos n (x + y) ,

exp n (x + y) , n = 1, 2, 3, . . .

is a solution of equation (1.2.4). The fact that a simple equation such as
(1.2.4) yields infinitely many solutions is an indication of an added difficulty
which must be overcome in the study of partial differential equations. Thus,
we generally prefer to directly determine the particular solution of a partial
differential equation satisfying prescribed supplementary conditions.

1.3 Mathematical Problems

A problem consists of finding an unknown function of a partial differential
equation satisfying appropriate supplementary conditions. These conditions
may be initial conditions (I.C.) and/or boundary conditions (B.C.). For ex-
ample, the partial differential equation (PDE)

ut − uxx = 0, 0 < x < l, t > 0,
with I.C. u (x, 0) = sinx, 0 ≤ x ≤ l, t > 0,

B.C. u (0, t) = 0, t ≥ 0,
B.C. u (l, t) = 0, t ≥ 0,

constitutes a problem which consists of a partial differential equation and
three supplementary conditions. The equation describes the heat conduc-
tion in a rod of length l. The last two conditions are called the boundary
conditions which describe the function at two prescribed boundary points.
The first condition is known as the initial condition which prescribes the
unknown function u (x, t) throughout the given region at some initial time
t, in this case t = 0. This problem is known as the initial boundary-value
problem. Mathematically speaking, the time and the space coordinates are
regarded as independent variables. In this respect, the initial condition is
merely a point prescribed on the t-axis and the boundary conditions are
prescribed, in this case, as two points on the x-axis. Initial conditions are
usually prescribed at a certain time t = t0 or t = 0, but it is not customary
to consider the other end point of a given time interval.

In many cases, in addition to prescribing the unknown function, other
conditions such as their derivatives are specified on the boundary and/or
at time t0.

In considering the problem of unbounded domain, the solution can be
determined uniquely by prescribing initial conditions only. The correspond-
ing problem is called the initial-value problem or the Cauchy problem. The
mathematical definition is given in Chapter 5. The solution of such a prob-
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lem may be interpreted physically as the solution unaffected by the bound-
ary conditions at infinity. For problems affected by the boundary at infinity,
boundedness conditions on the behavior of solutions at infinity must be pre-
scribed.

A mathematical problem is said to be well-posed if it satisfies the fol-
lowing requirements:

1. Existence: There is at least one solution.
2. Uniqueness: There is at most one solution.
3. Continuity: The solution depends continuously on the data.

The first requirement is an obvious logical condition, but we must keep in
mind that we cannot simply state that the mathematical problem has a
solution just because the physical problem has a solution. We may well be
erroneously developing a mathematical model, say, consisting of a partial
differential equation whose solution may not exist at all. The same can be
said about the uniqueness requirement. In order to really reflect the physical
problem that has a unique solution, the mathematical problem must have
a unique solution.

For physical problems, it is not sufficient to know that the problem has
a unique solution. Hence the last requirement is not only useful but also
essential. If the solution is to have physical significance, a small change in
the initial data must produce a small change in the solution. The data in a
physical problem are normally obtained from experiment, and are approxi-
mated in order to solve the problem by numerical or approximate methods.
It is essential to know that the process of making an approximation to the
data produces only a small change in the solution.

1.4 Linear Operators

An operator is a mathematical rule which, when applied to a function,
produces another function. For example, in the expressions

L [u] =
∂2u

∂x2
+

∂2u

∂y2
,

M [u] =
∂2u

∂x2
− ∂u

∂x
+ x

∂u

∂y
,

L =
(
∂2/∂x2 + ∂2/∂y2

)
and M =

(
∂2/∂x2 − ∂/∂x

)
+ x (∂/∂y) are called

the differential operators.
An operator is said to be linear if it satisfies the following:

1. A constant c may be taken outside the operator:

L [cu] = cL [u] . (1.4.1)
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2. The operator operating on the sum of two functions gives the sum of
the operator operating on the individual functions:

L [u1 + u2] = L [u1] + L [u2] . (1.4.2)

We may combine (1.4.1) and (1.4.2) as

L [c1u1 + c2u2] = c1L [u1] + c2L [u2] , (1.4.3)

where c1 and c2 are any constants. This can be extended to a finite
number of functions. If u1, u2, . . ., uk are k functions and c1, c2, . . ., ck

are k constants, then by repeated application of equation (1.4.3)

L

⎡
⎣

k∑

j=1

cjuj

⎤
⎦ =

k∑

j=1

cjL [uj ] . (1.4.4)

We may now define the sum of two linear differential operators formally.
If L and M are two linear operators, then the sum of L and M is defined
as

(L + M) [u] = L [u] + M [u] , (1.4.5)

where u is a sufficiently differentiable function. It can be readily shown
that L + M is also a linear operator.

The product of two linear differential operators L and M is the operator
which produces the same result as is obtained by the successive operations
of the operators L and M on u, that is,

LM [u] = L (M [u]) , (1.4.6)

in which we assume that M [u] and L (M [u]) are defined. It can be readily
shown that LM is also a linear operator.

In general, linear differential operators satisfy the following:

1. L + M = M + L (commutative) (1.4.7)

2. (L + M) + N = L + (M + N) (associative) (1.4.8)

3. (LM) N = L (MN) (associative) (1.4.9)

4. L (c1M + c2N) = c1LM + c2LN (distributive) . (1.4.10)

For linear differential operators with constant coefficients,

5. LM = ML (commutative) . (1.4.11)

Example 1.4.1. Let L = ∂2

∂x2 + x ∂
∂y and M = ∂2

∂y2 − y ∂
∂y .
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LM [u] =

(
∂2

∂x2
+ x

∂

∂y

)(
∂2u

∂y2
− y

∂u

∂y

)

=
∂4u

∂x2∂y2
− y

∂3u

∂x2∂y
+ x

∂3u

∂y3
− xy

∂2u

∂y2
,

ML [u] =

(
∂2

∂y2
− y

∂

∂y

)(
∂2u

∂x2
+ x

∂u

∂y

)

=
∂4u

∂y2∂x2
+ x

∂3u

∂y3
− y

∂3u

∂y∂x2
− xy

∂2u

∂y2
,

which shows that LM �= ML.

Now let us consider a linear second-order partial differential equation.
In the case of two independent variables, such an equation takes the form

A (x, y) uxx + B (x, y) uxy + C (x, y) uyy

+D (x, y) ux + E (x, y) uy + F (x, y) u = G (x, y) , (1.4.12)

where A, B, C, D, E, and F are the coefficients, and G is the nonhomoge-
neous term.

If we denote

L = A
∂2

∂x2
+ B

∂2

∂x∂y
+ C

∂2

∂y2
+ D

∂

∂x
+ E

∂

∂y
+ F,

then equation (1.4.12) may be written in the form

L [u] = G. (1.4.13)

Very often the square bracket is omitted and we simply write

Lu = G.

Let v1, v2, . . ., vn be n functions which satisfy

L [vj ] = Gj , j = 1, 2, . . . , n

and let w1, w2, . . ., wn be n functions which satisfy

L [wj ] = 0, j = 1, 2, . . . , n.

If we let

uj = vj + wj

then, the function

u =

n∑

j=1

uj
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satisfies the equation

L [u] =

n∑

j=1

Gj .

This is called the principle of linear superposition.
In particular, if v is a particular solution of equation (1.4.13), that is,

L [v] = G, and w is a solution of the associated homogeneous equation, that
is, L [w] = 0, then u = v + w is a solution of L [u] = G.

The principle of linear superposition is of fundamental importance in
the study of partial differential equations. This principle is used extensively
in solving linear partial differential equations by the method of separation
of variables.

Suppose that there are infinitely many solutions u1 (x, y), u2 (x, y), . . .
un (x, y), . . . of a linear homogeneous partial differential equation Lu = 0.
Can we say that every infinite linear combination c1u1 +c2u2 + · · ·+cnun +
· · · of these solutions, where c1, c2, . . ., cn, . . . are any constants, is again
a solution of the equation? Of course, by an infinite linear combination, we
mean an infinite series and we must require that the infinite series

∞∑

k=0

ck uk = lim
n→∞

n∑

k=0

ck uk (1.4.14)

must be convergent to u. In general, we state that the infinite series is a
solution of the homogeneous equation.

There is another kind of infinite linear combination which is also used
to find the solution of a given linear equation. This is concerned with a
family of solutions u (x, y; k) of the linear equation, where k is any real
number, not just the values 1, 2, 3, . . .. If ck = c (k) is any function of the
real parameter k such that

∫ b

a

c (k) u (x, y; k) dk or

∫ ∞

−∞
c (k) u (x, y; k) dk (1.4.15)

is convergent, then, under suitable conditions, the integral (1.4.15), again,
is a solution. This may be called the linear integral superposition principle.

To illustrate these ideas, we consider the equation

Lu = ux + 2uy = 0. (1.4.16)

It is easy to verify that, for every real k, the function

u (x, y; k) = ek(2x−y) (1.4.17)

is a solution of (1.4.16).
Multiplying (1.4.17) by e−k and integrating with respect to k over −1 ≤

k ≤ 1 gives
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u (x, y) =

∫ 1

−1

e−k ek(2x−y) dk =
e2x−y−1

2x − y − 1
(1.4.18)

It is easy to verify that u (x, y) given by (1.4.18) is also a solution of (1.4.16).
It is also easy to verify that u (x, y; k) = e−ky cos (k x), k ∈ R is a

one-parameter family of solutions of the Laplace equation

∇2u ≡ uxx + uyy = 0 (1.4.19)

It is also easy to check that

v (x, y; k) =
∂

∂k
u (x, y; k) (1.4.20)

is also a one-parameter family of solutions of (1.4.19), k ∈ R. Further, for
any (x, y) in the upper half-plane y > 0, the integral

v (x, y) ≡
∫ ∞

0

u (x, y, k) dk =

∫ ∞

0

e−ky cos (k x) dk, (1.4.21)

is convergent, and v (x, y) is a solution of (1.4.19) for x ∈ R and y > 0.
This follows from direct computation of vxx and vyy. The solution (1.4.21)
is another example of the linear integral superposition principle.

1.5 Superposition Principle

We may express supplementary conditions using the operator notation. For
instance, the initial boundary-value problem

utt − c2uxx = G (x, t) 0 < x < l, t > 0,

u (x, 0) = g1 (x) 0 ≤ x ≤ l,

ut (x, 0) = g2 (x) 0 ≤ x ≤ l, (1.5.1)

u (0, t) = g3 (t) t ≥ 0,

u (l, t) = g4 (t) t ≥ 0,

may be written in the form

L [u] = G,

M1 [u] = g1,

M2 [u] = g2, (1.5.2)

M3 [u] = g3,

M4 [u] = g4,

where gi are the prescribed functions and the subscripts on operators are
assigned arbitrarily.
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Now let us consider the problem

L [u] = G,

M1 [u] = g1,

M2 [u] = g2, (1.5.3)

...

Mn [u] = gn.

By virtue of the linearity of the equation and the supplementary condi-
tions, we may divide problem (1.5.3) into a series of problems as follows:

L [u1] = G,

M1 [u1] = 0,

M2 [u1] = 0, (1.5.4)

...

Mn [u1] = 0,

L [u2] = 0,

M1 [u2] = g1,

M2 [u2] = 0, (1.5.5)

...

Mn [u2] = 0,

L [un] = 0,

M1 [un] = 0,

M2 [un] = 0, (1.5.6)

...

Mn [un] = gn.

Then the solution of problem (1.5.3) is given by

u =

n∑

i=1

ui. (1.5.7)

Let us consider one of the subproblems, say, (1.5.5). Suppose we find a
sequence of functions φ1,φ2, . . ., which may be finite or infinite, satisfying
the homogeneous system
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L [φi] = 0,

M2 [φi] = 0, (1.5.8)

...

Mn [φi] = 0, i = 1, 2, 3, . . .

and suppose we can express g1 in terms of the series

g1 = c1M1 [φ1] + c2M1 [φ2] + . . . . (1.5.9)

Then the linear combination

u2 = c1φ1 + c2φ2 + . . . , (1.5.10)

is the solution of problem (1.5.5). In the case of an infinite number of terms
in the linear combination (1.5.10), we require that the infinite series be
uniformly convergent and sufficiently differentiable, and that all the series
Nk (ui) where N0 = L, Nj = Mj for j = 1, 2, . . ., n convergence uniformly.

1.6 Exercises

1. For each of the following, state whether the partial differential equa-
tion is linear, quasi-linear or nonlinear. If it is linear, state whether it
is homogeneous or nonhomogeneous, and gives its order.

(a) uxx + xuy = y, (b) uux − 2xyuy = 0,

(c) u2
x + uuy = 1, (d) uxxxx + 2uxxyy + uyyyy = 0,

(e) uxx + 2uxy + uyy = sinx, (f) uxxx + uxyy + log u = 0,

(g) u2
xx + u2

x + sin u = ey, (h) ut + uux + uxxx = 0.

2. Verify that the functions

u (x, y) = x2 − y2

u (x, y) = ex sin y

u (x, y) = 2xy

are the solutions of the equation

uxx + uyy = 0.

3. Show that u = f (xy), where f is an arbitrary differentiable function
satisfies
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xux − yuy = 0

and verify that the functions sin (xy), cos (xy), log (xy), exy, and (xy)
3

are solutions.

4. Show that u = f (x) g (y) where f and g are arbitrary twice differen-
tiable functions satisfies

uuxy − uxuy = 0.

5. Determine the general solution of the differential equation

uyy + u = 0.

6. Find the general solution of

uxx + ux = 0,

by setting ux = v.

7. Find the general solution of

uxx − 4uxy + 3uyy = 0,

by assuming the solution to be in the form u (x, y) = f (λx + y), where
λ is an unknown parameter.

8. Find the general solution of

uxx − uyy = 0.

9. Show that the general solution of

∂2u

∂t2
− c2 ∂2u

∂x2
= 0,

is u (x, t) = f (x − ct) + g (x + ct), where f and g are arbitrary twice
differentiable functions.

10. Verify that the function

u = φ (xy) + x ψ
(y

x

)
,

is the general solution of the equation

x2uxx − y2uyy = 0.

11. If ux = vy and vx = −uy, show that both u and v satisfy the Laplace
equations

∇2u = 0 and ∇2v = 0.
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12. If u (x, y) is a homogeneous function of degree n, show that u satisfies
the first-order equation

xux + yuy = nu.

13. Verify that

u (x, y, t) = A cos (kx) cos (ly) cos (nct) + B sin (kx) sin (ly) sin (nct) ,

where k2 + l2 = n2, is a solution of the equation

utt = c2 (uxx + uyy) .

14. Show that

u (x, y; k) = e−ky sin (kx) , x ∈ R, y > 0,

is a solution of the equation

∇2u ≡ uxx + uyy = 0

for any real parameter k. Verify that

u (x, y) =

∫ ∞

0

c (k) e−ky sin (kx) dk

is also a solution of the above equation.
15. Show, by differentiation that,

u (x, t) =
1√

4πkt
exp

(
− x2

4kt

)
, x ∈ R, t > 0,

is a solution of the diffusion equation

ut = k uxx,

where k is a constant.

16. (a) Verify that

u (x, y) = log
(√

x2 + y2
)

,

satisfies the equation

uxx + uyy = 0

for all (x, y) �= (0, 0).

(b) Show that
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u (x, y, z) =
(
x2 + y2 + z2

)− 1
2

is a solution of the Laplace equation

uxx + uyy + uzz = 0

except at the origin.

(c) Show that

u (r) = a rn

satisfies the equation

r2u′′ + 2ru′ − n (n + 1)u = 0.

17. Show that

un (r, θ) = rn cos (nθ) and un (r, θ) = rn sin (nθ) , n = 0, 1, 2, 3, · · ·

are solutions of the Laplace equation

∇2u ≡ urr +
1

r
ur +

1

r2
uθθ = 0.

18. Verify by differentiation that u (x, y) = cos x cosh y satisfies the Laplace
equation

uxx + uyy = 0.

19. Show that u (x, y) = f
(
2y + x2

)
+ g

(
2y − x2

)
is a general solution of

the equation

uxx − 1

x
ux − x2uyy = 0.

20. If u satisfies the Laplace equation ∇2u ≡ uxx +uyy = 0, show that both
xu and yu satisfy the biharmonic equation

∇4

⎛
⎝

xu

yu

⎞
⎠ = 0,

but xu and yu will not satisfy the Laplace equation.

21. Show that

u (x, y, t) = f (x + iky − iωt) + g (x − iky − iωt)

is a general solution of the wave equation

utt = c2 (uxx + uyy) ,

where f and g are arbitrary twice differentiable functions, and ω2 =
c2

(
k2 − 1

)
, k, ω, c are constants.
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22. Verify that

u (x, y) = x3 + y2 + ex (cos x sin y cosh y − sin x cos y sinh y)

is a classical solution of the Poisson equation

uxx + uyy = (6x + 2) .

23. Show that

u (x, y) = exp
(
−x

b

)
f (ax − by)

satisfies the equation

b ux + a uy + u = 0.

24. Show that

utt − c2uxx + 2b ut = 0

has solutions of the form

u (x, t) = (A cos kx + B sin kx) V (t) ,

where c, b, A and B are constants.

25. Show that

c2

(
urr +

1

r
ur

)
− utt = 0

has solutions of the form

u (r, t) =
V (r)

r
cos (nct) , n = 0, 1, 2, . . . .

Find a differential equation for V (r).



2

First-Order, Quasi-Linear Equations and

Method of Characteristics

“As long as a branch of knowledge offers an abundance of problems, it is
full of vitality.”

David Hilbert

“Since a general solution must be judged impossible from want of analysis,
we must be content with the knowledge of some special cases, and that all
the more, since the development of various cases seems to be the only way
to bringing us at last to a more perfect knowledge.”

Leonhard Euler

2.1 Introduction

Many problems in mathematical, physical, and engineering sciences deal
with the formulation and the solution of first-order partial differential equa-
tions. From a mathematical point of view, first-order equations have the
advantage of providing a conceptual basis that can be utilized for second-,
third-, and higher-order equations.

This chapter is concerned with first-order, quasi-linear and linear partial
differential equations and their solution by using the Lagrange method of
characteristics and its generalizations.

2.2 Classification of First-Order Equations

The most general, first-order, partial differential equation in two indepen-
dent variables x and y is of the form
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F (x, y, u, ux, uy) = 0, (x, y) ∈ D ⊂ R2, (2.2.1)

where F is a given function of its arguments, and u = u (x, y) is an unknown
function of the independent variables x and y which lie in some given do-
main D in R2, ux = ∂u

∂x and uy = ∂u
∂y . Equation (2.2.1) is often written in

terms of standard notation p = ux and q = uy so that (2.2.1) takes the
form

F (x, y, u, p, q) = 0. (2.2.2)

Similarly, the most general, first-order, partial differential equation in
three independent variables x, y, z can be written as

F (x, y, z, u, ux, uy, uz) = 0. (2.2.3)

Equation (2.2.1) or (2.2.2) is called a quasi-linear partial differential
equation if it is linear in first-partial derivatives of the unknown function
u (x, y). So, the most general quasi-linear equation must be of the form

a (x, y, u) ux + b (x, y, u) uy = c (x, y, u) , (2.2.4)

where its coefficients a, b, and c are functions of x, y, and u.
The following are examples of quasi-linear equations:

x
(
y2 + u

)
ux − y

(
x2 + u

)
uy =

(
x2 − y2

)
u, (2.2.5)

uux + ut + nu2 = 0, (2.2.6)(
y2 − u2

)
ux − xy uy = xu. (2.2.7)

Equation (2.2.4) is called a semilinear partial differential equation if its
coefficients a and b are independent of u, and hence, the semilinear equation
can be expressed in the form

a (x, y) ux + b (x, y) uy = c (x, y, u) . (2.2.8)

Examples of semilinear equations are

xux + yuy = u2 + x2, (2.2.9)

(x + 1)
2
ux + (y − 1)

2
uy = (x + y) u2, (2.2.10)

ut + aux + u2 = 0, (2.2.11)

where a is a constant.
Equation (2.2.1) is said to be linear if F is linear in each of the variables

u, ux, and uy, and the coefficients of these variables are functions only of the
independent variables x and y. The most general, first-order, linear partial
differential equation has the form

a (x, y) ux + b (x, y) uy + c (x, y) u = d (x, y) , (2.2.12)



2.3 Construction of a First-Order Equation 29

where the coefficients a, b, and c, in general, are functions of x and y and
d (x, y) is a given function. Unless stated otherwise, these functions are
assumed to be continuously differentiable. Equations of the form (2.2.12)
are called homogeneous if d (x, y) ≡ 0 or nonhomogeneous if d (x, y) �= 0.

Obviously, linear equations are a special kind of the quasi-linear equa-
tion (2.2.4) if a, b are independent of u and c is a linear function in u.
Similarly, semilinear equation (2.2.8) reduces to a linear equation if c is
linear in u.

Examples of linear equations are

xux + yuy − nu = 0, (2.2.13)

nux + (x + y) uy − u = ex, (2.2.14)

yux + xuy = xy, (2.2.15)

(y − z) ux + (z − x) uy + (x − y) uz = 0. (2.2.16)

An equation which is not linear is often called a nonlinear equation. So,
first-order equations are often classified as linear and nonlinear.

2.3 Construction of a First-Order Equation

We consider a system of geometrical surfaces described by the equation

f (x, y, z, a, b) = 0, (2.3.1)

where a and b are arbitrary parameters. We differentiate (2.3.1) with respect
to x and y to obtain

fx + p fz = 0, fy + q fz = 0, (2.3.2)

where p = ∂z
∂x and q = ∂z

∂y .

The set of three equations (2.3.1) and (2.3.2) involves two arbitrary
parameters a and b. In general, these two parameters can be eliminated
from this set to obtain a first-order equation of the form

F (x, y, z, p, q) = 0. (2.3.3)

Thus the system of surfaces (2.3.1) gives rise to a first-order partial dif-
ferential equation (2.3.3). In other words, an equation of the form (2.3.1)
containing two arbitrary parameters is called a complete solution or a com-
plete integral of equation (2.3.3). Its role is somewhat similar to that of a
general solution for the case of an ordinary differential equation.

On the other hand, any relationship of the form

f (φ, ψ) = 0, (2.3.4)
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which involves an arbitrary function f of two known functions φ = φ (x, y, z)
and ψ = ψ (x, y, z) and provides a solution of a first-order partial differential
equation is called a general solution or general integral of this equation.
Clearly, the general solution of a first-order partial differential equation
depends on an arbitrary function. This is in striking contrast to the situation
for ordinary differential equations where the general solution of a first-
order ordinary differential equation depends on one arbitrary constant. The
general solution of a partial differential equation can be obtained from
its complete integral. We obtain the general solution of (2.3.3) from its
complete integral (2.3.1) as follows.

First, we prescribe the second parameter b as an arbitrary function of
the first parameter a in the complete solution (2.3.1) of (2.3.3), that is,
b = b (a). We then consider the envelope of the one-parameter family of
solutions so defined. This envelope is represented by the two simultaneous
equations

f (x, y, z, a, b (a)) = 0, (2.3.5)

fa (x, y, z, a, b (a)) + fb (x, y, z, b (a)) b′ (a) = 0, (2.3.6)

where the second equation (2.3.6) is obtained from the first equation (2.3.5)
by partial differentiation with respect to a. In principle, equation (2.3.5) can
be solved for a = a (x, y, z) as a function of x, y, and z. We substitute this
result back in (2.3.5) to obtain

f {x, y, z, a (x, y, z) , b (a (x, y, z))} = 0, (2.3.7)

where b is an arbitrary function. Indeed, the two equations (2.3.5) and
(2.3.6) together define the general solution of (2.3.3). When a definite b (a)
is prescribed, we obtain a particular solution from the general solution.
Since the general solution depends on an arbitrary function, there are in-
finitely many solutions. In practice, only one solution satisfying prescribed
conditions is required for a physical problem. Such a solution may be called
a particular solution.

In addition to the general and particular solutions of (2.3.3), if the enve-
lope of the two-parameter system (2.3.1) of surfaces exists, it also represents
a solution of the given equation (2.3.3); the envelope is called the singular
solution of equation (2.3.3). The singular solution can easily be constructed
from the complete solution (2.3.1) representing a two-parameter family of
surfaces. The envelope of this family is given by the system of three equa-
tions

f (x, y, z, a, b) = 0, fa (x, y, z, a, b) = 0, fb (x, y, z, a, b) = 0. (2.3.8)

In general, it is possible to eliminate a and b from (2.3.8) to obtain
the equation of the envelope which gives the singular solution. It may be
pointed out that the singular solution cannot be obtained from the general
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solution. Its nature is similar to that of the singular solution of a first-order
ordinary differential equation.

Finally, it is important to note that solutions of a partial differential
equation are expected to be represented by smooth functions. A function
is called smooth if all of its derivatives exist and are continuous. However,
in general, solutions are not always smooth. A solution which is not ev-
erywhere differentiable is called a weak solution. The most common weak
solution is the one that has discontinuities in its first partial derivatives
across a curve, so that the solution can be represented by shock waves as
surfaces of discontinuity. In the case of a first-order partial differential equa-
tion, there are discontinuous solutions where z itself and not merely p = ∂z

∂x

and q = ∂z
∂y are discontinuous. In fact, this kind of discontinuity is usually

known as a shock wave. An important feature of quasi-linear and nonlinear
partial differential equations is that their solutions may develop disconti-
nuities as they move away from the initial state. We close this section by
considering some examples.

Example 2.3.1. Show that a family of spheres

x2 + y2 + (z − c)
2

= r2, (2.3.9)

satisfies the first-order linear partial differential equation

yp − xq = 0. (2.3.10)

Differentiating the equation (2.3.9) with respect to x and y gives

x + p (z − c) = 0 and y + q (z − c) = 0.

Eliminating the arbitrary constant c from these equations, we obtain the
first-order, partial differential equation

yp − xq = 0.

Example 2.3.2. Show that the family of spheres

(x − a)
2

+ (y − b)
2

+ z2 = r2 (2.3.11)

satisfies the first-order, nonlinear, partial differential equation

z2
(
p2 + q2 + 1

)
= r2. (2.3.12)

We differentiate the equation of the family of spheres with respect to x
and y to obtain

(x − a) + z p = 0, (y − b) + z q = 0.

Eliminating the two arbitrary constants a and b, we find the nonlinear
partial differential equation
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z2
(
p2 + q2 + 1

)
= r2.

All surfaces of revolution with the z-axis as the axis of symmetry satisfy
the equation

z = f
(
x2 + y2

)
, (2.3.13)

where f is an arbitrary function. Writing u = x2 + y2 and differentiating
(2.3.13) with respect to x and y, respectively, we obtain

p = 2x f ′ (u) , q = 2y f ′ (u) .

Eliminating the arbitrary function f (u) from these results, we find the
equation

yp − xq = 0.

Theorem 2.3.1. If φ = φ (x, y, z) and ψ = ψ (x, y, z) are two given func-
tions of x, y, and z and if f (φ, ψ) = 0, where f is an arbitrary function of φ
and ψ, then z = z (x, y) satisfies a first-order, partial differential equation

p
∂ (φ, ψ)

∂ (y, z)
+ q

∂ (φ, ψ)

∂ (z, x)
=

∂ (φ, ψ)

∂ (x, y)
, (2.3.14)

where

∂ (φ, ψ)

∂ (x, y)
=

∣∣∣∣
φx φy

ψx ψy

∣∣∣∣ . (2.3.15)

Proof. We differentiate f (φ, ψ) = 0 with respect to x and y respectively
to obtain the following equations:

∂f

∂φ

(
∂φ

∂x
+ p

∂φ

∂z

)
+

∂f

∂ψ

(
∂ψ

∂x
+ p

∂ψ

∂z

)
= 0, (2.3.16)

∂f

∂φ

(
∂φ

∂y
+ q

∂φ

∂z

)
+

∂f

∂ψ

(
∂ψ

∂y
+ q

∂ψ

∂z

)
= 0. (2.3.17)

Nontrivial solutions for ∂f
∂φ and ∂f

∂ψ can be found if the determinant of
the coefficients of these equations vanishes, that is,

∣∣∣∣∣∣

φx + pφz ψx + pψz

φy + qφz ψy + qψz

∣∣∣∣∣∣
= 0. (2.3.18)

Expanding this determinant gives the first-order, quasi-linear equation
(2.3.14).



2.4 Geometrical Interpretation of a First-Order Equation 33

2.4 Geometrical Interpretation of a First-Order

Equation

To investigate the geometrical content of a first-order, partial differential
equation, we begin with a general, quasi-linear equation

a (x, y, u) ux + b (x, y, u) uy − c (x, y, u) = 0. (2.4.1)

We assume that the possible solution of (2.4.1) in the form u = u (x, y)
or in an implicit form

f (x, y, u) ≡ u (x, y) − u = 0 (2.4.2)

represents a possible solution surface in (x, y, u) space. This is often called
an integral surface of the equation (2.4.1). At any point (x, y, u) on the
solution surface, the gradient vector ∇f = (fx, fy, fu) = (ux, uy,−1) is
normal to the solution surface. Clearly, equation (2.4.1) can be written as
the dot product of two vectors

a ux + b uy − c = (a, b, c) · (ux, uy − 1) = 0. (2.4.3)

This clearly shows that the vector (a, b, c) must be a tangent vector of
the integral surface (2.4.2) at the point (x, y, u), and hence, it determines
a direction field called the the characteristic direction or Monge axis. This
direction is of fundamental importance in determining a solution of equation
(2.4.1). To summarize, we have shown that f (x, y, u) = u (x, y) − u = 0,
as a surface in the (x, y, u)-space, is a solution of (2.4.1) if and only if the
direction vector field (a, b, c) lies in the tangent plane of the integral surface
f (x, y, u) = 0 at each point (x, y, u), where ∇f �= 0, as shown in Figure
2.4.1.

A curve in (x, y, u)-space, whose tangent at every point coincides with
the characteristic direction field (a, b, c), is called a characteristic curve. If
the parametric equations of this characteristic curve are

x = x (t) , y = y (t) , u = u (t) , (2.4.4)

then the tangent vector to this curve is
(

dx
dt , dy

dt , du
dt

)
which must be equal

to (a, b, c). Therefore, the system of ordinary differential equations of the
characteristic curve is given by

dx

dt
= a (x, y, u) ,

dy

dt
= b (x, y, u) ,

du

dt
= c (x, y, u) . (2.4.5)

These are called the characteristic equations of the quasi-linear equation
(2.4.1).
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Figure 2.4.1 Tangent and normal vector fields of solution surface at a point
(x, y, u).

In fact, there are only two independent ordinary differential equations
in the system (2.4.5); therefore, its solutions consist of a two-parameter
family of curves in (x, y, u)-space.

The projection on u = 0 of a characteristic curve on the (x, t)-plane is
called a characteristic base curve or simply characteristic.

Equivalently, the characteristic equations (2.4.5) in the nonparametric
form are

dx

a
=

dy

b
=

du

c
. (2.4.6)

The typical problem of solving equation (2.4.1) with a prescribed u on
a given plane curve C is equivalent to finding an integral surface in (x, y, u)
space, satisfying the equation (2.4.1) and containing the three-dimensional
space curve Γ defined by the values of u on C, which is the projection on
u = 0 of Γ .

Remark 1. The above geometrical interpretation can be generalized for
higher-order partial differential equations. However, it is not easy to visu-
alize geometrical arguments that have been described for the case of three
space dimensions.

Remark 2. The geometrical interpretation is more complicated for the case
of nonlinear partial differential equations, because the normals to possible
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solution surfaces through a point do not lie in a plane. The tangent planes
no longer intersect along one straight line, but instead, they envelope along
a curved surface known as the Monge cone. Any further discussion is beyond
the scope of this book.

We conclude this section by adding an important observation regarding
the nature of the characteristics in the (x, t)-plane. For a quasi-linear equa-
tion, characteristics are determined by the first two equations in (2.4.5)
with their slopes

dy

dx
=

b (x, y, u)

a (x, y, u)
. (2.4.7)

If (2.4.1) is a linear equation, then a and b are independent of u, and the
characteristics of (2.4.1) are plane curves with slopes

dy

dx
=

b (x, y)

a (x, y)
. (2.4.8)

By integrating this equation, we can determine the characteristics which
represent a one-parameter family of curves in the (x, t)-plane. However, if
a and b are constant, the characteristics of equation (2.4.1) are straight
lines.

2.5 Method of Characteristics and General Solutions

We can use the geometrical interpretation of first-order, partial differential
equations and the properties of characteristic curves to develop a method
for finding the general solution of quasi-linear equations. This is usually
referred to as the method of characteristics due to Lagrange. This method
of solution of quasi-linear equations can be described by the following result.

Theorem 2.5.1. The general solution of a first-order, quasi-linear partial
differential equation

a (x, y, u) ux + b (x, y, u) uy = c (x, y, u) (2.5.1)

is

f (φ, ψ) = 0, (2.5.2)

where f is an arbitrary function of φ (x, y, u) and ψ (x, y, u), and φ =
constant = c1 and ψ = constant = c2 are solution curves of the charac-
teristic equations

dx

a
=

dy

b
=

du

c
. (2.5.3)

The solution curves defined by φ (x, y, u) = c1 and ψ (x, y, u) = c2 are
called the families of characteristic curves of equation (2.5.1).
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Proof. Since φ (x, y, u) = c1 and ψ (x, y, u) = c2 satisfy equations (2.5.3),
these equations must be compatible with the equation

dφ = φxdx + φydy + φudu = 0. (2.5.4)

This is equivalent to the equation

a φx + b φy + c φu = 0. (2.5.5)

Similarly, equation (2.5.3) is also compatible with

a ψx + b ψy + c ψu = 0. (2.5.6)

We now solve (2.5.5), (2.5.6) for a, b, and c to obtain

a
∂(φ,ψ)
∂(y,u)

=
b

∂(φ,ψ)
∂(u,x)

=
c

∂(φ,ψ)
∂(x,y)

. (2.5.7)

It has been shown earlier that f (φ, ψ) = 0 satisfies an equation similar to
(2.3.14), that is,

p
∂ (φ, ψ)

∂ (y, u)
+ q

∂ (φ, ψ)

∂ (u, x)
=

∂ (φ, ψ)

∂ (x, y)
. (2.5.8)

Substituting, (2.5.7) in (2.5.8), we find that f (φ, ψ) = 0 is a solution of
(2.5.1). This completes the proof.

Note that an analytical method has been used to prove Theorem 2.5.1.
Alternatively, a geometrical argument can be used to prove this theorem.
The geometrical method of proof is left to the reader as an exercise.

Many problems in applied mathematics, science, and engineering involve
partial differential equations. We seldom try to find or discuss the properties
of a solution to these equations in its most general form. In most cases of
interest, we deal with those solutions of partial differential equations which
satisfy certain supplementary conditions. In the case of a first-order partial
differential equation, we determine the specific solution by formulating an
initial-value problem or a Cauchy problem.

Theorem 2.5.2. (The Cauchy Problem for a First-Order Partial Differen-
tial Equation). Suppose that C is a given curve in the (x, y)-plane with its
parametric equations

x = x0 (t) , y = y0 (t) , (2.5.9)

where t belongs to an interval I ⊂ R, and the derivatives x′
0 (t) and y′

0 (t) are

piecewise continuous functions, such that (x′
0)

2
+ (y′

0)
2 �= 0. Also, suppose

that u = u0 (t) is a given function on the curve C. Then, there exists a
solution u = u (x, y) of the equation
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F (x, y, u, ux, uy) = 0 (2.5.10)

in a domain D of R2 containing the curve C for all t ∈ I, and the solution
u (x, y) satisfies the given initial data, that is,

u (x0 (t) , y0 (t)) = u0 (t) (2.5.11)

for all values of t ∈ I.
In short, the Cauchy problem is to determine a solution of equation

(2.5.10) in a neighborhood of C, such that the solution u = u (x, y) takes a
prescribed value u0 (t) on C. The curve C is called the initial curve of the
problem, and u0 (t) is called the initial data. Equation (2.5.11) is called the
initial condition of the problem.

The solution of the Cauchy problem also deals with such questions as
the conditions on the functions F , x0 (t), y0 (t), and u0 (t) under which a
solution exists and is unique.

We next discuss a method for solving a Cauchy problem for the first-
order, quasi-linear equation (2.5.1). We first observe that geometrically
x = x0 (t), y = y0 (t), and u = u0 (t) represent an initial curve Γ in
(x, y, u)-space. The curve C, on which the Cauchy data is prescribed, is
the projection of Γ on the (x, y)-plane. We now present a precise formula-
tion of the Cauchy problem for the first-order, quasi-linear equation (2.5.1).

Theorem 2.5.3. (The Cauchy Problem for a Quasi-linear Equation). Sup-
pose that x0 (t), y0 (t), and u0 (t) are continuously differentiable functions
of t in a closed interval, 0 ≤ t ≤ 1, and that a, b, and c are functions of
x, y, and u with continuous first-order partial derivatives with respect to
their arguments in some domain D of (x, y, u)-space containing the initial
curve

Γ : x = x0 (t) , y = y0 (t) , u = u0 (t) , (2.5.12)

where 0 ≤ t ≤ 1, and satisfying the condition

y′
0 (t) a (x0 (t) , y0 (t) , u0 (t)) − x′

0 (t) b (x0 (t) , y0 (t) , u0 (t)) �= 0. (2.5.13)

Then there exists a unique solution u = u (x, y) of the quasi-linear equation
(2.5.1) in the neighborhood of C : x = x0 (t), y = y0 (t), and the solution
satisfies the initial condition

u0 (t) = u (x0 (t) , y0 (t)) , for 0 ≤ t ≤ 1. (2.5.14)

Note: The condition (2.5.13) excludes the possibility that C could be a
characteristic.

Example 2.5.1. Find the general solution of the first-order linear partial
differential equation.
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x ux + y uy = u. (2.5.15)

The characteristic curves of this equation are the solutions of the char-
acteristic equations

dx

x
=

dy

y
=

du

u
. (2.5.16)

This system of equations gives the integral surfaces

φ =
y

x
= C1 and ψ =

u

x
= C2,

where C1 and C2 are arbitrary constants. Thus, the general solution of
(2.5.15) is

f
(y

x
,
u

x

)
= 0, (2.5.17)

where f is an arbitrary function. This general solution can also be written
as

u (x, y) = x g
(y

x

)
, (2.5.18)

where g is an arbitrary function.

Example 2.5.2. Obtain the general solution of the linear Euler equation

x ux + y uy = nu. (2.5.19)

The integral surfaces are the solutions of the characteristic equations

dx

x
=

dy

y
=

du

nu
. (2.5.20)

From these equations, we get

y

x
= C1,

u

xn
= C2,

where C1 and C2 are arbitrary constants. Hence, the general solution of
(2.5.19) is

f
(y

x
,

u

xn

)
= 0. (2.5.21)

This can also be written as

u

xn
= g

(y

x

)

or

u (x, y) = xng
(y

x

)
. (2.5.22)

This shows that the solution u (x, y) is a homogeneous function of x and y
of degree n.
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Example 2.5.3. Find the general solution of the linear equation

x2 ux + y2 uy = (x + y) u. (2.5.23)

The characteristic equations associated with (2.5.23) are

dx

x2
=

dy

y2
=

du

(x + y) u
. (2.5.24)

From the first two of these equations, we find

x−1 − y−1 = C1, (2.5.25)

where C1 is an arbitrary constant.
It follows from (2.5.24) that

dx − dy

x2 − y2
=

du

(x + y) u

or

d (x − y)

x − y
=

du

u
.

This gives

x − y

u
= C2, (2.5.26)

where C2 is a constant. Furthermore, (2.5.25) and (2.5.26) also give

xy

u
= C3, (2.5.27)

where C3 is a constant.
Thus, the general solution (2.5.23) is given by

f

(
xy

u
,
x − y

u

)
= 0, (2.5.28)

where f is an arbitrary function. This general solution representing the
integral surface can also be written as

u (x, y) = xy g

(
x − y

u

)
, (2.5.29)

where g is an arbitrary function, or, equivalently,

u (x, y) = xy h

(
x − y

xy

)
, (2.5.30)

where h is an arbitrary function.
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Example 2.5.4. Show that the general solution of the linear equation

(y − z) ux + (z − x) uy + (x − y) uz = 0 (2.5.31)

is

u (x, y, z) = f
(
x + y + z, x2 + y2 + z2

)
, (2.5.32)

where f is an arbitrary function.
The characteristic curves satisfy the characteristic equations

dx

y − z
=

dy

z − x
=

dz

x − y
=

du

0
(2.5.33)

or

du = 0, dx + dy + dz = 0, xdx + ydy + zdz = 0.

Integration of these equations gives

u = C1, x + y + z = C2, and x2 + y2 + z2 = C3,

where C1, C2 and C3 are arbitrary constants.
Thus, the general solution can be written in terms of an arbitrary func-

tion f in the form

u (x, y, z) = f
(
x + y + z, x2 + y2 + z2

)
.

We next verify that this is a general solution by introducing three inde-
pendent variables ξ, η, ζ defined in terms of x, y, and z as

ξ = x + y + z, η = x2 + y2 + z2, and ζ = y + z, (2.5.34)

where ζ is an arbitrary combination of y and z. Clearly the general solution
becomes

u = f (ξ, η) ,

and hence,

uζ = ux
∂x

∂ζ
+ uy

∂y

∂ζ
+ uz

∂z

∂ζ
. (2.5.35)

It follows from (2.5.34) that

0 =
∂x

∂ζ
+

∂y

∂ζ
+

∂z

∂ζ
, 0 = 2

(
x

∂x

∂ζ
+ y

∂y

∂ζ
+ z

∂z

∂ζ

)
,

∂y

∂ζ
+

∂z

∂ζ
= 1.

It follows from the first and the third results that ∂x
∂ζ = −1 and, therefore,

x = y
∂y

∂ζ
+ z

∂z

∂ζ
, y = y

∂y

∂ζ
+ y

∂z

∂ζ
, z = z

∂y

∂ζ
+ z

∂z

∂ζ
.
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Clearly, it follows by subtracting that

x − y = (z − y)
∂z

∂ζ
, x − z = (y − z)

∂y

∂ζ
.

Using the values for ∂x
∂ζ , ∂z

∂ζ , and ∂y
∂ζ in (2.5.35), we obtain

(z − y)
∂u

∂ζ
= (y − z)

∂u

∂x
+ (z − x)

∂u

∂y
+ (x − y)

∂u

∂z
. (2.5.36)

If u = u (ξ, η) satisfies (2.5.31), then ∂u
∂ζ = 0 and, hence, (2.5.36) reduces

to (2.5.31). This shows that the general solution (2.5.32) satisfies equation
(2.5.31).

Example 2.5.5. Find the solution of the equation

u (x + y) ux + u (x − y) uy = x2 + y2, (2.5.37)

with the Cauchy data u = 0 on y = 2x.
The characteristic equations are

dx

u (x + y)
=

dy

u (x − y)
=

du

x2 + y2
=

ydx + xdy − udu

0
=

xdx − ydy − udu

0
.

Consequently,

d

[(
xy − 1

2
u2

)]
= 0 and d

[
1

2

(
x2 − y2 − u2

)]
= 0. (2.5.38)

These give two integrals

u2 − x2 + y2 = C1 and 2xy − u2 = C2, (2.5.39)

where C1 and C2 are constants. Hence, the general solution is

f
(
x2 − y2 − u2, 2xy − u2

)
= 0,

where f is an arbitrary function.
Using the Cauchy data in (2.5.39), we obtain 4C1 = 3C2. Therefore

4
(
u2 − x2 + y2

)
= 3

(
2xy − u2

)
.

Thus, the solution of equation (2.5.37) is given by

7u2 = 6xy + 4
(
x2 − y2

)
. (2.5.40)

Example 2.5.6. Obtain the solution of the linear equation

ux − uy = 1, (2.5.41)
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with the Cauchy data

u (x, 0) = x2.

The characteristic equations are

dx

1
=

dy

−1
=

du

1
. (2.5.42)

Obviously,

dy

dx
= −1 and

du

dx
= 1.

Clearly,

x + y = constant = C1 and u − x = constant = C2.

Thus, the general solution is given by

u − x = f (x + y) , (2.5.43)

where f is an arbitrary function.
We now use the Cauchy data to find f (x) = x2 − x, and hence, the

solution is

u (x, y) = (x + y)
2 − y. (2.5.44)

The characteristics x + y = C1 are drawn in Figure 2.5.1. The value of u
must be given at one point on each characteristic which intersects the line
y = 0 only at one point, as shown in Figure 2.5.1.

Figure 2.5.1 Characteristics of equation (2.5.41).
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Example 2.5.7. Obtain the solution of the equation

(y − u) ux + (u − x) uy = x − y, (2.5.45)

with the condition u = 0 on xy = 1.

The characteristic equations for equation (2.5.45) are

dx

y − u
=

dy

u − x
=

du

x − y
. (2.5.46)

The parametric forms of these equations are

dx

dt
= y − u,

dy

dt
= u − x,

du

dt
= x − y.

These lead to the following equations:

ẋ + ẏ + u̇ = 0 and xẋ + yẏ + uu̇ = 0, (2.5.47)

where the dot denotes the derivative with respect to t.
Integrating (2.5.47), we obtain

x + y + u = const. = C1 and x2 + y2 + u2 = const. = C2. (2.5.48)

These equations represent circles.
Using the Cauchy data, we find that

C2
1 = (x + y)

2
= x2 + y2 + 2xy = C2 + 2.

Thus, the integral surface is described by

(x + y + u)
2

= x2 + y2 + u2 + 2.

Hence, the solution is given by

u (x, y) =
1 − xy

x + y
. (2.5.49)

Example 2.5.8. Solve the linear equation

y ux + x uy = u, (2.5.50)

with the Cauchy data

u (x, 0) = x3 and u (0, y) = y3. (2.5.51)

The characteristic equations are

dx

y
=

dy

x
=

du

u
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or

du

u
=

dx − dy

y − x
=

dx + dy

y + x
.

Solving these equations, we obtain

u =
C1

x − y
= C2 (x + y)

or

u = C2 (x + y) , x2 − y2 =
C1

C2
= constant = C.

So the characteristics are rectangular hyperbolas for C > 0 or C < 0.
Thus, the general solution is given by

f

(
u

x + y
, x2 − y2

)
= 0

or, equivalently,

u (x, y) = (x + y) g
(
x2 − y2

)
. (2.5.52)

Using the Cauchy data, we find that g
(
x2

)
= x2, that is, g (x) = x.

Consequently, the solution becomes

u (x, y) = (x + y)
(
x2 − y2

)
on x2 − y2 = C > 0.

Similarly,

u (x, y) = (x + y)
(
y2 − x2

)
on y2 − x2 = C > 0.

It follows from these results that u → 0 in all regions, as x → ± y
(or y → ±x), and hence, u is continuous across y = ±x which represent
asymptotes of the rectangular hyperbolas x2 − y2 = C. However, ux and
uy are not continuous, as y → ±x. For x2 − y2 = C > 0,

ux = 3x2 + 2xy − y2 = (x + y) (3x − y) → 0, as y → −x.

uy = −3y2 − 2xy + x2 = (x + y) (x − 3y) → 0, as y → −x.

Hence, both ux and uy are continuous as y → −x. On the other hand,

ux → 4x2, uy → −4x2 as y → x.

This implies that ux and uy are discontinuous across y = x.
Combining all these results, we conclude that u (x, y) is continuous ev-

erywhere in the (x, t)-plane, and ux, uy are continuous everywhere in the
(x, t)-plane except on the line y = x. Hence, the partial derivatives ux, uy

are discontinuous on y = x. Thus, the development of discontinuities across
characteristics is a significant feature of the solutions of partial differential
equations.
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Example 2.5.9. Determine the integral surfaces of the equation

x
(
y2 + u

)
ux − y

(
x2 + u

)
uy =

(
x2 − y2

)
u, (2.5.53)

with the data

x + y = 0, u = 1.

The characteristic equations are

dx

x (y2 + u)
=

dy

−y (x2 + u)
=

du

(x2 − y2) u
(2.5.54)

or

dx
x

(y2 + u)
=

dy
y

− (x2 + u)
=

du
u

(x2 − y2)
=

dx
x + dy

y + du
u

0
.

Consequently,

log (xyu) = log C1

or

xyu = C1.

From (2.5.54), we obtain

xdx

x2 (y2 + u)
=

ydy

−y2 (x2 + u)
=

du

(x2 − y2) u
=

xdx + ydy − du

0
,

whence we find that

x2 + y2 − 2u = C2.

Using the given data, we obtain

C1 = −x2 and C2 = 2x2 − 2,

so that

C2 = −2 (C1 + 1) .

Thus the integral surface is given by

x2 + y2 − 2u = −2 − 2xyu

or

2xyu + x2 + y2 − 2u + 2 = 0. (2.5.55)
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Example 2.5.10. Obtain the solution of the equation

x ux + y uy = x exp (−u) (2.5.56)

with the data

u = 0 on y = x2.

The characteristic equations are

dx

x
=

dy

y
=

du

x exp (−u)
(2.5.57)

or

y

x
= C1.

We also obtain from (2.5.57) that dx = eudu which can be integrated to
find

eu = x + C2.

Thus, the general solution is given by

f
(
eu − x,

y

x

)
= 0

or, equivalently,

eu = x + g
(y

x

)
. (2.5.58)

Applying the Cauchy data, we obtain g (x) = 1 − x. Thus, the solution of
(2.5.56) is given by

eu = x + 1 − y

x

or

u = log
(
x + 1 − y

x

)
. (2.5.59)

Example 2.5.11. Solve the initial-value problem

ut + uux = x, u (x, 0) = f (x) , (2.5.60)

where (a) f (x) = 1 and (b) f (x) = x.
The characteristic equations are

dt

1
=

dx

u
=

du

x
=

d (x + u)

x + u
. (2.5.61)
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Integration gives

t = log (x + u) − log C1

or

(u + x) e−t = C1.

Similarly, we get

u2 − x2 = C2.

For case (a), we obtain

1 + x = C1 and 1 − x2 = C2, and hence C2 = 2C1 − C2
1 .

Thus,

(
u2 − x2

)
= 2 (u + x) e−t − (u + x)

2
e−2t

or

u − x = 2e−t − (u + x) e−2t.

A simple manipulation gives the solution

u (x, t) = x tanh t + sech t. (2.5.62)

Case (b) is left to the reader as an exercise.

Example 2.5.12. Find the integral surface of the equation

uux + uy = 1, (2.5.63)

so that the surface passes through an initial curve represented parametri-
cally by

x = x0 (s) , y = y0 (s) , u = u0 (s) , (2.5.64)

where s is a parameter.
The characteristic equations for the given equations are

dx

u
=

dy

1
=

du

1
,

which are, in the parametric form,

dx

dτ
= u,

dy

dτ
= 1,

du

dτ
= 1, (2.5.65)
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where τ is a parameter. Thus the solutions of this parametric system in
general depend on two parameters s and τ . We solve this system (2.5.65)
with the initial data

x (s, 0) = x0 (s) , y (s, 0) = y0 (s) , u (s, 0) = u0 (s) .

The solutions of (2.5.65) with the given initial data are

x (s, τ) = τ2

2 + τ u0 (s) + x0 (s)
y (s, τ) = τ + y0 (s)
u (s, τ) = τ + u0 (s)

⎫
⎬
⎭ . (2.5.66)

We choose a particular set of values for the initial data as

x (s, 0) = 2s2, y (s, 0) = 2s, u (s, 0) = 0, s > 0.

Therefore, the solutions are given by

x =
1

2
τ2 + 2s2, y = τ + 2s, u = τ. (2.5.67)

Eliminating τ and s from (2.5.67) gives the integral surface

(u − y)
2

+ u2 = 2x

or

2u = y ±
(
4x − y2

) 1
2 . (2.5.68)

The solution surface satisfying the data u = 0 on y2 = 2x is given by

2u = y −
(
4x − y2

) 1
2 . (2.5.69)

This represents the solution surface only when y2 < 4x. Thus, the solution
does not exist for y2 > 4x and is not differentiable when y2 = 4x. We verify
that y2 = 4x represents the envelope of the family of characteristics in the
(x, t)-plane given by the τ -eliminant of the first two equations in (2.5.67),
that is,

F (x, y, s) = 2x − (y − 2s)
2 − 4s2 = 0. (2.5.70)

This represents a family of parabolas for different values of the parameter
s. Thus, the envelope is obtained by eliminating s from equations ∂F

∂s = 0
and F = 0. This gives y2 = 4x, which is the envelope of the characteristics
for different s, as shown in Figure 2.5.2.
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Figure 2.5.2 Dotted curve is the envelope of the characteristics.

2.6 Canonical Forms of First-Order Linear Equations

It is often convenient to transform the more general first-order linear partial
differential equation (2.2.12)

a (x, y) ux + b (x, y) uy + c (x, y) u = d (x, y) , (2.6.1)

into a canonical (or standard) form which can be easily integrated to find
the general solution of (2.6.1). We use the characteristics of this equation
(2.6.1) to introduce the new transformation by equations

ξ = ξ (x, y) , η = η (x, y) , (2.6.2)

where ξ and η are once continuously differentiable and their Jacobian
J (x, y) ≡ ξxηy − ξyηx is nonzero in a domain of interest so that x and
y can be determined uniquely from the system of equations (2.6.2). Thus,
by chain rule,

ux = uξξx + uηηx, uy = uξξy + uηηy, (2.6.3)

we substitute these partial derivatives (2.6.3) into (2.6.1) to obtain the
equation

A uξ + B uη + cu = d, (2.6.4)

where
A = uξx + bξy, B = aηx + bηy. (2.6.5)

From (2.6.5) we see that B = 0 if η is a solution of the first-order equation

aηx + bηy = 0. (2.6.6)

This equation has infinitely many solutions. We can obtain one of them
by assigning initial condition on a non-characteristic initial curve and solv-
ing the resulting initial-value problem according to the method described
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earlier. Since η (x, y) satisfies equation (2.6.6), the level curves η (x, y) =
constant are always characteristic curves of equation (2.6.1). Thus, one set
of the new transformations are the characteristic curves of (2.6.1). The sec-
ond set, ξ (x, y) = constant, can be chosen to be any one parameter family
of smooth curves which are nowhere tangent to the family of the character-
istic curves. We next assert that A �= 0 in a neighborhood of some point in
the domain D in which η (x, y) is defined and J �= 0. For, if A = 0 at some
point of D, then B = 0 at the same point. Consequently, equations (2.6.5)
would form a system of linear homogeneous equations in a and b, where the
Jacobian J is the determinant of its coefficient matrix. Since J �= 0, both a
and b must be zero at that point which contradicts the original assumption
that a and b do not vanish simultaneously. Finally, since B = 0 and A �= 0
in D, we can divide (2.6.4) by A to obtain the canonical form

uξ + α (ξ, η) u = β (ξ, η) , (2.6.7)

where α (ξ, η) = c
A and β (ξ, η) = d

A .
Equation (2.6.7) represents an ordinary differential equation with ξ as

the independent variable and η as a parameter which may be treated as
constant. This equation (2.6.7) is called the canonical form of equation
(2.6.1) in terms of the coordinates (ξ, η). Generally, the canonical equation
(2.6.7) can easily be integrated and the general solution of (2.6.1) can be
obtained after replacing ξ and η by the original variables x and y.

We close this section by considering some examples that illustrate this
procedure. In practice, it is convenient to choose ξ = ξ (x, y) and η (x, y) = y
or ξ = x and η = η (x, y) so that J �= 0.

Example 2.6.1. Reduce each of the following equations

ux − uy = u, (2.6.8)

yux + uy = x, (2.6.9)

to canonical form, and obtain the general solution.

In (2.6.8), a = 1, b = −1, c = −1 and d = 0. The characteristic equations
are

dx

1
=

dy

−1
=

du

u
.

The characteristic curves are ξ = x + y = c1, and we choose η = y = c2

where c1 and c2 are constants. Consequently, ux = uξ and uy = uξ + uη,
and hence, equation (2.6.8) becomes

uη = u.

Integrating this equation gives



2.7 Method of Separation of Variables 51

ln u (ξ, η) = −η + ln f (ξ) ,

where f (ξ) is an arbitrary function of ξ only.
Equivalently,

u (ξ, η) = f (ξ) e−η.

In terms of the original variables x and y, the general solution of equa-
tion (2.6.8) is

u (x, y) = f (x + y) e−y, (2.6.10)

where f is an arbitrary function.
The characteristic equations of (2.6.9) are

dx

y
=

dy

1
=

du

x
.

It follows from the first two equations that ξ (x, y) = x− y2

2 = c1; we choose
η (x, y) = y = c2. Consequently, ux = uξ and uy = −y uξ + uη and hence,
equation (2.6.9) reduces to

uη = ξ +
1

2
η2.

Integrating this equation gives the general solution

u (ξ, η) = ξη +
1

6
η3 + f (ξ) ,

where f is an arbitrary function.
Thus, the general solution of (2.6.9) in terms of x and y is

u (x, y) = xy − 1

3
y3 + f

(
x − y2

2

)
.

2.7 Method of Separation of Variables

During the last two centuries several methods have been developed for solv-
ing partial differential equations. Among these, a technique known as the
method of separation of variables is perhaps the oldest systematic method
for solving partial differential equations. Its essential feature is to transform
the partial differential equations by a set of ordinary differential equations.
The required solution of the partial differential equations is then exposed as
a product u (x, y) = X (x) Y (y) �= 0, or as a sum u (x, y) = X (x) + Y (y),
where X (x) and Y (y) are functions of x and y, respectively. Many signifi-
cant problems in partial differential equations can be solved by the method
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of separation of variables. This method has been considerably refined and
generalized over the last two centuries and is one of the classical techniques
of applied mathematics, mathematical physics and engineering science.

Usually, the first-order partial differential equation can be solved by sep-
aration of variables without the need for Fourier series. The main purpose
of this section is to illustrate the method by examples.

Example 2.7.1. Solve the initial-value problem

ux + 2uy = 0, u (0, y) = 4 e−2y. (2.7.1ab)

We seek a separable solution u (x, y) = X (x) Y (y) �= 0 and substitute
into the equation to obtain

X ′ (x) Y (y) + 2X (x) Y ′ (y) = 0.

This can also be expressed in the form

X ′ (x)

2X (x)
= −Y ′ (y)

Y (y)
. (2.7.2)

Since the left-hand side of this equation is a function of x only and the
right-hand is a function of y only, it follows that (2.7.2) can be true if both
sides are equal to the same constant value λ which is called an arbitrary
separation constant. Consequently, (2.7.2) gives two ordinary differential
equations

X ′ (x) − 2λX (x) = 0, Y ′ (y) + λY (y) = 0. (2.7.3)

These equations have solutions given, respectively, by

X (x) = A e2λx and Y (y) = B e−λy, (2.7.4)

where A and B are arbitrary integrating constants.
Consequently, the general solution is given by

u (x, y) = AB exp (2λx − λy) = C exp (2λx − λy) , (2.7.5)

where C = AB is an arbitrary constant.
Using the condition (2.7.1b), we find

4 e−2y = u (0, y) = Ce−λy,

and hence, we deduce that C = 4 and λ = 2. Therefore, the final solution
is

u (x, y) = 4 exp (4x − 2y) . (2.7.6)
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Example 2.7.2. Solve the equation

y2u2
x + x2u2

y = (xyu)
2
. (2.7.7)

We assume u (x, y) = f (x) g (y) �= 0 is a separable solution of (2.7.7),
and substitute into the equation. Consequently, we obtain

y2 {f ′ (x) g (y)}2
+ x2 {f (x) g′ (y)}2

= x2y2 {f (x) g (y)}2
,

or, equivalently,

1

x2

{
f ′ (x)

f (x)

}2

+
1

y2

{
g′ (y)

g (y)

}2

= 1,

or

1

x2

{
f ′ (x)

f (x)

}2

= 1 − 1

y2

{
g′ (y)

g (y)

}2

= λ2,

where λ2 is a separation constant. Thus,

1

x

f ′ (x)

f (x)
= λ and

g′ (y)

y g (y)
=

√
1 − λ2 . (2.7.8)

Solving these ordinary differential equations, we find

f (x) = A exp

(
λ

2
x2

)
and g (y) = B exp

(
1

2
y
√

1 − λ2

)
,

where A and B are arbitrary constant. Thus, the general solution is

u (x, y) = C exp

(
λ

2
x2 +

1

2
y2

√
1 − λ2

)
, (2.7.9)

where C = AB is an arbitrary constant.
Using the condition u (x, 0) = 3 exp

(
x2/4

)
, we can determine both C

and λ in (2.7.9). It turns out that C = 3 and λ = (1/2), and the solution
becomes

u (x, y) = 3 exp

[
1

4

(
x2 + y2

√
3
)]

. (2.7.10)

Example 2.7.3. Use the separation of variables u (x, y) = f (x) + g (y) to
solve the equation

u2
x + u2

y = 1. (2.7.11)

Obviously,
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{f ′ (x)}2
= 1 − {g′ (y)}2

= λ2,

where λ2 is a separation constant. Thus, we obtain

f ′ (x) = λ and g′ (y) =
√

1 − λ2 .

Solving these ordinary differential equations, we find

f (x) = λx + A and g (y) = y
√

1 − λ2 + B,

where A and B are constants of integration. Finally, the solution of (2.7.11)
is given by

u (x, y) = λx + y
√

1 − λ2 + C, (2.7.12)

where C = A + B is an arbitrary constant.

Example 2.7.4. Use u (x, y) = f (x) + g (y) to solve the equation

u2
x + uy + x2 = 0. (2.7.13)

Obviously, equation (2.7.13) has the separable form

{f ′ (x)}2
+ x2 = −g′ (y) = λ2,

where λ2 is a separation constant.
Consequently,

f ′ (x) =
√

λ2 − x2 and g′ (y) = −λ2.

These can be integrated to obtain

f (x) =

∫ √
λ2 − x2 dx + A

= λ2

∫
cos2 θ dθ + A, (x = λ sin θ)

=
1

2
λ2

[
sin−1

(x

λ

)
+

x

λ

√
1 − x2

λ2

]
+ A

and

g (y) = −λ2y + B.

Finally, the general solution is given by

u (x, y) =
1

2
λ2 sin−1

(x

λ

)
+

x

2

√
λ2 − x2 − λ2y + C, (2.7.14)

where C = A + B is an arbitrary constant.
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Example 2.7.5. Use v = lnu and v = f (x) + g (y) to solve the equation

x2u2
x + y2u2

y = u2. (2.7.15)

In view of v = lnu, vx = 1
uux and vy = 1

uuy, and hence, equation (2.7.15)
becomes

x2v2
x + y2v2

y = 1. (2.7.16)

Substitute v (x, y) = f (x) + g (y) into (2.7.16) to obtain

x2 {f ′ (x)}2
+ y2 {g′ (y)}2

= 1

or

x2 {f ′ (x)}2
= 1 − y2 {g′ (y)}2

= λ2,

where λ2 is a separation constant. Thus, we obtain

f ′ (x) =
λ

x
and g′ (y) =

1

y

√
1 − λ2 .

Integrating these equations gives

f (x) = λ lnx + A and g (y) =
√

1 − λ2 ln y + B,

where A and B are integrating constants. Therefore, the general solution
of (2.7.16) is given by

v (x, y) = λ lnx +
√

1 − λ2 ln y + lnC

= ln
(
xλ · y

√
1−λ2 · C

)
, (2.7.17)

where ln C = A + B. The final solution is

u (x, y) = ev = C xλ · y
√

1−λ2
, (2.7.18)

where C is an integrating constant.

2.8 Exercises

1. (a) Show that the family of right circular cones whose axes coincide
with the z-axis

x2 + y2 = (z − c)
2
tan2 α

satisfies the first-order, partial differential equation
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yp − xq = 0.

(b) Show that all the surfaces of revolution, z = f
(
x2 + y2

)
with the

z-axis as the axis of symmetry, where f is an arbitrary function, satisfy
the partial differential equation

yp − xq = 0.

(c) Show that the two-parameter family of curves u − ax − by − ab = 0
satisfies the nonlinear equation

xp + yq + pq = u.

2. Find the partial differential equation arising from each of the following
surfaces:

(a) z = x + y + f (xy), (b) z = f (x − y),

(c) z = xy + f
(
x2 + y2

)
, (d) 2z = (αx + y)

2
+ β.

3. Find the general solution of each of the following equations:

(a) ux = 0, (b) a ux + b uy = 0; a, b, are constant,

(c) ux + y uy = 0, (d)
(
1 + x2

)
ux + uy = 0,

(e) 2xy ux +
(
x2 + y2

)
uy = 0, (f) (y + u) ux + y uy = x − y,

(g) y2ux − xy uy = x (u − 2y), (h) yuy − xux = 1,

(i) y2up + u2xq = −xy2, (j) (y − xu) p + (x + yu) q = x2 + y2.

4. Find the general solution of the equation

ux + 2xy2uy = 0.

5. Find the solution of the following Cauchy problems:

(a) 3ux + 2uy = 0, with u (x, 0) = sinx,

(b) y ux + x uy = 0, with u (0, y) = exp
(
−y2

)
,

(c) x ux + y uy = 2xy, with u = 2 on y = x2,

(d) ux + x uy = 0, with u (0, y) = sin y,

(e) y ux + x uy = xy, x ≥ 0, y ≥ 0, with u (0, y) = exp
(
−y2

)

for y > 0, and u (x, 0) = exp
(
−x2

)
for x > 0,
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(f) ux + x uy =
(
y − 1

2x2
)2

, with u (0, y) = exp (y),

(g) x ux + y uy = u + 1, with u (x, y) = x2 on y = x2,

(h) uux − uuy = u2 + (x + y)
2
, with u = 1 on y = 0,

(i) x ux + (x + y) uy = u + 1, with u (x, y) = x2 on y = 0.

(j)
√

x ux + uuy + u2 = 0, u (x, 0) = 1, 0 < x < ∞.

(k) ux2ux + e−yuy + u2 = 0, u (x, 0) = 1, 0 < x < ∞.

6. Solve the initial-value problem

ut + uux = 0

with the initial curve

x =
1

2
τ2, t = τ, u = τ.

7. Find the solution of the Cauchy problem

2xy ux +
(
x2 + y2

)
uy = 0, with u = exp

(
x

x − y

)
onx + y = 1.

8. Solve the following equations:

(a) x ux + y uy + z uz = 0,

(b) x2 ux + y2 uy + z (x + y) uz = 0,

(c) x (y − z) ux + y (z − x) uy + z (x − y) uz = 0,

(d) yz ux − xz uy + xy
(
x2 + y2

)
uz = 0,

(e) x
(
y2 − z2

)
ux + y

(
z2 − y2

)
uy + z

(
x2 − y2

)
uz = 0.

9. Solve the equation

ux + x uy = y

with the Cauchy data

(a) u (0, y) = y2, (b) u (1, y) = 2y.



58 2 First-Order, Quasi-Linear Equations and Method of Characteristics

10. Show that u1 = ex and u2 = e−y are solutions of the nonlinear equation

(ux + uy)
2 − u2 = 0

but that their sum (ex + e−y) is not a solution of the equation.

11. Solve the Cauchy problem

(y + u) ux + y uy = (x − y) , with u = 1 + x on y = 1.

12. Find the integral surfaces of the equation uux + uy = 1 for each of the
following initial data:

(a) x (s, 0) = s, y (s, 0) = 2s, u (s, 0) = s,

(b) x (s, 0) = s2, y (s, 0) = 2s, u (s, 0) = s,

(c) x (s, 0) = s2

2 , y (s, 0) = s, u (s, 0) = s.

Draw characteristics in each case.
13. Show that the solution of the equation

y ux − x uy = 0

containing the curve x2 + y2 = a2, u = y, does not exist.

14. Solve the following Cauchy problems:

(a) x2ux − y2uy = 0, u → ex as y → ∞,

(b) y ux + x uy = 0, u = sinx on x2 + y2 = 1,

(c) −x ux + y uy = 1 for 0 < x < y, u = 2x on y = 3x,

(d) 2x ux + (x + 1)uy = y for x > 0, u = 2y on x = 1,

(e) x ux − 2y uy = x2 + y2 for x > 0, y > 0, u = x2 on y = 1,

(f) ux + 2uy = 1 + u, u (x, y) = sinx on y = 3x + 1,

(g) ux + 3uy = u, u (x, y) = cos x on y = x,

(h) ux + 2x uy = 2xu, u (x, 0) = x2,

(i) uux + uy = u, u (x, 0) = 2x, 1 ≤ x ≤ 2,

(j) ux + uy = u2, u (x, 0) = tanhx.
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Show that the solution of (j) is unbounded on the critical curve
y tanh (x − y) = 1.

15. Find the solution surface of the equation

(
u2 − y2

)
ux + xy uy + xu = 0, with u = y = x, x > 0.

16. (a) Solve the Cauchy problem

ux + uuy = 1, u (0, y) = ay,

where a is a constant.
(b) Find the solution of the equation in (a) with the data

x (s, 0) = 2s, y (s, 0) = s2, u
(
0, s2

)
= s.

17. Solve the following equations:

(a) (y + u) ux + (x + u) uy = x + y,

(b) x u
(
u2 + xy

)
ux − y u

(
u2 + xy

)
uy = x4,

(c) (x + y) ux + (x − y) uy = 0,

(d) y ux + x uy = xy
(
x2 − y2

)
,

(e) (cy − bz) zx + (az − cx) zy = bx − ay.

18. Solve the equation

x zx + y zy = z,

and find the curves which satisfy the associated characteristic equations
and intersect the helix x + y2 = a2, z = b tan−1

(
y
x

)
.

19. Obtain the family of curves which represent the general solution of the
partial differential equation

(2x − 4y + 3u) ux + (x − 2y − 3u) uy = −3 (x − 2y) .

Determine the particular member of the family which contains the line
u = x and y = 0.

20. Find the solution of the equation

y ux − 2xy uy = 2xu

with the condition u (0, y) = y3.
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21. Obtain the general solution of the equation

(x + y + 5z) p + 4zq + (x + y + z) = 0 (p = zx, q = zy) ,

and find the particular solution which passes through the circle

z = 0, x2 + y2 = a2.

22. Obtain the general solution of the equation
(
z2 − 2yz − y2

)
p + x (y + z) q = x (y − z) (p = zx, q = zy) .

Find the integral surfaces of this equation passing through

(a) the x-axis, (b) the y-axis, and (c) the z-axis.

23. Solve the Cauchy problem

(x + y) ux + (x − y) uy = 1, u (1, y) =
1√
2
.

24. Solve the following Cauchy problems:

(a) 3 ux + 2uy = 0, u (x, 0) = f (x),

(b) a ux + b uy = c u, u (x, 0) = f (x), where a, b, c are constants,

(c) x ux + y uy = c u, u (x, 0) = f (x),

(d) uux + uy = 1, u (s, 0) = αs, x (s, 0) = s, y (s, 0) = 0.

25. Apply the method of separation of variables u (x, y) = f (x) g (y) to
solve the following equations:

(a) ux + u = uy, u (x, 0) = 4e−3x, (b) uxuy = u2,

(c) ux + 2uy = 0, u (0, y) = 3e−2y, (d) y2u2
x + x2u2

y = (xyu)
2
,

(e) x2uxy + 9y2u = 0, u (x, 0) = exp
(

1
x

)
, (f) y ux − x uy = 0,

(g) ut = c2 (uxx + uyy), (h) uxx + uyy = 0.

26. Use a separable solution u (x, y) = f (x) + g (y) to solve the following
equations:

(a) u2
x + u2

y = 1, (b) u2
x + u2

y = u,

(c) u2
x + uy + x2 = 0, (d) x2u2

x + y2u2
y = 1,

(e) y ux + x uy = 0, u (0, y) = y2.
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27. Apply v = lnu and then v (x, y) = f (x) + g (y) to solve the following
equations:

(a) x2u2
x + y2u2

y = u2,

(b) x2u2
x + y2u2

y = (xyu)
2
.

28. Apply
√

u = v and v (x, y) = f (x) + g (y) to solve the equation

x4u2
x + y2u2

y = 4u.

29. Using v = lnu and v = f (x) + g (y), show that the solution of the
Cauchy problem

y2u2
x + x2u2

y = (xyu)
2
, u (x, 0) = ex2

is

u (x, y) = exp

(
x2 + i

√
3

2
y2

)
.

30. Reduce each of the following equations into canonical form and find the
general solution:

(a) ux + uy = u, (b) ux + x uy = y,

(c) ux + 2xy uy = x, (d) ux − y uy − u = 1.

31. Find the solution of each of the following equations by the method of
separation of variables:

(a) ux − uy = 0, u (0, y) = 2e3y,

(b) ux − uy = u, u (x, 0) = 4e−3x,

(c) a ux + b uy = 0, u (x, 0) = αeβx,

where a, b, α and β are constants.

32. Find the solution of the following initial-value systems

(a) ut + 3uux = v − x, vt − cvx = 0 with u (x, 0) = x and v (x, 0) = x.

(b) ut + 2uux = v − x, vt − cvx = 0 with u (x, 0) = x and v (x, 0) = x.
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33. Solve the following initial-value systems

(a) ut + uux = e−xv, vt − avx = 0 with u (x, 0) = x and v (x, 0) = ex.

(b) ut − 2uux = v − x, vt + cvx = 0 with u (x, 0) = x and v (x, 0) = x.

34. Consider the Fokker–Planck equation (See Reif (1965)) in statistical me-
chanics to describe the evolution of the probability distribution function
in the form

ut = uxx + (x u)x ,

u (x, 0) = f (x) .

Neglecting the term uxx, solve the first-order linear equation

ut − x ux = u with u (x, 0) = f (x) .
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Mathematical Models

“Physics can’t exist without mathematics which provides it with the only
language in which it can speak. Thus, services are continuously exchanged
between pure mathematical analysis and physics. It is really remarkable
that among works of analysis most useful for physics were those cultivated
for their own beauty. In exchange, physics, exposing new problems, is as
useful for mathematics as it is a model for an artist.”

Henri Poincaré

“It is no paradox to say in our most theoretical models we may be nearest
to our most practical applications.”

A. N. Whitehead

“... builds models based on data from all levels: gene expression, protein
location in the cell, models of cell function, and computer representations
of organs and organisms.”

E. Pennisi

3.1 Classical Equations

Partial differential equations arise frequently in formulating fundamental
laws of nature and in the study of a wide variety of physical, chemical,
and biological models. We start with a special type of second-order linear
partial differential equation for the following reasons. First, second-order
linear equations arise more frequently in a wide variety of applications.
Second, their mathematical treatment is simpler and easier to understand
than that of first-order equations in general. Usually, in almost all physical
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phenomena (or physical processes), the dependent variable u = u (x, y, z, t)
is a function of three space variables, x, y, z and time variable t.

The three basic types of second-order partial differential equations are:
(a) The wave equation

utt − c2 (uxx + uyy + uzz) = 0. (3.1.1)

(b) The heat equation

ut − k (uxx + uyy + uzz) = 0. (3.1.2)

(c) The Laplace equation

uxx + uyy + uzz = 0. (3.1.3)

In this section, we list a few more common linear partial differential equa-
tions of importance in applied mathematics, mathematical physics, and en-
gineering science. Such a list naturally cannot ever be complete. Included
are only equations of most common interest:

(d) The Poisson equation

∇2u = f (x, y, z) . (3.1.4)

(e) The Helmholtz equation

∇2u + λu = 0. (3.1.5)

(f) The biharmonic equation

∇4u = ∇2
(
∇2u

)
= 0. (3.1.6)

(g) The biharmonic wave equation

utt + c2∇4u = 0. (3.1.7)

(h) The telegraph equation

utt + aut + bu = c2uxx. (3.1.8)

(i) The Schrödinger equations in quantum physics

i�ψt =

[(
− �

2

2m

)
∇2 + V (x, y, z)

]
ψ, (3.1.9)

∇2Ψ +
2m

�2
[E − V (x, y, z)]Ψ = 0. (3.1.10)

(j) The Klein–Gordon equation

�u + λ2u = 0, (3.1.11)
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where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (3.1.12)

is the Laplace operator in rectangular Cartesian coordinates (x, y, z),

� ≡ ∇2 − 1

c2

∂2

∂t2
, (3.1.13)

is the d’Alembertian, and in all equations λ, a, b, c, m, E are constants
and h = 2π� is the Planck constant.
(k) For a compressible fluid flow, Euler’s equations

ut + (u · ∇)u = −1

ρ
∇p, ρt + div (ρu) = 0, (3.1.14)

where u = (u, v, w) is the fluid velocity vector, ρ is the fluid density,
and p = p (ρ) is the pressure that relates p and ρ (the constitutive
equation or equation of state).
Many problems in mathematical physics reduce to the solving of partial

differential equations, in particular, the partial differential equations listed
above. We will begin our study of these equations by first examining in
detail the mathematical models representing physical problems.

3.2 The Vibrating String

One of the most important problems in mathematical physics is the vi-
bration of a stretched string. Simplicity and frequent occurrence in many
branches of mathematical physics make it a classic example in the theory
of partial differential equations.

Let us consider a stretched string of length l fixed at the end points. The
problem here is to determine the equation of motion which characterizes
the position u (x, t) of the string at time t after an initial disturbance is
given.

In order to obtain a simple equation, we make the following assumptions:

1. The string is flexible and elastic, that is the string cannot resist bending
moment and thus the tension in the string is always in the direction of
the tangent to the existing profile of the string.

2. There is no elongation of a single segment of the string and hence, by
Hooke’s law, the tension is constant.

3. The weight of the string is small compared with the tension in the
string.

4. The deflection is small compared with the length of the string.
5. The slope of the displaced string at any point is small compared with

unity.
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6. There is only pure transverse vibration.

We consider a differential element of the string. Let T be the tension at the
end points as shown in Figure 3.2.1. The forces acting on the element of
the string in the vertical direction are

T sin β − T sin α.

By Newton’s second law of motion, the resultant force is equal to the
mass times the acceleration. Hence,

T sin β − T sin α = ρ δs utt (3.2.1)

where ρ is the line density and δs is the smaller arc length of the string.
Since the slope of the displaced string is small, we have

δs ≃ δx.

Since the angles α and β are small

sin α ≃ tanα, sin β ≃ tanβ.

Figure 3.2.1 An Element of a vertically displaced string.
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Thus, equation (3.2.1) becomes

tanβ − tanα =
ρ δx

T
utt. (3.2.2)

But, from calculus we know that tanα and tanβ are the slopes of the string
at x and x + δx:

tanα = ux (x, t)

and

tanβ = ux (x + δx, t)

at time t. Equation (3.2.2) may thus be written as

1

δx

[
(ux)x+δx − (ux)x

]
=

ρ

T
utt,

1

δx
[ux (x + δx, t) − ux (x, t)] =

ρ

T
utt.

In the limit as δx approaches zero, we find

utt = c2uxx (3.2.3)

where c2 = T/ρ. This is called the one-dimensional wave equation.
If there is an external force f per unit length acting on the string.

Equation (3.2.3) assumes the form

utt = c2uxx + F, F = f/ρ, (3.2.4)

where f may be pressure, gravitation, resistance, and so on.

3.3 The Vibrating Membrane

The equation of the vibrating membrane occurs in a large number of prob-
lems in applied mathematics and mathematical physics. Before we derive
the equation for the vibrating membrane we make certain simplifying as-
sumptions as in the case of the vibrating string:

1. The membrane is flexible and elastic, that is, the membrane cannot
resist bending moment and the tension in the membrane is always in
the direction of the tangent to the existing profile of the membrane.

2. There is no elongation of a single segment of the membrane and hence,
by Hooke’s law, the tension is constant.

3. The weight of the membrane is small compared with the tension in the
membrane.

4. The deflection is small compared with the minimal diameter of the
membrane.
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5. The slope of the displayed membrane at any point is small compared
with unity.

6. There is only pure transverse vibration.

We consider a small element of the membrane. Since the deflection and
slope are small, the area of the element is approximately equal to δxδy. If
T is the tensile force per unit length, then the forces acting on the sides of
the element are T δx and T δy, as shown in Figure 3.3.1.

The forces acting on the element of the membrane in the vertical direc-
tion are

T δx sin β − T δx sin α + T δy sin δ − T δy sin γ.

Since the slopes are small, sines of the angles are approximately equal to
their tangents. Thus, the resultant force becomes

T δx (tanβ − tanα) + T δy (tan δ − tan γ) .

By Newton’s second law of motion, the resultant force is equal to the
mass times the acceleration. Hence,

T δx (tanβ − tanα) + T δy (tan δ − tan γ) = ρ δA utt (3.3.1)

where ρ is the mass per unit area, δA ≃ δxδy is the area of this element,
and utt is computed at some point in the region under consideration. But
from calculus, we have

Figure 3.3.1 An element of vertically displaced membrane.
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tanα = uy (x1, y)

tanβ = uy (x2, y + δy)

tan γ = ux (x, y1)

tan δ = ux (x + δx, y2)

where x1 and x2 are the values of x between x and x+δx, and y1 and y2 are
the values of y between y and y + δy. Substituting these values in (3.3.1),
we obtain

T δx [uy (x2, y + δy) − uy (x1, y)] + T δy [ux (x + δx, y2) − ux (x, y1)]

= ρ δxδy utt.

Division by ρ δxδy yields

T

ρ

[
uy (x2, y + δy) − uy (x1, y)

δy
+

ux (x + δx, y2) − ux (x, y1)

δx

]
= utt.

(3.3.2)

In the limit as δx approaches zero and δy approaches zero, we obtain

utt = c2 (uxx + uyy) , (3.3.3)

where c2 = T/ρ. This equation is called the two-dimensional wave equation.
If there is an external force f per unit area acting on the membrane.

Equation (3.3.3) takes the form

utt = c2 (uxx + uyy) + F, (3.3.4)

where F = f/ρ.

3.4 Waves in an Elastic Medium

If a small disturbance is originated at a point in an elastic medium, neigh-
boring particles are set into motion, and the medium is put under a state
of strain. We consider such states of motion to extend in all directions. We
assume that the displacements of the medium are small and that we are
not concerned with translation or rotation of the medium as a whole.

Let the body under investigation be homogeneous and isotropic. Let δV
be a differential volume of the body, and let the stresses acting on the faces
of the volume be τxx, τyy, τzz, τxy, τxz, τyx, τyz, τzx, τzy. The first three
stresses are called the normal stresses and the rest are called the shear
stresses. (See Figure 3.4.1).

We shall assume that the stress tensor τij is symmetric describing the
condition of the rotational equilibrium of the volume element, that is,
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Figure 3.4.1 Volume element of an elastic body.

τij = τji, i �= j, i, j = x, y, z. (3.4.1)

Neglecting the body forces, the sum of all the forces acting on the volume
element in the x-direction is

[
(τxx)x+δx − (τxx)x

]
δyδz +

[
(τxy)y+δy − (τxy)y

]
δzδx

+
[
(τxz)z+δz − (τxz)z

]
δxδy.

By Newton’s law of motion this resultant force is equal to the mass times
the acceleration. Thus, we obtain

[
(τxx)x+δx − (τxx)x

]
δyδz +

[
(τxy)y+δy − (τxy)y

]
δzδx

+
[
(τxz)z+δz − (τxz)z

]
δxδy = ρ δxδyδz utt (3.4.2)

where ρ is the density of the body and u is the displacement component in
the x-direction. Hence, in the limit as δV approaches zero, we obtain

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= ρ

∂2u

∂t2
. (3.4.3)

Similarly, the following two equations corresponding to y and z directions
are obtained:
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∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z
= ρ

∂2v

∂t2
, (3.4.4)

∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂z
= ρ

∂2w

∂t2
, (3.4.5)

where v and w are the displacement components in the y and z directions
respectively.

We may now define linear strains [see Sokolnikoff (1956)] as

εxx =
∂u

∂x
, εyz =

1

2

(
∂w

∂y
+

∂v

∂z

)
,

εyy =
∂v

∂y
, εzx =

1

2

(
∂u

∂z
+

∂w

∂x

)
, (3.4.6)

εzz =
∂w

∂z
, εxy =

1

2

(
∂v

∂x
+

∂u

∂y

)
,

in which εxx, εyy, εzz represent unit elongations and εyz, εzx, εxy represent
unit shearing strains.

In the case of an isotropic body, generalized Hooke’s law takes the form

τxx = λθ + 2µεxx, τyz = 2µεyz,

τyy = λθ + 2µεyy, τzx = 2µεzx, (3.4.7)

τzz = λθ + 2µεzz, τxy = 2µεxy,

where θ = εxx + εyy + εzz is called the dilatation, and λ and µ are Lame’s
constants.

Expressing stresses in terms of displacements, we obtain

τxx = λθ + 2µ
∂u

∂x
,

τxy = µ

(
∂v

∂x
+

∂u

∂y

)
, (3.4.8)

τxz = µ

(
∂w

∂x
+

∂u

∂z

)
.

By differentiating equations (3.4.8), we obtain

∂τxx

∂x
= λ

∂θ

∂x
+ 2µ

∂2u

∂x2
,

∂τxy

∂y
= µ

∂2v

∂x∂y
+ µ

∂2u

∂y2
, (3.4.9)

∂τxz

∂z
= µ

∂2w

∂x∂z
+ µ

∂2u

∂z2
.

Substituting equation (3.4.9) into equation (3.4.3) yields
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λ
∂θ

∂x
+ µ

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= ρ

∂2u

∂t2
.

(3.4.10)

We note that

∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
=

∂

∂x

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
=

∂θ

∂x
,

and introduce the notation

△ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

The symbol △ or ∇2 is called the Laplace operator. Hence, equation (3.4.10)
becomes

(λ + µ)
∂θ

∂x
+ µ∇2u = ρ

∂2u

∂t2
. (3.4.11)

In a similar manner, we obtain the other two equations which are

(λ + µ)
∂θ

∂y
+ µ∇2v = ρ

∂2v

∂t2
. (3.4.12)

(λ + µ)
∂θ

∂z
+ µ∇2w = ρ

∂2w

∂t2
. (3.4.13)

The set of equations (3.4.11)–(3.4.13) is called the Navier equations of mo-
tion. In vector form, the Navier equations of motion assume the form

(λ + µ) grad divu + µ∇2u = ρutt, (3.4.14)

where u = ui + vj + wk and θ = divu.
(i) If divu = 0, the general equation becomes

µ∇2u = ρutt,

or

utt = c2
T ∇2u, (3.4.15)

where cT is called the transverse wave velocity given by

cT =
√

µ/ρ.

This is the case of an equivoluminal wave propagation, since the volume
expansion θ is zero for waves moving with this velocity. Sometimes these
waves are called waves of distortion because the velocity of propagation
depends on µ and ρ; the shear modulus µ characterizes the distortion and
rotation of the volume element.
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(ii) When curl u = 0, the vector identity

curl curlu = grad divu − ∇2u,

gives

grad divu = ∇2u,

Then the general equation becomes

(λ + 2µ) ∇2u = ρutt,

or

utt = c2
L∇2u, (3.4.16)

where cL is called the longitudinal wave velocity given by

cL =

√
λ + 2µ

ρ
.

This is the case of irrotational or dilatational wave propagation, since
curlu = 0 describes irrotational motion. Equations (3.4.15) and (3.4.16)
are called the three-dimensional wave equations.

In general, the wave equation may be written as

utt = c2∇2u, (3.4.17)

where the Laplace operator may be one, two, or three dimensional. The
importance of the wave equation stems from the facts that this type of
equation arises in many physical problems; for example, sound waves in
space, electrical vibration in a conductor, torsional oscillation of a rod,
shallow water waves, linearized supersonic flow in a gas, waves in an elec-
tric transmission line, waves in magnetohydrodynamics, and longitudinal
vibrations of a bar.

To give a more general method of decomposing elastic waves into trans-
verse and longitudinal wave forms, we write the Navier equations of motion
in the form

c2
T ∇2u +

(
c2
L − c2

T

)
grad (div u) = utt. (3.4.18)

We now decompose this equation into two vector equations by defining
u = uT + uL, where uT and uL satisfy the equations

div uT = 0 and curl uL = 0. (3.4.19ab)

Since uT is defined by (3.4.19a) that is divergenceless, it follows from vector
analysis that there exists a rotation vector ψψψ such that



74 3 Mathematical Models

uT = curl ψψψ, (3.4.20)

where ψψψ is called the vector potential.
On the other hand, uL is irrotational as given by (3.4.19b), so there

exists a scalar function φ (x, t), called the scalar potential such that

uL = grad φ. (3.4.21)

Using (3.4.20) and (3.4.21), we can write

u = curl ψψψ + grad φ. (3.4.22)

This means that the displacement vector field is decomposed into a diver-
genceless vector and irrotational vector.

Inserting u = uT +uL into (3.4.18), taking the divergence of each term
of the resulting equation, and then using (3.4.19a) gives

div
[
c2
L∇2uL − (uL)tt

]
= 0. (3.4.23)

It is noted that the curl of the square bracket in (3.4.23) is also zero.
Clearly, any vector whose divergence and curl both vanish is identically a
zero vector. Consequently,

c2
L∇2uL = (uL)tt . (3.4.24)

This shows that uL satisfies the vector wave equation with the wave velocity
cL. Since uL = grad φ, it is clear that the scalar potential φ also satisfies the
wave equation with the same wave speed. All solutions of (3.4.24) represent
longitudinal waves that are irrotational (since ψψψ = 0).

Similarly, we substitute u = uL + uT into (3.4.18), take the curl of the
resulting equation, and use the fact that curl uL = 0 to obtain

curl
[
c2
T ∇2uT − (uT )tt

]
= 0. (3.4.25)

Since the divergence of the expression inside the square bracket is also zero,
it follows that

c2
T ∇2uT = (uT )tt . (3.4.26)

This is a vector wave equation for uT whose solutions represent transverse
waves that are irrotational but are accompanied by no change in volume
(equivoluminal, transverse, rotational waves). These waves propagate with
a wave velocity cT .

We close this section by seeking time-harmonic solutions of (3.4.18) in
the form

u = Re
[
U (x, y, z) eiωt

]
. (3.4.27)
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Invoking (3.4.27) into equation (3.4.18) gives the following equation for
the function U

cT ∇2U + (cL − cT ) grad (div U) + ω2U = 0. (3.4.28)

Inserting, u = uT + uL, and using the above method of taking the
divergence and curl of (3.4.28) respectively leads to equation for UL and
UT as follows

∇2UL + k2
L ∇2UL = 0, ∇2UT + k2

T UT = 0, (3.4.29)

where

k2
L =

ω2

c2
L

and k2
T =

ω2

c2
T

. (3.4.30)

Equations (3.4.29) are called the reduced wave equations (or the Helmholtz
equations) for UL and UT . Obviously, equations (3.4.29) can also be de-
rived by assuming time-harmonic solutions for uL and uT in the form

⎛
⎝

uL

uT

⎞
⎠ = eiωt

⎛
⎝

UL

UT

⎞
⎠ , (3.4.31)

and substituting these results into (3.4.24) and (3.4.26) respectively.

3.5 Conduction of Heat in Solids

We consider a domain D∗ bounded by a closed surface B∗. Let u (x, y, z, t)
be the temperature at a point (x, y, z) at time t. If the temperature is not
constant, heat flows from places of higher temperature to places of lower
temperature. Fourier’s law states that the rate of flow is proportional to
the gradient of the temperature. Thus the velocity of the heat flow in an
isotropic body is

v = −Kgradu, (3.5.1)

where K is a constant, called the thermal conductivity of the body.
Let D be an arbitrary domain bounded by a closed surface B in D∗.

Then the amount of heat leaving D per unit time is

∫∫

B

vnds,

where vn = v · n is the component of v in the direction of the outer unit
normal n of B. Thus, by Gauss’ theorem (Divergence theorem)
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∫∫

B

vnds =

∫∫∫

D

div (−Kgradu) dx dy dz

= −K

∫∫∫

D

∇2u dx dy dz. (3.5.2)

But the amount of heat in D is given by

∫∫∫

D

σρu dx dy dz, (3.5.3)

where ρ is the density of the material of the body and σ is its specific heat.
Assuming that integration and differentiation are interchangeable, the rate
of decrease of heat in D is

−
∫∫∫

D

σρ
∂u

∂t
dx dy dz. (3.5.4)

Since the rate of decrease of heat in D must be equal to the amount of heat
leaving D per unit time, we have

−
∫∫∫

D

σρut dx dy dz = −K

∫∫∫

D

∇2u dx dy dz,

or

−
∫∫∫

D

[
σρut − K∇2u

]
dx dy dz = 0, (3.5.5)

for an arbitrary D in D∗. We assume that the integrand is continuous. If we
suppose that the integrand is not zero at a point (x0, y0, z0) in D, then, by
continuity, the integrand is not zero in a small region surrounding the point
(x0, y0, z0). Continuing in this fashion we extend the region encompassing
D. Hence the integral must be nonzero. This contradicts (3.5.5). Thus, the
integrand is zero everywhere, that is,

ut = κ∇2u, (3.5.6)

where κ = K/σρ. This is known as the heat equation.
This type of equation appears in a great variety of problems in math-

ematical physics, for example the concentration of diffusing material, the
motion of a tidal wave in a long channel, transmission in electrical cables,
and unsteady boundary layers in viscous fluid flows.

3.6 The Gravitational Potential

In this section, we shall derive one of the most well-known equations in the
theory of partial differential equations, the Laplace equation.
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Figure 3.6.1 Two particles at P and Q.

We consider two particles of masses m and M , at P and Q as shown
in Figure 3.6.1. Let r be the distance between them. Then, according to
Newton’s law of gravitation, a force proportional to the product of their
masses, and inversely proportional to the square of the distance between
them, is given in the form

F = G
mM

r2
, (3.6.1)

where G is the gravitational constant.
It is customary in potential theory to choose the unit of force so that

G = 1. Thus, F becomes

F =
mM

r2
. (3.6.2)

If r represents the vector PQ, the force per unit mass at Q due to the mass
at P may be written as

F =
−mr

r3
= ∇

(m

r

)
, (3.6.3)

which is called the intensity of the gravitational field of force.
We suppose that a particle of unit mass moves under the attraction of

the particle of mass m at P from infinity up to Q. The work done by the
force F is
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∫ r

∞
Fdr =

∫ r

∞
∇

(m

r

)
dr =

m

r
. (3.6.4)

This is called the potential at Q due to the particle at P . We denote this
by

V = −m

r
, (3.6.5)

so that the intensity of force at P is

F = ∇
(m

r

)
= −∇V. (3.6.6)

We shall now consider a number of masses m1, m2, . . ., mn, whose
distances from Q are r1, r2, . . ., rn, respectively. Then the force of attraction
per unit mass at Q due to the system is

F =

n∑

k=1

∇mk

rk
= ∇

n∑

k=1

mk

rk
. (3.6.7)

The work done by the forces acting on a particle of unit mass is

∫ r

∞
F · dr =

n∑

k=1

mk

rk
= −V. (3.6.8)

Then the potential satisfies the equation

∇2V = −∇2
n∑

k=1

mk

rk
= −

n∑

k=1

∇2

(
mk

rk

)
= 0, rk �= 0. (3.6.9)

In the case of a continuous distribution of mass in some volume R, we have,
as in Figure 3.6.2.

V (x, y, z) =

∫∫∫

R

ρ (ξ, η, ζ)

r
dR, (3.6.10)

where r =

√
(x − ξ)

2
+ (y − η)

2
+ (z − ζ)

2
and Q is outside the body. It

immediately follows that

∇2V = 0. (3.6.11)

This equation is called the Laplace equation, also known as the potential
equation. It appears in many physical problems, such as those of electro-
static potentials, potentials in hydrodynamics, and harmonic potentials in
the theory of elasticity. We observe that the Laplace equation can be viewed
as the special case of the heat and the wave equations when the dependent
variables involved are independent of time.
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Figure 3.6.2 Continuous Mass Distribution.

3.7 Conservation Laws and The Burgers Equation

A conservation law states that the rate of change of the total amount of
material contained in a fixed domain of volume V is equal to the flux of
that material across the closed bounding surface S of the domain. If we
denote the density of the material by ρ (x, t) and the flux vector by q (x, t),
then the conservation law is given by

d

dt

∫

V

ρ dV = −
∫

S

(q · n) dS, (3.7.1)

where dV is the volume element and dS is the surface element of the bound-
ary surface S, n denotes the outward unit normal vector to S as shown in
Figure 3.7.1, and the right-hand side measures the outward flux — hence,
the minus sign is used.

Applying the Gauss divergence theorem and taking d
dt inside the integral

sign, we obtain
∫

V

(
∂ρ

∂t
+ divq

)
dV = 0. (3.7.2)

This result is true for any arbitrary volume V , and, if the integrand is
continuous, it must vanish everywhere in the domain. Thus, we obtain the
differential form of the conservation law

ρt + divq = 0. (3.7.3)
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Figure 3.7.1 Volume V of a closed domain bounded by a surface S with surface
element dS and outward normal vector n.

The one-dimensional version of the conservation law (3.7.3) is

∂ρ

∂t
+

∂q

∂x
= 0. (3.7.4)

To investigate the nature of the discontinuous solution or shock waves,
we assume a functional relation q = Q (ρ) and allow a jump discontinuity
for ρ and q. In many physical problems of interest, it would be a better
approximation to assume that q is a function of the density gradient ρx as
well as ρ. A simple model is to take

q = Q (ρ) − νρx, (3.7.5)

where ν is a positive constant. Substituting (3.7.5) into (3.7.4), we obtain
the nonlinear diffusion equation

ρt + c (ρ) ρx = νρxx, (3.7.6)

where c (ρ) = Q′ (ρ).
We multiply (3.7.6) by c′ (ρ) to obtain

ct + c cx = ν c′ (ρ) ρxx,

= ν
{
cxx − c′′ (ρ) ρ2

x

}
. (3.7.7)

If Q (ρ) is a quadratic function in ρ, then c (ρ) is linear in ρ, and c′′ (ρ) = 0.
Consequently, (3.7.7) becomes

ct + c cx = ν cxx. (3.7.8)
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As a simple model of turbulence, c is replaced by the fluid velocity field
u (x, t) to obtain the well-known Burgers equation

ut + uux = ν uxx, (3.7.9)

where ν is the kinematic viscosity.
Thus the Burgers equation is a balance between time evolution, non-

linearity, and diffusion. This is the simplest nonlinear model equation for
diffusive waves in fluid dynamics. Burgers (1948) first developed this equa-
tion primarily to shed light on the study of turbulence described by the
interaction of the two opposite effects of convection and diffusion. However,
turbulence is more complex in the sense that it is both three dimensional
and statistically random in nature. Equation (3.7.9) arises in many phys-
ical problems including one-dimensional turbulence (where this equation
had its origin), sound waves in a viscous medium, shock waves in a viscous
medium, waves in fluid-filled viscous elastic tubes, and magnetohydrody-
namic waves in a medium with finite electrical conductivity. We note that
(3.7.9) is parabolic provided the coefficient of ux is constant, whereas the
resulting (3.7.9) with ν = 0 is hyperbolic. More importantly, the proper-
ties of the solution of the parabolic equation are significantly different from
those of the hyperbolic equation.

3.8 The Schrödinger and the Korteweg–de Vries

Equations

We consider the following Fourier integral representation of a quasi-mono-
chromatic plane wave solution

u (x, t) =

∫ ∞

−∞
F (k) exp [i {kx − ω (k) t}] dk, (3.8.1)

where the spectrum function F (k) is determined from the given ini-
tial or boundary conditions and has the property F (−k) = F ∗ (k), and
ω = ω (k) is the dispersion relation. We assume that the initial wave is
slowly modulated as it propagates in a dispersive medium. For such a quasi-
monochromatic wave, most of the energy is confined in a neighborhood of
a specified wave number k = k0, so that spectrum function F (k) has a
sharp peak around the point k = k0 with a narrow wave number width
k − k0 = δk = O (ε), and the dispersion relation ω (k) can be expanded
about k0 in the form

ω = ω0 + ω′
0 (δk) +

1

2!
ω′′

0 (δk)
2

+
1

3!
ω′′′

0 (δk)
3

+ · · · , (3.8.2)

where ω0 = ω (k0), ω′
0 = ω′ (k0), ω′′

0 = ω′′ (k0), and ω′′′
0 = ω′′′ (k0).
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Substituting (3.8.2) into (3.8.1) gives a new form

u (x, t) = A (x, t) exp [i (k0x − ω0t)] + c.c., (3.8.3)

where c.c. stands for the complex conjugate and A (x, t) is the complex
wave amplitude given by

A (x, t) =

∫ ∞

0

F (k0 + δk) exp

[
i

{
(x − ω′

0t) (δk) − 1

2
ω′′

0 (δk)
2
t

−1

3
ω′′′

0 (δk)
3
t

}]
d (δk) , (3.8.4)

where it has been assumed that ω (−k) = − ω (k). Since (3.8.4) depends on

(x − ω′
0t) δk, (δk)

2
t, (δk)

3
t where δk = O (ε) is small, the wave amplitude

A (x, t) is a slowly varying function of x∗ = (x − ω′
0t) and time t.

We keep only the term with (δk) in (3.8.4) and neglect all terms with
(δk)

n
, n = 2, 3, · · · , so that (3.8.4) becomes

A (x, t) =

∫ ∞

0

F (k0 + δk) exp [i {(x − ω′
0t)} (δk)] d (δk) . (3.8.5)

A simple calculation reveals that A (x, t) satisfies the evolution equation

∂A

∂t
+ cg

∂A

∂x
= 0, (3.8.6)

where cg = ω′
0 is the group velocity.

In the next step, we retain only terms with (δk) and (δk)
2

in (3.8.4) to
obtain

A (x, t) =

∫ ∞

0

F (k0 + δk) exp

[
i

{
(x − ω′

0t) (δk) − 1

2
ω′′

0 (δk)
2

}]
d (δk) .

(3.8.7)

A simple calculation shows that A (x, t) satisfies the linear Schrödinger
equation

i

(
∂A

∂t
+ ω′

0

∂A

∂x

)
+

1

2
ω′′

0

∂2A

∂x2
= 0. (3.8.8)

Using the slow variables

ξ = ε (x − ω′
0t) , τ = ε2t, (3.8.9)

the modulated wave amplitude A (ξ, τ) satisfies the linear Schrödinger equa-
tion

i Aτ +
1

2
ω′′

0Aξξ = 0. (3.8.10)
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On the other hand, for the frequencies at which the group velocity ω′
0

reaches an extremum, ω′′
0 = 0. In this case, the cubic term in the dispersion

relation (3.7.2) plays an important role. Consequently, equation (3.8.4) re-
duces to a form similar to (3.8.7) with ω′′

0 = 0 in the exponential factor.
Once again, a simple calculation from the resulting integral (3.8.4) reveals
that A (x, t) satisfies the linearized Korteweg–de Vries (KdV) equation

∂A

∂t
+ ω′

0

∂A

∂x
+

1

6
ω′′′

0

∂3A

∂x3
= 0. (3.8.11)

By transferring to the new variables ξ = x−ω′
0t and τ = t which correspond

to a reference system moving with the group velocity ω′
0, we obtain the

linearized KdV equation

∂A

∂τ
+

1

6
ω′′′

0

∂3A

∂ξ3
= 0. (3.8.12)

This describes waves in a dispersive medium with a weak high frequency
dispersion.

One of the remarkable nonlinear model equations is the Korteweg–de
Vries (KdV) equation in the form

ut + αuux + βuxxx = 0, −∞ < x < ∞, t > 0. (3.8.13)

This equation arises in many physical problems including water waves, ion
acoustic waves in a plasma, and longitudinal dispersive waves in elastic rods.
The exact solution of this equation is called the soliton which is remarkably
stable. We shall discuss the soliton solution in Chapter 13.

Another remarkable nonlinear model equation describing solitary waves
is known as the nonlinear Schrödinger (NLS) equation written in the stan-
dard form

i ut +
1

2
ω′′

0 uxx + γ |u|2 u = 0, −∞ < x < ∞, t > 0. (3.8.14)

This equation admits a solution called the solitary waves and describes the
evolution of the water waves; it arises in many other physical systems that
include nonlinear optics, hydromagnetic and plasma waves, propagation of
heat pulse in a solid, and nonlinear instability problems. The solution of
this equation will be discussed in Chapter 13.

3.9 Exercises

1. Show that the equation of motion of a long string is

utt = c2uxx − g,

where g is the gravitational acceleration.
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2. Derive the damped wave equation of a string

utt + a ut = c2uxx,

where the damping force is proportional to the velocity and a is a
constant. Considering a restoring force proportional to the displacement
of a string, show that the resulting equation is

utt + aut + bu = c2uxx,

where b is a constant. This equation is called the telegraph equation.

3. Consider the transverse vibration of a uniform beam. Adopting Euler’s
beam theory, the moment M at a point can be written as

M = −EI uxx,

where EI is called the flexural rigidity, E is the elastic modulus, and
I is the moment of inertia of the cross section of the beam. Show that
the transverse motion of the beam may be described by

utt + c2uxxxx = 0,

where c2 = EI/ρA, ρ is the density, and A is the cross-sectional area
of the beam.

4. Derive the deflection equation of a thin elastic plate

∇4u = q/D,

where q is the uniform load per unit area, D is the flexural rigidity of
the plate, and

∇4u = uxxxx + 2uxxyy + uyyyy.

5. Derive the one-dimensional heat equation

ut = κuxx, where κ is a constant.

Assuming that heat is also lost by radioactive exponential decay of the
material in the bar, show that the above equation becomes

ut = κuxx + he−αx,

where h and α are constants.

6. Starting from Maxwell’s equations in electrodynamics, show that in
a conducting medium electric intensity E, magnetic intensity H, and
current density J satisfy

∇2X = µεXtt + µσXt,

where X represents E, H, and J, µ is the magnetic inductive capacity,
ε is the electric inductive capacity, and σ is the electrical conductivity.
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7. Derive the continuity equation

ρt + div (ρu) = 0,

and Euler’s equation of motion

ρ [ut + (u · grad)u] + grad p = 0,

in fluid dynamics.

8. In the derivation of the Laplace equation (3.6.11), the potential at Q
which is outside the body is ascertained. Now determine the potential
at Q when it is inside the body, and show that it satisfies the Poisson
equation

∇2u = −4πρ,

where ρ is the density of the body.

9. Setting U = eiktu in the wave equation Utt = ∇2U and setting U =
e−k2tu in the heat equation Ut = ∇2U , show that u (x, y, z) satisfies
the Helmholtz equation

∇2u + k2u = 0.

10. The Maxwell equations in vacuum are

∇ × E = −∂B

∂t
, ∇ × B = µε

∂E

∂t
,

∇ · E = 0, ∇ · B = 0,

where µ and ε are universal constants. Show that the magnetic field
B = (0, By (x, t) , 0) and the electric field E = (0, 0, Ez (x, t)) satisfy
the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
,

where u = By or Ez and c = (µε)
− 1

2 is the speed of light.

11. The equations of gas dynamics are linearized for small perturbations
about a constant state u = 0, ρ = ρ0, and p0 = p (ρ0) with c2

0 = p′ (ρ0).
In terms of velocity potential φ defined by u = ∇φ, the perturbation
equations are

ρt + ρ0 divu = 0,

p − p0 = −ρ0φt = c2
0 (ρ − ρ0) ,

ρ − ρ0 = −ρ0

c2
0

φt.
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Show that f and u satisfy the three dimensional wave equations

ftt = c2
0 ∇2f, and utt = c2

0 ∇2u,

where f = p, ρ, or φ and

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

12. Consider a slender body moving in a gas with arbitrary constant ve-
locity U , and suppose (x1, x2, x3) represents the frame of reference in
which the motion of the gas is small and described by the equations of
problem 11. The body moves in the negative x1 direction, and (x, y, z)
denotes the coordinates fixed with respect to the body so that the co-
ordinate transformation is (x, y, z) = (x1 + Ut, x2, x3). Show that the
wave equation φtt = c2

0∇2φ reduces to the form

(
M2 − 1

)
Φxx = Φyy + Φzz,

where M ≡ U/c0 is the Mach number and Φ is the potential in the new
frame of reference (x, y, z).

13. Consider the motion of a gas in a taper tube of cross section A (x).
Show that the equation of continuity and the equation of motion are

ρ = ρ0

(
1 − ∂ξ

∂x
− ξ

A

∂A

∂x

)
= ρ0

[
1 − 1

A

∂

∂x
(Aξ)

]
,

and

ρ0
∂2ξ

∂t2
= −∂p

∂x
,

where x is the distance along the length of the tube, ξ (x) is the dis-
placement function, p = p (ρ) is the pressure-density relation, ρ0 is the
average density, and ρ is the local density of the gas.
Hence derive the equation of motion

ξtt = c2 ∂

∂x

[
1

A

∂

∂x
(Aξ)

]
, c2 =

∂p

∂ρ
.

Find the equation of motion when A is constant. If A (x) = a0 exp (2αx)
where a0 and α are constants, show that the above equation takes the
form

ξtt = c2 (ξxx + 2αξx) .

14. Consider the current I (x, t) and the potential V (x, t) at a point x
and time t of a uniform electric transmission line with resistance R,
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inductance L, capacity C, and leakage conductance G per unit length.
(a) Show that both I and V satisfy the system of equations

LIt + RI = −Vx,

CVt + GV = −Ix.

Derive the telegraph equation

uxx − c−2 utt − a ut − bu = 0, for u = I or V,

where c2 = (LC)
−1

, a = RC + LG and b = RG.

(b) Show that the telegraph equation can be written in the form

utt − c2uxx + (p + q) ut + pq u = 0,

where p = G
C and q = R

L .

(c) Apply the transformation

u = v exp

[
−1

2
(p + q) t

]

to transform the above equation into the form

vtt − c2vxx =
1

4
(p − q)

2
v.

(d) When p = q, show that there exists an undisturbed wave solution
in the form

u (x, t) = e−ptf (x+ ct) ,

which propagates in either direction, where f is an arbitrary twice dif-
ferentiable function of its argument.
If u (x, t) = A exp [i (kx − ωt)] is a solution of the telegraph equation

utt − c2uxx − αut − βu = 0, α = p + q, β = pq,

show that the dispersion relation holds

ω2 + iαω −
(
c2k2 + β2

)
= 0.

Solve the dispersion relation to show that

u (x, t) = exp

(
−1

2
p t

)
exp

[
i

(
kx − t

2

√
4c2k2 + (4q − p2)

)]
.

When p2 = 4q, show that the solution represents attenuated nondisper-
sive waves.
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(e) Find the equations for I and V in the following cases:

(i) Lossless transmission line (R = G = 0),

(ii) Ideal submarine cable (L = G = 0),

(iii) Heaviside’s distortionless line (R/L = G/C = constant = k).

15. The Fermi–Pasta–Ulam model is used to describe waves in an anhar-
monic lattice of length l consisting of a row of n identical masses m,
each connected to the next by nonlinear springs of constant κ. The
masses are at a distance h = l/n apart, and the springs when extended
or compressed by an amount d exert a force F = κ

(
d + α d2

)
where α

measures the strength of nonlinearity. The equation of motion of the
ith mass is

mÿi = κ
[
(yi+1 − yi) − (yi − yi−1) + α

{
(yi+1 − yi)

2 − (yi − yi−1)
2
}]

,

where i = 1, 2, 3...n, yi is the displacement of the ith mass from its
equilibrium position, and κ, α are constants with y0 = yn = 0.
Assume a continuum approximation of this discrete system so that the
Taylor expansions

yi+1 − yi = hyx +
h2

2!
yxx +

h3

3!
yxxx +

h4

4!
yxxxx + o

(
h5

)
,

yi − yi−1 = hyx − h2

2!
yxx +

h3

3!
yxxx − h4

4!
yxxxx + o

(
h5

)
,

can be used to derive the nonlinear differential equation

ytt = c2 [1 + 2αhyx] yxx + o
(
h4

)
,

ytt = c2 [1 + 2αhyx] yxx +
c2h2

12
yxxxx + o

(
h5

)
,

where

c2 =
κh2

m
.

Using a change of variables ξ = x − ct, τ = cαht, show that u = yξ

satisfies the Korteweg–de Vries (KdV) equation

uτ + uuξ + βuξξξ = o
(
ε2

)
, ε = αh, β =

h

24α
.

16. The one-dimensional isentropic fluid flow is obtained from Euler’s equa-
tions (3.1.14) in the form

ut + uux = −1

ρ
px, ρt + (ρu)x = 0, p = p (ρ) .
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(a) Show that u and ρ satisfy the one-dimensional wave equation
(

u
ρ

)

tt

− c2

(
u
ρ

)

xx

= 0,

where c2 = dp
dρ is the velocity of sound.

(b) For a compressible adiabatic gas, the equation of state is p = Aργ ,
where A and γ are constants; show that

c2 =
γp

ρ
.

17. (a) Obtain the two-dimensional unsteady fluid flow equations from
(3.1.14).
(b) Find the two-dimensional steady fluid flow equations from (3.1.14).
Hence or otherwise, show that

(
c2 − u2

)
ux − u v (uy + vx) +

(
c2 − v2

)
vy = 0,

where

c2 = p′ (ρ) .

(c) Show that, for an irrotational fluid flow (u = ∇φ), the above equa-
tion reduces to the quasi-linear partial differential equations

(
c2 − φ2

x

)
φxx − 2φxφyφxy +

(
c2 − φ2

y

)
φyy = 0.

(d) Show that the slope of the characteristic C satisfies the quadratic
equation

(
c2 − u2

)(
dy

dx

)2

+ 2uv

(
dy

dx

)
+

(
c2 − v2

)
= 0.

Hence or otherwise derive

(
c2 − v2

)(
dv

du

)2

− 2uv

(
dv

du

)
+

(
c2 − u2

)
= 0.

18. For an inviscid incompressible fluid flow under the body force, F =
−∇Φ, the Euler equations are

∂u

∂t
+ u · ∇u = −∇Φ − 1

ρ
∇p, divu = 0.

(a) Show that the vorticity ωωω = ∇ × u satisfies the vorticity equation

Dωωω

Dt
=

∂ωωω

∂t
+ u · ∇ωωω = ωωω · ∇u.

(b) Give the interpretation of this vorticity equation.
(c) In two dimensions, show that Dωωω

Dt = 0 (conservation of vorticity).
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19. The evolution of the probability distribution function u (x, t) in nonequi-
librium statistical mechanics is described by the Fokker–Planck equa-
tion (See Reif (1965))

∂u

∂t
=

∂

∂x

(
∂u

∂t
+ x

)
u.

(a) Use the change of variables

ξ = x et and v = u e−t

to show that the Fokker–Planck equation assumes the form with
u (x, t) = et v (ξ, τ)

vt = e2t vξξ.

(b) Make a suitable change of variable t to τ (t), and transform the
above equation into the standard diffusion equation

vt = vξξ.

20. The electric field E (x) and the electromagnetic field H (x) in free
space (a vacuum) satisfy the Maxwell equations Et = c curl H, Ht =
−c curl H, divE = 0 = divH, where c is the constant speed of light in a
vacuum. Show that both E and H the three-dimensional wave equations

Ett = c2∇2E and Htt = c2∇2H,

where x = (x, y, z) and ∇2 is the three-dimensional Laplacian.

21. Consider longitudinal vibrations of a free elastic rod with a variable
cross section A (x) with x measured along the axis of the rod from
the origin. Assuming that the material of the rod satisfies Hooke’s law,
show that the displacement function u (x, t) satisfies the generalized
wave equation

utt = c2uxx +
c2

A (x)

(
dA

dx

)
ux,

where c2 = (λ/ρ), λ is a constant that describes the elastic nature of the
material, and ρ is the line density of the rod. When A (x) is constant,
the above equation reduces to one-dimensional wave equation.
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Classification of Second-Order Linear

Equations

“When we have a good understanding of the problem, we are able to clear
it of all auxiliary notions and to reduce it to simplest element.”

René Descartes

“The first process ... in the effectual study of sciences must be one of sim-
plification and reduction of the results of previous investigations to a form
in which the mind can grasp them.”

James Clerk Maxwell

4.1 Second-Order Equations in Two Independent

Variables

The general linear second-order partial differential equation in one depen-
dent variable u may be written as

n∑

i,j=1

Aijuxixj +

n∑

i=1

Biuxi + Fu = G, (4.1.1)

in which we assume Aij = Aji and Aij , Bi, F , and G are real-valued
functions defined in some region of the space (x1, x2, . . . , xn).

Here we shall be concerned with second-order equations in the depen-
dent variable u and the independent variables x, y. Hence equation (4.1.1)
can be put in the form

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G, (4.1.2)

where the coefficients are functions of x and y and do not vanish simulta-
neously. We shall assume that the function u and the coefficients are twice
continuously differentiable in some domain in R

2.
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The classification of partial differential equations is suggested by the
classification of the quadratic equation of conic sections in analytic geom-
etry. The equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

represents hyperbola, parabola, or ellipse accordingly as B2 − 4AC is pos-
itive, zero, or negative.

The classification of second-order equations is based upon the possibility
of reducing equation (4.1.2) by coordinate transformation to canonical or
standard form at a point. An equation is said to be hyperbolic, parabolic,
or elliptic at a point (x0, y0) accordingly as

B2 (x0, y0) − 4A (x0, y0) C (x0, y0) (4.1.3)

is positive, zero, or negative. If this is true at all points, then the equation
is said to be hyperbolic, parabolic, or elliptic in a domain. In the case of
two independent variables, a transformation can always be found to reduce
the given equation to canonical form in a given domain. However, in the
case of several independent variables, it is not, in general, possible to find
such a transformation.

To transform equation (4.1.2) to a canonical form we make a change of
independent variables. Let the new variables be

ξ = ξ (x, y) , η = η (x, y) . (4.1.4)

Assuming that ξ and η are twice continuously differentiable and that the
Jacobian

J =

∣∣∣∣∣∣

ξx ξy

ηx ηy

∣∣∣∣∣∣
, (4.1.5)

is nonzero in the region under consideration, then x and y can be deter-
mined uniquely from the system (4.1.4). Let x and y be twice continuously
differentiable functions of ξ and η. Then we have

ux = uξξx + uηηx, uy = uξξy + uηηy,

uxx = uξξξ
2
x + 2uξηξxηx + uηηη2

x + uξξxx + uηηxx, (4.1.6)

uxy = uξξξxξy + uξη (ξxηy + ξyηx) + uηηηxηy + uξξxy + uηηxy,

uyy = uξξξ
2
y + 2uξηξyηy + uηηη2

y + uξξyy + uηηyy.

Substituting these values in equation (4.1.2) we obtain

A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F ∗u = G∗, (4.1.7)

where
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A∗ = Aξ2
x + Bξxξy + Cξ2

y ,

B∗ = 2Aξxηx + B (ξxηy + ξyηx) + 2Cξyηy,

C∗ = Aη2
x + Bηxηy + Cη2

y,

D∗ = Aξxx + Bξxy + Cξyy + Dξx + Eξy, (4.1.8)

E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy,

F ∗ = F, G∗ = G.

The resulting equation (4.1.7) is in the same form as the original equation
(4.1.2) under the general transformation (4.1.4). The nature of the equation
remains invariant under such a transformation if the Jacobian does not
vanish. This can be seen from the fact that the sign of the discriminant
does not alter under the transformation, that is,

B∗2 − 4A∗C∗ = J2
(
B2 − 4AC

)
, (4.1.9)

which can be easily verified. It should be noted here that the equation can
be of a different type at different points of the domain, but for our purpose
we shall assume that the equation under consideration is of the single type
in a given domain.

The classification of equation (4.1.2) depends on the coefficients A (x, y),
B (x, y), and C (x, y) at a given point (x, y). We shall, therefore, rewrite
equation (4.1.2) as

Auxx + Buxy + Cuyy = H (x, y, u, ux, uy) , (4.1.10)

and equation (4.1.7) as

A∗uξξ + B∗uξη + C∗uηη = H∗ (ξ, η, u, uξ, uη) . (4.1.11)

4.2 Canonical Forms

In this section we shall consider the problem of reducing equation (4.1.10)
to canonical form.

We suppose first that none of A, B, C, is zero. Let ξ and η be new
variables such that the coefficients A∗ and C∗ in equation (4.1.11) vanish.
Thus, from (4.1.8), we have

A∗ = Aξ2
x + Bξxξy + Cξ2

y = 0,

C∗ = Aη2
x + Bηxηy + Cη2

y = 0.

These two equations are of the same type and hence we may write them in
the form

Aζ2
x + Bζxζy + Cζ2

y = 0, (4.2.1)
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in which ζ stand for either of the functions ξ or η. Dividing through by ζ2
y ,

equation (4.2.1) becomes

A

(
ζx

ζy

)2

+ B

(
ζx

ζy

)
+ C = 0. (4.2.2)

Along the curve ζ = constant, we have

dζ = ζxdx + ζydy = 0.

Thus,

dy

dx
= −ζx

ζy
, (4.2.3)

and therefore, equation (4.2.2) may be written in the form

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0, (4.2.4)

the roots of which are

dy

dx
=

(
B +

√
B2 − 4AC

)
/2A, (4.2.5)

dy

dx
=

(
B −

√
B2 − 4AC

)
/2A. (4.2.6)

These equations, which are known as the characteristic equations, are or-
dinary differential equations for families of curves in the xy-plane along
which ξ = constant and η = constant. The integrals of equations (4.2.5)
and (4.2.6) are called the characteristic curves. Since the equations are
first-order ordinary differential equations, the solutions may be written as

φ1 (x, y) = c1, c1 = constant,

φ2 (x, y) = c2, c2 = constant.

Hence the transformations

ξ = φ1 (x, y) , η = φ2 (x, y) ,

will transform equation (4.1.10) to a canonical form.

(A) Hyperbolic Type
If B2 − 4AC > 0, then integration of equations (4.2.5) and (4.2.6) yield

two real and distinct families of characteristics. Equation (4.1.11) reduces
to

uξη = H1, (4.2.7)
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where H1 = H∗/B∗. It can be easily shown that B∗ �= 0. This form is called
the first canonical form of the hyperbolic equation.

Now if new independent variables

α = ξ + η, β = ξ − η, (4.2.8)

are introduced, then equation (4.2.7) is transformed into

uαα − uββ = H2 (α, β, u, uα, uβ) . (4.2.9)

This form is called the second canonical form of the hyperbolic equation.

(B) Parabolic Type
In this case, we have B2 − 4AC = 0, and equations (4.2.5) and (4.2.6)

coincide. Thus, there exists one real family of characteristics, and we obtain
only a single integral ξ = constant (or η = constant).

Since B2 = 4AC and A∗ = 0, we find that

A∗ = Aξ2
x + Bξxξy + Cξ2

y =
(√

A ξx +
√

C ξy

)2

= 0.

From this it follows that

A∗ = 2Aξxηx + B (ξxηy + ξyηx) + 2Cξyηy

= 2
(√

A ξx +
√

C ξy

)(√
A ηx +

√
C ηy

)
= 0,

for arbitrary values of η (x, y) which is functionally independent of ξ (x, y);
for instance, if η = y, the Jacobian does not vanish in the domain of parabol-
icity.

Division of equation (4.1.11) by C∗ yields

uηη = H3 (ξ, η, u, uξ, uη) , C∗ �= 0. (4.2.10)

This is called the canonical form of the parabolic equation.
Equation (4.1.11) may also assume the form

uξξ = H∗
3 (ξ, η, u, uξ, uη) , (4.2.11)

if we choose η = constant as the integral of equation (4.2.5).

(C) Elliptic Type
For an equation of elliptic type, we have B2 − 4AC < 0. Consequently,

the quadratic equation (4.2.4) has no real solutions, but it has two complex
conjugate solutions which are continuous complex-valued functions of the
real variables x and y. Thus, in this case, there are no real characteristic
curves. However, if the coefficients A, B, and C are analytic functions of
x and y, then one can consider equation (4.2.4) for complex x and y. A
function of two real variables x and y is said to be analytic in a certain
domain if in some neighborhood of every point (x0, y0) of this domain, the
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function can be represented as a Taylor series in the variables (x − x0) and
(y − y0).

Since ξ and η are complex, we introduce new real variables

α =
1

2
(ξ + η) , β =

1

2i
(ξ − η) , (4.2.12)

so that

ξ = α + iβ, η = α − iβ. (4.2.13)

First, we transform equations (4.1.10). We then have

A∗∗ (α, β) uαα + B∗∗ (α, β) uαβ + C∗∗ (α, β) uββ = H4 (α, β, u, uα, uβ) ,

(4.2.14)

in which the coefficients assume the same form as the coefficients in equation
(4.1.11). With the use of (4.2.13), the equations A∗ = C∗ = 0 become

(
Aα2

x + Bαxαy + Cα2
y

)
−

(
Aβ2

x + Bβxβy + Cβ2
y

)

+i [2Aαxβx + B (αxβy + αyβx) + 2Cαyβy] = 0,

(
Aα2

x + Bαxαy + Cα2
y

)
−

(
Aβ2

x + Bβxβy + Cβ2
y

)

−i [2Aαxβx + B (αxβy + αyβx) + 2Cαyβy] = 0,

or,

(A∗∗ − C∗∗) + iB∗∗ = 0, (A∗∗ − C∗∗) − iB∗∗ = 0.

These equations are satisfied if and only if

A∗∗ = C∗∗ and B∗∗ = 0.

Hence, equation (4.2.14) transforms into the form

A∗∗uαα + A∗∗uββ = H4 (α, β, u, uα, uβ) .

Dividing through by A∗∗, we obtain

uαα + uββ = H5 (α, β, u, uα, uβ) , (4.2.15)

where H5 = (H4/A
∗∗). This is called the canonical form of the elliptic

equation.
We close this discussion of canonical forms by adding an important

comment. From mathematical and physical points of view, characteristics
or characteristic coordinates play a very important physical role in hyper-
bolic equations. However, they do not play a particularly physical role in
parabolic and elliptic equations, but their role is somewhat mathematical
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in solving these equations. In general, first-order partial differential equa-
tions such as advection-reaction equations are regarded as hyperbolic be-
cause they describe propagation of waves like the wave equation. On the
other hand, second-order linear partial differential equations with constant
coefficients are sometimes classified by the associated dispersion relation
ω = ω (κκκ) as defined in Section 13.3. In one-dimensional case, ω = ω (k).
If ω (k) is real and ω′′ (k) �= 0, the equation is called dispersive. The word
dispersive simply means that the phase velocity cp = (ω/k) of a plane wave
solution, u (x, t) = A exp [i (kx − ωt)] depends on the wavenumber k. This
means that waves of different wavelength propagate with different phase ve-
locities and hence, disperse in the medium. If ω = ω (k) = σ (k) + iµ (k) is
complex, the associated partial differential equation is called diffusive. From
a physical point of view, such a classification of equations is particularly
useful. Both dispersive and diffusive equations are physically important,
and such equations will be discussed in Chapter 13.

Example 4.2.1. Consider the equation

y2uxx − x2uyy = 0.

Here

A = y2, B = 0, C = −x2.

Thus,

B2 − 4AC = 4x2y2 > 0.

The equation is hyperbolic everywhere except on the coordinate axes x = 0
and y = 0. From the characteristic equations (4.2.5) and (4.2.6), we have

dy

dx
=

x

y
,

dy

dx
= −x

y
.

After integration of these equations, we obtain

1

2
y2 − 1

2
x2 = c1,

1

2
y2 +

1

2
x2 = c2.

The first of these curves is a family of hyperbolas

1

2
y2 − 1

2
x2 = c1,

and the second is a family of circles

1

2
y2 +

1

2
x2 = c2.

To transform the given equation to canonical form, we consider
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ξ =
1

2
y2 − 1

2
x2, η =

1

2
y2 +

1

2
x2.

From the relations (4.1.6), we have

ux = uξξx + uηηx = −xuξ + xuη,

uy = uξξy + uηηy = yuξ + yuη,

uxx = uξξξ
2
x + 2uξηξxηx + uηηη2

x + uξξxx + uηηxx

= x2uξξ − 2x2uξη + x2uηη − uξ + uη.

uyy = uξξξ
2
y + 2uξηξyηy + uηηη2

y + uξξyy + uηηyy

= y2uξξ + 2y2uξη + y2uηη + uξ + uη.

Thus, the given equation assumes the canonical form

uξη =
η

2 (ξ2 − η2)
uξ − ξ

2 (ξ2 − η2)
uη.

Example 4.2.2. Consider the partial differential equation

x2uxx + 2xy uxy + y2uyy = 0.

In this case, the discriminant is

B2 − 4AC = 4x2y2 − 4x2y2 = 0.

The equation is therefore parabolic everywhere. The characteristic equation
is

dy

dx
=

y

x
,

and hence, the characteristics are

y

x
= c,

which is the equation of a family of straight lines.
Consider the transformation

ξ =
y

x
, η = y,

where η is chosen arbitrarily. The given equation is then reduced to the
canonical form

y2uηη = 0.

Thus,

uηη = 0 for y �= 0.
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Example 4.2.3. The equation

uxx + x2uyy = 0,

is elliptic everywhere except on the coordinate axis x = 0 because

B2 − 4AC = −4x2 < 0, x �= 0.

The characteristic equations are

dy

dx
= ix,

dy

dx
= −ix.

Integration yields

2y − ix2 = c1, 2y + ix2 = c2.

Thus, if we write

ξ = 2y − ix2, η = 2y + ix2,

and hence,

α =
1

2
(ξ + η) = 2y, β =

1

2i
(ξ − η) = −x2,

we obtain the canonical form

uαα + uββ = − 1

2β
uβ .

It should be remarked here that a given partial differential equation may
be of a different type in a different domain. Thus, for example, Tricomi’s
equation

uxx + xuyy = 0, (4.2.16)

is elliptic for x > 0 and hyperbolic for x < 0, since B2 − 4AC = −4x. For
a detailed treatment, see Hellwig (1964).

4.3 Equations with Constant Coefficients

In this case of an equation with real constant coefficients, the equation is of
a single type at all points in the domain. This is because the discriminant
B2 − 4AC is a constant.

From the characteristic equations

dy

dx
=

(
B +

√
B2 − 4AC

)
/2A, (4.3.1)
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we can see that the characteristics

y =

(
B +

√
B2 − 4AC

2A

)
x + c1, y =

(
B −

√
B2 − 4AC

2A

)
x + c2, (4.3.2)

are two families of straight lines. Consequently, the characteristic coordi-
nates take the form

ξ = y − λ1x, η = y − λ2x, (4.3.3)

where

λ1,2 =
B+

√
B2 − 4AC

2A
. (4.3.4)

The linear second-order partial differential equation with constant coeffi-
cients may be written in the general form as

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G (x, y) . (4.3.5)

In particular, the equation

Auxx + Buyy + Cuyy = 0, (4.3.6)

is called the Euler equation.

(A) Hyperbolic Type
If B2 − 4AC > 0, the equation is of hyperbolic type, in which case the

characteristics form two distinct families.
Using (4.3.3), equation (4.3.5) becomes

uξη = D1uξ + E1uη + F1u + G1 (ξ, η) , (4.3.7)

where D1, E1, and F1 are constants. Here, since the coefficients are con-
stants, the lower order terms are expressed explicitly.

When A = 0, equation (4.3.1) does not hold. In this case, the charac-
teristic equation may be put in the form

−B (dx/dy) + C (dx/dy)
2

= 0,

which may again be rewritten as

dx/dy = 0, and − B + C (dx/dy) = 0.

Integration gives

x = c1, x = (B/C) y + c2,

where c1 and c2 are integration constants. Thus, the characteristic coordi-
nates are
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ξ = x, η = x − (B/C) y. (4.3.8)

Under this transformation, equation (4.3.5) reduces to the canonical form

uξη = D∗
1uξ + E∗

1uη + F ∗
1 u + G∗

1 (ξ, η) , (4.3.9)

where D∗
1 , E∗

1 , and F ∗
1 are constants.

The canonical form of the Euler equation (4.3.6) is

uξη = 0. (4.3.10)

Integrating this equation gives the general solution

u = φ (ξ) + ψ (η) = φ (y − λ1, x) + ψ (y − λ2, x) , (4.3.11)

where φ and ψ are arbitrary functions, and λ1 and λ2 are given by (4.3.3).

(B) Parabolic Type
When B2 − 4AC = 0, the equation is of parabolic type, in which case

only one real family of characteristics exists. From equation (4.3.4), we find
that

λ1 = λ2 = (B/2A) ,

so that the single family of characteristics is given by

y = (B/2A) x + c1,

where c1 is an integration constant. Thus, we have

ξ = y − (B/2A) x, η = hy + kx, (4.3.12)

where η is chosen arbitrarily such that the Jacobian of the transformation
is not zero, and h and k are constants.

With the proper choice of the constants h and k in the transformation
(4.3.12), equation (4.3.5) reduces to

uηη = D2uξ + E2uη + F2u + G2 (ξ, η) , (4.3.13)

where D2, E2, and F2 are constants.
If B = 0, we can see at once from the relation

B2 − 4AC = 0,

that C or A vanishes. The given equation is then already in the canonical
form. Similarly, in the other cases when A or C vanishes, B vanishes. The
given equation is is then also in canonical form.

The canonical form of the Euler equation (4.3.6) is

uηη = 0. (4.3.14)
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Integrating twice gives the general solution

u = φ (ξ) + η ψ (ξ) , (4.3.15)

where ξ and η are given by (4.3.12). Choosing h = 1, k = 0 and λ =
(

B
2A

)

for simplicity, the general solution of the Euler equation in the parabolic
case is

u = φ (y − λx) + y ψ (y − λx) . (4.3.16)

(C) Elliptic Type
When B2 − 4AC < 0, the equation is of elliptic type. In this case, the

characteristics are complex conjugates.
The characteristic equations yield

y = λ1x + c1, y = λ2x + c2, (4.3.17)

where λ1 and λ2 are complex numbers. Accordingly, c1 and c2 are allowed
to take on complex values. Thus,

ξ = y − (a + ib) x, η = y − (a − ib) x, (4.3.18)

where λ1,2 = a + ib in which a and b are real constants, and

a =
B

2A
, and b =

1

2A

√
4AC − B2 .

Introduce the new variables

α =
1

2
(ξ + η) = y − ax, β =

1

2i
(ξ − η) = −bx. (4.3.19)

Application of this transformation readily reduces equation (4.3.5) to the
canonical form

uαα + uββ = D3uα + E3uβ + F3u + G3 (α, β) , (4.3.20)

where D3, E3, F3 are constants.
We note that B2 − AC < 0, so neither A nor C is zero.
In this elliptic case, the Euler equation (4.3.6) gives the complex char-

acteristics (4.3.18) which are

ξ = (y − ax) − ibx, η = (y − ax) + ibx = ξ. (4.3.21)

Consequently, the Euler equation becomes

uξξ = 0, (4.3.22)

with the general solution

u = φ (ξ) + ψ
(
ξ
)
. (4.3.23)

The appearance of complex arguments in the general solution (4.3.23) is a
general feature of elliptic equations.
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Example 4.3.1. Consider the equation

4 uxx + 5uxy + uyy + ux + uy = 2.

Since A = 4, B = 5, C = 1, and B2 − 4AC = 9 > 0, the equation is
hyperbolic. Thus, the characteristic equations take the form

dy

dx
= 1,

dy

dx
=

1

4
,

and hence, the characteristics are

y = x + c1, y = (x/4) + c2.

The linear transformation

ξ = y − x, η = y − (x/4) ,

therefore reduces the given equation to the canonical form

uξη =
1

3
uη − 8

9
.

This is the first canonical form.
The second canonical form may be obtained by the transformation

α = ξ + η, β = ξ − η,

in the form

uαα − uββ =
1

3
uα − 1

3
uβ − 8

9
.

Example 4.3.2. The equation

uxx − 4 uxy + 4uyy = ey,

is parabolic since A = 1, B = −4, C = 4, and B2 − 4AC = 0. Thus, we
have from equation (4.3.12)

ξ = y + 2x, η = y,

in which η is chosen arbitrarily. By means of this mapping, the equation
transforms into

uηη =
1

4
eη.

Example 4.3.3. Consider the equation

uxx + uxy + uyy + ux = 0.
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Since A = 1, B = 1, C = 1, and B2 − 4AC = −3 < 0, the equation is
elliptic.

We have

λ1,2 =
B +

√
B2 − 4AC

2A
=

1

2
+ i

√
3

2
,

and hence,

ξ = y −
(

1

2
+ i

√
3

2

)
x, η = y −

(
1

2
− i

√
3

2

)
x.

Introducing the new variables

α =
1

2
(ξ + η) = y − 1

2
x, β =

1

2i
(ξ − η) = −

√
3

2
x,

the given equation is then transformed into canonical form

uαα + uββ =
2

3
uα +

2√
3

uβ .

Example 4.3.4. Consider the wave equation

utt − c2uxx = 0, c is constant.

Since A = −c2, B = 0, C = 1, and B2 − 4AC = 4c2 > 0, the wave
equation is hyperbolic everywhere. According to (4.2.4), the equation of
characteristics is

−c2

(
dt

dx

)2

+ 1 = 0,

or

dx2 − c2dt2 = 0.

Therefore,

x + ct = ξ = constant, x − ct = η = constant.

Thus, the characteristics are straight lines, which are shown in Figure 4.3.1.
The characteristics form a natural set of coordinates for the hyperbolic
equation.

In terms of new coordinates ξ and η defined above, we obtain

uxx = uξξ + 2uξη + uηη,

utt = c2 (uξξ − 2uξη + uηη) ,

so that the wave equation becomes
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Figure 4.3.1 Characteristics for the wave equation.

−4c2uξη = 0.

Since c �= 0, we have

uξη = 0.

Integrating with respect to ξ, we obtain

uη = ψ1 (η) .

where ψ1 is the arbitrary function of η. Integrating with respect to η, we
obtain

u (ξ, η) =

∫
ψ1 (η) dη + φ (ξ) .

If we set ψ (η) =
∫

ψ1 (η) dη, the general solution becomes

u (ξ, η) = φ (ξ) + ψ (η) ,

which is, in terms of the original variables x and t,

u (x, t) = φ (x + ct) + ψ (x − ct) ,

provided φ and ψ are arbitrary but twice differentiable functions.
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Note that φ is constant on “wavefronts” x = −ct + ξ that travel toward
decreasing x as t increases, whereas ψ is constant on wavefronts x = ct + η
that travel toward increasing x as t increases. Thus, any general solution
can be expressed as the sum of two waves, one traveling to the right with
constant velocity c and the other traveling to the left with the same velocity
c.

Example 4.3.5. Find the characteristic equations and characteristics, and
then reduce the equations

uxx +
(
sech4x

)
uyy = 0, (4.3.24ab)

to the canonical forms.
In equation (4.3.24a), A = 1, B = 0 and C = −sech4x. Hence,

B2 − 4AC = 4 sech4x > 0.

Hence, the equation is hyperbolic. The characteristic equations are

dy

dx
=

B +
√

B2 − 4AC

2A
= + sech2x.

Integration gives

y + tanhx = constant.

Hence,

ξ = y + tanhx, η = y − tanhx.

Using these characteristic coordinates, the given equation can be trans-
formed into the canonical form

uξη =
(η − ξ)[

4 − (ξ − η)
2
] (uξ − uη) . (4.3.25)

In equation (4.3.24b), A = 1, B = 0 and C = sech4x. Hence,

B2 − 4AC = + i sech2x.

Integrating gives

y + i tanhx = constant.

Thus,

ξ = y + i tanhx, η = y − i tanhx.

The new real variables α and β are
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α =
1

2
(ξ + η) = y, β =

1

2i
(ξ − η) = tanhx.

In terms of these new variables, equation (4.3.24b) can be transformed into
the canonical form

uαα + uββ =
2β

1 − β2
uβ , |β| < 1. (4.3.26)

Example 4.3.6. Consider the equation

uxx + (2 cosecy) uxy +
(
cosec2y

)
uyy = 0. (4.3.27)

In this case, A = 1, B = 2 cosecy and C = cosec2y. Hence, B2 − 4AC = 0,
and

dy

dx
=

B

2A
= cosec y.

The characteristic curves are therefore given by

ξ = x + cos y and η = y.

Using these variables, the canonical form of (4.3.27) is

uηη =
(
sin2 η cos η

)
uξ. (4.3.28)

4.4 General Solutions

In general, it is not so simple to determine the general solution of a given
equation. Sometimes further simplification of the canonical form of an equa-
tion may yield the general solution. If the canonical form of the equation
is simple, then the general solution can be immediately ascertained.

Example 4.4.1. Find the general solution of

x2uxx + 2xy uxy + y2uyy = 0.

In Example 4.2.2, using the transformation ξ = y/x, η = y, this equation
was reduced to the canonical form

uηη = 0, for y �= 0.

Integrating twice with respect to η, we obtain

u (ξ, η) = ηf (ξ) + g (ξ) ,

where f (ξ) and g (ξ) are arbitrary functions. In terms of the independent
variables x and y, we have

u (x, y) = y f
(y

x

)
+ g

(y

x

)
.
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Example 4.4.2. Determine the general solution of

4 uxx + 5uxy + uyy + ux + uy = 2.

Using the transformation ξ = y − x, η = y − (x/4), the canonical form of
this equation is (see Example 4.3.1)

uξη =
1

3
uη − 8

9
.

By means of the substitution v = uη, the preceding equation reduces to

vξ =
1

3
v − 8

9
.

This can be easily integrated by separating the variables. Integrating with
respect to ξ, we have

v =
8

3
+

1

3
e(ξ/3)F (η) .

Integrating with respect to η, we obtain

u (ξ, η) =
8

3
η +

1

3
g (η) eξ/3 + f (ξ) ,

where f (ξ) and g (η) are arbitrary functions. The general solution of the
given equation becomes

u (x, y) =
8

3

(
y − 1

4

)
+

1

3
g
(
y − x

4

)
e

1
3 (y−x) + f (y − x) .

Example 4.4.3. Obtain the general solution of

3 uxx + 10uxy + 3uyy = 0.

Since B2 − 4AC = 64 > 0, the equation is hyperbolic. Thus, from equation
(4.3.2), the characteristics are

y = 3x + c1, y =
1

3
x + c2.

Using the transformations

ξ = y − 3x, η = y − 1

3
x,

the given equation can be reduced to the form

(
64

3

)
uξη = 0.
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Hence, we obtain

uξη = 0.

Integration yields

u (ξ, η) = f (ξ) + g (η) .

In terms of the original variables, the general solution is

u (x, y) = f (y − 3x) + g
(
y − x

3

)
.

Example 4.4.4. Find the general solution of the following equations

y uxx + 3 y uxy + 3ux = 0, y �= 0, (4.4.1)

uxx + 2uxy + uyy = 0, (4.4.2)

uxx + 2uxy + 5uyy + ux = 0. (4.4.3)

In equation (4.4.1), A = y, B = 3y, C = 0, D = 3, E = F = G = 0.
Hence B2 − 4AC = 9y2 > 0 and the equation is hyperbolic for all points
(x, y) with y �= 0. Consequently, the characteristic equations are

dy

dx
=

B +
√

B2 − 4AC

2A
=

3y + 3y

2y
= 3, 0.

Integrating gives

y = c1 and y = 3x + c2.

The characteristic curves are

ξ = y and η = y − 3x.

In terms of these variables, the canonical form of (4.4.1) is

ξ uξη + uη = 0.

Writing v = uη and using the integrating factor gives

v = uη =
1

ξ
C (η) ,

where C (η) is an arbitrary function.
Integrating again with respect to η gives

u (ξ, η) =
1

ξ

∫
C (η) dη + g (ξ) =

1

ξ
f (η) + g (ξ) ,

where f and g are arbitrary functions. Finally, in terms of the original
variables, the general solution is
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u (x, y) =
1

y
f (y − 3x) + g (y) . (4.4.4)

Equation (4.4.2) has coefficients A = 1, B = 2, C = 1, D = E = F =
G = 0. Hence, B2 − 4AC = 0, the equation is parabolic. The characteristic
equation is

dy

dx
= 1,

and the characteristics are

ξ = y − x = c1 and η = y.

Using these variables, equation (4.4.2) takes the canonical form

uηη = 0.

Integrating twice gives the general solution

u (ξ, η) = η f (ξ) + g (ξ) ,

where f and g are arbitrary functions.
In terms of x and y, this solution becomes

u (x, y) = y f (y − x) + g (y − x) . (4.4.5)

The coefficients of equation (4.4.3) are A = 1, B = 2, C = 5, E = 1,
F = G = 0 and hence B2 − 4AC = −16 < 0, equation (4.4.3) is elliptic.
The characteristic equations are

dy

dx
= (1 +2i) .

The characteristics are

y = (1 − 2i) x + c1, y = (1 + 2i) x + c2,

and hence,

ξ = y − (1 − 2i) x, η = y − (1 + 2i) x,

and new real variables α and β are

α =
1

2
(ξ + η) = y − x, η =

1

2i
(ξ − η) = 2x.

The canonical form is given by

(uαα + uββ) =
1

4
(uα − 2 uβ) . (4.4.6)

It is not easy to find a general solution of (4.4.6).
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Example 4.4.5. Use u = f (ξ), ξ = x√
4κt

to solve the parabolic system

ut = κuxx, −∞ < x < ∞, t > 0, (4.4.7)

u (x, 0) = 0, x < 0; u (x, 0) = u0, x > 0, (4.4.8)

where κ and u0 are constant.
We use the given transformations to obtain

ut = f ′ (ξ) ξt = −1

2

x√
4κt3

f ′ (ξ) ,

uxx =
∂

∂x
(ux) =

∂

∂x
(f ′ (ξ) · ξx) =

1

4κt
f ′′ (ξ) .

Consequently, equation (4.4.7) becomes

f ′′ (ξ) + 2 ξf ′ (ξ) = 0.

The solution of this equation is

f ′ (ξ) = A exp
(
−ξ2

)
,

where A is a constant of integration. Integrating again gives

f (ξ) = A

∫ ξ

0

e−α2

dα + B,

where B is an integrating constant.
Using the given conditions yields

0 = A

∫ −∞

0

e−α2

dα + B, u0 = A

∫ ∞

0

e−α2

dα + B,

which give

A =
u0√
π

and B =
1

2
u0.

Thus, the final solution is

u (x, t) = u0

[
1√
π

∫ x√
4κt

0

e−α2

dα +
1

2

]
.

4.5 Summary and Further Simplification

We summarize the classification of linear second-order partial differential
equations with constant coefficients in two independent variables.
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hyperbolic: urs = a1ur + a2us + a3u + f1, (4.5.1)

urr − uss = a∗
1ur + a∗

2us + a∗
3u + f∗

1 , (4.5.2)

parabolic: urs = b1ur + b2us + b3u + f2, (4.5.3)

elliptic: urr + uss = c1ur + c2us + c3u + f3, (4.5.4)

where r and s represent the new independent variables in the linear trans-
formations

r = r (x, y) , s = s (x, y) , (4.5.5)

and the Jacobian J �= 0.
To simplify equation (4.5.1) further, we introduce the new dependent

variable

v = u e−(ar+bs), (4.5.6)

where a and b are undetermined coefficients. Finding the derivatives, we
obtain

ur = (vr + av) ear+bs,

us = (vs + bv) ear+bs,

urr =
(
vrr + 2avr + a2v

)
ear+bs,

urs = (vrs + avs + bvr + abv) ear+bs,

uss =
(
vss + 2bvs + b2v

)
ear+bs.

Substitution of these equation (4.5.1) yields

vrs + (b − a1) vr + (a − a2) vs + (ab − a1a − a2b − a3) v = f1 e−(ar+bs).

In order that the first derivatives vanish, we set

b = a1 and a = a2.

Thus, the above equation becomes

vrs = (a1a2 + a3) v + g1,

where g1 = f1 e−(a2r+a1s). In a similar manner, we can transform equa-
tions (4.5.2)–(4.5.4). Thus, we have the following transformed equations
corresponding to equations (4.5.1)–(4.5.4).

hyperbolic: vrs = h1v + g1,

vrr − vss = h∗
1v + g∗

1 , (4.5.7)

parabolic: vss = h2v + g2,

elliptic: vrr + vss = h3v + g3.

In the case of partial differential equations in several independent vari-
ables or in higher order, the classification is considerably more complex.
For further reading, see Courant and Hilbert (1953, 1962).



4.6 Exercises 113

4.6 Exercises

1. Determine the region in which the given equation is hyperbolic, parabolic,
or elliptic, and transform the equation in the respective region to canon-
ical form.

(a) xuxx + uyy = x2, (b) uxx + y2uyy = y,

(c) uxx + xyuyy = 0, (d) x2uxx − 2xyuxy + y2uyy = ex,

(e) uxx + uxy − xuyy = 0, (f) exuxx + eyuyy = u,

(g) uxx − √
y uxy +

(
x
4

)
uyy + 2x ux − 3y uy + 2u = exp

(
x2 − 2y

)
,

y ≥ 0,

(h) uxx − √
y uxy + xuyy = cos

(
x2 − 2y

)
, y ≥ 0,

(i) uxx − yuxy + xux + yuy + u = 0,

(j) sin2 x uxx + sin 2x uxy + cos2 x uyy = x,

2. Obtain the general solution of the following equations:

(i) x2uxx + 2xyuxy + y2uyy + xyux + y2uy = 0,

(ii) rutt − c2rurr − 2c2ur = 0, c = constant,

(iii) 4ux + 12uxy + 9uyy − 9u = 9,

(iv) uxx + uxy − 2uyy − 3ux − 6uy = 9 (2x − y),

(v) yux + 3y uxy + 3ux = 0, y �= 0.

(vi) uxx + uyy = 0,

(vii) 4uxx + uyy = 0,

(viii) uxx − 2 uxy + uyy = 0,

(ix) 2uxx + uyy = 0,

(x) uxx + 4uxy + 4uyy = 0,

(xi) 3uxx + 4uxy − 3
4 uyy = 0.
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3. Find the characteristics and characteristic coordinates, and reduce the
following equations to canonical form:

(a) uxx + 2uxy + 3uyy + 4ux + 5uy + u = ex,

(b) 2uxx − 4uxy + 2uyy + 3u = 0,

(c) uxx + 5uxy + 4uyy + 7uy = sinx, (d) uxx + uyy + 2ux + 8uy + u = 0,

(e) uxy + 2uyy + 9ux + uy = 2, (f) 6uxx − uxy + u = y2,

(g) uxy + ux + uy = 3x, (h) uyy − 9ux + 7uy = cos y,

(i) x2uxx − y2uyy − ux = 1 + 2y2, (j) uxx + yuyy + 1
2uy + 4yux = 0,

(k) x2y2uxx + 2xyuxy + uyy = 0, (l) uxx + yuyy = 0.

4. Determine the general solutions of the following equations:

(i) uxx − 1
c2 uyy = 0, c = constant, (ii) uxx + uyy = 0,

(iii) uxxxx + 2uxxyy + uyyyy = 0, (iv) uxx − 3uxy + 2uyy = 0,

(v) uxx + uxy = 0, (vi) uxx + 10uxy + 9uyy = y.

5. Transform the following equations to the form vξη = cv, c = constant,

(i) uxx − uyy + 3ux − 2uy + u = 0,

(ii) 3uxx + 7uxy + 2uyy + uy + u = 0,

by introducing the new variables v = u e−(aξ+bη), where a and b are
undetermined coefficients.

6. Given the parabolic equation

uxx = aut + bux + cu + f,

where the coefficients are constants, by the substitution u = v e
1
2 bx, for

the case c = −
(
b2/4

)
, show that the given equation is reduced to the

heat equation

vxx = avt + g, g = fe−bx/2.

7. Reduce the Tricomi equation

uxx + xuyy = 0,
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to the canonical form

(i) uξη − [6 (ξ − η)]
−1

(uξ − uη) = 0, for x < 0,

(ii) uαα + uββ + 1
3β = 0, x > 0.

Show that the characteristic curves for x < 0 are cubic parabolas.

8. Use the polar coordinates r and θ (x = r cos θ, y = r sin θ) to transform
the Laplace equation uxx + uyy = 0 into the polar form

∇2u = urr +
1

r
ur +

1

r2
uθθ = 0.

9. (a) Using the cylindrical polar coordinates x = r cos θ, y = r sin θ, z = z,
transform the three-dimensional Laplace equation uxx + uyy + uzz = 0
into the form

urr +
1

r
ur +

1

r2
uθθ + uzz = 0.

(b) Use the spherical polar coordinates (r, θ, φ) so that x = r sin φ cos θ,
y = r sin φ sin θ, z = r cos φ to transform the three-dimensional Laplace
equation uxx + uyy + uzz = 0 into the form

urr +
2

r
ur +

1

r2 sin φ
(sin φ uφ)φ +

1

r2 sin2 φ
uθθ = 0.

(c) Transform the diffusion equation

ut = κ (uxx + uyy) ,

into the axisymmetric form

ut = κ

(
urr +

1

r
ur

)
.

10. (a) Apply a linear transformation ξ = ax + by and η = cx + dy, to
transform the Euler equation

A uxx + 2B uxy + C uyy = 0

into canonical form, where a, b, c, d, A, B and C are constants .
(b) Show that the same transformation as in (a) can be used to trans-
form the nonhomogeneous Euler equation

A uxx + 2B uxy + C uyy = F (x, y, u, ux, uy)

into canonical form.
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11. Obtain the solution of the Cauchy problem

uxx + uyy = 0,

u (x, 0) = f (x) and uy (x, 0) = g (x) .

12. Classify each of the following equations and reduce it to canonical form:

(a) y uxx − x uyy = 0, x > 0, y > 0; (b) uxx +
(
sech4x

)
uyy = 0,

(c) y2uxx + x2uyy = 0, (d) uxx −
(
sech4x

)
uyy = 0,

(e) uxx + 6uxy + 9uyy + 3y uy = 0,

(f) y2uxx + 2xy uxy + 2x2uyy + xux = 0,

(g) uxx − (2 cos x) uxy +
(
1 + cos2 x

)
uyy + u = 0,

(h) uxx + (2 cosec y) uxy +
(
cosec2y

)
uyy = 0.

(i) uxx − 2 uxy + uyy + 3ux − u + 1 = 0,

(j) uxx − y2uyy + ux − u + x2 = 0,

(k) uxx + y uyy − x uy + y = 0.

13. Transform the equation

uxy + y uyy + sin (x + y) = 0

into the canonical form. Use the canonical form to find the general
solution.

14. Classify each of the following equations for u (x, t):

(a) ut = (p ux)x, (b) utt − c2uxx + αu = 0,

(c) (a ux)x + (a ut)t = 0, (d) uxt − a ut = 0,

where p (x), c (x, t), a (x, t), and α (x) are given functions that take
only positive values in the (x, t) plane. Find the general solution of the
equation in (d).
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The Cauchy Problem and Wave Equations

“Since a general solution must be judged impossible from want of analysis,
we must be content with the knowledge of some special cases, and that all
the more, since the development of various cases seems to be the only way
to bringing us at last to a more perfect knowledge.”

Leonhard Euler

“What would geometry be without Gauss, mathematical logic without
Boole, algebra without Hamilton, analysis without Cauchy?”

George Temple

5.1 The Cauchy Problem

In the theory of ordinary differential equations, by the initial-value problem
we mean the problem of finding the solutions of a given differential equation
with the appropriate number of initial conditions prescribed at an initial
point. For example, the second-order ordinary differential equation

d2u

dt2
= f

(
t, u,

du

dt

)

and the initial conditions

u (t0) = α,

(
du

dt

)
(t0) = β,

constitute an initial-value problem.
An analogous problem can be defined in the case of partial differential

equations. Here we shall state the problem involving second-order partial
differential equations in two independent variables.
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We consider a second-order partial differential equation for the function
u in the independent variables x and y, and suppose that this equation can
be solved explicitly for uyy, and hence, can be represented in the from

uyy = F (x, y, u, ux, uy, uxx, uxy) . (5.1.1)

For some value y = y0, we prescribe the initial values of the unknown
function and of the derivative with respect to y

u (x, y0) = f (x) , uy (x, y0) = g (x) . (5.1.2)

The problem of determining the solution of equation (5.1.1) satisfying
the initial conditions (5.1.2) is known as the initial-value problem. For in-
stance, the initial-value problem of a vibrating string is the problem of
finding the solution of the wave equation

utt = c2uxx,

satisfying the initial conditions

u (x, t0) = u0 (x) , ut (x, t0) = v0 (x) ,

where u0 (x) is the initial displacement and v0 (x) is the initial velocity.
In initial-value problems, the initial values usually refer to the data

assigned at y = y0. It is not essential that these values be given along
the line y = y0; they may very well be prescribed along some curve L0 in
the xy plane. In such a context, the problem is called the Cauchy problem
instead of the initial-value problem, although the two names are actually
synonymous.

We consider the Euler equation

Auxx + Buxy + Cuyy = F (x, y, u, ux, uy) , (5.1.3)

where A, B, C are functions of x and y. Let (x0, y0) denote points on a
smooth curve L0 in the xy plane. Also let the parametric equations of this
curve L0 be

x0 = x0 (λ) , y0 = y0 (λ) , (5.1.4)

where λ is a parameter.
We suppose that two functions f (λ) and g (λ) are prescribed along

the curve L0. The Cauchy problem is now one of determining the solution
u (x, y) of equation (5.1.3) in the neighborhood of the curve L0 satisfying
the Cauchy conditions

u = f (λ) , (5.1.5a)

∂u

∂n
= g (λ) , (5.1.5b)
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on the curve L0 where n is the direction of the normal to L0 which lies
to the left of L0 in the counterclockwise direction of increasing arc length.
The function f (λ) and g (λ) are called the Cauchy data.

For every point on L0, the value of u is specified by equation (5.1.5a).
Thus, the curve L0 represented by equation (5.1.4) with the condition
(5.1.5a) yields a twisted curve L in (x, y, u) space whose projection on
the xy plane is the curve L0. Thus, the solution of the Cauchy problem is a
surface, called an integral surface, in the (x, y, u) space passing through L
and satisfying the condition (5.1.5b), which represents a tangent plane to
the integral surface along L.

If the function f (λ) is differentiable, then along the curve L0, we have

du

dλ
=

∂u

∂x

dx

dλ
+

∂u

∂y

dy

dλ
=

df

dλ
, (5.1.6)

and

∂u

∂n
=

∂u

∂x

dx

dn
+

∂u

∂y

dy

dn
= g, (5.1.7)

but

dx

dn
= −dy

ds
and

dy

dn
=

dx

ds
. (5.1.8)

Equation (5.1.7) may be written as

∂u

∂n
= −∂u

∂x

dy

ds
+

∂u

∂y

dx

ds
= g. (5.1.9)

Since
∣∣∣∣∣∣

dx
dλ

dy
dλ

−dy
ds

dx
ds

∣∣∣∣∣∣
=

(dx)
2

+ (dy)
2

ds dλ
�= 0, (5.1.10)

it is possible to find ux and uy on L0 from the system of equations (5.1.6)
and (5.1.9). Since ux and uy are known on L0, we find the higher derivatives
by first differentiating ux and uy with respect to λ. Thus, we have

∂2u

∂x2

dx

dλ
+

∂2u

∂x ∂y

dy

dλ
=

d

dλ

(
∂u

∂x

)
, (5.1.11)

∂2u

∂x ∂y

dx

dλ
+

∂2u

∂y2

dy

dλ
=

d

dλ

(
∂u

∂y

)
. (5.1.12)

From equation (5.1.3), we have

A
∂2u

∂x2
+ B

∂2u

∂x ∂y
+ C

∂2u

∂y2
= F, (5.1.13)
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where F is known since ux and uy have been found. The system of equations
can be solved for uxx, uxy, and uyy, if

∣∣∣∣∣∣∣∣∣∣

dx
dλ

dy
dλ 0

0 dx
dλ

dy
dλ

A B C

∣∣∣∣∣∣∣∣∣∣

= C

(
dx

dλ

)2

− B

(
dx

dλ

)(
dy

dλ

)
+ A

(
dy

dλ

)2

�= 0. (5.1.14)

The equation

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0, (5.1.15)

is called the characteristic equation. It is then evident that the necessary
condition for obtaining the second derivatives is that the curve L0 must not
be a characteristic curve.

If the coefficients of equation (5.1.3) and the function (5.1.5) are ana-
lytic, then all the derivatives of higher orders can be computed by the above
process. The solution can then be represented in the form of a Taylor series:

u (x, y) =

∞∑

n=0

∞∑

k=0

1

k! (n − k)!

∂nu0

∂xk
0 ∂yn−k

0

(x − x0)
k
(y − y0)

n−k
, (5.1.16)

which can be shown to converge in the neighborhood of the curve L0. Thus,
we may state the famous Cauchy–Kowalewskaya theorem.

5.2 The Cauchy–Kowalewskaya Theorem

Let the partial differential equation be given in the form

uyy = F (y, x1, x2, . . . , xn, u, uy, ux1 , ux2 . . . , uxn ,

ux1y, ux2y, . . . , uxny, ux1x1 , ux2x2 , . . . , uxnxn) , (5.2.1)

and let the initial conditions

u = f (x1, x2, . . . , xn) , (5.2.2)

uy = g (x1, x2, . . . , xn) , (5.2.3)

be given on the noncharacteristic manifold y = y0.
If the function F is analytic in some neighborhood of the point(

y0, x0
1, x

0
2, . . . , x

0
n, u0, u0

y, . . .
)

and if the functions f and g are analytic in

some neighborhood of the point
(
x0

1, x
0
2, . . . , x

0
n

)
, then the Cauchy prob-

lem has a unique analytic solution in some neighborhood of the point(
y0, x0

1, x
0
2, . . . , x

0
n

)
.
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For the proof, see Petrovsky (1954).
The preceding statement seems equally applicable to hyperbolic, parabolic,

or elliptic equations. However, we shall see that difficulties arise in formulat-
ing the Cauchy problem for nonhyperbolic equations. Consider, for instance,
the famous Hadamard (1952) example.

The problem consists of the elliptic (or Laplace) equation

uxx + uyy = 0,

and the initial conditions on y = 0

u (x, 0) = 0, uy (x, 0) = n−1 sin nx.

The solution of this problem is

u (x, y) = n−2 sinh ny sin nx,

which can be easily verified.
It can be seen that, when n tends to infinity, the function n−1 sin nx

tends uniformly to zero. But the solution n−2 sinh ny sin nx does not be-
come small, as n increases for any nonzero y. Physically, the solution rep-
resents an oscillation with unbounded amplitude

(
n−2 sinhny

)
as y → ∞

for any fixed x. Even if n is a fixed number, this solution is unstable in the
sense that u → ∞ as y → ∞ for any fixed x for which sinnx �= 0. It is
obvious then that the solution does not depend continuously on the data.
Thus, it is not a properly posed problem.

In addition to existence and uniqueness, the question of continuous de-
pendence of the solution on the initial data arises in connection with the
Cauchy–Kowalewskaya theorem. It is well known that any continuous func-
tion can accurately be approximated by polynomials. We can apply the
Cauchy–Kowalewskaya theorem with continuous data by using polynomial
approximations only if a small variation in the initial data leads to a small
change in the solution.

5.3 Homogeneous Wave Equations

To study Cauchy problems for hyperbolic partial differential equations, it
is quite natural to begin investigating the simplest and yet most important
equation, the one-dimensional wave equation, by the method of characteris-
tics. The essential characteristic of the solution of the general wave equation
is preserved in this simplified case.

We shall consider the following Cauchy problem of an infinite string
with the initial condition
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utt − c2uxx = 0, x ∈ R, t > 0, (5.3.1)

u (x, 0) = f (x) , x ∈ R, (5.3.2)

ut (x, 0) = g (x) , x ∈ R. (5.3.3)

By the method of characteristics described in Chapter 4, the characteristic
equation according to equation (4.2.4) is

dx2 − c2dt2 = 0,

which reduces to

dx + c dt = 0, dx − c dt = 0.

The integrals are the straight lines

x + ct = c1, x − ct = c2.

Introducing the characteristic coordinates

ξ = x + ct, η = x − ct,

we obtain

uxx = uξξ + 2uξη + uηη, utt = c2 (uξξ − 2 uξη + uηη) .

Substitution of these in equation (5.3.1) yields

−4c2uξη = 0.

Since c �= 0, we have

uξη = 0.

Integrating with respect to ξ, we obtain

uη = ψ∗ (η) ,

where ψ∗ (η) is an arbitrary function of η. Integrating again with respect
to η, we obtain

u (ξ, η) =

∫
ψ∗ (η) dη + φ (ξ) .

If we set ψ (η) =
∫

ψ∗ (η) dη, we have

u (ξ, η) = φ (ξ) + ψ (η) ,

where φ and ψ are arbitrary functions. Transforming to the original vari-
ables x and t, we find the general solution of the wave equation
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u (x, t) = φ (x + ct) + ψ (x − ct) , (5.3.4)

provided φ and ψ are twice differentiable functions.
Now applying the initial conditions (5.3.2) and (5.3.3), we obtain

u (x, 0) = f (x) = φ (x) + ψ (x) , (5.3.5)

ut (x, 0) = g (x) = c φ′ (x) − c ψ′ (x) . (5.3.6)

Integration of equation (5.3.6) gives

φ (x) − ψ (x) =
1

c

∫ x

x0

g (τ) dτ + K, (5.3.7)

where x0 and K are arbitrary constants. Solving for φ and ψ from equations
(5.3.5) and (5.3.7), we obtain

φ (x) =
1

2
f (x) +

1

2c

∫ x

x0

g (τ) dτ +
K

2
,

ψ (x) =
1

2
f (x) − 1

2c

∫ x

x0

g (τ) dτ − K

2
.

The solution is thus given by

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

[∫ x+ct

x0

g (τ) dτ −
∫ x−ct

x0

g (τ) dτ

]

=
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ. (5.3.8)

This is called the celebrated d’Alembert solution of the Cauchy problem for
the one-dimensional wave equation.

It is easy to verify by direct substitution that u (x, t), represented by
(5.3.8), is the unique solution of the wave equation (5.3.1) provided f (x)
is twice continuously differentiable and g (x) is continuously differentiable.
This essentially proves the existence of the d’Alembert solution. By direct
substitution, it can also be shown that the solution (5.3.8) is uniquely de-
termined by the initial conditions (5.3.2) and (5.3.3). It is important to note
that the solution u (x, t) depends only on the initial values of f at points
x − ct and x + ct and values of g between these two points. In other words,
the solution does not depend at all on initial values outside this interval,
x − ct ≤ x ≤ x + ct. This interval is called the domain of dependence of the
variables (x, t).

Moreover, the solution depends continuously on the initial data, that
is, the problem is well posed. In other words, a small change in either
f or g results in a correspondingly small change in the solution u (x, t).
Mathematically, this can be stated as follows:

For every ε > 0 and for each time interval 0 ≤ t ≤ t0, there exists a
number δ (ε, t0) such that
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|u (x, t) − u∗ (x, t)| < ε,

whenever

|f (x) − f∗ (x)| < δ, |g (x) − g∗ (x)| < δ.

The proof follows immediately from equation (5.3.8). We have

|u (x, t) − u∗ (x, t)| ≤ 1

2
|f (x + ct) − f∗ (x + ct)|

+
1

2
|f (x − ct) − f∗ (x − ct)|

+
1

2c

∫ x+ct

x−ct

|g (τ) − g∗ (τ)| dτ < ε,

where ε = δ (1 + t0).
For any finite time interval 0 < t < t0, a small change in the initial data

only produces a small change in the solution. This shows that the problem
is well posed.

Example 5.3.1. Find the solution of the initial-value problem

utt = c2uxx, x ∈ R, t > 0,

u (x, 0) = sin x, ut (x, 0) = cos x.

From (5.3.8), we have

u (x, t) =
1

2
[sin (x + ct) + sin (x − ct)] +

1

2c

∫ x+ct

x−ct

cos τ dτ

= sin x cos ct +
1

2c
[sin (x + ct) − sin (x − ct)]

= sin x cos ct +
1

c
cos x sin ct.

It follows from the d’Alembert solution that, if an initial displacement or
an initial velocity is located in a small neighborhood of some point (x0, t0),
it can influence only the area t > t0 bounded by two characteristics x−ct =
constant and x+ct = constant with slope ± (1/c) passing through the point
(x0, t0), as shown in Figure 5.3.1. This means that the initial displacement
propagates with the speed dx

dt = c, whereas the effect of the initial velocity
propagates at all speeds up to c. This infinite sector R in this figure is called
the range of influence of the point (x0, t0).

According to (5.3.8), the value of u (x0, t0) depends on the initial data f
and g in the interval [x0 − ct0, x0 + ct0] which is cut out of the initial line
by the two characteristics x−ct = constant and x+ct = constant with slope
± (1/c) passing through the point (x0, t0). The interval [x0 − ct0, x0 + ct0]
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Figure 5.3.1 Range of influence

on the line t = 0 is called the domain of dependence of the solution at the
point (x0, t0), as shown in Figure 5.3.2.

Figure 5.3.2 Domain of dependence
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Since the solution u (x, t) at every point (x, t) inside the triangular region
D in this figure is completely determined by the Cauchy data on the interval
[x0 − ct0, x0 + ct0], the region D is called the region of determinancy of the
solution.

We will now investigate the physical significance of the d’Alembert so-
lution (5.3.8) in greater detail. We rewrite the solution in the form

u (x, t) =
1

2
f (x + ct) +

1

2c

∫ x+ct

0

g (τ) dτ +
1

2
f (x − ct) − 1

2c

∫ x−ct

0

g (τ) dτ.

(5.3.9)

Or, equivalently,

u (x, t) = φ (x + ct) + ψ (x − ct) , (5.3.10)

where

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ, (5.3.11)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ. (5.3.12)

Evidently, φ (x + ct) represents a progressive wave traveling in the negative
x-direction with speed c without change of shape. Similarly, ψ (x − ct) is
also a progressive wave propagating in the positive x-direction with the
same speed c without change of shape. We shall examine this point in
greater detail. Treat ψ (x − ct) as a function of x for a sequence of times
t. At t = 0, the shape of this function of u = ψ (x). At a subsequent time,
its shape is given by u = ψ (x − ct) or u = ψ (ξ), where ξ = x − ct is
the new coordinate obtained by translating the origin a distance ct to the
right. Thus, the shape of the curve remains the same as time progresses,
but moves to the right with velocity c as shown in Figure 5.3.3. This shows
that ψ (x − ct) represents a progressive wave traveling in the positive x-
direction with velocity c without change of shape. Similarly, φ (x + ct) is
also a progressive wave propagating in the negative x-direction with the
same speed c without change of shape. For instance,

u (x, t) = sin (x+ ct) (5.3.13)

represent sinusoidal waves traveling with speed c in the positive and neg-
ative directions respectively without change of shape. The propagation of
waves without change of shape is common to all linear wave equations.

To interpret the d’Alembert formula we consider two cases:
Case 1. We first consider the case when the initial velocity is zero, that

is,

g (x) = 0.
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Figure 5.3.3 Progressive Waves.

Then, the d’Alembert solution has the form

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] .

Now suppose that the initial displacement f (x) is different from zero in an
interval (−b, b). Then, in this case the forward and the backward waves are
represented by

u =
1

2
f (x) .

The waves are initially superimposed, and then they separate and travel in
opposite directions.

We consider f (x) which has the form of a triangle. We draw a triangle
with the ordinate x = 0 one-half that of the given function at that point,
as shown in Figure 5.3.4. If we displace these graphs and then take the sum
of the ordinates of the displaced graphs, we obtain the shape of the string
at any time t.

As can be seen from the figure, the waves travel in opposite directions
away from each other. After both waves have passed the region of initial
disturbance, the string returns to its rest position.

Case 2. We consider the case when the initial displacement is zero, that
is,

f (x) = 0,
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Figure 5.3.4 Triangular Waves.

and the d’Alembert solution assumes the form

u (x, t) =
1

2

∫ x+ct

x−ct

g (τ) dτ =
1

2
[G (x + ct) − G (x − ct)] ,

where

G (x) =
1

c

∫ x

x0

g (τ) dτ.

If we take for the initial velocity

g (x) =

⎧
⎨
⎩

0 |x| > b

g0 |x| ≤ b,

then, the function G (x) is equal to zero for values of x in the interval
x ≤ −b, and

G (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
c

∫ x

−b

g0 dτ = g0

c (x + b) for −b ≤ x ≤ b,

1
c

∫ x

−b

g0 dτ = 2bg0

c for x > b.
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Figure 5.3.5 Graph of u (x, t) at time t.

As in the previous case, the two waves which differ in sign travel in opposite
directions on the x-axis. After some time t the two functions (1/2) G (x)
and − (1/2) G (x) move a distance ct. Thus, the graph of u at time t is
obtained by summing the ordinates of the displaced graphs as shown in
Figure 5.3.5. As t approaches infinity, the string will reach a state of rest,
but it will not, in general, assume its original position. This displacement
is known as the residual displacement.

In the preceding examples, we note that f (x) is continuous, but not
continuously differentiable and g (x) is discontinuous. To these initial data,
there corresponds a generalized solution. By a generalized solution we mean
the following:

Let us suppose that the function u (x, t) satisfies the initial conditions
(5.3.2) and (5.3.3). Let u (x, t) be the limit of a uniformly convergent se-
quence of solutions un (x, t) which satisfy the wave equation (5.3.1) and the
initial conditions

un (x, 0) = fn (x) ,

(
∂un

∂t

)
(x, 0) = gn (x) .

Let fn (x) be a continuously differentiable function, and let the sequence
converge uniformly to f (x); let gn (x) be a continuously differentiable func-
tion, and

∫ x

x0
gn (τ) dτ approach uniformly to

∫ x

x0
g (τ) dτ . Then, the func-

tion u (x, t) is called the generalized solution of the problem (5.3.1)–(5.3.3).
In general, it is interesting to discuss the effect of discontinuity of the

function f (x) at a point x = x0, assuming that g (x) is a smooth function.
Clearly, it follows from (5.3.8) that u (x, t) will be discontinuous at each
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point (x, t) such that x+ct = x0 or x−ct = x0, that is, at each point of the
two characteristic lines intersecting at the point (x0, 0). This means that
discontinuities are propagated along the characteristic lines. At each point
of the characteristic lines, the partial derivatives of the function u (x, t) fail
to exist, and hence, u can no longer be a solution of the Cauchy problem
in the usual sense. However, such a function may be called a generalized
solution of the Cauchy problem. Similarly, if f (x) is continuous, but either
f ′ (x) or f ′′ (x) has a discontinuity at some point x = x0, the first- or
second-order partial derivatives of the solution u (x, t) will be discontinuous
along the characteristic lines through (x0, 0). Finally, a discontinuity in
g (x) at x = x0 would lead to a discontinuity in the first- or second-order
partial derivatives of u along the characteristic lines through (x0, 0), and a
discontinuity in g′ (x) at x0 will imply a discontinuity in the second-order
partial derivatives of u along the characteristic lines through (x0, 0). The
solution given by (5.3.8) with f , f ′, f ′′, g, and g′ piecewise continuous on
−∞ < x < ∞ is usually called the generalized solution of the Cauchy
problem.

5.4 Initial Boundary-Value Problems

We have just determined the solution of the initial-value problem for the
infinite vibrating string. We will now study the effect of a boundary on the
solution.

(A) Semi-infinite String with a Fixed End
Let us first consider a semi-infinite vibrating string with a fixed end,

that is,

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞, (5.4.1)

ut (x, 0) = g (x) , 0 ≤ x < ∞,

u (0, t) = 0, 0 ≤ t < ∞.

It is evident here that the boundary condition at x = 0 produces a wave
moving to the right with the velocity c. Thus, for x > ct, the solution is
the same as that of the infinite string, and the displacement is influenced
only by the initial data on the interval [x − ct, x + ct], as shown in Figure
5.4.1.

When x < ct, the interval [x − ct, x + ct] extends onto the negative
x-axis where f and g are not prescribed.

But from the d’Alembert formula

u (x, t) = φ (x + ct) + ψ (x − ct) , (5.4.2)

where



5.4 Initial Boundary-Value Problems 131

Figure 5.4.1 Displacement influenced by the initial data on [x − ct, x + ct].

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ +
K

2
, (5.4.3)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ − K

2
, (5.4.4)

we see that

u (0, t) = φ (ct) + ψ (−ct) = 0.

Hence,

ψ (−ct) = −φ (ct) .

If we let α = −ct, then

ψ (α) = −φ (−α) .

Replacing α by x − ct, we obtain for x < ct,

ψ (x − ct) = −φ (ct − x) ,

and hence,

ψ (x − ct) = −1

2
f (ct − x) − 1

2c

∫ ct−x

0

g (τ) dτ − K

2
.

The solution of the initial boundary-value problem, therefore, is given by
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u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ for x > ct, (5.4.5)

u (x, t) =
1

2
[f (x + ct) − f (ct − x)] +

1

2c

∫ x+ct

ct−x

g (τ) dτ for x < ct. (5.4.6)

In order for this solution to exist, f must be twice continuously differ-
entiable and g must be continuously differentiable, and in addition

f (0) = f ′′ (0) = g (0) = 0.

Solution (5.4.6) has an interesting physical interpretation. If we draw
the characteristics through the point (x0, t0) in the region x > ct, we see,
as pointed out earlier, that the displacement at (x0, t0) is determined by
the initial values on [x0 − ct0, x0 + ct0].

If the point (x0, t0) lies in the region x > ct as shown in Figure 5.4.1,
we see that the characteristic x + ct = x0 + ct0 intersects the x-axis at
(x0 + ct0, 0). However, the characteristic x − ct = x0 − ct0 intersects the
t-axis at (0, t0 − x0/c), and the characteristic x + ct = ct0 − x0 intersects
the x-axis at (ct0 − x0, 0). Thus, the disturbance at (ct0 − x0, 0) travels
along the backward characteristic x + ct = ct0 − x0, and is reflected at
(0, t0 − x0/c) as a forward moving wave represented by −φ (ct0 − x0).

Example 5.4.1. Determine the solution of the initial boundary-value prob-
lem

utt = 4uxx, x > 0, t > 0,

u (x, 0) = |sin x| , x > 0,

ut (x, 0) = 0, x ≥ 0,

u (x, 0) = 0, t ≥ 0.

For x > 2t,

u (x, t) =
1

2
[f (x + 2t) + f (x − 2t)]

=
1

2
[|sin (x + 2t)| − |sin (x − 2t)|] ,

and for x < 2t,

u (x, t) =
1

2
[f (x + 2t) − f (2t − x)]

=
1

2
[|sin (x + 2t)| − |sin (2t − x)|] .

Notice that u (0, t) = 0 is satisfied by u (x, t) for x < 2t (that is, t > 0).
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(B) Semi-infinite String with a Free End
We consider a semi-infinite string with a free end at x = 0. We will

determine the solution of

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞, (5.4.7)

ut (x, 0) = g (x) , 0 ≤ x < ∞,

ux (0, t) = 0, 0 ≤ t < ∞.

As in the case of the fixed end, for x > ct the solution is the same as
that of the infinite string. For x < ct, from the d’Alembert solution (5.4.2)

u (x, t) = φ (x + ct) + ψ (x − ct) ,

we have

ux (x, t) = φ′ (x + ct) + ψ′ (x − ct) .

Thus,

ux (0, t) = φ′ (ct) + ψ′ (−ct) = 0.

Integration yields

φ (ct) − ψ (−ct) = K,

where K is a constant. Now, if we let α = −ct, we obtain

ψ (α) = φ (−α) − K.

Replacing α by x − ct, we have

ψ (x − ct) = φ (ct − x) − K,

and hence,

ψ (x − ct) =
1

2
f (ct − x) +

1

2c

∫ ct−x

0

g (τ) dτ − K

2
.

The solution of the initial boundary-value problem, therefore, is given by

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ for x > ct. (5.4.8)

u (x, t) =
1

2
[f (x + ct) + f (ct − x)] +

1

2c

[∫ x+ct

0

g (τ) dτ +

∫ ct−x

0

g (τ) dτ

]

for x < ct. (5.4.9)

We note that for this solution to exist, f must be twice continuously
differentiable and g must be continuously differentiable, and in addition,

f ′ (0) = g′ (0) = 0.
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Example 5.4.2. Find the solution of the initial boundary-value problem

utt = uxx, 0 < x < ∞, t > 0,

u (x, 0) = cos
(πx

2

)
, 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

ux (x, 0) = 0, t ≥ 0.

For x > t

u (x, t) =
1

2

[
cos

π

2
(x + t) + cos

π

2
(x − t)

]

= cos
(π

2
x
)

cos
(π

2
t
)

,

and for x < t

u (x, t) =
1

2

[
cos

π

2
(x + t) + cos

π

2
(t − x)

]

= cos
(π

2
x
)

cos
(π

2
t
)

.

5.5 Equations with Nonhomogeneous Boundary

Conditions

In the case of the initial boundary-value problems with nonhomogeneous
boundary conditions, such as

utt = c2uxx, x > 0, t > 0,

u (x, 0) = f (x) , x ≥ 0, (5.5.1)

ut (x, 0) = g (x) , x ≥ 0,

u (0, t) = p (t) , t ≥ 0,

we proceed in a manner similar to the case of homogeneous boundary con-
ditions. Using equation (5.4.2), we apply the boundary condition to obtain

u (0, t) = φ (ct) + ψ (−ct) = p (t) .

If we let α = −ct, we have

ψ (α) = p
(
−α

c

)
− φ (−α) .

Replacing α by x − ct, the preceding relation becomes

ψ (x − ct) = p
(
t − x

c

)
− φ (ct − x) .
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Thus, for 0 ≤ x < ct,

u (x, t) = p
(
t − x

c

)
+

1

2
[f (x + ct) − f (ct − x)] +

1

2c

∫ x+ct

ct−x

g (τ) dτ

= p
(
t − x

c

)
+ φ (x + ct) − ψ (ct − x) , (5.5.2)

where φ (x + ct = ξ) is given by (5.3.11), and ψ (η) is given by

ψ (η) =
1

2
f (η) +

1

2c

∫ η

0

g (τ) dτ. (5.5.3)

The solution for x > ct is given by the solution (5.4.5) of the infinite string.
In this case, in addition to the differentiability conditions satisfied by

f and g, as in the case of the problem with the homogeneous boundary
conditions, p must be twice continuously differentiable in t and

p (0) = f (0) , p′ (0) = g (0) , p′′ (0) = c2f ′′ (0) .

We next consider the initial boundary-value problem

utt = c2uxx, x > 0, t > 0,

u (x, 0) = f (x) , x ≥ 0,

ut (x, 0) = g (x) , x ≥ 0,

ux (0, t) = q (t) , t ≥ 0.

Using (5.4.2), we apply the boundary condition to obtain

ux (0, t) = φ′ (ct) + ψ′ (−ct) = q (t) .

Then, integrating yields

φ (ct) − ψ (−ct) = c

∫ t

0

q (τ) dτ + K.

If we let α = −ct, then

ψ (α) = φ (−α) − c

∫ −α/c

0

q (τ) dτ − K.

Replacing α by x − ct, we obtain

ψ (x − ct) = φ (ct − x) − c

∫ t−x/c

0

q (τ) dτ − K.

The solution of the initial boundary-value problem for x < ct, therefore, is
given by
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u (x, t) =
1

2
[f (x + ct) + f (ct − x)] +

1

2c

[∫ x+ct

0

g (τ) dτ +

∫ ct−x

0

g (τ) dτ

]

−c

∫ t−x/c

0

q (τ) dτ. (5.5.4)

Here f and g must satisfy the differentiability conditions, as in the case of
the problem with the homogeneous boundary conditions. In addition

f ′ (0) = q (0) , g′ (0) = q′ (0) .

The solution for the initial boundary-value problem involving the bound-
ary condition

ux (0, t) + hu (0, t) = 0, h = constant

can also be constructed in a similar manner from the d’Alembert solution.

5.6 Vibration of Finite String with Fixed Ends

The problem of the finite string is more complicated than that of the infinite
string due to the repeated reflection of waves from the boundaries

We first consider the vibration of the string of length l fixed at both
ends. The problem is that of finding the solution of

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (5.6.1)

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

From the previous results, we know that the solution of the wave equa-
tion is

u (x, t) = φ (x + ct) + ψ (x − ct) .

Applying the initial conditions, we have

u (x, 0) = φ (x) + ψ (x) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = c φ′ (x) − c ψ′ (x) = g (x) , 0 ≤ x ≤ l.

Solving for φ and ψ, we find

φ (ξ) =
1

2
f (ξ) +

1

2c

∫ ξ

0

g (τ) dτ +
K

2
, 0 ≤ ξ ≤ l, (5.6.2)

ψ (η) =
1

2
f (η) − 1

2c

∫ η

0

g (τ) dτ − K

2
, 0 ≤ η ≤ l. (5.6.3)
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Hence,

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ, (5.6.4)

for 0 ≤ x + ct ≤ l and 0 ≤ x − ct ≤ l. The solution is thus uniquely
determined by the initial data in the region

t ≤ x

c
, t ≤ l − x

c
, t ≥ 0.

For larger times, the solution depends on the boundary conditions. Applying
the boundary conditions, we obtain

u (0, t) = φ (ct) + ψ (−ct) = 0, t ≥ 0, (5.6.5)

u (l, t) = φ (l + ct) + ψ (l − ct) = 0, t ≥ 0. (5.6.6)

If we set α = −ct, equation (5.6.5) becomes

ψ (α) = −φ (−α) , α ≤ 0, (5.6.7)

and if we set α = l + ct, equation (5.6.6) takes the form

φ (α) = −ψ (2l − α) , α ≥ l. (5.6.8)

With ξ = −η, we may write equation (5.6.2) as

φ (−η) =
1

2
f (−η) +

1

2c

∫ −η

0

g (τ) dτ +
K

2
, 0 ≤ −η ≤ l. (5.6.9)

Thus, from (5.6.7) and (5.6.9), we have

ψ (η) = −1

2
f (−η) − 1

2c

∫ −η

0

g (τ) dτ − K

2
, −l ≤ η ≤ 0. (5.6.10)

We see that the range of ψ (η) is extended to −l ≤ η ≤ l.

If we put α = ξ in equation (5.6.8), we obtain

φ (ξ) = −ψ (2l − ξ) , ξ ≥ l. (5.6.11)

Then, by putting η = 2l − ξ in equation (5.6.3), we obtain

ψ (2l − ξ) =
1

2
f (2l − ξ) − 1

2c

∫ 2l−ξ

0

g (τ) dτ − K

2
, 0 ≤ 2l − ξ ≤ l.

(5.6.12)

Substitution of this in equation (5.6.11) yields
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φ (ξ) = −1

2
f (2l − ξ) +

1

2c

∫ 2l−ξ

0

g (τ) dτ +
K

2
, l ≤ ξ ≤ 2l. (5.6.13)

The range of φ (ξ) is thus extended to 0 ≤ ξ ≤ 2l. Continuing in this
manner, we obtain φ (ξ) for all ξ ≥ 0 and ψ (η) for all η ≤ l. Hence, the
solution is determined for all 0 ≤ x ≤ l and t ≥ 0.

In order to observe the effect of the boundaries on the propagation of
waves, the characteristics are drawn through the end point until they meet
the boundaries and then continue inward as shown in Figure 5.6.1. It can be
seen from the figure that only direct waves propagate in region 1. In regions
2 and 3, both direct and reflected waves propagate. In regions, 4,5,6, ... ,
several waves propagate along the characteristics reflected from both of the
boundaries x = 0 and x = l.

Example 5.6.1. Determine the solution of the following problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = sin (πx/l) , 0 ≤ x ≤ l,

ut (x, 0) = 0, 0 ≤ x ≤ l,

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

From equations (5.6.2) and (5.6.3), we have

Figure 5.6.1 Regions of wave propagation.
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φ (ξ) =
1

2
sin

(
πξ

l

)
+

K

2
, 0 ≤ ξ ≤ l.

ψ (η) =
1

2
sin

(πη

l

)
− K

2
, 0 ≤ η ≤ l.

Using equation (5.6.10), we obtain

ψ (η) = −1

2
sin

(
−πη

l

)
− K

2
, −l ≤ η ≤ 0

=
1

2
sin

(πη

l

)
− K

2
.

From equation (5.6.13), we find

φ (ξ) = −1

2
sin

{π

l
(2l − ξ)

}
+

K

2
, l ≤ ξ ≤ 2l.

Again by equation (5.6.7) and from the preceding φ (ξ), we have

φ (η) =
1

2
sin

(πη

l

)
− K

2
, −2l ≤ η ≤ −l.

Proceeding in this manner, we determine the solution

u (x, t) = φ (ξ) + ψ (η)

=
1

2

[
sin

π

l
(x + ct) + sin

π

l
(x − ct)

]

for all x in (0, l) and for all t > 0.
Similarly, the solution of the finite initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0,

can be determined by the same method.

5.7 Nonhomogeneous Wave Equations

We shall consider next the Cauchy problem for the nonhomogeneous wave
equation

utt = c2uxx + h∗ (x, t) , (5.7.1)

with the initial conditions

u (x, 0) = f (x) , ut (x, 0) = g∗ (x) . (5.7.2)
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By the coordinate transformation

y = ct, (5.7.3)

the problem is reduced to

uxx − uyy = h (x, y) , (5.7.4)

u (x, 0) = f (x) , (5.7.5)

uy (x, 0) = g (x) , (5.7.6)

where h (x, y) = −h∗/c2 and g (x) = g∗/c.

Let P0 (x0, y0) be a point of the plane, and let Q0 be the point (x0, 0)
on the initial line y = 0. Then the characteristics, x+ y = constant, of
equation (5.7.4) are two straight lines drawn through the point P0 with
slopes + 1. Obviously, they intersect the x-axis at the points P1 (x0 − y0, 0)
and P2 (x0 + y0, 0), as shown in Figure 5.7.1. Let the sides of the triangle
P0P1P2 be designated by B0, B1, and B2, and let D be the region repre-
senting the interior of the triangle and its boundaries B. Integrating both
sides of equation (5.7.4), we obtain

∫∫

R

(uxx − uyy) dR =

∫∫

R

h (x, y) dR. (5.7.7)

Now we apply Green’s theorem to obtain

Figure 5.7.1 Triangular Region.
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∫∫

R

(uxx − uyy) dR =

∮

B

(uxdy + uydx) . (5.7.8)

Since B is composed of B0, B1, and B2, we note that

∫

B0

(ux dy + uy dx) =

∫ x0+y0

x0−y0

uy dx,

∫

B1

(ux dy + uy dx) =

∫

B1

(−ux dx − uy dy) ,

= u (x0 + y0, 0) − u (x0, y0) ,∫

B2

(ux dy + uy dx) =

∫

B2

(ux dx + uy dy) ,

= u (x0 − y0, 0) − u (x0, y0) .

Hence,

∮

B

(ux dy + uy dx) = −2 u (x0, y0) + u (x0 − y0, 0)

+u (x0 + y0, 0) +

∫ x0+y0

x0−y0

uy dx. (5.7.9)

Combining equations (5.7.7), (5.7.8) and (5.7.9), we obtain

u (x0, y0) =
1

2
[u (x0 + y0, 0) + u (x0 − y0, 0)]

+
1

2

∫ x0+y0

x0−y0

uy dx − 1

2

∫∫

R

h (x, y) dR. (5.7.10)

We have chosen x0, y0 arbitrarily, and as a consequence, we replace x0 by
x and y0 by y. Equation (5.7.10) thus becomes

u (x, y) =
1

2
[f (x + y) + f (x − y)] +

1

2

∫ x+y

x−y

g (τ) dτ − 1

2

∫∫

R

h (x, y) dR.

In terms of the original variables

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g∗ (τ) dτ − 1

2

∫∫

R

h (x, t) dR.

(5.7.11)

Example 5.7.1. Determine the solution of

uxx − uyy = 1,

u (x, 0) = sinx,

uy (x, 0) = x.
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Figure 5.7.2 Triangular Region.

It is easy to see that the characteristics are x+ y = constant = x0 + y0 and
x − y = constant = x0 − y0, as shown in Figure 5.7.2. Thus,

u (x0, y0) =
1

2
[sin (x0 + y0) + sin (x0 − y0)]

+
1

2

∫ x0+y0

x0−y0

τ dτ − 1

2

∫ y0

0

∫ −y+x0+y0

y+x0−y0

dx dy

=
1

2
[sin (x0 + y0) + sin (x0 − y0)] + x0y0 − 1

2
y2
0 .

Now dropping the subscript zero, we obtain the solution

u (x, y) =
1

2
[sin (x + y) + sin (x − y)] + xy − 1

2
y2.

5.8 The Riemann Method

We shall discuss Riemann’s method of integrating the linear hyperbolic
equation

L [u] ≡ uxy + aux + buy + cu = f (x, y) , (5.8.1)
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where L denotes the linear operator, and a (x, y), b (x, y), c (x, y), and
f (x, y) are differentiable functions in some domain D∗. The method con-
sists essentially of the derivation of an integral formula which represents
the solution of the Cauchy problem.

Let v (x, y) be a function having continuous second-order partial deriva-
tives. Then, we may write

vuxy − uvxy = (vux)y − (vuy)x ,

vaux = (avu)x − u (av)x , (5.8.2)

vbuy = (bvu)y − u (bv)y ,

so that

vL [u] − uM [v] = Ux + Vy, (5.8.3)

where M is the operator represented by

M [v] = vxy − (av)x − (bv)y + cv, (5.8.4)

and

U = auv − uvy, V = buv + vux. (5.8.5)

The operator M is called the adjoint operator of L. If M = L, then the
operator L is said to be self-adjoint. Now applying Green’s theorem, we
have

∫∫

D

(Ux + Vy) dx dy =

∮

C

(U dy − V dx) , (5.8.6)

where C is the closed curve bounding the region of integration D which is
in D∗.

Let Λ be a smooth initial curve which is continuous, as shown in Figure
5.8.1. Since equation (5.8.1) is in first canonical form, x and y are the
characteristic coordinates. We assume that the tangent to Λ is nowhere
parallel to the x or y axis. Let P (α, β) be a point at which the solution to
the Cauchy problem is sought. Line PQ parallel to the x axis intersects the
initial curve Λ at Q, and line PR parallel to the y axis intersects the curve
Λ at R. We suppose that u and ux or uy are prescribed along Λ.

Let C be the closed contour PQRP bounding D. Since dy = 0 on PQ
and dx = 0 on PR, it follows immediately from equations (5.8.3) and (5.8.6)
that

∫∫

D

(vL [u] − uM [v]) dx dy =

∫ R

Q

(U dy − V dx) +

∫ P

R

U dy −
∫ Q

P

V dx.

(5.8.7)
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Figure 5.8.1 Smooth initial curve.

From equation (5.8.5), we find

∫ Q

P

V dx =

∫ Q

P

bvu dx +

∫ Q

P

vux dx.

Integrating by parts, we obtain

∫ Q

P

vuxdx = [uv]
Q
P −

∫ Q

P

uvxdx.

Hence, we may write

∫ Q

P

V dx = [uv]
Q
P +

∫ Q

P

u (bv − vx) dx.

Substitution of this integral in equation (5.8.7) yields

[uv]P = [uv]Q +

∫ Q

P

u (bv − vx) dx −
∫ P

R

u (av − vy) dy −
∫ R

Q

(U dy − V dx)

+

∫∫

D

(vL [u] − uM [v]) dx dy. (5.8.8)

Suppose we can choose the function v (x, y; α, β) to be the solution of
the adjoint equation
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M [v] = 0, (5.8.9)

satisfying the conditions

vx = bv when y = β,

vy = av when x = α, (5.8.10)

v = 1 when x = α and y = β.

The function v (x, y; α, β) is called the Riemann function. Since L [u] = f ,
equation (5.8.8) reduces to,

[u]P = [uv]Q −
∫ R

Q

uv (a dy − b dx) +

∫ R

Q

(uvydy + vuxdx) +

∫∫

D

vf dx dy.

(5.8.11)

This gives us the value of u at the point P when u and ux are prescribed
along the curve Λ. When u and uy are prescribed, the identity

[uv]R − [uv]Q =

∫ R

Q

{
(uv)x dx + (uv)y dy

}
,

may be used to put equation (5.8.8) in the form

[u]P = [uv]R −
∫ R

Q

uv (a dy − b dx) −
∫ R

Q

(uvxdx + vuydy)

+

∫∫

D

vf dx dy. (5.8.12)

By adding equations (5.8.11) and (5.8.12), the value of u at P is given by

[u]P =
1

2

(
[uv]Q + [uv]R

)
−

∫ R

Q

uv (a dy − b dx) − 1

2

∫ R

Q

u (vxdx − vydy)

+
1

2

∫ R

Q

v (uxdx − uydy) +

∫∫

D

vf dx dy (5.8.13)

which is the solution of the Cauchy problem in terms of the Cauchy data
given along the curve Λ. It is easy to see that the solution at the point
(α, β) depends only on the Cauchy data along the arc QR on Λ. If the
initial data were to change outside this arc QR, the solution would change
only outside the triangle PQR. Thus, from Figure 5.8.2, we can see that
each characteristic separates the region in which the solution remains un-
changed from the region in which it varies. Because of this fact, the unique
continuation of the solution across any characteristic is not possible. This
is evident from Figure 5.8.2. The solution on the right of the characteristic
P1R1 is determined by the initial data given in Q1R2, whereas the solution
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Figure 5.8.2 Solution on the right and left of the characteristic.

on the left is determined by the initial data given on Q1R1. If the initial
data on R1R2 were changed, the solution on the right of P1R1 only will be
affected.

It should be remarked here that the initial curve can intersect each
characteristic at only one point. Suppose, for example, the initial curve Λ
intersects the characteristic at two points, as shown in Figure 5.8.3. Then,
the solution at P obtained from the initial data on QR will be different
from the solution obtained from the initial data on RS. Hence, the Cauchy
problem, in this case, is not solvable.

Figure 5.8.3 Initial curve intersects the characteristic at two points.
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Example 5.8.1. The telegraph equation

wtt + a∗wt + b∗w = c2wxx,

may be transformed into canonical form

L [u] = uξη + ku = 0,

by the successive transformations

w = u e−a∗t/2,

and

ξ = x + ct, η = x − ct,

where k =
(
a∗2 − 4b∗) /16c2.

We apply Riemann’s method to determine the solution satisfying the
initial conditions

u (x, 0) = f (x) , ut (x, 0) = g (x) .

Since

t =
1

2c
(ξ − η) ,

the line t = 0 corresponds to the straight line ξ = η in the ξ − η plane. The
initial conditions may thus be transformed into

[u]ξ=η = f (ξ) , (5.8.14)

[uξ − uη]ξ=η = c−1g (ξ) . (5.8.15)

We next determine the Riemann function v (ξ, η; α, β) which satisfies

vξη + kv = 0, (5.8.16)

vξ (ξ, β; α, β) = 0, (5.8.17)

vη (α, η; α, β) = 0, (5.8.18)

v (α, β; α, β) = 1. (5.8.19)

The differential equation (5.8.16) is self-adjoint, that is,

L [v] = M [v] = vξη + kv.

We assume that the Riemann function is of the form

v (ξ, η; α, β) = F (s) ,

with the argument s = (ξ − α) (η − β). Substituting this value in equation
(5.8.16), we obtain
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sFss + Fs + kF = 0.

If we let λ =
√

4ks, the above equation becomes

F ′′ (λ) +
1

λ
F ′ (λ) + F (λ) = 0.

This is the Bessel equation of order zero, and the solution is

F (λ) = J0 (λ) ,

disregarding Y0 (λ) which is unbounded at λ = 0. Thus, the Riemann func-
tion is

v (ξ, η; α, β) = J0

(√
4k (ξ − α) (η − β)

)

which satisfies equation (5.8.16) and is equal to one on the characteristics
ξ = α and η = β. Since J ′

0 (0) = 0, equations (5.8.17) and (5.8.18) are
satisfied. From this, it immediately follows that

[vξ]ξ=η =

√
k (ξ − β)√

(ξ − α) (η − β)
[J ′

0 (λ)]ξ=η ,

[vη]ξ=η =

√
k (ξ − α)√

(ξ − α) (η − β)
[J ′

0 (λ)]ξ=η .

Thus, we have

[vξ − uη]ξ=η =

√
k (α − β)√

(ξ − α) (ξ − β)
[J ′

0 (λ)]ξ=η . (5.8.20)

From the initial condition

u (Q) = f (β) and u (R) = f (α) , (5.8.21)

and substituting equations (5.8.15), (5.8.19), and (5.8.20) into equation
(5.8.13), we obtain

u (α, β) =
1

2
[f (α) + f (β)]

−1

2

∫ α

β

√
k (α − β)√

(τ − α) (τ − β)
J ′

0

(√
4k (τ − α) (τ − β)

)
f (τ) dτ

+
1

2c

∫ α

β

J0

(√
4k (τ − α) (τ − β)

)
g (τ) dτ. (5.8.22)

Replacing α and β by ξ and η, and substituting the original variables x and
t, we obtain
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u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2

∫ x+ct

x−ct

G (x, t, τ) dτ, (5.8.23)

where

G (x, t, τ)

=

{
−2

√
k ctf (τ) J0

(√
4k

[
(τ − x)

2 − c2t2
])}/√

(τ − x)
2 − c2t2

+ c−1g (τ) J0

(√
4k

[
(τ − x)

2 − c2t2
])

.

If we set k = 0, we arrive at the d’Alembert solution for the wave equation

u (x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (τ) dτ.

5.9 Solution of the Goursat Problem

The Goursat problem is that of finding the solution of a linear hyperbolic
equation

uxy = a1 (x, y) ux + a2 (x, y) uy + a3 (x, y) u + h (x, y) , (5.9.1)

satisfying the prescribed conditions

u (x, y) = f (x) , (5.9.2)

on a characteristic, say, y = 0, and

u (x, y) = g (x) (5.9.3)

on a monotonic increasing curve y = y (x) which, for simplicity, is assumed
to intersect the characteristic at the origin.

The solution in the region between the x-axis and the monotonic curve
in the first quadrant can be determined by the method of successive ap-
proximations. The proof is given in Garabedian (1964).

Example 5.9.1. Determine the solution of the Goursat problem

utt = c2uxx, (5.9.4)

u (x, t) = f (x) , on x − ct = 0, (5.9.5)

u (x, t) = g (x) , on t = t (x) , (5.9.6)

where f (0) = g (0).
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The general solution of the wave equation is

u (x, t) = φ (x + ct) + ψ (x − ct) .

Applying the prescribed conditions, we obtain

f (x) = φ (2x) + ψ (0) , (5.9.7)

g (x) = φ (x + c t (x)) + ψ (x − c t (x)) . (5.9.8)

It is evident that

f (0) = φ (0) + ψ (0) = g (0) .

Now, if s = x − c t (x), the inverse of it is x = α (s). Thus, equation (5.9.8)
may be written as

g (α (s)) = φ (x + c t (x)) + ψ (s) . (5.9.9)

Replacing x by (x + c t (x)) /2 in equation (5.9.7), we obtain

f

(
x + c t (x)

2

)
= φ (x + c t (x)) + ψ (0) . (5.9.10)

Thus, using (5.9.10), equation (5.9.9) becomes

ψ (s) = g (α (s)) − f

(
α (s) + c t (α (s))

2

)
+ ψ (0) .

Replacing s by x − ct , we have

ψ (x − ct) = g (α (x − ct)) − f

(
α (x − c t) + c t (α (x − c t))

2

)
+ ψ (0) .

Hence, the solution is given by

u (x, t) = f

(
x + c t

2

)
− f

(
α (x − c t) + c t (α (x − c t))

2

)
+ g (α (x − c t)) .

(5.9.11)

Let us consider a special case when the curve t = t (x) is a straight line
represented by t − kx = 0 with a constant k > 0. Then s = x − ckx and
hence x = s/ (1 − ck). Using these values in (5.9.11), we obtain

u (x, t) = f

(
x + c t

2

)
− f

(
(1 + c k) (x − c t)

2 (1 − c k)

)
+ g

(
x − c t

1 − c k

)
. (5.9.12)

When the values of u are prescribed on both characteristics, the problem
of finding u of a linear hyperbolic equation is called a characteristic initial-
value problem. This is a degenerate case of the Goursat problem.
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Consider the characteristic initial-value problem

uxy = h (x, y) , (5.9.13)

u (x, 0) = f (x) , (5.9.14)

u (0, y) = g (y) , (5.9.15)

where f and g are continuously differentiable, and f (0) = g (0).
Integrating equation (5.9.13), we obtain

u (x, y) =

∫ x

0

∫ y

0

h (ξ, η) dη dξ + φ (x) + ψ (y) , (5.9.16)

where φ and ψ are arbitrary functions. Applying the prescribed conditions
(5.9.14) and (5.9.15), we have

u (x, 0) = φ (x) + ψ (0) = f (x) , (5.9.17)

u (0, y) = φ (0) + ψ (y) = g (y) . (5.9.18)

Thus,

φ (x) + ψ (y) = f (x) + g (y) − φ (0) − ψ (0) . (5.9.19)

But from (5.9.17), we have

φ (0) + ψ (0) = f (0) . (5.9.20)

Hence, from (5.9.16), (5.9.19) and (5.9.20), we obtain

u (x, y) = f (x) + g (y) − f (0) +

∫ x

0

∫ y

0

h (ξ, η) dη dξ. (5.9.21)

Example 5.9.2. Determine the solution of the characteristic initial-value
problem

utt = c2uxx,

u (x, t) = f (x) on x + ct = 0,

u (x, t) = g (x) on x − ct = 0,

where f (0) = g (0).
Here it is not necessary to reduce the given equation to canonical form.

The general solution of the wave equation is

u (x, t) = φ (x + ct) + ψ (x − ct) .

The characteristics are

x + ct = 0, x − ct = 0.
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Applying the prescribed conditions, we have

u (x, t) = φ (2x) + ψ (0) = f (x) on x + ct = 0, (5.9.22)

u (x, t) = φ (0) + ψ (2x) = g (x) on x − ct = 0. (5.9.23)

We observe that these equations are compatible, since f (0) = g (0).
Now, replacing x by (x + ct) /2 in equation (5.9.22) and replacing x by

(x − ct) /2 in equation (5.9.23), we have

φ (x + ct) = f

(
x + ct

2

)
− ψ (0) ,

φ (x − ct) = g

(
x − ct

2

)
− φ (0) .

Hence, the solution is given by

u (x, t) = f

(
x + ct

2

)
+ g

(
x − ct

2

)
− f (0) . (5.9.24)

We note that this solution can be obtained by substituting k = −1/c into
(5.9.12).

Example 5.9.3. Find the solution of the characteristic initial-value problem

y3uxx − yuyy + uy = 0, (5.9.25)

u (x, y) = f (x) on x +
y2

2
= 4 for 2 ≤ x ≤ 4,

u (x, y) = g (x) on x − y2

2
= 0 for 0 ≤ x ≤ 2,

with f (2) = g (2).
Since the equation is hyperbolic except for y = 0, we reduce it to the

canonical form

uξη = 0,

where ξ = x +
(
y2/2

)
and η = x −

(
y2/2

)
. Thus, the general solution is

u (x, y) = φ

(
x +

y2

2

)
+ ψ

(
x − y2

2

)
. (5.9.26)

Applying the prescribed conditions, we have

f (x) = φ (4) + ψ (2x − 4) , (5.9.27)

g (x) = φ (2x) + ψ (0) . (5.9.28)

Now, if we replace (2x − 4) by
(
x − y2/2

)
in (5.9.27) and (2x) by

(
x + y2/2

)

in (5.9.28), we obtain
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ψ

(
x − y2

2

)
= f

(
x

2
− y2

4
+ 2

)
− φ (4) ,

φ

(
x +

y2

2

)
= g

(
x

2
+

y2

4

)
− ψ (0) .

Thus,

u (x, y) = f

(
x

2
− y2

4
+ 2

)
+ g

(
x

2
+

y2

4

)
− φ (4) − ψ (0) .

But from (5.9.27) and (5.9.28), we see that

f (2) = φ (4) + ψ (0) = g (2) .

Hence,

u (x, y) = f

(
x

2
− y2

4
+ 2

)
+ g

(
x

2
+

y2

4

)
− f (2) .

5.10 Spherical Wave Equation

In spherical polar coordinates (r, θ, φ), the wave equation (3.1.1) takes the
form

1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
=

1

c2

∂2u

∂t2
.(5.10.1)

Solutions of this equation are called spherical symmetric waves if u
depends on r and t only. Thus, the solution u = u (r, t) which satisfies the
wave equation with spherical symmetry in three-dimensional space is

1

r2

∂

∂r

(
r2 ∂u

∂r

)
=

1

c2

∂2u

∂t2
. (5.10.2)

Introducing a new dependent variable U = ru (r, t), this equation re-
duces to a simple form

Utt = c2Urr. (5.10.3)

This is identical with the one-dimensional wave equation (5.3.1) and has
the general solution in the form

U (r, t) = φ (r + ct) + ψ (r − ct) , (5.10.4)

or, equivalently,

u (r, t) =
1

r
[φ (r + ct) + ψ (r − ct)] . (5.10.5)
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This solution consists of two progressive spherical waves traveling with
constant velocity c. The terms involving φ and ψ represent the incoming
waves to the origin and the outgoing waves from the origin respectively.

Physically, the solution for only outgoing waves generated by a source
is of most interest, and has the form

u (r, t) =
1

r
ψ (r − ct) , (5.10.6)

where the explicit form of ψ is to be determined from the properties of the
source. In the context of fluid flows, u represents the velocity potential so
that the limiting total flux through a sphere of center at the origin and
radius r is

Q (t) = lim
r→0

4πr2ur (r, t) = −4π ψ (−ct) . (5.10.7)

In physical terms, we say that there is a simple (or monopole) point source
of strength Q (t) located at the origin. Thus, the solution (5.10.6) can be
expressed in terms of Q as

u (r, t) = − 1

4πr
Q

(
t − r

c

)
. (5.10.8)

This represents the velocity potential of the point source, and ur is called
the radial velocity. In fluid flows, the difference between the pressure at any
time t and the equilibrium value is given by

p − p0 = ρ ut = − ρ

4πr
Q̇

(
t − r

c

)
, (5.10.9)

where ρ is the density of the fluid.
Following an analysis similar to Section 5.3, the solution of the initial-

value problem with the initial data

u (r, 0) = f (r) , ut (r, 0) = g (r) , r ≥ 0, (5.10.10)

where f and g are continuously differentiable, is given by

u (r, t) =
1

2r

[
(r + ct) f (r + ct) + (r − ct) f (r − ct) +

1

c

∫ r+ct

r−ct

τg (τ) dτ

]
,

(5.10.11)

provided r ≥ ct. However, when r < ct, this solution fails because f and g
are not defined for r < 0. This initial data at t = 0, r ≥ 0 determine the
solution u (r, t) only up to the characteristic r = ct in the r-t plane. To find
u for r < ct, we require u to be finite at r = 0 for all t ≥ 0, that is, U = 0
at r = 0. Thus, the solution for U (r, t) is
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U (r, t) =
1

2

[
(r + ct) f (r + ct) + (r − ct) f (r − ct) +

1

c

∫ r+ct

r−ct

τg (τ) dτ

]
,

(5.10.12)

provided r ≥ ct ≥ 0, and

U (r, t) =
1

2
[φ (ct + r) + ψ (ct − r)] , ct ≥ r ≥ 0, (5.10.13)

where

φ (ct) + ψ (ct) = 0, for ct ≥ 0. (5.10.14)

In view of the fact that Ur + 1
c Ut is constant on each characteristic

r + ct = constant, it turns out that

φ′ (ct + r) = (r + ct) f ′ (r + ct) + f (r + ct) +
1

c
(r + ct) g (r + ct) ,

or

φ′ (ct) = ctf ′ (ct) + f (ct) + t g (ct) .

Integration gives

φ (t) = tf (t) +
1

c

∫ t

0

τg (τ) dτ + φ (0) ,

so that

ψ (t) = −tf (t) − 1

c

∫ t

0

τg (τ) dτ − φ (0) .

Substituting these values into (5.10.13) and using U (r, t) = ru (r, t), we
obtain, for ct > r,

u (r, t) =
1

2r

[
(ct + r) f (ct + r) − (ct − r) f (ct − r) +

1

c

∫ ct+r

ct−r

τg (τ) dτ

]
.

(5.10.15)

5.11 Cylindrical Wave Equation

In cylindrical polar coordinates (R, θ, z), the wave equation (3.1.1) assumes
the form

uRR +
1

R
uR +

1

R2
uθθ + uzz =

1

c2
utt. (5.11.1)

If u depends only on R and t, this equation becomes
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uRR +
1

R
uR =

1

c2
utt. (5.11.2)

Solutions of (5.11.2) are called cylindrical waves.
In general, it is not easy to find the solution of (5.11.1). However, we

shall solve this equation by using the method of separation of variables in
Chapter 7. Here we derive the solution for outgoing cylindrical waves from
the spherical wave solution (5.10.8). We assume that sources of constant
strength Q (t) per unit length are distributed uniformly on the z-axis. The
solution for the cylindrical waves produced by the line source is given by
the total disturbance

u (R, t) = − 1

4π

∫ ∞

−∞

1

r
Q

(
t − r

c

)
dz = − 1

2π

∫ ∞

0

1

r
Q

(
t − r

c

)
dz, (5.11.3)

where R is the distance from the z-axis so that R2 =
(
r2 − z2

)
.

Substitution of z = R sinh ξ and r = R cosh ξ in (5.11.3) gives

u (R, t) = − 1

2π

∫ ∞

0

Q

(
t − R

c
cosh ξ

)
dξ. (5.11.4)

This is usually considered as the cylindrical wave function due to a source
of strength Q (t) at R = 0. It follows from (5.11.4) that

utt = − 1

2π

∫ ∞

0

Q′′
(

t − R

c
cosh ξ

)
dξ, (5.11.5)

uR =
1

2πc

∫ ∞

0

cosh ξ Q′
(

t − R

c
cosh ξ

)
dξ, (5.11.6)

uRR = − 1

2πc2

∫ ∞

0

cosh2 ξ Q′′
(

t − R

c
cosh ξ

)
dξ, (5.11.7)

which give

c2

(
uRR +

1

R
uR

)
− utt =

1

2π

∫ ∞

0

d

dξ

[
c

R
Q′

(
t − R

c
cosh ξ

)
sinh ξ

]
dξ

= lim
ξ→∞

[
c

2πR
Q′

(
t − R

c
cosh ξ

)
sinh ξ

]
= 0,

provided the differentiation under the sign of integration is justified and the
above limit is zero. This means that u (R, t) satisfies the cylindrical wave
equation (5.11.2).

In order to find the asymptotic behavior of the solution as R → 0, we

substitute cosh ξ = c(t−ζ)
R into (5.11.4) and (5.11.6) to obtain

u = − 1

2π

∫ t−R/c

−∞

Q (ζ) dζ
[
(t − ζ)

2 − R2

c2

] 1
2

, (5.11.8)

uR =
1

2π

∫ t−R/c

−∞

(
t − ζ

R

)
Q′ (ζ) dζ

[
(t − ζ)

2 − R2

c2

] 1
2

, (5.11.9)
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which, in the limit R → 0, give

uR ∼ 1

2πR

∫ t

−∞
Q′ (ζ) dζ =

1

2πR
Q (t) . (5.11.10)

This leads to the result

lim
R→0

2πR uR = Q (t) , (5.11.11)

or

u (R, t) ∼ 1

2π
Q (t) log R as R → 0. (5.11.12)

We next investigate the nature of the cylindrical wave solution near the
waterfront (R = ct) and in the far field (R → ∞). We assume Q (t) = 0 for
t < 0 so that the lower limit of integration in (5.11.8) may be taken to be
zero, and the solution is non-zero for τ = t − R

c > 0, where τ is the time
passed after the arrival of the wavefront. Consequently, (5.11.8) becomes

u (R, t) = − 1

2π

∫ τ

0

Q (ζ) dζ
[
(t − ζ)

(
t − ζ + 2R

c

)] 1
2

. (5.11.13)

Since 0 < ζ < τ , 2R
c > R

c > τ > τ − ζ > 0, so that the second factor under

the radical is approximately equal to 2R
c when R ≫ cτ , and hence,

u (R, t) ∼ − 1

2π

( c

2R

) 1
2

∫ τ

0

Q (ζ) dζ

(t − ζ)
1
2

= −
( c

2R

) 1
2

q (τ)

= −
( c

2R

) 1
2

q

(
t − R

c

)
, R ≫ ct

2
, (5.11.14)

where

q (τ) =
1

2π

∫ τ

0

Q (ζ) dζ√
τ − ζ

. (5.11.15)

Evidently, the amplitude involved in the solution (5.11.14) decays like

R− 1
2 for large R (R → ∞).

Example 5.11.1. Determine the asymptotic form of the solution (5.11.4) for
a harmonically oscillating source of frequency ω.

We take the source in the form Q (t) = q0 exp [−i (ω + iε) t], where ε is
positive and small so that Q (t) → 0 as t → −∞. The small imaginary part
ε of ω will make insignificant contributions to the solution at finite time as
ε → 0. Thus, the solution (5.11.4) becomes

u (R, t) = −
( q0

2π

)
e−iωt

∫ ∞

0

exp

(
iωR

c
cosh ξ

)
dξ

= −
(

iq0

4

)
e−iωtH

(1)
0

(
ωR

c

)
, (5.11.16)
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where H
(1)
0 (z) is the Hankel function given by

H
(1)
0 (z) =

2

πi

∫ ∞

0

exp (iz cosh ξ) dξ. (5.11.17)

In view of the asymptotic expansion of H
(1)
0 (z) in the form

H
(1)
0 (z) ∼

(
2

πz

) 1
2

exp
[
i
(
z − π

4

)]
, z → ∞, (5.11.18)

the asymptotic solution for u (R, t) in the limit
(

ωR
c

)
→ ∞ is

u (R, t) ∼ −
(

iq0

4

)(
2c

πωR

) 1
2

exp

[
−i

(
ωt − ωR

c
− π

4

)]
.

This represents the cylindrical wave propagating with constant velocity c.
The amplitude of the wave decays like R− 1

2 as R → ∞.

Example 5.11.2. For a supersonic flow (M > 1) past a solid body of revo-
lution, the perturbation potential Φ satisfies the cylindrical wave equation

ΦRR +
1

R
ΦR = N2Φxx, N2 = M2 − 1,

where R is the distance from the path of the moving body and x is the
distance from the nose of the body.

It follows from problem 12 in 3.9 Exercises that Φ satisfies the equation

Φyy + Φzz = N2 Φxx.

This represents a two-dimensional wave equation with x ↔ t and N2 ↔
1
c2 . For a body of revolution with (y, z) ↔ (R, θ), ∂

∂θ ≡ 0, the above equation
reduces to the cylindrical wave equation

ΦRR +
1

R
ΦR =

1

c2
Φtt.

5.12 Exercises

1. Determine the solution of each of the following initial-value problems:

(a) utt − c2uxx = 0, u (x, 0) = 0, ut (x, 0) = 1.

(b) utt − c2uxx = 0, u (x, 0) = sinx, ut (x, 0) = x2.

(c) utt − c2uxx = 0, u (x, 0) = x3, ut (x, 0) = x.
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(d) utt − c2uxx = 0, u (x, 0) = cos x, ut (x, 0) = e−1.

(e) utt − c2uxx = 0, u (x, 0) = log
(
1 + x2

)
, ut (x, 0) = 2.

(f) utt − c2uxx = 0, u (x, 0) = x, ut (x, 0) = sinx.

2. Determine the solution of each of the following initial-value problems:

(a) utt − c2uxx = x, u (x, 0) = 0, ut (x, 0) = 3.

(b) utt − c2uxx = x + ct, u (x, 0) = x, ut (x, 0) = sinx.

(c) utt − c2uxx = ex, u (x, 0) = 5, ut (x, 0) = x2.

(d) utt − c2uxx = sinx, u (x, 0) = cos x, ut (x, 0) = 1 + x.

(e) utt − c2uxx = xet, u (x, 0) = sinx, ut (x, 0) = 0.

(f) utt − c2uxx = 2, u (x, 0) = x2, ut (x, 0) = cos x.

3. A gas which is contained in a sphere of radius R is at rest initially, and
the initial condensation is given by s0 inside the sphere and zero outside
the sphere. The condensation is related to the velocity potential by

s (t) =
(
1/c2

)
ut,

at all times, and the velocity potential satisfies the wave equation

utt = ∇2u.

Determine the condensation s (t) for all t > 0.

4. Solve the initial-value problem

uxx + 2uxy − 3uyy = 0,

u (x, 0) = sinx, uy (x, 0) = x.

5. Find the longitudinal oscillation of a rod subject to the initial conditions

u (x, 0) = sinx,

ut (x, 0) = x.

6. By using the Riemann method, solve the following problems:

(a) sin2 µ φxx − cos2 µ φyy −
(
λ2 sin2 µ cos2 µ

)
φ = 0,

φ (0, y) = f1 (y) , φ (x, 0) = g1 (x) ,

φx (0, y) = f2 (y) , φy (x, 0) = g2 (x) .
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(b) x2uxx − t2utt = 0,

u (x, t1) = f (x) , ut (x, t2) = g (x) .

7. Determine the solution of the initial boundary-value problem

utt = 4uxx, 0 < x < ∞, t > 0,

u (x, 0) = x4, 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

u (0, t) = 0, t ≥ 0.

8. Determine the solution of the initial boundary-value problem

utt = 9uxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, 0 ≤ x < ∞,

ut (x, 0) = x3, 0 ≤ x < ∞,

ux (0, t) = 0, t ≥ 0.

9. Determine the solution of the initial boundary-value problem

utt = 16uxx, 0 < x < ∞, t > 0,

u (x, 0) = sinx, 0 ≤ x < ∞,

ut (x, 0) = x2, 0 ≤ x < ∞,

u (0, t) = 0, t ≥ 0.

10. In the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = 0, t ≥ 0,

if f and g are extended as odd functions, show that u (x, t) is given by
the solution (5.4.5) for x > ct and solution (5.4.6) for x < ct.

11. In the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, t ≥ 0,

if f and g are extended as even functions, show that u (x, t) is given by
solution (5.4.8) for x > ct, and solution (5.4.9) for x < ct.
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12. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , 0 ≤ x < ∞,

ut (x, 0) = 0, 0 ≤ x < ∞,

ux (0, t) + hu (0, t) = 0, t ≥ 0, h = constant.

State the compatibility condition of f .

13. Find the solution of the problem

utt = c2uxx, at < x < ∞, t > 0,

u (x, 0) = f (x) , 0 < x < ∞,

ut (x, 0) = 0, 0 < x < ∞,

u (at, t) = 0, t > 0,

where f (0) = 0 and a is constant.

14. Find the solution of the initial boundary-value problem

utt = uxx, 0 < x < 2, t > 0,

u (x, 0) = sin (πx/2) , 0 ≤ x ≤ 2,

ut (x, 0) = 0, 0 ≤ x ≤ 2,

u (0, t) = 0, u (2, t) = 0, t ≥ 0.

15. Find the solution of the initial boundary-value problem

utt = 4uxx, 0 < x < 1, t > 0,

u (x, 0) = 0, 0 ≤ x ≤ 1,

ut (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 0, t ≥ 0.

16. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, ux (l, t) = 0, t ≥ 0,

by extending f and g as even functions about x = 0 and x = l.

17. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.
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18. Determine the solution of the initial boundary-value problem

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

19. Solve the characteristic initial-value problem

xy3uxx − x3y uyy − y3ux + x3uy = 0,

u (x, y) = f (x) on y2 − x2 = 8 for 0 ≤ x ≤ 2,

u (x, y) = g (x) on y2 + x2 = 16 for 2 ≤ x ≤ 4,

with f (2) = g (2).

20. Solve the Goursat problem

xy3uxx − x3y uyy − y3ux + x3uy = 0,

u (x, y) = f (x) on y2 + x2 = 16 for 0 ≤ x ≤ 4,

u (x, y) = g (y) on x = 0 for 0 ≤ y ≤ 4,

where f (0) = g (4).

21. Solve

utt = c2uxx,

u (x, t) = f (x) on t = t (x) ,

u (x, t) = g (x) on x + ct = 0,

where f (0) = g (0).

22. Solve the characteristic initial-value problem

xuxx − x3uyy − ux = 0, x �= 0,

u (x, y) = f (y) on y − x2

2
= 0 for 0 ≤ y ≤ 2,

u (x, y) = g (y) on y +
x2

2
= 4 for 2 ≤ y ≤ 4,

where f (2) = g (2).

23. Solve

uxx + 10uxy + 9uyy = 0,

u (x, 0) = f (x) ,

uy (x, 0) = g (x) .
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24. Solve

4 uxx + 5uxy + uyy + ux + uy = 2,

u (x, 0) = f (x) ,

uy (x, 0) = g (x) .

25. Solve

3 uxx + 10uxy + 3uyy = 0,

u (x, 0) = f (x) , uy (x, 0) = g (x) .

26. Solve

uxx − 3 uxy + 2uyy = 0,

u (x, 0) = f (x) , uy (x, 0) = g (x) .

27. Solve

x2uxx − t2utt = 0 x > 0, t > 0,

u (x, 1) = f (x) ,

ut (x, 1) = g (x) .

28. Consider the initial boundary-value problem for a string of length l
under the action of an external force q (x, t) per unit length. The dis-
placement u (x, t) satisfies the wave equation

ρ utt = Tuxx + ρ q (x, t) ,

where ρ is the line density of the string and T is the constant tension
of the string. The initial and boundary conditions of the problem are

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = u (l, t) = 0, t > 0.

Show that the energy equation is

dE

dt
= [Tuxut]

l
0 +

∫ l

0

ρ q ut dx,

where E represents the energy integral

E (t) =
1

2

∫ l

0

(
ρ u2

t + Tu2
x

)
dx.

Explain the physical significance of the energy equation.

Hence or otherwise, derive the principle of conservation of energy, that
is, that the total energy is constant for all t ≥ 0 provided that the string
has free or fixed ends and there are no external forces.
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29. Show that the solution of the signaling problem governed by the wave
equation

utt = c2uxx, x > 0, t > 0,

u (x, 0) = ut (x, 0) = 0, x > 0,

u (0, t) = U (t) , t > 0,

is

u (x, t) = U
(
t − x

c

)
H

(
t − x

c

)
,

where H is the Heaviside unit step function.

30. Obtain the solution of the initial-value problem of the homogeneous
wave equation

utt − c2uxx = sin (kx − ωt) , −∞ < x < ∞, t > 0,

u (x, 0) = 0 = ut (x, 0) , for all x ∈ R,

where c, k and ω are constants.

Discuss the non-resonance case, ω �= ck and the resonance case, ω = ck.

31. In each of the following Cauchy problems, obtain the solution of the
system

utt − c2uxx = 0, x ∈ R, t > 0,

u (x, 0) = f (x) and ut (x, 0) = g (x) for x ∈ R,

for the given c, f (x) and g (x):

(a) c = 3, f (x) = cos x, g (x) = sin 2x.

(b) c = 1, f (x) = sin 3x, g (x) = cos 3x.

(c) c = 7, f (x) = cos 3x, g (x) = x.

(d) c = 2, f (x) = cosh x, g (x) = 2x.

(e) c = 3, f (x) = x3, g (x) = x cos x.

(f) c = 4, f (x) = cos x, g (x) = xe−x.

32. If u (x, t) is the solution of the nonhomogeneous Cauchy problem

utt − c2uxx = p (x, t) , for x ∈ R, t > 0,

u (x, 0) = 0 = ut (x, 0) , for x ∈ R,
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and if v (x, t, τ) is the solution of the nonhomogeneous Cauchy problem

vtt − c2vxx = 0, for x ∈ R, t > 0,

v (x, 0; τ) = 0, vt (x, 0; τ) = p (x, τ) , x ∈ R,

show that

u (x, t) =

∫ t

0

v (x, t; τ) dτ.

This is known as the Duhamel principle for the wave equation.

33. Show that the solution of the nonhomogeneous diffusion equation with
homogeneous boundary and initial data

ut = κuxx + p (x, t) , 0 < x < l, t > 0,

u (0, t) = 0 = u (l, t) , t > 0,

u (x, 0) = 0, 0 < x < l,

is

u (x, t) =

∫ t

0

v (x, t; τ) dτ,

where v = v (x, t; τ) satisfies the homogeneous diffusion equation with
nonhomogeneous boundary and initial data

vtt = κvxx + p (x, t) , 0 < x < l, t > 0,

v (0, t; τ) = 0 = v (l, t; τ) , t > 0,

v (x, τ ; τ) = p (x, τ) .

This is known as the Duhamel principle for the diffusion equation.

34. Use the Duhamel principle to solve the nonhomogeneous diffusion equa-
tion

ut = κuxx + e−t sin πx, 0 < x < l, t > 0,

with the homogeneous boundary and initial data

u (0, t) = 0, u (1, t) = 0, t > 0,

u (x, 0) = 0, 0 ≤ x ≤ 1.

35. (a) Verify that

un (x, y) = exp
(
ny −

√
n
)
sin nx,

is the solution of the Laplace equation
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uxx + uyy = 0, x ∈ R, y > 0,

u (x, 0) = 0, uy (x, 0) = n exp
(
−

√
n
)
sin nx,

where n is a positive integer.
(b) Show that this Cauchy problem is not well posed.

36. Show that the following Cauchy problems are not well posed:

(a) ut = uxx, x ∈ R, t > 0,

u (0, t) =
(

2
n

)
sin

(
2n2t

)
, ux (0, t) = 0, t > 0.

(b) uxx + uyy = 0, x ∈ R, t > 0,

un (x, 0) → 0, (un)y (x, 0) → 0, as n → ∞.
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Fourier Series and Integrals with Applications

“The thorough study of nature is the most ground for mathematical dis-
coveries.”

Joseph Fourier

“Nearly fifty years had passed without any progress on the question of an-
alytic representation of an arbitrary function, when an assertion of Fourier
threw new light on the subject. Thus a new era began for the development
of this part of Mathematics and this was heralded in a stunning way by
major developments in mathematical Physics.”

Bernhard Riemann

“Fourier created a coherent method by which the different components of
an equation and its solution in series were neatly identified with different
aspects of physical solution being analyzed. He also had a uniquely sure
instinct for interpreting the asymptotic properties of the solutions of his
equations for their physical meaning. So powerful was his approach that
a full century passed before non-linear equations regained prominence in
mathematical physics.”

Ioan James

6.1 Introduction

This chapter is devoted to the theory of Fourier series and integrals. Al-
though the treatment can be extensive, the exposition of the theory here
will be concise, but sufficient for its application to many problems of applied
mathematics and mathematical physics.
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The Fourier theory of trigonometric series is of great practical impor-
tance because certain types of discontinuous functions which cannot be ex-
panded in power series can be expanded in Fourier series. More importantly,
a wide class of problems in physics and engineering possesses periodic phe-
nomena and, as a consequence, Fourier’s trigonometric series become an
indispensable tool in the analysis of these problems.

We shall begin our study with the basic concepts and definitions of some
properties of real-valued functions.

6.2 Piecewise Continuous Functions and Periodic

Functions

A single-valued function f is said to be piecewise continuous in an interval
[a, b] if there exist finitely many points a = x1 < x2 < . . . < xn = b, such
that f is continuous in the intervals xj < x < xj+1 and the one-sided limits
f (xj+) and f (xj+1−) exist for all j = 1, 2, 3, . . . , n − 1.

A piecewise continuous function is shown in Figure 6.2.1. Functions such
as 1/x and sin (1/x) fail to be piecewise continuous in the closed interval
[0, 1] because the one-sided limit f (0+) does not exist in either case.

If f is piecewise continuous in an interval [a, b], then it is necessarily
bounded and integrable over that interval. Also, it follows immediately that
the product of two piecewise continuous functions is piecewise continuous
on a common interval.

If f is piecewise continuous in an interval [a, b] and if, in addition, the
first derivative f ′ is continuous in each of the intervals xj < x < xj+1,
and the limits f ′ (xj+) and f ′ (xj−) exist, then f is said to be piecewise
smooth; if, in addition, the second derivative f ′′ is continuous in each of

Figure 6.2.1 Graph of a Piecewise Continuous Function.
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the intervals xj < x < xj+1, and the limits f ′′ (xj+) and f ′′ (xj−) exist,
then f is said to be piecewise very smooth.

A piecewise continuous function f (x) in an interval [a, b] is said to be
periodic if there exists a real positive number p such that

f (x + p) = f (x) , (6.2.1)

for all x, p is called the period of f , and the smallest value of p is termed
the fundamental period . A sample graph of a periodic function is given in
Figure 6.2.2.

If f is periodic with period p, then

f (x + p) = f (x) ,

f (x + 2p) = f (x + p + p) = f (x + p) ,

f (x + 3p) = f (x + 2p + p) = f (x + 2p) ,

f (x + np) = f (x + (n − 1) p + p) = f (x + (n − 1) p) = f (x) ,

for any integer n. Hence, for all integral values of n

f (x + np) = f (x) . (6.2.2)

It can be readily shown that if f1, f2, . . ., fk have the period p and ck

are the constants, then

f = c1f1 + c2f2 + . . . + ckfk, (6.2.3)

has the period p.
Well known examples of periodic functions are the sine and cosine func-

tions. As a special case, a constant function is also a periodic function with
arbitrary period p. Thus, by the relation (6.2.3), the series

a0 + a1 cos x + a2 cos 2x + . . . + b1 sin x + b2 sin 2x + . . .

if it converges, obviously has the period 2π. Such types of series, which occur
frequently in problems of applied mathematics and mathematical physics,
will be treated later.

Figure 6.2.2 Periodic Function.
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6.3 Systems of Orthogonal Functions

A sequence of functions {φn (x)} is said to be orthogonal with respect to
the weight function q (x) on the interval [a, b] if

∫ b

a

φm (x) φn (x) q (x) dx = 0, m �= n. (6.3.1)

If m = n, then we have

‖φn‖ =

[∫ b

a

φ2
n (x) q (x) dx

] 1
2

(6.3.2)

which is called the norm of the orthogonal system {φn (x)}.

Example 6.3.1. The sequence of functions {sin mx}, m = 1, 2, . . ., form an
orthogonal system on the interval [−π, π], because

∫ π

−π

sin mx sin nx dx =

⎧
⎨
⎩

0, m �= n,

π, m = n.

In this example we notice that the weight function is equal to unity, and
the value of the norm is

√
π.

An orthogonal system φ1, φ2, . . ., φn, where n may be finite or infinite,
which satisfies the relations

∫ b

a

φm (x) φn (x) q (x) dx =

⎧
⎨
⎩

0, m �= n,

1, m = n,
(6.3.3)

is called an orthonormal system of functions on [a, b]. It is evident that an
orthonormal system can be obtained from an orthogonal system by dividing
each function by its norm on [a, b].

Example 6.3.2. The sequence of functions

1, cos x, sin x, . . . , cos nx, sin nx

forms an orthogonal system on [−π, π] since

∫ π

−π

sin mx sin nx dx =

⎧
⎨
⎩

0, m �= n,

π, m = n,
∫ π

−π

sin mx cos nx dx = 0, for all m, n, (6.3.4)

∫ π

−π

cos mx cos nx dx =

⎧
⎨
⎩

0, m �= n,

π, m = n,
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for positive integers m and n. To normalize this system, we divide the
elements of the original orthogonal system by their norms. Hence,

1√
2π

,
cos x√

π
,
sin x√

π
, . . . ,

cos nx√
π

,
sin nx√

π

forms an orthogonal system.

6.4 Fourier Series

The functions
1, cos x, sin x, . . . , cos 2x, sin 2x, . . .

are mutually orthogonal to each other in the interval [−π, π] and are linearly
independent. Thus, we formally associate a trigonometric series with any
piecewise continuous periodic function f (x) of period 2π and write

f (x) ∼ a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) , (6.4.1)

where the symbol ∼ indicates an association of a0, ak, and bk to f in some
unique manner. The coefficients a0, ak and bk will be determined soon. The
coefficient (a0/2) instead of a0 is used for convenience in the representation.
However, it is not easy to say that the series on the right hand side of (6.4.1)
itself converges and also represents the function f (x). Indeed, the series may
converge or diverge.

Let f (x) be a Riemann integrable function defined on the interval
[−π, π]. Suppose that we define the nth partial sum

sn (x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx) , (6.4.2)

to represent f (x) on [−π, π]. We shall seek the coefficients a0, ak, and bk

such that sn (x) represents the best approximation to f (x) in the sense of
least squares, that is, we seek to minimize the integral

I (a0, ak, bk) =

∫ π

−π

[f (x) − sn (x)]
2
dx. (6.4.3)

This is an extremal problem. A necessary condition for a0, ak, bk, so that
I be minimum, that is the first partial derivatives of I with respect to
these coefficients vanish. Thus, substituting equation (6.4.2) into (6.4.3)
and differentiating with respect to a0, ak, and bk, we obtain
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∂I

∂a0
= −

∫ π

−π

⎡
⎣f (x) − a0

2
−

n∑

j=1

(aj cos jx + bj sin jx)

⎤
⎦ dx. (6.4.4)

∂I

∂ak
= −2

∫ π

−π

⎡
⎣f (x) − a0

2
−

n∑

j=1

(aj cos jx + bj sin jx)

⎤
⎦ cos kx dx.(6.4.5)

∂I

∂bk
= −2

∫ π

−π

⎡
⎣f (x) − a0

2
−

n∑

j=1

(aj cos jx + bj sin jx)

⎤
⎦ sin kx dx. (6.4.6)

Using the orthogonality relations of the trigonometric functions (6.3.4) and
noting that

∫ π

−π

cos mx dx =

∫ π

−π

sin mx dx = 0, (6.4.7)

where m and n are positive integers, equations (6.4.4), (6.4.5), and (6.4.6)
become

∂I

∂a0
= πa0 −

∫ π

−π

f (x) dx, (6.4.8)

∂I

∂ak
= 2πak − 2

∫ π

−π

f (x) cos kx dx, (6.4.9)

∂I

∂bk
= 2πbk − 2

∫ π

−π

f (x) sin kx dx, (6.4.10)

which must vanish for I to have an extremal value. Thus, we have

a0 =
1

π

∫ π

−π

f (x) dx, (6.4.11)

ak =
1

π

∫ π

−π

f (x) cos kx dx, (6.4.12)

bk =
1

π

∫ π

−π

f (x) sin kx dx. (6.4.13)

Note that a0 is the special case of ak which is the reason for writing (a0/2)
rather than a0 in equation (6.4.1). It immediately follows from equations
(6.4.8), (6.4.9), and (6.4.10) that

∂2I

∂a2
0

= π, (6.4.14)

∂2I

∂a2
k

=
∂2I

∂b2
k

= 2π, (6.4.15)

and all mixed second order and all remaining higher order derivatives van-
ish. Now if we expand I in a Taylor series about (a0, a1, . . . , an, b1, . . . , bn),
we have
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I (a0 + ∆a0, . . . , bn + ∆bn) = I (a0, . . . , bn) + ∆I, (6.4.16)

where ∆I stands for the remaining terms. Since the first derivatives, all
mixed second derivatives, and all remaining higher derivatives vanish, we
obtain

∆I =
1

2!

[
∂2I

∂a2
0

∆a2
0 +

n∑

k=1

(
∂2I

∂a2
k

∆a2
k +

∂2I

∂b2
k

∆b2
k

)]
. (6.4.17)

By virtue of equations (6.4.14) and (6.4.15), ∆I is positive. Hence, for I to
have a minimum value, the coefficients a0, ak, bk must be given by equations
(6.4.11), (6.4.12), and (6.4.13) respectively. These coefficients are called the
Fourier coefficients of f (x) and the series in (6.4.1) is said to be the Fourier
series corresponding to f (x), where its coefficients a0, ak and bk are given
by (6.4.11), (6.4.12), and (6.4.13) respectively. Thus, the correspondence
(6.4.1) asserts nothing about the convergence or divergence of the formally
constructed Fourier series. The question arises whether it is possible to
represent all continuous functions by Fourier series. The investigation of
the sufficient conditions for such a representation to be possible turns out
to be a difficult problem.

We remark that the possibility of representing the given function f (x)
by a Fourier series does not imply that the Fourier series converges to
the function f (x). If the Fourier series of a continuous function converges
uniformly, then it represents the function. As a matter of fact, there exist
Fourier series which diverge. A convergent trigonometric series need not be
a Fourier series. For instance, the trigonometric series

∞∑

n=2

sin nx

log n
,

which is convergent for all values of x, is not a Fourier series, for there is
no integrable function corresponding to this series.

6.5 Convergence of Fourier Series

We introduce three kinds of convergence of a Fouriers Series: (i) Point-
wise Convergence, (ii) Uniform Convergence, and (iii) Mean-Square Con-
vergence.

Definition 6.5.1. (Pointwise Convergence). An infinite series
∑∞

n=1 fn (x)
is called pointwise convergent in a < x < b to f (x) if it converges to f (x)
for each x in a < x < b. In other words, for each x in a < x < b, we have

|f (x) − sn (x)| → 0 as n → ∞,

where sn (x) is the nth partial sum defined by sn (x) =
∑n

k=1 fk (x).
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Definition 6.5.2. (Uniform Convergence). The series
∑∞

n=1 fn (x) is said
to converge uniformly to f (x) in a ≤ x ≤ b if

max
a≤x≤b

|f (x) − sn (x)| → 0 as n → ∞.

Evidently, uniform convergence implies pointwise convergence, but the con-
verse is not necessarily true.

Definition 6.5.3. (Mean-Square Convergence). The series
∑∞

n=1 fn (x)
converges in the mean-square (or L2) sense to f (x) in a ≤ x ≤ b if

∫ b

a

|f (x) − sn (x)|2 dx → 0 as n → ∞.

It is noted that uniform convergence is stronger than both pointwise
convergence and mean-square convergence.

The study of convergence of Fourier series has a long and complex his-
tory. The fundamental question is whether the Fourier series of a periodic
function f converge to f . The answer is certainly not obvious. If f (x) is 2π-
periodic continuous function, then the Fourier series (6.4.1) may converge
to f for a given x in −π ≤ x ≤ π, but not for all x in −π ≤ x ≤ π. This
leads to the questions of local convergence or the behavior of f near a given
point x, and of global convergence or the overall behavior of a function f
over the entire interval [−π, π].

There is another question that deals with the mean-square convergence
of the Fourier series to f (x) in (−π, π), that is, if f (x) is integrable on
(−π, π), then

1

2π

∫ π

−π

|f (x) − sn (x)|2 dx → 0 as n → ∞.

This is known as the mean-square convergence theorem which does not
provide any insight into the problem of pointwise convergence. Indeed, the
mean-square convergence theorem does not guarantee the convergence of
the Fourier series for any x. On the other hand, if f (x) is 2π-periodic and
piecewise smooth on R, then the Fourier series (6.4.1) of the function f con-
verges for every x in −π ≤ x ≤ π. It has been known since 1876 that there
are periodic continuous functions whose Fourier series diverge at certain
points. It was an open question for a period of a century whether a Fourier
series of a continuous function converges at any point. In 1966, Lennart
Carleson (1966) provided an affirmative answer with a deep theorem which
states that the Fourier series of any square integrable function f converges
to f at almost every point.

Let f (x) be piecewise continuous and periodic with period 2π. It is
obvious that
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∫ π

−π

[f (x) − sn (x)]
2
dx ≥ 0, (6.5.1)

Expanding (6.5.1) gives

∫ π

−π

[f (x) − sn (x)]
2
dx =

∫ π

−π

[f (x)]
2
dx − 2

∫ π

−π

f (x) sn (x) dx

+

∫ π

−π

[sn (x)]
2
dx.

But, by the definitions of the Fourier coefficients (6.4.11), (6.4.12), and
(6.4.13) and by the orthogonal relations for the trigonometric series (6.3.4),
we have

∫ π

−π

f (x) sn (x) dx =

∫ π

−π

f (x)

[
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx)

]
dx

=
πa2

0

2
+ π

n∑

k=1

(
a2

k + b2
k

)
, (6.5.2)

and

∫ π

−π

s2
n (x) dx =

∫ π

−π

[
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx)

]2

dx

=
πa2

0

2
+ π

n∑

k=1

(
a2

k + b2
k

)
. (6.5.3)

Consequently,

∫ π

−π

[f (x) − sn (x)]
2
dx =

∫ π

−π

f2 (x) dx −
[

πa2
0

2
+ π

n∑

k=1

(
a2

k + b2
k

)
]

≥ 0.

(6.5.4)

It follows from (6.5.4) that

a2
0

2
+

n∑

k=1

(
a2

k + b2
k

)
≤ 1

π

∫ π

−π

f2 (x) dx (6.5.5)

for all values of n. Since the right hand of equation (6.5.5) is independent
of n, we obtain

a2
0

2
+

∞∑

k=1

(
a2

k + b2
k

)
≤ 1

π

∫ π

−π

f2 (x) dx. (6.5.6)

This is known as Bessel’s inequality.
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We see that the left side is nondecreasing and is bounded above, and
therefore, the series

a2
0

2
+

∞∑

k=1

(
a2

k + b2
k

)
, (6.5.7)

converges. Thus, the necessary condition for the convergence of series (6.5.7)
is that

lim
k→∞

ak = 0, lim
k→∞

bk = 0. (6.5.8)

The Fourier series is said to converge in the mean to f (x) when

lim
n→∞

∫ π

−π

[
f (x) −

(
a0

2
+

n∑

k=1

ak cos kx + bk sin kx

)]2

dx = 0. (6.5.9)

If the Fourier series converges in the mean to f (x), then

a2
0

2
+

∞∑

k=1

(
a2

k + b2
k

)
=

1

π

∫ π

−π

f2 (x) dx. (6.5.10)

This is called Parseval’s relation and is one of the central results in the
theory of Fourier series. This relation is frequently used to derive the sum
of many important numerical infinite series. Furthermore, if the relation
(6.5.9) holds true, the set of trigonometric functions 1, cosx, sin x, cos 2x,
sin 2x, . . . is said to be complete.

The Parseval relation (6.5.10) can formally be derived from the conver-
gence of Fourier series to f (x) in [−π, π]. In other words, if

f (x) =
1

2
a0 +

∞∑

k=1

(ak cos kx + bk sin kx) , (6.5.11)

where a0, ak and bk are given by (6.4.11), (6.4.12) and (6.4.13) respectively,
we multiply ( 6.4.11) by 1

π f (x) and integrate the resulting expression from
−π to π to obtain

1

π

∫ π

k=1

f2 (x) dx =
a0

2π

∫ π

−π

f (x) dx +

∞∑

k=1

[
ak

π

∫ π

−π

f (x) cos kx dx

+
bk

π

∫ π

−π

f (x) sin kx dx

]
.(6.5.12)

Replacing all integrals on the right hand side of (6.5.12) by the Fourier
coefficients gives the Parseval relation (6.5.10).
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6.6 Examples and Applications of Fourier Series

The Fourier coefficients (6.4.11), (6.4.12), and (6.4.13) of Section 6.4 may
be obtained in a different way. Suppose the function f (x) of period 2π has
the Fourier series expansion

f (x) =
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) . (6.6.1)

If we assume that the infinite series is term-by-term integrable (we will
see later that uniform convergence of the series is a sufficient condition for
this), then

∫ π

−π

f (x) dx =

∫ π

−π

[
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx)

]
dx = πa0.

Hence,

a0 =
1

π

∫ π

−π

f (x) dx. (6.6.2)

Again, we multiply both sides of equations (6.6.1) by cosnx and integrate
the resulting expression from −π to π. We obtain

∫ π

−π

f (x) cos nx dx =

∫ π

−π

[
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx)

]
cos nx dx = πak.

Thus,

ak =
1

π

∫ π

−π

f (x) cos kx dx. (6.6.3)

In a similar manner, we find that

bk =
1

π

∫ π

−π

f (x) sin kx dx. (6.6.4)

The coefficients a0, ak, bk just found are exactly the same as those obtained
in Section 6.4.

Example 6.6.1. Find the Fourier series expansion for the function shown in
Figure 6.6.1.

f (x) = x + x2, −π < x < π.

Here



178 6 Fourier Series and Integrals with Applications

Figure 6.6.1 Graph of f (x) = x + x2.

a0 =
1

π

∫ π

−π

f (x) dx =
1

π

∫ π

−π

(
x + x2

)
dx =

2π2

3
,

and

ak =
1

π

∫ π

−π

f (x) cos kx dx

=
1

π

∫ π

−π

(
x + x2

)
cos kx dx

=
1

π

[
x sin kx

k

∣∣∣∣
π

−π

−
∫ π

−π

sin kx

k
dx

]

+
1

π

[
x2 sin kx

k

∣∣∣∣
π

−π

−
∫ π

−π

2x sin kx

k
dx

]

= − 2

kπ

[
−x cos kx

k

∣∣∣∣
π

−π

+

∫ π

−π

cos kx

k
dx

]

=
4

k2
cos kπ =

4

k2
(−1)

k
for k = 1, 2, 3, . . . .

Similarly,
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bk =
1

π

∫ π

−π

f (x) sin kx dx

=
1

π

∫ π

−π

(
x + x2

)
sin kx dx

= −2

k
cos kπ = −2

k
(−1)

k
, for k = 1, 2, 3, . . . .

Therefore, the Fourier series expansion for f is

f (x) =
π2

3
+

∞∑

k=1

[
4

k2
(−1)

k
cos kx − 2

k
(−1)

k
sin kx

]

=
π2

3
− 4 cos x + 2 sinx + cos 2x − sin 2x − . . . . (6.6.5)

Example 6.6.2. Consider the periodic function shown in Figure 6.6.2.

f (x) =

⎧
⎨
⎩

−π, −π < x < 0,

x, 0 < x < π.

In this case,

a0 =
1

π

∫ π

−π

f (x) dx

=
1

π

[∫ 0

−π

−πdx +

∫ π

0

x dx

]
= −π

2
,

Figure 6.6.2 Graph of f (x).
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and

ak =
1

π

∫ π

−π

f (x) cos kx dx

=
1

π

[∫ 0

−π

−π cos kx dx +

∫ π

0

x cos kx dx

]

=
1

k2π
(cos kπ − 1) =

1

k2π

[
(−1)

k − 1
]
.

Also

bk =
1

π

∫ π

−π

f (x) sin kx dx

=
1

π

[∫ 0

−π

−π sin kx dx +

∫ π

0

x sin kx dx

]

=
1

k
(1 − 2 cos kπ) =

1

k

[
1 − 2 (−1)

k
]
.

Hence, the Fourier series is

f (x) = −π

4
+

∞∑

k=1

{
1

k2π

[
(−1)

k − 1
]
cos kx +

1

k

[
1 − 2 (−1)

k
]
sin kx

}
.

(6.6.6)

Example 6.6.3. Consider the sawtooth wave function f (x) = x in the in-
terval −π < x < π, f (x) = f (x+ 2kπ) for k = 1, 2, . . ..

This is a periodic function with period 2π and represents a sawtooth
wave function as shown in Figure 6.6.3 and it is piecewise continuous.

Figure 6.6.3 The sawtooth wave function.
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We can readily find that

ak = 0, k = 0, 1, 2, . . . .

The coefficients bk are given by

bk =
1

π

∫ π

−π

f (x) sin kx dx

=
1

π

∫ π

−π

x sin kx dx =
2

k
(−1)

k+1
.

Hence, the Fourier series is

f (x) = 2
∞∑

k=1

(−1)
k+1 sin kx

k
= 2

(
sin x

1
− sin 2x

2
+

sin 3x

3
− sin 4x

4
+ . . .

)
.

(6.6.7)

This Fourier series does not agree with the function at every point in [−π, π].
At the endpoints x = +π, the series is equal to zero, but the function does
not vanish at either endpoint. However, the Fourier series (6.6.7) converges
to the value x at each point x in −π < x < π, but it converges to 0 =
1
2 [f (π − 0) + f (π + 0)] = 1

2 (π − π) which is the mean value of the two
limits as x → + π. Thus, the convergence is not uniform. The partial sum
of the series is

sn (x) = 2

n∑

k=1

1

k
(−1)

k+1
sin kx. (6.6.8)

In the neighborhood of x = +π, the difference between f (x)and sn (x)
seems not to become smaller as n increases, but the size of the region where
this occurs decreases indicating nonuniform convergence. This nonuni-
form oscillatory nature close to discontinuities is known as the Gibbs phe-
nomenon.

It is important to point out that the sawtooth wave function f is not
continuous in each point in [−π, π]. What happens in the neighborhood of
x = +π?

We consider the partial sum sn (x) given by (6.6.8), and put xn = π− π
n

to approximate the value sn (x). We have

sn (xn) =

n∑

k=1

2 (−1)
k+1

k
sin k

(
π − π

n

)
=

n∑

k=1

2

k
sin

(
kπ

n

)

which can be rewritten in the form

= 2
n∑

k=1

sin
(

πk
n

)
(

πk
n

) ·
(π

n

)
. (6.6.9)
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This sum can be identified with a Riemann sum of the definite integral

2

∫ π

0

(
sin x

x

)
dx

which is obtained by dividing the interval [0, π] into the n subintervals[
(k−1)π

n , kπ
n

]
, 1 ≤ k ≤ n. Obviously, each subinterval is of length

(
π
n

)
, and

we evaluate the function in each such subinterval at the right-hand endpoint
kπ
n , 1 ≤ k ≤ n. Consequently,

lim
n→∞

sn (x) = 2

∫ π

0

sin x

x
dx ≈ 1.18π.

The point xn, as n → ∞, approaches x = π from the left. Hence, f (xn)
tends to the value π. The jump at the point x = π is f (π−)−f (π+) = 2π,
and, therefore, for sufficiently large n,

sn (xn) − f (xn)

f (π−) − f (π+)
≈ 1.18π − π

2π
= 0.09.

We next draw the graphs of s7 (x) and s10 (x) which exhibit oscillations over
the graph of f as shown in Figures 6.6.4 (a) and (b). These graphs show
the so-called overshooting in a neighborhood of x = +π and x = +3π, and
hence, the Gibbs phenomenon.

We next derive the sum of several numerical series from Example 6.6.3.
Substituting x = π

2 in (6.6.7) gives

π

2
= 2

∞∑

k=1

(−1)
k+1

k
sin

(
πk

2

)
= 2

[
1 − 1

3
+

1

5
− 1

7
+ . . .

]
.

This gives the well-known slowly convergent numerical series

1 − 1

3
+

1

5
− 1

7
+ . . . =

π

4
. (6.6.10)

On the other hand, putting x = π
4 in (6.6.7) gives another numerical series

π

8
=

1√
2

− 1

2
+

1

3
√

2
− 1

5
√

2
− 1

6
− 1

7
√

2
+

1

9
√

2
− 1

10
+

1

11
√

2
− 1

13
√

2

+
1

14
− . . .

=
1√
2

(
1 +

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− . . .

)

−1

2

(
1 − 1

3
+

1

5
− 1

7
+ . . .

)

In view of (6.6.10), we obtain another numerical series

1 +
1

3
− 1

5
− 1

7
+

1

9
+

1

11
− . . . =

π

2
√

2
. (6.6.11)
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Figure 6.6.4 Graphs of s7 (x) in (a) and s10 (x) in (b).

6.7 Examples and Applications of Cosine and Sine

Fourier Series

Let f (x) be an even function defined on the interval [−π, π]. Since cos kx
is an even function, and sin kx an odd function, the function f (x) cos kx is
an even function and the function f (x) sin kx an odd function. Thus, we
find that the Fourier coefficients of f (x) are

ak =
1

π

∫ π

−π

f (x) cos kx dx =
2

π

∫ π

0

f (x) cos kx dx, k = 0, 1, 2, . . . ,

(6.7.1)

bk =
1

π

∫ π

−π

f (x) sin kx dx = 0, k = 1, 2, 3, . . . .
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Hence, the Fourier series of an even function can be written as

f (x) ∼ a0

2
+

∞∑

k=1

ak cos kx, (6.7.2)

where the coefficients ak are given by formula (6.7.1).
In a similar manner, if f (x) is an odd function, the function f (x) cos kx

is an odd function and the function f (x) sin kx is an even function. As a
consequence, the Fourier coefficients of f (x), in this case, are

ak =
1

π

∫ π

−π

f (x) cos kx dx = 0, k = 0, 1, 2, . . . , (6.7.3)

bk =
1

π

∫ π

−π

f (x) sin kx dx =
2

π

∫ π

0

f (x) sin kx dx, k = 1, 2, . . . . (6.7.4)

Therefore, the Fourier series of an odd function can be written as

f (x) =
∞∑

k=1

bk sin kx, (6.7.5)

where the coefficients bk are given by formula (6.7.4).

Example 6.7.1. Obtain the Fourier series of the function

f (x) = sgn x =

⎧
⎨
⎩

−1, −π < x < 0,
0, x = 0,

+1, 0 < x < π,
and f (x+ 2kπ) = f (x) .

In this case, f is an odd function with period 2π and represents square
wave function as shown in Figure 6.7.1. Clearly, ak = 0 for k = 0, 1, 2, 3, . . .
and

bk =
2

π

∫ π

0

f (x) sin kx dx

=
2

π

∫ π

0

sin kx dx =
2

kπ

[
1 − (−1)

k
]
.

Thus, b2k = 0 and b2k−1 = [(4/π) (2k − 1)]. Therefore, the Fourier series of
the function f (x) is

f (x) =
4

π

∞∑

k=1

sin (2k − 1) x

(2k − 1)
. (6.7.6)

This Fourier series consists of only odd harmonics. The loss of even
harmonics is due to the fact that sgn

(
1
2 + x

)
= sgn

(
1
2 − x

)
.

Putting x = π
4 in (6.7.6) gives (6.6.10).

The nth partial sum of the series (6.7.6) is
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Figure 6.7.1 The square wave function.

sn (x) =
4

π

n∑

k=1

sin (2k − 1) x

(2k − 1)
. (6.7.7)

We now examine the manner in which the first n terms of the series (6.7.7)
tend to f (x) as n → ∞. The graphs of sn (x) for n = 1, 3, 5 is shown in
Figure 6.7.2. To investigate the oscillations as n → ∞, we locate the first
peak to the right of the origin and calculate its height as n → ∞.

Figure 6.7.2 The Gibbs phenomenon.
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The peak overshoot occurs at a local maximum of the partial sum sn (x)
so that

0 = s′
n (x) =

4

π

n∑

k=1

cos (2k − 1) x

=
2

π sin x

n∑

k=1

2 sin x cos (2k − 1) x

=
2

π sin x

n∑

k=1

[sin 2kx − sin (2k − 2) x]

=
2 sin nx

π sin x
. (6.7.8)

This leads to the points of maximum at x = π
2n , 2π

2n , . . . , (2n − 1) π
2n so

that the first peak to the right of the origin occurs at x = π
2n . So, the value

of sn (x) at this point is

sn

( π

2n

)
=

2

π
· π

n

n∑

k=1

sin (2k − 1) π
2n

(2k − 1) π
2n

.

In the limit as n → ∞, this becomes

lim
n→∞

sn

( π

2n

)
=

(
2

π

)
lim

n→∞
π

n

n∑

k=1

sin (2k − 1) π
2n

(2k − 1) π
2n

=
2

π

∫ π

0

sin x

x
dx =

2

π
(1.852) = 1.179.

Instead of a maximum value 1, it turns out to be 1.179 approximately.
If the overshoot is compared to the jump in the function it is about
1
2 (1.179 − 1) × 100% ∼ 9%. The onset of the Gibbs phenomenon is shown
in the Figure 6.7.3.

Historically, this phenomenon was first observed by a physicist A.
Michelson (1852–1931) at the end of the nineteenth century. In order to
calculate some Fourier coefficients of a function graphically, he developed
equipment that is called a harmonic analyser and synthesizer. He calcu-
lated some partial sums, sn, of a given function f graphically. Michelson
also observed from this graphical representation that, for some functions,
the graphs of sn were very close to the function. However, for the sgn
function, the graphs of the partial sums exhibit a large error in the neigh-
borhood of the origin, x = 0 and x = +π (the jump discontinuities of
the function) independent of the number of terms in the partial sums. It
was J.W. Gibbs (1839–1903) who first provided the explanation for this
strikingly new phenomenon and showed that these large errors were not as-
sociated with numerical computations. Indeed, he further showed that the
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Figure 6.7.3 The Gibbs phenomenon.

large errors occur at every jump discontinuity for every piecewise continu-
ous function f in [−π, π] with certain derivative properties near the jump
discontinuity.

Example 6.7.2. Expand |sin x| in Fourier series. Since |sin x| is an even func-
tion, as shown in Figure 6.7.4, bk = 0 for k = 1, 2, . . . and

ak =
2

π

∫ π

0

f (x) cos kx dx

=
2

π

∫ π

0

sin x cos kx dx

=
1

π

∫ π

0

[sin (1 + k) x + sin (1 − k) x] dx

=
2
[
1 + (−1)

k
]

π (1 − k2)
for k = 0, 2, 3, . . . .

For k = 1,

a1 =
2

π

∫ π

0

sin x cos x dx = 0.

Hence, the Fourier series of f (x) is

f (x) =
2

π
+

4

π

∞∑

k=1

cos (2kx)

(1 − 4k2)
.

Example 6.7.3. Find the Fourier series of the triangular wave function which
is defined by
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Figure 6.7.4 The rectified sine function.

f (x) = |x| =

⎧
⎨
⎩

−x, −π ≤ x ≤ 0

x, 0 ≤ x ≤ π
(6.7.9)

and f (x) = f (x+ 2nπ), n = 1, 2, 3, . . ..

This is an even periodic function with period 2π as shown in Figure 6.7.5.

This function gives a Fourier cosine series with bn = 0 for all n and

Figure 6.7.5 Triangular wave function.
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a0 =
1

π

∫ π

−π

|x| dx =
2

π

∫ π

0

x dx = π

an =
1

π

∫ π

−π

|x| cos nx dx =
2

π

∫ π

0

|x| cos nx dx

=
2

π

∫ π

0

x cos nx dx =
2

π

([
x sin nx

n

]π

0

−
∫ π

0

sin nx

n
dx

)
,

integrating by parts

=
2

πn2
[cos nx]

π
0 =

2

πn2
[(−1)

n − 1] =

⎧
⎨
⎩

0, if n is even,

− 4
πn2 if n is odd.

Thus, the Fourier cosine series is given by

f (x) =
1

2
a0 +

∞∑

n=1

an cos nx

=
π

2
− 4

π

(
cos x

12
+

cos 3x

32
+

cos 5x

52
+ . . .

)
. (6.7.10)

Substituting x = 0 in (6.7.10) yields the following numerical series

π2

8
=

1

12
+

1

32
+

1

72
+ . . . =

∞∑

n=1

1

(2n − 1)
2 . (6.7.11)

This series can be used to derive the sum of reciprocals of squares of all
positive integers,

S =
∞∑

n=1

1

n2
=

π2

6
(6.7.12)

and vise versa.
We have

π2

8
=

∞∑

n=1

1

(2n − 1)
2 =

∞∑

n=1

1

n2
−

∞∑

n=1

1

(2n)
2

= S − 1

4

∞∑

n=1

1

n2
= S − 1

4
S.

This gives (6.7.12).
The series (6.7.12) is just the value of s = 2 of the Riemann zeta function

defined by

ζ (s) =
∞∑

n=1

1

ns
, (6.7.13)
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where s may be complex. This definition of ζ (s) can be extended in a nat-
ural way and this extension is called the analytic continuation of ζ (s) to
include all complex numbers s except for s = 1. This function was intro-
duced by Bernhard Riemann in 1841. He proved many properties of this
function and made several conjectures, some of which are still open prob-
lems in mathematics. It is well known that ζ (s) has zeros on the real axis
only at the even negative integers. Riemann conjectured that all complex
zeros of ζ (s) lie on the line Re (s) = 1

2 . This is called the Riemann Hypoth-
esis; it is still an unsolved problem in mathematics. However, it is proved
that there are an infinite number of zeros on the line. Indeed, by the fall of
2002, fifty billion complex zeros have been found — all of them lie on the
stated line.

Example 6.7.4. Obtain the Fourier series of f (x) = x2, −π ≤ x ≤ π, with
f (x) = f (x+ 2nπ), for n = 1, 2, . . ..

Obviously, this is an even function, and its periodic extensions are shown
in Figure 6.7.6.

Since f (x) is an even function, bn ≡ 0 for all n ≥ 1. It turns out that

Figure 6.7.6 Periodic extension of x2.
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a0 =
1

π

∫ π

−π

x2dx =
2

π

∫ π

0

x dx =
2π2

3
,

an =
1

π

∫ π

−π

x2 cos nx dx =
2

π

∫ π

0

x2 cos nx dx

=
2

π

([
x2

n
sin nx

]π

0

− 2

π

∫ π

0

x sin nx dx

)
,

= − 4

nπ

∫ x

0

x sin nx dx

= − 4

nπ

([
−x

n
cos nx

]π

0
+

1

π

∫ π

0

cos nx dx

)
,

= − 4

nπ

(
−π

n
(−1)

n − 1

n2
[sinnx]

π
0

)

=
4

n2
(−1)

n
, n ≥ 1.

Consequently, the Fourier cosine series for x2 is given by

x2 =
π2

3
+ 4

∞∑

n=1

1

n2
(−1)

n
cos nx

=
π2

3
− 4

(
cos x

12
− cos 2x

22
+

cos 3x

32
− . . .

)
. (6.7.14)

Putting x = 0 in (6.7.14) gives the following numerical series

1

12
− 1

22
+

1

32
− 1

42
+ · · · =

π2

12
. (6.7.15)

Substituting x = π in (6.7.14) yields (6.7.12) which can also be obtained
from (6.7.15) and vice versa. Thus, we have

S =
∞∑

n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ · · ·

=

(
1

11
− 1

22
+

1

32
− 1

42
+ · · ·

)
+ 2

(
1

22
+

1

42
+

1

62
+ · · ·

)

=
π2

12
+

2

4

(
1

12
+

1

22
+

1

32
+ · · ·

)
=

π2

12
+

1

2
S,

which gives the value of S = π2

6 . Adding (6.7.12) and (6.7.15) gives

1

12
+

1

32
+

1

52
+ · · · =

π2

8
, (6.7.16)

and then, subtracting (6.7.15) from (6.7.12) yields

1

22
+

1

42
+

1

62
+

1

82
+ · · · =

π2

24
. (6.7.17)
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Figure 6.7.7 Periodic extension of f (x).

In the preceding sections, we have prescribed the function f (x) in the
interval (−π, π) and assumed f (x) to be periodic with period 2π in the
entire interval (−∞,∞). In practice, we frequently encounter problems in
which a function is defined only in the interval (−π, π). In such a case, we
simply extend the function periodically with period 2π, as in Figure 6.7.7.
In this way, we are able to represent the function f (x) by the Fourier series
expansion, although we are interested only in the expansion on (−π, π).

If the function f is defined only in the interval (0, π), we may extend f
in two ways. The first is the even extension of f , denoted and defined by
(see Figure 6.7.8)

Fe (x) =

⎧
⎨
⎩

f (x) , 0 < x < π,

f (−x) , −π < x < 0,

while the second is the odd extension of f , denoted and defined by (see
Figure 6.7.9)

F0 (x) =

⎧
⎨
⎩

f (x) , 0 < x < π,

−f (−x) , −π < x < 0.
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Figure 6.7.8 Even extension of f (x).

Since Fe (x) and F0 (x) are even and odd functions with period 2π respec-
tively, the Fourier series expansions of Fe (x) and F0 (x) are

Fe (x) =
a0

2
+

∞∑

k=1

ak cos kx,

where

ak =
2

π

∫ π

0

f (x) cos kx dx,

and

Figure 6.7.9 Odd extension of f (x).
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F0 (x) =

∞∑

k=1

bk sin kx,

where

bk =
2

π

∫ π

0

f (x) sin kx dx.

6.8 Complex Fourier Series

It is sometimes convenient to represent a function by an expansion in com-
plex form. This expansion can easily be derived from the Fourier series

f (x) =
a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) .

Using Euler’s formulas

cos x =
eix + e−ix

2
, sin x =

eix − e−ix

2i
,

we write

f (x) =
a0

2
+

∞∑

k=1

[
ak

(
eikx + e−ikx

2

)
+ bk

(
eikx − e−ikx

2i

)]

=
a0

2
+

∞∑

k=1

[(
ak − ibk

2

)
eikx +

(
ak + ibk

2

)
e−ikx

]

= c0 +

∞∑

k=1

(
ck eikx + c−k e−ikx

)
,

where

c0 =
a0

2
=

1

2π

∫ π

−π

f (x) dx

ck =
ak − ibk

2
=

1

2π

∫ π

−π

f (x) (cos kx − i sin kx) dx

=
1

2π

∫ π

−π

f (x) e−ikxdx

c−k =
ak + ibk

2
=

1

2π

∫ π

−π

f (x) (cos kx + i sin kx) dx

=
1

2π

∫ π

−π

f (x) eikxdx.

Thus, we obtain the Fourier series expansion for f (x) in complex form
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f (x) =

∞∑

k=−∞
ck eikx, −π < x < π, (6.8.1)

where

ck =
1

2π

∫ π

−π

f (x) e−ikxdx. (6.8.2)

We derive the following Parseval formula

1

2π

∫ π

−π

f2 (x) dx =

∞∑

k=−∞
|ck|2 . (6.8.3)

from formulas (6.8.1)–(6.8.2).
Multiplying (6.8.1) by 1

2π f (x) and integrating from −π < x < π yields

1

2π

∫ π

−π

f2 (x) dx =

∞∑

k=−∞
ck · 1

2π

∫ π

−π

f (x) eikxdx

=

∞∑

k=−∞
ck · c−k =

∞∑

k=−∞
ck c̄k =

∞∑

k=−∞
|ck|2 .

Example 6.8.1. Obtain the complex Fourier series expansion for the func-
tion

f (x) = ex, −π < x < π.

We find

ck =
1

2π

∫ π

−π

f (x) e−ikxdx

=
1

2π

∫ π

−π

exe−ikxdx

=
(1 + ik) (−1)

k

π (1 + k2)
sinhπ,

and hence, the Fourier series is

f (x) =
∞∑

k=−∞

(1 + ik) (−1)
k

π (1 + k2)
sinhπ eikx. (6.8.4)

We apply the Parseval formula (6.8.3) to this example and obtain

∞∑

k=−∞

|1 + ik|2 sinh2 π

π2 (1 + k2)
2 =

1

4π

(
e2π − e−2π

)
=

1

2π
sinh 2π.

Simplifying this result gives

∞∑

k=−∞

1

(1 + k2)
= π coth π. (6.8.5)
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Example 6.8.2. Show that, for −1 < a < 1,

∞∑

n=0

an cos nx =
1 − a cos x

1 − 2a cos x + a2
, (6.8.6)

∞∑

n=0

an sin nx =
a sin x

1 − 2a cos x + a2
. (6.8.7)

We denote the cosine series by C and sine series by S so that

C + iS =
∞∑

n=0

an (cos nx + i sin nx) =

∞∑

n=0

(
a eix

)n

=
1

1 − a eix
, since

∣∣a eix
∣∣ < 1.

=
1

1 − a cos x − ia sin x
=

(1 − a cos x) + ia sin x

(1 − a cos x)
2

+ a2 sin2 x

=
(1 − a cos x) + ia sin x

1 − 2a cos x + a2
. (6.8.8)

Equating the real and imaginary part gives the desired results.

6.9 Fourier Series on an Arbitrary Interval

So far we have been concerned with functions defined on the interval [−π, π].
In many applications, however, this interval is restrictive, and the interval
of interest may be arbitrary, say [a, b].

If we introduce the new variable t by the transformation

x =
1

2
(b + a) +

(b − a)

2π
t, (6.9.1)

then, the interval a ≤ x ≤ b becomes −π ≤ t ≤ π. Thus, the function
f [(b + a) /2 + ((b − a) /2π) t] = F (t) obviously has period 2π. Expanding
this function in a Fourier series, we obtain

F (t) =
a0

2
+

∞∑

k=1

(ak cos kt + bk sin kt) , (6.9.2)

where

ak =
1

π

∫ π

−π

F (t) cos kt dt, k = 0, 1, 2, . . . ,

and

bk =
1

π

∫ π

−π

F (t) sin kt dt, k = 1, 2, 3, . . . .
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On changing t into x, we find the expansion for f (x) in [a, b]

f (x) =
a0

2
+

∞∑

k=1

[
ak cos

kπ (2x − b − a)

(b − a)
+ bk sin

kπ (2x − b − a)

(b − a)

]
,(6.9.3)

where

ak =
2

b − a

∫ b

a

f (x) cos

[
kx (2x − b − a)

(b − a)

]
dx, k = 0, 1, 2, . . . , (6.9.4)

bk =
2

b − a

∫ b

a

f (x) sin

[
kx (2x − b − a)

(b − a)

]
dx, k = 1, 2, 3, . . . . (6.9.5)

It is sometimes convenient to take the interval in which the function f is
defined as [−l, l]. It follows at once from the result just obtained that by
letting a = −l and b = l, the Fourier expansion for f in [−l, l] takes the
form

f (x) =
a0

2
+

∞∑

k=1

[
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

)]
, (6.9.6)

where

ak =
1

l

∫ l

−l

f (x) cos

(
kπx

l

)
dx, k = 0, 1, 2, . . . , (6.9.7)

bk =
1

l

∫ l

−l

f (x) sin
kπx

l
dx, k = 1, 2, 3, . . . . (6.9.8)

If f is an even function of period 2l, then, from equation (6.9.6), we can
readily determine the Fourier cosine expansion in the form

f (x) =
a0

2
+

∞∑

k=1

ak cos

(
kπx

l

)
, (6.9.9)

where

ak =
2

l

∫ l

0

f (x) cos

(
kπx

l

)
dx, k = 0, 1, 2, . . . . (6.9.10)

If f is an odd function of period 2l, then, from equation (6.9.6), the Fourier
sine expansion for f is

f (x) =
∞∑

k=1

bk sin

(
kπx

l

)
, (6.9.11)

where
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bk =
2

l

∫ l

0

f (x) cos

(
kπx

l

)
dx. (6.9.12)

Finally, we make a change of variable to obtain the complex Fourier series
of f (x) on the interval −l < x < l. Suppose f (x) is a periodic function
with period 2l. We put a = −l and b = l so that the change of variable
formula becomes x = lt

π and

f (x) = f

(
lt

π

)
= F (t) . (6.9.13)

Clearly, F (t) is periodic with period 2π. If it is piecewise smooth, it can be
expanded in a complex Fourier series in the form

F (t) =
∞∑

k=−∞
ckeikt, ck =

1

2π

∫ π

−π

F (t) e−iktdt. (6.9.14)

Substituting t = πx
l into (6.9.14) gives the complex Fourier series expansion

of the original function f in the form

f (x) =

∞∑

k=−∞
ck exp

(
ixπk

l

)
, ck =

1

2l

∫ l

−l

f (x) exp

(
− ixπk

l

)
dx.(6.9.15)

In particular, if f (t) is a periodic function of time variable t with period
T = 2π

ω and ω
(
= 2π

T = π
l

)
is the frequency, then

f (t) =
a0

2
+

∞∑

n=1

[an cos (nωt) + bn sin (nωt)] , (6.9.16)

where anand bn are given by (6.9.7) and (6.9.8) with π
l replaced by ω and

k = n. The terms (a1 cos ωt + b1 sin ωt), (a2 cos 2ωt + b2 sin 2ωt), . . .,
(an cos nωt + bn sin nωt), . . . are called the first, the second, and the nth
harmonic respectively.

Example 6.9.1. Consider the odd periodic function

f (x) = x, −2 < x < 2,

as shown in Figure 6.9.1. Here l = 2. Since f is odd, ak = 0, and

bk =
2

l

∫ l

0

f (x) sin

(
kπx

l

)
dx,

=
2

2

∫ 2

0

x sin

(
kπx

2

)
dx = − 4

kπ
(−1)

k
for k = 1, 2, 3, . . . .

Therefore, the Fourier sine series of f is

f (x) =

∞∑

k=1

4

kπ
(−1)

k+1
sin

(
kπx

2

)
.
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Figure 6.9.1 Odd periodic function of f (x) = x in −2 < x < 2.

Example 6.9.2. Consider the function

f (x) =

⎧
⎨
⎩

1, 0 < x < 1
2

0, 1
2 < x < 1.

In this case, the period is 2l = 2 or l = 1. Extend f as shown in Figure
6.9.2. Since the extension is even, we have bk = 0 and

a0 =
2

l

∫ l

0

f (x) dx =
2

1

∫ 1
2

0

dx = 1

ak =
2

l

∫ l

0

f (x) cos

(
kπx

l

)
dx

=
2

1

∫ 1

0

cos (kπx) dx =

(
2

kπ

)
sin

(
kπ

2

)
.

Hence,

f (x) =
1

2
+

∞∑

k=1

2

(2k − 1) π
(−1)

k−1
cos (2k − 1) πx.

Example 6.9.3. Find the Fourier series of f (x) = x2 in (−l, l) from the
corresponding Fourier series in (−π, π).
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Figure 6.9.2 Even extension of f (x) in Example 6.9.2.

It directly follows from (6.7.14) and (6.9.9) as

f (x) = x2 =
π2

3
+ 4

∞∑

k=1

1

k2
(−1)

k
cos

(
πkx

l

)
, −l < x < l.

Example 6.9.4. Find the sine and cosine Fourier series of f (x) = x in (0, l)
from the corresponding Fourier series in (0, π).

We know the Fourier sine series for x in (0, π)

f (x) = x = 2
∞∑

k=1

(−1)
k+1

k
sin kx, 0 < x < π.

Using the transformation x =
(

πt
l

)
, we obtain

t =
2l

π

∞∑

k=1

(−1)
k+1

k
sin

(
πkt

l

)
, 0 < x < l.

We have the Fourier cosine series for x in (0, π)

f (x) = x =
π

2
− 4

π

∞∑

k=1

1

(2k − 1)
2 cos (2k − 1) x, 0 < x < π.

Similarly, using the transformation x = πt
l gives

t =
l

2
− 4l

π2

∞∑

k=1

1

(2k − 1)
2 cos

[
(2k − 1)

πt

l

]
, 0 < x < l.
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Example 6.9.5. From the solution to problem 25 in 6.14 Exercises, we obtain
the complex Fourier series of f (t) in −l < t < l.

We use the transformation x = lt
π in Exercise 25 so that

− 1
2

(
π + lt

π

)

1
2

(
π − lt

π

)

⎫
⎬
⎭ =

1

2i

∑

n �=0

1

n
exp

(
inlt

π

)
.

6.10 The Riemann–Lebesgue Lemma and Pointwise

Convergence Theorem

We have stated earlier that if f (x) is piecewise continuous on the interval
[−π, π], then there exists a Fourier series expansion which converges in the
mean to f (x).

In this section, we shall discuss the Pointwise Convergence Theorem
with a proof using the Riemann–Lebesgue Lemma.

Lemma 6.10.1. (Riemann–Lebesgue Lemma) If g (x) is piecewise con-
tinuous on the interval [a, b], then

lim
λ→∞

∫ b

a

g (x) sinλx dx = 0. (6.10.1)

Proof. Consider the integral

I (λ) =

∫ b

a

g (x) sinλx dx. (6.10.2)

With the change of variable

x = t + π/λ,

we have

sin λx = sinλ (t + π/λ) = − sin λt,

and

I (λ) = −
∫ b−π/λ

a−π/λ

g (t + π/λ) sinλt dt. (6.10.3)

Since t is a dummy variable, we write the above integral as

I (λ) = −
∫ b−π/λ

a−π/λ

g (x + π/λ) sinλx dx. (6.10.4)

Addition of equations (6.10.2) and (6.10.4) yields
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2I (λ) =

∫ b

a

g (x) sinλx dx −
∫ b−π/λ

a−π/λ

g (x + π/λ) sinλx dx

= −
∫ a

a−π/λ

g (x + π/λ) sinλx dx +

∫ b

b−π/λ

g (x) sinλx dx

+

∫ b−π/λ

a

[g (x) − g (x + π/λ)] sinλx dx. (6.10.5)

First, let g (x) be a continuous function in [a, b]. Then g (x) is necessarily
bounded, that is, there exists an M such that |g (x)| ≤ M . Hence,

∣∣∣∣∣

∫ a

a−π/λ

g (x + π/λ) sinλx dx

∣∣∣∣∣ =

∣∣∣∣∣

∫ a+π/λ

a

g (x) sinλx dx

∣∣∣∣∣ ≤ πM

λ
,

and ∣∣∣∣∣

∫ b

b−π/λ

g (x) sinλx dx

∣∣∣∣∣ ≤ πM

λ
.

Consequently,

|I (λ)| ≤ πM

λ
+

∫ b−π/λ

a

|g (x) − g (x + π/λ)| dx. (6.10.6)

Since g (x) is a continuous function on a closed interval [a, b], it is uniformly
continuous on [a, b] so that

|g (x) − g (x + π/λ)| < ε/ (b − a) , (6.10.7)

for all λ > Λ and all x in [a, b]. We now choose λ such that πM/λ < ε/2,
whenever λ > Λ. Then

|I (λ)| <
ε

2
+

ε

2
= ε.

If g (x) is piecewise continuous in [a, b], then the proof consists of a
repeated application of the preceding argument to every subinterval of [a, b]
in which g (x) is continuous.

Theorem 6.10.1. (Pointwise Convergence Theorem). If f (x) is piece-
wise smooth and periodic function with period 2π in [−π, π], then for any
x

a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) =
1

2
[f (x+) + f (x−)] , (6.10.8)

where

ak =
1

π

∫ π

−π

f (t) cos kt dt, k = 0, 1, 2, . . . , (6.10.9)

bk =
1

π

∫ π

−π

f (t) sin kt dt, k = 1, 2, 3, . . . . (6.10.10)
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Proof. The nth partial sum sn (x) of the series (6.10.8) is

sn (x) =
1

2
a0 +

n∑

k=1

(ak cos kx + bk sin kx) . (6.10.11)

We use integrals in (6.10.9)–(6.10.10) to replace ak and bk in (6.10.11)
so that

sn (x) =
1

2π

∫ π

−π

[
1 + 2

n∑

k=1

(cos kt cos kx + sin kt sin kx)

]
f (t) dt

=
1

2π

∫ π

−π

[
1 + 2

n∑

k=1

cos k (x − t)

]
f (t) dt

=
1

2π

∫ π

−π

Dn (x − t) f (t) dt, (6.10.12)

where Dn (θ) is called the Dirichlet kernel defined by

Dn (θ) = 1 + 2

n∑

k=1

cos kθ. (6.10.13)

The next step is to study the properties of this kernel Dn (θ) which is
an even function with period 2π and satisfies the condition

1

2π

∫ π

−π

Dn (θ) dθ = 1 + 0 + 0 + . . . + 0 = 1. (6.10.14)

We find the value of the sum in (6.10.13) by Euler’s formula so that

Dn (θ) = 1 +

n∑

k=1

(
eikθ + e−ikθ

)
=

n∑

k=−n

eikθ

= e−inθ + . . . + 1 + . . . + einθ.

This is a finite geometric series with the first term e−inθ, the ratio eiθ, and
the last term einθ, and hence, its sum is given by

Dn (θ) =
e−inθ − ei(n+1)θ

1 − eiθ

=
exp

[
−

(
n + 1

2

)
iθ

]
− exp

[(
n + 1

2

)
iθ

]

exp
(
− 1

2 iθ
)

− exp
(
+ 1

2 iθ
)

=
sin

(
n + 1

2

)
θ

sin 1
2θ

. (6.10.15)

The graph of Dn (θ) is shown in Figure 6.10.1. It looks similar to that of
the diffusion kernel as drawn in Figure 12.4.1 in Chapter 12 except for its
symmetric oscillatory trail.
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Figure 6.10.1 Graph of Dn (θ) against θ.

We next put t − x = θ in (6.10.12) to obtain

sn (x) =
1

2π

∫ x+π

x−π

Dn (θ) f (x + θ) dθ. (6.10.16)

Since both Dn and f have period 2π, the limits of the integral can be taken
from −π to π, and hence, (6.10.16) assumes the form

sn (x) =
1

2π

∫ π

−π

Dn (θ) f (x + θ) dθ. (6.10.17)

We next use (6.10.14) to express the difference of sn (x) and 1
2 [f (x+) + f (x−)]

in the form

sn (x) − 1

2
[f (x+) + f (x−)]

=
1

2π

∫ 0

−π

Dn (θ) [f (x + θ) − f (x−)] dθ

+
1

2π

∫ π

0

Dn (θ) [f (x + θ) − f (x+)] dθ

which is, by (6.10.15),

=
1

2π

∫ 0

−π

g− (θ) sin

(
n +

1

2

)
θ dθ +

1

2π

∫ π

0

g+ (θ) sin

(
n +

1

2

)
θ dθ,

(6.10.18)
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where

g+ (θ) =

(
sin

θ

2

)−1

[f (x + θ) − f (x+ )] . (6.10.19)

Since the denominators of the functions g+ (θ) vanish at θ = 0, inte-
grals in (6.10.18) may diverge at this point. However, by assumption, f is
piecewise smooth, and hence,

lim
θ→0 +

g+ (θ) = lim
θ→0 +

f (x + θ) − f (x)
θ
2

·
(

θ
2

sin θ
2

)
= 2f ′ (x+) .(6.10.20)

Evidently, the above limits exist, and g+ (θ) are piecewise continuous else-
where in the interval (−π, π). Therefore, by the Riemann–Lebesgue Lemma
6.10.1, both integrals in (6.10.18) vanish as n → ∞. Thus,

lim
n→∞

sn (x) =
1

2
[f (x+) + f (x−)] .

This proves that the Fourier series converges for each x in (−π, π).

Remark 3. At a point of continuity the series converges to the function
f (x).

Remark 4. At a point of discontinuity, the series is equal to the arithmetic
mean of the limits of the function on both sides of the discontinuity.

Remark 5. The condition of piecewise smoothness under which the Fourier
series converges pointwise is a sufficient condition. A large number of ex-
amples of applications is covered by this case. However, the pointwise con-
vergence Theorem 6.10.1 can be proved under weaker conditions.

Example 6.10.1. In Example 6.6.1, we obtained that the Fourier series ex-
pansion for

(
x + x2

)
in [−π, π], as shown in Figure 6.10.2, is

f (x) ∼ π2

3
+

∞∑

k=1

[
4

k2
(−1)

k
cos kx − 2

k
(−1)

k
sin kx

]
.

Since f (x) = x + x2 is piecewise smooth, the series converges, and hence,
we write

x + x2 =
π2

3
+

∞∑

k=1

[
4

k2
(−1)

k
cos kx − 2

k
(−1)

k
sin kx

]
,

at points of continuity. At points of discontinuity, such as x = π, by virtue
of the Pointwise Convergence Theorem,
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Figure 6.10.2 Graph of f (x).

1

2

[(
π + π2

)
+

(
−π + π2

)]
=

π2

3
+

∞∑

k=1

4

k2
(−1)

k
cos kπ, (6.10.21)

since

f (π−) = π + π2 and f (π+) = f (−π+) = −π + π2.

Simplification of equation (6.10.21) gives

π2 =
π2

3
+

∞∑

k=1

4

k2
(−1)

2k
,

or

π2

6
=

∞∑

k=1

1

k2
.

The series can be used to obtain the sum of reciprocals of squares of odd
positive integers, that is,

∞∑

n=1

1

(2n − 1)
2 .

We have

π2

6
=

∞∑

n=1

1

n2
=

∞∑

n=1

1

(2n)
2 +

∞∑

n=1

1

(2n − 1)
2 =

1

4
· π2

6
+

∞∑

n=1

1

(2n − 1)
2 ,
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or,

∞∑

n=1

1

(2n − 1)
2 =

π2

6

(
1 − 1

4

)
=

π2

8
.

Conversely, this series can be used to find the sum of reciprocals of squares
of all positive integers.

Example 6.10.2. Find the Fourier series of the following function

f (x) =

⎧
⎨
⎩

0, −2 ≤ x < 0

2 − x, 0 < x ≤ 2.

This function is defined over the interval −2 ≤ x ≤ 2, where it is piecewise
smooth with a finite discontinuity at x = 0. We use (6.9.7) and (6.9.8) to
calculate the Fourier coefficients

a0 =
1

2

∫ 2

0

(2 − x) dx = 1

ak =
1

2

∫ 2

0

(2 − x) cos

(
πkx

2

)
dx =

2

π2k2

[
1 − (−1)

k
]
, k = 1, 2, 3, . . . .

bk =
1

2

∫ 2

0

(2 − x) sin

(
πkx

2

)
dx =

2

πk
, k = 1, 2, 3, . . . .

Consequently, the Fourier series (6.9.6) becomes

f (x) =
1

2
+

2

π

∞∑

k=1

⎡
⎣

{
1 − (−1)

k
}

πk2
cos

(
πkx

2

)
+

1

k
sin

(
πkx

2

)⎤
⎦ . (6.10.22)

The function f (x) is continuous at x = 1 where f (1) = 1, so that the
Fourier series (6.10.22) gives

1 =
1

2
+

2

π

∞∑

n=1

[{1 − (−1)
n}

πn2
cos

(nπ

2

)
+

1

n
sin

(nπ

2

)]
.

Since the factor 1 − (−1)
n

= 0 for even n, and cos nπ
2 = 0 when n is

odd, every term of the cosine series vanishes for all n. Consequently,

π

4
=

∞∑

n=1

1

n
sin

(nπ

2

)
=

∞∑

n=1

(−1)
n

(2n + 1)
. (6.10.23)

On the other hand, f (x) is discontinuous at x = 0 and the Fourier series
must converge to 1

2 (0 + 2) = 1. Thus,
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π2

4
=

∞∑

n=1

[1 − (−1)
n
]

n2
= 2

∞∑

n=1

1

(2n − 1)
2 ,

or

∞∑

n=1

1

(2n − 1)
2 =

π2

8
. (6.10.24)

6.11 Uniform Convergence, Differentiation, and

Integration

In the preceding section, we have proved the pointwise convergence of the
Fourier series for a piecewise smooth function. Here, we shall consider sev-
eral theorems without proof concerning uniform convergence, term-by-term
differentiation, and integration of Fourier series.

Theorem 6.11.1. (Uniform and Absolute Convergence Theorem)
Let f (x) be a continuous function with period 2π, and let f ′ (x) be piecewise
continuous in the interval [−π, π]. If, in addition, f (−π) = f (π), then the
Fourier series expansion for f (x) is uniformly and absolutely convergent.

In the preceding theorem, we have assumed that f (x) is continuous
and f ′ (x) is piecewise continuous. With less stringent conditions on f , the
following theorem can be proved.

Theorem 6.11.2. Let f (x) be piecewise smooth in the interval [−π, π]. If
f (x) is periodic with period 2π, then the Fourier series for f converges
uniformly to f in every closed interval containing no discontinuity.

We note that the partial sums sn (x) of a Fourier series cannot approach
the function f (x) uniformly over any interval containing a point of discon-
tinuity of f . The behavior of the deviation of sn (x) from f (x) in such an
interval is known as the Gibbs phenomenon. For instance, in the Example
6.7.1, the Fourier series of the function is given by

f (x) =
4

π

∞∑

k=1

sin (2k − 1) x

(2k − 1)
. (6.11.1)

From graphs of the partial sums sn (x) against the x-axis, as shown in
Figures 6.7.2 and 6.7.3, we find that sn (x) oscillate above and below the
value of f . It can be observed that, near the discontinuous points x = 0
and x = π, sn deviate from the function rather significantly. Although
the magnitude of oscillation decreases at all points in the interval for large
n, very near the points of discontinuity the amplitude remains practically
independent of n as n increases. This illustrates the fact that the Fourier
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series of a function f does not converge uniformly on any interval which
contains a discontinuity.

Termwise differentiation of Fourier series is, in general, not permissible.
From Example 6.6.3, the Fourier series for f (x) = x is given by

x = 2

[
sin x − sin 2x

2
+

sin 3x

3
− . . .

]
, (6.11.2)

which converges for all x, whereas the series after formal term-by-term
differentiation,

1 ∼ 2 [cos x − cos 2x + cos 3x − . . .] .

This series is not the Fourier series of f ′ (x) = 1, since the Fourier series of
f ′ (x) = 1 is the function 1. In fact, this series is not a Fourier series of any
piecewise continuous function defined in [−π, π] as the coefficients do not
tend to zero which contradicts the Riemann–Lebesque lemma.

In fact, the series of f ′ (x) = 1 diverges for all x since the nth term,
cos nx does not tend to zero as n → ∞. The difficulty arises from the fact
that the given function f (x) = x in [−π, π] when extended periodically
is discontinuous at the points +π, + 3π, . . .. We shall see below that the
continuity of the periodic function is one of the conditions that must be
met for the termwise differentiation of a Fourier series.

Theorem 6.11.3. (Differentiation Theorem) Let f (x) be a continuous
function in the interval [−π, π] with f (−π) = f (π), and let f ′ (x) be piece-
wise smooth in that interval. Then Fourier series for f ′ can be obtained
by termwise differentiation of the series for f , and the differentiated series
converges pointwise to f ′ at points of continuity and to [f ′ (x) + f ′ (−x)] /2
at discontinuous points.

The termwise integration of Fourier series is possible under more general
conditions than termwise differentiation. We recall that in calculus, the
series of functions to be integrated must converge uniformly in order to
assure the convergence of a termwise integrated series. However, in the case
of Fourier series, this condition is not necessary.

Theorem 6.11.4. (Integration Theorem) Let f (x) be piecewise contin-
uous in [−π, π], and periodic with period 2π. Then the Fourier series of
f (x)

a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) ,

whether convergent or not, can be integrated term by term between any
limits.
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Example 6.11.1. In Example 6.7.2, we have found that f (x) = |sin x| is
represented by the Fourier series

sin x =
2

π
+

4

π

∞∑

k=1

cos (2kx)

(1 − 4k2)
, −π < x < π. (6.11.3)

Since f (x) = |sin x| is continuous in the interval [−π, π] and f (−π) = f (π),
we differentiate the series term by term, obtaining

cos x = − 8

π

∞∑

k=1

k sin (2kx)

(1 − 4k2)
, (6.11.4)

by use of Theorem 6.11.3, since f ′ (x) is piecewise smooth in [−π, π]. In
this way, we obtain the Fourier sine series expansion of the cosine function
in (−π, π). Note that the reverse process is not permissible.

Example 6.11.2. Consider the function f (x) = x in the interval −π < x ≤
π. As shown in Example 6.6.3, the Fourier series of f (x) = x is

x = 2

[
sin x − sin 2x

2
+

sin 3x

3
− . . .

]
.

By Theorem 6.11.4, we can integrate the series term by term from a to x
to obtain

1

2

(
x2 − a2

)
= 2

[
−

(
cos x − cos 2x

22
+

cos 3x

33
− . . .

)

+

(
cos a − cos 2a

22
+

cos 3a

33
− . . .

)]
.

To determine the sum of the series of constants, we write

x2

4
= C −

∞∑

k=1

(−1)
k+1 cos kx

k2
,

where C is a constant. Since the series on the right is the Fourier series
which converges uniformly, we can integrate the series term by term from
−π to π to obtain

∫ π

−π

x2

2
dx = 2

[∫ π

−π

C dx −
∞∑

k=1

(−1)
k+1

k2

∫ π

−π

cos kx dx

]
,

or,

π3

3
= 2 (2πC) .

Hence,
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C =
π2

12
.

Therefore, by integrating the Fourier series of f (x) = x in (−π, π), we
obtain the Fourier series expansion for the function f (x) = x2 as

x2 = 4

[
π2

12
−

∞∑

k=1

(−1)
k+1 cos kx

k2

]
=

π2

3
+ 4

∞∑

k=1

(−1)
k

k2
cos kx. (6.11.5)

Obviously,

a0

2
=

π2

3
and ak =

4 (−1)
k

k2
.

Substituting these results into the Parseval relation (6.5.10) gives

2π4

9
+ 16

∞∑

k=1

1

k4
=

1

π

∫ π

−π

x4dx =
2

5
π4.

This leads to another well-known numerical series
∞∑

k=1

1

k4
=

π4

90
. (6.11.6)

Example 6.11.3. (Parseval’s relation for the cosine Fourier series) If
f (x) is continuous with continuous derivatives in 0 ≤ x ≤ π with f ′ (0) =
0 = f ′ (π), and its cosine Fourier series

f (x) ∼ 1

2
a0 +

∞∑

k=1

ak cos kx (6.11.7)

converges uniformly in 0 ≤ x ≤ π, and g (x) is piecewise continuous on
[0, π] with its Fourier cosine series given by

g (x) ∼ 1

2
b0 +

∞∑

k=1

bk cos kx, (6.11.8)

then the following Parseval relation holds

1

π

∫ π

0

f (x) g (x) dx =
1

4
a0b0 +

1

2

∞∑

k=1

akbk. (6.11.9)

It follows from the assumptions that term-by-term integration holds. Thus,
∫ π

0

f (x) g (x) dx =

∫ π

0

[
1

2
a0 +

∞∑

k=1

ak cos kx

]
g (x) dx

=
1

2
a0

∫ π

0

g (x) dx +

∞∑

k=1

ak

∫ π

0

g (x) cos kx dx

=
π

4
a0b0 +

π

2

∞∑

k=1

akbk.
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This gives the desired relation (6.11.9). An argument similar to this example
yields the Parseval relation for the Fourier sine series in 0 ≤ x ≤ π

1

π

∫ π

0

f (x) g (x) dx =
1

2

∞∑

k=1

bkβk, (6.11.10)

where bk and βk are the Fourier coefficients involved in the Fourier sine
series of f (x) and g (x) respectively with f ′ (0) = 0 = f ′ (π).

6.12 Double Fourier Series

The theory of Fourier series expansions for functions of two variables is
analogous to that of Fourier series expansions for functions of one variable.
Here we shall present a short description of double Fourier series.

We have seen earlier that, if f (x) is piecewise continuous and periodic
with period 2π, then the Fourier series

f (x) ∼ a0

2
+

∞∑

m=1

(am cos mx + bm sin mx) ,

converges in the mean to f (x). If f is continuously differentiable, then its
Fourier series converges uniformly.

For the sake of simplicity and convenience, let us consider the func-
tion f (x, y) which is continuously differentiable (a stronger condition than
necessary). Let f (x, y) be periodic with period 2π, that is,

f (x + 2π, y) = f (x, y + 2π) = f (x, y) .

Then, if we hold y fixed, we can expand f (x, y) in a uniformly convergent
Fourier series

f (x, y) =
a0 (y)

2
+

∞∑

m=1

[am (y) cos mx + bm (y) sinmx] (6.12.1)

in which the coefficients are functions of y, namely,

am (y) =
1

π

∫ π

−π

f (x, y) cos mx dx,

bm (y) =
1

π

∫ π

−π

f (x, y) sinmx dx.

These coefficients are continuously differentiable in y, and therefore, we can
expand them in uniformly convergent series
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am (y) =
am0

2
+

∞∑

n=1

(amn cos ny + bmn sin ny) ,

(6.12.2)

bm (y) =
cm0

2
+

∞∑

n=1

(cmn cos ny + dmn sin ny) ,

where

amn =
1

π2

∫ π

−π

∫ π

−π

f (x, y) cos mx cos ny dx dy,

bmn =
1

π2

∫ π

−π

∫ π

−π

f (x, y) cos mx sin ny dx dy,

(6.12.3)

cmn =
1

π2

∫ π

−π

∫ π

−π

f (x, y) sinmx cos ny dx dy,

dmn =
1

π2

∫ π

−π

∫ π

−π

f (x, y) sinmx sin ny dx dy.

Substitution of am and bm into equation (6.12.1) yields

f (x, y) =
a00

4
+

1

2

∞∑

n=1

(a0n cos ny + b0n sin ny)

+
1

2

∞∑

m=1

(am0 cos mx + cm0 sin mx)

+

∞∑

m=1

∞∑

n=1

(amn cos mx cos ny + bmn cos mx sin ny

+ cmn sin mx cos ny + dmn sin mx sin ny) . (6.12.4)

This is called the double Fourier series for f (x, y).

(a) When f (−x, y) = f (x, y) and f (x,−y) = f (x, y), all the coefficients
vanish except amn, and the double Fourier series reduces to

f (x, y) =
∞∑

m=1

∞∑

n=1

amn cos mx cos ny, (6.12.5)

where

amn =
4

π2

∫ π

0

∫ π

0

f (x, y) cos mx cos ny dx dy.

(b) When f (−x, y) = f (x, y) and f (x,−y) = −f (x, y), we have
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f (x, y) =
1

π2

∞∑

n=1

b0n sin ny +

∞∑

m=1

∞∑

n=1

bmn cos mx sin ny, (6.12.6)

where

bmn =
4

π2

∫ π

0

∫ π

0

f (x, y) cos mx sin ny dx dy.

(c) When f (−x, y) = −f (x, y) and f (x,−y) = f (x, y), we have

f (x, y) =
1

2

∞∑

m=1

cm0 sin mx +

∞∑

m=1

∞∑

n=1

cmn sin mx cos ny, (6.12.7)

where

cmn =
4

π2

∫ π

0

∫ π

0

f (x, y) sinmx cos ny dx dy.

(d) When f (−x, y) = −f (x, y) and f (x,−y) = −f (x, y), we have

f (x, y) =
∞∑

m=1

∞∑

n=1

dmn sin mx sin ny, (6.12.8)

where

dmn =
4

π2

∫ π

0

∫ π

0

f (x, y) sinmx sin ny dx dy.

Example 6.12.1. Expand the function f (x, y) = xy into double Fourier se-
ries in the interval −π < x < π, π < y < π.

Since f (−x, y) = −xy = −f (x, y) and f (x,−y) = −xy = −f (x, y), we
find

dmn =
4

π2

∫ π

0

∫ π

0

xy sin mx sin ny dx dy = (−1)
(m+n)

(
4

mn

)
.

Thus, the double Fourier series for f in −π < x < π, π < y < π is

f (x, y) = 4
∞∑

m=1

∞∑

n=1

(−1)
m+n sin mx sin ny

mn
.

6.13 Fourier Integrals

In earlier sections of this chapter, we have described Fourier series for func-
tions which are periodic with period 2π in the interval (−∞,∞). However,
functions which are not periodic cannot be represented by Fourier series.



6.13 Fourier Integrals 215

In many problems of physical interest, it is desirable to develop an integral
representation for such a function that is analogous to a Fourier series.

We have seen in Section 6.9 that the Fourier series for f (x) in the
interval [−l, l] is represented by

f (x) =
a0

2
+

∞∑

k=1

[
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

)]
, (6.13.1)

where

ak =
1

l

∫ l

−l

f (t) cos

(
kπt

l

)
dt, k = 0, 1, 2, . . . , (6.13.2)

bk =
1

l

∫ l

−l

f (t) sin

(
kπt

l

)
dt, k = 1, 2, 3, . . . . (6.13.3)

Substituting (6.13.2) and (6.13.3) into (6.13.1), we have

f (x) =
1

2l

∫ l

−l

f (t) dt +
1

l

∞∑

k=1

[∫ l

−l

f (t) cos

(
kπt

l

)
· cos

(
kπx

l

)
dt

]

+

[∫ l

−l

f (t) sin

(
kπt

l

)
· sin

(
kπx

l

)
dt

]

=
1

2l

∫ l

−l

f (t) dt +
1

l

∞∑

k=1

∫ l

−l

f (t) cos

[
kπ

l
(t − x)

]
dt. (6.13.4)

Suppose that f (x) is absolutely integrable, that is,

∫ ∞

−∞
|f (x)| dx

converges. Then,

|a0|
2

=
1

2l

∣∣∣∣∣

∫ l

−l

f (t) dt

∣∣∣∣∣ ≤ 1

2l

∫ ∞

−∞
|f (t)| dt

which approaches zero as l → ∞. Thus, holding x fixed, as l approaches
infinity, equation (6.13.4) becomes

f (x) = lim
l→∞

1

l

∞∑

k=1

∫ l

−l

f (t) cos

[
kπ

l
(t − x)

]
dt.

Now let

αk =
kπ

l
, δα = (αk+1 − αk) =

π

l
.
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Then, the function f (x) can be written as

f (x) = lim
l→∞

∞∑

k=1

F (αk) δα,

where

F (α) =
1

π

∫ l

−l

f (t) cos [α (t − x)] dt.

If we plot F (α) against α, we can clearly see that the sum

∞∑

k=1

F (αk) δα

is an approximation to the area under the curve y = F (α) (see Figure
6.13.1). As l → ∞ and δα → 0 the infinite sum formally approaches the
definite integral. We therefore have

f (x) =

∫ ∞

0

[
1

π

∫ ∞

−∞
f (t) cos [α (t − x)] dt

]
dα (6.13.5)

which is the Fourier integral representation for the function f (x). Its con-
vergence to f (x) is suggested, but by no means established by the preceding
arguments. We shall now prove that this representation is indeed valid if
f (x) satisfies certain conditions.

Figure 6.13.1 Area under the curve F (α).
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Lemma 6.13.1. If f is piecewise smooth in the interval [0, b], then for
b > 0,

lim
λ→∞

∫ b

0

f (x)
sin λx

x
dx =

π

2
f (0+) .

Proof.

∫ b

0

f (x)
sin λx

x
dx =

∫ b

0

f (0+)
sin λx

x
dx +

∫ b

0

f (x) − f (0+)

x
sin λx dx

= f (0+)

∫ λb

0

sin t

t
dt +

∫ b

0

f (x) − f (0+)

x
sin λx dx.

Since f is piecewise smooth, the integrand of the last integral is bounded
as λ → ∞, and thus, by the Riemann–Lebesgue lemma 6.10.1, the last
integral tends to zero as λ → ∞. Hence,

lim
λ→∞

∫ b

0

f (x)
sin λx

x
dx =

π

2
f (0+) , (6.13.6)

since
∫ ∞

0

sin t

t
dt =

π

2
.

Theorem 6.13.1. (Fourier Integral Theorem) If f is piecewise smooth
in every finite interval, and absolutely integrable on (−∞,∞), then

1

π

∫ ∞

0

[∫ ∞

−∞
f (t) cos k (t − x) dt

]
dk =

1

2
[f (x+) + f (x−)] .

Proof. Noting that |cos k (t − x)| ≤ 1 and that by hypothesis

∫ ∞

−∞
f (t) dt < ∞,

we see that the integral

∫ ∞

−∞
f (t) cos k (t − x) dt

converges independently of k and x. It therefore follows that in the double
integral

I =

∫ λ

0

[∫ ∞

−∞
f (t) cos k (t − x) dt

]
dk,

the order of integration may be interchanged. We then have
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I =

∫ ∞

−∞
f (t)

[∫ λ

0

cos k (t − x) dk

]
dt

=

∫ ∞

−∞
f (t)

[
sin λ (t − x)

(t − x)

]
dt

=

[∫ −M

−∞
+

∫ x

−M

+

∫ M

x

+

∫ ∞

M

]
f (t)

sin λ (t − x)

(t − x)
dt.

If we substitute u = t − x, we have
∫ M

x

f (t)
sin λ (t − x)

(t − x)
dt =

∫ M−x

0

f (u + x)

(
sin λu

u

)
du

which is equal to πf (x+) /2 in the limit λ → ∞, by Lemma 6.13.1. Simi-
larly, the second integral tends to πf (x−) /2 when λ → ∞. If we make M
sufficiently large, the absolute values of the first and the last integrals are
each less than ε/2. Consequently, as λ → ∞

∫ ∞

0

[∫ ∞

−∞
f (t) cos k (t − x) dt

]
dk =

π

2
[f (x+) + f (x−)] . (6.13.7)

If f is continuous at the point x, then

f (x+) = f (x−) = f (x)

so that integral (6.13.7) reduces to the Fourier integral representation for
f as

f (x) =
1

π

∫ ∞

0

[∫ ∞

−∞
f (t) cos k (t − x) dt

]
dk. (6.13.8)

We may express the Fourier integral representation (6.13.8) in complex
form. In this case, we substitute

cos k (t − x) = cos k (x − t) =
1

2

[
eik(x−t) + e−ik(x−t)

]

into equation (6.13.8) and write it as the sum of two integrals

f (x) =
1

2π

∫ ∞

0

∫ ∞

−∞
f (t) eik(x−t)dt dk +

1

2π

∫ ∞

0

∫ ∞

−∞
f (t) e−ik(x−t)dt dk.

Changing the integration variable from k to −k in the second integral, we
obtain

f (x) =
1

2π

[∫ ∞

0

∫ ∞

−∞
f (t) eik(x−t)dt dk −

∫ −∞

0

∫ ∞

−∞
f (t) eik(x−t)dt dk

]

=
1

2π

[∫ ∞

0

∫ ∞

−∞
f (t) eik(x−t)dt dk +

∫ 0

−∞

∫ ∞

−∞
f (t) eik(x−t)dt dk

]

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t) eik(x−t)dt dk. (6.13.9)
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Or, equivalently,

f (x) =
1√
2π

∫ ∞

−∞
eikxdk

[
1√
2π

∫ ∞

−∞
e−iktf (t) dt

]

=
1√
2π

∫ ∞

−∞
F (k) eikxdk, (6.13.10)

where

F (k) =
1√
2π

∫ ∞

−∞
e−iktf (t) dt. (6.13.11)

Either (6.13.9) or (6.13.10) with coefficient F (k) is called the complex form
of the Fourier integral representation for f (x).

Now we assume that f (x) is either an even or an odd function. Any
function that is not even or odd can be expressed as a sum of two such
functions. Expanding the cosine function in (6.13.8), we obtain the Fourier
cosine formula

f (x) = f (−x) =
2

π

∫ ∞

0

cos kx dk

∫ ∞

0

cos kt f (t) dt. (6.13.12)

Similarly, for an odd function, we obtain the Fourier sine formula

f (x) = −f (−x) =
2

π

∫ ∞

0

sin kx dk

∫ ∞

0

sin kt f (t) dt. (6.13.13)

Example 6.13.1. The rectangular pulse can be expressed as a sum of Heav-
iside functions

f (x) = H (x + 1) − H (x − 1) .

Find its Fourier integral representation.
From (6.13.5) we find

f (x) =
1

π

∫ ∞

0

[∫ 1

−1

cos [k (t − x)] dt

]
dk

=
1

π

∫ ∞

0

[
cos kx

∫ 1

−1

cos kt dt + sin kx

∫ 1

−1

sin kt dt

]
dk

=
2

π

∫ ∞

0

(
sin k

k

)
cos kx dk.

Example 6.13.2. Find the Fourier cosine integral representation of the func-
tion

f (x) =

⎧
⎨
⎩

1, 0 < x < 1,

0, x ≥ 1.
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We have, from (6.13.12),

f (x) =
2

π

∫ ∞

0

cos kx dk

∫ 1

0

cos kt dt =
2

π

∫ ∞

0

(
sin k

k

)
cos kx dk,

or,

1 =
2

π

∫ ∞

0

sin k

k
cos kx dk.

6.14 Exercises

1. Find the Fourier series of the following functions:

(a) f (x) =

⎧
⎨
⎩

x

h

−π < x < 0

0 < x < π,
h is a constant

(b) f (x) =

⎧
⎨
⎩

1

x2

−π < x < 0

0 < x < π,

(c) f (x) = x + sin x −π < x < π,

(d) f (x) = 1 + x −π < x < π,

(e) f (x) = ex −π < x < π,

(f) f (x) = 1 + x + x2 −π < x < π.

2. Determine the Fourier sine series of the following functions:

(a) f (x) = π − x 0 < x < π,

(b) f (x) =

⎧
⎨
⎩

1

2

0 < x < π/2

π/2 < x < π,

(c) f (x) = x2 0 < x < π,

(d) f (x) = cos x 0 < x < π,

(e) f (x) = x3 0 < x < π,

(f) f (x) = ex 0 < x < π.
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3. Obtain the Fourier cosine series representation for the following func-
tions:

(a) f (x) = π + x 0 < x < π,

(b) f (x) = x 0 < x < π,

(c) f (x) = x2 0 < x < π,

(d) f (x) = sin 3x 0 < x < π,

(e) f (x) = ex 0 < x < π,

(f) f (x) = cosh x 0 < x < π.

4. Expand the following functions in a Fourier series:

(a) f (x) = x2 + x −1 < x < 1,

(b) f (x) =

⎧
⎨
⎩

1

0

0 < x < 3

3 < x < 6,

(c) f (x) = sin (πx/l) 0 < x < l,

(d) f (x) = x3 −2 < x < 2,

(e) f (x) = e−x 0 < x < 1,

(f) f (x) = sinhx −1 < x < 1.

5. Expand the following functions in a complex Fourier series:

(a) f (x) = e2x −π < x < π,

(b) f (x) = cosh x −π < x < π,

(c) f (x) =

⎧
⎨
⎩

1

cos x

−π < x < 0

0 < x < π,

(d) f (x) = x −1 < x < 1,

(e) f (x) = x2 −π < x < π,

(f) f (x) = sinh (πx/2) −2 < x < 2.
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6. (a) Find the Fourier series expansion of the function

f (x) =

⎧
⎨
⎩

0, −π < x < 0

x/2, 0 < x < π.

(b) With the use of the Fourier series of f (x) in 6(a), show that

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ . . . .

7. (a) Determine the Fourier series of the function

f (x) = x2, −l < x < l.

(b) With the use of the Fourier series of f (x) in 7(a), show that

π2

12
= 1 − 1

22
+

1

32
− 1

42
+ . . . .

8. Determine the Fourier series expansion of each of the following functions
by performing the differentiation of the appropriate Fourier series:

(a) sin2 x 0 < x < π,

(b) cos2 x 0 < x < π,

(c) sin x cos x 0 < x < π,

(d) cos x + cos 2x 0 < x < π,

(e) cos x + cos 2x 0 < x < π.

9. Find the functions represented by the new series which are obtained by
termwise integration of the following series from 0 to x:

(a)
∞∑

k=1

(−1)k+1

k sin kx = x/2 −π < x < π,

(b) 3
2 + 1

π

∞∑

k=1

1−(−1)k

k sin kx =

⎧
⎨
⎩

1

2

−π < x < 0

0 < x < π,

(c)

∞∑

k=1

(−1)
k+1 cos kx

k = ln
(
2 cos x

2

)
−π < x < π,
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(d)

∞∑

k=1

sin(2k+1)x

(2k+1)3
= π2x−πx2

8 0 < x < 2π,

(e)
(

4
π

) ∞∑

k=1

sin(2k−1)x
(2k−1) =

⎧
⎨
⎩

−1

1

−π < x < 0

0 < x < π.

10. Determine the double Fourier series of the following functions:

(a) f (x, y) = 1 0 < x < π 0 < y < π,

(b) f (x, y) = xy2 0 < x < π 0 < y < π,

(c) f (x, y) = x2y2 0 < x < π 0 < y < π,

(d) f (x, y) = x2 + y −π < x < π −π < y < π,

(e) f (x, y) = x sin y −π < x < π −π < y < π,

(f) f (x, y) = ex+y −π < x < π −π < y < π,

(g) f (x, y) = xy 0 < x < 1 0 < y < 2,

(h) f (x, y) = 1 0 < x < a 0 < y < b,

(i) f (x, y) = x cos y −1 < x < 1 −2 < y < 2,

(j) f (x, y) = xy2 −π < x < π −π < y < π,

(k) f (x, y) = x2y2 −π < x < π −π < y < π.

11. Deduce the general double Fourier series expansion formula for the func-
tion f (x, y) in the rectangle −a < x < a, −b < y < b.

12. Prove the Weierstrass Approximation Theorem: If f is a continuous
function on the interval −π ≤ x ≤ π and if f (−π) = f (π), then, for
any ε > 0, there exists a trigonometric polynomial

T (x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx)

such that

|f (x) − T (x)| < ε

for all x in [−π, π].
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13. Use the Fourier cosine or sine integral formula to show that

(a) e−αx = 2
π

∫ ∞

0

α
α2+β2 cos βx dβ, x ≥ 0, α > 0,

(b) e−αx = 2
π

∫ ∞

0

β
α2+β2 sin βx dβ, x > 0, α > 0.

14. Show that the Fourier integral representation of the function

f (x) =

⎧
⎨
⎩

x2, 0 < x < a

0, x > a

is

f (x) =
2

π

∫ ∞

0

[(
a2 − 2

k2

)
sin ak +

2a

k
cos ak

]
cos kx

k
dk.

15. Apply the Parseval relation (6.5.10) to Example 6.7.3 or Example 6.7.4
to show that

(a)
∞∑

n=1

1

(2n − 1)
4 =

π4

96
and (b)

∞∑

n=1

1

n4
=

π4

90
.

16. (a) Obtain the Fourier series for the 2π-periodic odd function f (x) =
x (π − x) on [0, π].

(b) Use the Parseval relation (6.5.10) to show that

∞∑

n=1

1

(2n − 1)
6 =

π6

960
and

∞∑

n=1

1

n6
=

π6

945
.

17. If the 2π-periodic even function is given by f (x) = |x| for −π ≤ x ≤ π,
show that

f (x) =
π

2
− 4

π

∞∑

n=1

cos (2n − 1) x

(2n − 1)
2 .

18. Consider the sawtooth function defined by f (x) = π − x, 0 < x < 2π,
and f (x + 2nπ) = f (x) with f (0) = 0.

(a) Show that the Fourier series for this function is

f (x) =
∞∑

k=0

2

k
sin kx,

and f has a jump discontinuity at the origin with
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f (0+) =
π

2
, f (0−) = −π

2
, and f (0+) − f (0−) = π.

(b) Show that max
0≤x≤ π

n

sn (x) − π

2
=

∫ π

0

sin θ

θ
dθ − π

2
.

(c) The result (b) is a manifestation of the Gibbs phenomenon, that
is, near a jump discontinuity, the Fourier series of f overshoots (or
undershoots) it by approximately 9% of the jump.

(d) If dn (x) = sn (x) − f (x) in 0 ≤ x ≤ 2π, show that

d′
n (x) = 2π Dn (x) ,

where Dn (x) is given by (6.10.15).

(e) Using Dn (x) =

n∑

k=−n

eikx, show that the first critical point of dn (x)

to the right of the origin occurs at xn = π/
(
n + 1

2

)
, and that

lim
n→∞

dn (xn) = 2

∫ π

0

sin θ

θ
dθ − π.

(f) Draw the graph of the fortieth partial sum

s40 (x) =

40∑

k=1

2 sin kx

k
, −2π < x < 2π,

and then examine the Gibbs phenomenon for the function f (x).

19. Consider the characteristic function of the interval [a, b] ⊂ [−π, π] de-
fined by

f (x) = χ[a,b] (x) =

⎧
⎨
⎩

1, a ≤ x ≤ b

0, otherwise.

Show that the Fourier series in a ≤ x ≤ b is given by

f (x) ∼ 1

2π
(b − a) +

∑

k �=0

exp (−ika) − exp (−ikb)

2πik
· eikx.

20. (a) Obtain the Fourier series of f (x) = x (π − x), 0 ≤ x ≤ π.

(b) Derive the following the numerical series

1 − 1

33
+

1

53
− 1

73
+ . . . =

π3

12
,

1 +
1

33
− 1

53
− 1

73
+

1

93
+

1

113
− . . . =

3
√

2 π3

128
.
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21. (a) Show that the Fourier series of the triangular function with vertices
at (0, 0), (π/2, 1) and (π, 0) defined by

f (x) =

⎧
⎨
⎩

2x
π , 0 ≤ x ≤ π

2

2
π (π − x) , π/2 ≤ x ≤ π

is

f (x) =
8

π2

{
sin x

12
− sin 3x

32
+

sin 5x

52
− sin 7x

72
+ . . .

}
.

(b) Show that

∞∑

n=1

1

(2n − 1)
2 =

π2

8
.

22. Obtain the Fourier sine series and the Fourier cosine series of the fol-
lowing functions:

(a) f (x) = 1, 0 < x < a,

(b) f (x) = x, 0 < x < a,

(c) f (x) = x2, 0 < x < a.

23. Find the full Fourier series of the following functions

(a) f (x) = x, 0 < x < a,

(b) f (x) =

⎧
⎨
⎩

−1 − x, −1 < x < 0,

+1 − x, 0 < x < 1.

(c) f (x) =

⎧
⎨
⎩

0, 0 ≤ x ≤ π,

1, π ≤ x ≤ 2π.

24. Obtain the Fourier cosine series for the function

f (x) =

⎧
⎨
⎩

cos x, 0 < x ≤ π
2 ,

0, π
2 ≤ x < π.

25. Show that 1
2i

∑

n �=0

1
neinx is the complex Fourier series of the 2π-periodic

sawtooth function defined by f (0) = 0, and
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f (x) =

⎧
⎨
⎩

− 1
2 (π + x) , −π < x < 0,

1
2 (π − x) , 0 < x < π.

26. Suppose f (x) and g (x) have the following Fourier series expansion in
−π ≤ x ≤ π:

f (x) ∼ 1

2
a0 +

∞∑

k=1

(ak cos kx + bk sin kx) ,

g (x) ∼ 1

2
α0 +

∞∑

k=1

(αk cos kx + βk sin kx) ,

where f (x) and g (x) together with their first two derivatives are con-
tinuous on −π ≤ x ≤ π, and f (−π) = f (π), f ′ (−π) = f ′ (π),
g (−π) = g (π), g′ (−π) = g′ (π) hold.

Prove that the following general Parseval relation holds:

1

π

∫ π

−π

f (x) g (x) dx =
1

2
a0α0 +

∞∑

k=1

(akαk + bkβk) .

When f (x) = g (x), then the Parseval relation (6.5.10) is a special case
of the above result.

27. Obtain the Fourier integral representation for the following functions:

(a) f (x) = H (a − |x|) =

⎧
⎨
⎩

1, |x| < a

0, |x| > a,

(b) f (x) =

⎧
⎨
⎩

sin x, |x| < π

0, |x| > π.

28. If f (x), x ∈ R, is defined by

f (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, −a < x < 0,

+1, 0 ≤ x < a,

0, otherwise,

show that f (x) has the Fourier sine integral representation

f (x) =
2

π

∫ ∞

0

1

k
(1 − cos ka) sin kx dk.
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29. If f (x) = e−x, 0 < x < ∞, show that

(a) the Fourier sine integral representation is

f (x) =
2

π

∫ ∞

0

k sin kx

1 + k2
dk,

(b) the Fourier cosine integral representation is

f (x) =
2

π

∫ ∞

0

cos kx

1 + k2
dk.

30. If f (x) is defined by

f (x) =

⎧
⎨
⎩

0, x < 0,

e−x, x > 0,

show that
(a) the Fourier integral representation of f (x) is

f (x) =
1

π

∫ ∞

0

(cos kx + k sin kx)

(1 + k2)
dk,

(b) the Fourier cosine integral representation of f (x) is

f (x) =
1

2π

∫ ∞

−∞

(
1 − ik

1 + k2

)
eikxdk.

31. (a) Obtain both the complex Fourier series and the usual Fourier series
of f (x) = exp [x (1 + 2πi)] on the interval [−1, 1].

(b) Find the sum of each of the series

∞∑

k=1

1

(1 + π2k2)
and

∞∑

k=1

(−1)
k

(1 + π2k2)
.

32. Use Example 6.7.2 to calculate the value of the following series:

(a)

∞∑

k=1

1

(4k2 − 1)
, (b)

∞∑

k=1

(−1)
k

(4k2 − 1)
,

(c)

∞∑

k=1

1

(4k2 − 1)
2 , and (d)

∞∑

k=1

k2

(4k2 − 1)
2 .

33. Show that the complex Fourier series of f (x) = x is given by

x ∼
∞∑

k=1

(−1)
k

k

(
i eikx

)
+

−∞∑

k=−1

(−1)
k

k

(
i eikx

)
.
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34. (a) Show that the Fourier series for f (x) is defined by

f (x) =

⎧
⎨
⎩

sin 2x, 0 ≤ x ≤ π
2

0, π
2 ≤ x ≤ π,

is

f (x) =
1

π
+

1

2
sin 2x −

(
2

π

) ∞∑

k=1

cos 4kx

(4k2 − 1)
.

(b) Show that

∞∑

k=1

1

(4k2 − 1)
2 =

1

16

(
π2 − 8

)
.

(c) Find the sum of the infinite series

sin (4x)

1.2.3
+

sin (2.4x)

3.4.5
+

sin (3.4x)

5.6.7
+ . . . , 0 ≤ x ≤ π.

35. (a) Obtain the complex Fourier series of

f (x) = cos (ax) , −π ≤ x ≤ π,

where a is real but not an integer.
(b) Hence, show that

π cot πx =
1

x
−

∞∑

k=1

2x

(k2 − x2)
.

(c) Derive the product formula

sin πx = πx

∞∏

n=1

(
1 − x2

n2

)
.

(d) Show that

π

2
=

∞∏

n=1

2n

(2n − 1)
· 2n

(2n + 1)
=

(
2

1
· 2

3

)
·
(

4

3
· 4

5

)
·
(

6

5
· 6

7

)
·
(

8

7
· 8

9

)
. . . .

36. Obtain the Fourier series of the following functions:

(a) f (x) = ex, 0 ≤ x ≤ 2π, f (x + 2π) = f (x).

(b) f (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1, −π < x < −π
2 , 0 < x < π

2 ,

−1, −π
2 < x < 0, π

2 < x < π,

0, x = nπ
2 , n = 0, + 1, + 2, . . .
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and draw the graph of this function.

(c) f (x) = x − [x],

where [x] is the greatest integer not exceeding x.

37. Find the Fourier series for each of the functions f (x) in −l < x < l and
f (x) is defined outside this interval so that f (x + 2l) = f (x) for all x:

(a) f (x) =

⎧
⎨
⎩

0, −l < x < 0,

l, 0 < x < l.
(b) f (x) =

⎧
⎨
⎩

−x, −l ≤ x < 0,

x, 0 ≤ x < l.

(c) f (x) =

⎧
⎨
⎩

l + x, −l ≤ x < 0,

l − x, 0 ≤ x < l.
(d) f (x) =

⎧
⎨
⎩

0, −l ≤ x < 0,

x2, 0 ≤ x < l.

Examine the Gibbs phenomenon at the points of discontinuity at x = 0
and x = l for the function in (a).

38. Prove the following identities:

(a)
1

2
+

n∑

k=1

cos kx =
sin

(
n + 1

2

)
x

2 sin x
2

.

(b) sn (x) = 1
π

∫ π

−π

f (ξ + x)
sin

(
n + 1

2

)
ξ

2 sin 1
2ξ

dξ,

where sn (x) is the nth partial sum of a Fourier series of f (x) in (−π, π).
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Method of Separation of Variables

“However, the emphasis should be somewhat more on how to do the math-
ematics quickly and easily, and what formulas are true, rather than the
mathematicians’ interest in methods of rigorous proof.”

Richard Feynman

“As a science, mathematics has been adapted to the description of
natural phenomena, and the great practitioners in this field, such as von
Kármán, Taylor and Lighthill, have never concerned themselves with the
logical foundations of mathematics, but have boldly taken a pragmatic view
of mathematics as an intellectual machine which works successfully. De-
scription has been verified by further observation, still more strikingly by
prediction, .... ”

George Temple

7.1 Introduction

The method of separation of variables combined with the principle of super-
position is widely used to solve initial boundary-value problems involving
linear partial differential equations. Usually, the dependent variable u (x, y)
is expressed in the separable form u (x, y) = X (x) Y (y), where X and Y
are functions of x and y respectively. In many cases, the partial differen-
tial equation reduces to two ordinary differential equations for X and Y .
A similar treatment can be applied to equations in three or more indepen-
dent variables. However, the question of separability of a partial differential
equation into two or more ordinary differential equations is by no means a
trivial one. In spite of this question, the method is widely used in finding
solutions of a large class of initial boundary-value problems. This method
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of solution is also known as the Fourier method (or the method of eigenfunc-
tion expansion). Thus, the procedure outlined above leads to the important
ideas of eigenvalues, eigenfunctions, and orthogonality, all of which are very
general and powerful for dealing with linear problems. The following exam-
ples illustrate the general nature of this method of solution.

7.2 Separation of Variables

In this section, we shall introduce one of the most common and elementary
methods, called the method of separation of variables, for solving initial
boundary-value problems. The class of problems for which this method
is applicable contains a wide range of problems of mathematical physics,
applied mathematics, and engineering science.

We now describe the method of separation of variables and examine
the conditions of applicability of the method to problems which involve
second-order partial differential equations in two independent variables.

We consider the second-order homogeneous partial differential equation

a∗ux∗x∗ + b∗ux∗y∗ + c∗uy∗y∗ + d∗ux∗ + e∗uy∗ + f∗u = 0 (7.2.1)

where a∗, b∗, c∗, d∗, e∗ and f∗ are functions of x∗ and y∗.
We have stated in Chapter 4 that by the transformation

x = x (x∗, y∗) , y = y (x∗, y∗) , (7.2.2)

where

∂ (x, y)

∂ (x∗, y∗)
�= 0,

we can always transform equation (7.2.1) into canonical form

a (x, y) uxx + c (x, y) uyy + d (x, y) ux + e (x, y) uy + f (x, y) u = 0, (7.2.3)

which when

(i) a = −c is hyperbolic,
(ii) a = 0 or c = 0 is parabolic,
(iii) a = c is elliptic.

We assume a separable solution of (7.2.3) in the form

u (x, y) = X (x) Y (y) �= 0, (7.2.4)

where X and Y are, respectively, functions of x and of y alone, and are
twice continuously differentiable. Substituting equations (7.2.4) into equa-
tion (7.2.3), we obtain
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a X ′′Y + c XY ′′ + dX ′Y + e XY ′ + f XY = 0, (7.2.5)

where the primes denote differentiation with respect to the appropriate
variables. Let there exist a function p (x, y), such that, if we divide equation
(7.2.5) by p (x, y), we obtain

a1 (x) X ′′Y + b1 (y) XY ′′ + a2 (x) X ′Y + b2 (y) XY ′

+ [a3 (x) + b3 (y)]XY = 0. (7.2.6)

Dividing equation (7.2.6) again by XY , we obtain

[
a1

X ′′

X
+ a2

X ′

X
+ a3

]
= −

[
b1

Y ′′

Y
+ b2

Y ′

Y
+ b3

]
. (7.2.7)

The left side of equation (7.2.7) is a function of x only. The right side
of equation (7.2.7) depends only upon y. Thus, we differentiate equation
(7.2.7) with respect to x to obtain

d

dx

[
a1

X ′′

X
+ a2

X ′

X
+ a3

]
= 0. (7.2.8)

Integration of equation (7.2.8) yields

a1
X ′′

X
+ a2

X ′

X
+ a3 = λ, (7.2.9)

where λ is a separation constant. From equations (7.2.7) and (7.2.9), we
have

b1
Y ′′

Y
+ b2

Y ′

Y
+ b3 = −λ. (7.2.10)

We may rewrite equations (7.2.9) and (7.2.10) in the form

a1X
′′ + a2X

′ + (a3 − λ) X = 0, (7.2.11)

and

b1Y
′′ + b2Y

′ + (b3 + λ) Y = 0. (7.2.12)

Thus, u (x, y) is the solution of equation (7.2.3) if X (x) and Y (y) are
the solutions of the ordinary differential equations (7.2.11) and (7.2.12)
respectively.

If the coefficients in equation (7.2.1) are constant, then the reduction of
equation (7.2.1) to canonical form is no longer necessary. To illustrate this,
we consider the second-order equation

Auxx + Buxy + Cuyy + Dux + Euy + Fu = 0, (7.2.13)
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where A, B, C, D, E, and F are constants which are not all zero.
As before, we assume a separable solution in the form

u (x, y) = X (x) Y (y) �= 0.

Substituting this in equation (7.2.13), we obtain

AX ′′Y + BX ′Y ′ + CXY ′′ + DX ′Y + EXY ′ + FXY = 0. (7.2.14)

Division of this equation by AXY yields

X ′′

X
+

B

A

X ′

X

Y ′

Y
+

C

A

Y ′′

Y
+

D

A

X ′

X
+

E

A

Y ′

Y
+

F

A
= 0, A �= 0. (7.2.15)

We differentiate this equation with respect to x to obtain

(
X ′′

X

)′
+

B

A

(
X ′

X

)′
Y ′

Y
+

D

A

(
X ′

X

)′
= 0. (7.2.16)

Thus, we have

(
X′′

X

)′

B
A

(
X′

X

)′ +
D

B
= −Y ′

Y
. (7.2.17)

This equation is obviously separable, so that both sides must be equal to a
constant λ. Therefore, we obtain

Y ′ + λY = 0, (7.2.18)
(

X ′′

X

)′
+

(
D

B
− λ

)
B

A

(
X ′

X

)′
= 0. (7.2.19)

Integrating equation (7.2.19) with respect to x, we obtain

X ′′

X
+

(
D

B
− λ

)
B

A

(
X ′

X

)
= −β, (7.2.20)

where β is a constant to be determined. Substituting equation (7.2.18) into
the original equation (7.2.15), we obtain

X ′′ +

(
D

B
− λ

)
B

A
X ′ +

(
λ2 − E

C
λ +

F

C

)
C

A
X = 0. (7.2.21)

Comparing equations (7.2.20) and (7.2.21), we clearly find

β =

(
λ2 − E

C
λ +

F

C

)
C

A
.

Therefore, u (x, y) is a solution of equations (7.2.13) if X (x) and Y (y)
satisfy the ordinary differential equations (7.2.21) and (7.2.18) respectively.
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We have just described the conditions on the separability of a given
partial differential equation. Now, we shall take a look at the boundary
conditions involved. There are several types of boundary conditions. The
ones that appear most frequently in problems of applied mathematics and
mathematical physics include

(i) Dirichlet condition: u is prescribed on a boundary
(ii) Neumann condition: (∂u/∂n) is prescribed on a boundary
(iii) Mixed condition: (∂u/∂n) + hu is prescribed on a boundary, where

(∂u/∂n) is the directional derivative of u along the outward normal to
the boundary, and h is a given continuous function on the boundary.
For details, see Chapter 9 on boundary-value problems.

Besides these three boundary conditions, also known as, the first, second,
and third boundary conditions, there are other conditions, such as the Robin
condition; one condition is prescribed on one portion of a boundary and
another is given on the remainder of the boundary. We shall consider a
variety of boundary conditions as we treat problems later.

To separate boundary conditions, such as the ones listed above, it is
best to choose a coordinate system suitable to a boundary. For instance,
we choose the Cartesian coordinate system (x, y) for a rectangular region
such that the boundary is described by the coordinate lines x = constant
and y = constant, and the polar coordinate system (r, θ) for a circular
region so that the boundary is described by the lines r = constant and
θ = constant.

Another condition that must be imposed on the separability of boundary
conditions is that boundary conditions, say at x = x0, must contain the
derivatives of u with respect to x only, and their coefficients must depend
only on x. For example, the boundary condition

[u + uy]x=x0
= 0

cannot be separated. Needless to say, a mixed condition, such as ux + uy,
cannot be prescribed on an axis.

7.3 The Vibrating String Problem

As a first example, we shall consider the problem of a vibrating string of
constant tension T ∗ and density ρ with c2 = T ∗/ρ stretched along the x-
axis from 0 to l, fixed at its end points. We have seen in Chapter 5 that the
problem is given by

utt − c2uxx = 0, 0 < x < l, t > 0, (7.3.1)

u (x, 0) = f (x) , 0 ≤ x ≤ l, (7.3.2)

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.3.3)

u (0, t) = 0, t ≥ 0, (7.3.4)

u (l, t) = 0, t ≥ 0, (7.3.5)
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where f and g are the initial displacement and initial velocity respectively.
By the method of separation of variables, we assume a solution in the

form

u (x, t) = X (x) T (t) �= 0. (7.3.6)

If we substitute equation (7.3.6) into equation (7.3.1), we obtain

XT ′′ = c2X ′′T,

and hence,

X ′′

X
=

1

c2

T ′′

T
, (7.3.7)

whenever XT �= 0. Since the left side of equation (7.3.7) is independent of
t and the right side is independent of x, we must have

X ′′

X
=

1

c2

T ′′

T
= λ,

where λ is a separation constant. Thus,

X ′′ − λX = 0, (7.3.8)

T ′′ − λc2T = 0. (7.3.9)

We now separate the boundary conditions. From equations (7.3.4) and
(7.3.6), we obtain

u (0, t) = X (0) T (t) = 0.

We know that T (t) �= 0 for all values of t, therefore,

X (0) = 0. (7.3.10)

In a similar manner, boundary condition (7.3.5) implies

X (l) = 0. (7.3.11)

To determine X (x) we first solve the eigenvalue problem (eigenvalue
problems are also treated in Chapter 8)

X ′′ − λX = 0, X (0) = 0, X (l) = 0. (7.3.12)

We look for values of λ which gives us nontrivial solutions. We consider
three possible cases

λ > 0, λ = 0, λ < 0.

Case 1. λ > 0. The general solution in this case is of the form
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X (x) = Ae−
√

λ x + Be
√

λ x

where A and B are arbitrary constants. To satisfy the boundary conditions,
we must have

A + B = 0, Ae−
√

λ l + Be
√

λ l = 0. (7.3.13)

We see that the determinant of the system (7.3.13) is different from zero.
Consequently, A and B must both be zero, and hence, the general solution
X (x) is identically zero. The solution is trivial and hence, is no interest.

Case 2. λ = 0. Here, the general solution is

X (x) = A + Bx.

Applying the boundary conditions, we have

A = 0, A + Bl = 0.

Hence A = B = 0. The solution is thus identically zero.
Case 3. λ < 0. In this case, the general solution assumes the form

X (x) = A cos
√

−λx + B sin
√

−λx.

From the condition X (0) = 0, we obtain A = 0. The condition X (l) = 0
gives

B sin
√

−λ l = 0.

If B = 0, the solution is trivial. For nontrivial solutions, B �= 0, hence,

sin
√

−λ l = 0.

This equation is satisfied when

√
−λ l = nπ for n = 1, 2, 3, . . . ,

or

−λn = (nπ/l)
2
. (7.3.14)

For this infinite set of discrete values of λ, the problem has a nontrivial
solution. These values of λn are called the eigenvalues of the problem, and
the functions

sin (nπ/l) x, n = 1, 2, 3, . . .

are the corresponding eigenfunctions.
We note that it is not necessary to consider negative values of n since

sin (−n) πx/l = − sin nπx/l.
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No new solution is obtained in this way.
The solutions of problems (7.3.12) are, therefore,

Xn (x) = Bn sin (nπx/l) . (7.3.15)

For λ = λn, the general solution of equation (7.3.9) may be written in
the form

Tn (t) = Cn cos
(nπc

l

)
t + Dn sin

(nπc

l

)
t, (7.3.16)

where Cn and Dn are arbitrary constants.
Thus, the functions

un (x, t) = Xn (x) Tn (t) =
(
an cos

nπc

l
t + bn sin

nπc

l
t
)

sin
(nπx

l

)
(7.3.17)

satisfy equation (7.3.1) and the boundary conditions (7.3.4) and (7.3.5),
where an = BnCn and bn = BnDn.

Since equation (7.3.1) is linear and homogeneous, by the superposition
principle, the infinite series

u (x, t) =

∞∑

n=1

(
an cos

nπc

l
t + bn sin

nπc

l
t
)

sin
(nπx

l

)
(7.3.18)

is also a solution, provided it converges and is twice continuously differ-
entiable with respect to x and t. Since each term of the series satisfies
the boundary conditions (7.3.4) and (7.3.5), the series satisfies these condi-
tions. There remain two more initial conditions to be satisfied. From these
conditions, we shall determine the constants an and bn.

First we differentiate the series (7.3.18) with respect to t. We have

ut =

∞∑

n=1

nπc

l

(
−an sin

nπc

l
t + bn cos

nπc

l
t
)

sin
(nπx

l

)
. (7.3.19)

Then applying the initial conditions (7.3.2) and (7.3.3), we obtain

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)
, (7.3.20)

ut (x, 0) = g (x) =

∞∑

n=1

bn

(nπc

l

)
sin

(nπx

l

)
. (7.3.21)

These equations will be satisfied if f (x) and g (x) can be represented by
Fourier sine series. The coefficients are given by

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx, bn =

2

nπc

∫ l

0

g (x) sin
(nπx

l

)
dx,

(7.3.22ab)
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The solution of the vibrating string problem is therefore given by the series
(7.3.18) where the coefficients an and bn are determined by the formulae
(7.3.22ab).

We examine the physical significance of the solution (7.3.17) in the
context of the free vibration of a string of length l. The eigenfunctions

un (x, t) = (an cos ωnt + bn sin ωnt) sin
(nπx

l

)
, ωn =

nπc

l
, (7.3.23)

are called the nth normal modes of vibration or the nth harmonic, and
ωn represent the discrete spectrum of circular (or radian) frequencies or
νn = ωn

2π = nc
2l , which are called the angular frequencies. The first harmonic

(n = 1) is called the fundamental harmonic and all other harmonics (n > 1)
are called overtones. The frequency of the fundamental mode is given by

ω1 =
πc

l
, ν1 =

1

2l

√
T ∗

ρ
. (7.3.24)

Result (7.3.24) is considered the fundamental law (or Mersenne law) of
a stringed musical instrument. The angular frequency of the fundamental
mode of transverse vibration of a string varies as the square root of the
tension, inversely as length, and inversely as the square root of the density.
The period of the fundamental mode is T1 = 2c

ω1
= 2l

c , which is called the
fundamental period. Finally, the solution (7.3.18) describes the motion of a
plucked string as a superposition of all normal modes of vibration with fre-
quencies which are all integral multiples (ωn = nω1 or νn = nν1) of the
fundamental frequency. This is the main reason that stringed instruments
produce sweeter musical sounds (or tones) than drum instruments.

In order to describe waves produced in the plucked string with zero
initial velocity (ut (x, 0) = 0), we write the solution (7.3.23) in the form

un (x, t) = an sin
(nπx

l

)
cos

(
nπct

l

)
, n = 1, 2, 3, . . . . (7.3.25)

These solutions are called standing waves with amplitude an sin
(

nπx
l

)
,

which vanishes at

x = 0,
l

n
,

2l

n
, . . . , l.

These are called the nodes of the nth harmonic. The string displays n loops
separated by the nodes as shown in Figure 7.3.1.

It follows from elementary trigonometry that (7.3.25) takes the form

un (x, t) =
1

2
an

[
sin

nπ

l
(x − ct) + sin

nπ

l
(x + ct)

]
. (7.3.26)

This shows that a standing wave is expressed as a sum of two progressive
waves of equal amplitude traveling in opposite directions. This result is in
agreement with the d’Alembert solution.
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Figure 7.3.1 Several modes of vibration in a string.

Finally, we can rewrite the solution (7.3.23) of the nth normal modes in
the form

un (x, t) = cn sin
(nπx

l

)
cos

(
nπct

l
− εn

)
, (7.3.27)

where cn =
(
a2

n + b2
n

) 1
2 and tan εn =

(
bn

an

)
.

This solution represents transverse vibrations of the string at any point
x and at any time t with amplitude cn sin

(
nπx

l

)
and circular frequency

ωn = nπc
l . This form of the solution enables us to calculate the kinetic and

potential energies of the transverse vibrations. The total kinetic energy
(K.E.) is obtained by integrating with respect to x from 0 to l, that is,

Kn = K.E. =

∫ l

0

1

2
ρ

(
∂un

∂t

)2

dx, (7.3.28)

where ρ is the line density of the string. Similarly, the total potential energy
(P.E.) is given by

Vn = P.E. =
1

2
T ∗

∫ l

0

(
∂un

∂x

)2

dx. (7.3.29)

Substituting (7.3.27) in (7.3.28) and (7.3.29) gives

Kn =
1

2
ρ
(nπc

l
cn

)2

sin2

(
nπct

l
− εn

)∫ l

0

sin2
(nπx

l

)
dx

=
ρc2π2

4l
(n cn)

2
sin2

(
nπct

l
− εn

)
=

1

4
ρlω2

nc2
n sin2 (ωnt − εn) , (7.3.30)

where ωn = nπc
l .
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Similarly,

Vn =
1

2
T ∗

(nπcn

l

)2

cos2
(

nπct

l
− εn

)∫ l

0

cos2
(nπx

l

)
dx

=
π2T ∗

4l
(n cn)

2
cos2

(
nπct

l
− εn

)
=

1

4
ρlω2

nc2
n cos2 (ωnt − εn) . (7.3.31)

Thus, the total energy of the nth normal mode of vibrations is given by

En = Kn + Vn =
1

4
ρl (ωncn)

2
= constant. (7.3.32)

For a given string oscillating in a normal mode, the total energy is pro-
portional to the square of the circular frequency and to the square of the
amplitude.

Finally, the total energy of the system is given by

E =

∞∑

n=1

En =
1

4
ρl

∞∑

n=1

ω2
nc2

n, (7.3.33)

which is constant because En = constant.

Example 7.3.1. The Plucked String of length l
As a special case of the problem just treated, consider a stretched string

fixed at both ends. Suppose the string is raised to a height h at x = a
and then released. The string will oscillate freely. The initial conditions, as
shown in Figure 7.3.2, may be written

u (x, 0) = f (x) =

⎧
⎨
⎩

hx/a, 0 ≤ x ≤ a

h (l − x) / (l − a) , a ≤ x ≤ l.

Since g (x) = 0, the coefficients bn are identically equal to zero. The coeffi-
cients an, according to equation (7.3.22a), are given by

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx

=
2

l

∫ a

0

hx

a
sin

(nπx

l

)
dx +

2

l

∫ l

a

h (l − x)

(l − a)
sin

(nπx

l

)
dx.

Integration and simplification yields

an =
2hl2

π2a (l − a)

1

n2
sin

(nπa

l

)
.

Thus, the displacement of the plucked string is

u (x, t) =
2hl2

π2a (l − a)

∞∑

n=1

1

n2
sin

(nπa

l

)
sin

(nπx

l

)
cos

(nπc

l

)
t.
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Figure 7.3.2 Plucked String

Example 7.3.2. The struck string of length l
Here, we consider the string with no initial displacement. Let the string

be struck at x = a so that the initial velocity is given by

ut (x, 0) =

⎧
⎨
⎩

v0

a x, 0 ≤ x ≤ a

v0 (l − x) / (l − a) , a ≤ x ≤ l
.

Since u (x, 0) = 0, we have an = 0. By applying equation (7.3.22b), we find
that

bn =
2

nπc

∫ a

0

v0

a
x sin

(nπx

l

)
dx +

2

nπc

∫ l

a

v0
(l − x)

(l − a)
sin

(nπx

l

)
dx

=
2v0l

3

π3ca (l − a)

1

n3
sin

(nπa

l

)
.

Hence, the displacement of the struck string is

u (x, t) =
2v0l

3

π3ca (l − a)

∞∑

n=1

1

n3
sin

(nπa

l

)
sin

(nπx

l

)
cos

(nπc

l

)
t.
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7.4 Existence and Uniqueness of Solution of the

Vibrating String Problem

In the preceding section we found that the initial boundary-value problem
(7.3.1)–(7.3.5) has a formal solution given by (7.3.18). We shall now show
that the expression (7.3.18) is the solution of the problem under certain
conditions.

First we see that

u1 (x, t) =

∞∑

n=1

an cos
(nπc

l
t
)

sin
(nπx

l

)
(7.4.1)

is the formal solution of the problem (7.3.1)–(7.3.5) with g (x) ≡ 0, and

u2 (x, t) =

∞∑

n=1

bn sin
(nπc

l
t
)

sin
(nπx

l

)
(7.4.2)

is the formal solution of the above problem with f (x) ≡ 0. By linearity of
the problem, the solution (7.3.18) may be considered as the sum of the two
formal solutions (7.4.1) and (7.4.2).

We first assume that f (x) and f ′ (x) are continuous on [0, l], and f (0) =
f (l) = 0. Then by Theorem 6.10.1, the series for the function f (x) given
by (7.3.20) converges absolutely and uniformly on the interval [0, l].

Using the trigonometric identity

sin
(nπx

l

)
cos

(nπc

l
t
)

=
1

2
sin

nπ

l
(x − ct) +

1

2
sin

nπ

l
(x + ct) , (7.4.3)

u1 (x, t) may be written as

u1 (x, t) =
1

2

∞∑

n=1

an sin
nπ

l
(x − ct) +

1

2

∞∑

n=1

an sin
nπ

l
(x + ct) .

Define

F (x) =

∞∑

n=1

an sin
(nπx

l

)
(7.4.4)

and assume that F (x) is the odd periodic extension of f (x), that is,

F (x) = f (x) 0 ≤ x ≤ l

F (−x) = −F (x) for all x

F (x+ 2l) = F (x) .

We can now rewrite u1 (x, t) in the form

u1 (x, t) =
1

2
[F (x − ct) + F (x + ct)] . (7.4.5)
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To show that the boundary conditions are satisfied, we note that

u1 (0, t) =
1

2
[F (−ct) + F (ct)]

=
1

2
[−F (ct) + F (ct)] = 0

u1 (l, t) =
1

2
[F (l − ct) + F (l + ct)]

=
1

2
[F (−l − ct) + F (l + ct)]

=
1

2
[−F (l + ct) + F (l + ct)] = 0.

Since

u1 (x, 0) =
1

2
[F (x) + F (x)]

= F (x) = f (x) , 0 ≤ x ≤ l,

we see that the initial condition u1 (x, 0) = f (x) is satisfied. Thus, equation
(7.3.1) and conditions (7.3.2)–(7.3.3) with g (x) ≡ 0 are satisfied. Since f ′

is continuous in [0, l], F ′ exists and is continuous for all x. Thus, if we
differentiate u1 (x, t) with respect to t, we obtain

∂u1

∂t
=

1

2
[−c F ′ (x − ct) + c F ′ (x + ct)] ,

and

∂u1

∂t
(x, 0) =

1

2
[−c F ′ (x) + c F ′ (x)] = 0.

We therefore see that initial condition (7.3.3) is also satisfied.
In order to show that u1 (x, t) satisfies the differential equation (7.3.1),

we impose additional restrictions on f . Let f ′′ be continuous on [0, l] and
f ′′ (0) = f ′′ (l) = 0. Then, F ′′ exists and is continuous everywhere, and
therefore,

∂2u1

∂t2
=

1

2
c2 [F ′′ (x − ct) + F ′′ (x + ct)] ,

∂2u1

∂x2
=

1

2
[F ′′ (x − ct) + F ′′ (x + ct)] .

We find therefore that

∂2u1

∂t2
= c2 ∂2u1

∂x2
.

Next, we shall state the assumptions which must be imposed on g to
make u2 (x, t) the solution of problem (7.3.1)–(7.3.5) with f (x) ≡ 0. Let g
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and g′ be continuous on [0, l] and let g (0) = g (l) = 0. Then the series for
the function g (x) given by (7.3.21) converges absolutely and uniformly in
the interval [0, l]. Introducing the new coefficients cn = (nπc/l) bn, we have

u2 (x, t) =

(
l

πc

) ∞∑

n=1

cn

n
sin

(nπc

l
t
)

sin
(nπx

l

)
. (7.4.6)

We shall see that term-by-term differentiation with respect to t is permitted,
and hence,

∂u2

∂t
=

∞∑

n=1

cn cos
(nπc

l
t
)

sin
(nπx

l

)
. (7.4.7)

Using the trigonometric identity (7.4.3), we obtain

∂u2

∂t
=

1

2

∞∑

n=1

cn sin
nπ

l
(x − ct) +

1

2

∞∑

n=1

cn sin
nπ

l
(x + ct) . (7.4.8)

These series are absolutely and uniformly convergent because of the as-
sumptions on g, and hence, the series (7.4.6) and (7.4.7) converge absolutely
and uniformly on [0, l]. Thus, the term-by-term differentiation is justified.

Let

G (x) =
∞∑

n=1

cn sin
(nπx

l

)

be the odd periodic extension of the function g (x). Then, equation (7.4.8)
can be written in the form

∂u2

∂t
=

1

2
[G (x − ct) + G (x + ct)] .

Integration yields

u2 (x, t) =
1

2

∫ t

0

G (x − ct′) dt′ +
1

2

∫ t

0

G (x + ct′) dt′

=
1

2c

∫ x+ct

x−ct

G (τ) dτ. (7.4.9)

It immediately follows that u2 (x, 0) = 0, and

∂u2

∂t
(x, 0) = G (x) = g (x) , 0 ≤ x ≤ l.

Moreover,

u2 (0, t) =
1

2

∫ t

0

G (−ct′) dt′ +
1

2

∫ t

0

G (ct′) dt′

= −1

2

∫ t

0

G (ct′) dt′ +
1

2

∫ t

0

G (ct′) dt′ = 0
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and

u2 (l, t) =
1

2

∫ t

0

G (l − ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′

=
1

2

∫ t

0

G (−l − ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′

= −1

2

∫ t

0

G (l + ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′ = 0.

Finally, u2 (x, t) must satisfy the differential equation. Since g′ is continuous
on [0, l], G′ exists so that

∂2u2

∂t2
=

c

2
[−G′ (x − ct) + G′ (x + ct)] .

Differentiating u2 (x, t) represented by equation (7.4.6) with respect to x,
we obtain

∂u2

∂x
=

1

c

∞∑

n=1

cn sin
(nπc

l
t
)

cos
(nπx

l

)

=
1

2c

∞∑

n=1

cn

[
− sin

nπ

l
(x − ct) + sin

nπ

l
(x + ct)

]

=
1

2c
[−G (x − ct) + G (x + ct)] .

Differentiating again with respect to x, we obtain

∂2u2

∂x2
=

1

2c
[−G′ (x − ct) + G′ (x + ct)] .

It is quite evident that

∂2u2

∂t2
= c2 ∂2u2

∂x2
.

Thus, the solution of the initial boundary-value problem (7.3.1)–(7.3.5) is
established.

Theorem 7.4.2. (Uniqueness Theorem) There exists at most one so-
lution of the wave equation

utt = c2uxx, 0 < x < l, t > 0,

satisfying the initial conditions

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ l,

and the boundary conditions

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

where u (x, t) is a twice continuously differentiable function with respect to
both x and t.
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Proof. Suppose that there are two solutions u1 and u2 and let v = u1−u2.
It can readily be seen that v (x, t) is the solution of the problem

vtt = c2vxx, 0 < x < l, t > 0,

v (0, t) = 0, t ≥ 0,

v (l, t) = 0, t ≥ 0,

v (x, 0) = 0, 0 ≤ x ≤ l,

vt (x, 0) = 0, 0 ≤ x ≤ l.

We shall prove that the function v (x, t) is identically zero. To do so,
consider the energy integral

E (t) =
1

2

∫ l

0

(
c2v2

x + v2
t

)
dx (7.4.10)

which physically represents the total energy of the vibrating string at time
t.

Since the function v (x, t) is twice continuously differentiable, we differ-
entiate E (t) with respect to t. Thus,

dE

dt
=

∫ l

0

(
c2vxvxt + vtvtt

)
dx. (7.4.11)

Integrating the first integral in (7.4.11) by parts, we have

∫ l

0

c2vxvxtdx =
[
c2vxvt

]l

0
−

∫ l

0

c2vtvxxdx.

But from the condition v (0, t) = 0 we have vt (0, t) = 0, and similarly,
vt (l, t) = 0 for x = l. Hence, the expression in the square brackets vanishes,
and equation (7.4.11) becomes

dE

dt
=

∫ l

0

vt

(
vtt − c2vxx

)
dx. (7.4.12)

Since vtt − c2vxx = 0, equation (7.4.12) reduces to

dE

dt
= 0

which means

E (t) = constant = C.

Since v (x, 0) = 0 we have vx (x, 0) = 0. Taking into account the condi-
tion vt (x, 0) = 0, we evaluate C to obtain
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E (0) = C =
1

2

∫ l

0

[
c2v2

x + v2
t

]
t=0

dx = 0.

This implies that E (t) = 0 which can happen only when vx = 0 and vt = 0
for t > 0. To satisfy both of these conditions, we must have v (x, t) =
constant. Employing the condition v (x, 0) = 0, we then find v (x, t) = 0.
Therefore, u1 (x, t) = u2 (x, t) and the solution u (x, t) is unique.

7.5 The Heat Conduction Problem

We consider a homogeneous rod of length l. The rod is sufficiently thin
so that the heat is distributed equally over the cross section at time t.
The surface of the rod is insulated, and therefore, there is no heat loss
through the boundary. The temperature distribution of the rod is given by
the solution of the initial boundary-value problem

ut = kuxx, 0 < x < l, t > 0,

u (0, t) = 0, t ≥ 0,

u (l, t) = 0, t ≥ 0, (7.5.1)

u (x, 0) = f (x) , 0 ≤ x ≤ l.

If we assume a solution in the form

u (x, t) = X (x) T (t) �= 0.

Equation (7.5.1) yields

XT ′ = kX ′′T.

Thus, we have

X ′′

X
=

T ′

kT
= −α2,

where α is a positive constant. Hence, X and T must satisfy

X ′′ + α2X = 0, (7.5.2)

T ′ + α2kT = 0. (7.5.3)

From the boundary conditions, we have

u (0, t) = X (0) T (t) = 0, u (l, t) = X (l) T (t) = 0.

Thus,

X (0) = 0, X (l) = 0,
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for an arbitrary function T (t). Hence, we must solve the eigenvalue problem

X ′′ + α2X = 0,

X (0) = 0, X (l) = 0.

The solution of equation (7.5.2) is

X (x) = A cos αx + B sin αx.

Since X (0) = 0, A = 0. To satisfy the second condition, we have

X (l) = B sin αl = 0.

Since B = 0 yields a trivial solution, we must have B �= 0 and hence,

sin αl = 0.

Thus,

α =
nπ

l
for n = 1, 2, 3 . . . .

Substituting these eigenvalues, we have

Xn (x) = Bn sin
(nπx

l

)
.

Next, we consider equation (7.5.3), namely,

T ′ + α2kT = 0,

the solution of which is

T (t) = Ce−α2kt.

Substituting α = (nπ/l), we have

Tn (t) = Cne−(nπ/l)2kt.

Hence, the nontrivial solution of the heat equation which satisfies the two
boundary conditions is

un (x, t) = Xn (x) Tn (t) = an e−(nπ/l)2kt sin
(nπx

l

)
, n = 1, 2, 3 . . . ,

where an = BnCn is an arbitrary constant.
By the principle of superposition, we obtain a formal series solution as

u (x, t) =

∞∑

n=1

un (x, t) ,

=

∞∑

n=1

an e−(nπ/l)2kt sin
(nπx

l

)
, (7.5.4)
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which satisfies the initial condition if

u (x, 0) = f (x) =

∞∑

n=1

an sin
(nπx

l

)
.

This holds true if f (x) can be represented by a Fourier sine series with
Fourier coefficients

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.5.5)

Hence,

u (x, t) =

∞∑

n=1

[
2

l

∫ l

0

f (τ) sin
(nπτ

l

)
dτ

]
e−(nπ/l)2kt sin

(nπx

l

)
(7.5.6)

is the formal series solution of the heat conduction problem.

Example 7.5.1. (a) Suppose the initial temperature distribution is f (x) =
x (l − x). Then, from equation (7.5.5), we have

an =
8l2

n3π3
, n = 1, 3, 5, . . . .

Thus, the solution is

u (x, t) =

(
8l2

π3

) ∞∑

n=1,3,5,...

1

n3
e−(nπ/l)2kt sin

(nπx

l

)
.

(b) Suppose the temperature at one end of the rod is held constant, that
is,

u (l, t) = u0, t ≥ 0.

The problem here is

ut = k uxx, 0 < x < l, t > 0,

u (0, t) = 0, u (l, t) = u0, (7.5.7)

u (x, 0) = f (x) , 0 < x < l.

Let

u (x, t) = v (x, t) +
u0x

l
.

Substitution of u (x, t) in equations (7.5.7) yields

vt = k vxx, 0 < x < l, t > 0,

v (0, t) = 0, v (l, t) = 0,

v (x, 0) = f (x) − u0x

l
, 0 < x < l.
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Hence, with the knowledge of solution (7.5.6), we obtain the solution

u (x, t) =
∞∑

n=1

[
2

l

∫ l

0

(
f (τ) − u0τ

l

)
sin

(nπτ

l

)
dτ

]
e−(nπ/l)2kt sin

(nπx

l

)

+
(u0x

l

)
. (7.5.8)

7.6 Existence and Uniqueness of Solution of the Heat

Conduction Problem

In the preceding section, we found that (7.5.4) is the formal solution of the
heat conduction problem (7.5.1), where an is given by (7.5.5).

We shall prove the existence of this formal solution if f (x) is continuous
in [0, l] and f (0) = f (l) = 0, and f ′ (x) is piecewise continuous in (0, l).
Since f (x) is bounded, we have

|an| =
2

l

∣∣∣∣∣

∫ l

0

f (x) sin
(nπx

l

)
dx

∣∣∣∣∣ ≤ 2

l

∫ l

0

|f (x)| dx ≤ C,

where C is a positive constant. Thus, for any finite t0 > 0,

∣∣∣an e−(nπ/l)2kt sin
(nπx

l

)∣∣∣ ≤ C e−(nπ/l)2kt0 when t ≥ t0.

According to the ratio test, the series of terms exp
[
− (nπ/l)

2
kt0

]
con-

verges. Hence, by the Weierstrass M-test, the series (7.5.4) converges uni-
formly with respect to x and t whenever t ≥ t0 and 0 ≤ x ≤ l.

Differentiating equation (7.5.4) termwise with respect to t, we obtain

ut = −
∞∑

n=1

an

(nπ

l

)2

k e−(nπ/l)2kt sin
(nπx

l

)
. (7.6.1)

We note that
∣∣∣∣−an

(nπ

l

)2

k e−(nπ/l)2kt sin
(nπx

l

)∣∣∣∣ ≤ C
(nπ

l

)2

k e−(nπ/l)2kt0

when t ≥ t0, and the series of terms C (nπ/l)
2
k exp

[
− (nπ/l)

2
kt0

]
con-

verges by the ratio test. Hence, equation (7.6.1) is uniformly convergent in
the region 0 ≤ x ≤ l, t ≥ t0. In a similar manner, the series (7.5.4) can be
differentiated twice with respect to x, and as a result

uxx = −
∞∑

n=1

an

(nπ

l

)2

e−(nπ/l)2kt sin
(nπx

l

)
. (7.6.2)
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Evidently, from equations (7.6.1) and (7.6.2),

ut = k uxx.

Hence, equation (7.5.4) is a solution of the one-dimensional heat equation
in the region 0 ≤ x ≤ l, t ≥ 0.

Next, we show that the boundary conditions are satisfied. Here, we note
that the series (7.5.4) representing the function u (x, t) converges uniformly
in the region 0 ≤ x ≤ l, t ≥ 0. Since the function represented by a uniformly
convergent series of continuous functions is continuous, u (x, t) is continuous
at x = 0 and x = l. As a consequence, when x = 0 and x = l, solution
(7.5.4) satisfies

u (0, t) = 0, u (l, t) = 0,

for all t > 0.
It remains to show that u (x, t) satisfies the initial condition

u (x, 0) = f (x) , 0 ≤ x ≤ l.

Under the assumptions stated earlier, the series for f (x) given by

f (x) =
∞∑

n=1

an sin
(nπx

l

)

is uniformly and absolutely convergent. By Abel’s test of convergence the
series formed by the product of the terms of a uniformly convergent series

∞∑

n=1

an sin
(nπx

l

)

and a uniformly bounded and monotone sequence exp
[
− (nπ/l)

2
kt

]
con-

verges uniformly with respect to t. Hence,

u (x, t) =

∞∑

n=1

an e−(nπ/l)2kt sin
(nπx

l

)

converges uniformly for 0 ≤ x ≤ l, t ≥ 0, and by the same reasoning as
before, u (x, t) is continuous for 0 ≤ x ≤ l, t ≥ 0. Thus, the initial condition

u (x, 0) = f (x) , 0 ≤ x ≤ l

is satisfied. The existence of solution is therefore established.
In the above discussion the condition imposed on f (x) is stronger than

necessary. The solution can be obtained with a less stringent condition on
f (x) (see Weinberger (1965)).



7.6 Existence and Uniqueness of Solution of the Heat Conduction Problem 253

Theorem 7.6.1. (Uniqueness Theorem) Let u (x, t) be a continuously
differentiable function. If u (x, t) satisfies the differential equation

ut = k uxx, 0 < x < l, t > 0,

the initial conditions

u (x, 0) = f (x) , 0 ≤ x ≤ l,

and the boundary conditions

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

then, the solution is unique.

Proof. Suppose that there are two distinct solutions u1 (x, t) and u2 (x, t).
Let

v (x, t) = u1 (x, t) − u2 (x, t) .

Then,

vt = k vxx, 0 < x < l, t > 0,

v (0, t) = 0, v (l, t) = 0, t ≥ 0, (7.6.3)

v (x, 0) = 0, 0 ≤ x ≤ l,

Consider the function defined by the integral

J (t) =
1

2k

∫ l

0

v2dx.

Differentiating with respect to t, we have

J ′ (t) =
1

k

∫ l

0

vvtdx =

∫ l

0

vvxxdx,

by virtue of equation (7.6.3). Integrating by parts, we have

∫ l

0

vvxxdx = [vvx]
l
0 −

∫ l

0

v2
xdx.

Since v (0, t) = v (l, t) = 0,

J ′ (t) = −
∫ l

0

v2
x dx ≤ 0.

From the condition v (x, 0) = 0, we have J (0) = 0. This condition and
J ′ (t) ≤ 0 implies that J (t) is a nonincreasing function of t. Thus,
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J (t) ≤ 0.

But by definition of J (t),

J (t) ≥ 0.

Hence,

J (t) = 0, for t ≥ 0.

Since v (x, t) is continuous, J (t) = 0 implies

v (x, t) = 0

in 0 ≤ x ≤ l, t ≥ 0. Therefore, u1 = u2 and the solution is unique.

7.7 The Laplace and Beam Equations

Example 7.7.1. Consider the steady state temperature distribution in a thin
rectangular slab. Two sides are insulated, one side is maintained at zero
temperature, and the temperature of the remaining side is prescribed to be
f (x). Thus, we are required to solve

∇2u = 0, 0 < x < a, 0 < y < b,

u (x, 0) = f (x) , 0 ≤ x ≤ a,

u (x, b) = 0, 0 ≤ x ≤ a,

ux (0, y) = 0, ux (a, y) = 0.

Let u (x, y) = X (x) Y (y). Substitution of this into the Laplace equation
yields

X ′′ − λX = 0, Y ′′ + λX = 0.

Since the boundary conditions are homogeneous on x = 0 and x = a, we
have λ = −α2 with α ≥ 0 for nontrivial solutions of the eigenvalue problem

X ′′ + α2X = 0,

X ′ (0) = X ′ (a) = 0.

The solution is

X (x) = A cos αx + B sin αx.

Application of the boundary conditions then yields B = 0 and α = (nπ/a)
with n = 0, 1, 2, . . .. Hence,

Xn (x) = A cos
(nπx

a

)
.
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The solution of the Y equation is clearly

Y (y) = C cosh αy + D sinhαy

which can be written in the form

Y (y) = E sinhα (y + F ) ,

where E =
(
D2 − C2

) 1
2 and F =

[
tanh−1 (C/D)

]
/α.

Applying the homogeneous boundary condition Y (b) = 0, we obtain

Y (b) = E sinhα (b + F ) = 0

which implies

F = −b, E �= 0

for nontrivial solutions. Hence, we have

u (x, y) =
(b − y)

b

a0

2
+

∞∑

n=1

an cos
(nπx

a

)
sinh

{nπ

a
(y − b)

}
.

Now we apply the remaining nonhomogeneous condition to obtain

u (x, 0) = f (x) =
a0

2
+

∞∑

n=1

an cos
(nπx

a

)
sinh

(
−nπb

a

)
.

Since this is a Fourier cosine series, the coefficients are given by

a0 =
2

a

∫ a

0

f (x) dx,

an =
−2

a sinh
(

nπb
a

)
∫ a

0

f (x) cos
(nπx

a

)
dx, n = 1, 2, . . . .

Thus, the solution is

u (x, y) =

(
b − y

b

)
a0

2
+

∞∑

n=1

a∗
n

sinh nπ
a (b − y)

sinh nπb
a

cos
(nπx

a

)
,

where

a∗
n =

2

a

∫ a

0

f (x) cos
(nπx

a

)
dx.

If, for example f (x) = x in 0 < x < π, 0 < y < π, then we find (note that
a = π)

a0 = π, a∗
n =

2

πn2
[(−1)

n − 1] , n = 1, 2, . . .

and hence, the solution has the final form

u (x, y) =
1

2
(π − y) +

∞∑

n=1

2

πn2
[(−1)

n − 1]
sinhn (π − y)

sinhnπ
cos nx.
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Example 7.7.2. As another example, we consider the transverse vibration
of a beam. The equation of motion is governed by

utt + a2uxxxx = 0, 0 < x < l, t > 0,

where u (x, t) is the displacement and a is the physical constant. Note that
the equation is of the fourth order in x. Let the initial and boundary con-
ditions be

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = u (l, t) = 0, t > 0, (7.7.1)

uxx (0, t) = uxx (l, t) = 0, t > 0.

The boundary conditions represent the beam being simple supported, that
is, the displacements and the bending moments at the ends are zero.

Assume a nontrivial solution in the form

u (x, t) = X (x) T (t) ,

which transforms the equation of motion into the forms

T ′′ + a2α4T = 0, X(iv) − α4X = 0, α > 0.

The equation for X (x) has the general solution

X (x) = A cosh αx + B sinhαx + C cos αx + D sin αx.

The boundary conditions require that

X (0) = X (l) = 0, X ′′ (0) = X ′′ (l) = 0.

Differentiating X twice with respect to x, we obtain

X ′′ (x) = Aα2 cosh αx + Bα2 sinhαx − Cα2 cos αx − Dα2 sin αx.

Now applying the conditions X (0) = X ′′ (0) = 0, we obtain

A + C = 0, α2 (A − C) = 0,

and hence,

A = C = 0.

The conditions X (l) = X ′′ (l) = 0 yield

B sinhαl + D sin αl = 0,

B sinhαl − D sin αl = 0.
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These equations are satisfied if

B sinhαl = 0, D sin αl = 0.

Since sinhαl �= 0, B must vanish. For nontrivial solutions, D �= 0,

sin αl = 0,

and hence,

α =
(nπ

l

)
, n = 1, 2, 3, . . . .

We then obtain

Xn (x) = Dn sin
(nπx

l

)
.

The general solution for T (t) is

T (t) = E cos
(
aα2t

)
+ F sin

(
aα2t

)
.

Inserting the values of α2, we obtain

Tn (t) = En cos

{
a
(nπ

l

)2

t

}
+ Fn sin

{
a
(nπ

l

)2

t

}
.

Thus, the general solution for the transverse vibrations of a beam is

u (x, t) =
∞∑

n=1

[
an cos

{
a
(nπ

l

)2

t

}
+ bn sin

{
a
(nπ

l

)2

t

}]
sin

(nπx

l

)
.

(7.7.2)
To satisfy the initial condition u (x, 0) = f (x), we must have

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)

from which we find

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.7.3)

Now the application of the second initial condition gives

ut (x, 0) = g (x) =

∞∑

n=1

bna
(nπ

l

)2

sin
(nπx

l

)

and hence,

bn =
2

al

(
l

nπ

)2 ∫ l

0

g (x) sin
(nπx

l

)
dx. (7.7.4)

Thus, the solution of the initial boundary-value problem is given by equa-
tions (7.7.2)–(7.7.4).
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7.8 Nonhomogeneous Problems

The partial differential equations considered so far in this chapter are homo-
geneous. In practice, there is a very important class of problems involving
nonhomogeneous equations. First, we shall illustrate a problem involving a
time-independent nonhomogeneous equations.

Example 7.8.1. Consider the initial boundary-value problem

utt = c2uxx + F (x) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.1)

u (0, t) = A, u (l, t) = B, t > 0.

We assume a solution in the form

u (x, t) = v (x, t) + U (x) .

Substitution of u (x, t) in equation (7.8.1) yields

vtt = c2 (vxx + Uxx) + F (x) ,

and if U (x) satisfies the equation

c2Uxx + F (x) = 0,

then v (x, t) satisfies the wave equation

vtt = c2vxx.

In a similar manner, if u (x, t) is inserted in the initial and boundary con-
ditions, we obtain

u (x, 0) = v (x, 0) + U (x) = f (x) ,

ut (x, 0) = vt (x, 0) = g (x) ,

u (0, t) = v (0, t) + U (0) = A,

u (l, t) = v (l, t) + U (l) = B .

Thus, if U (x) is the solution of the problem

c2Uxx + F = 0,

U (0) = A, U (l) = B,

then v (x, t) must satisfy

vtt = c2vxx,

v (x, 0) = f (x) − U (x) ,

vt (x, 0) = g (x) , (7.8.2)

v (0, t) = 0, v (l, t) = 0.
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Now v (x, t) can be solved easily since U (x) is known. It can be seen that

U (x) = A + (B − A)
x

l
+

x

l

∫ l

0

[
1

c2

∫ η

0

F (ξ) dξ

]
dη

−
∫ x

0

[
1

c2

∫ η

0

F (ξ) dξ

]
dη.

As a specific example, consider the problem

utt = c2uxx + h, h is a constant

u (x, 0) = 0, ut (x, 0) = 0, (7.8.3)

u (0, t) = 0, u (l, t) = 0.

Then, the solution of the system

c2Uxx + h = 0,

U (0) = 0, U (l) = 0,

is

U (x) =
h

2c2

(
lx − x2

)
.

The function v (x, t) must satisfy

vtt = c2vxx,

v (x, 0) = − h

2c2

(
lx − x2

)
, vt (x, 0) = 0,

v (0, t) = 0, v (l, t) = 0.

The solution is given (see Section 7.3 with g (x) = 0) by

v (x, t) =

∞∑

n=1

an cos
(nπc

l
t
)

sin
(nπx

l

)
,

and the coefficient is

an =
2

l

∫ l

0

[
− h

2c2

(
lx − x2

)]
sin

(nπx

l

)
dx

an = − 4l2h

n3π3c2
for n odd

an = 0 for n even.

The solution of the given initial boundary-value problem is, therefore, given
by
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u (x, t) = v (x, t) + U (x)

=
hx

2c2
(l − x) +

∞∑

n=1

(
− 4l2h

c2π3

)
cos (2n − 1) (πct/l)

(2n − 1)
3

× sin (2n − 1) (πx/l) . (7.8.4)

Let us now consider the problem of a finite string with an external force
acting on it. If the ends are fixed, we have

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.5)

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

We assume a solution involving the eigenfunctions, sin (nπx/l), of the as-
sociated eigenvalue problem in the form

u (x, t) =

∞∑

n=1

un (t) sin
(nπx

l

)
, (7.8.6)

where the functions un (t) are to be determined. It is evident that the
boundary conditions are satisfied. Let us also assume that

h (x, t) =

∞∑

n=1

hn (t) sin
(nπx

l

)
. (7.8.7)

Thus,

hn (t) =
2

l

∫ l

0

h (x, t) sin
(nπx

l

)
dx. (7.8.8)

We assume that the series (7.8.6) is convergent. We then find utt and
uxx from (7.8.6) and substitution of these values into (7.8.5) yields

∞∑

n=1

[
u′′

n (t) + λ2
n un (t)

]
sin

(nπx

l

)
=

∞∑

n=1

hn (t) sin
(nπx

l

)
,

where λn = (nπc/l). Multiplying both sides of this equation by sin (mπx/l),
where m = 1, 2, 3, . . ., and integrating from x = 0 to x = l, we obtain

u′′
n (t) + λ2

n un (t) = hn (t)

the solution of which is given by

un (t) = an cos λnt + bn sin λnt +
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ. (7.8.9)
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Hence, the formal solution (7.8.6) takes the final form

u (x, t) =

∞∑

n=1

{
an cos λnt + bn sin λnt

+
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ

}
· sin

(nπx

l

)
. (7.8.10)

Applying the initial conditions, we have

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)
.

Thus,

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.8.11)

Similarly,

ut (x, 0) = g (x) =

∞∑

n=1

bnλn sin
(nπx

l

)
.

Thus,

bn =

(
2

lλn

)∫ l

0

g (x) sin
(nπx

l

)
dx. (7.8.12)

Hence, the formal solution of the initial boundary-value problem (7.8.5) is
given by (7.8.10) with an given by (7.8.11) and bn given by (7.8.12).

Example 7.8.2. Determine the solution of the initial boundary-value prob-
lem

utt − uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

ut (x, 0) = 0, 0 ≤ x ≤ 1, (7.8.13)

u (0, t) = 0, u (1, t) = 0, t ≥ 0.

In this case, c = 1, λn = nπ, bn = 0 and an is given by

an = 2

∫ 1

0

x (1 − x) sinnπx dx =
4

(nπ)
3 [1 − (−1)

n
] .

We also have

hn = 2

∫ 1

0

h sin
(nπx

l

)
dx =

2h

nπ
[1 − (−1)

n
] .
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Hence, the integral term in (7.8.9) represents φn (t) given by

φn (t) =
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ =
2h

nπλ2
n

[1 − (−1)
n
] (1 − cos λnt) .

The solution (7.8.10) is thus given by

u (x, t) =

∞∑

n=1

{
4

n3π3
[1 − (−1)

n
] cos nπt

+
2h

n3π3
[1 − (−1)

n
] (1 − cos nπt)

}
· sin nπx. (7.8.14)

We have treated the initial boundary-value problem with the fixed end
conditions. Problems with other boundary conditions can also be solved in
a similar manner.

We will now consider the initial boundary-value problem with time-
dependent boundary conditions, namely,

utt − uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.15)

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.

We assume a solution in the form

u (x, t) = v (x, t) + U (x, t) . (7.8.16)

Substituting this into equation (7.8.15), we obtain

vtt − c2vxx = h − Utt + c2Uxx.

For the initial and boundary conditions, we have

v (x, 0) = f (x) − U (x, 0) ,

vt (x, 0) = g (x) − Ut (x, 0) ,

v (0, t) = p (t) − U (0, t) ,

v (l, t) = q (t) − U (l, t) .

In order to make the boundary conditions homogeneous, we set

U (0, t) = p (t) , U (l, t) = q (t) .

Thus, U (x, t) must take the form

U (x, t) = p (t) +
x

l
[q (t) − p (t)] . (7.8.17)



7.8 Nonhomogeneous Problems 263

The problem now is to find the function v (x, t) which satisfies

vtt − c2vxx = h − Utt = H (x, t) ,

v (x, 0) = f (x) − U (x, 0) = F (x) ,

vt (x, 0) = g (x) − Ut (x, 0) = G (x) , (7.8.18)

v (0, t) = 0, v (l, t) = 0.

This is the same type of problem as the one with homogeneous boundary
condition that has previously been treated.

Example 7.8.3. Find the solution of the problem

utt − uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

ut (x, 0) = 0, 0 ≤ x ≤ 1, (7.8.19)

u (0, t) = t, u (1, t) = sin t, t ≥ 0.

In this case, we use (7.8.16) and (7.8.17) with c = 1 and λn = nπ so
that

u (x, t) = v (x, t) + U (x, t) , U (x, t) = t + x (sin t − t) . (7.8.20)

Then, v must satisfy

vtt − vxx = h + x sin t,

v (x, 0) = x (1 − x) ,

vt (x, 0) = −1, (7.8.21)

v (0, t) = 0, v (1, t) = 0.

It follows from (7.8.8) that

hn (t) = 2

∫ 1

0

(h + x sin t) sinnπx dx

=
2h

nπ
[1 − (−1)

n
] +

2 (−1)
n+1

nπ
sin t = a + b sin t (say). (7.8.22)

We also find

an = 2

∫ 1

0

x (1 − x) sinnπx dx =
4

(nπ)
3 [1 − (−1)

n
] ,

and

bn =
2

nπ

∫ 1

0

sin nπx dx =
2

(nπ)
2 [1 − (−1)

n
] .
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Then, we determine the integral term in (7.8.9) so that

φn (t) =
1

nπ

∫ t

0

(a + b sin τ) sin [nπ (t − τ)] dτ

=
1

nπ

{
a

nπ
(1 − cos nπt) +

b

4
[(sin 2t − 2t) cos nπt

− (cos 2t − 1) sin nπt]

}
. (7.8.23)

Hence, the solution of the problem (7.8.21) is

v (x, t) =
∞∑

n=1

[an cos nπt + bn sin nπt + φn (t)] sinnπx. (7.8.24)

Thus, the solution of problem (7.8.19) is given by

u (x, t) = v (x, t) + U (x, t) ,

where v (x, t) is given by (7.8.24) and U (x, t) is given by (7.8.20)

Example 7.8.4. Use the method of separation of variables to derive the Her-
mite equation from the Fokker–Planck equation of nonequilibrium statistical
mechanics

ut − uxx = (x u)x . (7.8.25)

We seek a nontrivial separable solution u (x, t) = X (x) T (t) so that
equation (7.8.25) reduces to a pair of ordinary differential equations

X ′′ + xX ′ + (1 + n) X = 0 and T ′ + nT = 0, (7.8.26ab)

where (−n) is a separation constant.
We next use

X (x) = exp

(
−1

2
x2

)
f (x) (7.8.27)

and rescale the independent variable to obtain the Hermite equation for f
in the form

d2f

dξ2
− 2ξ

df

dξ
+ 2nf = 0.

The solution of (7.8.26b) gives

T (t) = cn exp (−nt) , (7.8.28)

where the coefficients cn are constants.
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Thus, the solution of the Fokker–Planck equation is given by

u (x, t) =
∞∑

n=1

an exp

(
−nt − 1

2
x2

)
Hn

(
x√
2

)
, (7.8.29)

where Hn is the Hermite function and an are arbitrary constants to be
determined from the given initial condition

u (x, 0) = f (x) . (7.8.30)

We make the change of variables

ξ = x et and u = etv, (7.8.31)

in equation (7.8.25). Consequently, equation (7.8.25) becomes

∂v

∂t
= e2t ∂2v

∂ξ2
. (7.8.32)

Making another change of variable t to τ (t), we transform (7.8.32) into the
linear diffusion equation

∂v

∂τ
=

∂2v

∂ξ2
. (7.8.33)

Finally, we note that the asymptotic behavior of the solution u (x, t) as
t → ∞ is of special interest. The reader is referred to Reif (1965) for such
behavior.

7.9 Exercises

1. Solve the following initial boundary-value problems:

(a) utt = c2uxx, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x), ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = u (1, t) = 0, t > 0.

(b) utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = 3 sinx, ut (x, 0) = 0, 0 ≤ x ≤ π,

u (0, t) = u (1, t) = 0, t > 0.
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2. Determine the solutions of the following initial boundary-value prob-
lems:

(a) utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = 0, ut (x, 0) = 8 sin2 x, 0 ≤ x ≤ π,

u (0, t) = u (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = 0, ut (x, 0) = x sin πx, 0 ≤ x ≤ 1,

u (0, t) = u (1, t) = 0, t > 0.

3. Find the solution of each of the following problems:

(a) utt = c2uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x), ut (x, 0) = x − tan πx
4 , 0 ≤ x ≤ 1,

u (0, t) = u (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = sinx, ut (x, 0) = x2 − πx, 0 ≤ x ≤ π,

u (0, t) = u (π, t) = 0, t > 0.

4. Solve the following problems:

(a) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = x + sin x, ut (x, 0) = 0, 0 ≤ x ≤ π,

u (0, t) = ux (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = cos x, ut (x, 0) = 0, 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.
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5. By the method of separation of variables, solve the telegraph equation:

utt + aut + bu = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , ut (x, 0) = 0,

u (0, t) = u (l, t) = 0, t > 0.

6. Obtain the solution of the damped wave motion problem:

utt + aut = c2uxx, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = g (x) ,

u (0, t) = u (l, t) = 0.

7. The torsional oscillation of a shaft of circular cross section is governed
by the partial differential equation

θtt = a2θxx,

where θ (x, t) is the angular displacement of the cross section and a is
a physical constant. The ends of the shaft are fixed elastically, that is,

θx (0, t) − h θ (0, t) = 0, θx (l, t) + h θ (l, t) = 0.

Determine the angular displacement if the initial angular displacement
is f (x).

8. Solve the initial boundary-value problem of the longitudinal vibration
of a truncated cone of length l and base of radius a. The equation of
motion is given by

(
1 − x

h

)2 ∂2u

∂t2
= c2 ∂

∂x

[(
1 − x

h

)2 ∂u

∂x

]
, 0 < x < l, t > 0,

where c2 = (E/ρ), E is the elastic modulus, ρ is the density of the
material and h = la/ (a − l). The two ends are rigidly fixed. If the
initial displacement is f (x), that is, u (x, 0) = f (x), find u (x, t).

9. Establish the validity of the formal solution of the initial boundary-
value problems:

utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.

10. Prove the uniqueness of the solution of the initial boundary-value prob-
lem:

utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.
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11. Determine the solution of

utt = c2uxx + A sinhx, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ l,

u (0, t) = h, u (l, t) = k, t > 0,

where h, k, and A are constants.
12. Solve the problem:

utt = c2uxx + Ax, 0 < x < 1, t > 0, A = constant,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 0, t > 0.

13. Solve the problem:

utt = c2uxx + x2, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 1, t ≥ 0.

14. Find the solution of the following problems:

(a) ut = kuxx + h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = u0 (1 − cos πx) , 0 ≤ x ≤ 1, u0 = constant,

u (0, t) = 0, u (l, t) = 2u0, t ≥ 0.

(b) ut = kuxx − hu, 0 < x < l, t > 0, h = constant,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ux (0, t) = ux (l, t) = 0, t > 0.

15. Obtain the solution of each of the following initial boundary-value prob-
lems:

(a) ut = 4uxx, 0 < x < 1, t > 0,

u (x, 0) = x2 (1 − x), 0 ≤ x ≤ 1,

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

(b) ut = k uxx, 0 < x < π, t > 0,

u (x, 0) = sin2 x, 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) = 0, t ≥ 0.
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(c) ut = uxx, 0 < x < 2, t > 0,

u (x, 0) = x, 0 ≤ x ≤ 2,

u (0, t) = 0, ux (2, t) = 1, t ≥ 0.

(d) ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = sin (πx/2l), 0 ≤ x ≤ l,

u (0, t) = 0, u (l, t) = 1, t ≥ 0.

16. Find the temperature distribution in a rod of length l. The faces are
insulated, and the initial temperature distribution is given by x (l − x).

17. Find the temperature distribution in a rod of length π, one end of which
is kept at zero temperature and the other end of which loses heat at
a rate proportional to the temperature at that end x = π. The initial
temperature distribution is given by f (x) = x.

18. The voltage distribution in an electric transmission line is given by

vt = k vxx, 0 < x < l, t > 0.

A voltage equal to zero is maintained at x = l, while at the end x = 0,
the voltage varies according to the law

v (0, t) = Ct, t > 0,

where C is a constant. Find v (x, t) if the initial voltage distribution is
zero.

19. Establish the validity of the formal solution of the initial boundary-
value problem:

ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = 0, ux (l, t) = 0, t ≥ 0.

20. Prove the uniqueness of the solution of the problem:

ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, ux (l, t) = 0, t ≥ 0.
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21. Solve the radioactive decay problem:

ut − k uxx = Ae−ax, 0 < x < π, t > 0,

u (x, 0) = sinx, 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) = 0, t ≥ 0.

22. Determine the solution of the initial boundary-value problem:

ut − k uxx = h (x, t) , 0 < x < l, t > 0, k = constant,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.

23. Determine the solution of the initial boundary-value problem:

ut − k uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

24. Solve the problem:

ut − k uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

u (0, t) = t, u (1, t) = sin t, t ≥ 0.

25. Solve the problem:

ut − 4uxx = xt, 0 < x < 1, t ≥ 0,

u (x, 0) = sinπx, 0 ≤ x ≤ 1,

u (0, t) = t, u (1, t) = t2, t ≥ 0.

26. Solve the problem:

ut − k uxx = x cos t, 0 < x < π, t > 0,

u (x, 0) = sinx, 0 ≤ x ≤ π,

u (0, t) = t2, u (π, t) = 2t, t ≥ 0.

27. Solve the problem:

ut − uxx = 2x2t, 0 < x < 1, t > 0,

u (x, 0) = cos (3πx/2) , 0 ≤ x ≤ 1,

u (0, t) = 1, ux (1, t) =
3π

2
, t ≥ 0.

28. Solve the problem:

ut − 2 uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x, 0 ≤ x ≤ 1,

u (0, t) = sin t, ux (1, t) + u (1, t) = 2, t ≥ 0.
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29. Determine the solution of the initial boundary-value problem:

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

30. Determine the solution of the initial boundary-value problem:

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

31. Solve the problem:

utt − uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = t2, u (1, t) = cos t, t ≥ 0.

32. Solve the problem:

utt − 4 uxx = xt, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, ux (1, t) = 1 + t, t ≥ 0.

33. Solve the problem:

utt − 9 uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = sin
(πx

2

)
, ut (x, 0) = 1 + x, 0 ≤ x ≤ 1,

ux (0, t) = π/2, ux (1, t) = 0, t ≥ 0.

34. Find the solution of the problem:

utt + 2k ut − c2uxx = 0, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ l,

ux (0, t) = 0, u (l, t) = h, t ≥ 0, h = constant.

35. Solve the problem:

ut − c2uxx + hu = hu0, −π < x < π, t > 0,

u (x, 0) = f (x) , −π ≤ x ≤ π,

u (−π, t) = u (π, t) , ux (−π, t) = ux (π, t) , t ≥ 0,

where h and u0 are constants.
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36. Prove the uniqueness theorem for the boundary-value problem involving
the Laplace equation:

uxx + uyy = 0, 0 < x < a, 0 < y < b,

u (x, 0) = f (x) , u (x, b) = 0, 0 ≤ x ≤ a,

ux (0, y) = 0 = ux (a, y) , 0 ≤ y ≤ b.

37. Consider the telegraph equation problem:

utt − c2uxx + aut + bu = 0, 0 < x < l, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) for 0 ≤ x ≤ l,

u (0, t) = 0 = u (l, t) for t ≥ 0,

where a and b are positive constants.

(a) Show that, for any T > 0,

∫ l

0

(
u2

t + c2u2
x + bu2

)
t=T

dx ≤
∫ l

0

(
u2

t + c2u2
x + bu2

)
t=0

dx.

(b) Use the above integral inequality from (a) to show that the initial
boundary-value problem for the telegraph equation can have only one
solution.
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Eigenvalue Problems and Special Functions

“The tool which serves as intermediary between theory and practice, be-
tween thought and observation, is mathematics; it is mathematics which
builds the linking bridges and gives the ever more reliable forms. From this
it has come about that our entire contemporary culture, in as much as it
is based on the intellectual penetration and the exploitation of nature, has
its foundations in mathematics.”

David Hilbert

“In 1836/7, he published some important joint work with his friend Sturm
on what became known as Sturm–Liouville theory, which became important
in physics.”

Ioan James

8.1 Sturm–Liouville Systems

In the preceding chapter, we determined the solutions of partial differen-
tial equations by the method of separation of variables. In this chapter, we
generalize the method of separation of variables and the associated eigen-
value problems. This generalization, usually known as the Sturm–Liouville
theory, greatly extends the scope of the method of separation of variables.

Under separable conditions we transformed the second-order homoge-
neous partial differential equation into two ordinary differential equations
(7.2.11) and (7.2.12) which are of the form

a1 (x)
d2y

dx2
+ a2 (x)

dy

dx
+ [a3 (x) + λ] y = 0. (8.1.1)

If we introduce
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p (x) = exp

[∫ x a2 (t)

a1 (t)
dt

]
, q (x) =

a3 (x)

a1 (x)
p (x) , s (x) =

p (x)

a1 (x)
, (8.1.2)

into equation (8.1.1), we obtain

d

dx

(
p

dy

dx

)
+ (q + λ s) y = 0, (8.1.3)

which is known as the Sturm–Liouville equation. In terms of the Sturm–
Liouville operator

L ≡ d

dx

(
p

d

dx

)
+ q,

equation (8.1.3) can be written as

L [y] + λ s (x) y = 0, (8.1.4)

where λ is a parameter independent of x, and p, q, and s are real-valued
functions of x. To ensure the existence of solutions, we let q and s be
continuous and p be continuously differentiable in a closed finite interval
[a, b].

The Sturm–Liouville equation is called regular in the interval [a, b] if
the functions p (x) and s (x) are positive in the interval [a, b]. Thus, for a
given λ, there exist two linearly independent solutions of a regular Sturm–
Liouville equation in the interval [a, b].

The Sturm–Liouville equation

L [y] + λ s (x) y = 0, a ≤ x ≤ b,

together with the separated end conditions

a1y (a) + a2y
′ (a) = 0, b1y (b) + b2y

′ (b) = 0, (8.1.5)

where a1 and a2, and likewise b1 and b2, are not both zero and are given
real numbers, is called a regular Sturm–Liouville (RSL) system.

The values of λ for which the Sturm–Liouville system has a nontrivial
solution are called the eigenvalues, and the corresponding solutions are
called the eigenfunctions. For a regular Sturm–Liouville problem, we denote
the domain of L by D (L), that is, D (L) is the space of all complex-valued
functions y defined on [a, b] for which y′′ ∈ L2 ([a, b]) and which satisfy
boundary conditions (8.1.5).

Example 8.1.1. Consider the regular Sturm–Liouville problem

y′′ + λy = 0, 0 ≤ x ≤ π,

y (0) = 0, y′ (π) = 0.



8.1 Sturm–Liouville Systems 275

When λ ≤ 0, it can be readily shown that λ is not an eigenvalue. How-
ever, when λ > 0, the solution of the Sturm–Liouville equation is

y (x) = A cos
√

λ x + B sin
√

λ x.

Applying the condition y (0) = 0, we obtain A = 0. The condition y′ (π) = 0
yields

B
√

λ cos
√

λ π = 0.

Since λ �= 0 and B = 0 yields a trivial solution, we must have

cos
√

λ π = 0, B �= 0.

This equation is satisfied if

√
λ =

2n − 1

2
, n = 1, 2, 3, . . . ,

and hence, the eigenvalues are λn = (2n − 1)
2
/4, and the corresponding

eigenfunctions are

sin

(
2n − 1

2

)
x, n = 1, 2, 3, . . . .

Example 8.1.2. Consider the Euler equation

x2y′′ + xy′ + λu = 0, 1 ≤ x ≤ e

with the end conditions

y (1) = 0, y (e) = 0.

By using the transformation (8.1.2), the Euler equation can be put into
the Sturm–Liouville form:

d

dx

(
x

dy

dx

)
+

1

x
λ y = 0.

The solution of the Euler equation is

y (x) = c1 xi
√

λ + c2 x−i
√

λ.

Noting that xia = eia ln x = cos (a lnx) + i sin (a lnx), the solution y (x)
becomes

y (x) = A cos
(√

λ ln x
)

+ B sin
(√

λ ln x
)

,

where A and B are constants related to c1 and c2. The end condition
y (1) = 0 gives A = 0, and the end condition y (e) = 0 gives
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sin
√

λ = 0, B �= 0,

which in turn yields the eigenvalues

λn = n2π2, n = 1, 2, 3, . . . ,

and the corresponding eigenfunctions

sin (nπ ln x) , n = 1, 2, 3, . . . .

Another type of problem that often occurs in practice is the periodic
Sturm–Liouville system.

The Sturm–Liouville equation

d

dx

(
p (x)

dy

dx

)
+ [q (x) + λs (x)] y = 0, a ≤ x ≤ b,

in which p (a) = p (b), together with the periodic end conditions

y (a) = y (b) , y′ (a) = y′ (b)

is called a periodic Sturm–Liouville system.

Example 8.1.3. Consider the periodic Sturm–Liouville system

y′′ + λy = 0, −π ≤ x ≤ π,

y (−π) = y (π) , y′ (−π) = y′ (π) .

Here we note that p (x) = 1, hence p (−π) = p (π). When λ > 0, we see
that the solution of the Sturm–Liouville equation is

y (x) = A cos
√

λx + B sin
√

λx.

Application of the periodic end conditions yields
(
2 sin

√
λπ

)
B = 0,

(
2
√

λ sin
√

λπ
)

A = 0.

Thus, to obtain a nontrivial solution, we must have

sin
(√

λ
)

π = 0, A �= 0, B �= 0.

Consequently,

λn = n2, n = 1, 2, 3, . . . .

Since sin
√

λπ = 0 is satisfied for arbitrary A and B, we obtain two linearly
independent eigenfunctions cosnx, and sinnx corresponding to the same
eigenvalue n2.

It can be readily shown that if λ < 0, the solution of the Sturm–Liouville
equation does not satisfy the periodic end conditions. However, when λ = 0
the corresponding eigenfunction is 1. Thus, the eigenvalues of the periodic
Sturm–Liouville system are 0,

{
n2

}
, and the corresponding eigenfunctions

are 1, {cos nx}, {sin nx}, where n is a positive integer.
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8.2 Eigenvalues and Eigenfunctions

In Examples 8.1.1 and 8.1.2 of the regular Sturm–Liouville systems in the
preceding section, we see that there exists only one linearly independent
eigenfunction corresponding to the eigenvalue λ, which is called an eigen-
value of multiplicity one (or a simple eigenvalue). An eigenvalue is said to
be of multiplicity k if there exist k linearly independent eigenfunctions cor-
responding to the same eigenvalue. In Example 8.1.3 of the periodic Sturm–
Liouville system, the eigenfunctions cosnx, sinnx correspond to the same
eigenvalue n2. Thus, this eigenvalue is of multiplicity two.

In the preceding examples, we see that the eigenfunctions are cos nx
and sinnx for n = 1, 2, 3, . . .. It can be easily shown by using trigonometric
identities that

∫ π

−π

cos mx cos nx dx = 0, m �= n,

∫ π

−π

cos mx sin nx dx = 0, for all integers m, n,

∫ π

−π

sin mx sin nx dx = 0, m �= n.

We say that these functions are orthogonal to each other in the interval
[−π, π]. The orthogonality relation holds in general for the eigenfunctions
of Sturm–Liouville systems

Let φ (x) and ψ (x) be any real-valued integrable functions on an interval
I. Then φ and ψ are said to be orthogonal on I with respect to a weight
function ρ (x) > 0, if and only if,

〈φ, ψ〉 =

∫

I

φ (x) ψ (x) ρ (x) dx = 0. (8.2.1)

The interval I may be of infinite extent, or it may be either open or closed
at one or both ends of the finite interval.

When φ = ψ in (8.2.1) we define the norm of φ by

‖φ‖ =

[∫

I

φ2 (x) ρ (x) dx

] 1
2

. (8.2.2)

Theorem 8.2.1. Let the coefficients p, q, and s in the Sturm–Liouville sys-
tem be continuous in [a, b]. Let the eigenfunctions φj and φk, corresponding
to λj and λk, be continuously differentiable. Then φj and φk are orthogonal
with respect to the weight function s (x) in [a, b].

Proof. Since φj corresponding to λj satisfies the Sturm–Liouville equa-
tion, we have

d

dx

(
p φ′

j

)
+ (q + λjs) φj = 0 (8.2.3)
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and for the same reason

d

dx
(p φ′

k) + (q + λks) φk = 0. (8.2.4)

Multiplying equation (8.2.3) by φk and equation (8.2.4) by φj , and sub-
tracting, we obtain

(λj − λk) s φjφk = φj
d

dx
(p φ′

k) − φk
d

dx

(
p φ′

j

)

=
d

dx

[
(p φ′

k) φj −
(
p φ′

j

)
φk

]

and integrating yields

(λj − λk)

∫ b

a

s φjφkdx =
[
p
(
φjφ

′
k − φ′

jφk

)]b

a

= p (b)
[
φj (b) φ′

k (b) − φ′
j (b) φk (b)

]

−p (a)
[
φj (a) φ′

k (a) − φ′
j (a) φk (a)

]
(8.2.5)

the right side of which is called the boundary term of the Sturm–Liouville
system. The end conditions for the eigenfunctions φj and φk are

b1φj (b) + b2φ
′
j (b) = 0,

b1φk (b) + b2φ
′
k (b) = 0.

If b2 �= 0, we multiply the first condition by φk (b) and the second condition
by φj (b), and subtract to obtain

[
φj (b) φ′

k (b) − φ′
j (b) φk (b)

]
= 0. (8.2.6)

In a similar manner, if a2 �= 0, we obtain

[
φj (a) φ′

k (a) − φ′
j (a) φk (a)

]
= 0. (8.2.7)

We see by virtue of (8.2.6) and (8.2.7) that

(λj − λk)

∫ b

a

s φj φk dx = 0. (8.2.8)

If λj and λk are distinct eigenvalues, then

∫ b

a

s φj φk dx = 0. (8.2.9)

Theorem 8.2.2. The eigenfunctions of a periodic Sturm–Liouville system
in [a, b] are orthogonal with respect to the weight function s (x) in [a, b].
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Proof. The periodic conditions for the eigenfunctions φj and φk are

φj (a) = φj (b) , φ′
j (a) = φ′

j (b) ,

φk (a) = φk (b) , φ′
k (a) = φ′

k (b) .

Substitution of these into equation (8.2.5) yields

(λj − λk)

∫ b

a

s φj φk dx = [p (b) − p (a)]
[
φj (a) φ′

k (a) − φ′
j (a) φk (a)

]
.

Since p (a) = p (b), we have

(λj − λk)

∫ b

a

s φj φk dx = 0. (8.2.10)

For distinct eigenvalues λj �= λk, (λj − λk) �= 0 and thus,

∫ b

a

s φj φk dx = 0. (8.2.11)

Theorem 8.2.3. For any y, z ∈ D (L), we have the Lagrange identity

yL [z] − zL [y] =
d

dx
[p (yz′ − zy′)] . (8.2.12)

Proof. Using the definition of the Sturm–Liouville operator, we have

yL [z] − zL [y] = y
d

dx

(
p
dz

dx

)
+ qyz − z

d

dx

(
p
dy

dx

)
− qyz

=
d

dx
[p (yz′ − zy′)] .

Theorem 8.2.4. The Sturm–Liouville operator L is self-adjoint. In other
words, for any y, z ∈ D (L), we have

〈L [y] , z〉 = 〈y, L [z]〉 , (8.2.13)

where < , > is the inner product in L2 ([a, b]) defined by

〈f, g〉 =

∫ b

a

f (x) g (x) dx. (8.2.14)

Proof. Since all constants involved in the boundary conditions of Sturm–
Liouville system are real, if z ∈ D (L), then z ∈ D (L).

Also since p, q and s are real-valued, L [z] = L [z]. Consequently, we
have

〈L [y] , z〉 − 〈y, L [z]〉 =

∫ b

a

(z L [y] − y L [z]) dx

= [p (z y′ − y z′)]
b
a , by (8.2.12) . (8.2.15)
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We next show that the right hand side of this equality vanishes for a
regular RSL system. If p (a) = 0, the result follows immediately. If p (a) > 0,
then y and z satisfy the boundary conditions of the form (8.1.5) at x = a.
That is,

⎡
⎣

y (a) y′ (a)

z (a) z′ (a)

⎤
⎦

⎡
⎣

a1

a2

⎤
⎦ = 0.

Since a1 and a2 are not both zero, we have

z (a) y′ (a) − y (a) z′ (a) = 0.

A similar argument can be used to the other end point x = b, so that the
right-hand side of (8.2.15) vanishes. This proves the theorem.

Theorem 8.2.5. All the eigenvalues of a regular Sturm–Liouville system
with s (x) > 0 are real.

Proof. Let λ be an eigenvalue of a RSL system and let y (x) be the
corresponding eigenfunction. This means that y �= 0 and L [y] = −λsy.
Then

0 = 〈L [y] , y〉 − 〈y, L [y]〉 =
(
λ − λ

) ∫ b

a

s (x) |y (x)|2 dx.

Since s (x) > 0 in [a, b] and y �= 0, the integrand is a positive number. Thus,
λ = λ, and hence, the eigenvalues are real. This completes the proof.

Theorem 8.2.6. If φ1 (x) and φ2 (x) are any two solutions of the equation
L [y] + λsy = 0 on [a, b], then p (x) W (x; φ1, φ2) = constant, where W is
the Wronskian.

Proof. Since φ1 and φ2 are solutions of L [y] + λsy = 0, we have

d

dx

(
p

dφ1

dx

)
+ (q + λs) φ1 = 0,

d

dx

(
p

dφ2

dx

)
+ (q + λs) φ2 = 0.

Multiplying the first equation by φ2 and the second equation by φ1, and
subtracting, we obtain

φ1
d

dx

(
p

dφ2

dx

)
− φ2

d

dx

(
p

dφ1

dx

)
= 0.

Integrating this equation from a to x, we obtain

p (x) [φ1 (x) φ′
2 (x) − φ′

1 (x) φ2 (x)] = p (a) [φ1 (a) φ′
2 (a) − φ′

1 (a) φ2 (a)]

p (x) W (x; φ, φ2) = constant. (8.2.16)

This is called Abel’s formula where W is the Wronskian.
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Theorem 8.2.7. An eigenfunction of a regular Sturm–Liouville system is
unique except for a constant factor.

Proof. Let φ1 (x) and φ2 (x) be eigenfunctions corresponding to an eigen-
value λ. Then, according to Abel’s formula (8.2.16), we have

p (x) W (x; φ1, φ2) = constant, p (x) > 0,

where W is the Wronskian. Thus, if W vanishes at a point in [a, b], it must
vanish for all x ∈ [a, b].

Since φ1 and φ2 satisfy the end condition at x = a, we have

a1φ1 (a) + a2φ
′
1 (a) = 0,

a1φ2 (a) + a2φ
′
2 (a) = 0.

Since a1 and a2 are not both zero, we have

∣∣∣∣∣∣

φ1 (a) φ′
1 (a)

φ1 (a) φ′
2 (a)

∣∣∣∣∣∣
= W (a; φ1, φ2) = 0.

Therefore, W (x; φ1φ2) = 0 for all x ∈ [a, b], which is a sufficient condition
for the linear dependence of two functions φ1 and φ2. Hence, φ1 (x) differs
from φ2 (x) only by a constant factor.

Theorem 8.2.5 states that all eigenvalues of a regular Sturm–Liouville
system are real, but it does not guarantee that any eigenvalue exists. How-
ever, it can be proved that a self-adjoint regular Sturm–Liouville system
has a denumerably infinite number of eigenvalues. To illustrate this, we
consider the following example.

Example 8.2.1. Consider the Sturm–Liouville system

y′′ + λy = 0, 0 ≤ x ≤ 1,

y (0) = 0, y (1) + hy′ (1) = 0, h > 0 a constant.

Here p = 1, q = 0, s = 1. The solution of the Sturm–Liouville equation
is

y (x) = A cos
√

λx + B sin
√

λx.

Since y (0) = 0, gives A = 0, we have

y (x) = B sin
√

λx.

Applying the second end condition, we have

sin
√

λ + h
√

λ cos
√

λ = 0, B �= 0
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which can be rewritten as

tan
√

λ = −h
√

λ.

If α =
√

λ is introduced in this equation, we have

tanα = −hα.

This equation does not possess an explicit solution. Thus, we determine
the solution graphically by plotting the functions ξ = tanα and ξ = −hα
against α, as shown in Figure 8.2.1. The roots are given by the intersection
of two curves, and as is evident from the graph, there are infinitely many
roots αn for n = 1, 2, 3, . . .. To each root αn, there corresponds an eigenvalue

λn = α2
n, n = 1, 2, 3, . . . .

Thus, there exists an ordered sequence of eigenvalues

λ0 < λ1 < λ2 < λ3 < . . .

with

lim
n→∞

λn = ∞.

The corresponding eigenfunctions are sin
(√

λn x
)
.

Figure 8.2.1 Intersection of ξ = tan α and ξ = −h α.
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Theorem 8.2.8. A self-adjoint regular Sturm–Liouville system has an in-
finite sequence of real eigenvalues

λ1 < λ2 < λ3 < . . .

with

lim
n→∞

λn = ∞.

For each n the corresponding eigenfunction φn (x), uniquely determined up
to a constant factor, has exactly n zeros in the interval (a, b).

Proof of this theorem can be found in the book by Myint-U (1978).

8.3 Eigenfunction Expansions

A real-valued function φ (x) is said to be square-integrable with respect to
a weight function ρ (x) > 0, if, on an interval I,

∫

I

φ2 (x) ρ (x) dx < +∞. (8.3.1)

An immediate consequence of this definition is the Schwarz inequality

∣∣∣∣
∫

I

φ (x) ψ (x) ρ (x) dx

∣∣∣∣
2

≤
∫

I

φ2 (x) ρ (x) dx

∫

I

ψ2 (x) ρ (x) dx (8.3.2)

for square-integrable functions φ (x) and ψ (x).
Let {φn (x)}, for positive integers n, be an orthogonal set of square-

integrable functions with a positive weight function ρ (x) on an interval
I. Let f (x) be a given function that can be represented by a uniformly
convergent series of the form

f (x) =

∞∑

n=1

cn φn (x) , (8.3.3)

where the coefficients cn are constants. Now multiplying both sides of (8.3.3)
by φm (x) ρ (x) and integrating term by term over the interval I (uniform
convergence of the series is a sufficient condition for this), we obtain

∫

I

f (x) φm (x) ρ (x) dx =

∞∑

n=1

∫

I

cnφn (x) φm (x) ρ (x) dx,

and hence, for n = m,
∫

I

f (x) φn (x) ρ (x) dx = cn

∫

I

φ2
n (x) ρ (x) dx.
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Thus,

cn =

∫
I
f φn ρ dx∫

I
φ2

n ρ dx
. (8.3.4)

Hence, we have the following theorem:

Theorem 8.3.1. If f is represented by a uniformly convergent series

f (x) =
∞∑

n=1

cnφn (x)

on an interval I, where φn are square-integrable functions orthogonal with
respect to a positive weight function ρ (x), then cn are determined by

cn =

∫
I
f φn ρ dx∫

I
φ2

n ρ dx
.

Example 8.3.1. The Legendre polynomials Pn (x) are orthogonal with re-
spect to the weight function ρ (x) = 1 on (−1, 1). If we assume that f (x)
can be represented by the Fourier–Legendre series

f (x) =

∞∑

n=1

cnPn (x)

then, cn are given by

cn =

∫ 1

−1
f (x) Pn (x) dx

∫ 1

−1
P 2

n (x) dx

=

(
2n + 1

2

)∫ 1

−1

f (x) Pn (x) dx.

In the above discussion, we assumed that the given function f (x) is
represented by a uniformly convergent series. This is rather restrictive, and
we will show in the following section that f (x) can be represented by a
mean-square convergent series.

8.4 Convergence in the Mean

Let {φn} be the set of square-integrable functions orthogonal with respect
to a weight function ρ (x) on [a, b]. Let

sn (x) =

n∑

k=1

ckφk (x)
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be the nth partial sum of the series

∞∑

k=1

ckφk (x).

Let f be a square-integrable function. The sequence {sn} is said to
converge in the mean to f (x) on the interval I with respect to the weight
function ρ (x) if

lim
n→+∞

∫

I

[f (x) − sn (x)]
2
ρ (x) dx = 0. (8.4.1)

We shall now seek the coefficients ck such that sn (x) represents the
best approximation to f (x) in the sense of least squares, that is, we seek
to minimize the integral

E (ck) =

∫

I

[f (x) − sn (x)]
2
ρ (x) dx

=

∫

I

f2ρ dx − 2

n∑

k=1

ck

∫

I

f φk ρ dx +

n∑

k=1

c2
k

∫

I

φ2
k ρ dx. (8.4.2)

This is an extremal problem. A necessary condition on the ck for E to
be minimum is that the first partial derivatives of E with respect to these
coefficients vanish. Thus, differentiating (8.4.2) with respect to ck, we obtain

∂E

∂ck
= −2

∫

I

f φk ρ dx + 2ck

∫

I

φ2
k ρ dx = 0 (8.4.3)

and hence,

ck =

∫
I
f φk ρ dx∫

I
φ2

k ρ dx
. (8.4.4)

Now if we complete the square, the right side of (8.4.2) becomes

E =

∫

I

f2ρ dx +

n∑

k=1

∫

I

φ2
k ρ dx

[
ck −

∫
I
f φk ρ dx∫

I
φ2

k ρ dx

]2

−
n∑

k=1

(∫
I
f φk ρ dx

)2

∫
I
φ2

k ρ dx
.

The right side shows that E is a minimum if and only if ck is given by
(8.4.4). Therefore, this choice of ck yields the best approximation to f (x)
in the sense of least squares.

For series convergent in the mean to f (x), we conventionally write

f (x) ∼
∞∑

k=1

ckφk (x) ,

where the coefficients ck are the generalized Fourier coefficients and the
series is the generalized Fourier series. This series may or may not be point-
wise or uniformly convergent.



286 8 Eigenvalue Problems and Special Functions

8.5 Completeness and Parseval’s Equality

Substituting the Fourier coefficients (8.4.4) into (8.4.2), we obtain

∫

I

(
f (x) −

n∑

k=1

ckφk (x)

)2

ρ (x) dx =

∫

I

f2ρ dx −
n∑

k=1

c2
k

∫

I

φ2
k ρ dx.

Since the left side is nonnegative, we have

n∑

k=1

c2
k

∫

I

φ2
k ρ dx ≤

∫

I

f2ρ dx. (8.5.1)

The integral on the right side is finite, and hence, the series on the left side
is bounded above for any n. Thus, as n → ∞, the inequality (8.5.1) may
be written as

∞∑

k=1

c2
k

∫

I

φ2
k ρ dx ≤

∫

I

f2ρ dx. (8.5.2)

This is called Bessel’s inequality.
If the series converges in the mean to f (x), that is,

lim
n→∞

∫

I

(
f (x) −

n∑

k=1

ckφk (x)

)2

ρ (x) dx = 0,

then, it follows from the above derivation that

∞∑

k=1

c2
k

∫

I

φ2
kρ dx =

∫

I

f2ρ dx

which is called Parseval’s equality. Sometimes it is known as the complete-
ness relation. Thus, when every continuous square-integrable function f (x)
can be expanded into an infinite series

f (x) =

∞∑

k=1

ckφk (x) ,

the sequence of continuous square-integrable functions {φk} orthogonal
with respect to the weight function ρ is said to be complete.

Next we state the following theorem:

Theorem 8.5.1. The eigenfunctions of any regular Sturm–Liouville sys-
tem are complete in the space of functions that are piecewise continuous
on the interval [a, b] with respect to the weight function s (x). Moreover,
any piecewise smooth function on [a, b] that satisfies the end conditions of
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the regular Sturm–Liouville system can be expanded in an absolutely and
uniformly convergent series

f (x) =

∞∑

k=1

ckφk (x) ,

where ck are given by

ck =

∫ b

a

f φk s (x) dx

/∫ b

a

φ2
k s (x) dx.

Proof of a more general theorem can be found in Coddington and Levinson
(1955).

Example 8.5.1. Consider a cylindrical wire of length l whose surface is per-
fectly insulated against the flow of heat. The end l = 0 is maintained at the
zero degree temperature, while the other end radiates freely into the sur-
rounding medium of zero degree temperature. Let the initial temperature
distribution in the wire be f (x). Find the temperature distribution u (x, t).

The initial boundary-value problem is

ut = k uxx, 0 < x < l, t > 0, (8.5.3)

u (x, 0) = f (x) , 0 < x ≤ l, (8.5.4)

u (0, t) = 0, t > 0, (8.5.5)

hu (l, t) + u′ (l, t) = 0, t > 0, h > 0. (8.5.6)

By the method of separation of variables, we assume a nontrivial solu-
tion in the form

u (x, t) = X (x) T (t)

and substituting it in the heat equation, we obtain

X ′′ + λX = 0, T ′ + kλT = 0,

where λ > 0 is a separation constant. The solution of the latter equation is

T (t) = Ce−kλt (8.5.7)

where C is an arbitrary constant. The former equation has to be solved
subject to the boundary conditions

X (0) = 0, hX (l) + X ′ (l) = 0.

This is a Sturm–Liouville system which gives the solution with X (0) = 0

X (x) = B sin
√

λx, (8.5.8)
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where B is a constant to be determined.
Application of the second end condition (8.5.6) yields

h sin
√

λ l +
√

λ cos
√

λ l = 0 for B �= 0

which can be rewritten as

tan
√

λ l = −
√

λ/h.

If α =
√

λ l is introduced in the preceding equation, we have

tanα = −a α,

where a = (1/hl). As in Example 8.2.1, there exists a sequence of eigenval-
ues

λ1 < λ2 < λ3 < . . .

with limn→∞ λn = ∞. The corresponding eigenfunctions are sin
√

λn x, and
hence,

Xn (x) = Bn sin
√

λn x. (8.5.9)

Therefore, combining (8.5.7) with C = Cn and (8.5.9), the solution takes
the form

un (x, t) = an e−kλnt sin
√

λn x, an = BnCn

which satisfies the heat equation and the boundary conditions. Since the
heat equation is linear and homogeneous, we form the series solution

u (x, t) =
∞∑

n=1

an e−kλnt sin
√

λn x, (8.5.10)

which is also a solution, provided it converges and is twice differentiable
with respect to x and once differentiable with respect to t. According to
Theorem 8.2.1, the eigenfunctions sin

√
λn x form an orthogonal system

over the interval (0, l). Application of the initial condition yields

u (x, 0) = f (x) ∼
∞∑

n=1

an sin
√

λn x.

If we assume that f is a piecewise smooth function on [a, b], then, by Theo-
rem 8.5.1, we can expand f (x) in terms of the eigenfunctions, and formally
write

f (x) =

∞∑

n=1

an sin
√

λn x,

where the coefficient an is given by

an =

∫ l

0

f (x) sin
√

λn x dx

/∫ l

0

sin2
√

λn x dx.

With this value of an, the temperature distribution is given by (8.5.10).
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8.6 Bessel’s Equation and Bessel’s Function

Bessel’s equation frequently occurs in problems of applied mathematics and
mathematical physics involving cylindrical symmetry.

The standard form of Bessel’s equation is given by

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0, (8.6.1)

where ν is a nonnegative real number. We shall first restrict our attention
to x > 0. Since x = 0 is the regular singular point, a solution is taken in
accordance with the Frobenius method to be

y (x) =

∞∑

n=0

an xs+n, (8.6.2)

where the index s is to be determined. Substitution of this series into equa-
tion (8.6.1) then yields

(
s2 − ν2

)
a0 xs +

[
(s + 1)

2 − ν2
]
a1x

s+1

+

∞∑

n=2

{[
(s + n)

2 − ν2
]
an + an−2

}
xs+n = 0. (8.6.3)

The requirement that the coefficient of xs vanish leads to the initial equation

(
s2 − ν2

)
a0 = 0, (8.6.4)

from which it follows that s = + ν for arbitrary a0 �= 0. Since the leading
term in the series (8.6.2) is a0 xs, it is clear that for ν > 0 the solution of
Bessel’s equation corresponding to the choice s = ν vanishes at the origin,
whereas the solution corresponding to s = −ν is infinite at that point.

We consider first the regular solution of Bessel’s equation, that is, the
solution corresponding to the choice s = ν. The vanishing of the coefficient
of xs+1 in equation (8.6.3) requires that

(2ν + 1) a1 = 0, (8.6.5)

which in turn implies that a1 = 0 (since ν ≥ 0). From the requirement that
the coefficient of xs+n in equation (8.6.3) be zero, we obtain the two-term
recurrence relation

an = − an−2

n (2ν + n)
. (8.6.6)

Since a1 = 0, it is obvious that an = 0 for n = 3, 5, 7, . . .. The remaining
coefficients are given by

a2k =
(−1)

k
a0

22kk! (ν + k) (ν + k − 1) . . . (ν + 1)
(8.6.7)
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for k = 1, 2, 3, . . .. This relation may also be written as

a2k =
(−1)

k
2νΓ (ν + 1) a0

22k+νk!Γ (ν + k + 1)
, k = 1, 2, . . . , (8.6.8)

where Γ (α) is the gamma function, whose properties are described in the
Appendix.

Hence, the regular solution of Bessel’s equation takes the form

y (x) = a0

∞∑

k=0

(−1)
k
2νΓ (ν + 1)

22k+νk!Γ (ν + k + 1)
x2k+ν . (8.6.9)

It is customary to choose

a0 =
1

2νΓ (ν + 1)
(8.6.10)

and to denote the corresponding solution by Jν (x). This solution, called
the Bessel function of the first kind of order ν, is therefore given by

Jν (x) =

∞∑

k=0

(−1)
k
x2k+ν

22k+νk! Γ (ν + k + 1)
. (8.6.11)

To determine the irregular solution of the Bessel equation for s = −ν,
we proceed as above. In this way, we obtain as the analogue of equation
(8.6.5) the relation

(−2ν + 1) a1 = 0

from which it follows, without loss of generality, that a1 = 0. Using the
recurrence relation

an = − an−2

n (n − 2ν)
, n ≥ 2 (8.6.12)

we obtain the irregular solution of the Bessel function of the first kind of
order −ν as

J−ν (x) =

∞∑

k=0

(−1)
k
x2k−ν

22k−νk! Γ (−ν + k + 1)
. (8.6.13)

It can be easily proved that, if ν is not an integer, Jν and J−ν converge
for all values of x, and are linearly independent. Thus, the general solution
of the Bessel equation for nonintegral ν is

y (x) = c1Jν (x) + c2J−ν (x) . (8.6.14)

If ν is an integer, say ν = n, then from equation (8.6.13), noting that,
when gamma functions in the coefficients of the first n terms become infi-
nite, the coefficients become zero, hence we have
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J−n (x) =

∞∑

k=n

(−1)
k
x2k−n

22k−nk! Γ (−n + k + 1)
.

= (−1)
n

∞∑

k=0

(−1)
k
x2k+n

22k+nk! Γ (n + k + 1)
.

= (−1)
n

Jn (x) . (8.6.15)

This shows that J−n is not independent of Jn, and therefore, a second
linearly independent solution is required.

A number of distinct irregular solutions are discussed in the literature,
but the one most commonly used, as defined by Watson (1966), is

Yν (x) =
(cos νπ) Jν (x) − J−ν (x)

sin νπ
. (8.6.16)

For nonintegral ν, it is obvious that Yν (x), being a linear combination of
Jν (x) and J−ν (x), is linearly independent of Jν (x). When ν is a nonneg-
ative integer n, Yν (x) is indeterminate. But

Yn (x) = lim
ν→n

Yν (x)

exists and is a solution of the Bessel equation. Moreover, it is linearly in-
dependent of Jn (x). (For an extended treatment, see Watson (1966)). The
function Yν (x) is called the Bessel function of the second kind of order ν.
Thus, the general solution of the Bessel equation is

y (x) = c1Jν (x) + c2Yν (x) , for ν ≥ 0. (8.6.17)

Like elementary functions, the Bessel functions are tabulated (see Jahnke
et al. (1960)). For illustration, the functions J0, J1, Y0 and Y1 are plotted
for small values of x in Figure 8.6.1.

It should be noted that Jν (x) for ν ≥ 0 and J−ν (x) for a positive
integer ν are finite at the origin, but J−ν (x) for nonintegral ν and Yν (x)
for ν ≥ 0 approach infinity as x tends to zero.

Some of the useful recurrence relations are

Jν−1 (x) + Jν+1 (x) =
2ν

x
Jν (x) , (8.6.18)

νJν (x) + xJ ′
ν (x) = xJν−1 (x) , (8.6.19)

Jν−1 (x) − Jν+1 (x) = 2J ′
ν (x) , (8.6.20)

νJν (x) − xJ ′
ν (x) = xJν+1 (x) , (8.6.21)

d

dx
[xνJν (x)] = xνJν−1 (x) , (8.6.22)

d

dx

[
x−νJν (x)

]
= −x−νJν+1 (x) . (8.6.23)

All of these relations also hold true for Yν (x).
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Figure 8.6.1 Graphs of Jν (x) and Yν (x).

For |x| ≫ 1 and |x| ≫ ν, the asymptotic expansion of Jν (x) is

Jν−1 (x) ∼
√

2

πx

[{
1 −

(
4ν2 − 12

) (
4ν2 − 32

)

2! (8x)
2

+

(
4ν2 − 12

) (
4ν2 − 32

) (
4ν2 − 52

) (
4ν2 − 72

)

4! (8x)
4 − . . .

}
cos φ

−
{(

4ν2 − 12
)

8x
−

(
4ν2 − 12

) (
4ν2 − 32

) (
4ν2 − 52

)

3! (8x)
3 + . . .

}
sin φ

]

(8.6.24)

where

φ = x −
(

ν +
1

2

)
π

2
.

For |x| ≫ 1 and |x| ≫ ν, the asymptotic expansion of Yν (x) is
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Yν (x) ∼
√

2

πx

[{
1 −

(
4ν2 − 12

) (
4ν2 − 32

)

2! (8x)
2

+

(
4ν2 − 12

) (
4ν2 − 32

) (
4ν2 − 52

) (
4ν2 − 72

)

4! (8x)
4 − . . .

}
sin φ

+

{(
4ν2 − 12

)

8x
−

(
4ν2 − 12

) (
4ν2 − 32

) (
4ν2 − 52

)

3! (8x)
3 + . . .

}
cos φ

]
.

(8.6.25)

When ν = +(1/2), Bessel’s function may be expressed in the form

J 1
2

(x) =

√
2

πx
sin x, (8.6.26)

J− 1
2

(x) =

√
2

πx
cos x. (8.6.27)

The Bessel functions which satisfy the condition

Jν (akm) + hJ ′
ν (akm) = 0, h, a = constant, (8.6.28)

are orthogonal to each other with respect to the weight function x, that is,
for the nonnegative integer ν, the orthogonal relation is

∫ a

0

xJν (xkn) Jν (xkm) dx = 0, n �= m. (8.6.29)

When n = m, we have the norm

‖Jν (xkm)‖2
=

∫ a

0

x [Jν (xkm)]
2
dx

=
1

2k2
m

{
a2k2

m [J ′
ν (akm)]

2
+

(
a2k2

m − ν2
)
[Jν (akm)]

2
}

,

(8.6.30)

where km are the roots of (8.6.28).
We now give a particular example of the eigenfunction expansion the-

orem discussed in Sections 8.4 and 8.5. Assume a formal expansion of the
function f (x) defined in 0 ≤ x ≤ a in the form

f (x) =

∞∑

m=1

amJν (xkm) , (8.6.31)

where the summation is taken over all the positive roots k1, k2, k3, . . .,
of equation (8.6.28). Multiplying (8.6.31) by xJν (xkn), integrating, and
utilizing (8.6.30), we obtain



294 8 Eigenvalue Problems and Special Functions

∫ a

0

xf (x) Jν (xkm) dx = am

∫ a

0

x [Jν (xkm)]
2
dx

=
am

2k2
m

{
a2k2

m [J ′
ν (akm)]

2

+
(
a2k2

m − ν2
)
[Jν (akm)]

2
}

. (8.6.32)

Thus, we have the following theorem:

Theorem 8.6.1. If

bm =

∫ a

0

xf (x) Jν (xkm) dx (8.6.33)

then the expansion (8.6.31) of f (x) takes the form

f (x) =

∞∑

m=1

2k2
mbmJν (xkm)

k2
m [J ′

ν (akm)]
2

+ (a2k2
m − ν2) [Jν (akm)]

2 . (8.6.34)

In particular, when h = 0 in (8.6.28), that is, when km are the positive
roots of Jν (akm) = 0, then (8.6.34) becomes

f (x) =
2

a2

∞∑

m=1

bmJν (xkm)

k2
m [J ′

ν (akm)]
2 =

2

a2

∞∑

m=1

bmJν (xkm)

[Jν+1 (akm)]
2 . (8.6.35)

These expansions are known as the Bessel–Fourier series for f (x). They
are generated by Sturm–Liouville problems involving the Bessel equation,
and arise from problems associated with partial differential equations.

Closely related to Bessel’s functions are Hankel’s functions of the first
and second kind, defined by

H(1)
ν (x) = Jν (x) + iYν (x) , H(2)

ν (x) = Jν (x) − iYν (x) , (8.6.36)

respectively, where i =
√

−1.
Other closely related functions are the modified Bessel functions. Con-

sider Bessel’s equation containing a parameter λ, namely,

x2y′′ + xy′ +
(
λ2x2 − ν2

)
y = 0. (8.6.37)

The general solution of this equation is

y (x) = c1Jν (λx) + c2Yν (λx) .

If λ = i, then

y (x) = c1Jν (ix) + c2Yν (ix) .

We write
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Jν (ix) =

∞∑

k=0

(−1)
k
(ix)

2k+ν

22k+νk! Γ (ν + k + 1)

= iνIν (x) ,

where

Iν (x) =

∞∑

k=0

x2k+ν

22k+νk! Γ (ν + k + 1)
, (8.6.38)

Iν (x) is called the modified Bessel function of the first kind of order ν.
As in the case of Jν and J−ν , Iν and I−ν (which is defined in a similar
manner) are linearly independent solutions except when ν is an integer.
Consequently, we define the modified Bessel function of the second kind of
order ν by

Kν (x) =
π

2

(
I−ν (x) − Iν (x)

sin νπ

)
. (8.6.39)

Thus, we obtain the general solution of the modified Bessel equation

x2y′′ + xy′ −
(
x2 + ν2

)
y = 0 (8.6.40)

in the form

y (x) = c1Iν (x) + c2Kν (x) . (8.6.41)

We should note that

Iν (0) =

⎧
⎨
⎩

1, ν = 0

0, ν > 0
(8.6.42)

and that Kν approaches infinity as x → 0.
For a detailed treatment of Bessel and related functions, refer to Wat-

son’s (1966) Theory of Bessel Functions.
The eigenvalue problems which involve Bessel’s functions will be de-

scribed in Section 8.8 on singular Sturm–Liouville systems.

8.7 Adjoint Forms and Lagrange Identity

Self-adjoint equations play a very important role in many areas of applied
mathematics and mathematical physics. Here we will give a brief account
of self-adjoint operators and the Lagrange identity.

We consider the equation

L [y] = a0 (x) y′′ + a1 (x) y′ + a2 (x) y = 0
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defined on an interval I. Integrating z (x) L [y] by parts from a to x, we
have

∫ x

a

zL [y] dx =
[
(za0) y′ − (za0)

′
y + (za1) y

]x

a

+

∫ x

a

[
(za0)

′′ − (za1)
′
+ (za2)

]
y dx. (8.7.1)

Now, if we define the second-order operator L∗ by

L∗ [z] = (za0)
′′ − (za1)

′
+ (za2) = a0 z′′ (2a′

0 − a1) z′ + (a′′
0 − a′

1 + a2) z

the relation (8.7.1) takes the form

∫ x

a

(zL [y] − yL∗ [z]) dx = [a0 (y′z − yz′) + (a1 − a′
0) yz]

x
a . (8.7.2)

The operator L∗ is called the adjoint operator corresponding to the operator
L. It can be readily verified that the adjoint of L∗ is L itself. If L and L∗ are
the same, L is said to be self-adjoint. The necessary and sufficient condition
for this is that

a1 = 2a′
0 − a1, a2 = a′′

0 − a′
1 + a2,

which is satisfied if

a1 = a′
0.

Thus, if L is self-adjoint, we have

L (y) = a0y
′′ + a′

0y
′ + a2y

= (a0y
′)

′
+ a2 (x) y. (8.7.3)

In general, L [y] is not self-adjoint. But if we let

h (x) =
1

a0
exp

{∫ x a1 (t)

a0 (t)
dt

}
(8.7.4)

then h (x) L [y] is self-adjoint. Thus, any second-order linear differential
equation

a0 (x) y′′ + a1 (x) y′ + a2 (x) y = 0 (8.7.5)

can be made self-adjoint. Multiplying by h (x) given by equation (8.7.4),
equation (8.7.5) is transformed into the self-adjoint form

d

dx

[
p (x)

dy

dx

]
+ q (x) y = 0, (8.7.6)
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where

p (x) = exp

{∫ x a1 (t)

a0 (t)
dt

}
, q (x) =

(
a2

a0

)
exp

{∫ x a1 (t)

a0 (t)
dt

}
. (8.7.7)

For example, the self-adjoint form of the Legendre equation

(
1 − x2

)
y′′ − 2xy′ + n (n + 1) y = 0

is

d

dx

[(
1 − x2

) dy

dx

]
+ n (n + 1) y = 0, (8.7.8)

and the self-adjoint form of the Bessel equation

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0

is

d

dx

(
x

dy

dx

)
+

(
x − ν2

x

)
y = 0. (8.7.9)

Now, if we differentiate both sides of equation (8.7.2), we obtain

zL [y] − yL∗ [z] =
d

dx
[a0 (y′z − yz′) + (a1 − a′

0) yz] (8.7.10)

which is known as the Lagrange identity for the operator L.
If we consider the integral from a to b of equation (8.7.2), we obtain

Green’s identity

∫ b

a

(zL [y] − yL∗ [z]) dx = [a0 (y′z − yz′) + (a1 − a′
0) yz]

b
a. (8.7.11)

When L is self-adjoint, this relation becomes

∫ b

a

(zL [y] − yL [z]) dx = [a0 (y′z − yz′)]
b
a . (8.7.12)

8.8 Singular Sturm–Liouville Systems

A Sturm–Liouville equation is called singular when it is given on a semi-
infinite or infinite interval, or when the coefficient p (x) or s (x) vanishes, or
when one of the coefficients becomes infinite at one end or both ends of a
finite interval. A singular Sturm–Liouville equation together with appropri-
ate linear homogeneous end conditions is called a singular Sturm–Liouville
(SSL) system. The conditions imposed in this case are not like the sepa-
rated boundary end conditions in the regular Sturm–Liouville system. The
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condition that is often necessary to prescribe is the boundedness of the
function y (x) at the singular end point. To exhibit this, let us consider a
problem with a singularity at the end point x = a. By the relation (8.7.12),
for any twice continuously differentiable functions y (x) and z (x), we have
on (a, b)

∫ b

a+ε

{zL [y] − yL [z]} dx = p (b) [y′ (b) z (b) − y (b) z′ (b)]

−p (a + ε) [y′ (a + ε) z (a + ε) − y (a + ε) z′ (a + ε)] ,

where ε is a small positive number. If the conditions

lim
x→a+

p (x) [y′ (x) z (x) − y (x) z′ (x)] = 0, (8.8.1)

p (b) [y′ (b) z (b) − y (b) z′ (b)] = 0, (8.8.2)

are imposed on y and z, it follows that

∫ b

a

{zL [y] − yL [z]} dx = 0. (8.8.3)

For example, when p (a) = 0, the relations (8.8.1) and (8.8.2) are replaced
by the conditions
1. y (x) and y′ (x) are finite as x → a
2. b1y (b) + b2y

′ (b) = 0.
Thus, we say that the singular Sturm–Liouville system is self-adjoint, if

any functions y (x) and z (x) that satisfy the end conditions satisfy

∫ b

a

{zL [y] − yL [z]} dx = 0.

Example 8.8.1. Consider the singular Sturm–Liouville system involving Leg-
endre’s equation

d

dx

[(
1 − x2

) dy

dx

]
+ λy = 0, −1 < x < 1,

with the conditions that y and y′ are finite as x → + 1.
In this case, p (x) = 1−x2 and s (x) = 1, and p (x) vanishes at x = +1.

The Legendre functions of the first kind, Pn (x), n = 0, 1, 2, . . ., are the
eigenfunctions which are finite as x → + 1. The corresponding eigenvalues
are λn = n (n + 1) for n = 0, 1, 2, . . .. We observe here that the singu-
lar Sturm–Liouville system has infinitely many real eigenvalues, and the
eigenfunctions Pn (x) are orthogonal to each other.

Example 8.8.2. Another example of a singular Sturm–Liouville system is
the Bessel equation for fixed ν
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d

dx

(
x

dy

dx

)
+

(
λx − ν2

x

)
y = 0, 0 < x < a,

with the end conditions that y (a) = 0 and y and y′ are finite as x → 0+.

Here p (x) = x, q (x) = −ν2

x , and s (x) = x. Now p (0) = 0, q (x) becomes
infinite as x → 0+, and s (0) = 0; therefore, the system is singular. If λ = k2,
the eigenfunctions of the system are the Bessel functions of the first kind of
order ν, namely Jν (knx), n = 1, 2, 3, . . ., where kna is the nth zero of Jν .
The Bessel function Jν and its derivative are both finite as x → 0+. The
eigenvalues are λn = k2

n. Thus, the system has infinitely many eigenvalues,
and the eigenfunctions are orthogonal to each other with respect to the
weight function s (x) = x.

In the preceding examples, we have seen that the eigenfunctions are
orthogonal with respect to the weight function s (x). In general, the eigen-
functions of a singular Sturm–Liouville system are orthogonal if they are
square-integrable with respect to the weight function s (x) = x.

Theorem 8.8.1. The square-integrable eigenfunctions corresponding to dis-
tinct eigenvalues of a singular Sturm–Liouville system are orthogonal with
respect to the weight function s (x).

Proof. Proceeding as in Theorem 8.2.1, we arrive at

(λj − λk)

∫ b

a

s φj φk dx = p (b)
[
φj (b) φ′

k (b) − φ′
j (b) φk (b)

]

− p (a)
[
φj (a) φ′

k (a) − φ′
j (a) φk (a)

]
.

Suppose the boundary term vanishes, as in the case mentioned earlier, where
p (a) = 0, y and y′ are finite as x → a, and at the other end b1y (b) +
b2y

′ (b) = 0. Then, we have

(λj − λk)

∫ b

a

s φj φk dx = 0.

This integral exists by virtue of (8.3.2). Thus, for distinct eigenvalues λj �=
λk, the square-integrable functions φj and φk are orthogonal with respect
to the weight function s (x).

Example 8.8.3. Consider the singular Sturm–Liouville system involving the
Hermite equation

u′′ − 2xu′ + λu = 0, −∞ < x < ∞, (8.8.4)

which is not self-adjoint.
If we let y (x) = e−x2/2u (x), the Hermite equation takes the self-adjoint

form

y′′ +
[(

1 − x2
)

+ λ
]
y = 0, −∞ < x < ∞.
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Here p = 1, q (x) = 1 − x2, s = 1. The eigenvalues are λn = 2n for
nonnegative integers n, and the corresponding eigenfunctions are φn (x) =

e−x2/2Hn (x), where Hn (x) are the Hermite polynomials which are so-
lutions of the Hermite equation (8.8.4) (See Magnus and Oberhettinger
(1949)).

Now, we impose the end conditions that y tends to zero as x → + ∞.

This is satisfied because Hn (x) are polynomials in x and in fact xne−x2/2 →
0 as x → + ∞. Since φn (x) are square-integrable, we have

∫ ∞

−∞
Hm (x) Hn (x) e−x2

dx = 0, m �= n.

Example 8.8.4. Consider the problem of the transverse vibration of a thin
elastic circular membrane

utt = c2

(
urr +

1

r
ur

)
, r < 1, t > 0,

u (r, 0) = f (r) , ut (r, 0) = 0, 0 ≤ r ≤ 1, (8.8.5)

u (1, t) = 0, lim
r→0

u (r, t) < ∞, t ≥ 0.

We seek a nontrivial separable solution in the form

u (r, t) = R (r) T (t) .

Substituting this in the wave equation yields

R′′ + (1/r) R′

R
=

1

c2

T ′′

T
= −α2,

where α is a positive constant. The negative sign in front of α2 is chosen to
obtain the solution periodic in time. Thus, we have

rR′′ + R′ + α2rR = 0, T ′′ + α2c2T = 0.

The solution T (t) is therefore given by

T (t) = A cos (αct) + B sin (αct) .

Next, it is required to determine the solution R (r) of the following
singular Sturm–Liouville system

d

dr

[
r
dR

dr

]
+ α2rR = 0, (8.8.6)

R (1) = 0, lim
r→0

R (r) < ∞. (8.8.7)

We note that in this case, p = r which vanishes at r = 0. The condition on
the boundedness of the function R (r) is obtained from the fact that

lim
r→0

u (r, t) = lim
r→0

R (r) T (t) < ∞
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which implies that

lim
r→0

R (r) < ∞ (8.8.8)

for arbitrary T (t). Equation (8.8.6) is Bessel’s equation of order zero, the
solution of which is given by

R (r) = CJ0 (αr) + DY0 (αr) , (8.8.9)

where J0 and Y0 are Bessel’s functions of the first and second kinds re-
spectively of order zero. The condition (8.8.7) requires that D = 0 since
Y0 (αr) → −∞ as r → 0. Hence,

R (r) = CJ0 (αr) .

The remaining condition R (1) = 0 yields J0 (α) = 0.
This transcendental equation has infinitely many positive zeros

α1 < α2 < α3 < . . . .

Thus, the solution of problem (8.8.5) is given by

un (r, t) = J0 (αnr) (An cos αnct + Bn sin αnct) , n = 1, 2, 3, . . . .

Since the Bessel equation is linear and homogeneous, the linear superposi-
tion principle gives

u (r, t) =

∞∑

n=1

J0 (αnr) (An cos αnct + Bn sin αnct) , (8.8.10)

is also a solution, provided the series converges and is sufficiently differen-
tiable with respect to r and t. Differentiating (8.8.10) formally with respect
to t, we obtain

ut (r, t) =

∞∑

n=1

J0 (αnr) (−An αn c sin αnct + Bn αnc cos αnct) .

Application of the initial condition ut (r, 0) = 0 yields Bn = 0. Conse-
quently, we have

u (r, t) =

∞∑

n=1

AnJ0 (αnr) cos (αnct) . (8.8.11)

It now remains to show that u (r, t) satisfies the initial condition u (r, 0) =
f (r). For this, we have

u (r, 0) = f (r) ∼
∞∑

n=1

AnJ0 (αnr) .
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If f (r) is piecewise smooth on [0, 1], then the eigenfunctions J0 (αnr) form
a complete orthogonal system with respect to the weight function r over
the interval (0, 1). Hence, we can formally expand f (r) in terms of the
eigenfunctions. Thus,

f (r) =

∞∑

n=1

AnJ0 (αnr) , (8.8.12)

where the coefficient An is represented by

An =

∫ 1

0

rf (r) J0 (αnr) dr

/∫ 1

0

r [J0 (αnr)]
2
dr. (8.8.13)

The solution of the problem (8.8.5) is therefore given by (8.8.11) with the
coefficients An given by (8.8.13).

8.9 Legendre’s Equation and Legendre’s Function

The Legendre equation is
(
1 − x2

)
y′′ − 2xy′ + ν (ν + 1) y = 0, (8.9.1)

where ν is a real number. This equation arises in problems with spherical
symmetry in mathematical physics. Its coefficients are analytic at x = 0.
Thus, if we expand near the point x = 0, the coefficients are

p (x) = − 2x

1 − x2
= −2x

∞∑

m=0

x2m =

∞∑

m=0

(−2) x2m+1,

and

q (x) =
ν (ν + 1)

1 − x2
= ν (ν + 1)

∞∑

m=0

x2m =

∞∑

m=0

ν (ν + 1)x2m.

We see that these series converge for |x| < 1. Thus, the Legendre equation
on |x| < 1 has convergent power series solution at x = 0.

Now to find the solution near the ordinary point x = 0, we assume

y (x) =
∞∑

m=0

am xm.

Substituting y, y′, and y′′ in the Legendre equation, we obtain

(
1 − x2

) ∞∑

m=0

m (m − 1) am xm−2 − 2x

∞∑

m=0

mam xm−1

+ν (ν + 1)

∞∑

m=0

am xm = 0.
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Simplification gives

∞∑

m=0

[(m + 1) (m + 2) am+2 + (ν − m) (ν + m + 1) am] xm = 0.

Therefore the coefficients in the power series must satisfy the recurrence
relation

am+2 = − (ν − m) (ν + m + 1)

(m + 1) (m + 2)
am, m ≥ 0. (8.9.2)

This relation determines a2, a4, a6, . . . in terms of a0, and a3, a5, a7, . . . in
terms of a1. It can easily be verified that a2k and a2k+1 can be expressed
in terms of a0 and a1 respectively as

a2k =
(−1)

k
ν (ν − 2) . . . (ν − 2k + 2) (ν + 1) (ν + 3) . . . (ν + 2k − 1)

(2k)!
a0

and

a2k+1 =
(−1)

k
(ν − 1) (ν − 3) . . . (ν − 2k + 1) (ν + 2) (ν + 4) . . . (ν + 2k)

(2k + 1)!
a1.

Hence, the solution of the Legendre equation is

y (x) = a0

[
1

+
∞∑

k=1

(−1)
k
ν (ν − 2) . . . (ν − 2k + 2) (ν + 1) (ν + 3) . . . (ν + 2k − 1) x2k

(2k)!

]

+a1

[
x

+
∞∑

k=1

(−1)
k
(ν − 1) (ν − 3) . . . (ν − 2k + 1) (ν + 2) (ν + 4) . . . (ν + 2k) x2k+1

(2k + 1)!

]

= a0φν (x) + a1ψν (x) . (8.9.3)

It can easily be proved that the functions φν (x) and ψν (x) converge for
x < 1 and are linearly independent.

Now consider the case in which ν = n, with n a nonnegative integer. It
is then evident from the recurrence relation (8.9.2) that, when m = n,

an+2 = an+4 = . . . = 0.

Consequently, when n is even, the series φn (x) terminates with xn, whereas
the series for ψn (x) does not terminate. When n is odd, it is the series for
ψn (x) which terminates with xn, while that for φn (x) does not terminate.
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In the first case (n even), φn (x) is a polynomial of degree n; the same is
true for ψn (x) in the second case (n odd).

Thus, for any nonnegative integer n, either φn (x) or ψn (x), but not
both, is a polynomial of degree n. Consequently, the general solution of the
Legendre equation contains a polynomial solution Pn (x) and an infinite
series solution Qn (x) for a nonnegative integer n. To find the polynomial
solution Pn (x), it is convenient to choose an so that Pn (1) = 1. Let this
an be

an =
(2n)!

2n (n!)
2 . (8.9.4)

Rewriting the recurrence relation (8.9.2), we have

an−2 = − (n − 1) n

2 (2n − 1)
an.

Substituting an from (8.9.4) into this relation, we obtain

an−2 = − (2n − 2)!

2n (n − 1)! (n − 2)!
,

and

an−4 =
(2n − 4)!

2n2! (n − 2)! (n − 4)!
.

It follows by induction that

an−2k =
(−1)

k
(2n − 2k)!

2nk! (n − k)! (n − 2k)!
.

Hence, we may write Pn (x) in the form

Pn (x) =

N∑

k=0

(−1)
k
(2n − 2k)!

2nk! (n − k)! (n − 2k)!
xn−2k, (8.9.5)

where N = (n/2) when n is even, and N = (n − 1) /2 when n is odd. This
polynomial Pn (x) is called the Legendre function of the first kind of order
n. It is also known as the Legendre polynomial of degree n.

The first few Legendre polynomials are

P0 (x) = 1,

P1 (x) = x,

P2 (x) =
1

2

(
3x2 − 1

)
,

P3 (x) =
1

2

(
5x3 − 3x

)
,

P4 (x) =
1

8

(
35x4 − 30x2 + 3

)
.
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Figure 8.9.1 The first four Legendre’s polynomials.

These polynomials are plotted in Figure 8.9.1 for small values of x.
Recall that for a given nonnegative integer n, only one of the two solu-

tions φn (x) and ψn (x) of Legendre’s equation is a polynomial, while the
other in an infinite series. This infinite series, when appropriately normal-
ized, is called the Legendre function of the second kind. It is defined for
|x| < 1 by

Qn (x) =

⎧
⎨
⎩

φn (1) ψn (x) for n even

−ψn (1) φn (x) for n odd
. (8.9.6)

Thus, when n is a nonnegative integer, the general solution of the Legendre
equation is given by

y (x) = c1Pn (x) + c2Qn (x) . (8.9.7)

The Legendre polynomial may also be expressed in the form

Pn (x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
. (8.9.8)

This expression is known as the Rodriguez formula.
Like Bessel’s functions, Legendre polynomials satisfy certain recurrence

relations. Some of the important relations are
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(n + 1)Pn+1 (x) − (2n + 1)xPn (x) + nPn−1 (x) = 0, n ≥ 1, (8.9.9)(
x2 − 1

)
P ′

n (x) = nxPn (x) − nPn−1 (x) , n ≥ 1, (8.9.10)

nPn (x) + P ′
n−1 (x) − xP ′

n (x) = 0, n ≥ 1, (8.9.11)

P ′
n+1 (x) = xP ′

n (x) + (n + 1)Pn (x) , n ≥ 0. (8.9.12)

In addition,

P2n (−x) = P2n (x) , (8.9.13)

P2n+1 (−x) = −P2n+1 (x) . (8.9.14)

These indicate that Pn (x) is an even function for even n, and an odd
function for odd n.

It can easily be shown that the Legendre polynomials form a sequence
of orthogonal functions on the interval [−1, 1]. Thus, we have

∫ 1

−1

Pn (x) Pm (x) dx = 0, for n �= m. (8.9.15)

The norm of the function Pn (x) is given by

‖Pn (x)‖2
=

∫ 1

−1

P 2
n (x) dx =

2

2n + 1
. (8.9.16)

Another important equation in mathematical physics, one which is
closely related to the Legendre equation (8.9.1), is Legendre’s associated
equation:

(
1 − x2

)
y′′ − 2xy′ +

[
n (n + 1) − m2

1 − x2

]
y = 0, (8.9.17)

where m is an integer. Although this equation is independent of the alge-
braic sign of the integer m, it is often convenient to have the solutions for
negative m differ somewhat from those for positive m.

We consider first the case for a nonnegative integer m. Introducing the
change of variable

y =
(
1 − x2

)m/2
u, |x| < 1,

Legendre’s associated equation becomes

(
1 − x2

)
u′′ − 2 (m + 1)xu′ + (n − m) (n + m + 1)u = 0.

But this is the same as the equation obtained by differentiating the Legendre
equation (8.9.1) m times. Thus, the general solution of (8.9.17) is given by

y (x) =
(
1 − x2

)m/2 dmY (x)

dxm
, (8.9.18)
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and

Y (x) = c1Pn (x) + c2Qn (x) (8.9.19)

is the general solution of (8.9.1). Hence, we have the linearly independent
solutions of (8.9.17), known as the associated Legendre functions of the first
and second kind, respectively given by

Pm
n (x) =

(
1 − x2

)m/2 dmPn (x)

dxm
, (8.9.20)

and

Qm
n (x) =

(
1 − x2

)m/2 dmQn (x)

dxm
. (8.9.21)

We observe that

P 0
n (x) = Pn (x) , Q0

n (x) = Qn (x) ,

and that Pm
n (x) vanishes for m > n.

The functions P−m
n (x) and Q−m

n (x) are defined by

P−m
n (x) = (−1)

m (n − m)!

(n + m)!
Pm

n (x) , m = 0, 1, 2, . . . , n, (8.9.22)

Q−m
n (x) = (−1)

m (n − m)!

(n + m)!
Qm

n (x) , m = 0, 1, 2, . . . , n. (8.9.23)

The first few associated Legendre functions are

P 1
1 (x) =

(
1 − x2

) 1
2 ,

P 1
2 (x) = 3x

(
1 − x2

) 1
2 ,

P 2
2 (x) = 3

(
1 − x2

)
.

The associated Legendre functions of the first kind also form a sequence of
orthogonal functions in the interval [−1, 1]. Their orthogonality, as well as
their norm, is expressed by the equation

∫ 1

−1

Pm
n (x) Pm

k (x) dx =
2 (n − m)!

(2n + 1) (n + m)!
δnk. (8.9.24)

Note that (8.9.15) and (8.9.16) are special cases of (8.9.24), corresponding
to the choice m = 0.

We finally observe that Pm
n (x) is bounded everywhere in the interval

[−1, 1], whereas Qm
n (x) is unbounded at the end points x = +1.

Problems in which Legendre’s polynomials arise will be treated in Chap-
ter 10.
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8.10 Boundary-Value Problems Involving Ordinary

Differential Equations

A boundary-value problem consists in finding an unknown solution which
satisfies an ordinary differential equation and appropriate boundary condi-
tions at two or more points. This is in contrast to an initial-value problem
for which a unique solution exists for an equation satisfying prescribed ini-
tial conditions at one point.

The linear two-point boundary-value problem, in general, may be writ-
ten in the form

L [y] = f (x) , a < x < b,

(8.10.1)

Ui [y] = αi, 1 ≤ i ≤ n,

where L is a linear operator of order n and Ui is the boundary operator
defined by

Ui [y] =

n∑

j=1

aij y(j−1) (a) +

n∑

j=1

bij y(j−1) (b) . (8.10.2)

Here aij , bij , and αi are constants. The treatment of this problem can
be found in Coddington and Levinson (1955). More complicated boundary
conditions occur in practice. Treating a general differential system is rather
complicated and difficult.

A large class of boundary-value problems that occur often in the physical
sciences consists of the second-order equations of the type

y′′ = f (x, y, y′) , a < x < b

with the boundary conditions

U1 [y] = a1y (a) + a2y
′ (a) = α

U2 [y] = b1y (b) + b2y
′ (b) = β

where a1, a2, b1, b2, α, and β are constants. The existence and uniqueness
of solutions to this problem are treated by Keller (1968). Here we are inter-
ested in considering a special case where the linear boundary-value problem
consists of the differential equation

L [y] = y′′ + p (x) y′ + q (x) y = f (x) (8.10.3)

and the boundary conditions

U1 [y] = a1y (a) + a2y
′ (a) = α,

U2 [y] = b1y (b) + b2y
′ (b) = β, (8.10.4)
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where the constants a1 and a2, and likewise b1 and b2, are not both zero,
and α, and β are constants.

In general, a boundary-value problem may not possess a solution, and
if it does, the solution may not be unique. We illustrate this with a simple
problem.

Example 8.10.1. We first consider the boundary-value problem

y′′ + y = 1,

y (0) = 0, y
(π

2

)
= 0.

By the method of variation of parameters, we find a unique solution

y (x) = 1 − cos x − sin x.

We observe that the solution of the associated homogeneous boundary-value
problem

y′′ + y = 0,

y (0) = 0, y
(π

2

)
= 0,

is trivial.
Next we consider the boundary-value problem

y′′ + y = 1,

y (0) = 0, y (π) = 0.

The general solution is

y (x) = c1 cos x + c2 sin x + 1.

Applying the boundary conditions, we see that

y (0) = c1 + 1 = 0, y (π) = −c1 + 1 = 0.

This is not possible, and hence, the boundary-value problem has no solu-
tion. However, if we consider its associated homogeneous boundary-value
problem

y′′ + y = 0,

y (0) = 0, y (π) = 0,

we can easily determine that solutions exist and are given by

y (x) = c2 sin x,

where c2 is an arbitrary constant.



310 8 Eigenvalue Problems and Special Functions

This leads to the following alternative theorem:

Theorem 8.10.1. Let p (x), q (x), and f (x) be continuous on [a, b]. Then
either the boundary-value problem

L [y] = f

(8.10.5)

U1 [y] = α, U2 [y] = β,

has a unique solution for any given constants α and β, or else the associated
homogeneous boundary-value problem

L [y] = 0

(8.10.6)

U1 [y] = 0, U2 [y] = 0,

has a nontrivial solution.

Proof of this theorem can be found in Myint-U (1978).

8.11 Green’s Functions for Ordinary Differential

Equations

In the present section, we will introduce Green’s functions. Let us consider
the linear homogeneous ordinary differential equation of second order:

L [y] = −f (x) , a < x < b, (8.11.1)

where

L ≡ d

dr

[
p (x)

d

dx

]
+ q (x) ,

with the homogeneous boundary conditions

a1y (a) + a2y
′ (a) = 0, (8.11.2)

b1y (b) + b2y
′ (b) = 0, (8.11.3)

where the constants a1 and a2, and likewise b1 and b2, are not both zero.
We shall assume that f and q are continuous and that p is continuously
differentiable and does not vanish in the interval [a, b].

According to the theory of ordinary differential equations, the general
solution of (8.11.1) is given by

y (x) = A y1 (x) + B y2 (x) + yp (x) (8.11.4)
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where A and B are arbitrary constants, y1 = y1 (x) and y2 = y2 (x) are two
linearly independent solutions of the corresponding homogeneous equation
L [y] = 0, and yp (x) is a particular integral of (8.11.1).

Using the method of variation of parameters, the particular integral will
be sought by replacing the constants A and B by arbitrary functions of x,
u1 (x) and u2 (x), to get

yp (x) = u1 (x) y1 (x) + u2 (x) y2 (x) . (8.11.5)

These arbitrary functions are to be determined so that (8.11.5) satisfies
equation (8.11.1). The substitution of the above trial form for yp (x) into
(8.11.1) imposes one condition that (8.11.5) must satisfy. However, there are
two arbitrary functions, and hence, two conditions are needed to determine
them. If follows that another condition is available in solving the problem.

The first task is to substitute the trial solution into equation (8.11.1).
Differentiating yp (x), we obtain

y′
p = u1y

′
1 + u2y

′
2 + u′

1y1 + u′
2y2.

It is convenient to set the second condition noted above to require that

u′
1y1 + u′

2y2 = 0, (8.11.6)

leaving

y′
p = u1y

′
1 + u2y

′
2. (8.11.7)

A second differentiation of yp gives

y′′
p = u1y

′′
1 + u2y

′′
2 + u′

1y
′
1 + u′

2y
′
2.

Putting these results into equation (8.11.1) and grouping yields

u1 [p (x) y′′
1 + p′y′

1 + qy1] + u2 [p (x) y′′
2 + p′y′

2 + qy2]

+p (x) {u′
1y

′
1 + u′

2y
′
2} = −f (x) .

Since y1 (x) and y2 (x) are solutions of the homogeneous equations, both
the square brackets in the above expression vanish. The result is that

u′
1y

′
1 + u′

2y
′
2 = −f (x)

p (x)
. (8.11.8)

Thus, two equations ((8.11.6) and (8.11.8)) determine u1 (x) and u2 (x).
Solving these equations algebraically for u′

1 and u′
2 produces

u′
1 (x) =

f (x) y2 (x)

p (x) W (x)
, u′

2 (x) = −f (x) y1 (x)

p (x) W (x)
,
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where W (x) = (y1y
′
2 − y2y

′
1) is the non-zero Wronskian of the solutions y1

and y2. Integration of these results yields

u1 (x) = +

∫
f (x) y2 (x) dx

p (x) W (x)
, u2 (x) = −

∫
f (x) y1 (x) dx

p (x) W (x)
.

The substitution of these results into (8.11.5) gives the solution in (a, b)

yp (x) = y1 (x)

∫ x

b

f (ξ) y2 (ξ)

p (ξ) W (ξ)
dξ − y2 (x)

∫ x

a

f (ξ) y1 (ξ)

p (ξ) W (ξ)
dξ

= −
∫ x

a

y2 (x) y1 (ξ)

p (ξ) W (ξ)
f (ξ) dξ −

∫ b

x

y1 (x) y2 (ξ)

p (ξ) W (ξ)
f (ξ) dξ. (8.11.9)

This form suggests the definition

G (x, ξ) =

⎧
⎪⎨
⎪⎩

−y2(x)y1(ξ)
p(ξ)W (ξ) , a ≤ ξ < x,

−y1(x)y2(ξ)
p(ξ)W (ξ) , x < ξ ≤ b.

(8.11.10)

This is called Green’s function. Thus, the solution becomes

yp (x) =

∫ b

a

G (x, ξ) f (ξ) dξ (8.11.11)

provided G (x, ξ) is continuous and f (ξ) is at least piecewise continuous in
(a, b). The existence of Green’s function is evident from equations (8.11.10)
provided W (ξ) �= 0.

In order to obtain a deeper insight into the role of Green’s function,
certain properties are important to note. These are

(i) G (x, ξ) is continuous at x = ξ, and consequently, throughout the inter-
val (a, b). This follows from the fact that G (x, ξ) is constructed from
the solutions of the homogeneous equation which are continuous in the
intervals a ≤ ξ < x and x < ξ ≤ b, W (ξ) �= 0.

(ii) Its first and second derivatives are continuous for all x �= ξ in a ≤ x,
ξ ≤ b.

(iii) G (x, ξ) is symmetric in x and ξ, that is, if x and ξ are interchanged
in (8.11.10), the definition is not changed.

(iv) The first derivative of G (x, ξ) has a finite discontinuity at x = ξ

lim
x→ξ+

(
∂G

∂x

)
− lim

x→ξ−

(
∂G

∂x

)
= − 1

p (ξ)
. (8.11.12)

(v) G (x, ξ) is a solution of the homogeneous equation throughout the inter-
val except at x = ξ. This point can be pressed further by substitution
of (8.11.11) and (8.11.1), note that yp (x) is a solution of (8.11.1). This
leads to
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∫ b

a

[
d

dx

{
p (x)

dG (x, ξ)

dx

}
+ q (x) G (x, ξ)

]
f (ξ) dξ = −f (x) ,

where the quantity in the square bracket is zero except at x = ξ. If
follows that, in order for this result to hold,

d

dx

[
p (x)

dG (x, ξ)

dx

]
+ q (x) G (x, ξ) = −δ (ξ − x) , (8.11.13)

where δ (ξ − x) is the Dirac function which has the following properties:

δ (ξ − x) = 0, except at x = ξ,
∫ b

a

δ (ξ − x) dξ = 1, a < x < b.

For any continuous function f (ξ) in (a, b) and for a ≤ x ≤ b,

∫ b

a

f (ξ) δ (ξ − x) dξ = f (x) .

(vi) For fixed ξ, G (x, ξ) satisfies the given boundary conditions (8.11.2)–
(8.11.3).
Differentiating (8.11.11) with respect to x by Leibniz’s rule, we obtain

y′
p (x) =

∫ b

a

G′ (x, ξ) f (ξ) dξ + G (x, x−) f (x)

+

∫ b

a

G′ (x, ξ) f (ξ) dξ − G (x, x+) f (x)

=

∫ b

a

G′ (x, ξ) f (ξ) dξ,

since G (x, ξ) is continuous in ξ, that is, G (x, x−) = G (x, x+).
Because G (x, ξ) satisfies the boundary conditions, it follows that

a1yp (a) + a2y
′
p (a) =

∫ b

a

[a1G (a, ξ) + a2G
′ (a, ξ)] f (ξ) dξ = 0.

Similarly,

b1yp (b) + b2y
′
p (b) = 0.

The result embodied in equation (8.11.13) permits a meaningful physi-
cal interpretation of the role of Green’s function. If we assume that the
differential equation (8.11.1) represents a vibrating mechanical system
driven by a uniformly distributed force −f (x) in the interval (a, b),
where the system is defined, then G (x, ξ) governed by (8.11.13) repre-
sents the displacement of the system at a point x resulting from a unit
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impulse of force at x = ξ. The displacement at the point x due to uni-
formly distributed force f (ξ) per unit length over an elementary interval
(ξ, ξ + dξ) is given by f (ξ) G (x, ξ) dξ. Finally, the total displacement
of the system at the point x results from superposition (addition) of
these contributions so that the total solution over the entire interval
(a, b) is given by (8.11.1), that is,

yp (x) =

∫ b

a

G (x, ξ) f (ξ) dξ.

Combining all above results, we state the fundamental theorem for
Green’s function:

Theorem 8.11.1. If f (x) is continuous on [a, b], then the function

y (x) =

∫ b

a

G (x, ξ) f (ξ) dξ

is a solution of the boundary-value problem

L [y] = −f (x) ,

a1y (a) + a2y
′ (a) = 0, b1 (b) + b2y

′ (b) = 0.

Example 8.11.1. Consider the problem

y′′ = −x, y (0) = 0, y (1) = 0. (8.11.14)

For a fixed value of ξ, Green’s function G (x, ξ) satisfies the associated
homogeneous equation

G′′ = 0

in 0 < x < ξ, ξ < x < 1, and the boundary conditions

G (0, ξ) = 0, G (1, ξ) = 0.

In addition, it satisfies

dG

dx
(x, ξ)

∣∣∣∣
x=ξ+

x=ξ−
= − 1

p (ξ)
.

Now choose G (x, ξ) such that

G (x, ξ) =

⎧
⎨
⎩

G1 (x, ξ) = (1 − ξ) x, for 0 ≤ x ≤ ξ

G2 (x, ξ) = (1 − x) ξ, for ξ ≤ x ≤ 1.

It can be seen that G′′ = 0 over the intervals 0 < x < ξ, ξ < x < 1. Also
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G1 (0, ξ) = 0, G2 (1, ξ) = 0.

Moreover,

G′
2 (x, ξ) − G′

1 (x, ξ) = −ξ − (1 − ξ) = −1

which is the value of the jump −1/p (ξ), because in this case p = 1. Hence,
by Theorem 8.11.1, keeping in mind that ξ is the variable in G (x, ξ), the
solution of (8.11.14) is

y (x) =

∫ x

0

G (x, ξ) f (ξ) dξ +

∫ 1

x

G (x, ξ) f (ξ) dξ

=

∫ x

0

(1 − x) ξ2dξ +

∫ 1

x

x (1 − ξ) ξdξ =
x

6

(
1 − x2

)
.

8.12 Construction of Green’s Functions

In the above example, we see that the solution was obtained immediately as
soon as Green’s function was obtained properly. Thus, the real problem is
not that of finding the solution but that of determining Green’s function for
the problem. We will now show by construction that there exists a Green’s
function for L [y] satisfying the prescribed boundary conditions.

We first assume that the associated homogeneous equation satisfying the
conditions (8.11.2) and (8.11.3) has the trivial solution only, as in Example
8.11.1. We construct the solution y1 (x) of the equation

L [y] = 0

satisfying a1y (a) + a2y
′ (a) = 0. We see that c1y1 (x) is the most general

such solution, where c1 is an arbitrary constant.
In a similar manner, we let c2y2 (x), with c2 is an arbitrary constant,

be the most general solution of

L [y] = 0

satisfying b1y (b) + b2y
′ (b) = 0. Thus, y1 and y2 exist in the interval (a, b)

and are linearly independent. For, if they were linearly dependent, then
y1 = c y2, which shows that y1 would satisfy both the boundary conditions
at x = a and x = b. This contradicts our assumption about the trivial
solution. Consequently, Green’s function can take the form

G (x, ξ) =

⎧
⎨
⎩

c1 (ξ) y1 (x) , for x < ξ

c2 (ξ) y2 (x) , for x > ξ
. (8.12.1)

Since G (x, ξ) is continuous at x = ξ, we have
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c2 (ξ) y2 (ξ) − c1 (ξ) y1 (ξ) = 0. (8.12.2)

The discontinuity in the derivative of G at the point requires that

dG

dx
(x, ξ)

∣∣∣∣
x=ξ+

x=ξ−
= c2 (ξ) y′

2 (ξ) − c1 (ξ) y′
1 (ξ) = − 1

p (ξ)
. (8.12.3)

Solving equations (8.12.2) and (8.12.3) for c1 and c2, we find

c1 (ξ) =
−y2 (ξ)

p (ξ) W (y1, y2; ξ)
, c2 (ξ) =

−y1 (ξ)

p (ξ) W (y1, y2; ξ)
, (8.12.4)

where W (y1, y2; ξ) is the Wronskian given by W (y1, y2; ξ) = y1 (ξ) y′
2 (ξ) −

y2 (ξ) y′
1 (ξ). Since the two solutions are linearly independent, the Wronskian

differs from zero.
From Theorem 8.2.6, with λ = 0, we have

pW = constant = C. (8.12.5)

Hence, Green’s function is given by

G (x, ξ) =

⎧
⎨
⎩

−y1 (x) y2 (ξ) /C, for x ≤ ξ

−y2 (x) y1 (ξ) /C, for x ≥ ξ.
(8.12.6)

Thus, we state the following theorem:

Theorem 8.12.1. If the associated homogeneous boundary-value problem
of (8.11.1)–(8.11.3) has the trivial solution only, then Green’s function ex-
ists and is unique.

Proof. The proof for uniqueness of Green’s function is left as an exercise
for the reader.

Example 8.12.1. Consider the problem

y′′ + y = −1, y (0) = 0, y
(π

2

)
= 0. (8.12.7)

The solution of L [y] = (dy′/dx) + y = 0 satisfying y (0) = 0 is

y1 (x) = sinx, 0 ≤ x < ξ

and the solution of L [y] = 0 satisfying y (π/2) = 0 is

y2 (x) = cos x, ξ < x ≤ π

2
.

The Wronskian of y1 and y2 is then given by

W (ξ) = y1 (ξ) y′
2 (ξ) − y2 (ξ) y′

1 (ξ) = −1.
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Since in this case p = 1, (8.12.6) becomes

G (x, ξ) =

⎧
⎨
⎩

sin x cos ξ, for x ≤ ξ

cos x sin ξ, for x ≥ ξ.

Therefore, the solution of (8.12.7) is

y (x) =

∫ x

0

G (x, ξ) f (ξ) dξ +

∫ π/2

x

G (x, ξ) f (ξ) dξ

=

∫ x

0

cos x sin ξ dξ +

∫ π/2

x

sin x cos ξ dξ

= −1 + sin x + cos x.

It can be seen in the formula (8.12.6) that Green’s function is symmetric
in x and ξ.

Example 8.12.2. Construct the Green’s function for the two-point boundary-
value problem

y′′ (x) + ω2y = f (x) , y (a) = y (b) = 0.

This describes the forced oscillation of an elastic string with fixed ends at
x = a and x = b.

It is easy to check that sin ωx and cosωx are two functions which satisfy
the homogeneous equation y′′ + ω2y = 0. These are used to construct two
functions y1 (x) and y2 (x) which satisfy the boundary conditions y1 (a) =
y2 (b) = 0. Accordingly, y1 (x) = A sin ωx+B cos ωx and y2 (x) = C sin ωx+
D cos ωx, and the resulting functions are

y1 (x) = sinω (x − a) , y2 (x) = sinω (x − b) .

The corresponding Wronskian is W = −ω sin ω (a − b). Substituting these
results into (8.11.10) yields

G (x, ξ) =

⎧
⎪⎨
⎪⎩

sin ω(ξ−a) sin ω(x−b)
−ω sin ω(a−b) , a ≤ ξ < x

sin ω(x−a) sin ω(ξ−b)
−ω sin ω(a−b) , x ≤ ξ ≤ b

provided sinω (a − b) �= 0.

8.13 The Schrödinger Equation and Linear Harmonic

Oscillator

The quantum mechanical motion of the harmonic oscillator is described by
the one-dimensional Schrödinger equation
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Hψ (x) = Eψ (x) , (8.13.1)

where the Hamiltonian H is given by

H = −
(

�
2

2M

)
d2

dx2
+ V (x) , V (x) =

1

2
Mω2x2, (8.13.2)

and E is the energy, V (x) is the potential, h = 2π� is the Planck con-
stant, M is the mass of the particle, and ω is the classical frequency of the
oscillator.

We solve equation (8.13.1) subject to the requirement that the solution
be bounded as |x| → ∞. The solution of (8.13.1) is facilitated by the first
solving the equation for large x. In terms of the constants

β =
2ME

�2
, α =

Mω

�
> 0,

the equation (8.13.1) takes the form

d2ψ

dx2
+

(
β − α2x2

)
ψ = 0. (8.13.3)

For small β and large x, β − α2x2 ∼ −α2x2 so that the equation becomes

d2ψ

dx2
− α2x2ψ = 0.

As |x| → ∞, ψ (x) = xn exp
(
+ αx2

2

)
satisfies (8.13.3) for a finite n so far

as leading terms
(
∼ −α2x2

)
are concerned. The positive exponential fac-

tor is unacceptable because of the boundary conditions, so the asymptotic

solution ψ (x) = xn exp
(
−αx2

2

)
suggests the possibility of the exact solu-

tion in the form ψ (x) = v (x) exp
(
−αx2

2

)
where v (x) is to be determined.

Substituting this result into (8.13.3), we obtain

d2v

dx2
− 2αx

dv

dx
+ (β − α) v = 0. (8.13.4)

In terms of a new independent variable ζ = x
√

α, this equation reduces
to the form

d2v

dζ2
− 2ζ

dv

dζ
+

(
β

α
− 1

)
v = 0. (8.13.5)

We seek a power series solution

v (ζ) =

∞∑

n=0

anζn. (8.13.6)
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Substituting this series into equation (8.13.5) and equating the coefficients
of ζn to zero, we obtain the recurrence relation

an+2 =
(2n + 1 − β/α)

(n + 1) (n + 2)
an (8.13.7)

which gives

an+2

an
∼ 2

n
as n → ∞. (8.13.8)

This ratio is the same as that of the series for ζn exp
(
ζ2

) (
∼ xneαx2

)
with

finite n. This leads to the fact that ψ (x) = v (x) e−αx2/2 ∼ xneαx2/2 which
does not satisfy the basic requirement for |x| → ∞. This unacceptable
result can only be avoided if n is an integer and the series terminates so
that it becomes a polynomial of degree n. This means that an+2 = 0 but
an �= 0 so that

2n + 1 − β

α
= 0, (8.13.9)

or

β

α
= (2n + 1) .

Substituting the values for α and β, it turns out that

E ≡ En =

(
n +

1

2

)
ω�, n = 0, 1, 2, . . . . (8.13.10)

This represents a discrete set of energies. Thus, in quantum mechanics,
a stationary state of the harmonic oscillator can assume only one of the
values from the set En. The energy is thus quantized, and forms a discrete
spectrum. According to the classical theory, the energy forms a continuous
spectrum, that is, all non-negative numbers are allowed for the energy of a
harmonic oscillator. This shows a remarkable contrast between the results
of the classical and quantum theory.

The number n which characterizes the energy eigenvalues and eigen-
functions is called the quantum number. The value of n = 0 corresponds to
the minimum value of the quantum number with the energy

E0 =
1

2
ω�. (8.13.11)

This is called the lowest (or ground) state energy which never vanishes as
the lowest possible classical energy would. E0 is proportional to �, repre-
senting a quantum phenomenon. The discrete energy spectrum is in perfect
agreement with the quantization rules of the quantum theory.
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To determine the eigenfunctions for the harmonic oscillator associated
with the eigenvalues En, we obtain the solution of equation (8.13.5) which
has the form

d2v

dζ2
− 2ζ

dv

dζ
+ 2nv = 0. (8.13.12)

This is a well-known differential equation for the Hermite polynomials
Hn (ζ) of degree n. Thus, the complete eigenfunctions can be expressed
in terms of Hn (ζ) as

ψn (x) = AnHn

(
x
√

α
)
exp

(
−αx2

2

)
, (8.13.13)

where An are arbitrary constants.
The Hermite polynomials Hn (x) are usually defined by

Hn (x) = (−1)
n

ex2

Dn
(
e−x2

)
, D ≡ d

dx
. (8.13.14)

They form an orthogonal system in (−∞,∞) with the weight function
exp

(
−x2

)
.

The orthogonal relation for these polynomials is

∫ ∞

−∞
e−x2

Hm (x) Hn (x) dx =

⎧
⎨
⎩

0, n �= m

2nn!
√

π, n = m.

The Hermite polynomials Hn (x) for n = 0, 1, 2, 3, 4 are

H0 (x) = 1

H1 (x) = 2x

H2 (x) = −2 + 4x2

H3 (x) = −12x + 8x3

H4 (x) = 12 − 48x2 + 16x4.

Finally, the eigenfunctions ψn of the linear harmonic oscillator for the quan-
tum number n = 0, 1, 2, 3 are given in Figure 8.13.1.
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Figure 8.13.1 Eigenfunctions ψn for n = 0, 1, 2, 3.

8.14 Exercises

1. Determine the eigenvalues and eigenfunctions of the following regular
Sturm–Liouville systems:

(a) y′′ + λy = 0,

y (0) = 0, y (π) = 0.

(b) y′′ + λy = 0,

y (0) = 0, y′ (1) = 0.

(c) y′′ + λy = 0,

y′ (0) = 0, y′ (π) = 0.

(d) y′′ + λy = 0,

y (1) = 0, y (0) + y′ (0) = 0.
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2. Find the eigenvalues and eigenfunctions of the following periodic Sturm–
Liouville systems:

(a) y′′ + λy = 0,

y (−1) = y (−1) , y′ (−1) = y′ (1).

(b) y′′ + λy = 0,

y (0) = y (2π) , y′ (0) = y′ (2π).

(c) y′′ + λy = 0,

y (0) = y (π) , y′ (0) = y′ (π).

3. Obtain the eigenvalues and eigenfunctions of the following Sturm–
Liouville systems:

(a) y′′ + y′ + (1 + λ) y = 0,

y (0) = 0, y (1) = 0.

(b) y′′ + 2y′ + (1 − λ) y = 0,

y (0) = 0, y′ (1) = 0.

(c) y′′ − 3y′ + 3 (1 + λ) y = 0,

y′ (0) = 0, y′ (π) = 0.

4. Find the eigenvalues and eigenfunctions of the following regular Sturm–
Liouville systems:

(a) x2y′′ + 3xy′ + λy = 0, 1 ≤ x ≤ e,

y (1) = 0, y (e) = 0.

(b) d
dx

[
(2 + x)

2
y′
]

+ λy = 0, −1 ≤ x ≤ 1,

y (−1) = 0, y (1) = 0.

(c) (1 + x)
2
y′′ + 2 (1 + x) y′ + 3λy = 0, 0 ≤ x ≤ 1,

y (0) = 0, y (1) = 0.
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5. Determine all eigenvalues and eigenfunctions of the Sturm–Liouville
systems:

(a) x2y′′ + xy′ + λy = 0,

y (1) = 0, y, y′ are bounded at x = 0.

(b) y′′ + λy = 0,

y (0) = 0, y, y′ are bounded at infinity.

6. Expand the function

f (x) = sinx, 0 ≤ x ≤ π

in terms of the eigenfunctions of the Sturm–Liouville problem

y′′ + λy = 0,

y (0) = 0, y (π) + y′ (π) = 0.

7. Find the expansion of

f (x) = x, 0 ≤ x ≤ π

in a series of eigenfunctions of the Sturm–Liouville system

y′′ + λy = 0,

y′ (0) = 0, y′ (π) = 0.

8. Transform each of the following equations into the equivalent self-
adjoint form:
(a) The Laguerre equation

xy′′ + (1 − x) y′ + ny = 0, n = 0, 1, 2, . . . .

(b) The Hermite equation

y′′ − 2xy′ + 2ny = 0, n = 0, 1, 2, . . . .

(c) The Tchebycheff equation

(
1 − x2

)
y′′ − xy′ + n2y = 0, n = 0, 1, 2, . . . .

9. If q (x) and s (x) are continuous and p (x) is twice continuously differ-
entiable in [a, b], show that the solutions of the fourth-order Sturm–
Liouville system
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[p (x) y′′]
′′

+ [q (x) + λs (x)] y = 0,

[
a1y + a2 (py′′)

′
]

x=a
= 0,

[
b1y + b2 (py′′)

′
]

x=b
= 0,

[c1y
′ + c2 (py′′)]x=a = 0, [d1y

′ + d2 (py′′)]x=b = 0,

where a2
1 + a2

2 �= 0, b2
1 + b2

2 �= 0, c2
1 + c2

2 �= 0, d2
1 + d2

2 �= 0,
are orthogonal with respect to s (x) in [a, b].

10. If the eigenfunctions of the problem

1

r

d

dr
(ry′) + λy = 0, 0 < r < a,

c1y (a) + c2y
′ (a) = 0,

lim
r→0+

y (r) < ∞,

satisfy

lim
r→0+

ry′ (r) = 0,

show that all the eigenvalues are real for real c1 and c2.

11. Find the Green’s function for each of the following problems:

(a) L [y] = y′′ = 0,

y (0) = 0, y′ (1) = 0.

(b) L [y] =
(
1 − x2

)
y′′ − 2xy′ = 0,

y (0) = 0, y′ (1) = 0.

(c) L [y] = y′′ + a2y = 0, a = constant,

y (0) = 0, y (1) = 0.

12. Determine the solution of each of the following boundary-value prob-
lems:

(a) y′′ + y = 1,

y (0) = 0, y (1) = 0.
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(b) y′′ + 4y = ex,

y (0) = 0, y′ (1) = 0.

(c) y′′ = sinx,

y (0) = 0, y (1) + 2y′ (1) = 0.

(d) y′′ + 4y = −2,

y (0) = 0, y
(

π
4

)
= 0.

(e) y′′ = −x,

y (0) = 2, y (1) + y′ (1) = 4.

(f) y′′ = −x2,

y (0) + y′ (0) = 4, y′ (1) = 2.

(g) y′′ = −x,

y (0) = 1, y′ (1) = 2.

13. Determine the solution of the following boundary-value problems:

(a) y′′ = −f (x) , y (0) = 0, y′ (1) = 0.

(b) y′′ = −f (x) , y (−1) = 0, y (1) = 0.

14. Find the solution of the following boundary-value problems:

(a) y′′ − y = −f (x) , y (0) = y (1) = 0.

(b) y′′ − y = −f (x) , y′ (0) = y′ (1) = 0.

15. Show that the Green’s function G (t, ξ) for the forced harmonic oscilla-
tor described by initial-value problem

ẍ + ω2x =

(
F

m

)
sin Ωt,

x (0) = a, ẋ (0) = 0,

is
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G (t, ξ) =
1

ω
sin ω (t − ξ) .

Hence, the particular solution is

xp (t) =
F

mω

∫ t

0

sin ω (t − ξ) sin (Ωξ) dξ.

16. Determine the Green’s function for the boundary-value problem

xy′′ + y′ = −f (x) ,

y (1) = 0, lim
x→0

|y (x)| < ∞.

17. Determine the Green’s function for the boundary-value problem

xy′′ + y′ − n2

x
y = −f (x) ,

y (1) = 0, lim
x→0

|y (x)| < ∞.

18. Determine the Green’s function for the boundary-value problem

[(
1 − x2

)
y′]′ − h2

(1 − x2)
y = −f (x) , h = 1, 2, 3, . . . ,

lim
r→+ 1

|y (x)| < ∞.

19. Prove the uniqueness of the Green’s function for the boundary-value
problem

L [y] = −f (x) ,

a1y (a) + a2y
′ (a) = 0,

b1y (b) + b2y
′ (b) = 0.

20. Find the Green’s function for the boundary-value problem

L [y] = y(iv) = −f (x) ,

y (0) = y (1) = y′ (0) = y′ (1) = 0.

Prove that the homogeneous problem has a trivial solution only, and
prove that the nonhomogeneous problem has a unique solution.
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21. Determine the Green’s function for the boundary-value problem

y′′ = −f (x) , y (−1) = y (1) , y′ (−1) = y′ (1) .

22. Consider the nonself-adjoint boundary-value problem

L [y] = y′′ + 3y′ + 2y = −f (x) ,

2 y (0) − y (1) = 0, y′ (1) = 2.

By direct integration of GL [y] from 0 to 1, show that

y (x) = −2 G (1, x) −
∫ 1

0

G (x, ξ) f (ξ) dξ

is the solution of the boundary-value problem, if G satisfies the system

Gξξ − 3Gξ + 2G = 0, ξ �= x,

G (0, x) = 0,

6 G (1, x) − 2 Gξ (1, x) + Gξ (0, x) = 0.

Find the Green’s function G (x, ξ).

23. Show that

dG (x, ξ)

dx

∣∣∣∣
ξ=x+

ξ=x−
=

1

p (x)

is equivalent to

dG (x, ξ)

dx

∣∣∣∣
x=ξ+

x=ξ−
= − 1

p (ξ)
.

24. (a) Apply the Prüfer transformation

R2 = y2 + p2 (y′)
2
, θ = tan−1

(
y

py′

)

to transform the Sturm–Liouville equation (8.1.3) into the first order
nonlinear equation in the form

dR

dx
=

1

2
r

(
1

p
− q − λr

)
sin 2θ,

dθ

dx
= (q + λr) sin2 θ +

1

p
cos2 θ,

where a < x < b.
(b) Draw the direction field

(
dθ
dx

)
in the (θ, x) plane with p = x, q = − 1

x
and r = x. Hence draw the solution curves of the θ-equation for different
λ with data θ (a) = α and θ (b) is arbitrary.
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Boundary-Value Problems and Applications

“The enormous usefulness of mathematics in the natural sciences is some-
thing bordering on the mysterious and there is no rational explanation for
it. It is not at all natural that “laws of nature” exist, much less that man is
able to discover them. The miracle of the appropriateness of the language
of mathematics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve.”

Eugene Wigner

9.1 Boundary-Value Problems

In the preceding chapters, we have treated the initial-value and initial
boundary-value problems. In this chapter, we shall be concerned with
boundary-value problems. Mathematically, a boundary-value problem is
finding a function which satisfies a given partial differential equation and
particular boundary conditions. Physically speaking, the problem is inde-
pendent of time, involving only space coordinates. Just as initial-value prob-
lems are associated with hyperbolic partial differential equations, boundary-
value problems are associated with partial differential equations of elliptic
type. In marked contrast to initial-value problems, boundary-value prob-
lems are considerably more difficult to solve. This is due to the physical
requirement that solutions must hold in the large unlike the case of initial-
value problems, where solutions in the small, say over a short interval of
time, may still be of physical interest.

The second-order partial differential equation of the elliptic type in n
independent variables x1, x2, . . ., xn is of the form

▽2u = F (x1, x2 . . . , xn, ux1 , ux2 , . . . , uxn) , (9.1.1)

where
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▽2u =

n∑

i=1

uxixi
.

Some well-known elliptic equations include
A. Laplace equation

▽2u = 0. (9.1.2)

B. Poisson equation

▽2u = g (x) , (9.1.3)

where

g (x) = g (x1, x2, . . . , xn) .

C. Helmholtz equation

▽2u + λu = 0, (9.1.4)

where λ is a positive constant
D. Schrödinger equation (time independent)

▽2u + [λ − q (x)]u = 0. (9.1.5)

We shall not attempt to treat general elliptic partial differential equa-
tions. Instead, we shall begin by presenting the simplest boundary-value
problems for the Laplace equation in two dimensions.

We first define a harmonic function. A function is said to be harmonic
in a domain D if it satisfies the Laplace equation and if it and its first two
derivatives are continuous in D.

We may note here that, since the Laplace equation is linear and homo-
geneous, a linear combination of harmonic functions is harmonic.

1. The First Boundary-Value Problem

The Dirichlet Problem: Find a function u(x, y), harmonic in D, which sat-
isfies

u = f (s) on B, (9.1.6)

where f (s) is a prescribed continuous function on the boundary B of the
domain D. D is the interior of a simple closed piecewise smooth curve B.

We may physically interpret the solution u of the Dirichlet problem as
the steady-state temperature distribution in a body containing no sources or
sinks of heat, with the temperature prescribed at all points on the boundary.
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2. The Second Boundary-Value Problem

The Neumann Problem: Find a function u (x, y), harmonic in D, which
satisfies

∂u

∂n
= f (s) on B, (9.1.7)

with
∫

B

f (s) ds = 0. (9.1.8)

The symbol ∂u/∂n denotes the directional derivative of u along the out-
ward normal to the boundary B. The last condition (9.1.8) is known as the
compatibility condition, since it is a consequence of (9.1.7) and the equa-
tion ▽2u = 0. Here the solution u may be interpreted as the steady-state
temperature distribution in a body containing no heat sources or heat sinks
when the heat flux across the boundary is prescribed.

The compatibility condition, in this case, may be interpreted physically
as the heat requirement that the net heat flux across the boundary be zero.

3. The Third Boundary-Value Problem

Find a function u (x, y) harmonic in D which satisfies

∂u

∂n
+ h (s) u = f (s) on B, (9.1.9)

where h and f are given continuous functions. In this problem, the solution
u may be interpreted as the steady-state temperature distribution in a body,
from the boundary of which the heat radiates freely into the surrounding
medium of prescribed temperature.

4. The Fourth Boundary-Value Problem

The Robin Problem: Find a function u (x, y), harmonic in D, which satisfies
boundary conditions of different types on different portions of the boundary
B. An example involving such boundary conditions is

u = f1 (s) on B1, (9.1.10)

∂u

∂n
= f2 (s) on B2,

where B = B1 ∪ B2.
Problems 1 through 4 are called interior boundary-value problems. These

differ from exterior boundary-value problems in two respects:
i. For problems of the latter variety, part of the boundary is at infinity.
ii. Solutions of exterior problems must satisfy an additional requirement,

namely, that of boundedness at infinity.
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9.2 Maximum and Minimum Principles

Before we prove the uniqueness and continuity theorems for the interior
Dirichlet problem for the two-dimensional Laplace equation, we first prove
the maximum and minimum principles.

Theorem 9.2.1. (The Maximum Principle) Suppose that u (x, y) is
harmonic in a bounded domain D and continuous in D = D ∪ B. Then u
attains its maximum on the boundary B of D.

Physically, we may interpret this as meaning that the temperature of a
body which was neither a source nor a sink of heat acquires its largest (and
smallest) values on the surface of the body, and the electrostatic potential in
a region which does not contain any free charge attains its maximum (and
minimum) values on the boundary of the region.

Proof. Let the maximum of u on B be M . Let us now suppose that
the maximum of u in D is not attained at any point of B. Then it must
be attained at some point P0 (x0, y0) in D. If M0 = u (x0, y0) denotes the
maximum of u in D, then M0 must also be the maximum of u in D.

Consider the function

v (x, y) = u (x, y) +
M0 − M

4R2

[
(x − x0)

2
+ (y − y0)

2
]
, (9.2.1)

where the point P (x, y) is in D and where R is the radius of a circle
containing D. Note that

v (x0, y0) = u (x0, y0) = M0.

We have v (x, y) ≤ M + (M0 − M) /2 = 1
2 (M + M0) < M0 on B. Thus,

v (x, y) like u (x, y) must attain its maximum at a point in D. It follows
from the definition of v that

vxx + vyy = uxx + uyy +
(M0 − M)

R2
=

(M0 − M)

R2
> 0. (9.2.2)

But for v to be a maximum in D,

vxx ≤ 0, vyy ≤ 0.

Thus,

vxx + vyy ≤ 0

which contradicts equation (9.2.2). Hence, the maximum of u must be at-
tained on B.

Theorem 9.2.2. (The Minimum Principle) If u (x, y) is harmonic in
a bounded domain D and continuous in D = D ∪ B, then u attains its
minimum on the boundary B of D.
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Proof. The proof follows directly by applying the preceding theorem to
the harmonic function −u (x, y).

As a result of the above theorems, we see that u =constant which is evi-
dently harmonic attains the same value in the domain D as on the boundary
B.

9.3 Uniqueness and Continuity Theorems

Theorem 9.3.1. (Uniqueness Theorem) The solution of the Dirichlet
problem, if it exists, is unique.

Proof. Let u1 (x, y) and u2 (x, y) be two solutions of the Dirichlet prob-
lem. Then u1 and u2 satisfy

▽2u1 = 0, ▽2u2 = 0 in D,

u1 = f, u2 = f on B.

Since u1 and u2 are harmonic in D, (u1 − u2) is also harmonic in D.
But

u1 − u2 = 0 on B.

The maximum-minimum principle gives

u1 − u2 = 0

at all interior points of D. Thus, we have

u1 = u2.

Therefore, the solution is unique.

Theorem 9.3.2. (Continuity Theorem) The solution of the Dirichlet
problem depends continuously on the boundary data.

Proof. Let u1 and u2 be the solutions of

▽2u1 = 0 in D,

u1 = f1 on B,

and

▽2u2 = 0 in D,

u2 = f2 on B.

If v = u1 − u2, then v satisfies
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▽2v = 0 in D,

v = f1 − f2 on B.

By maximum and minimum principles, f1 − f2 attains the maximum
and minimum of v on B . Thus, if |f1 − f2| < ε, then

−ε < vmin ≤ vmax < ε on B.

Thus, at any interior point in D , we have

−ε < vmin ≤ v ≤ vmax < ε.

Therefore, |v| < ε in D. Hence,

|u1 − u2| < ε.

Theorem 9.3.3. Let {un} be a sequence of functions harmonic in D and
continuous in D. Let fi be the values of ui on B. If a sequence {un} con-
verges uniformly on B, then it converges uniformly in D.

Proof. By hypothesis, {fn} converges uniformly on B. Thus, for ε > 0,
there exists an integer N such that everywhere on B

|fn − fm| < ε for n, m > N.

It follows from the continuity theorem that for all n, m > N

|un − um| < ε

in D, and hence, the theorem is proved.

9.4 Dirichlet Problem for a Circle

1. Interior Problem

We shall now establish the existence of the solution of the Dirichlet problem
for a circle.

The Dirichlet problem is

▽2u = urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < a, 0 < θ ≤ 2π,(9.4.1)

u (a, θ) = f (θ) for all θ in [0, 2π] . (9.4.2)

By the method of separation of variables, we seek a solution in the form

u (r, θ) = R (r) Θ (θ) �= 0.

Substitution of this in equation (9.4.1) yields
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r2 R
′′

R
+ r

R
′

R
= −Θ

′′

Θ
= λ.

Hence,

r2R
′′

+ rR
′ − λR = 0, (9.4.3)

Θ
′′

+ λΘ = 0. (9.4.4)

Because of the periodicity conditions Θ (0) = Θ (2π) and Θ
′
(0) =

Θ
′
(2π) which ensure that the function Θ is single-valued, the case λ < 0

does not yield an acceptable solution. When λ = 0, we have

u (r, θ) = (A + B log r) (Cθ + D) .

Since log r → −∞ as r → 0+ (note that r = 0 is a singular point of
equation (9.4.1)), B must vanish in order for u to be finite at r = 0. C
must also vanish in order for u to be periodic with period 2π. Hence, the
solution for λ = 0 is u = constant. When λ > 0, the solution of equation
(9.4.4) is

Θ (θ) = A cos
√

λ θ + B sin
√

λ θ.

The periodicity conditions imply
√

λ = n for n = 1, 2, 3, . . . .

Equation (9.4.3) is the Euler equation and therefore, the general solution
is

R (r) = Crn + Dr−n.

Since r−n → ∞ as r → 0, D must vanish for u to be continuous at
r = 0.

Thus, the solution is

u (r, 0) = Crn (A cos n θ + B sin n θ) for n = 1, 2, . . . .

Hence, the general solution of equation (9.4.1) may be written in the
form

u (r, θ) =
a0

2
+

∞∑

n=1

( r

a

)n

(an cos nθ + bn sin nθ) , (9.4.5)

where the constant term (a0/2) represents the solution for λ = 0, and an

and bn are constants. Letting ρ = r/a, we have

u (ρ, θ) =
a0

2
+

∞∑

n=1

ρn (an cos nθ + bn sin nθ) . (9.4.6)
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Our next task is to show that u (r, θ) is harmonic in 0 ≤ r < a and
continuous in 0 ≤ r ≤ a. We must also show that u satisfies the boundary
condition (9.4.2).

We assume that an and bn are the Fourier coefficients of f (θ), that is,

an =
1

π

∫ 2π

0

f (θ) cos nθ dθ, n = 0, 1, 2, 3, . . . ,

(9.4.7)

bn =
1

π

∫ 2π

0

f (θ) sin nθ dθ, n = 1, 2, 3, . . . .

Thus, from their very definitions, an and bn are bounded, that is, there
exists some number M > 0 such that

|a0| < M, |an| < M, |bn| < M, n = 1, 2, 3, . . . .

Thus, if we consider the sequence of functions {un} defined by

un (ρ, θ) = ρn (an cos nθ + bn sin nθ) , (9.4.8)

we see that

|un| < 2ρn
0M, 0 ≤ ρ ≤ ρ0 < 1.

Hence, in any closed circular region, series (9.4.6) converges uniformly.
Next, differentiate un with respect to r. Then, for 0 ≤ ρ ≤ ρ0 < 1,

∣∣∣∣
∂un

∂r

∣∣∣∣ =
∣∣∣n
a

ρn−1 (an cos nθ + bn sin nθ)
∣∣∣ < 2

(n

a

)
ρn−1
0 M.

Thus, the series obtained by differentiating series (9.4.6) term by term
with respect to r converges uniformly. In a similar manner, we can prove
that the series obtained by twice differentiating series (9.4.6) term by term
with respect to r and θ converge uniformly. Consequently,

▽2u = urr +
1

r
ur +

1

r2
uθθ

=

∞∑

n=1

ρn−2

a2
(an cos nθ + bn sin nθ)

[
n (n − 1) + n − n2

]

= 0, 0 ≤ ρ ≤ ρ0 < 1.

Since each term of series (9.4.6) is a harmonic function, and since the
series converges uniformly, u (r, θ) is harmonic at any interior point of the
region 0 ≤ ρ < 1. It now remains to show that u satisfies the boundary
data f (θ).

Substitution of the Fourier coefficients an and bn into equation (9.4.6)
yields
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u (ρ, θ) =
1

2π

∫ 2π

0

f (θ) dθ +
1

π

∞∑

n=1

ρn

∫ 2π

0

f (τ)

× (cos nτ cos nθ + sin nτ sin nθ) dτ

=
1

2π

∫ 2π

0

[
1 + 2

∞∑

n=1

ρn cos n (θ − τ)

]
f (τ) dτ. (9.4.9)

The interchange of summation and integration is permitted due to the
uniform convergence of the series. For 0 ≤ ρ ≤ 1

1 + 2
∞∑

n=1

[ρn cos n (θ − τ)] = 1 +

∞∑

n=1

[
ρnein(θ−τ) + ρne−in(θ−τ)

]

= 1 +
ρ ei(θ−τ)

1 − ρ ei(θ−τ)
+

ρ e−i(θ−τ)

1 − ρ e−i(θ−τ)

=
1 − ρ2

1 − ρ ei(θ−τ) − ρ e−i(θ−τ) + ρ2

=
1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
.

Hence,

u (ρ, θ) =
1

2π

∫ 2π

0

1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
f (τ) dτ. (9.4.10)

The integral on the right side of (9.4.10) is called the Poisson integral
formula for a circle.

Now if f (θ) = 1, then, according to series (9.4.9), u (r, θ) = 1 for 0 ≤
ρ ≤ 1. Thus, equation (9.4.10) gives

1 =
1

2π

∫ 2π

0

1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
dτ.

Hence,

f (θ) =
1

2π

∫ 2π

0

1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
f (θ) dτ, 0 ≤ ρ < 1.

Therefore,

u (ρ, θ) − f (θ) =
1

2π

∫ 2π

0

(
1 − ρ2

)
[f (τ) − f (θ)]

1 − 2ρ cos (θ − τ) + ρ2
dτ. (9.4.11)

Since f (θ) is uniformly continuous on [0, 2π], for given ε > 0, there exists
a positive number δ (ε) such that |θ − τ | < δ implies |f (θ) − f (τ)| < ε. If
|θ − τ | ≥ δ so that θ − τ �= 2nπ for n = 0, 1, 2, . . ., then
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lim
ρ→1−

1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
= 0.

In other words, there exists ρ0 such that if |θ − τ | ≥ δ, then

1 − ρ2

1 − 2ρ cos (θ − τ) + ρ2
< ε,

for 0 ≤ ρ ≤ ρ0 < 1. Hence, equation (9.4.10) yields

|u (r, θ)| − f (θ)| ≤ 1
2π

∫ 2π

|0−τ |≥δ

(
1 − ρ2

)
|f (τ) − f (θ)|

1 − 2ρ cos (θ − τ) + ρ2
dτ

+
1

2π

∫ 2π

|θ−τ |<δ

(
1 − ρ2

)
|f (θ) − f (τ)|

1 − 2ρ cos (θ − τ) + ρ2
dτ

≤ 1

2π
(2πε)

[
2 max

0≤θ≤2π
|f (θ)|

]
+

ε

2π
· 2π

= ε

[
1 + 2

(
max

0≤θ≤2π
|f (θ)|

)]

which implies that

lim
ρ→1−

u (r, θ) = f (θ)

uniformly in θ. Therefore, we state the following theorem:

Theorem 9.4.1. There exists one and only one harmonic function u (r, θ)
which satisfies the continuous boundary data f (θ). This function is either
given by

u (r, θ) =
1

2π

∫ 2π

0

a2 − r2

a2 − 2ar cos (θ − τ) + r2
f (τ) dτ, (9.4.12)

or

u (r, θ) =
a0

2
+

∞∑

n=1

rn

an
(an cos nθ + bn sin nθ) , (9.4.13)

where an and bn are the Fourier coefficients of f (θ).

For ρ = 0, the Poisson integral formula (9.4.10) becomes

u (0, θ) = u (0) =
1

2π

∫ 2π

0

f (τ) dτ. (9.4.14)

This result may be stated as follows:

Theorem 9.4.2. (Mean Value Theorem) If u is harmonic in a circle,
then the value of u at the center is equal to the mean value of u on the
boundary of the circle.
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Several comments are in order. First, the Continuity Theorem 9.3.2
for the Dirichlet problem for the Laplace equation is a special example of
the general result that the Dirichlet problems for all elliptic equations are
well-posed. Second, the formula (9.4.12) represents the unique continuous
solution of the Laplace equation in 0 ≤ r < a even when f (θ) is discontin-
uous. This means that, for Laplace’s equation, discontinuities in boundary
conditions are smoothed out in the interior of the domain. This is a re-
markable contrast to linear hyperbolic equations where any discontinuity
in the data propagates along the characteristics. Third, the integral solution
(9.4.12) can be written as

u (r, θ) =

∫ π

−π

P (r, τ − θ) f (τ) dτ,

where P (r, τ − θ) is called the Poisson kernel given by

P (r, τ − θ) =
1

2π

(
a2 − r2

)

[a2 − 2ar cos (τ − θ) + r2]
.

Clearly, P (a, τ − θ) = 0 except at τ = θ. Also

f (θ) = lim
r→a−

u (r, θ) =

∫ π

−π

lim
r→a−

P (r, τ − θ) f (τ) dτ.

This implies that

lim
r→a−

P (r, τ − θ) = δ (τ − θ) ,

where δ (x) is the Dirac delta function.
As in the preceding section, the exterior Dirichlet problem for a circle

can readily be solved. For the exterior problem u must be bounded as
r → ∞. The general solution, therefore, is

u (r, θ) =
a0

2
+

∞∑

n=1

(
r−n

a−n

)
(an cos nθ + bn sin nθ) . (9.4.15)

Applying the boundary condition u (a, θ) = f (θ), we obtain

f (θ) =
a0

2
+

∞∑

n=1

(an cos nθ + bn sin nθ) .

Hence, we find

an =
1

π

∫ 2π

0

f (τ) cos nτ dτ, n = 0, 1, 2, . . . , (9.4.16)

bn =
1

π

∫ 2π

0

f (τ) sinnτ dτ, n = 0, 1, 2, . . . . (9.4.17)
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Substituting an and bn into equation (9.4.15) yields

u (r, θ) =
1

2π

∫ 2π

0

[
1 + 2

∞∑

n=1

(a

r

)n

cos n (θ − τ)

]
f (τ) dτ.

Comparing this equation with (9.4.9), we see that the only difference
between the exterior and interior problem is that ρn is replaced by ρ−n.
Therefore, the final result takes the form

u (ρ, θ) =
1

2π

∫ 2π

0

ρ2 − 1

1 − 2ρ cos (θ − τ) + ρ2
f (τ) dτ, for ρ > 1.(9.4.18)

9.5 Dirichlet Problem for a Circular Annulus

The natural extension of the Dirichlet problem for a circle is the Dirichlet
problem for a circular annulus, that is

∇2u = 0, r2 < r < r1, (9.5.1)

u (r1, θ) = f (θ) , u (r2, θ) = g (θ) . (9.5.2)

In addition, u (r, θ) must satisfy the periodicity condition. Accordingly, f (θ)
and g (θ) must also be periodic with period 2π.

Proceeding as in the case of the Dirichlet problem for a circle, we obtain
for λ = 0

u (r, θ) = (A + B log r) (Cθ + D) .

The periodicity condition on u requires that C = 0. Then, u (r, θ) becomes

u (r, θ) =
a0

2
+

b0

2
log r,

where a0 = 2AD and b0 = 2BD.
The solution for the case λ > 0 is

u (r, θ) =
(
Cr

√
λ + Dr−

√
λ
)(

A cos
√

λ θ + B sin
√

λ θ
)

,

where
√

λ = n = 1, 2, 3, . . .. Thus, the general solution is

u (r, θ) =
1

2
(a0 + b0 log r) +

∞∑

n=1

[(
anrn + bnr−n

)
cos nθ

+
(
cnrn + dnr−n

)
sin nθ

]
, (9.5.3)

where an, bn, cn, and dn are constants.
Applying the boundary conditions (9.5.2), we find that the coefficients

are given by
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a0 + b0 log r1 =
1

π

∫ 2π

0

f (τ) dτ,

anrn
1 + bnr−n

1 =
1

π

∫ 2π

0

f (τ) cos nτ dτ,

cnrn
1 + dnr−n

1 =
1

π

∫ 2π

0

f (τ) sinnτ dτ,

and

a0 + b0 log r2 =
1

π

∫ 2π

0

g (τ) dτ,

anrn
2 + bnr−n

2 =
1

π

∫ 2π

0

g (τ) cos nτ dτ,

cnrn
2 + dnr−n

2 =
1

π

∫ 2π

0

g (τ) sinnτ dτ.

The constants a0, b0, an, bn, cn, dn for n = 1, 2, 3, . . . can then be deter-
mined. Hence, the solution of the Dirichlet problem for an annulus is given
by (9.5.3).

9.6 Neumann Problem for a Circle

Let u be a solution of the Neumann problem

∇2u = 0 inD,

∂u

∂n
= f onB.

It is evident that u + constant is also a solution. Thus, we see that the
solution of the Neumann problem is not unique, and it differs from another
by a constant.

Consider the interior Neumann problem

∇2u = 0, r < R, (9.6.1)

∂u

∂n
=

∂u

∂r
= f (θ) , r = R. (9.6.2)

Before we determine a solution of the Neumann problem, a necessary
condition for the existence of a solution will be established.

In Green’s second formula
∫

D

∫ (
v∇2u − u∇2v

)
dS =

∫

B

(
v

∂u

∂n
− u

∂v

∂n

)
ds, (9.6.3)

we put v = 1, so that ∇2v = 0 in D and ∂v/∂n = 0 on B. Then, the result
is



342 9 Boundary-Value Problems and Applications

∫

D

∫
∇2u dS =

∫

B

∂u

∂n
ds. (9.6.4)

Substituting of (9.6.1) and (9.6.2) into equation (9.6.4) yields
∫

B

f ds = 0 (9.6.5)

which may also be written in the form

R

∫ 2π

0

f (θ) dθ = 0. (9.6.6)

As in the case of the interior Dirichlet problem for a circle, the solution
of the Laplace equation is

u (r, θ) =
a0

2
+

∞∑

k=1

rk (ak cos kθ + bk sin kθ) . (9.6.7)

Differentiating this with respect to r and applying the boundary condition
(9.6.2), we obtain

∂u

∂r
(R, θ) =

∞∑

k=1

kRk−1 (ak cos kθ + bk sin kθ) = f (θ) . (9.6.8)

Hence, the coefficients are given by

ak =
1

kπRk−1

∫ 2π

0

f (τ) cos kτ dτ, k = 1, 2, 3, . . . ,

(9.6.9)

bk =
1

kπRk−1

∫ 2π

0

f (τ) sin kτ dτ, k = 1, 2, 3, . . . .

Note that the expansion of f (θ) in a series of the form (9.6.8) is possible
only by virtue of the compatibility condition (9.6.6) since

a0 =
1

π

∫ 2π

0

f (τ) dτ = 0.

Inserting ak and bk in equation (9.6.7), we obtain

u (r, θ) =
a0

2
+

R

π

∫ 2π

0

[ ∞∑

k=1

( r

R

)k

cos k (θ − τ)

]
f (τ) dτ.

Using the identity

−1

2
log

[
1 + ρ2 − 2ρ cos (θ − τ)

]
=

∞∑

k=1

1

k
ρk cos {k (θ − τ)} ,
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with ρ = (r/R), we find that

u (r, θ) =
a0

2
− R

2π

∫ 2π

0

log
[
R2 − 2rR cos (θ − τ) + r2

]
f (τ) dτ. (9.6.10)

in which a constant factor R2 in the argument of the logarithm was elimi-
nated by virtue of equation (9.6.6).

In a similar manner, for the exterior Neumann problem, we can readily
find the solution in the form

u (r, θ) =
a0

2
+

R

2π

∫ 2π

0

log
[
R2 − 2rR cos (θ − τ) + r2

]
f (τ) dτ. (9.6.11)

9.7 Dirichlet Problem for a Rectangle

We first consider the boundary-value problem

∇2u = uxx + uyy = 0, 0 < x < a, 0 < y < b, (9.7.1)

u (x, 0) = f (x) , u (x, b) = 0, 0 ≤ x ≤ a, (9.7.2)

u (0, y) = 0, u (a, y) = 0, 0 ≤ y ≤ b. (9.7.3)

We seek a nontrivial separable solution in the form

u (x, y) = X (x) Y (y)

Substituting u (x, y) in the Laplace equation, we obtain

X ′′ − λX = 0, (9.7.4)

Y ′′ + λY = 0, (9.7.5)

where λ is a separation constant. Since the boundary conditions are homo-
geneous for x = 0 and x = a, we choose λ = −α2 with α > 0 in order to
obtain nontrivial solutions of the eigenvalue problem

X ′′ + α2X = 0,

X (0) = X (a) = 0.

It is easily found that the eigenvalues are

α =
nπ

a
, n = 1, 2, 3, . . . .

and the corresponding eigenfunctions are sin (nπx/a). Hence

Xn (x) = Bn sin
(nπx

a

)
.
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The solution of equation (9.7.5) is Y (y) = C cosh αy+D sinhαy, which
may also be written in the form

Y (y) = E sinhα (y + F ) ,

where E =
(
D2 − C2

) 1
2 and F = (1/α) tanh−1 (C/D). Applying the re-

maining homogeneous boundary condition

u (x, b) = X (x) Y (b) = 0,

we obtain

Y (b) = E sinhα (b + F ) = 0,

and hence,

F = −b, E �= 0

for a nontrivial solution u (x, y). Thus, we have

Yn (y) = En sinh
{nπ

a
(y − b)

}
.

Because of linearity, the solution becomes

u (x, y) =
∞∑

n=1

an sin
(nπx

a

)
sinh

{nπ

a
(y − b)

}
,

where an = BnEn. Now, we apply the nonhomogeneous boundary condition
to obtain

u (x, 0) = f (x) =

∞∑

n=1

an sinh

(−nπb

a

)
sin

(nπx

a

)
.

This is a Fourier sine series and hence,

an =
−2

a sinh
(

nπb
a

)
∫ a

0

f (x) sin
(nπx

a

)
dx.

Thus, the formal solution is given by

u (x, y) =
∞∑

n=1

a∗
n

sinh
{

nπ
a (b − y)

}

sinh
(

nπb
a

) sin
(nπx

a

)
, (9.7.6)

where

a∗
n =

2

a

∫ a

0

f (x) sin
(nπx

a

)
dx.
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To prove the existence of solution (9.7.6), we first note that

sinh nπ
a (b − y)

sinh nπb
a

= e−nπy/a

[
1 − e−(2nπ/a)(b−y)

1 − e−2nπb/a

]
≤ C1e

−nπy/a,

where C1 is a constant. Since f (x) is bounded, we have

|a∗
n| ≤ 2

a

∫ a

0

|f (x)| dx = C2.

Thus, the series for u (x, y) is dominated by the series

∞∑

n=1

Me−nπy0/a for y ≥ y0 > 0, M = constant,

and hence, u (x, y) converges uniformly in x and y whenever 0 ≤ x ≤ a,
y ≥ y0 > 0. Consequently, u (x, y) is continuous in this region and satisfies
the boundary values u (0, y) = u (a, y) = u (x, b) = 0.

Now differentiating u twice with respect to x, we obtain

uxx (x, y) =

∞∑

n=1

−a∗
n

(nπ

a

)2 sinh nπ
a (b − y)

sinh nπb
a

sin
(nπx

a

)

and differentiating u twice with respect to y, we obtain

uyy (x, y) =

∞∑

n=1

a∗
n

(nπ

a

)2 sinh nπ
a (b − y)

sinh nπb
a

sin
(nπx

a

)
.

It is evident that the series for uxx and uyy are both dominated by

∞∑

n=1

M∗n2e−nπy0/a

and hence, converge uniformly for any 0 < y0 < b. It follows that uxxand
uyy exist, and hence, u satisfies the Laplace equation.

It now remains to show that u (x, 0) = f (x). Let f (x) be a continuous
function and let f ′ (x) be piecewise continuous on [0, a]. If, in addition,
f (0) = f (a) = 0, then, the Fourier series for f (x) converges uniformly.
Putting y = 0 in the series for u (x, y), we obtain

u (x, 0) =

∞∑

n=1

a∗
n sin

(nπx

a

)
.

Since u (x, 0) converges uniformly to f (x), we write, for ε > 0,

|sm (x, 0) − sn (x, 0)| < ε for m, n > Nε,
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where

sm (x, y) =

∞∑

n=1

a∗
n sin

(nπx

a

)
.

We also know that sm (x, y) − sn (x, y) satisfies the Laplace equation and
the boundary conditions at x = 0, x = a and y = b. Then, by the maximum
principle,

|sm (x, y) − sn (x, y)| < ε for m, n > Nε

in the region 0 ≤ x ≤ a, 0 ≤ y ≤ b. Thus, the series for u (x, y) converges
uniformly, and as a consequence, u (x, y) is continuous in the region 0 ≤
x ≤ a, 0 ≤ y ≤ b. Hence, we obtain

u (x, 0) =

∞∑

n=1

a∗
n sin

(nπx

a

)
= f (x) .

Thus, the solution (9.7.6) is established.
The general Dirichlet problem

∇2u = 0, 0 < x < a, 0 < y < b,

u (x, 0) = f1 (x) , u (x, a) = f2 (x) , 0 ≤ x ≤ a,

u (0, y) = f3 (y) , u (b, y) = f4 (y) , 0 ≤ y ≤ b

can be solved by separating it into four problems, each of which has one
nonhomogeneous boundary condition and the rest zero. Thus, determining
each solution as in the preceding problem and then adding the four solu-
tions, the solution of the Dirichlet problem for a rectangle can be obtained.

9.8 Dirichlet Problem Involving the Poisson Equation

The solution of the Dirichlet problem involving the Poisson equation can be
obtained for simple regions when the solution of the corresponding Dirichlet
problem for the Laplace equation is known.

Consider the Poisson equation

∇2u = uxx + uuu = f (x, y) in D,

with the condition

u = g (x, y) on B.

Assume that the solution can be written in the form

u = v + w,
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where v is a particular solution of the Poisson equation and w is the solution
of the associated homogeneous equation, that is,

∇2w = 0,

∇2v = f.

As soon as v is ascertained, the solution of the Dirichlet problem

∇2w = 0 inD,

w = −v + g (x, y) on B

can be determined. The usual method of finding a particular solution for
the case in which f (x, y) is a polynomial of degree n is to seek a solution in
the form of a polynomial of degree (n + 2) with undetermined coefficients.

As an example, we consider the torsion problem

∇2u = −2, 0 < x < a, 0 < y < b,

u (0, y) = 0, u (a, y) = 0; u (x, 0) = 0, u (x, b) = 0.

We let u = v + w. Now assume v to be the form

v (x, y) = A + Bx + Cy + Dx2 + Exy + Fy2.

Substituting this in the Poisson equation, we obtain

2D + 2F = −2.

The simplest way of satisfying this equation is to choose

D = −1 and F = 0.

The remaining coefficients are arbitrary. Thus, we take

v (x, y) = ax − x2

so that v reduces to zero on the sides x = 0 and x = a. Next, we find w
from

∇2w = 0, 0 < x < a, 0 < y < b,

w (0, y) = −v (0, y) = 0,

w (a, y) = −v (a, 0) = 0,

w (x, 0) = −v (x, 0) = −
(
ax − x2

)
,

w (x, b) = −v (x, b) = −
(
ax − x2

)
.

As in the Dirichlet problem (Section 9.7), the solution is found to be

w (x, y) =

∞∑

n=1

(
an cosh

nπy

a
+ bn sinh

nπy

a

)
sin

(nπx

a

)
.
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Application of the nonhomogeneous boundary conditions yields

w (x, 0) = −
(
ax − x2

)
=

∞∑

n=1

an sin
(nπx

a

)
,

w (x, b) = −
(
ax − x2

)
=

∞∑

n=1

(
an cosh

nπb

a
+ bn sinh

nπb

a

)
sin

(nπx

a

)
,

from which we find

an =
2

a

∫ a

0

(
x2 − ax

)
sin

(nπx

a

)
dx

=

{
0, ifn is even
−8a2

π3n3 ifn is odd

and
(

an cosh
nπb

a
+ bn sinh

nπb

a

)
=

2

a

∫ a

0

(
x2 − ax

)
sin

(nπx

a

)
dx.

Thus, we have

bn =

(
1 − cosh nπb

a

)
an

sinh
(

nπb
a

) .

Hence, the solution of the Dirichlet problem for the Poisson equation is
given by

u (x, y) = (a − x) x

− 8a2

π3

∞∑

n=1

[
sinh (2n − 1) π(b−y)

a + sinh (2n − 1) πy
a

]

sinh (2n − 1) πb
a

sin (2n − 1) πx
a

(2n − 1)
3 .

9.9 The Neumann Problem for a Rectangle

Consider the Neumann problem

∇2u = 0, 0 < x < a, 0 < y < b, (9.9.1)

ux (0, y) = f1 (y) , ux (a, y) = f2 (y) , 0 ≤ y ≤ b, (9.9.2)

uy (x, 0) = g1 (x) , uy (x, b) = g2 (x) , 0 ≤ x ≤ a. (9.9.3)

The compatibility condition that must be fulfilled in this case is

∫ a

0

[g1 (x) − g2 (x)] dx +

∫ b

0

[f1 (y) − f2 (y)] dy = 0. (9.9.4)

We assume a solution in the form
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u (x, y) = u1 (x, y) + u2 (x, y) , (9.9.5)

where u1 (x, y) is a solution of

∇2u1 = 0,

∂u1

∂x
(0, y) = 0,

∂u1

∂x
(a, y) = 0, (9.9.6)

∂u1

∂x
(x, 0) = g1 (x) ,

∂u1

∂x
(x, b) = g2 (x) ,

and where g1 and g2 satisfy the compatibility condition

∫ a

0

[g1 (x) − g2 (x)] dx = 0. (9.9.7)

The function u2 (x, y) is a solution of

∇2u2 = 0,

∂u2

∂x
(0, y) = f1 (y)

∂u2

∂x
(a, y) = f2 (y) (9.9.8)

∂u2

∂y
(x, 0) = 0,

∂u2

∂y
(x, b) = 0,

where f1 and f2 satisfy the compatibility condition

∫ b

0

[f1 (y) − f2 (y)] dy = 0. (9.9.9)

Hence, u1 (x, y) and u2 (x, y) can be determined. Conditions (9.9.7) and
(9.9.9) ensure that condition (9.9.4) is fulfilled. Thus, the problem is solved.

However, the solution obtained in this manner is rather restrictive. In
general, condition (9.9.4) does not imply conditions (9.9.7) and (9.9.9).
Thus, generally speaking, it is not possible to obtain a solution of the
Neumann problem for a rectangle by the method described above.

To obtain a general solution, Grunberg (1946) proposed the following
method. Suppose we assume a solution in the form

u (x, y) =
Y0

2
(y) +

∞∑

n=1

Xn (x) Yn (y) , (9.9.10)
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where Xn (x) = cos (nπx/a) is an eigenfunction of the eigenvalue problem

X ′′ + λX = 0,

X ′ (0) = X ′ (a) = 0,

corresponding to the eigenvalue λn = (nπ/a)
2
. Then, from equation

(9.9.10), we see that

Yn (y) =
2

a

∫ a

0

u (x, y) Xn (x) dx,

=
2

a

∫ a

0

u (x, y) cos
(nπx

a

)
dx. (9.9.11)

Multiplying both sides of equation (9.9.1) by 2 cos (nπx/a) and integrating
with respect to x from 0 to a, we obtain

2

a

∫ a

0

(uxx + uyy) cos
(nπx

a

)
dx = 0,

or,

Y ′′
n +

2

a

∫ a

0

uxx cos
(nπx

a

)
dx = 0.

Integrating the second term by parts and applying the boundary conditions
(9.9.2), we obtain

Y ′′
n (y) −

(nπ

a

)2

Yn (y) = Fn (y) , (9.9.12)

where Fn (y) = 2 [f1 (y) − (−1)
n

f2 (y)] /a. This is an ordinary differential
equation whose solution may be written in the form

Yn (y) = An cosh
(nπy

a

)
+ Bn sinh

(nπy

a

)

+
2

πn

∫ y

0

Fn (τ) sinh
{nπ

a
(y − τ)

}
dτ. (9.9.13)

The coefficients Anand Bn are determined from the boundary conditions

Y ′
n (0) =

2

a

∫ a

0

uy (x, 0) cos
(nπx

a

)
dx

=
2

a

∫ a

0

g1 (x) cos
(nπx

a

)
dx (9.9.14)

and

Y ′
n (b) =

2

a

∫ a

0

g2 (x) cos
(nπx

a

)
dx. (9.9.15)
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For n = 0, equation (9.9.12) takes the form

Y ′′
0 (y) =

2

a
[f1 (y) − f2 (y)]

and hence,

Y ′
0 (y) =

2

a

∫ y

0

[f1 (τ) − f2 (τ)] dτ + C,

where C is an integration constant. Employing the condition (9.9.14) for
n = 0, we find

C =
2

a

∫ a

0

g1 (x) dx.

Thus, we have

Y ′
0 (y) =

2

a

{∫ y

0

[f1 (τ) − f2 (τ)] dτ +

∫ a

0

g1 (x) dx

}
.

Consequently,

Y ′
0 (b) =

2

a

{∫ b

0

[f1 (τ) − f2 (τ)] dτ +

∫ a

0

g1 (x) dx

}
.

Also from equation (9.9.14), we have

Y ′
0 (b) =

2

a

∫ a

0

g2 (x) dx.

It follows from these two expressions for Y ′
0 (b) that

∫ b

0

[f1 (y) − f2 (y)] dy +

∫ a

0

[g1 (x) − g2 (x)] dx = 0.

which is the necessary condition for the existence of a solution to the Neu-
mann problem for a rectangle.

9.10 Exercises

1. Reduce the Neumann problem to the Dirichlet problem in the two-
dimensional case.

2. Reduce the wave equation

un = c2 (uxx + uyy + uzz)
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to the Laplace equation

uxx + uyy + uzz + uττ = 0

by letting τ = ict where i =
√

−1. Obtain the solution of the wave equa-
tion in cylindrical coordinates via the solution of the Laplace equation.
Assume that u (r, θ, z, τ) is independent of z.

3. Prove that, if u (x, t) satisfies

ut = k uxx

for 0 ≤ x ≤ 1, 0 ≤ t ≤ t0, then the maximum value of u is attained
either at t = 0 or at the end points x = 0 or x = 1 for 0 ≤ t ≤ t0. This
is called the maximum principle for the heat equation.

4. Prove that a function which is harmonic everywhere on a plane and is
bounded either above or below is a constant. This is called the Liouville
theorem.

5. Show that the compatibility condition for the Neumann problem

∇2u = f inD

∂u

∂n
= g onB

is
∫

D

f dS +

∫

B

g ds = 0,

where B is the boundary of domain D.

6. Show that the second degree polynomial

P = Ax2 + Bxy + Cy2 + Dyz + Fz2 + Fxz

is harmonic if

E = − (A + C)

and obtain

P = A
(
x2 − z2

)
+ Bxy + C

(
y2 − z2

)
+ Dyz + Fxz.

7. Prove that a solution of the Neumann problem

∇2u = f inD

u = g onB

differs from another solution by at most a constant.
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8. Determine the solution of each of the following problems:

(a) ∇2u = 0, 1 < r < 2, 0 < θ < π,

u (1, θ) = sin θ, u (2, θ) = 0, 0 ≤ θ ≤ π,

u (r, 0) = 0, u (r, π) = 0, 1 ≤ r ≤ 2.

(b) ∇2u = 0, 1 < r < 2, 0 < θ < π,

u (1, θ) = 0, u (2, θ) = θ (θ − π) , 0 ≤ θ ≤ π,

u (r, 0) = 0, u (r, π) = 0, 1 ≤ r ≤ 2.

(c) ∇2u = 0, 1 < r < 3, 0 < θ < π/2,

u (1, θ) = 0, u (3, θ) = 0, 0 ≤ θ ≤ π/2,

u (r, 0) = (r − 1) (r − 3) , u
(
r, π

2

)
= 0, 1 ≤ r ≤ 3.

(d) ∇2u = 0, 1 < r < 3, 0 < θ < π/2,

u (1, θ) = 0, u (3, θ) = 0, 0 ≤ θ ≤ π,

u (r, 0) = 0, u
(
r, π

2

)
= f (r) , 1 ≤ r ≤ 3.

9. Solve the boundary-value problem

∇2u = 0, a < r < b, 0 < θ < α,

u (a, θ) = f (θ) , u (b, θ) = 0, 0 ≤ θ ≤ α,

u (r, α) = 0, u (r, 0) = f (r) , a ≤ r ≤ b.

10. Verify directly that the Poisson integral is a solution of the Laplace
equation.

11. Solve

∇2u = 0, 0 < r < a, 0 < θ < π,

u (r, 0) = 0, u (r, π) = 0,

u (a, θ) = θ (π − θ) , 0 ≤ θ ≤ π,

u (0, θ) is bounded.
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12. Solve

∇2u + u = 0, 0 < r < a, 0 < θ < α,

u (r, 0) = 0, u (r, α) = 0,

u (a, θ) = f (θ) , 0 ≤ θ ≤ α,

u (0, θ) is bounded.

13. Find the solution of the Dirichlet problem

∇2u = −2, r < a, 0 < θ < 2π,

u (a, 0) = 0.

14. Solve the following problems:

(a) ∇2u = 0, 1 < r < 2, 0 < θ < 2π,

ur (1, θ) = sin θ, ur (2, θ) = 0, 0 ≤ θ ≤ 2π,

(b) ∇2u = 0, 1 < r < 2, 0 < θ < 2π,

ur (1, θ) = 0, ur (2, θ) = θ − π, 0 ≤ θ ≤ 2π.

15. Solve

∇2u = 0, a < r < b, 0 < θ < 2π,

ur (a, θ) = f (θ) , ur (b, θ) = g (θ) , 0 ≤ θ ≤ 2π,

where
∫

r=a

f ds +

∫

r=b

g ds = 0.

16. Solve the Robin problem for a semicircular disk

∇2u = 0, r < R, 0 < θ < π,

ur (R, θ) = sin θ, 0 ≤ θ ≤ π,

u (r, 0) = 0, u (r, π) = 0.
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17. Solve

∇2u = 0, a < r < b, 0 < θ < α,

ur (a, θ) = 0, ur (b, θ) = f (θ) , 0 ≤ θ ≤ α,

u (r, 0) = 0, u (r, α) = 0, a < r < b.

18. Determine the solution of the mixed boundary-value problem

∇2u = 0, r < R, 0 < θ < 2π,

ur (R, θ) + hu (R, θ) = f (θ) , h = constant.

19. Solve

∇2u = 0, a < r < b, 0 < θ < 2π,

ur (a, θ) + hu (a, θ) = f (θ) , ur (b, θ) + hu (b, θ) = g (θ) .

20. Find a solution of the Neumann problem

∇2u = −r2 sin 2θ, r1 < r < r2, 0 < θ < 2π,

ur (r1, θ) = 0, ur (r2, θ) = 0, 0 ≤ θ ≤ 2π.

21. Solve the Robin problem

∇2u = − r2 sin 2θ,

u (r1, θ) = 0, ur (r2, θ) = 0.

22. Solve the following Dirichlet problems:

(a) ∇2u = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = x (x − 1) , u (x, 1) = 0, 0 ≤ x ≤ 1,

u (0, y) = 0, u (1, y) = 0, 0 ≤ y ≤ 1.

(b) ∇2u = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = 0, u (x, 1) = sin (πx) , 0 ≤ x ≤ 1,

u (0, y) = 0, u (1, y) = 0, 0 ≤ y ≤ 1.
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(c) ∇2u = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = 0, u (x, 1) = 0, 0 ≤ x ≤ 1,

u (0, y) =
(
cos πy

2 − 1
)

cos
(

πy
2

)
, u (1, y) = 0, 0 ≤ y ≤ 1.

(d) ∇2u = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = 0, u (x, 1) = 0, 0 ≤ x ≤ 1,

u (0, y) = 0, u (1, y) = sinπy cos πy, 0 ≤ y ≤ 1.

23. Solve the following Neumann problems:

(a) ∇2u = 0, 0 < x < π, 0 < y < π,

ux (0, y) =
(
y − π

2

)
, ux (π, y) = 0, 0 ≤ y ≤ π,

uy (x, 0) = x, uy (x, π) = x, 0 ≤ x ≤ π.

(b) ∇2u = 0, 0 < x < π, 0 < y < π,

ux (0, y) = 0, ux (π, y) = 2 cos y, 0 ≤ y ≤ π,

uy (x, 0) = 0, uy (x, π) = 0, 0 ≤ x ≤ π.

(c) ∇2u = 0, 0 < x < π, 0 < y < π,

ux (0, y) = 0, ux (π, y) = 0, 0 ≤ y ≤ π,

uy (x, 0) = cos x, uy (x, π) = 0, 0 ≤ x ≤ π.

(d) ∇2u = 0, 0 < x < π, 0 < y < π,

ux (0, y) = y, ux (π, y) = y, 0 ≤ y ≤ π,

uy (x, 0) = x, uy (x, π) = x. 0 ≤ x ≤ π.

24. The steady-state temperature distribution in a rectangular plate of
length a and width b is described by

∇2u = 0, 0 < x < a, 0 < y < b.

At x = 0, the temperature is kept at zero degrees, while at x = a, the
plate is insulated. The temperature is prescribed at y = 0. At y = b,
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heat is allowed to radiate freely into the surrounding medium of zero
degree temperature. That is, the boundary conditions are

u (0, y) = 0, ux (a, y) = 0, 0 ≤ y ≤ b,

u (x, 0) = f (x) , uy (x, b) + hu (x, b) = 0, 0 ≤ x ≤ a.

Determine the temperature distribution.

25. Solve the Dirichlet problem

∇2u = −2y, 0 < x < 1, 0 < y < 1,

u (0, y) = 0, u (1, y) = 0, 0 ≤ y ≤ 1,

u (x, 0) = 0, u (x, 1) = 0, 0 ≤ x ≤ 1.

26. Find the harmonic function which vanishes on the hypotenuse and has
prescribed values on the other two sides of an isosceles right-angled
triangle formed by x = 0, y = 0, and y = a − x, where a is a constant.

27. Find a solution of the Neumann problem

∇2u =
(
x2 − y2

)
, 0 < x < a, 0 < y < a,

ux (0, y) = 0, ux (a, y) = 0, 0 ≤ y ≤ a,

uy (x, 0) = 0, uy (x, a) = 0, 0 ≤ x ≤ a.

28. Solve the third boundary-value problem

∇2u = 0, 0 < x < 1, 0 < y < 1,

ux (0, y) + h u (0, y) = 0, 0 ≤ y ≤ 1, h = constant

ux (1, y) + h u (1, y) = 0, 0 ≤ y ≤ 1,

uy (x, 0) + h u (x, 0) = 0, 0 ≤ x ≤ 1,

uy (x, 1) + h u (x, 1) = f (x) , 0 ≤ x ≤ 1.
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29. Determine the solution of the boundary-value problem

∇2u = 1, 0 < x < π, 0 < y < π,

u (0, y) = 0, ux (π, y) = 0, 0 ≤ y ≤ π,

uy (x, 0) = 0, uy (x, π) + h u (x, π) = f (x) , 0 ≤ x ≤ π.

30. Obtain the integral representation of the Neumann problem

∇2u = f in D,

∂u

∂n
= g on boundary B of D.

31. Find the solution in terms of the Green’s function of the Poisson prob-
lem

∇2u = f in D,

∂u

∂n
+ hu = g on boundary B of D.

32. Find the steady-state temperature distribution inside a circular annular
region governed by the boundary-value problem

urr +
1

r
ur +

1

r2
uθθ = 0, 1 < r < 2, −π < 0 < π,

u (1, θ) = sin2 θ, ur (2, θ) = 0, −π < θ < π.

33. Consider a radially symmetric steady-state problem in a solid homoge-
neous cylinder of radius unity and height h. The temperature distribu-
tion function u (r, z) satisfies the equation

∇2u = urr +
1

r
ur + uzz = 0, 0 < r < 1, 0 < z < h.

Solve the Dirichlet boundary-value problem with the following bound-
ary conditions:

(a) u (1, z) = f (z) , u (r, 0) = 0, u (r, h) = 0,

(b) u (1, z) = 0, u (r, 0) = g (r) , u (r, h) = 0,

(c) u (1, z) = 0, u (r, 0) = 0, u (r, h) = w (r) ,

(d) u (1, z) = a sin
(

3πz
h

)
, u (r, 0) = 0 = u (r, h) .
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34. Show that the solution of the problem 33(c) is given by

u (r, z) =

∞∑

n=1

anJ0 (knr)
sinh knz

sinh knh
,

where J0 (kn) = 0, n = 1, 2, 3, . . ..

35. Solve the following boundary-value problem:

(a) ∇2u = 0, 0 < r < 1, 0 < z < 1,

u (1, z) = 0 = u (r, 0) , u (r, 1) = 1 − r2, 0 ≤ r ≤ 1.

(b) ∇2u = 0, 0 < r < 1, 0 < z < π,

u (1, z) = A = constant, u (r, 0) = 0, uz (r, π) = 0.

(c) ∇2u = 0, 0 < r < a, 0 < z < h,

u (a, z) = f (z) , u (r, 0) = 0 = u (r, h) , 0 ≤ r ≤ a.

(d) ∇2u = 0, 0 < r < a, 0 < z < h,

u (a, z) = z (h − z) , u (r, 0) = 0 = u (r, h) .

In each of the above problems (a)–(d),

∇2u = urr +
1

r
ur + uzz.





10

Higher-Dimensional Boundary-Value

Problems

“As long as a branch of knowledge offers an abundance of problems, it is
full of vitality.”

David Hilbert

10.1 Introduction

The treatment of problems in more than two space variables is much more
involved than problems in two space variables. Here a number of multi-
dimensional problems involving the Laplace equation, wave and heat equa-
tions with various boundary conditions will be presented. Included are the
Dirichlet problem for a cube, for a cylinder and for a sphere, wave and heat
equations in three dimensional rectangular, cylindrical polar and spherical
polar coordinates. The solution of the three-dimensional Schrödinger equa-
tion in a central field with applications to hydrogen and helium atoms is
discussed. We also consider the forced vibration of a rectangular membrane
described by the three-dimensional, nonhomogeneous wave equation with
moving boundaries.

10.2 Dirichlet Problem for a Cube

The steady-state temperature distribution in a cube is described by the
Laplace equation

∇2u = uxx + uyy + uzz = 0 (10.2.1)

for 0 < x < π, 0 < y < π, 0 < z < π. The faces are kept at zero degree
temperature except for the face z = 0, that is,



362 10 Higher-Dimensional Boundary-Value Problems

u (0, y, z) = u (π, y, z) = 0

u (x, 0, z) = u (x, π, z) = 0

u (x, y, π) = 0, u (x, y, 0) = f (x, y) , 0 ≤ x ≤ π, 0 ≤ y ≤ π.

We assume a nontrivial separable solution in the form

u (x, y, z) = X (x) Y (y) Z (z) .

Substituting this in the Laplace equation, we obtain

X ′′Y Z + XY ′′Z + XY Z ′′ = 0.

Division by XY Z yields

X ′′

X
+

Y ′′

Y
= −Z ′′

Z
.

Since the right side depends only on z and the left side is independent of
z, both terms must be equal to a constant. Thus, we have

X ′′

X
+

Y ′′

Y
= −Z ′′

Z
= λ.

By the same reasoning, we have

X ′′

X
= λ − Y ′′

Y
= µ.

Hence, we obtain the three ordinary differential equations

X ′′ − µX = 0,

Y ′′ − (λ − µ) Y = 0,

Z ′′ + λZ = 0.

Using the boundary conditions, the eigenvalue problem for X,

X ′′ − µX = 0,

X (0) = X (π) = 0,

yields the eigenvalues µ = −m2 for m = 1, 2, 3, . . . and the corresponding
eigenfunctions sinmx.

Similarly, the eigenvalue problem for Y

Y ′′ − (λ − µ) Y = 0,

Y (0) = Y (π) = 0,

gives the eigenvalues λ−µ = −n2 where n = 1, 2, 3, . . . and the correspond-
ing eigenfunctions sinny.
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Since λ is given by −
(
m2 + n2

)
, it follows that the solution of Z ′′+λZ =

0 satisfying the condition Z (π) = 0 is

Z (z) = C sinh
[√

m2 + n2 (π − z)
]
.

Thus, the solution of the Laplace equation satisfying the homogeneous
boundary conditions takes the form

u (x, y, z) =
∞∑

m=1

∞∑

n=1

amn sinh
(√

m2 + n2 (π − z)
)

sin mx sin ny.

Applying the nonhomogeneous boundary condition, we formally obtain

f (x, y) =

∞∑

m=1

∞∑

n=1

amn sinh
(√

m2 + n2 π
)

sin mx sin ny.

The coefficient of the double Fourier series is thus given by

amn sinh
(√

m2 + n2 π
)

=
4

π2

∫ π

0

∫ π

0

f (x, y) sinmx sin ny dx dy.

Therefore, the formal solution to the Dirichlet problem for a cube may be
written in the form

u (x, y, z) =
∞∑

m=1

∞∑

n=1

bmn

sinh
(√

m2 + n2 (π − z)
)

sinh
(√

m2 + n2 π
) sin mx sin ny, (10.2.2)

where

bmn = amn sinh
(√

m2 + n2 π
)

.

10.3 Dirichlet Problem for a Cylinder

Example 10.3.1. We consider the problem of determining the electric po-
tential u inside a charge-free cylinder. The potential u satisfies the Laplace
equation in cylindrical polar coordinates

∇2u = urr +
1

r
ur +

1

r2
uθθ + uzz = 0, (10.3.1)

for 0 ≤ r < a, 0 < z < l. Let the lateral surface r = a and the top z = l
be grounded, that is, zero potential. Let the potential on the base z = 0 be
given by

u (r, θ, 0) = f (r, θ) , (10.3.2)

where f (a, θ) = 0.
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We assume a nontrivial separable solution in the form

u (r, θ, z) = R (r) Θ (θ) Z (z) .

Substituting this in the Laplace equation yields

R′′ + 1
r R′

R
+

1

r2

Θ′′

Θ
= −Z ′′

Z
= λ.

It follows that

r2R′′ + rR′

R
− r2λ = −Θ′′

Θ
= µ.

Thus, we obtain the equations

r2R′′ + rR′ −
(
λ r2 + µ

)
R = 0, (10.3.3)

Θ′′ + µΘ = 0, (10.3.4)

Z ′′ + λZ = 0. (10.3.5)

Using the periodicity conditions, the eigenvalue problem for Θ (θ),

Θ′′ + µΘ = 0,

Θ (0) = Θ (2π) , Θ′ (0) = Θ′ (2π) ,

yields the eigenvalues µ = n2 for n = 0, 1, 2, . . . with the corresponding
eigenfunctions sinnθ, cos nθ. Thus,

Θ (θ) = A cos nθ + B sin nθ. (10.3.6)

Suppose λ is real and negative and let λ = −β2 where β > 0. If the condition
Z (l) = 0 is imposed, then the solution of equation (10.3.5) can be written
in the form

Z (z) = C sinhβ (l − z) . (10.3.7)

Next we introduce the new independent variable ξ = βr. Equation
(10.3.3) transforms into

ξ2 d2R

dξ2
+ ξ

dR

dξ
+

(
ξ2 − n2

)
R = 0

which is the Bessel equation of order n. The general solution is

Rn (ξ) = DJn (ξ) + E Yn (ξ)

where Jn and Yn are the Bessel functions of the first and second kind
respectively. In terms of the original variable, we have
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Rn (r) = DJn (βr) + E Yn (βr) .

Since Yn (βr) is unbounded at r = 0, we choose E = 0. The condition
R (a) = 0 requires that

Jn (βa) = 0.

For each n ≥ 0, there exist positive zeros. Arranging these in an infinite
increasing sequence, we have

0 < αn1 < αn2 < . . . < αnm < . . . .

Thus, we obtain

βnm = (αnm/a) .

Consequently,

Rn (r) = DJn (αnmr/a) .

The solution u then finally takes the form

u (r, θ, z) =
∞∑

n=0

∞∑

m=1

Jn

( r

a
αnm

)
(anm cos nθ + bnm sin nθ)

× sinh

[
(l − z)

a
αnm

]
.

To satisfy the nonhomogeneous boundary condition, it is required that

f (r, θ) =

∞∑

n=0

∞∑

m=1

Jn

( r

a
αnm

)
(anm cos nθ + bnm sin nθ) sinh

(
l

a
αnm

)
.

The coefficients anm and bnm are given by

a0m =
1

πa2 sinh
(

1
a α0m

)
[J1 (α0m)]

2

∫ a

0

∫ 2π

0

f (r, θ) J0

( r

a
α0m

)
r dr dθ,

anm =
2

πa2 sinh
(

1
a αnm

)
[Jn+1 (αnm)]

2

∫ a

0

∫ 2π

0

f (r, θ) Jn

( r

a
αnm

)

× cos nθ r dr dθ,

bnm =
2

πa2 sinh
(

1
a αnm

)
[Jn+1 (αnm)]

2

∫ a

0

∫ 2π

0

f (r, θ) Jn

( r

a
αnm

)

× sin nθ r dr dθ.

Example 10.3.2. We shall illustrate the same problem with different bound-
ary conditions. Consider the problem
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∇2u = 0, 0 ≤ r < a, 0 < z < π,

u (r, θ, 0) = 0, u (r, θ, π) = 0,

u (a, θ, z) = f (θ, z) .

As before, by the separation of variables, we obtain

r2R′′ + rR′ −
(
λr2 + µ

)
R = 0,

Θ′′ + µΘ = 0,

Z ′′ + λZ = 0.

By the periodicity conditions, again as in the previous example, the Θ equa-
tion yields the eigenvalues µ = n2 with n = 0, 1, 2, . . .; the corresponding
eigenfunctions are sinnθ, cos nθ. Thus, we have

Θ (θ) = An cos n cos θ + Bn sin nθ.

Now let λ = β2 with β > 0. Then, the boundary value problem

Z ′′ + β2Z = 0

Z (0) = 0, Z (π) = 0,

has the solution

Z (z) = Cm sin mz, m = 1, 2, 3, . . . .

Finally, we have

r2R′′ + rR′ −
(
m2r2 + n2

)
R = 0,

or

R′′ +
1

r
R′ −

(
m2 +

n2

r2

)
R = 0,

the general solution of which is

R (r) = DIn (mr) + EKn (mr) ,

where In and Kn are the modified Bessel functions of the first and second
kind, respectively.

Since R must remain finite at r = 0, we set E = 0. Then R takes the
form

R (r) = DIn (mr) .

Applying the nonhomogeneous condition, we find the solution
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u (r, θ, z) =

∞∑

m=1

(am0

2

) I0 (mr)

I0 (ma)
sin mz

+

∞∑

m=1

∞∑

n=1

(amn cos nθ + bmn sin nθ)
In (mr)

In (ma)
sin mz,

where

amn =
2

π2

∫ π

0

∫ 2π

0

f (θ, z) sinmz cos nθ dθ dz,

bmn =
2

π2

∫ π

0

∫ 2π

0

f (θ, z) sinmz sin nθ dθ dz.

10.4 Dirichlet Problem for a Sphere

Example 10.4.3. To determine the potential in a sphere, we transform the
Laplace equation into spherical coordinates. It has the form

∇2u = urr +
2

r
ur +

1

r2
uθθ +

cot θ

r2
uθ +

1

r2 sin2 θ
uϕϕ, (10.4.1)

where 0 ≤ r < a, 0 < θ < π, and 0 < ϕ < 2π.
Let the prescribed potential on the sphere be

u (a, θ, ϕ) = f (θ, ϕ) . (10.4.2)

We assume a nontrivial separable solution in the form

u (r, θ, ϕ) = R (r) Θ (θ) Φ (ϕ) .

Substitution of u in the Laplace equation yields

r2R′′ + 2rR′ − λR = 0, (10.4.3)

sin2 θ Θ′′ + sin θ cos θ Θ′ +
(
λ sin2 θ − µ

)
Θ = 0, (10.4.4)

Φ′′ + µΦ = 0. (10.4.5)

The general solution of equation (10.4.5) is

Φ (ϕ) = A cos
√

µ ϕ + Bn sin
√

µ ϕ. (10.4.6)

The periodicity condition requires that

√
µ = m, m = 0, 1, 2, . . . .

Since equation (10.4.3) is of Euler type, the solution is of the form

R (r) = rβ .
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Inserting this is equation (10.4.3), we obtain

β2 + β − λ = 0.

The roots are β =
(
−1 +

√
1 + 4λ

)
/2 and − (1 + β). Hence, the general

solution of equation (10.4.3) is

R (r) = C rβ + D r−(1+β). (10.4.7)

The variable ξ = cos θ transforms equation (10.4.4) into the form

(
1 − ξ2

)
Θ′′ − 2ξΘ′ +

[
β (β + 1) − m2

1 − ξ2

]
Θ = 0 (10.4.8)

which is Legendre’s associated equation. The general solution with β = n
for n = 0, 1, 2, . . . is

Θ (θ) = E Pm
n (cos θ) + F Qm

n (cos θ) .

Continuity of Θ (θ) at θ = 0, π corresponds to continuity of Θ (ξ) at
ξ = + 1. Since Qm

n (ξ) has a logarithmic singularity at ξ = 1, we choose
F = 0. Thus, the solution of equation (10.4.8) becomes

Θ (θ) = E Pm
n (cos θ) .

Consequently, the solution of the Laplace equation in spherical coordinates
is

u (r, θ, ϕ) =

∞∑

n=0

n∑

m=0

rnPm
n (cos θ) (anm cos mϕ + bnm sin mϕ) .

In order for u to satisfy the prescribed function on the boundary, it is
necessary that

f (θ, ϕ) =

∞∑

n=0

n∑

m=0

anPm
n (cos θ) (anm cos mϕ + bnm sin mϕ)

for 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. By the orthogonal properties of the functions
Pm

n (cos θ) cos mϕ and Pm
n (cos θ) sinmϕ, the coefficients are given by

anm =
(2n + 1)

2πan

(n − m)!

(n + m)!

∫ 2π

0

∫ π

0

f (θ, ϕ) Pm
n (cos θ) cos mϕ sin θ dθ dϕ,

bnm =
(2n + 1)

2πan

(n − m)!

(n + m)!

∫ 2π

0

∫ π

0

f (θ, ϕ) Pm
n (cos θ) sinmϕ sin θ dθ dϕ,

for m = 1, 2, . . ., and n = 1, 2, . . ., and

an0 =
(2n + 1)

4πan

∫ 2π

0

∫ π

0

f (θ, ϕ) Pn (cos θ) sin θ dθ dϕ,

for n = 0, 1, 2, . . ..
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Example 10.4.4. Determine the potential of a grounded conducting sphere
in a uniform field that satisfies the problem

∇2u = 0, 0 ≤ r < a, 0 < θ < π, 0 < φ < 2π,

u (a, θ) = 0, u → −E0 r cos θ, as r → ∞.

Let the field be in the z direction so that the potential u will be inde-
pendent of φ. Then, the Laplace equation takes the form

urr +
2

r
ur +

1

r2
uθθ +

cot θ

r2
uθ = 0.

We assume a nontrivial separable solution in the form

u (r, θ) = R (r) Θ (θ) .

Substitution of this in the Laplace equation yields

r2R′′ + 2rR′ − λR = 0,

sin2 θ Θ′′ + sin θ cos θ Θ′ + λ sin2 θ Θ = 0.

If we set λ = n (n + 1) with n = 0, 1, 2, . . ., then the second equation is the
Legendre equation. The general solution of this equation is

Θ (θ) = An Pn (cos θ) + Bn Qn (cos θ) ,

where Pn and Qn are the Legendre functions of the first and second kind
respectively. In order for the solution not to be singular at θ = 0 and θ = π,
we set Bn = 0. Thus, Θ (θ) becomes

Θ (θ) = An Pn (cos θ) .

The solution of the R-equation is obtained in the form

R (r) = Cn rn + Dn r−(n+1).

Thus, the potential function is

u (r, θ) =
∞∑

n=0

(
an rn + bn r−(n+1)

)
Pn (cos θ) .

To satisfy the condition at infinity, we must have

a1 = −E0, and an = 0, for n ≥ 2

and hence,

u (r, θ) = −E0 r cos θ +

∞∑

n=1

bn

rn+1
Pn (cos θ) .
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The condition u (a, θ) = 0 yields

0 = −E0 a cos θ +

∞∑

n=1

bn

an+1
Pn (cos θ) .

Using the orthogonality of the Legendre functions, we find that bn are given
by

bn =
(2n + 1)

2
E0 an+2

∫ π

−π

cos θ Pn (cos θ) d (cos θ) = E0 a3δn1,

since the integral vanishes for all n except n = 1. Hence, the potential
function is given by

u (r, θ) = −E0 r cos θ + E0
a3

r2
cos θ.

Example 10.4.5. A dielectric sphere of radius a is placed in a uniform elec-
tric field E0. Determine the potentials inside and outside the sphere.

The problem is to find potentials u1 and u2 that satisfy

∇2u1 = ∇2u2 = 0,

K
∂u1

∂r
=

∂u2

∂r
, u1 = u2, on r = a,

u2 → −E0r cos θ as r → ∞,

where u1 and u2 are the potentials inside and outside the sphere, respec-
tively, and K is the dielectric constant.

As in the preceeding example, the potential function is

u (r, θ) =
∞∑

n=0

(
an rn + bn r−(n+1)

)
Pn (cos θ) . (10.4.9)

Since u1 must be finite at the origin, we take

u1 (r, θ) =

∞∑

n=0

anrnPn (cos θ) for r ≤ a. (10.4.10)

For u2, which must approach infinity in the prescribed manner, we choose

u2 (r, θ) = −E0 r cos θ +

∞∑

n=0

bn r−(n+1)Pn (cos θ) . (10.4.11)

From the two continuity conditions at r = a, we obtain

a1 = −E0 +
b1

a3
, Ka1 = −E0 − 2b1

a3
,

an = bn = 0, n ≥ 2.
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The coefficients a1 and b1 are then found to be

a1 = − 3E0

K + 2
, b1 = E0 a3 (K − 1)

(K + 2)
.

Hence, the potential for r ≤ a is given by

u1 (r, θ) = − 3E0

K + 2
r cos θ,

and the potential for r ≥ a is given by

u2 (r, θ) = −E0 r cos θ + E0 a3 (K − 1)

(K + 2)
r−2 cos θ.

Example 10.4.6. Determine the potential between concentric spheres held
at different constant potentials.

Here we need to solve

∇2u = 0, a < r < b,

u = A on r = a,

u = B on r = b.

In this case, the potential depends only on the radial distance. Hence, we
have

1

r2

∂

∂r

(
r2 ∂u

∂r

)
= 0.

By elementary integration, we obtain

u (r) = c1 +
c2

r
,

where c1 and c2 are arbitrary constants.
Applying the boundary conditions, we obtain

c1 =
Bb − Aa

b − a
, c2 = (A − B)

ab

b − a
.

Thus, the solution is

u (r) =
Bb − Aa

(b − a)
+

(A − B) ab

(b − a) r

=

(
Bb

r

)(
r − a

b − a

)
+

(
Aa

r

)(
b − r

b − a

)
.
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10.5 Three-Dimensional Wave and Heat Equations

The wave equation in three space variables may be written as

utt = c2∇2u, (10.5.1)

where ∇2 is the three-dimensional Laplace operator.
We assume a nontrivial separable solution in the form

u (x, y, z, t) = U (x, y, z) T (t) .

Substituting this into equation (10.5.1), we obtain

T ′′ + λc2T = 0, (10.5.2)

∇2U + λU = 0, (10.5.3)

where −λ is a separation constant. The variables are separated and the
solutions of equations (10.5.2) and (10.5.3) are to be determined.

Next we consider the heat equation

ut = k∇2u. (10.5.4)

As before, we seek a nontrivial separable solution in the form

u (x, y, z, t) = U (x, y, z) T (t) .

Substituting this into equation (10.5.4), we obtain

T ′ + λkT = 0,

∇2U + λU = 0.

Thus, we see that the problem here, as in the previous case, is essentially
that of solving the Helmholtz equation

∇2U + λU = 0.

10.6 Vibrating Membrane

As a specific example of the higher-dimensional wave equation, let us de-
termine the solution of the problem of the vibrating membrane of length
a and width b. The initial boundary-value problem for the displacement
function u (x, y, t) is

utt = c2 (uxx + uyy) , 0 < x < a, 0 < y < b, t > 0, (10.6.1)

u (x, y, 0) = f (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.6.2)

ut (x, y, 0) = g (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.6.3)

u (0, y, t) = 0, u (a, y, t) = 0, (10.6.4)

u (x, 0, t) = 0, u (x, b, t) = 0. (10.6.5)
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We have just shown that the separated equations for the wave equation
are

T ′′ + λc2T = 0, (10.6.6)

∇2U + λU = 0, (10.6.7)

where, in this case, ∇2U = Uxx + Uyy. Let λ = α2. Then the solution of
equation (10.6.6) is

T (t) = A cos αct + B sin αct.

Now we look for a nontrivial solution of equation (10.6.7) in the form

U (x, y) = X (x) Y (y) .

Substituting this into equation (10.6.7) yields

X ′′ − µX = 0,

Y ′′ + (λ + µ) Y = 0.

If we let µ = −β2, then the solutions of these equations take the form

X (x) = C cos βx + D sin βx.

Y (y) = E cos γy + F sin γy,

where

γ2 = (λ + µ) = α2 − β2.

The homogeneous boundary conditions in x require that C = 0 and

D sin βa = 0

which implies that β = (mπ/a) with D �= 0. Similarly, the homogeneous
boundary conditions in y require that E = 0 and

F sin γb = 0

which implies that γ = (nπ/b) with F �= 0. Noting that m and n are
independent integers, we obtain the displacement function in the form

u (x, y, t) =
∞∑

m=1

∞∑

n=1

(amn cos αmn ct + bmn sin αmn ct) sin
(mπx

a

)
sin

(nπy

b

)
,

(10.6.8)

where αmn =
(
m2π2/a2

)
+

(
n2π2/b2

)
, amn and bmn are constants.

Now applying the nonhomogeneous initial conditions, we have



374 10 Higher-Dimensional Boundary-Value Problems

u (x, y, 0) = f (x, y) =

∞∑

m=1

∞∑

n=1

amn sin
(mπx

a

)
sin

(nπy

b

)
,

and thus,

amn =
4

ab

∫ a

0

∫ b

0

f (x, y) sin
(mπx

a

)
sin

(nπy

b

)
dx dy. (10.6.9)

In a similar manner, the initial condition on ut implies

ut (x, y, 0) = g (x, y) =

∞∑

m=1

∞∑

n=1

bmn αmn c sin
(mπx

a

)
sin

(nπy

b

)
,

from which it follows that

bmn =
4

αmn abc

∫ a

0

∫ b

0

g (x, y) sin
(mπx

a

)
sin

(nπy

b

)
dx dy. (10.6.10)

The solution of the rectangular membrane problem is, therefore, given by
equation (10.6.8).

Example 10.6.1. (Vibration of a Circular Membrane). For a circular
elastic membrane that is stretched over a circular frame of radius a, the
motion of the membrane can be described by a function u (r, θ, t) that
satisfies the partial differential equation

1

c2
utt = urr +

1

r
ur +

1

r2
uθθ, (10.6.11)

where c2 = (T/ρ), T is the tension in the membrane and ρ is its mass
density.

We consider the synchronous vibrations of the vibration of the mem-
brane defined by the separable solution

u (r, θ, t) = v (r, θ, t) cos (ωct) . (10.6.12)

Substituting (10.6.12) into (10.6.11) gives

vrr +
1

r
vr +

1

r2
uθθ + ω2v = 0. (10.6.13)

We seek a nontrivial separable solution

v (r, θ) = R (r) Θ (θ)

of equation (10.6.13) so that

r2R′′ + r R′

R
+ ω2r2 = −Θ′′

Θ
= λ2. (10.6.14)
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This must hold for all points of the membrane, 0 < r < a and 0 ≤ θ ≤ 2π.
Consequently,

r2R′′ + r R′ +
(
ω2r2 − λ2

)
R = 0, 0 < r < a, (10.6.15)

Θ′′ + λ2Θ = 0, 0 ≤ θ ≤ 2π. (10.6.16)

The general solution of (10.6.16) is

Θ (θ) = A cos λθ + B sin λθ. (10.6.17)

This represents a single-valued solution at all points of the disk only if
λ = n is an integer. Thus,

Θ (θ) = Θn (θ) = An cos nθ + Bn sin nθ. (10.6.18)

With λ = n, the radial equation (10.6.15) becomes

r2R′′ + r R′ +
(
ω2r2 − n2

)
R = 0. (10.6.19)

The parameter ω can be eliminated by defining

x = ωr, and y (x) = y (ωr) = R (r) .

Substituting these into (10.6.19) gives

x2y′′ + xy′ +
(
x2 − n2

)
y = 0. (10.6.20)

Or, equivalently,

y′′ +
1

x
y′ +

(
1 − n2

x2

)
y = 0. (10.6.21)

This is the well-known Bessel equation of order n, which has been discussed
in Section 8.6.

10.7 Heat Flow in a Rectangular Plate

Another example of a two-dimensional problem is the conduction of heat
in a thin rectangular plate. Let the plate of length a and width b be per-
fectly insulated at the faces x = 0 and x = a. Let the two other sides be
maintained at zero temperature. Let the initial temperature distribution be
f (x, y). Then, we seek the solution of the initial boundary-value problem

ut = k ∇2u, 0 < x < a, 0 < y < b, t > 0, (10.7.1)

u (x, y, 0) = f (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.7.2)
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ux (0, y, t) = 0, ux (a, y, t) = 0, (10.7.3ab)

u (x, 0, t) = 0, u (x, b, t) = 0. (10.7.4ab)

As shown earlier, the separated equations for this problem are found to
be

T ′ + λkT = 0, (10.7.5)

∇2U + λU = 0. (10.7.6)

We assume a nontrivial separable solution in the form

U (x, y) = X (x) Y (y) .

Inserting this in equation (10.7.6), we obtain

X ′′ − µX = 0, (10.7.7)

Y ′′ + (λ + µ) Y = 0. (10.7.8)

Because the conditions in x are homogeneous, we choose µ = −α2 so that

X (x) = A cos αx + B sin αx.

Since X ′ (0) = 0, B = 0 and since X ′ (a) = 0,

sin αa = 0, A �= 0

which gives

α = (mπ/a) , m = 1, 2, 3, . . . .

We note that µ = 0 is also an eigenvalue. Consequently,

Xm (x) = Am cos (mπx/a) , m = 0, 1, 2, . . . .

Similarly, for nontrivial solution Y , we select β2 = λ + µ = λ − α2 so that
the solution of equation (10.7.8) is

Y (y) = C cos βy + D sin βy.

Applying the homogeneous conditions, we find C = 0 and

sin βb = 0, D �= 0.

Thus, we obtain

β = (nπ/b) ; n = 1, 2, 3, . . . ,

and
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Yn (y) = Dn sin (nπy/b) .

Recalling that λ = α2 + β2, the solution of equation (10.7.5) may be
written in the form

Tmn (t) = Emn e−(m2/a2+n2/b2)π2kt.

Thus, the solution of the heat equation satisfying the prescribed boundary
conditions may be written as

u (x, y, t) =

∞∑

m=0

∞∑

n=1

amn e−(m2/a2+n2/b2)π2kt cos
(mπx

a

)
sin

(nπy

b

)
,

(10.7.9)

where amn = AmDmEmn are arbitrary constants.
Applying the initial condition, we obtain

u (x, y, 0) = f (x, y) =

∞∑

m=0

∞∑

n=1

amn cos
(mπx

a

)
sin

(nπy

b

)
. (10.7.10)

This is a double Fourier series, and the coefficients are given by

a0n =

(
2

ab

)∫ a

0

∫ b

0

f (x, y) sin
(nπy

b

)
dx dy,

and for m ≥ 1

amn =

(
4

ab

)∫ a

0

∫ b

0

f (x, y) cos
(mπx

a

)
sin

(nπy

b

)
dx dy.

The solution of the heat equation is thus given by equation (10.7.9).

Example 10.7.1. (Steady-state temperature in a Circular Disk). We
next consider the steady-state temperature distribution u (r, θ) in a circular
disk of radius r = a that satisfies the Laplace equation

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, (10.7.11)

u (r, θ) = f (θ) , on r = a for all θ, (10.7.12)

where f (θ) is a given function of θ.
This is exactly the Dirichlet problem for a circle that was already solved

in Section 9.4.
We also consider the steady-state temperature distribution u (r, θ, φ)

in a sphere of radius a where 0 ≤ r < a, 0 < θ < π and 0 < φ <
2π. For simplicity, we assume only steady temperature distribution which
depends on r and θ. Thus, u is independent of the longitudinal coordinate
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φ, and hence, the steady-state temperature distribution u (r, θ) satisfies the
Laplace equation in spherical polar coordinates in the form

∂

∂r

(
r2 ∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0. (10.7.13)

We seek a separable solution of (10.7.13) in the form u (r, θ) = R (r) Θ (θ)
so that (10.7.13) leads to

1

R

d

dr

(
r2 dR

dr

)
= − 1

Θ (θ) sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= 0. (10.7.14)

This must hold for 0 < r < a and 0 < θ < π. Consequently,

1

R

d

dr

(
r2 dR

dr

)
= − 1

Θ (θ) sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= λ, (10.7.15)

or

d

dr

(
r2 dR

dr

)
− λR = 0, 0 < r < a, (10.7.16)

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin θ Θ (θ) = 0, 0 < θ < π. (10.7.17)

Equation for R (r) can also be written as

R′′ +
2

r
R′ − λ

r2
R = 0. (10.7.18)

We simplify equation (10.7.17) by the change of variable.

x = cos θ, y (x) = Θ (θ) .

Using the chain rule we obtain

dΘ

dθ
=

dy

dx

dx

dθ
= − (sin θ)

dy

dx

and hence,

d

dθ

(
sin θ

dΘ

dθ

)
= − d

dθ

(
sin2 θ

dy

dx

)

= − d

dx

[(
1 − x2

) dy

dx

]
dx

dθ

= sin θ
d

dx

[(
1 − x2

) dy

dx

]
.

Combining this result with (10.7.17) leads to the Legendre equation
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d

dx

[(
1 − x2

) dy

dx

]
+ λy = 0, −1 ≤ x ≤ 1, (10.7.19)

or, equivalently,

(
1 − x2

) d2y

dx2
− 2x

dy

dx
+ λ y = 0. (10.7.20)

This equation was completely solved in Section 8.9. Equation (10.7.19) is
the well-known Sturm–Liouville equation with y (−1) and y (+1) finite. The
results are

λ = λn = n (n + 1) , y (x) = Pn (x) , n = 0, 1, 2, 3, . . . ,

where Pn (x) is the Legendre polynomial of degree n.

10.8 Waves in Three Dimensions

The propagation of waves due to an initial disturbance in a rectangular vol-
ume is best described by the solution of the initial boundary-value problem

utt = c2∇2u, 0 < x < a, 0 < y < b, 0 < z < d, t > 0,

(10.8.1)

u (x, y, z, 0) = f (x, y, z) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ d, (10.8.2)

ut (x, y, z, 0) = g (x, y, z) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ d, (10.8.3)

u (0, y, z, t) = 0, u (a, y, z, t) = 0, (10.8.4)

u (x, 0, z, t) = 0, u (x, b, z, t) = 0, (10.8.5)

u (x, y, 0, t) = 0, u (x, y, d, t) = 0. (10.8.6)

We assume a nontrivial separable solution in the form

u (x, y, z, t) = U (x, y, z) T (t) .

The separated equations are given by

T ′′ + λc2T = 0, (10.8.7)

∇2U + λU = 0. (10.8.8)

We assume that U has the nontrivial separable solution in the form

U (x, y, z) = X (x) Y (y) Z (z) .

Substitution of this into equation (10.8.8) yields

X ′′ − µX = 0, (10.8.9)

Y ′′ − νY = 0, (10.8.10)

Z ′′ + (λ + µ + ν) Z = 0. (10.8.11)
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Because of the homogeneous conditions in x, we let µ = −α2 so that

X (x) = A cos αx + B sin αx.

As in the preceding examples, we obtain

Xl (x) = Bl sin

(
lπx

a

)
, l = 1, 2, 3, . . . .

In a similar manner, we let ν = −β2 to obtain

Y (y) = C cos βy + D sin βy

and accordingly,

Ym (y) = Dm sin
(mπy

b

)
, m = 1, 2, 3, . . . .

We again choose γ2 = λ + µ + ν = λ − α2 − β2 so that

Z (z) = E cos (γz) + F sin (γz) .

Applying the homogeneous conditions in z, we obtain

Zn (z) = Fn sin
(nπz

d

)
.

Since the solution of equation (10.8.7) is

T (t) = G cos
(√

λ ct
)

+ H sin
(√

λ ct
)

,

the solution of the wave equation has the form

u (x, y, z, t) =
∞∑

l=1

∞∑

m=1

∞∑

n=1

(
almn cos

√
λ ct + blmn sin

√
λ ct

)

× sin

(
lπx

a

)
sin

(mπy

b

)
sin

(nπz

d

)

where almn and blmn are arbitrary constants. The coefficients almn are
determined from the initial condition u (x, y, z, 0) = f (x, y, z) and are found
to be

almn =
8

abd

∫ a

0

∫ b

0

∫ d

0

f (x, y, z) sin

(
lπx

a

)
sin

(mπy

b

)
sin

(nπz

d

)
dx dy dz.

Similarly the coefficients blmn are determined from the initial condition
u (x, y, z, 0) = g (x, y, z) and are found to be

blmn

=
8√

λ acbd

∫ a

0

∫ b

0

∫ d

0

g (x, y, z) sin

(
lπx

a

)
sin

(mπy

b

)
sin

(nπz

d

)
dx dy dz,

where

λ =

(
l2

a2
+

m2

b2
+

n2

d2

)
π2.
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10.9 Heat Conduction in a Rectangular Volume

As in the case of the wave equation, the solution of the heat equation in
three spaces variables can be determined. Consider the problem of heat
distribution in a rectangular volume. The faces are maintained at zero de-
gree temperature. The solid is initially heated so that the problem may be
written as

ut = k ∇2u, 0 < x < a, 0 < y < b, 0 < z < d, t > 0,

u (x, y, z, 0) = f (x, y, z) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ d,

u (0, y, z, t) = 0, u (a, y, z, t) = 0,

u (x, 0, z, t) = 0, u (x, b, z, t) = 0,

u (x, y, 0, t) = 0, u (x, y, d, t) = 0.

As before, the separable equations are

T ′ + λkT = 0, (10.9.1)

∇2U + λU = 0. (10.9.2)

If we assume the solution U to be of the form

U (x, y, z) = X (x) Y (y) Z (z) ,

then the solution of the Helmholtz equation is

Ulmn (x, y, z) = BlDmFn sin

(
lπx

a

)
sin

(mπy

b

)
sin

(nπz

d

)
.

Since the solution of equation (10.9.1) is

T (t) = Ge−λkt,

the solution of the heat equation takes the form

u (x, y, z, t) =
∞∑

l=1

∞∑

m=1

∞∑

n=1

almn e−λkt sin

(
lπx

a

)
sin

(mπy

b

)
sin

(nπz

d

)
,

where λ =
[(

l2/a2
)

+
(
m2/b2

)
+

(
n2/d2

)]
π2 and almn are constants.

Application of the initial condition yields

almn =

(
8

abd

)∫ a

0

∫ b

0

∫ d

0

f (x, y, z) sin

(
lπx

a

)
sin

(mπy

b

)

sin
(nπz

d

)
dx dy dz.
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10.10 The Schrödinger Equation and the Hydrogen

Atom

In quantum mechanics, the Hamiltonian (or energy operator) is usually
denoted by H and is defined by

H =
p2

2M
+ V (r) (10.10.1)

where p = (�/i) ∇ = −i�∇ is the momentum of a particle of mass M ,
h = 2π� is the Planck constant, and V (r) is the potential energy.

The physical state of a particle at time t is described as fully as possible
by the wave function Ψ (r, t). The probability of finding the particle at
position r = (x, y, z) within a finite volume dV = dx dy dz is

∫∫∫
|Ψ |2 dx dy dz.

The particle must always be somewhere in the space, so the probability of
finding the particle within the whole space is one, that is,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Ψ |2 dx dy dz = 1.

The time dependent Schrödinger equation for the function Ψ (r, t) is

i� Ψt = HΨ, (10.10.2)

where H is explicitly given by

H = − �
2

2M
∇2 + V (r) . (10.10.3)

Given the potential V (r), the fundamental problem of quantum me-
chanics is to obtain a solution of (10.10.2) which agrees with a given initial
state Ψ (r, 0).

For the stationary state solutions, we seek a solution of the form

Ψ (r, t) = f (t) ψ (r) .

Substituting this into (10.10.2) gives

df

dt
+

iE

�
f = 0, (10.10.4)

Hψ (r) = Eψ (r) , (10.10.5)

where E is a separation constant and has the dimension of energy. Integra-
tion of (10.10.4) gives
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f (t) = A exp

(
− iEt

�

)
, (10.10.6)

where A is an arbitrary constant.
Equation (10.10.5) is called the time independent Schrödinger equation.

The great importance of this equation follows from the fact that the sepa-
ration of variables gives not just some particular solution of (10.10.5), but
generally yields all solutions of physical interest. If ψE (r) represents one
particular solution of (10.10.5), then most general solutions of (10.10.2) can
be obtained by the principle of superposition of such particular solutions.
In fact, the general solution is given by

ψ (r, t) =
∑

E

AE exp

(
− iEt

�

)
ψE (r) , (10.10.7)

where the summation is taken over all admissible values of E, and AE is
an arbitrary constant to be determined from the initial conditions.

We now solve the eigenvalue problem for the Schrödinger equation for
the spherically symmetric potential so that V (r) = V (r). The equation for
the wave function ψ (r) is

∇2ψ +
2M

�2
[E − V (r)]ψ = 0, (10.10.8)

where ∇2 is the three-dimensional Laplacian.

To determine the wave function ψ, it is convenient to introduce spherical
polar coordinates (r, θ, φ) so that equation (10.10.8) takes the form

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

+K [E − V (r)]ψ = 0, (10.10.9)

where K =
(
2M/�

2
)
, ψ ≡ ψ (r, θ, φ), 0 ≤ r < ∞, 0 ≤ θ ≤ π, and 0 ≤ φ ≤

2π.

We seek a nontrivial separable solution of the form

ψ = R (r) Y (θ, φ)

and then substitute into (10.10.9) to obtain the following equations

d

dr

(
r2 dR

dr

)
+

[
K (E − V ) r2 − λ

]
R = 0, (10.10.10)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y + λY = 0, (10.10.11)

where λ is a separation constant.
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We first solve (10.10.11) by separation of variables through Y =
Θ (θ) Φ (φ) so that the equation becomes

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+

(
λ sin2 θ − m2

)
Θ = 0, (10.10.12)

d2Φ

dφ2
+ m2Φ = 0, (10.10.13)

where m2 is a separation constant.

The general solution of (10.10.13) is

Φ = A eimφ + B e−imφ,

where A and B are arbitrary constants to be determined by the boundary
conditions on ψ (r, θ, φ) = R (r) Θ (θ) Φ (φ) which will now be formulated.

According to the fundamental postulate of quantum mechanics, the
wave function for a particle without spin must have a definite value at
every point in space. Hence, we assume that ψ is a single-valued function
of position. In particular, ψ must have the same value whether the az-
imuthal coordinate φ is given by φ or φ + 2π, that is, Φ (φ) = Φ (φ + 2π).
Consequently, the solution for Φ has the form

Φ = C eimΦ, m = 0, + 1, + 2, . . . , (10.10.14)

where C is an arbitrary constant.
In order to solve (10.10.12), it is convenient to change the variable x =

cos θ, Θ (θ) = u (x), −1 ≤ x ≤ 1 so that this equation becomes

d

dx

[(
1 − x2

) du

dx

]
+

(
λ − m2

1 − x2

)
u = 0. (10.10.15)

For the particular case m = 0, this equation becomes

d

dx

[(
1 − x2

) du

dx

]
+ λu = 0. (10.10.16)

This is known as the Legendre equation, which gives the Legendre poly-
nomials Pl (x) of degree l as solutions provided λ = l (l + 1) where l is a
positive integer or zero.

When m �= 0, equation (10.10.15) with λ = l (l + 1) admits solutions
which are well known as associated Legendre functions, Pm

l (x) of degree l
and order m defined by

Pm
l (x) =

(
1 − x2

)m/2 dm

dxm
Pm

l (x) , x = cos θ.

Clearly, Pm
l (x) vanishes when m > l. As for the negative integral values of

m, it can be readily shown that
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P−m
l (x) = (−1)

m (l − m)!

(l + m)!
Pm

l (x) .

Hence, the functions P−m
l (x) differ from Pm

l (x) by a constant factor, and
as a consequence, m is restricted to a positive integer or zero. Thus, the
associated Legendre functions Pm

l (x) with |m| ≤ l are the only nonsingular
and physically acceptable solutions of (10.10.15). Since |m| ≤ l, when l = 0,
m = 0; when l = 1, m = −1, 0, +1; when l = 2, m = −2, −1, 0, 1, 2,
etc. This means that, given l, there are exactly (2l + 1) different values of
m = −l, . . ., −1, 0, 1,. . ., l. The numbers l and m are called the orbital
quantum member and the magnetic quantum number respectively.

It is convenient to write down the solutions of (10.10.11) as functions
which are normalized with respect to an integration over the whole solid
angle. They are called spherical harmonics and are given by, for m ≥ 0,

Y m
l (θ, φ) =

[
(2l + 1)

4π

(l − m)!

(l + m)!

] 1
2

(−1)
m

eimφPm
l (cos θ) . (10.10.17)

Spherical harmonics with negative m and with |m| ≤ l are defined by

Y m
l (θ, φ) = (−1)

m
Y −m

l (θ, φ). (10.10.18)

We now return to a general discussion of the radial equation (10.10.10)
which becomes, under the transformation R (r) = P (r) /r,

d2P

dr2
+

[
K (E − V ) − λ

r2

]
P (r) = 0. (10.10.19)

Almost all cases of physical interest require V (r) to be finite everywhere
except at the origin r = 0. Also, V (r) → 0 as r → ∞. The Coulomb and
square well potentials are typical examples of this kind. In the neighborhood
of r = 0, V (r) can be neglected compared to the centrifugal term

(
∼ 1/r2

)

so that equation (10.10.19) takes the form

d2P

dr2
− l (l + 1)

r2
P (r) = 0 (10.10.20)

for all states with l �= 0. The general solution of this equation is

P (r) = A rl+1 + B r−l, (10.10.21)

where A and B are arbitrary constants. With the boundary condition
P (0) = 0, B = 0 so that the solution is proportional to rl+1.

On the other hand, in view of the assumption that V (r) → 0 as r → ∞,
the radial equation (10.10.19) reduces to

d2P

dr2
+ KE P (r) = 0. (10.10.22)
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The general solution of this equation is

P (r) = C eir
√

KE + D e−ir
√

KE . (10.10.23)

The solution is oscillatory for E > 0, and exponential in nature for E < 0.
The oscillatory solutions are not physically acceptable because the wave
function does not tend to zero as r → ∞. When E < 0, the second term
in (10.10.23) tends to infinity as r → ∞. Consequently, the only physically
acceptable solutions for E > 0, have the asymptotic form

P (r) = C e−αr/2, (10.10.24)

where KE = −
(
α2/4

)
.

Thus, the general solution of (10.10.19) can be written as

P (r) = f (r) e−(α/2)r,

so that f (r) satisfies the ordinary differential equation

d2f

dr2
− α

df

dr
−

[
KV +

l (l + 1)

r2

]
f = 0. (10.10.25)

Note that this general solution is physically acceptable because the wave
function tends to zero as r → 0 and as r → ∞.

We now specify the form of the potential V (r). One of the most com-
mon potentials is the Coulomb potential V (r) = −Ze2/r representing the
attraction between an atomic nucleus of charge +Ze and a moving electron
of charge −e. For the hydrogen atom Z = 1. It is a two particle system con-
sisting of a negatively charged electron interacting with a positively charged
proton. On the other hand, a helium atom consists of two protons and two
neutrons. There are two electrons in orbit around the nucleus of a helium
atom. For the singly charged helium ion Z = 2, where Z represents the
number of unit charges of the nucleus. Consequently, equation (10.10.25)
reduces to

d2f

dr2
− α

df

dr
+

[
KZe2

r
− l (l + 1)

r2

]
f (r) = 0. (10.10.26)

We seek a power series solution of this equation in the form

f (r) = rk
∞∑

s=1

asr
s, k �= 0. (10.10.27)

Substituting this series into (10.10.26), we obtain

rk
∞∑

s=1

[(s + k) (s + k − 1) − l (l + 1)] asr
s+k−1

+

∞∑

s=1

[
Zke2 − α (s + k)

]
asr

s+k−1 = 0.
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Clearly, the lowest power of r is (k − 1), so that

[k (k + 1) − l (l + 1)] a1 = 0.

This implies that k = l or − (l + 1) provided a1 �= 0. The negative root of k
is not acceptable because it leads to an unbounded solution. Equating the
coefficient of rs+k−1, we get the recurrence relation for the coefficients as

as+1 =
α (s + l) − ZKe2

s (s + 2l + 1)
as, s = 1, 2, 3, . . . . (10.10.28)

The asymptotic nature of this result is

as+1

as
∼ α

s
as s → ∞.

This ratio is the same as that of the series for eαr. This means that R (r) is
unbounded as r → ∞, which is physically unacceptable. Hence, the series
for f (r) must terminate, and f (r) must be a polynomial so that as+1 = 0,
but as �= 0. Hence

α (s + l) − ZKe2 = 0, s = 1, 2, 3, . . . ,

or,

α2

4
=

Z2K2e4

4 (s + l)
2 = −KE. (10.10.29)

Putting K =
(
2M/�

2
)
, the energy levels are given by

E = En = −Z2K2e4

4n2K
= −MZ2e4

2�2n2
, (10.10.30)

where n = (s + l) is called the principal quantum number and n = 1, 2, 3, . . ..
Thus, it turns out that the complete solution of the Schrödinger equation

is given by

ψn,l,m (r, θ, φ) = Rn,l (r) Y m
l (θ, φ) ,

where the radial part is the solution of the radial equation (10.10.10), and
it depends on the principle quantum number n (energy levels) and the
orbital quantum number l. However, it does not depend on the magnetic
quantum number m. Of course, there are (2l + 1) states with the same l
value but with different m values. Each of these states has the same energy,
and therefore, such systems have a (2l + 1)-fold degeneracy, as a result of
rotational symmetry.

For the hydrogen atom, Z = 1, the discrete energy spectrum is

En = − Me4

2�2n2
= − e2

2an2
, (10.10.31)
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where a =
(
�

2/e2M
)

is called the Bohr radius of the hydrogen atom of
mass M and charge of the electron, −e. This discrete energy spectrum
depends only on the principle quantum number n (but not on m) and has
an excellent agreement with experimental prediction of spectral lines.

For a given n, there are n sets of l and s

n = 1, {l = 0, s = 1} ; n = 2,

⎧
⎨
⎩

l = 0, s = 2

l = 1, s = 1

⎫
⎬
⎭ ;

n = 3,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l = 0, s = 3

l = 1, s = 2

l = 2, s = 1

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

; etc.

Given n, there are exactly n values of l (l = 0, 1, 2, . . . , n − 1) and the
highest value of l is n − 1.

Thus, the three numbers n, l, m, determine a unique eigenfunction,
ψn,l,m (r, θ, φ) = Rn,l (r) Y m

l (θ, φ). Since the energy levels depend only on
the principle quantum number n, there are, in general, several linearly inde-
pendent eigenfunctions of the Schrödinger equation for the hydrogen atom
corresponding to each energy level, so the energy levels are said to be de-
generate. There are (2l + 1) different eigenfunctions of the same energy
obtained by varying the magnetic quantum number m from −l to l. In
general, the total number of degenerate energy states En for the hydrogen
atom is then

n−1∑

l=0

(2l + 1) = 2
n (n − 1)

2
+ n = n2. (10.10.32)

The energy levels of the hydrogen atom (10.10.31) can be expressed in
terms the Rydberg, Ry, as

En = −Ry

n2
, (10.10.33)

where Ry represents the Rydberg given by

Ry =
Me4

2�2
=

Mc2e4

2 (�c)
2 =

Mc2

2
×

(
e2

�c

)2

≃ 5 × 105

2
eV ×

(
1

137

)2

≃ 13.3 eV.

Consequently,

En = −13.3

n2
eV. (10.10.34)
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Thus, the ground state of the hydrogen atom, which is the most tightly
bound, has an energy −13.3 eV (more accurately −13.6 eV ) and therefore, it
would take 13.6 eV to release the electron from its ground state. Therefore,
this is called the binding energy of the hydrogen atom.

Finally, the electron is treated here as a nonrelativistic particle. How-
ever, in reality, small relativistic effects can be calculated. These are known
as fine structure corrections. Thus, the nonrelativistic Schrödinger equation
describes the hydrogen atom extremely well.

Example 10.10.1. (Infinite Square well potential V0 → ∞). We consider
the one-dimensional Schrödinger equation (10.10.8) in the form

[
−

(
�

2

2M

)
d2

dx2
+ V (x)

]
ψ (x) = Eψ (x) , (10.10.35)

where the potential V (x) is given by

V (x) =

⎧
⎨
⎩

V0, x ≤ −a, x ≥ a,

0, −a ≤ x ≤ a
(10.10.36)

and take the limit V0 → +∞ as shown in Figure 10.10.1.
It is noted that the potential is zero inside the square well and E is

the kinetic energy of the particle in this region (−a ≤ x ≤ a) which must
be positive, E > 0. It is convenient to fix the origin at the center of the
well so that V (x) is an even function of x. A case of special interest is that
V0 > E ≥ 0 and eventually, V0 → ∞.

Figure 10.10.1 Square well with potential V0 → ∞.
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The given potential is different in different regions, we solve (10.10.35)
separately in three regions.

Region 1. V = V0 in this region x ≤ −a.

The Schrödinger equation (10.10.35) in this region is

− �
2

2M
ψxx + V0ψ = Eψ.

Or, equivalently,

ψxx =

(
2M

�2

)
(V0 − E) ψ, V0 > E > 0. (10.10.37)

The general solution of (10.10.37) is

ψ1 (x) = A ekx + B e−kx, (10.10.38)

where A and B are constants and

k =

[
2M

�2
(V0 − E)

] 1
2

. (10.10.39)

The wave function ψ1 (x) must be bounded as x → −∞ to retain its prob-
abilistic interpretation, hence B = 0, and the solution in x ≤ −a is

ψ1 (x) = A ekx.

As V0 → ∞, k → ∞, and, in this limit, the solution must vanish, that is,

ψ1 (x) = 0, for x ≤ −a. (10.10.40)

Region 2. V = 0 in −a ≤ x ≤ a.
In this case, the equation takes the form

ψxx + k2ψ = 0, (10.10.41)

where

k2 =
2ME

�2
. (10.10.42)

The general solution of (10.10.41) is given by

ψ2 (x) = C sin kx + D cos kx, (10.10.43)

where C and D are arbitrary constants.
Region 3. V = V0 in this region x ≥ a.
An argument similar to region 1 leads to zero solution, that is,
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ψ3 (x) = 0, for x ≥ a. (10.10.44)

From a physical point of view, the solution of the Schrödinger equation
must be continuous everywhere including at the boundaries. Thus, match-
ing of solutions at x = + a is required so that

ψ2 (a) = C sin ak + D cos ak = 0 = ψ3 (a) , (10.10.45)

ψ2 (−a) = −C sin ak + D cos ak = 0 = ψ1 (−a) . (10.10.46)

This system of linear homogeneous equations has nontrivial solutions
for C and D only if the determinant of the coefficient matrix vanishes. This
means that

sin ak cos ak = 0. (10.10.47)

There are two possible nontrivial solutions for the set of conditions
(10.10.47).

Case 1. Even solution: cos ak = 0.

In this case, it follows from (10.10.45)–(10.10.46) that C = 0. Hence,

ak = (2n + 1)
π

2
, n is an integer,

or,

k2 = k2
n =

[
(2n + 1)

π

2a

]2

. (10.10.48)

Consequently, (10.10.42) gives the energy levels E = En as

En =
(2n + 1)

2
π2

�
2

8Ma2
. (10.10.49)

In this case, the nontrivial solution in region 2 takes the form

ψ2 (x) = D cos kx, −a ≤ x ≤ a. (10.10.50)

Case 2. Odd solution: sin ak = 0.

It follows from (10.10.45)–(10.10.46) that D = 0 and sin ak = 0 holds.
Consequently,

ak = nπ, n is an integer, n �= 0,

or,

k2
n =

(nπ

a

)2

. (10.10.51)
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Thus, the energy levels are given by

En =
�

2k2
n

2M
=

(nπ�)
2

2Ma2
. (10.10.52)

The nontrivial solution in region 2 is

ψ2 (x) = C sin kx, −a ≤ x ≤ a. (10.10.53)

Thus, it turns out that, corresponding to every value of En given by
(10.10.49) or (10.10.52), there exists a physically acceptable solution. Hence,
the general solution of the Schrödinger equation is obtained from (10.10.7)
in the form

ψ (x, t) =
∑

n

Cnψn (x) exp

(
− itEn

�

)
, (10.10.54)

where Cn are constants.
In classical mechanics, the motion of the particle is allowed for E > 0.

In quantum mechanics, it follows from (10.10.49) or (10.10.52) that particle
motion is allowed for discrete values of energy, that is, the energy for this
system is quantized. This is a remarkable contrast between the results of
the classical mechanics and quantum mechanics.

Finally, it follows from the above analysis is that

lim
|x|→∞

ψ (x) = 0. (10.10.55)

Such a system, where the wave function vanishes beyond range or asymp-
totically, is called a bound state, and energy is quantized. A very common
example is the hydrogen atom which was discussed in this section. In the
present system ψ (x) = 0 for x2 ≥ a2. Therefore, this system is also referred
to as a particle in a box of length 2a. The probability for finding the particle
outside this region is zero.

10.11 Method of Eigenfunctions and Vibration of

Membrane

Consider the nonhomogeneous initial boundary-value problem

L [u] = ρ utt − G in D (10.11.1)

with prescribed homogeneous boundary conditions on the boundary B of
D, and the initial conditions

u (x1, x2, . . . , xn, 0) = f (x1, x2, . . . , xn) , (10.11.2)

ut (x1, x2, . . . , xn, 0) = g (x1, x2, . . . , xn) . (10.11.3)
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Here ρ ≡ ρ (x1, x2, . . . , xn) is a real-valued positive continuous function and
G ≡ G (x1, x2, . . . , xn) is a real-valued continuous function.

We assume that the only solution of the associated homogeneous prob-
lem

L [u] = ρutt (10.11.4)

with the prescribed boundary conditions is the trivial solution. Then, if
there exists a solution of the given problem (10.11.1)–(10.11.3), it can be
represented by a series of eigenfunctions of the associated eigenvalue prob-
lem

L [ϕ] + λ ρ ϕ = 0 (10.11.5)

with ϕ satisfying the boundary conditions given for u. For problems with
one space variable, see Section 7.8.

As a specific example, we shall determine the solution of the problem of
forced vibration of a rectangular membrane of length a and width b. The
problem is

utt − c2∇2u = F (x, y, t) in D (10.11.6)

u (x, y, 0) = f (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.11.7)

ut (x, y, 0) = g (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.11.8)

u (0, y, t) = 0, u (a, y, t) = 0, (10.11.9)

u (x, 0, t) = 0, u (x, b, t) = 0. (10.11.10)

The associated eigenvalue problem is

∇2ϕ + λϕ = 0 in D,

ϕ = 0 on the boundary B of D.

The eigenvalues for this problem according to Section 10.6 are given by

αmn =

(
m2π2

a2
+

n2π2

b2

)
, m, n = 1, 2, 3 . . .

and the corresponding eigenfunctions are

ϕmn (x, y) = sin
(mπx

a

)
sin

(nπy

b

)
.

Thus, we assume the solution

u (x, y, t) =
∞∑

m=1

∞∑

n=1

umn (t) sin
(mπx

a

)
sin

(nπy

b

)

and the forcing function
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F (x, y, t) =

∞∑

m=1

∞∑

n=1

Fmn (t) sin
(mπx

a

)
sin

(nπy

b

)
.

Here Fmn (t) are given by

Fmn (t) =
4

ab

∫ a

0

∫ b

0

F (x, y, t) sin
(mπx

a

)
sin

(nπy

b

)
dx dy.

Note that u automatically satisfies the homogeneous boundary conditions.
Now inserting u (x, y, t) and F (x, y, t) in equation (10.11.6), we obtain

ümn + c2α2
mnumn = Fmn,

where α2
mn = (mπ/a)

2
+ (nπ/b)

2
. We have assumed that u is twice contin-

uously differentiable with respect to t. Thus, the solution of the preceding
ordinary differential equation takes the form

umn (t) = Amn cos (αmnct) + Bmn sin (αmnct)

+
1

(αmn c)

∫ t

0

Fmn (τ) sin [αmnc (t − τ)] dτ.

The first initial condition gives

u (x, y, 0) = f (x, y) =
∞∑

m=1

∞∑

n=1

Amn sin
(mπx

a

)
sin

(nπy

b

)
.

Assuming that f (x, y) is continuous in x and y, the coefficient Amn of the
double Fourier series is given by

Amn =
4

ab

∫ a

0

∫ b

0

f (x, y) sin
(mπx

a

)
sin

(nπy

b

)
dx dy.

Similarly, from the remaining initial condition, we have

ut (x, y, 0) = g (x, y) =

∞∑

m=1

∞∑

n=1

Bmn (αmn c) sin
(mπx

a

)
sin

(nπy

b

)
,

and hence, for continuous g (x, y),

Bmn =
4

(ab αmnc)

∫ a

0

∫ b

0

g (x, y) sin
(mπx

a

)
sin

(nπy

b

)
dx dy.

The solution of the given initial boundary-value problem is therefore given
by

u (x, y, t) =
∞∑

m=1

∞∑

n=1

umn (t) sin
(mπx

a

)
sin

(nπy

b

)
,
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provided the series for u and its first and second derivatives converge uni-
formly.

If F (x, y, t) = ex+y cos ωt, then

Fmn (t) =
4mnπ2

(m2π2 + a2) (n2π2 + b2)

[
1 + (−1)

m+1
ea

]

×
[
1 + (−1)

n+1
eb

]
cos ωt

= Cmn cos ωt.

Hence, we have

umn (t) =
1

(αmnc)

∫ t

0

Cmn cos ωt sin [αmnc (t − τ)] dτ

=
Cmn

(α2
mnc2 − ω2)

(cos ωt − cos αmnct)

provided ω �= (αmnc). Thus, the solution may be written in the form

u (x, y, t) =

∞∑

m=1

∞∑

n=1

Cmn

(α2
mnc2 − ω2)

(cos ωt − cos αmnct)

× sin
(mπx

a

)
sin

(nπy

b

)
.

10.12 Time-Dependent Boundary-Value Problems

The preceding chapters have been devoted to problems with homogeneous
boundary conditions. Due to the frequent occurrence of problems with time
dependent boundary conditions in practice, we consider the forced vibration
of a rectangular membrane with moving boundaries. The problem here is
to determine the displacement function u which satisfies

utt − c2∇2u = F (x, y, t) , 0 < x < a, 0 < y < b, (10.12.1)

u (x, y, 0) = f (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.12.2)

ut (x, y, 0) = g (x, y) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, (10.12.3)

u (0, y, t) = p1 (y, t) , 0 ≤ y ≤ b, t ≥ 0, (10.12.4)

u (a, y, t) = p2 (y, t) , 0 ≤ y ≤ b, t ≥ 0, (10.12.5)

u (x, 0, t) = q1 (x, t) , 0 ≤ x ≤ a, t ≥ 0, (10.12.6)

u (x, b, t) = q2 (x, t) , 0 ≤ x ≤ a, t ≥ 0. (10.12.7)

For such problems, we seek a solution in the form

u (x, y, t) = U (x, y, t) + v (x, y, t) , (10.12.8)
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where v is the new dependent variable to be determined. Before finding v,
we must first determine U . If we substitute equation (10.12.8) into equations
(10.12.1)–(10.12.7), we respectively obtain

vtt − c2 (vxx + vyy) = F − Utt + c2 (Uxx + Uyy) = F̃ (x, y, t)

and

v (x, y, 0) = f (x, y) − U (x, y, 0) = f̃ (x, y) ,

vt (x, y, 0) = g (x, y) − Ut (x, y, 0) = g̃ (x, y) ,

v (0, y, t) = p1 (y, t) − U (0, y, t) = p̃1 (y, t) ,

v (a, y, t) = p2 (y, t) − U (a, y, t) = p̃2 (y, t) ,

v (x, 0, t) = q1 (x, t) − U (x, 0, t) = q̃1 (x, t) ,

v (x, b, t) = q2 (x, t) − U (x, b, t) = q̃2 (x, t) .

In order to make the conditions on v homogeneous, we set

p̃1 = p̃2 = q̃1 = q̃2 = 0,

so that

U (0, y, t) = p1 (y, t) , U (a, y, t) = p2 (y, t) , (10.12.9)

U (x, 0, t) = q1 (x, t) , U (x, b, t) = q2 (x, t) . (10.12.10)

In order that the boundary conditions be compatible, we assume that the
prescribed functions take the forms

p1 (y, t) = ϕ (y) p∗
1 (y, t) , p2 (y, t) = ϕ (y) p∗

2 (y, t) ,

q1 (x, t) = ψ (x) q∗
1 (x, t) , q2 (x, t) = ψ (x) q∗

2 (x, t) ,

where the function ϕ must vanish at the end points y = 0, y = b and the
function ψ must vanish at x = 0, x = a. Thus, U (x, y, t) which satisfies
equations (10.12.9)–(10.12.10) takes the form

U (x, y, t) = ϕ (y)
[
p∗
1 +

x

a
(p∗

2 + p∗
1)

]
+ ψ (x)

[
q∗
1 +

y

b
(q∗

2 + q∗
1)

]
.

The problem then is to find the function v (x, y, t) which satisfies

vtt − c2 (vxx + vyy) = F̃ (x, y, t) ,

v (x, y, 0) = f̃ (x, y) , vt (x, y, 0) = g̃ (x, y) ,

v (0, y, t) = 0, v (a, y, t) = 0,

v (x, 0, t) = 0, v (x, b, t) = 0.

This is an initial boundary-value problem with homogeneous boundary con-
ditions, which has already been solved.
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As a particular case, consider the following problem

utt − c2 (uxx + uyy) = 0,

u (x, y, 0) = 0, ut (x, y, 0) =
y

b
sin

(πx

a

)
,

u (0, y, t) = 0, u (a, y, t) = 0,

u (x, 0, t) = 0, u (x, b, t) = sin
(πx

a

)
sin t.

We assume a solution in the form

u (x, y, t) = v (x, y, t) + U (x, y, t) .

The function U (x, y, t) which satisfies

U (0, y, t) = 0, U (a, y, t) = 0,

U (x, 0, t) = 0, U (x, b, t) = sin
(πx

a

)
sin t

is

U (x, y, t) = sin
(πx

a

)(y

b
sin t

)
.

Thus, the new problem to be solved is

vtt − c2 (vxx + vyy) =

(
1 − c2π2

a2

)
y

b
sin

(πx

a

)
sin t,

v (x, y, 0) = 0, vt (x, y, 0) = 0,

v (0, y, t) = 0, v (a, y, t) = 0,

v (x, 0, t) = 0, v (x, b, t) = 0.

Then, we find Fmn from

Fmn (t) =
4

ab

∫ a

0

∫ b

0

F (x, y, t) sin
(mπx

a

)
sin

(nπy

b

)
dx dy,

where

F (x, y, t) =

(
1 − c2π2

a2

)
y

b
sin

(πx

a

)
sin t,

and obtain

Fmn (t) =
2 (−1)

n+1

an

(
1 − c2π2

a2

)
sin t.

Now we determine vmn (t) which are given by



398 10 Higher-Dimensional Boundary-Value Problems

vmn (t) = Amn cos (αmnct) + Bmn sin (αmnct)

+
1

αmnc

∫ t

0

Fmn (τ) sin [αmnc (t − τ)] dτ.

Since v (x, y, 0) = 0, Amn = 0, but

Bmn =
4

ab αmnc

∫ a

0

∫ b

0

(
−y

b
sin

πx

a

)
sin

(mπx

a

)
sin

(nπy

b

)
dx dy

=
2 (−1)

n

αmnnac
.

Thus, we have

vmn (t) =
2 (−1)

n

αmnnac
sin (αmnct)

+
2 (−1)

n

αmnca3n (1 − α2c2)

(
a2 − c2π2

)
(sin αmnct − αc sin t) .

The solution is therefore given by

u (x, y, t) =
y

b
sin

(πx

a

)
sin t +

∞∑

m=1

∞∑

n=1

vmn (t) sin
(mπx

a

)
sin

(nπy

b

)
.

10.13 Exercises

1. Solve the Dirichlet problem

∇2u = 0, 0 < x < a, 0 < y < b, 0 < z < c,

u (0, y, z) = sin
(πy

b

)
sin

(πz

c

)
, u (a, y, z) = 0,

u (x, 0, z) = 0, u (x, b, z) = 0,

u (x, y, 0) = 0, u (x, y, c) = 0.

2. Solve the Neumann problem

∇2u = 0, 0 < x < 1, 0 < y < 1, 0 < z < 1,

ux (0, y, z) = 0, ux (1, y, z) = 0,

uy (x, 0, z) = 0, uy (x, 1, z) = 0,

uz (x, y, 0) = cos πx cos πy, uz (x, y, 1) = 0.

3. Solve the Robin boundary-value problem

∇2u = 0, 0 < x < π, 0 < y < π, 0 < z < π,

u (0, y, z) = f (y, z) , u (π, y, z) = 0,

uy (x, 0, z) = 0, uy (x, π, z) = 0,

uz (x, y, 0) + hu (x, y, 0)

uz (x, y, π) + hu (x, y, π)

=

=

0,

0,

⎫
⎬
⎭ h = constant.
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4. Determine the solution of each of the following problems for a cylinder:

(a) ∇2u = 0, r < a, 0 < θ < 2π, 0 < z < l,

u (a, θ, z) = 0, u (r, θ, l) = 0, u (r, θ, 0) = f (r, θ) .

(b) ∇2u = 0, r < a, 0 < θ < 2π, 0 < z < l,

u (a, θ, z) = f (θ, z) , uz (r, θ, 0) = 0, uz (r, θ, l) = 0.

5. Find the solution of the Dirichlet problem for a sphere

∇2u = 0, r < a, 0 < θ < π, 0 < ϕ < 2π,

u (a, θ, ϕ) = cos2 θ.

6. Solve the Dirichlet problem in a region bounded by two concentric
spheres

∇2u = 0, a < r < b, 0 < θ < π, 0 < φ < 2π,

u (a, θ, φ) = f (θ, φ) , u (b, θ, φ) = g (θ, φ) .

7. Find the steady-state temperature distribution in a cylinder of radius
a if a constant flow of heat T is supplied at the end z = 0, and the
surface r = a and the end z = l are maintained at zero temperature.

8. Find the potential of the electrostatic field inside a cylinder of length l
and radius a, if each end of the cylinder is grounded, and the surface is
charged to a potential u0.

9. Determine the potential of the electric field inside a sphere of radius
a, if the upper half of the sphere is charged to a potential u1 and the
lower half to a potential u2.

10. Solve the Dirichlet problem for a half cylinder

∇2u = 0, r < 1, 0 < θ < π, 0 < z < 1,

u (1, θ, z) = 0, u (r, 0, z) = 0, u (r, π, z) = 0,

u (r, θ, 0) = 0, u (r, θ, 1) = f (r, θ) .

11. Solve the Neumann problem for a sphere
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∇2u = 0, r < 1, 0 < θ < π, 0 < ϕ < 2π,

ur (1, θ, ϕ) = f (θ, ϕ) ,

where
∫ 2π

0

∫ π

0

f (θ, ϕ) sin θ dθ dϕ = 0.

12. Find the solution of the initial boundary-value problem

utt = c2∇2u, 0 < x < 1, 0 < y < 1, t > 0,

u (x, y, 0) = sin2 πx sin πy, ut (x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u (0, y, t) = 0, u (1, y, t) = 0, 0 ≤ y ≤ 1, t > 0,

u (x, 0, t) = 0, u (x, 1, t) = 0, 0 ≤ x ≤ 1, t > 0.

13. Obtain the solution of the problem

utt = c2∇2u, r < a, 0 < θ < 2π, t > 0,

u (r, θ, 0) = f (r, θ) , ut (r, θ, 0) = g (r, θ) , u (a, θ, t) = 0.

14. Determine the temperature distribution in a rectangular plate with ra-
diation from its surface. The temperature distribution is described by

ut = k (uxx + uyy) − h (u − u0) , 0 < x < a, 0 < y < b, t > 0,

u (x, y, 0) = f (x, y) ,

u (0, y, t) = 0, u (a, y, t) = 0,

u (x, 0, t) = 0, u (x, b, t) = 0,

where k, h and u0 are constants.

15. Solve the heat conduction problem in a circular plate

ut = k

(
urr +

1

r
ur +

1

r2
uθθ

)
, r < 1, 0 < θ < 2π, t > 0,

u (r, θ, 0) = f (r, θ) , u (1, θ, t) = 0.

16. Solve the initial boundary-value problem

utt = c2∇2u, 0 < x < 1, 0 < y < 1, 0 < z < 1, t > 0,

u (x, y, z, 0) = sinπx sin πy sin πz,
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ut (x, y, z, 0) = 0,

u (0, y, z, t) = u (1, y, z, t) = 0,

u (x, 0, z, t) = u (x, 1, z, t) = 0,

u (x, y, 0, t) = u (x, y, 1, t) = 0.

17. Solve

utt + k ut = c2∇2u, 0 < x < a, 0 < y < b, 0 < z < d, t > 0,

u (x, y, z, 0) = f (x, y, z) , ut (x, y, z, 0) = g (x, y, z) ,

u (0, y, z, t) = u (a, y, z, t) = 0,

u (x, 0, z, t) = u (x, b, z, t) = 0,

u (x, y, 0, t) = u (x, y, d, t) = 0.

18. Obtain the solution of the problem for t > 0,

utt = c2

(
urr +

1

r
ur +

1

r2
uθθ + uzz

)
, r < a, 0 < θ < 2π, 0 < z < l,

u (r, θ, z, 0) = f (r, θ, z) , ut (r, θ, z, 0) = g (r, θ, z) ,

u (a, θ, z, t) = 0, u (r, θ, 0, t) = u (r, θ, l, t) = 0.

19. Determine the solution of the heat conduction problem

ut = k ∇2u, 0 < x < a, 0 < y < b, 0 < z < c, t > 0,

u (x, y, z, 0) = f (x, y, z) ,

ux (0, y, z, t) = ux (a, y, z, t) = 0,

uy (x, 0, z, t) = uy (x, b, z, t) = 0,

uz (x, y, 0, t) = uz (x, y, c, t) = 0.
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20. Solve the problem

ut = k ∇2u, r < a, 0 < θ < 2π, 0 < z < l, t > 0,

u (r, θ, z, 0) = f (r, θ, z) ,

ur (a, θ, z, t) = 0,

u (r, θ, 0, t) = u (r, θ, l, t) = 0.

21. Find the temperature distribution in the section of a sphere cut out
by the cone θ = θ0. The surface temperature is zero while the initial
temperature is given by f (r, θ, ϕ).

22. Solve the initial boundary-value problem

utt = c2∇2u + F (x, y, t) , 0 < x < a, 0 < y < b, t > 0,

u (x, y, 0) = f (x, y) , ut (x, y, 0) = g (x, y) ,

ux (0, y, t) = ux (a, y, t) = 0 for all t > 0,

uy (x, 0, t) = uy (x, b, t) = 0 for all t > 0.

23. Solve the problem

utt = c2∇2u + xy sin t, 0 < x < π, 0 < y < π, t > 0,

u (x, y, 0) = 0, ut (x, y, 0) = 0,

u (0, y, t) = u (π, y, t) = 0,

u (x, 0, t) = u (x, π, t) = 0.

24. Solve

ut = k∇2u + F (x, y, z, t) , 0 < x < a, 0 < y < b, 0 < z < c,

t > 0,

u (x, y, z, 0) = f (x, y, z) ,

u (0, y, z, t) = u (a, y, z, t) = 0,
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u (x, 0, z, t) = u (x, b, z, t) = 0,

uz (x, y, 0, t) = uz (x, y, c, t) = 0.

25. Solve the nonhomogeneous diffusion problem

ut = k ∇2u + A, 0 < x < π, 0 < y < π, t > 0,

u (x, y, 0) = 0,

u (0, y, t) = u (π, y, t) = 0,

uy (x, 0, t) + u (x, 0, t) = 0,

uy (x, π, t) + u (x, π, t) = 0,

where k and A are constants.

26. Find the temperature distribution of the composite cylinder consisting
of an inner cylinder 0 ≤ r ≤ r0 and an outer cylindrical tube r0 ≤ r ≤ a.
The surface temperature is maintained at zero degrees, and the initial
temperature distribution is given by f (r, θ, z).

27. Solve the initial boundary-value problem

ut − c2∇2u = 0, 0 < x < π, 0 < y < π, t > 0,

u (x, y, 0) = 0,

u (0, y, t) = u (π, y, t) = 0,

u (x, 0, t) = x (x − π) sin t, u (x, π, t) = 0, 0 ≤ x ≤ π, t ≥ 0.

28. Solve the problem

utt = c2∇2u, r < a, 0 < θ < 2π, t > 0,

u (r, θ, 0) = f (r, θ) ,

ut (r, θ, 0) = g (r, θ) ,

u (a, θ, t) = p (θ, t) .
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29. Solve

ut = c2∇2u, r < a, t > 0,

u (r, θ, 0) = f (r, θ) , ut (a, θ, t) = g (θ, t) , 0 < θ < π.

30. Determine the solution of the biharmonic equation

∇4u = q/D

with the boundary conditions

u (x, 0) = u (x, b) = 0,

u
(
−a

2
, y

)
= u

(a

2
, y

)
= 0,

uxx

(
−a

2
, y

)
= uxx

(a

2
, y

)
= 0,

uyy (x, 0) = uyy (x, b) = 0,

where q is the load per unit area and D is the flexural rigidity of the
plate. This is the problem of the deflection of a uniformly loaded plate,
the sides of which are simply supported.

31. (a) Show that the solution of the one-dimensional Schrödinger equation
for a free particle of mass M

ψt =

(
i�

2M

)
ψxx

is

ψ (x, t) =

(
N

b

)
exp

(
− x2

2b2

)
, b =

(
a2 +

i�t

M

) 1
2

,

where a is an integrating constant that can be determined from the
initial value of the wave function ψ (x, t), and N is also a constant
that can be determined from the normalization of the probability (wave
function) of finding the particle.

(b) Show that the Gaussian probability density is

|ψ|2 = ψψ∗ =
|N |2
ac

exp

(
−x2

c2

)
,

and its mean width is

δ =
c√
2
, C =

(
a2 +

�
2t2

M2a2

) 1
2

.
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32. Analogous to Example 10.10.1, solve the problem for a finite square
well potential (see Figure 10.10.1) with a finite value for the height of
the potential given as

V (x) =

⎧
⎨
⎩

0, for −a ≤ x ≤ a

V0, for x ≤ −a, x ≥ a.

33. Consider the quantum mechanical problem described by the one-dimensional
Schrödinger equation

ψxx + k2ψ = 0

where the wavenumber k = 1
�

√
2M (E − V ) in the rectangular poten-

tial barrier of height V0 and width 2a, and

V (x) = V0H (a − |x|) ,

where H is the Heaviside unit step function. The particle is free for
x < −a and x > a, and V (x) is an even function; the case V0 > E is of
great interest here.

Show that the general solution of the Schrödinger equation for V0 > E
is

ψ (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A eikx + B e−ikx, x ≤ −a,

C e−κx + D e+κx, −a ≤ x ≤ a,

F eikx + Ge−ikx, x ≥ a,

where �k =
√

2ME and �κ =
√

2M (V0 − E).

Matching the boundary conditions at x = −a, show that
⎡
⎣

A

B

⎤
⎦ =

1

2

⎡
⎣
(
1 + iκ

k

)
exp (κa + ika)

(
1 − iκ

k

)
exp (−κa + ika)

(
1 − iκ

k

)
exp (κa − ika)

(
1 + iκ

k

)
exp (−κa − ika)

⎤
⎦

⎡
⎣

C

D

⎤
⎦

where [ ] denotes a matrix.

Using the matching conditions at x = a, show that
⎡
⎣

C

D

⎤
⎦ =

1

2

⎡
⎣

(
1 − ik

κ

)
exp (aκ + iak)

(
1 + ik

κ

)
exp (aκ − iak)

(
1 + ik

κ

)
exp (−aκ + iak)

(
1 − ik

κ

)
exp (−aκ − ika)

⎤
⎦

⎡
⎣

F

G

⎤
⎦ .

Hence, deduce
⎡
⎣

A

B

⎤
⎦ =

⎡
⎣

(
cosh 2aκ + iε

2 sinh 2aκ
)
e2iak 1

2 (iη) sinh 2aκ

− 1
2 (iη) sinh 2aκ

(
cosh 2aκ − 1

2 iε sinh 2aκ
)
e−2ika

⎤
⎦

⎡
⎣

F

G

⎤
⎦

where ε =
(

κ
k − k

κ

)
and η =

(
κ
k + k

κ

)
.
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Green’s Functions and Boundary-Value

Problems

“Potential theory has developed out of the vector analysis created by Gauss,
Green, and Kelvin for the mathematical theories of gravitational attraction,
of electrostatics and of the hydrodynamics of perfect fluids (i.e., incom-
pressible and inviscid fluids). The first stage of abstraction was the study
of harmonic functions, i.e., potential functions in space free from masses,
charges, sources, or sinks. This led to the inspired intuition of Dirichlet and
the early attempts to justify his ‘principle’.”

George Temple

11.1 Introduction

Boundary-value problems associated with either ordinary or partial dif-
ferential equations arise most frequently in mathematics, mathematical
physics and engineering science. The linear superposition principle is one of
the most elegant and effective methods to represent solutions of boundary-
value problems in terms of an auxiliary function known as Green’s function.
Such a function was first introduced by George Green as early as 1828. Sub-
sequently, the method of Green’s functions became a very useful analytical
method in mathematics and in many of the applied sciences.

In previous chapters, it has been shown that the eigenfunction method
can effectively be used to express the solutions of differential equations as
infinite series. On the other hand, solutions of differential equations can be
obtained as an integral superposition in terms of Green’s functions. So the
method of Green’s functions offers several advantages over eigenfunction ex-
pansions. First, an integral representation of solutions provides a direct way
of describing the general analytical structure of a solution that may be ob-
scured by an infinite series representation. Second, from an analytical point
of view, the evaluation of a solution from an integral representation may
prove simpler than finding the sum of an infinite series, particularly near



408 11 Green’s Functions and Boundary-Value Problems

rapidly-varying features of a function, where the convergence of an eigen-
function expansion may be slow. Third, in view of the Gibbs phenomenon
discussed in Chapter 6, the integral representation seems to impose less
stringent requirements on the functions that describe the values that the
solution must assume on a given boundary than the expansion based on
eigenfunctions.

Many physical problems are described by second-order nonhomogeneous
differential equations with homogeneous boundary conditions or by second-
order homogeneous equations with nonhomogeneous boundary conditions.
Such problems can be solved by the method of Green’s functions.

We consider a nonhomogeneous partial differential equation of the form

Lxu (x) = f (x) , (11.1.1)

where x = (x, y, z) is a vector in three (or higher) dimensions, Lx is a
linear partial differential operator in three or more independent variables
with constant coefficients, and u (x) and f (x) are functions of three or
more independent variables. The Green’s function G (x, ξ) of this problem
satisfies the equation

LxG (x, ξ) = δ (x − ξ) (11.1.2)

and represents the effect at the point x of the Dirac delta function source
at the point ξ = (ξ, η, ζ).

Multiplying (11.1.2) by f (ξ) and integrating over the volume V of the
ξ space, so that dV = dξ dη dζ, we obtain

∫

V

LxG (x, ξ) f (ξ) dξ =

∫

V

δ (x − ξ) f (ξ) dξ = f (x) . (11.1.3)

Interchanging the order of the operator Lx and integral sign in (11.1.3)
gives

Lx

[∫

V

G (x, ξ) f (ξ) dξ

]
= f (x) . (11.1.4)

A simple comparison of (11.1.4) with (11.1.1) leads to the solution of
(11.1.1) in the form

u (x) =

∫

V

G (x, ξ) f (ξ) dξ. (11.1.5)

Clearly, (11.1.5) is valid for any finite number of components of x. Ac-
cordingly, the Green’s function method can be applied, in general, to any
linear, constant coefficient, nonhomogeneous partial differential equation in
any number of independent variables.

Another way to approach the problem is by looking for the inverse
operator L−1

x
. If it is possible to find L−1

x
, then the solution of (11.1.1) can
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be obtained as u (x) = L−1
x

(f (x)). It turns out that in many important
cases it is possible, and the inverse operator can be expressed as an integral
operator of the form

u (x) = L−1
x

(f (ξ)) =

∫

V

G (x, ξ) f (ξ) dξ. (11.1.6)

The kernel G (x, ξ) is called the Green’s function which is, in fact, the char-
acteristic of the operator Lx for any finite number of independent variables.

In our study of partial differential equations with the aid of Green’s
functions, special attention will be given to those three partial differen-
tial equations which occur most frequently in mathematics, mathematical
physics and engineering science; the wave equation

utt − c2∇2u = f (x) , (11.1.7)

the heat or diffusion equation

ut − κ∇2u = f (x) , (11.1.8)

and the potential or the Laplace equation

∇2u = f (x) , (11.1.9)

where the Laplacian ∇2 in an n-dimensional Euclidean space is given by

∇2 ≡ ∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

, (11.1.10)

and x = (x1, x2, . . . , xn).
Clearly, the solutions of the wave and heat equations are functions of

(n + 1) coordinates consisting of n space dimensions, x = (x1, x2, . . . , xn)
and one time dimension t, whereas the solutions of the Laplace equation
are functions of n space dimensions.

This chapter deals with the basic idea and properties of Green’s func-
tions and how to construct such functions for finding solutions of partial
differential equations. Some examples of applications are provided in this
chapter and in the next chapter.

11.2 The Dirac Delta Function

The application of Green’s functions to boundary-value problems in ordi-
nary differential equations was described earlier in Chapter 8. The Green’s
function method is applied here to boundary-value problems in partial dif-
ferential equations. The method provides solutions in integral form and is
applicable to a wide class of problems in applied mathematics and mathe-
matical physics.
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Before developing the method of Green’s functions, we will first define
the Dirac delta function δ (x − ξ, y − η) in two dimensions by

(a) δ (x − ξ, y − η) = 0, x �= ξ, y �= η, (11.2.1)

(b)

∫∫

Rε

δ (x − ξ, y − η) dx dy = 1, Rε : (x − ξ)
2

+ (y − η)
2

< ε2,

(11.2.2)

(c)

∫∫

R

F (x, y) δ (x − ξ, y − η) dx dy = F (ξ, η) , (11.2.3)

for arbitrary continuous function F in the region Rε.
The delta function is not a function in the ordinary sense. For an elegant

treatment of the delta function as a generalized function, see L. Schwartz,
Théorie des Distributions (1950, 1951). It is a symbolic function, and is
often viewed as the limit of a distribution.

If δ (x − ξ) and δ (y − η) are one-dimensional delta functions, we have

∫∫

R

F (x, y) δ (x − ξ) δ (y − η) dx dy = F (ξ, η) . (11.2.4)

Since (11.2.3) and (11.2.4) hold for an arbitrary continuous function F , we
conclude that

δ (x − ξ, y − η) = δ (x − ξ) δ (y − η) . (11.2.5)

Thus, we may state that the two-dimensional delta function is the product
of two one-dimensional delta functions.

Higher dimensional delta functions can be defined in a similar manner.

δ (x1, x2, . . . , xn) = δ (x1) δ (x2) . . . δ (xn) . (11.2.6)

The expression for the δ-function become much more complicated when
we introduce curvilinear coordinates. However, for simplicity, we transform
the two-dimensional delta function from Cartesian coordinates x, y to curvi-
linear coordinates α, β by means of the transformation

x = u (α, β) and y = v (α, β) , (11.2.7)

where u and v are single-valued continuous and differentiable functions
of their arguments. We assume that under this transformation α = α1

and β = β1 correspond to x = ξ and y = η respectively. Changing the
coordinates according to (11.2.7), we reduce equation (11.2.4) to

∫∫
F (u, v) δ (u − ξ) δ (v − η) |J | dα dβ = F (ξ, η) , (11.2.8)

where J is the Jacobian of the transformation defined by
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J =
∂ (u, v)

∂ (α, β)
=

∣∣∣∣∣∣

uα uβ

vα vβ

∣∣∣∣∣∣
�= 0. (11.2.9)

Consequently, we can write

δ (u − ξ) δ (v − η) |J | = δ (α − α1) δ (β − β1) . (11.2.10)

In particular, the transformation from rectangular Cartesian coordi-
nates (x, y) to polar coordinates (r, θ) is defined by

x = r cos θ, y = r sin θ, (11.2.11)

so that the Jacobian J is

J =

∣∣∣∣∣∣

xr yr

xθ yθ

∣∣∣∣∣∣
= xryθ − yrrθ = r. (11.2.12)

In this case, J vanishes at the origin and the transformation is singular
at r = 0 for any θ. Hence, θ can be ignored and

δ (x) δ (y) =
δ (r)

|J1|
=

1

2π

δ (r)

r
, (11.2.13)

where

J1 =

∫ π

0

J dθ = 2πr.

Similarly, the transformation from three-dimensional rectangular Carte-
sian coordinates (x, y, z) to spherical polar coordinates (r, θ, φ) is given by

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, (11.2.14)

where 0 ≤ r < ∞, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.
The Jacobian of the transformation is

J = r2 sin θ.

This Jacobian vanishes for all points on the z-axis, that is, for θ = 0, and
hence, the coordinate φ may be ignored. Also, J vanishes at the origin
(r = 0) in which case both θ and φ may be ignored. Consequently,

δ (x) δ (y) δ (z) =
δ (r)

|J2|
=

δ (r)

4πr2
, (11.2.15)

where

J2 =

∫ π

0

∫ 2π

0

J dθ dφ =

∫ π

0

∫ 2π

0

r2 sin θ dφ = 4πr2.
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11.3 Properties of Green’s Functions

The solution of the Dirichlet problem in a domain D with boundary B

∇2u = h (x, y) in D

u = f (x, y) on B (11.3.1)

is given in Section 11.5 and has the form

u (x, y) =

∫∫

D

G (x, y; ξ, η) h (ξ, η) dξ dη +

∫

B

f
∂G

∂n
ds, (11.3.2)

where G is the Green’s function and n denotes the outward normal to the
boundary B of the region D. It is rather obvious then that the solution
u (x, y) can be determined as soon as the Green’s function G is ascertained,
so the problem in this technique is really to find the Green’s function.

First, we shall define the Green’s function for the Dirichlet problem
involving the Laplace operator. Then, the Green’s function for the Dirichlet
problem involving the Helmholtz operator may be defined in a completely
analogous manner.

The Green’s function for the Dirichlet problem involving the Laplace
operator is the function which satisfies
(a) ∇2G = δ (x − ξ, y − η) in D, (11.3.3)

G = 0 on B. (11.3.4)

(b) G is symmetric, that is,

G (x, y; ξ, η) = G (ξ, η; x, y) , (11.3.5)

(c) G is continuous in x, y, ξ, η, but (∂G/∂n) has a discontinuity at the
point (ξ, η) which is specified by the equation

lim
ε→0

∫

Cε

∂G

∂n
ds = 1, (11.3.6)

where n is the outward normal to the circle

Cε : (x − ξ)
2

+ (y − η)
2

= ε2.

The Green’s function G may be interpreted as the response of the system
at a field point (x, y) due to a δ function input at the source point (ξ, η).
G is continuous everywhere in D, and its first and second derivatives are
continuous in D except at (ξ, η). Thus, property (a) essentially states that
∇2G = 0 everywhere except at the source point (ξ, η).

We will now prove property (b).

Theorem 11.3.1. The Green’s function is symmetric.
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Proof. Applying the Green’s second formula

∫∫

D

(
φ∇2ψ − ψ∇2φ

)
dS =

∫

B

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds, (11.3.7)

to the functions φ = G (x, y; ξ, η) and ψ = G (x, y; ξ∗, η∗), we obtain

∫∫

D

[
G (x, y; ξ, η) ∇2G (x, y; ξ∗, η∗) − G (x, y; ξ∗, η∗) ∇2G (x, y; ξ, η)

]
dx dy

=

∫

B

[
G (x, y; ξ, η)

∂G

∂n
(x, y; ξ∗, η∗) − G (x, y; ξ∗, η∗)

∂G

∂n
(x, y; ξ, η)

]
ds.

Since G (x, y; ξ, η) and hence, G (x, y; ξ∗, η∗) must vanish on B, we have

∫∫

D

[
G (x, y; ξ, η) ∇2G (x, y; ξ∗, η∗)

− G (x, y; ξ∗, η∗) ∇2G (x, y; ξ, η)
]
dx dy = 0.

But

∇2G (x, y; ξ, η) = δ (x − ξ, y − η) ,

and

∇2G (x, y; ξ∗, η∗) = δ (x − ξ∗, y − η∗) .

Since
∫∫

D

G (x, y; ξ, η) δ (x − ξ∗, y − η∗) dx dy = G (ξ∗, η∗; ξ, η) ,

and
∫∫

D

G (x, y; ξ∗, η∗) δ (x − ξ, y − η) dx dy = G (ξ, η; ξ∗, η∗) ,

we obtain

G (ξ, η; ξ∗, η∗) = G (ξ∗, η∗; ξ, η) .

Theorem 11.3.2. ∂G/∂n is discontinuous at (ξ, η); in particular

lim
ε→0

∫

Cε

∂G

∂n
ds = 1, Cε : (x − ξ)

2
+ (y − η)

2
= ε2.

Proof. Let Rε be the region bounded by Cε. Then, integrating both sides
of equation (11.3.3), we obtain

∫∫

Rε

∇2Gdx dy =

∫∫

R

δ (x − ξ, y − η) dx dy = 1.
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It therefore follows that

lim
ε→0

∫∫

Rε

∇2Gdx dy = 1. (11.3.8)

Thus, by the Divergence theorem of calculus,

lim
ε→0

∫∫

Cε

∂G

∂n
ds = 1.

11.4 Method of Green’s Functions

It is often convenient to seek G as the sum of a particular integral of the
nonhomogeneous equation and the solution of the associated homogeneous
equation. That is, G may assume the form

G (ξ, η; x, y) = F (ξ, η; x, y) + g (ξ, η; x, y) , (11.4.1)

where F , known as the free-space Green’s function, satisfies

∇2F = δ (ξ − x, η − y) in D, (11.4.2)

and g satisfies

∇2g = 0 in D, (11.4.3)

so that by superposition G = F + g satisfies equation (11.3.3). Also G = 0
on B requires that

g = −F on B. (11.4.4)

Note that F need not satisfy the boundary condition. Hereafter, (x, y) will
denote the source point.

Before we determine the solution of a particular problem, let us first
find F for the Laplace and Helmholtz operators.

(1) Laplace Operator

In this case, F must satisfy the equation

∇2F = δ (ξ − x, η − y) in D.

Then, for r =
[
(ξ − x)

2
+ (η − y)

2
] 1

2

> 0, that is, for ξ �= x, η �= y, we have

with (x, y) as the center

∇2F =
1

r

∂

∂r

(
r
∂F

∂r

)
= 0,
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since F is independent of θ. Therefore, the solution is

F = A + B log r.

Applying condition (11.3.6), it follows directly from equation (11.3.8) with
∇2g = 0, that

lim
ε→0

∫

Cε

∂F

∂n
ds = lim

ε→0

∫ 2π

0

B

r
r dθ = 1.

Thus, B = 1/2π and A is arbitrary. For simplicity, we choose A = 0. Then
F takes the form

F =
1

2π
log r. (11.4.5)

(2) Helmholtz Operator

Here F is required to satisfy

∇2F + κ2F = δ (x − ξ, y − η) .

Again for r > 0, we find

1

r

∂

∂r

(
r
∂F

∂r

)
+ κ2F = 0,

or,

r2Frr + rFr + κ2r2F = 0.

This is the Bessel equation of order zero, the solution of which is

F (κr) = AJ0 (κr) + BY0 (κr) .

Since the behavior of J0 at r = 0 is not singular, we set A = 0. Thus, we
have

F (κr) = BY0 (κr) .

But, for very small r,

Y0 (κr) ∼ 2

π
log r.

Applying condition (11.3.6), we obtain

1 = lim
ε→0

∫

Cε

∂F

∂n
ds = lim

ε→0

∫

Cε

B
∂Y0

∂r
ds = B · 2

πr
· 2πr

and hence, B = 1/4. Thus, F (κr) becomes
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F (κr) =
1

4
Y0 (κr) . (11.4.6)

We may point out that, since

(
∇2 + κ2

)
approaches ∇2 as κ → 0,

it should (and does) follow that

1

4
Y0 (κr) → 1

2
log r as κ → 0 + .

11.5 Dirichlet’s Problem for the Laplace Operator

We are now in a position to determine the solution of the Dirichlet problem

∇2u = h in D,

(11.5.1)

u = f on B,

by the method of Green’s function.
By putting φ (ξ, η) = G (ξ, η; x, y) and ψ (ξ, η) = u (ξ, η) in equation

(11.3.7), we obtain

∫∫

D

[
G (ξ, η; x, y) ∇2u − u (ξ, η) ∇2G

]
dξ dη

=

∫

B

[
G (ξ, η; x, y)

∂u

∂n
− u (ξ, η)

∂G

∂n

]
ds.

But

∇2u = h (ξ, η) in D,

and

∇2G = δ (ξ − x, η − y) in D.

Thus, we have
∫∫

D

[G (ξ, η; x, y) h (ξ, η) − u (ξ, η) δ (ξ − x, η − y)] dξ dη

=

∫

B

[
G (ξ, η; x, y)

∂u

∂n
− u (ξ, η)

∂G

∂n

]
ds. (11.5.2)

Since G = 0 and u = f on B, and since G is symmetric, it follows that

u (x, y) =

∫∫

D

G (x, y; ξ, η) h (ξ, η) dξ dη +

∫

B

f
∂G

∂n
ds (11.5.3)
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which is the solution given by (11.3.2).
As a specific example, consider the Dirichlet problem for a unit circle.

Then

∇2g = gξξ + gηη = 0 in D,

(11.5.4)

g = −F on B.

But we already have from equation (11.4.5) that F = (1/2π) log r.
If we introduce the polar coordinates (see Figure 11.5.1) ρ, θ, σ, β by

means of the equations

x = ρ cos θ, ξ = σ cos β,

(11.5.5)

y = ρ sin θ, η = σ sin β,

then the solution of equation (11.5.4) is [see Section 9.4]

g (σ, β) =
a0

2
+

∞∑

n=1

σn (an cos nβ + bn sin nβ) ,

where

g = − 1

4π
log

[
1 + ρ2 − 2ρ cos (β − θ)

]
on B.

Figure 11.5.1 Image point.
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By using the relation

log
[
1 + ρ2 − 2ρ cos (β − θ)

]
= −2

∞∑

n=1

ρn cos n (β − θ)

n
,

and equating the coefficients of sinnβ and cosnβ to determine an and bn,
we find

an =
ρn

2πn
cos nθ, bn =

ρn

2πn
sin nθ.

It therefore follows that

g (ρ, θ; σ, β) =
1

2π

∞∑

n=1

(σρ)
n

n
cos n (β − θ)

= − 1

4π
log

[
1 + (σρ)

2 − 2 (σρ) cos (β − θ)
]
.

Hence, the Green’s function for the problem is

G (ρ, θ; σ, β) =
1

4π
log

[
σ2 + ρ2 − 2σρ cos (β − θ)

]

− 1

4π
log

[
1 + (σρ)

2 − 2σρ cos (β − θ)
]
, (11.5.6)

from which we find

∂G

∂n

∣∣∣∣
on B

=

(
∂G

∂σ

)

σ=1

=
1

2π

1 − ρ2

[1 + ρ2 − 2ρ cos (β − θ)]
.

If h = 0, then solution (11.5.3) reduces to the Poisson integral formula
similar to (9.4.10) and assumes the form

u (ρ, θ) =
1

2π

∫ 2π

0

1 − ρ2

1 + ρ2 − 2ρ cos (β − θ)
f (β) dβ.

11.6 Dirichlet’s Problem for the Helmholtz Operator

We will now determine the Green’s function solution of the Dirichlet prob-
lem involving the Helmholtz operator, namely,

∇2u + κ2u = h in D,

(11.6.1)

u = f on B,

where D is a circular domain of unit radius with boundary B. Then, the
Green’s function must satisfy
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∇2G + κ2G = δ (ξ − x, η − y) in D,

(11.6.2)

G = 0 on B.

Again, we seek the solution in the form

G (ξ, η; x, y) = F (ξ, η; x, y) + g (ξ, η; x, y) . (11.6.3)

From equation (11.4.6), we have

F =
1

4
Y0 (κr) , (11.6.4)

where r =
[
(ξ − x)

2
+ (η − y)

2
] 1

2

. The function g must satisfy

∇2g + κ2g = 0 in D,

(11.6.5)

g = −1

4
Y0 (κr) on B.

This solution can be determined easily by the method of separation of
variables. Thus, the solution in the polar coordinates defined by equation
(11.5.5) may be written in the form

g (ρ, θ, σ, β) =

∞∑

n=0

Jn (κσ) [an cos nβ + bn sin nβ] , (11.6.6)

where

a0 = − 1

8πJ0 (κ)

∫ π

−π

Y0

[
κ
√

1 + ρ2 − 2ρ cos (β − θ)
]
dβ,

an

bn

=

=

− 1
4πJn(κ)

∫ π

−π
Y0

[
κ
√

1 + ρ2 − 2ρ cos (β − θ)
]
cos nβ dβ

− 1
4πJn(κ)

∫ π

−π
Y0

[
κ
√

1 + ρ2 − 2ρ cos (β − θ)
]
sin nβ dβ

⎫
⎪⎪⎬
⎪⎪⎭

n = 1, 2, . . . .

To find the solution of the Dirichlet problem, we multiply both sides of
the first equation of equation (11.6.1) by G and integrate. Thus, we have

∫∫

D

(
∇2u + κ2u

)
G (ξ, η; x, y) dξ dη =

∫∫

D

h (ξ, η) G (ξ, η; x, y) dξ dη.

We then apply Green’s theorem on the left side of the preceding equation
and obtain

∫∫

D

h (ξ, η) G (ξ, η; x, y) dξ dη −
∫∫

D

u
(
∇2G + κ2G

)
dξ dη

=

∫

B

(Gun − uGn) ds.
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But ∇2G + κ2G = δ (ξ − x, η − y) in D and G = 0 on B. We, therefore,
have

u (x, y) =

∫∫

D

h (ξ, η) G (ξ, η; x, y) dξ dη +

∫

B

f (ξ, η) Gnds, (11.6.7)

where G is given by equation (11.6.3) with equations (11.6.4) and (11.6.6).

11.7 Method of Images

We shall describe another method of obtaining Green’s functions. This
method, called the method of images, is based essentially on the construc-
tion of Green’s function for a finite domain from that of an infinite domain.
The disadvantage of this method is that it can be applied only to problems
with simple boundary geometry.

As an illustration, we consider the same Dirichlet problem solved in
Section 11.5.

Let P (ξ, η)be a point in the unit circle D, and let Q (x, y) be the source
point also in D. The distance between P and Q is r. Let Q′ be the image
which lies outside of D on the ray from the origin opposite to the source
point Q (as shown in Figure 11.7.1) such that OQ/σ = σ/OQ′, where σ is
the radius of the circle passing through P centered at the origin.

Figure 11.7.1 Image point.



11.7 Method of Images 421

Since the two triangles OPQ and OPQ′ are similar by virtue of the
hypothesis (OQ) (OQ′) = σ2 and by possessing a common angle at O, we
have

r′

r
=

σ

ρ
, (11.7.1)

where r′ = PQ′ and ρ = OQ.
If σ = 1, equation (11.7.1) becomes

( r

r′

) 1

ρ
= 1.

Then, we clearly see that the quantity

1

2π
log

(
r

r′
1

ρ

)
=

1

2π
log r − 1

2π
log r′ +

1

2π
log

1

ρ
(11.7.2)

which vanishes on the boundary σ = 1, is harmonic in D except at Q, and
satisfies equation (11.3.3). (Note the log r′ is harmonic everywhere except
at Q′, which is outside the domain D.) This suggests that we should choose
the Green’s function

G =
1

2π
log r − 1

2π
log r′ +

1

2π
log

1

ρ
. (11.7.3)

Noting that Q′ is at (1/ρ, θ), the function G in polar coordinates takes the
form

G (ρ, θ, σ, β) =
1

4π
log

[
σ2 + ρ2 − 2σρ cos (β − θ)

]

− 1

4π
log

[
1

σ2
+ ρ2 − 2

ρ

σ
cos (β − θ)

]
+

1

2π
log

1

σ
(11.7.4)

which is the same as G given by (11.5.6).
It is quite interesting to observe the physical interpretation of the

Green’s function (11.7.3) and (11.7.4). The first term represents the po-
tential due to a unit line charge at the source point, whereas the second
term represents the potential due to a negative unit charge at the image
point. The third term represents a uniform potential. The sum of these
potentials makes up the total potential field.

Example 11.7.1. To illustrate an obvious and simple case, consider the semi-
infinite plane η > 0. The problem is to solve

∇2u = h in η > 0,

u = f on η = 0.
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The image point should be obvious by inspection. Thus, if we construct

G =
1

4π
log

[
(ξ − x)

2
+ (η − y)

2
]

− 1

4π

[
(ξ − x)

2
+ (η + y)

2
]
, (11.7.5)

the condition that G = 0 on η = 0 is clearly satisfied. It is also evident
that G is harmonic in η > 0 except at the source point, and that G satisfies
equation (11.3.3).

With Gn|B = [−Gη]η=0, the solution (11.5.3) is given by

u (x, y) =
y

π

∫ ∞

−∞

f (ξ) dξ

(ξ − x)
2

+ y2

+
1

4π

∫ ∞

0

∫ ∞

−∞
log

[
(ξ − x)

2
+ (η − y)

2

(ξ − x)
2

+ (η + y)
2

]
h (ξ, η) dξ dη. (11.7.6)

Example 11.7.2. Another example that illustrates the method of images
well is the Robin’s problem on the quarter infinite plane, that is,

∇2u = h (ξ, η) in ξ > 0, η > 0,

u = f (η) on ξ = 0, (11.7.7)

un = g (ξ) on η = 0.

This illustrated in Figure 11.7.2.

Figure 11.7.2 Images in the Robin problem.
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Let (−x, y), (−x,−y), and (x,−y) be the three image points of the
source point (x, y). Then, by inspection, we can immediately construct
Green’s function

G =
1

4π
log

[
(ξ − x)

2
+ (η − y)

2
] [

(ξ − x)
2

+ (η + y)
2
]

[
(ξ + x)

2
+ (η − y)

2
] [

(ξ + x)
2

+ (η + y)
2
] . (11.7.8)

This function satisfies ∇2G = 0 except at the source point, and G = 0 on
ξ = 0 and Gη = 0 on η = 0.

The solution from equation (11.3.3) is thus given by

u (x, y) =

∫∫

D

Ghdξ dη +

∫

B

(Gun − uGn) ds,

=

∫ ∞

0

∫ ∞

0

Ghdξ dη +

∫ ∞

0

g (ξ) G (ξ, 0; x, y) dξ,

+

∫ ∞

0

f (η) Gξ (0, η; x, y) dξ.

11.8 Method of Eigenfunctions

In this section, we will apply the method of eigenfunctions, described in
Chapter 10, to obtain the Green’s function.

We consider the boundary-value problem

∇2u = h in D,

(11.8.1)

u = f on B.

For this problem, G must satisfy

∇2G = δ (ξ − x, η − y) in D,

(11.8.2)

G = 0 on B,

and hence, the associated eigenvalue problem is

∇2φ + λφ = 0 in D,

(11.8.3)

φ = 0 on B.

Let φmn be the eigenfunctions and λmn be the corresponding eigenvalues.
We then expand G and δ in terms of the eigenfunctions φmn. Consequently,
we write
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G (ξ, η; x, y) =
∑

m

∑

n

amn (x, y) φmn (ξ, η) , (11.8.4)

δ (ξ − x, η − y) =
∑

m

∑

n

bmn (x, y) φmn (ξ, η) , (11.8.5)

where

bmn =
1

‖φmn‖2

∫∫

D

δ (ξ − x, η − y) φmn (ξ, η) dξ dη

=
φmn (x, y)

‖φmn‖2 (11.8.6)

in which

‖φmn‖2
=

∫∫

D

φ2
mndξ dη.

Now substituting equations (11.8.4) and (11.8.5) into equation (11.8.2) and
using the relation from equation (11.8.3) that

∇2φmn + λmnφmn = 0,

we obtain

−
∑

m

∑

n

λmnamn (x, y) φmn (ξ, η) =
∑

m

∑

n

φmn (x, y) φmn (ξ, η)

‖φmn‖2 .

Hence,

amn (x, y) = − φmn (x, y)

λmn ‖φmn‖2 , (11.8.7)

and the Green’s function is therefore given by

G (ξ, η; x, y) = −
∑

m

∑

n

φmn (x, y) φmn (ξ, η)

λmn ‖φmn‖2 . (11.8.8)

Example 11.8.1. As a particular example, consider the Dirichlet problem in
a rectangular domain

∇2u = h in D {0 < x < a, 0 < y < b} ,

u = 0 on B.

The eigenfunctions can be obtained explicitly by the method of separa-
tion of variables. We assume a nontrivial solution in the form

u (ξ, η) = X (ξ) Y (η) .

Substituting this in the following system
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∇2u + λu = 0 in D,

u = 0 on B,

yields, with α2 as separation constant,

X ′′ + α2X = 0,

Y ′′ +
(
λ − α2

)
Y = 0.

With the homogeneous boundary conditions X (0) = X (a) = 0 and Y (0) =
Y (b) = 0, functions X and Y are found to be

Xm (ξ) = Am sin

(
mπξ

a

)
,

Yn (η) = Bn sin
(nπη

b

)
.

We then have

λmn = π2

(
m2

a2
+

n2

b2

)
.

Thus, we obtain the eigenfunctions

φmn (ξ, η) = sin

(
mπξ

a

)
sin

(nπη

b

)
.

Knowing φmn, we compute ‖φmn‖ and obtain

‖φmn‖2
=

∫ a

0

∫ b

0

sin2

(
mπξ

a

)
sin2

(nπη

b

)
dξ dη =

(
ab

4

)
.

We then obtain from equation (11.8.8) the Green’s function

G (ξ, η; x, y) = −4ab

π2

∞∑

m=1

∞∑

n=1

sin
(

mπx
a

)
sin

(
nπy

b

)
sin

(
mπξ

a

)
sin

(
nπη

b

)

(m2b2 + n2a2)
.

11.9 Higher-Dimensional Problems

The Green’s function method can be easily extended for applications in
three and more dimensions. Since most of the problems encountered in the
physical sciences are in three dimensions, we will illustrate the method with
some examples suitable for practical application.

We first extend our definition of the Green’s function in three dimen-
sions.

The Green’s function for the Dirichlet problem involving the Laplace
operator is the function that satisfies
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(a) ∇2G = δ (x − ξ, y − η, z − ζ) in R, (11.9.1)

G = 0 on S. (11.9.2)

(b) G (x, y, z; ξ, η, ζ) = G (ξ, η, ζ; x, y, z) . (11.9.3)

(c) lim
ε→0

∫∫

Sε

∂G

∂n
ds = 1, (11.9.4)

where n is the outward unit normal to the surface

Sε : (x − ξ)
2

+ (y − η)
2

+ (z − ζ)
2

= ε2.

Proceeding as in the two-dimensional case, the solution of the Dirichlet
problem

∇2u = h in R,

(11.9.5)

u = f on S,

is

u (x, y, z) =

∫∫∫

R

hGdR +

∫∫

S

f Gn dS. (11.9.6)

Again we let

G (ξ, η, ζ; x, y, z) = F (ξ, η, ζ; x, y, z) + g (ξ, η, ζ; x, y, z) ,

where

∇2F = δ (x − ξ, y − η, z − ζ) in R,

and

∇2g = 0 in R,

u = −F on S.

Example 11.9.1. We consider a spherical domain with radius a. We must
have

∇2F = 0

except at the source point. For

r =
[
(ξ − x)

2
+ (η − y)

2
+ (ζ − z)

2
] 1

2

> 0

with (x, y, z) as the origin, we have

∇2F =
1

r2

d

dr

(
r2 dF

dr

)
= 0.
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Integration then yields

F = A +
B

r
for r > 0.

Applying condition (11.9.4) we obtain

lim
ε→0

∫∫

Sε

Gn dS = lim
ε→0

∫∫

Sε

Fr dS = 1.

Consequently, B = − (1/4π) and A is arbitrary. If we set the boundedness
condition at infinity for exterior problems so that A = 0, we have

F = − 1

4πr
. (11.9.7)

We apply the method of images to obtain the Green’s function. If we
draw a three-dimensional diagram analogous to Figure 11.7.1, we will have
a relation similar to (11.7.1), namely,

r′ =

(
a

ρ

)
r, (11.9.8)

where r′ and ρ are measured in three-dimensional space. Thus, we seek
Green’s function

G =
−1

4πr
+

a/ρ

4πr′ (11.9.9)

which is harmonic everywhere in r except at the source point, and is zero
on the surface S.

In terms of spherical coordinates

ξ = τ cos ψ sin α, x = ρ cos φ sin θ,

η = τ sin ψ sin α, y = ρ sin φ sin θ,

ζ = τ cos α, z = ρ cos θ,

the Green’s function G can be written in the form

G =
−1

4π (τ2 + ρ2 − 2τρ cos γ)
1
2

+
1

4π
[

τ2ρ2

a2 + a2 − 2τρ cos γ
] 1

2

, (11.9.10)

where γ is the angle between r and r′. Now differentiating G, we have

[
∂G

∂τ

]

τ=a

=
a2 − ρ2

4πa (a2 + ρ2 − 2aρ cos γ)
1
2

.

Thus, the solution of the Dirichlet problem for h = 0 is
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u (ρ, θ, φ) =
a
(
a2 − ρ2

)

4π

∫ 2π

0

∫ π

0

f (α, ψ) sinα dα dψ

(a2 + ρ2 − 2aρ cos γ)
3
2

, (11.9.11)

where cos γ = cos α cos θ + sinα sin θ cos (ψ − φ). This integral is called the
three-dimensional Poisson integral formula.

For the exterior problem where the outward normal is radially inward to-
wards the origin, the solution can be simply obtained by replacing

(
a2 − ρ2

)

by
(
ρ2 − a2

)
in equation (11.9.11).

Example 11.9.2. An example involving the Helmholtz operator is the three-
dimensional radiation problem

∇2u + κ2u = 0, (11.9.12)

lim
r→∞

r (ur + iκu) = 0,

where i =
√

−1; the limit condition is called the radiation condition, and r
is the field point distance.

In this case, the Green’s function must satisfy

∇2G + κ2G = δ (ξ − x, η − y, ζ − z) . (11.9.13)

Since the point source solution is dependent only on r, we write the
Helmholtz equation

Grr +
2

r
Gr + κ2G = 0 for r > 0.

Note that the source point is taken as the origin. If we write the above
equation in the form

(Gr)rr + κ2 (Gr) = 0 for r > 0 (11.9.14)

then the solution can easily be seen to be

Gr = Aeiκr + Be−iκr,

or, equivalently,

G = A
eiκr

r
+ B

e−iκr

r
. (11.9.15)

In order for G to satisfy the radiation condition

lim
r→∞

r (Gr + iκG) = 0,

the constant A = 0, and G then takes the form

G = B
e−iκr

r
.
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To determine B, we have

lim
ε→0

∫∫

Sε

∂G

∂n
dS = − lim

ε→0

∫∫

Sε

B
e−iκr

r

(
1

r
+ iκ

)
dS = 1

from which we obtain B = −1/4π, and consequently,

G = −e−iκr

4πr
. (11.9.16)

Note that this reduces to (1/4πr) when κ = 0.

Example 11.9.3. Show that the solution of the Poisson equation

−∇2u = f (x, y, z) , (11.9.17)

is

u (x, y, z) =

∫∫∫
G (r) f (ξ, η, ζ) dξ dη dζ, (11.9.18)

where the Green’s function G (r) is

G (r) =
1

4πr
=

1

4π

{
(x − ξ)

2
+ (y − η)

2
+ (z − ζ)

2
}− 1

2

. (11.9.19)

The Green’s function G satisfies the equation

−∇2G = δ (x − ξ) δ (y − η) δ (z − ζ) . (11.9.20)

It is noted that everywhere except at (x, y, z) = (ξ, η, ζ), equation (11.9.20)
is a homogeneous equation that can be solved by the method of separation of
variables. However, at the point (ξ, η, ζ) this equation is no longer homoge-
neous. Usually, this point (ξ, η, ζ) represents a source point or a source point
singularity in electrostatics or fluid mechanics. In order to solve (11.9.17), it
is necessary to take into account the source point at (ξ, η, ζ). Without loss
of generality, it is convenient to transform the frame of reference so that
the source point is at the origin. This can be done by the transformation
x1 = x − ξ, y1 = y − η, and z1 = z − ζ. Consequently, equation (11.9.20)
becomes

∇2G = −δ (x1) δ (y1) δ (z1) , (11.9.21)

where ∇2 is the Laplacian in terms of x1, y1, and z1.
Introducing the spherical polar coordinates

x1 = r sin θ cos φ, y1 = r sin θ sin φ, z1 = r cos θ,

equation (11.9.21) reduces to the form
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∇2G = − δ (r)

4πr2
, (11.9.22)

where

∇2G ≡ 1

r2

∂

∂r

(
r2 ∂G

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+

1

r2 sin2 θ

∂2G

∂φ2
. (11.9.23)

Since the right hand side of (11.9.22) is a function of r alone, and hence,
G must be a function of r alone, we write (11.9.22) with (11.9.23) as

1

r2

∂

∂r

(
r2 ∂G

∂r

)
= − δ (r)

4πr2
. (11.9.24)

We assume that G tends to zero as r → ∞.
The solution of the corresponding homogeneous equation of (11.9.24) is

G (r) =
a

r
+ b, (11.9.25)

where a and b are constants of integration. Since G → 0 as r → ∞, b = 0
and we set a = 1

4π . Consequently, the solution for G is

G (r) =
1

4πr
. (11.9.26)

This solution can be interpreted as the potential produced by a point charge
at the point (ξ, η, ζ).

Finally, the solution of (11.9.17) is then given by

u (x, y, z) = −
∫∫∫ ∞

−∞
G (r) f (ξ, η, ζ) dξ dη dζ

=
1

4π

∫∫∫ ∞

−∞

[
(x − ξ)

2
+ (y − η)

2
+ (z − ζ)

2
]− 1

2

×f (ξ, η, ζ) dξ dη dζ. (11.9.27)

Physically, this solution of the Poisson equation represents the potential
u (x, y, z) produced by a charge distribution of volume density f (x, y, z).

11.10 Neumann Problem

We have noted in the chapter on boundary-value problems that the Neu-
mann problem requires more attention than Dirichlet’s problem because
an additional condition is necessary for the existence of a solution of the
Neumann problem.

We now consider the Neumann problem
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∇2u + κ2u = h in R,

∂u

∂n
= 0 on S.

By the divergence theorem of calculus, we have

∫∫∫

R

∇2u dR =

∫∫

S

∂u

∂n
dS.

Thus, if we integrate the Helmholtz equation and use the preceding result,
we obtain

κ2

∫∫∫

R

u dR =

∫∫∫

R

h dR.

In the case of Poisson’s equation where κ = 0, this relation is satisfied only
when

∫∫∫

R

h dR = 0.

If we consider a heat conduction problem, this condition may be interpreted
as the requirement that the net heat generation be zero. This is physically
reasonable since the boundary is insulated in such a way that the net flux
across it is zero.

If we define Green’s function G, in this case, by

∇2G + κ2G = δ (ξ − x, η − y, ζ − z) in R,

∂G

∂n
= 0 on S.

Then we must have

κ2

∫∫∫

R

GdR = 1

which cannot be satisfied for κ = 0. But, we know from a physical point of
view that a solution exists if

∫∫∫

R

h dR = 0.

Hence, we will modify the definition of Green’s function so that

∂G

∂n
= C on S,

where C is a constant. Integrating ∇2G = δ over R, we obtain

C

∫∫

S

dS = 1.



432 11 Green’s Functions and Boundary-Value Problems

It is not difficult to show that G remains symmetric if
∫∫

S

GdS = 0.

Thus, under this condition, if we take C to be reciprocal of the surface area,
the solution of the Neumann problem for Poisson’s equation is

u (x, y, z) = C∗ +

∫∫∫

R

G (x, y, z; ξ, η, ζ) h (ξ, η, ζ) dξ dη dζ,

where C∗ is a constant.
We should remark here that the method of Green’s functions provides

the solution in integral form. This is made possible by replacing a problem
involving nonhomogeneous boundary conditions with a problem of finding
Green’s function G with homogeneous boundary conditions.

Regardless of method employed, the Green’s function of a problem with
nonhomogeneous equation and homogeneous boundary conditions is the
same as the Green’s function of a problem with homogeneous equation
and nonhomogeneous boundary conditions, since one problem can be trans-
ferred to the other without difficulty. To illustrate, we consider the problem

Lu = f in R,

u = 0 on ∂R,

where ∂R denotes the boundary of R.
If we let v = w − u, where w satisfies Lw = f in R, then the problem

becomes

Lv = 0 in R,

v = w on ∂R.

Conversely, if we consider the problem

Lu = 0 in R,

u = g on ∂R,

we can easily transform this problem into

Lv = Lw ≡ w∗ in R,

v = 0 on ∂R,

by putting v = w − u and finding w that satisfies w = g on ∂R.
In fact, if we have

Lu = f in R,

u = g on ∂R,

we can transform this problem into either one of the above problems.



11.11 Exercises 433

11.11 Exercises

1. If L denotes the partial differential operator

Lu = Auxx + Buxy + Cuyy + Dux + Euy + Fu,

and if M denotes the adjoint operator

Mv = (Av)xx + (Bv)xy + (Cv)yy − (Dv)x − (Ev)y + Fv,

show that
∫∫

R

(vLu − uMv) dx dy =

∫

∂R

[U cos (n, x) + V cos (n, y)] ds,

where

U = Avux − u (Av)x − u (Bv)y + Duv,

V = Bvux + Cvuy − u (Cv)y + Euv,

and ∂R is the boundary of a region R.

2. Prove that the Green’s function for a problem, if it exists, is unique.
3. Determine the Green’s function for the exterior Dirichlet problem for a

unit circle

∇2u = 0 in r > 1,

u = f on r = 1.

4. Prove that for x = x (ξ, η) and y = y (ξ, η)

δ (x − x0) δ (y − y0) =
1

|J | δ (ξ − ξ0) δ (η − η0) ,

where J is the Jacobian and (x0, y0) corresponds to (ξ0, η0). Hence,
show that for polar coordinates

δ (x − x0) δ (y − y0) =
1

r
δ (r − r0) δ (θ − θ0) .

5. Determine, for an infinite wedge, the Green’s function that satisfies

∇2G + κ2G =
1

r
δ (r − r0, θ − θ0) ,

G = 0, θ = 0, and θ = α.

6. Determine, for the Poisson’s equation, the Green’s function which van-
ishes on the boundary of a semicircular domain of radius R.
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7. Find the solution of the Dirichlet problem

∇2u = 0, 0 < x < a, 0 < y < b,

u (0, y) = u (a, y) = u (x, b) = 0,

u (x, 0) = f (x) .

8. Determine the solution of Dirichlet’s problem

∇2u = f (r, θ) in D,

u = 0, on ∂D,

where ∂D is the boundary of a circle D of radius R.

9. Determine the Green’s function for the semi-infinite region ζ > 0 for

∇2G + κ2G = δ (ξ − x, η − y, ζ − z) ,

G = 0, on ζ = 0.

10. Determine the Green’s function for the semi-infinite region ζ > 0 for

∇2G + κ2G = δ (ξ − x, η − y, ζ − z) ,

∂G

∂n
= 0, on ζ = 0.

11. Find the Green’s function in the quarter plane ξ > 0, η > 0 which
satisfies

∇2G = δ (ξ − x, η − y) ,

G = 0, on ξ = 0 and η = 0.

12. Find the Green’s function in the quarter plane ξ > 0, η > 0 which
satisfies

∇2G = δ (ξ − x, η − y) ,

Gξ (0, η) = 0, G (ξ, 0) = 0.

13. Find the Green’s function in the half plane 0 < x < ∞, −∞ < y < ∞
for the problem

∇2u = f in R,

u = 0, on x = 0.

14. Determine the Green’s function that satisfies

∇2G = δ (x − ξ, y − η) in D : 0 < x < a, 0 < y < ∞,

G = 0, on ∂D : x = 0, x = a, y = 0,

G is bounded at infinity.
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15. Find the Green’s function that satisfies

∇2G =
1

r
δ (r − ρ, θ − β) , 0 < θ <

π

3
, 0 < r < 1,

G = 0, on θ = 0, and θ <
π

3
,

∂G

∂n
= 0, on r = 1.

16. Solve the boundary-value problem

1

r

∂G

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
+ κ2u = 0, r ≥ 0, z > 0,

∂u

∂z
=

⎧
⎨
⎩

0, r > a, z

C, r < a, z

=

=

0,

0, C = constant.

17. Obtain the solution of the Laplace equation

∇2u = 0, 0 < r < ∞, 0 < θ < 2π,

u (r, 0+) = u (r, 2π−) = 0.

18. Determine the Green’s function for the equation

∇2u − κ2u = 0,

vanishing on all sides of the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

19. Determine the Green’s function of the Helmholtz equation

∇2u + κ2u = 0, 0 < x < a, −∞ < y < ∞,

vanishing on x = 0 and x = a.

20. Solve the exterior Dirichlet problem

∇2u = 0, in r > 1,

u (1, θ, φ) = f (θ, φ) .

21. By the method of images, determine the potential due to a point charge
q near a conducting sphere of radius R with potential V .

22. By the method of images, show that the potential due to a conducting
sphere of radius R in a uniform electric field E0 is given by

U = −E0

(
r − R2

r2

)
cos θ,

where r, θ are polar coordinates with origin at the center of the sphere.
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23. Determine the potential in a cylinder of radius R and length l. The
potential on the ends is zero, while the potential on the cylindrical
surface is prescribed to be f (θ, z).

24. Consider the fundamental solution of the Fokker–Planck equation de-
fined by

[
∂

∂t
− ∂

∂x

(
∂

∂x
+ x

)]
G (x, x′; t, t′) = δ (x − x′) δ (t − t′) .

Using the transformation of variables employed in Example 7.8.4, show
that the above equation becomes

[
∂

∂τ
− ∂

∂ξ2

]
G (ξ, ξ′; τ, τ ′) = δ (ξ − ξ′) δ (τ − τ ′) .

Show that
(a) the fundamental solution of the Fokker–Planck equation (see Reif
(1965)) is

G (x, x′; t, t′) = [2π {1 − exp [−2 (t − t′)]}]
− 1

2

× exp

[
−1

2

[x − x′ exp {− (t − t′)}]
2

1 − exp {−2 (t − t′)}

]
,

(b) lim
t→∞

G (x, x′; t, t′) =
1√
2π

exp

(
−1

2
x2

)
,

(c) lim
t→∞

u (x, t) =
1√
2π

exp

(
−1

2
x2

)∫ ∞

−∞
f (x′) dx′,

where

u (x, 0) = f (x) .

Give an interpretation of this asymptotic solution u (x, t) as t → ∞.

25. (a) Use the transformation u = ve−t to show that the telegraph equa-
tion

utt − c2uxx + 2ut = 0,

can be reduced to the form

vtt − c2vxx + v = 0.

(b) Show that the fundamental solution of the transformed telegraph
equation is given by

G (x − x′, t − t′) =
1

2
I0

[√
(t − t′)2 − (x − x′)2

]

×H [(t − t′) − (x − x′)]H [(t − t′) + (x − x′)] .
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(c) If the initial data for the telegraph equation are

u (x, 0) = f (x) , ut (x, 0) = g (x) ,

show that the solution of the telegraph equation is given by

u (x, t) =

{
1

2

∫ x+t

x−t

g (ξ) I0

[√
t2 − (x − ξ)

2

]
dξ

+
1

2

∂

∂t

[∫ x+t

x−t

f (ξ) I0

[√
t2 − (x − ξ)

2

]
dξ

}
e−t,

which is, by evaluating the second term,

= e−t

{
1

2
[f (x − t) + f (x + t)] +

1

2

∫ x+t

x−t

g (ξ) I0

[√
t2 − (x − ξ)

2

]
dξ

+
t

2

∫ x+t

x−t

f (ξ)
[
t2 − (x − ξ)

2
]− 1

2

I1

[√
t2 − (x − ξ)

2

]
dξ

}
.





12

Integral Transform Methods with

Applications

“The theory of Fourier series and integrals has always had major difficulties
and necessitated a large mathematical apparatus in dealing with questions
of convergence. It engendered the development of methods of summation,
although these did not lead to a completely satisfactory solution of the prob-
lem.... For the Fourier transform, the introduction of distribution (hence the
space S) is inevitable either in an explicit or hidden form.... As a result one
may obtain all that is desired from the point of view of the continuity and
inversion of the Fourier transform.”

L. Schwartz

“In every mathematical investigation, the question will arise whether we
can apply our mathematical results to the real world.”

V. I. Arnold

12.1 Introduction

The linear superposition principle is one of the most effective and elegant
methods to represent solutions of partial differential equations in terms of
eigenfunctions or Green’s functions. More precisely, the eigenfunction ex-
pansion method expresses the solution as an infinite series, whereas the inte-
gral solution can be obtained by integral superposition or by using Green’s
functions with initial and boundary conditions. The latter offers several
advantages over eigenfunction expansion. First, an integral representation
provides a direct way of describing the general analytical structure of a
solution that may be obscured by an infinite series representation. Second,
from a practical point of view, the evaluation of a solution from an integral
representation may prove simpler than finding the sum of an infinite series,
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particularly near rapidly-varying features of a function, where the conver-
gence of an eigenfunction expansion is expected to be slow. Third, in view
of the Gibbs phenomenon discussed in Chapter 6, the integral representa-
tion seems to be less stringent requirements on the functions that describe
the initial conditions or the values of a solution are required to assume on
a given boundary than expansions based on eigenfunctions.

Integral transform methods are found to be very useful for finding so-
lutions of initial and/or boundary-value problems governed by partial dif-
ferential equations for the following reason. The differential equations can
readily be replaced by algebraic equations that are inverted by the inverse
transform so that the solution of the differential equations can then be
obtained in terms of the original variables. The aim of this chapter is to
provide an introduction to the use of integral transform methods for stu-
dents of applied mathematics, physics, and engineering. Since our major
interest is the application of integral transforms, no attempt will be made
to discuss the basic results and theorems relating to transforms in their
general forms. The present treatment is restricted to classes of functions
which usually occur in physical and engineering applications.

12.2 Fourier Transforms

We first give a formal definition of the Fourier transform by using the
complex Fourier integral formula (6.13.10).

Definition 12.2.1. If u (x, t) is a continuous, piecewise smooth, and abso-
lutely integrable function, then the Fourier transform of u (x, t) with respect
to x ∈ R is denoted by U (k, t) and is defined by

F {u (x, t)} = U (k, t) =
1√
2π

∫ ∞

−∞
e−ikx u (x, t) dx, (12.2.1)

where k is called the Fourier transform variable and exp (−ikx) is called
the kernel of the transform.

Then, for all x ∈ R, the inverse Fourier transform of U (k, t) is defined
by

F−1 {U (k, t)} = u (x, t) =
1√
2π

∫ ∞

−∞
eikx U (k, t) dk. (12.2.2)

We may note that the factor (1/2π) in the Fourier integral formula
(6.13.9) has been split and placed in front of the integrals (12.2.1) and
(12.2.2). Often the factor (1/2π) can be placed in only one of the relations
(12.2.1) and (12.2.2). It is not uncommon to adopt the kernel exp (ikx) in
(12.2.1) instead of exp (−ikx), and as a consequence, exp (−ikx) would be
replaced by exp (ikx) in (12.2.2).
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Example 12.2.1. Show that

(a) F
{
exp

(
−ax2

)}
=

1√
2a

exp

(
−k2

4a

)
, a > 0, (12.2.3)

(b) F {exp (−a |x|)} =

√
2

π

a

(a2 + k2)
, a > 0, (12.2.4)

(c) F
{
χ[−a,a] (x)

}
=

√
2

π

(
sin ak

k

)
, (12.2.5)

where χ[−a,a] (x) = H (a − |x|) =

⎧
⎨
⎩

1, |x| < a

0, |x| > a

⎫
⎬
⎭ . (12.2.6)

Proof. We have, by definition (12.2.1),

F
{
exp

(
−ax2

)}
=

1√
2π

∫ ∞

−∞
e−ikx−ax2

dx

=
1√
2π

∫ ∞

−∞
exp

[
−a

(
x +

ik

2a

)2

− k2

4a

]
dx

=
1√
2π

exp

(
−k2

4a

)∫ ∞

−∞
e−ay2

dy

=
1√
2a

exp

(
−k2

4a

)
,

in which the change of variable y =
(
x + ik

2a

)
is used. The above result is

correct, and the change of variable can be justified by methods of complex
analysis because (ik/2a) is complex. If a = 1

2 , then

F
{

exp

(
−1

2
x2

)}
= exp

(
−1

2
k2

)
. (12.2.7)

This shows that F {f (x)} = f (k). Such a function is said to be self-
reciprocal under the Fourier transformation.

The graphs of f (x) = e−ax2

and F (k) = F {f (x)} are shown in Figure
12.2.1 for a = 1.

To prove (b), we write

F {exp (−a |x|)} =
1√
2π

∫ ∞

−∞
exp (−a |x| − ikx) dx

=
1√
2π

[∫ 0

−∞
exp {(a − ik) x} dx

+

∫ ∞

0

exp {− (a + ik) x} dx

]

=
1√
2π

[
1

a − ik
+

1

a + ik

]
=

√
2

π

a

a2 + k2
.
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Figure 12.2.1 Graphs of f (x) = exp(−ax2) and F (k).

It is noted that f (x) = exp (−a |x|) decreases rapidly at infinity, and it is
not differentiable at x = 0. The graphs of f (x) and its Fourier transform
F (k) are shown in Figure 12.2.2.

To prove (c), we have

Fa (k) = F
{
χ[−a,a] (x)

}
=

1√
2π

∫ ∞

−∞
e−ikxχ[−a,a] (x) dx

=
1√
2π

∫ a

−a

e−ikxdx =

√
2

π

(
sin ak

a

)
.

The graphs of χ[−a,a] (x) and Fa (k) are shown in Figure 12.2.3 with a = 1.
Analogous to the Fourier cosine and sine series, there are Fourier cosine

and sine integral transforms for odd and even functions respectively.

Definition 12.2.2. Let f (x) be defined for 0 ≤ x < ∞, and extended
as an even function in (−∞,∞) satisfying the conditions of Fourier Inte-

Figure 12.2.2 Graphs of f (x) = exp (−a |x|) and F (k).
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Figure 12.2.3 Graphs of χ[−a,a] (x) and Fa (k).

gral formula (6.13.9). Then, at the points of continuity, the Fourier cosine
transform of f (x) and its inverse transform are defined by

Fc {f (x)} = Fc (k) =

√
2

π

∫ ∞

0

cos kx f (x) dx, (12.2.8)

F−1
c {Fc (k)} = f (x) =

√
2

π

∫ ∞

0

cos kx Fc (k) dk, (12.2.9)

where Fc is the Fourier cosine transformation and F−1
c is its inverse trans-

formation respectively.

Definition 12.2.3. Similarly, the Fourier sine integral formula (6.13.3)
leads to the Fourier sine transform and its inverse defined by

Fs {f (x)} = Fs (k) =

√
2

π

∫ ∞

0

sin kx f (x) dx, (12.2.10)

F−1
s {Fs (k)} = f (x) =

√
2

π

∫ ∞

0

sin kx Fs (k) dk, (12.2.11)

where Fs is called the Fourier sine transformation and F−1
s is its inverse.

Example 12.2.2. Show that

(a) Fc

{
e−ax

}
=

√
2

π

a

(a2 + k2)
, a > 0, (12.2.12)

(b) Fs

{
e−ax

}
=

√
2

π

k

(a2 + k2)
, a > 0, (12.2.13)

(c) F−1
s

{
1

k
e−sk

}
=

√
2

π
tan−1

(x

s

)
. (12.2.14)
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We have, by definition,

Fc

{
e−ax

}
=

√
2

π

∫ ∞

0

e−ax cos kx dk,

=
1

2

√
2

π

∫ ∞

0

[
e−(a−ik)x + e−(a+ik)x

]
dx,

=
1

2

√
2

π

[
1

a − ik
+

1

a + ik

]
=

√
2

π

a

(a2 + k2)
.

The proof of (b) is similar and is left to the reader as an exercise.
To prove (c), we use the standard definite integral

√
π

2
F−1

s

{
e−sk

}
=

∫ ∞

0

e−sk sin kx dk =
x

s2 + x2
.

Integrating both sides with respect to s from s to ∞ gives
∫ ∞

0

e−sk

k
sin kx dk =

∫ ∞

s

x ds

x2 + s2
=

[
tan−1 s

x

]
= (π/2) − tan−1

( s

x

)
.

Consequently,

F−1
s

{
1

k
e−sk

}
=

√
2

π

∫ ∞

0

1

k
e−sk sin kx dk =

√
2

π
tan−1

(x

s

)
.

12.3 Properties of Fourier Transforms

Theorem 12.3.1. (Linearity). The Fourier transformation F is linear.

Proof. We have

F [f (x)] =
1√
2π

∫ ∞

−∞
e−ikxf (x) dx.

Then, for any constants a and b,

F [af (x) + bg (x)] =
1√
2π

∫ ∞

−∞
[af (x) + bg (x)] e−ikxdx,

=
a√
2π

∫ ∞

−∞
f (x) e−ikxdx +

b√
2π

∫ ∞

−∞
g (x) e−ikxdx,

= aF [f (x)] + b F [g (x)] .

Theorem 12.3.2. (Shifting). Let F [f (x)] be a Fourier transform of f (x).
Then

F [f (x − c)] = e−ixcF [f (x)] ,

where c is a real constant.
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Proof. From the definition, we have, for c > 0,

F [f (x − c)] =
1√
2π

∫ ∞

−∞
f (x − c) e−ikxdx,

=
1√
2π

∫ ∞

−∞
f (ξ) e−ik(ξ+c)dξ, where ξ = x − c

= e−ikcF [f (x)] .

Theorem 12.3.3. (Scaling). If F is the Fourier transform of f , then

F [f (cx)] = (1/ |c|) F (k/c) ,

where c is a real nonzero constant.

Proof. For c �= 0,

F [f (cx)] =
1√
2π

∫ ∞

−∞
f (cx) e−ikxdx.

If we let ξ = cx, then

F [f (cx)] =
1

|c|
1√
2π

∫ ∞

−∞
f (ξ) e−i(k/c)ξdξ

= (1/ |c|) F (k/c) .

Theorem 12.3.4. (Differentiation). Let f be continuous and piecewise
smooth in (−∞,∞). Let f (x) approach zero as |x| → ∞. If f and f ′

are absolutely integrable, then

F [f ′ (x)] = ikF [f (x)] = ikF (k) .

Proof.

F [f ′ (x)] =
1√
2π

∫ ∞

−∞
f ′ (x) e−ikxdx,

=
1√
2π

[
f (x) e−ikx

∣∣∞
−∞ +

ik√
2π

∫ ∞

−∞
f (x) e−ikxdx

]
,

= ikF [f (x)] = ikF (k) .

This result can be easily extended. If f and its first (n − 1) derivatives
are continuous, and if its nth derivative is piecewise continuous, then

F
[
f (n) (x)

]
= (ik)

n F [f (x)] = (ik)
n

F (k) , n = 0, 1, 2, . . . (12.3.1)

provided f and its derivatives are absolutely integrable. In addition, we
assume that f and its first (n − 1) derivatives tend to zero as |x| tends to
infinity.
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If u (x, t) → 0 as |x| → ∞, then

F
{

∂u

∂x

}
=

1√
2π

∫ ∞

−∞
e−ikx

(
∂u

∂x

)
dx,

which is, integrating by parts,

=
1√
2π

[
e−ikxu (x, t)

]∞
−∞ +

ik√
2π

∫ ∞

−∞
e−ikxu (x, t) dx,

= ik F {u (x, t)} = ik U (k, t) . (12.3.2)

Similarly, if u (x, t) is continuously n times differentiable, and ∂mm
∂xm → 0 as

|x| → ∞ for m = 1, 2, 3, . . ., (n − 1) then

F
{

∂nu

∂xn

}
= (ik)

n F {u (x, t)} = (ik)
n

U (k, t) . (12.3.3)

It also follows from the definition (12.2.1) that

F
{

∂u

∂t

}
=

dU

dt
, F

{
∂2u

∂t2

}
=

d2U

dt2
, . . . , F

{
∂nu

∂tn

}
=

dnU

dtn
. (12.3.4)

The definition of the Fourier transform (12.2.1) shows that a sufficient con-
dition for u (x, t) to have a Fourier transform is that u (x, t) is absolutely
integrable in −∞ < x < ∞. This existence condition is too strong for many
practical applications. Many simple functions, such as a constant function,
sin ωx, and xnH (x), do not have Fourier transforms even though they occur
frequently in applications.

The above definition of the Fourier transform has been extended for a
more general class of functions to include the above and other functions.
We simply state the fact that there is a sense, useful in practical applica-
tions, in which the above stated functions and many others do have Fourier
transforms. The following are examples of such functions and their Fourier
transforms (see Lighthill, 1964):

F {H (a − |x|)} =

√
2

π

(
sin ak

k

)
, (12.3.5)

where H (x) is the Heaviside unit step function,

F {δ (x − a)} =
1√
2π

exp (−iak) , (12.3.6)

where δ (x − a) is the Dirac delta function, and

F {H (x − a)} =

√
π

2

[
1

iπk
+ δ (k)

]
exp (−iak) . (12.3.7)
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Example 12.3.1. Find the solution of the Dirichlet problem in the half-plane
y > 0

uxx + uyy = 0, −∞ < x < ∞, y > 0,

u (x, 0) = f (x) , −∞ < x < ∞,

u and ux vanish as |x| → ∞, and u is bounded as y → ∞.

Let U (k, y) be the Fourier transform of u (x, y) with respect to x. Then

U (k, y) =
1√
2π

∫ ∞

−∞
u (x, y) e−ikxdx.

Application of the Fourier transform with respect to x gives

Uyy − k2U = 0, (12.3.8)

U (k, 0) = F (k) and U (k, y) → 0 as y → ∞. (12.3.9)

The solution of this transformed system is

U (k, y) = F (k) e−|k|y.

The inverse Fourier transform of U (k, y) gives the solution in the form

u (x, y) =
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f (ξ) e−|k|ye−ikξdξ

]
eikxdk,

=
1

2π

∫ ∞

−∞
f (ξ) dξ

∫ ∞

−∞
e−k[i(ξ−x)]−|k|y dk.

It follows from the proof of Example 12.2.1 (b) that

∫ ∞

−∞
e−k[i(ξ−x)]−|k|ydk =

2y

(ξ − x)
2

+ y2
.

Hence, the solution of the Dirichlet problem in the half-plane y > 0 is

u (x, y) =
y

π

∫ ∞

−∞

f (ξ)

(ξ − x)
2

+ y2
dξ.

From this solution, we can readily deduce a solution of the Neumann
problem in the half-plane y > 0.

Example 12.3.2. Find the solution of Neumann’s problem in the half-plane
y > 0

uxx + uyy = 0, −∞ < x < ∞, y > 0,

uy (x, 0) = g (x) , −∞ < x < ∞,

u is bounded as y → ∞, u and ux vanish as |x| → ∞.
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Let v (x, y) = uy (x, y). Then

u (x, y) =

∫ y

v (x, η) dη

and the Neumann problem becomes

∂2v

∂x2
+

∂2v

∂y2
=

∂2uy

∂x2
+

∂2uy

∂y2
=

∂

∂y
(uxx + uyy) = 0.

v (x, 0) = uy (x, 0) = g (x) .

This is the Dirichlet problem for v (x, y), and its solution is given by

v (x, y) =
y

π

∫ ∞

−∞

g (ξ) dξ

(ξ − x)
2

+ y2
.

Thus, we have

u (x, y) =
1

π

∫ y

η

∫ ∞

−∞

g (ξ) dξ

(ξ − x)
2

+ η2
dη,

=
1

2π

∫ ∞

−∞
g (ξ) dξ

∫ y 2η dη

(ξ − x)
2

+ η2
,

=
1

2π

∫ ∞

−∞
g (ξ) log

[
(x − ξ)

2
+ y2

]
dξ,

where an arbitrary constant can be added to this solution. In other words,
the solution of any Neumann’s problem is uniquely determined up to an
arbitrary constant.

12.4 Convolution Theorem of the Fourier Transform

The function

(f ∗ g) (x) =
1√
2π

∫ ∞

−∞
f (x − ξ) g (ξ) dξ (12.4.1)

is called the convolution of the functions f and g over the interval (−∞,∞).

Theorem 12.4.1. (Convolution Theorem). If F (k) and G (k) are the
Fourier transforms of f (x) and g (x) respectively, then the Fourier trans-
form of the convolution (f ∗ g) is the product F (k) G (k). That is,

F {f (x) ∗ g (x)} = F (k) G (k) . (12.4.2)

Or, equivalently,
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F−1 {F (k) G (k)} = f (x) ∗ g (x) . (12.4.3)

More explicitly,

1√
2π

∫ ∞

−∞
F (k) G (k) eikxdk = (f ∗ g) (x)

=
1√
2π

∫ ∞

−∞
f (x − ξ) g (ξ) dξ. (12.4.4)

Proof. By definition, we have

F [(f ∗ g) (x)] =
1

2π

∫ ∞

−∞
e−ikxdx

∫ ∞

−∞
f (x − ξ) g (ξ) dξ,

=
1

2π

∫ ∞

−∞
g (ξ) e−ikξdξ

∫ ∞

−∞
f (x − ξ) e−ik(x−ξ)dx.

With the change of variable η = x − ξ, we have

F [(f ∗ g) (x)] =
1√
2π

∫ ∞

−∞
g (ξ) e−ikξdξ

1√
2π

∫ ∞

−∞
f (η) e−ikηdη

= F (k) G (k) .

The convolution satisfies the following properties:

1. f ∗ g = g ∗ f (commutative).
2. f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative).
3. f ∗ (ag + bh) = a (f ∗ g) + b (f ∗ h) , (distributive),

where a and b are constants.

Theorem 12.4.2. (Parseval’s formula).
∫ ∞

−∞
|f (x)|2 dx =

∫ ∞

−∞
|F (k)|2 dk. (12.4.5)

Proof. The convolution formula (12.4.4) gives
∫ ∞

−∞
f (x) g (ξ − x) dx =

∫ ∞

−∞
F (k) G (k) eikξdk

which is, by putting ξ = 0,
∫ ∞

−∞
f (x) g (−x) dx =

∫ ∞

−∞
F (k) G (k) dk. (12.4.6)

Putting g (−x) = f (x),

G (k) =
1√
2π

∫ ∞

−∞
g (x) e−ikxdx =

1√
2π

∫ ∞

−∞
f (−x) e−ikxdx,

=
1√
2π

∫ ∞

−∞
f (x) e−ikxdx = F (k) ,
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where the bar denotes the complex conjugate.
Thus, result (12.4.6) becomes

∫ ∞

−∞
f (x) f (x) dx =

∫ ∞

−∞
F (k) F (k) dk,

or,

∫ ∞

−∞
|f (x)|2 dx =

∫ ∞

−∞
|F (k)|2 dk.

In terms of the notation of the norm, this is

‖f‖ = ‖F‖ .

For physical systems, the quantity |f |2 is a measure of energy, and |F |2
represents the power spectrum of f (x).

Example 12.4.3. Obtain the solution of the initial-value problem of heat
conduction in an infinite rod

ut = κuxx, −∞ < x < ∞, t > 0, (12.4.7)

u (x, 0) = f (x) , −∞ < x < ∞, (12.4.8)

u (x, t) → 0, as |x| → ∞,

where u (x, t) represents the temperature distribution and is bounded, and
κ is a constant of diffusivity.

The Fourier transform of u (x, t) with respect to x is defined by

U (k, t) =
1√
2π

∫ ∞

−∞
e−ikxu (x, t) dx.

In view of this transformation, equations (12.4.7)–(12.4.8) become

Ut + κ k2 U = 0, (12.4.9)

U (k, 0) = F (k) . (12.4.10)

The solution of the transformed system is

U (k, t) = F (k) e−k2κ t.

The inverse Fourier transformation gives the solution

u (x, t) =
1√
2π

∫ ∞

−∞
F (k) e−k2κteikxdk

which is, by the convolution theorem 12.4.1,
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=
1√
2π

∫ ∞

−∞
f (ξ) g (x − ξ) dξ,

where g (x) is the inverse transform of G (k) = e−k2κt and has the form

g (x) = F−1
{

e−κk2t
}

=
1√
2π

∫ ∞

−∞
e−k2κt+ikxdk =

1√
2κt

e−x2/4κt.

Consequently, the final solution is

u (x, t) =
1√

4πκt

∫ ∞

−∞
f (ξ) exp

[
− (x − ξ)

2

4κt

]
dξ, (12.4.11)

=

∫ ∞

−∞
f (ξ) G (x − ξ, t) dξ, (12.4.12)

where

G (x − ξ, t) =
1√

4πκt
exp

[
− (x − ξ)

2

4κt

]
, (12.4.13)

is called the Green’s function (or the fundamental solution) of the diffusion
equation.

This means that temperature at any point x and any time t is repre-
sented by the definite integral (12.4.12) that is made up of the contribution
due to the initial source f (ξ) and the Green’s function G (x − ξ, t).

Solution (12.4.12) represents the temperature response along the rod at
time t due to an initial unit impulse of heat at x = ξ. The physical meaning
of the solution is that the initial temperature distribution f (x) is decom-
posed into a spectrum of impulses of magnitude f (ξ) at each point x = ξ to
form the resulting temperature f (ξ) G (x − ξ, t). Thus, the resulting tem-
perature is integrated to find the solution (12.4.11). This is the so-called
principle of superposition.

Using the change of variable

ξ − x

2
√

κt
= ζ, dζ =

dξ

2
√

κt
,

we obtain

u (x, t) =
1√
π

∫ ∞

−∞
f
(
x + 2

√
κt ζ

)
e−ζ2

dζ. (12.4.14)

Integral (12.4.11) or (12.4.14) is called the Poisson integral representa-
tion of the temperature distribution. This integral is convergent for t > 0,
and integrals obtained from it by differentiation under the integral sign
with respect to x and t are uniformly convergent in the neighborhood of
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the point (x, t). Hence, u (x, t) and its derivatives of all orders exist for
t > 0.

In the limit t → 0+, solution (12.4.12) becomes formally

u (x, 0) = f (x) =

∫ ∞

−∞
f (ξ) lim

t→0+
G (x − ξ, t) dξ.

This limit represents the Dirac delta function

δ (x − ξ) = lim
t→0+

1√
4πκt

e−(x−ξ)2/4κt. (12.4.15)

Consider a special case where

f (x) =

⎧
⎨
⎩

0, x < 0

a, x > 0

⎫
⎬
⎭ = a H (x) .

Then, the solution (12.4.11) gives

u (x, t) =
a

2
√

πκt

∫ ∞

0

exp

[
− (x − ξ)

2

4κt

]
dξ.

If we introduce a change of variable

η =
ξ − x

2
√

κt

then the above solution becomes

u (x, t) =
a√
π

∫ ∞

−x/2
√

κt

e−η2

dη

=
a√
π

[∫ 0

−x/2
√

κt

e−η2

dη +

∫ ∞

0

e−η2

dη

]

=
a√
π

[∫ x/2
√

κt

0

e−η2

dη +

√
π

2

]

=
a

2

[
1 + erf

(
x

2
√

κt

)]
,

where erf (x) is called the error function and is defined by

erf (x) =
2√
π

∫ x

0

e−η2

dη. (12.4.16)

This is a widely used and tabulated function.
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Figure 12.5.1 The Heaviside unit step function.

12.5 The Fourier Transforms of Step and Impulse

Functions

In this section, we shall determine the Fourier transforms of the step func-
tion and the impulse function, functions which occur frequently in applied
mathematics and mathematical physics.

The Heaviside unit step function is defined by

H (x − a) =

⎧
⎨
⎩

0, x < a

1, x ≥ a
a ≥ 0, (12.5.1)

as shown in Figure 12.5.1.
The Fourier transform of the Heaviside unit step function can be easily

determined. We consider first

F [H (x − a)] =
1√
2π

∫ ∞

−∞
H (x − a) e−ikxdx,

=
1√
2π

∫ ∞

a

e−ikxdx.

This integral does not exist. However, we can prove the existence of this
integral by defining a new function

H (x − a) e−αx =

⎧
⎨
⎩

0, x < a

e−αx, x ≥ a.

This is evidently the unit step function as α → 0. Thus, we find the Fourier
transform of the unit step function as
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Figure 12.5.2 Impulse function p (x).

F [H (x − a)] = lim
α→0

F
[
H (x − a) e−αx

]

= lim
α→0

1√
2π

∫ ∞

−∞
H (x − a) e−αxe−ikxdx

= lim
α→0

1√
2π

∫ ∞

a

e−(α+ik)xdx

=
e−iak

√
2π ik

. (12.5.2)

For a = 0,

F [H (x)] =
(√

2π ik
)−1

. (12.5.3)

An impulse function is defined by

p (x) =

⎧
⎨
⎩

h, a − ε < x < a + ε

0, x ≤ a − ε or x ≥ a + ε

where h is large and positive, a > 0, and ε is a small positive constant, as
shown in Figure 12.5.2. This type of function appears in practical applica-
tions; for instance, a force of large magnitude may act over a very short
period of time.

The Fourier transform of the impulse function is
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F [p (x)] =
1√
2π

∫ ∞

−∞
p (x) e−ikxdx

=
1√
2π

∫ a+ε

a−ε

h e−ikxdx

=
h√
2π

e−iak

ik

(
eikε − e−ikε

)

=
2hε√
2π

e−iak

(
sin kε

kε

)
.

Now if we choose the value of h to be (1/2ε), then the impulse defined by

I (ε) =

∫ ∞

−∞
p (x) dx

becomes

I (ε) =

∫ a+ε

a−ε

1

2ε
dx = 1

which is a constant independent of ε. In the limit as ε → 0, this particular
function pε (x) with h = (1/2ε) satisfies

lim
ε→0

pε (x) = 0, x �= a,

lim
ε→0

I (ε) = 1.

Thus, we arrive at the result

δ (x − a) = 0, x �= a,∫ ∞

−∞
δ (x − a) dx = 1. (12.5.4)

This is the Dirac delta function which was defined earlier in Section 8.11.
We now define the Fourier transform of δ (x) as the limit of the transform

of pε (x). We then consider

F [δ (x − a)] = lim
ε→0

F [pε (x)]

= lim
ε→0

e−iak

√
2π

(
sin kε

kε

)

=
e−iak

√
2π

(12.5.5)

in which we note that, by L’Hospital’s rule, limε→0 (sin kε/kε) = 1. When
a = 0, we obtain

F [δ (x)] =
(
1/

√
2π

)
. (12.5.6)
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Example 12.5.1. Slowing-down of Neutrons (see Sneddon (1951), p. 215).
Consider the following physical problem

ut = uxx + δ (x) δ (t) , (12.5.7)

u (x, 0) = δ (x) , (12.5.8)

lim
|x|→∞

u (x, t) = 0. (12.5.9)

This is the problem of an infinite medium which slows neutrons, in which a
source of neutrons is located. Here u (x, t) represents the number of neutrons
per unit volume per unit time and δ (x) δ (t) represents the source function.

Let U (k, t) be the Fourier transform of u (x, t). Then the Fourier trans-
formation of equation (12.5.7) yields

dU

dt
+ k2U =

1√
2π

δ (t) .

The solution of this, after applying the condition U (k, 0) =
(
1/

√
2π

)
, is

U (k, t) =
1√
2π

e−k2t.

Hence, the inverse Fourier transform gives the solution of the problem

u (x, t) =
1√
2π

∫ ∞

−∞
e−k2t+ikxdk,

=
1√
4πt

e−x2/4t.

12.6 Fourier Sine and Cosine Transforms

For semi-infinite regions, the Fourier sine and cosine transforms determined
in Section 12.2 are particularly appropriate in solving boundary-value prob-
lems. Before we illustrate their applications, we must first prove the differ-
entiation theorem.

Theorem 12.6.1. Let f (x) and its first derivative vanish as x → ∞. If
Fc (k) is the Fourier cosine transform, then

Fc [f ′′ (x)] = −k2Fc (k) −
√

2

π
f ′ (0) . (12.6.1)

Proof.

Fc [f ′′ (x)] =

√
2

π

∫ ∞

0

f ′′ (x) cos kx dx
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=

√
2

π
[f ′ (x) cos kx]

∞
0 +

√
2

π
k

∫ ∞

0

f ′ (x) sin kx dx

= −
√

2

π
f ′ (0) +

√
2

π
k [f (x) sin kx]

∞
0

−
√

2

π
k2

∫ ∞

0

f (x) cos kx dx

= −
√

2

π
f ′ (0) − k2Fc (k) .

In a similar manner, the Fourier cosine transforms of higher-order
derivatives of f (x) can be obtained.

Theorem 12.6.2. Let f (x) and its first derivative vanish as x → ∞. If
Fs (k) is the Fourier sine transform, then

Fs [f ′′ (x)] =

√
2

π
k f (0) − k2Fs (k) . (12.6.2)

The proof is left to the reader.

Example 12.6.2. Find the temperature distribution in a semi-infinite rod
for the following cases with zero initial temperature distribution:

(a) The heat supplied at the end x = 0 at the rate g (t);

(b) The end x = 0 is kept at a constant temperature T0.

The problem here is to solve the heat conduction equation

ut = κuxx, x > 0, t > 0,

u (x, 0) = 0, x > 0.

(a) ux (0, t) = g (t) and (b) u (0, t) = T0, t ≥ 0. Here we assume that u (x, t)
and ux (x, t) vanish as x → ∞.

For case (a), let U (k, t) be the Fourier cosine transform of u (x, t).
Then the transformation of the heat conduction equation yields

Ut + κ k2 U = −
√

2

π
g (t) κ.

The solution of this equation with U (k, 0) = 0 is

u (x, t) =

√
2

π

∫ ∞

0

U (k, t) cos kx dk

= −2κ

π

∫ t

0

g (τ) dτ

∫ ∞

0

e−κk2(t−τ) cos kx dk.
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The inner integral is given by (see Problem 6, Exercises 12.18)
∫ ∞

0

e−k2κ(t−τ) cos kx dk =
1

2

√
π

κ (t − τ)
exp

[
− x2

4κ (t − τ)

]
.

The solution, therefore, is

u (x, t) = −
√

κ

π

∫ t

0

g (τ)√
t − τ

e−x2/4κ(t−τ) dτ. (12.6.3)

For case (b), we apply the Fourier sine transform U (k, t) of u (x, t) to
obtain the transformed equation

Ut + κ k2U =

√
2

π
k T0 κ.

The solution of this equation with zero initial condition is

U (k, t) = T0

√
2

π

(
1 − e−κtk2

)

k
.

Then the inverse Fourier sine transformation gives

u (x, t) =
2T0

π

∫ ∞

0

sin kx

k

(
1 − e−κtk2

)
dk.

Making use of the integral
∫ ∞

0

e−a2x2

(
sin kx

k

)
dk =

π

2
erf

( x

2a

)
,

the solution is found to be

u (x, t) =
2T0

π

[
π

2
− π

2
erf

(
x

2
√

κt

)]

= T0 erfc

(
x

2
√

κt

)
, (12.6.4)

where erfc (x) = 1 − erf (x) is the complementary error function defined by

erfc (x) =
2√
π

∫ ∞

x

e−α2

dα.

12.7 Asymptotic Approximation of Integrals by

Stationary Phase Method

Although definite integrals represent exact solutions for many physical
problems, the physical meaning of the solutions is often difficult to de-
termine. In many cases the exact evaluation of the integrals is a formidable
task. It is then necessary to resort to asymptotic methods.
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We consider the typical integral solution

u (x, t) =

∫ b

a

F (k) eitθ(k)dk, (12.7.1)

where F (k) is called the spectral function determined by the initial or
boundary data in a < k < b, and θ (k), known as the phase function, is
given by

θ (k) ≡ k
x

t
− ω (k) , x > 0. (12.7.2)

We examine the asymptotic behavior of (12.7.1) for both large x and
large t; one of the interesting limits is t → ∞ with (x/t) held fixed. Integral
(12.7.1) can be evaluated by the Kelvin stationary phase method for large
t. As t → ∞, the integrand of (12.7.1) oscillates very rapidly; consequently,
the contributions to u (x, t) from adjacent parts of the integrand cancel one
another except in the neighborhood of the points, if any, at which the phase
function θ (k) is stationary, that is, θ′ (k) = 0. Thus, the main contribution
to the integral for large t comes from the neighborhood of the point k = k1

which determined by the solution of

θ′ (k1) =
x

t
− ω′ (k1) = 0, a < k1 < b. (12.7.3)

The point k = k1 known as the point of stationary phase, or simply, sta-
tionary point.

We expand both F (k) and θ (k) in Taylor series about k = k1 so that

u (x, t) =

∫ b

a

[
F (k1) + (k − k1) F ′ (k1) +

1

2
(k − k1)

2
F ′′ (k1) + . . .

]

× exp

{
it

[
θ (k1) +

1

2
(k − k1)

2
θ′′ (k1)

+
1

6
(k − k1)

3
θ′′′ (k1) + . . .

]}
dk (12.7.4)

provided that θ′′ (k1) �= 0.

Introducing the change of variable k − k1 = εα, where

ε (t) =

{
2

t |θ′′ (k1)|

} 1
2

, (12.7.5)

we find that the significant contribution to integral (12.7.4) is

u (x, t) ∼ ε

∫ (b−k1)/ε

−(k1−a)/ε

[
F (k1) + εαF ′ (k1) +

1

2
ε2α2F ′′ (k1) + . . .

]

× exp

{
i

[
t θ (k1) + α2 sgn θ′′ (k1) +

1

3
ε

(
θ′′′ (k1)

|θ′′ (k1)|

)
α3 + . . .

]}
dα,

(12.7.6)
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where sgn x denotes the signum function defined by sgnx = 1, x > 0 and
sgn x = −1, x < 0.

We then proceed to the limit as ε → 0 (t → ∞) and use the standard
integral ∫ ∞

−∞
exp

(
±iα2

)
dα =

√
π exp

(
± iπ

4

)
(12.7.7)

to obtain the asymptotic approximation as t → ∞,

u (x, t) ∼ F (k1)

[
2π

t |θ′′ (k1)|

] 1
2

exp
{

i
[
t θ (k1) +

π

4
sgn θ′′ (k1)

]}
+ O

(
ε2

)
,

(12.7.8)

where O
(
ε2

)
means that a function tends to zero like ε2 (t) as t → ∞. If

there is more than one stationary point, each one contributes a term similar
to (12.7.8) and we obtain, for n stationary points k = kr, r = 1, 2, . . . n;

u(x, t) ∼
n∑

r=1

F (kr)

{
2π

t |θ′′ (kr)|

}1
2

exp
{

i
[
t θ (kr) +

π

4
sgn θ′′(kr)

]}
, t → ∞.

(12.7.9)

If θ′′ (k1) = 0, but θ′′′ (k1) �= 0, then asymptotic approximation (12.7.8)
fails. This important special case can be handled in a similar fashion. The
asymptotic approximation of (12.7.1) is then given by

u (x, t) = F (k1) exp {itθ (k1)}
∫ ∞

−∞
exp

[
i

6
t θ′′′ (k1) (k − k1)

3

]
dk

∼ Γ

(
4

3

)[
6

t |θ′′′ (k1)|

] 1
3

F (k1) exp

[
itθ (k1) +

πi

6

]
+ O

(
t−

2
3

)
as t → ∞.

(12.7.10)

For an elaborate treatment of the stationary phase method, see Copson
(1965).

12.8 Laplace Transforms

Because of their simplicity, Laplace transforms are frequently used to solve
a wide class of partial differential equations. Like other transforms, Laplace
transforms are used to determine particular solutions. In solving partial
differential equations, the general solutions are difficult, if not impossible,
to obtain. The transform technique sometimes offers a useful tool for finding
particular solutions.

The Laplace transform is closely related to the complex Fourier trans-
form, so the Fourier integral formula (6.13.10) can be used to define
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the Laplace transform and its inverse. We replace f (x) in (6.13.10) by
H (x) e−cxf (x) for x > 0 to obtain

f (x) H (x) e−cx =
1

2π

∫ ∞

−∞
eikxdk

∫ ∞

0

f (t) e−t(c+ik)dt

or

f (x) H (x) =
1

2π

∫ ∞

−∞
ex(c+ik)dk

∫ ∞

0

f (t) e−t(c+ik)dt.

Substituting s = c + ik so that ds = idk, we obtain, for x > 0,

f (x) H (x) =
1

2πi

∫ c+i∞

c−i∞
exsds

∫ ∞

0

f (t) e−stdt. (12.8.1)

Thus, we give the following definition of the Laplace transform: If f (t) is
defined for all values of t > 0, then the Laplace transform of f (t) is denoted
by f̄ (s) or L {f (t)} and is defined by the integral

f̄ (s) = L {f (t)} =

∫ ∞

0

e−stf (t) dt, (12.8.2)

where s is a positive real number or a complex number with a positive real
part so that the integral is convergent.

Hence, (12.8.1) gives

f (x) = L−1
{
f̄ (s)

}
=

1

2πi

∫ c+i∞

c−i∞
exsf̄ (s) ds, c > 0, (12.8.3)

for x > 0 and zero for x < 0. This complex integral is used to define the
inverse Laplace transform which is denoted by L−1

{
f̄ (s)

}
= f (t). It can

be verified easily that both L and L−1 are linear integral operators.
We now find the Laplace transforms of some elementary functions.
1. Let f (t) = c, c is a constant.

L [c] =

∫ ∞

0

e−stc dt

=

[
−ce−st

s

]∞

0

=
c

s
.

2. Let f (t) = eat, a is a constant.

L
[
eat

]
=

∫ ∞

0

e−steatdt

=

[
−e−(s−a)t

(s − a)

]∞

0

=
1

s − a
, s ≥ a.

3. Let f (t) = t2. Then
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L
[
t2
]

=

∫ ∞

0

e−st t2 dt.

Integration by parts yields

L
{
t2
}

=

[
− t2e−st

s

]∞

0

+

∫ ∞

0

e−st

s
2 t dt.

Since t2e−st → 0 as t → ∞, we have, integrating by parts again,

L
[
t2
]

=
2

s

[
−e−st

s
t

]
+

2

s

∫ ∞

0

e−st

s
dt =

2

s3
.

4. Let f (t) = sinωt.

f̄ (s) = L [sinωt] =

∫ ∞

0

e−st sin ωt dt

=

[
−e−st

s
sin ωt

]∞

0

+

∫ ∞

0

e−st

s
ω cos ωt dt

=
ω

s

[
−e−st

s
cos ωt

]
− ω

s

∫ ∞

0

e−st

s
ω sin ωt dt

f̄ (s) =
ω

s2
− ω2

s2
f̄ (s) .

Thus, solving for f̄ (s), we obtain

L [sinωt] = ω/
(
s2 + ω2

)
.

A function f (t) is said to be of exponential order as t → ∞ if there
exist real constants M and a such that |f (t)| ≤ Meat for 0 ≤ t < ∞.

Theorem 12.8.1. Let f be piecewise continuous in the interval [0, T ] for
every positive T , and let f be of exponential order, that is, f (t) = O (eat)
as t → ∞ for some a > 0. Then, the Laplace transform of f (t) exists for
Re s > a.

Proof. Since f is piecewise continuous and of exponential order, we have

|L (f (t))| =

∣∣∣∣
∫ ∞

0

e−stf (t) dt

∣∣∣∣

≤
∫ ∞

0

e−st |f (t)| dt

≤
∫ ∞

0

e−stMeatdt

= M

∫ ∞

0

e−(s−a)tdt = M/ (s − a) , Re s > a.

Thus, ∫ ∞

0

e−stf (t) dt

exists for Re s > a.
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12.9 Properties of Laplace Transforms

Theorem 12.9.1. (Linearity) If L [f (t)]and L [g (t)] are Laplace trans-
forms of f (t) and g (t) respectively, then

L [af (t) + bg (t)] = aL [f (t)] + b L [g (t)]

where a and b are constants.

Proof.

L [af (t) + bg (t)] =

∫ ∞

0

[af (t) + bg (t)] e−stdt

= a

∫ ∞

0

f (t) e−stdt + b

∫ ∞

0

g (t) e−stdt

= aL [f (t)] + b L [g (t)] .

This shows that L is a linear operator.

Theorem 12.9.2. (Shifting) If f̄ (s) is the Laplace transform of f (t),
then the Laplace transform of eatf (t) is f̄ (s − a).

Proof. By definition, we have

L
[
eatf (t)

]
=

∫ ∞

0

e−steatf (t) dt

=

∫ ∞

0

e−(s−a)tf (t) dt

= f̄ (s − a) .

Example 12.9.1.

(a) If L
[
t2
]

= 2/s3, then L [tset] = 2/ (s − 1)
3
.

(b) If L [sinωt] = ω/
(
s2 + ω2

)
, then L [eat sin ωt] = ω/

[
(s − 1)

2
+ ω2

]
.

(c) If L {cos ωt} = s
s2+ω2 , then L {eat cos ωt} = s−a

(s−a)2+ω2 .

(d) If L {tn} = n!
sn+1 , then L {eattn} = n!

(s−a)n+1 .

Theorem 12.9.3. (Scaling) If the Laplace transform of f (t) is f̄ (s), then
the Laplace transform of f (ct) with c > 0 is (1/c) f̄ (s/c).

Proof. By definition, we have

L [f (ct)] =

∫ ∞

0

e−stf (ct) dt

=

∫ ∞

0

1

c
e−(sξ/c)f (ξ) dξ (substituting ξ = ct)

= (1/c) f̄ (s/c) .
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Example 12.9.2.

(a) If s
s2+1 = L [cos t], then

1

ω

s/ω

(s/ω)
2

+ 1
=

s

s2 + ω2
= L [cos ωt] .

(b) If 1
s−1 = L [et], then

1

a

1(
s
a − 1

) = L
[
eat

]
,

or

L
[
eat

]
=

1

s − a
.

Theorem 12.9.4. (Differentiation) Let f be continuous and f ′ piecewise
continuous, in 0 ≤ t ≤ T for all T > 0. Let f also be of exponential order
as t → ∞. Then, the Laplace transform of f ′ (t) exists and is given by

L [f ′ (t)] = sL [f (t)] − f (0) = sf̄ (s) − f (0) .

Proof. Consider the definite integral
∫ T

0

e−stf ′ (t) dt =
[
e−stf (t)

]T

0
+

∫ T

0

s e−stf (t) dt

= e−sT f (T ) − f (0) + s

∫ T

0

e−stf (t) dt.

Since |f (t)| ≤ Meat for large t, with a > 0 and M > 0,
∣∣e−sT f (T )

∣∣ ≤ Me−(s−a)T .

In the limit as T → ∞, e−sT f (T ) → 0 whenever s > a. Hence,

L [f ′ (t)] = sL [f (t)] − f (0) = sf̄ (s) − f (0) .

If f ′ and f ′′ satisfy the same conditions imposed on f and f ′ respec-
tively, then, the Laplace transform of f ′′ (t) can be obtained immediately
by applying the preceding theorem; that is

L [f ′′ (t)] = sL [f ′ (t)] − f ′ (0)

= s {sL [f (t)] − f (0)} − f ′ (0)

= s2L [f (t)] − sf (0) − f ′ (0)

= s2f̄ (s) − sf (0) − f ′ (0) .

Clearly, the Laplace transform of f (n) (t) can be obtained in a similar man-
ner by successive application of Theorem 12.9.4. The result may be written
as

L
[
f (n) (t)

]
= snL [f (t)] − sn−1f (0) − . . . − s f (n−2) (0) − f (n−1) (0) .
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Theorem 12.9.5. (Integration) If f̄ (s) is the Laplace transform of f (t),
then

L
[∫ t

0

f (τ) dτ

]
= f̄ (s) /s.

Proof.

L
[∫ t

0

f (τ) dτ

]
=

∫ ∞

0

[∫ t

0

f (τ) dτ

]
e−stdt

=

[
−e−st

s

∫ t

0

f (τ) dτ

]∞

0

+
1

s

∫ ∞

0

f (t) e−stdt

= f̄ (s) /s

since

∫ t

0

f (τ) dτ is of exponential order.

In solving problems by the Laplace transform method, the difficulty
arises in finding inverse transforms. Although the inversion formula ex-
ists, its evaluation requires a knowledge of functions of complex variables.
However, for some problems of mathematical physics, we need not use this
inversion formula. We can avoid its use by expanding a given transform by
the method of partial fractions in terms of simple fractions in the trans-
form variables. With these simple functions, we refer to the table of Laplace
transforms given in the end of the book and obtain the inverse transforms.
Here, we should note that we use the assumption that there is essentially a
one-to-one correspondence between functions and their Laplace transforms.
This may be stated as follows:

Theorem 12.9.6. (Lerch) Let f and g be piecewise continuous functions
of exponential order. If there exists a constant s0, such that L [f ] = L [g]
for all s > s0, then f (t) = g (t) for all t > 0 except possibly at the points
of discontinuity.

For a proof, the reader is referred to Kreider et al. (1966).

In order to find a solution of linear partial differential equations, the
following formulas and results are useful.

If L {u (x, t)} = u (x, s), then

L
{

∂u

∂t

}
= s u (x, s) − u (x, 0) ,

L
{

∂2u

∂t2

}
= s2 u (x, s) − s u (x, 0) − ut (x, 0) ,

and so on.
Similarly, it is easy to show that
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L
{

∂u

∂x

}
=

du

dx
, L

{
∂2u

∂x2

}
=

d2u

dx2
, . . . ,L

{
∂nu

∂xn

}
=

dnu

dxn
.

The following results are useful for applications:

L
{

erfc

(
a

2
√

t

)}
=

1

s
exp

(
−a

√
s
)
, a ≥ 0, (12.9.1)

L
{

exp (at) erf
(√

at
)}

=

√
a√

s (s − a)
, a > 0. (12.9.2)

Example 12.9.3. Consider the motion of a semi-infinite string with an ex-
ternal force f (t) acting on it. One end is kept fixed while the other end is
allowed to move freely in the vertical direction. If the string is initially at
rest, the motion of the string is governed by

utt = c2uxx + f (t) , 0 < x < ∞, t > 0,

u (x, 0) = 0, ut (x, 0) = 0,

u (0, t) = 0, ux (x, t) → 0, as x → ∞.

Let u (x, s) be the Laplace transform of u (x, t). Transforming the equa-
tion of motion and using the initial conditions, we obtain

uxx −
(
s2/c2

)
u = −f (s) /c2.

The solution of this ordinary differential equation is

u (x, s) = Aesx/c + Be−sx/c +
[
f (s) /s2

]
.

The transformed boundary conditions are given by

u (0, s) = 0, and lim
x→∞

ux (x, s) = 0.

In view of the second condition, we have A = 0. Now applying the first
condition, we obtain

u (0, s) = B +
[
f (s) /s2

]
= 0.

Hence

u (x, s) =
[
f (s) /s2

] [
1 − e−sx/c

]
.

(a) When f (t) = f0, a constant, then

u (x, s) = f0

(
1

s3
− 1

s3
e−sx/c

)
.

The inverse Laplace transform gives the solution
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u (x, t) =
f0

2

[
t2 −

(
t − x

c

)2
]

when t ≥ x/c,

= (f0/2) t2 when t ≤ x/c.

(b) When f (t) = cos ωt, where ω is a constant, then

f̄ (s) =

∫ ∞

0

e−st cos ωt dt = s/
(
ω2 + s2

)
.

Thus, we have

u (x, s) =
1

s (ω2 + s2)

(
1 − e−sx/c

)
. (12.9.3)

By the method of partial fractions, we write

1

s (s2 + ω2)
=

1

ω2

[
1

s
− 1

s2 + ω2

]
.

Hence

L−1

[
1

s (s2 + ω2)

]
=

1

ω2
(1 − cos ωt) =

2

ω2
sin2

(
ωt

2

)
.

If we denote

ψ (t) = sin2

(
ωt

2

)
,

then the Laplace inverse of equation (12.9.3) may be written in the form

u (x, t) =
2

ω2

[
ψ (t) − ψ

(
t − x

c

)]
when t ≥ x/c,

=
2

ω2
ψ (t) when t ≤ x/c.

12.10 Convolution Theorem of the Laplace Transform

The function

(f ∗ g) (t) =

∫ t

0

f (t − ξ) g (ξ) dξ (12.10.1)

is called the convolution of the functions f and g.

Theorem 12.10.1. (Convolution) If f̄ (s) and ḡ (s) are the Laplace trans-
forms of f (t) and g (t) respectively, then the Laplace transform of the con-
volution (f ∗ g) (t) is the product f̄ (s) ḡ (s).
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Figure 12.10.1 Region of integration.

Proof. By definition, we have

L [(f ∗ g) (t)] =

∫ ∞

0

e−st

∫ t

0

f (t − ξ) g (ξ) dξ dt

=

∫ ∞

0

∫ t

0

e−stf (t − ξ) g (ξ) dξ dt.

The region of integration is shown in Figure 12.10.1. By reversing the order
of integration, we have

L [(f ∗ g) (t)] =

∫ ∞

0

∫ ∞

ξ

e−stf (t − ξ) g (ξ) dt dξ

=

∫ ∞

0

g (ξ)

∫ t

ξ

e−stf (t − ξ) dt dξ.

If we introduce the new variable η = (t − ξ) in the inner integral, we obtain

L [(f ∗ g) (t)] =

∫ ∞

0

g (ξ)

∫ ∞

0

e−s(ξ+η)f (η) dη dξ

=

∫ ∞

0

g (ξ) e−sξdξ

∫ ∞

0

e−sηf (η) dη

= f̄ (s) ḡ (s) . (12.10.2)

The convolution satisfies the following properties:
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1. f ∗ g = g ∗ f (commutative).
2. f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative).
3. f ∗ (αg + βh) = α (f ∗ g) + β (f ∗ h) , (distributive),

where α and β are constants.

Example 12.10.1. Find the temperature distribution in a semi-infinite radi-
ating rod. The temperature is kept constant at x = 0, while the other end
is kept at zero temperature. If the initial temperature distribution is zero,
the problem is governed by

ut = kuxx − hu, 0 < x < ∞, t > 0, h = constant,

u (x, 0) = 0, u (0, t) = u0, t > 0, u0 = constant,

u (x, t) → 0, as x → ∞.

Let u (x, s) be the Laplace transform of u (x, t). Then the transformation
with respect to t yields

uxx −
(

s + h

k

)
u = 0,

u (0, s) = u0/s, lim
x→∞

u (x, s) = 0.

The solution of this equation is

u (x, s) = A ex
√

(s+h)/k + B e−x
√

(s+h)/k.

The boundary condition at infinity requires that A = 0. Applying the other
boundary condition gives

u (0, s) = B = u0/s.

Hence, the solution takes the form

u (x, s) = (u0/s) exp
[
−x

√
(s + h) /k

]
.

We find (by using the Table of Laplace Transforms) that

L−1
[u0

s

]
= u0,

and

L−1
[
exp

{
−x

√
(s + h) /k

}]
=

x exp
[
−ht −

(
x2/4kt

)]

2
√

πkt3
.

Thus, the inverse Laplace transform of u (x, s) is

u (x, t) = L−1
[u0

s
exp

{
−x

√
(s + h) /k

}]
.
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By the Integration Theorem 12.9.5, we have

u (x, t) =

∫ t

0

u0 x exp
[
−hτ −

(
x2/4kτ

)]

2
√

πk τ
3
2

dτ.

Substituting the new variable η =
(
x/2

√
kτ

)
yields

u (x, t) =
2 u0√

π

∫ ∞

x/2
√

kt

exp
[
−η2 +

(
hx2/4kη2

)]
dη.

For the case h = 0, the solution u (x, t) becomes

u (x, t) =
2 u0√

π

∫ ∞

x/2
√

kt

e−η2

dη

=
2 u0√

π

∫ ∞

0

e−η2

dη − 2 u0√
π

∫ x/2
√

kt

0

e−η2

dη

= u0

[
1 − erf

(
x

2
√

kt

)]
= u0 erfc

(
x

2
√

kt

)
.

12.11 Laplace Transforms of the Heaviside and Dirac

Delta Functions

We have defined the Heaviside unit step function. Now, we will find its
Laplace transform.

L [H (t − a)] =

∫ ∞

0

e−stH (t − a) dt

=

∫ ∞

a

e−stdt =

(
1

s

)
e−as, s > 0. (12.11.1)

Theorem 12.11.1. (Second Shifting) If f̄ (s) and ḡ (s) are the Laplace
transforms of f (t) and g (t) respectively, then

(a) L [H (t − a) f (t − a)] = e−asf̄ (s) = e−asL {f (t)} .

(b) L {H (t − a) g (t)} = e−asL {g (t + a)} .

Proof. (a) By definition

L [H (t − a) f (t − a)] =

∫ ∞

0

e−stH (t − a) f (t − a) dt

=

∫ ∞

a

e−stf (t − a) dt.

Introducing the new variable ξ = t − a, we obtain
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L [H (t − a) f (t − a)] =

∫ ∞

0

e−(ξ+a)sf (ξ) dξ

= e−as

∫ ∞

0

e−ξsf (ξ) dξ = e−asf̄ (s) .

To prove (b), we write

L {H (t − a) g (t)} =

∫ ∞

a

e−stg (t) dt (t − a = τ)

=

∫ ∞

0

e−s(a+τ)g (a + τ) dτ = e−saL {g (t + a)} .

Example 12.11.1. (a) Given that

f (t) =

⎧
⎨
⎩

0, t < 2

t − 2, t ≥ 2

⎫
⎬
⎭ = (t − 2) H (t − 2) ,

find the Laplace transform of f (t).
We have

L [f (t)] = L [H (t − 2) (t − 2)] = e−2sL [t] =

(
1

s2

)
e−2s.

(b) Find the inverse Laplace transform of

f (s) =
1 + e−2s

s2
.

L−1
[
f (s)

]
= L−1

(
1

s2
+

e−2s

s2

)

= L−1

[
1

s2

]
+ L−1

[
e−2s

s2

]
= t + H (t − 2) (t − 2)

=

⎧
⎨
⎩

t, 0 ≤ t < 2,

2 (t − 1) , t ≥ 2.

The Laplace transform of the impulse function p (t) is given by

L [p (t)] =

∫ ∞

0

e−stp (t) dt

=

∫ a+ε

a−ε

h e−stdt

= h

[
−e−st

s

]a+ε

a−ε

=
h e−as

s

(
eεs − e−εs

)

= 2
h e−as

s
sinh (εs) . (12.11.2)
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If we choose the value of h to be (1/2ε), then the impulse is given by

I (ε) =

∫ ∞

−∞
p (t) dt =

∫ a+ε

a−ε

1

2ε
dt = 1.

Thus, in the limit as ε → 0, this particular impulse function satisfies

lim
ε→0

pε (t) = 0, t �= a,

lim
ε→0

I (ε) = 1.

From this result, we obtain the Dirac delta function which satisfies

δ (t − a) = 0, t �= a,∫ ∞

−∞
δ (t − a) dt = 1. (12.11.3)

Thus, we may define the Laplace transform of δ (t) as the limit of the
transform of pε (t).

L [δ (t − a)] = lim
ε→0

L [pε (t)] ,

= lim
ε→0

e−as sinh (εs)

εs
(12.11.4)

= e−as.

If a = 0, we have

L [δ (t)] = 1. (12.11.5)

One very useful result that can be derived is the integral of the product
of the delta function and any continuous function f (t).

∫ ∞

−∞
δ (t − a) f (t) dt = lim

ε→0

∫ ∞

−∞
pε (t) f (t) dt,

= lim
ε→0

∫ a+ε

a−ε

f (t)

2ε
dt,

= lim
ε→0

1

2ε
· 2ε f (t∗) , a − ε < t∗ < a + ε

= f (a) . (12.11.6)

Suppose that f (t) is a periodic function with period T . Let f be piece-
wise continuous on [0, T ]. Then, the Laplace transform of f (t) is

L [f (t)] =

∫ ∞

0

e−stf (t) dt,

=

∞∑

n=0

∫ (n+1)T

nT

e−stf (t) dt.
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If we introduce a new variable ξ = t − nT , then

L [f (t)] =
∞∑

n=0

e−nTs

∫ T

0

e−sξf (ξ) dξ,

=

∞∑

n=0

e−nTs f1 (s) ,

where f1 (s) =
∫ T

0
e−sξf (ξ) dξ is the transform of the function f over the

first period. Since the series is a geometric series, we obtain for the transform
of a periodic function

L [f (t)] =
f1 (s)

(1 − e−Ts)
. (12.11.7)

Example 12.11.2. Find the Laplace transform of the square wave function
with period 2c given by

f (t) =

⎧
⎨
⎩

h, 0 < t < c

−h, c < t < 2c
with f (t + 2c) = f (t) ,

as shown in Figure 12.11.1.

Figure 12.11.1 Square wave function.
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f1 (s) =

∫ 2c

0

e−sξf (ξ) dξ,

=

∫ c

0

e−sξh dξ +

∫ 2c

c

e−sξ (−h) dξ,

=
h

s

(
1 − e−cs

)2
.

Thus, the Laplace transform of f (t) is, by (12.11.7),

L [f (t)] =
f1 (s)

1 − e−2cs
=

h (1 − e−cs)
2

s (1 − e−2cs)

=
h (1 − e−cs)

s (1 + e−cs)
=

h

s
tanh

(cs

2

)
.

Example 12.11.3. A uniform bar of length l is fixed at one end. Let the force

f (t) =

⎧
⎨
⎩

f0, t > 0

0, t < 0

be suddenly applied at the end x = l. If the bar is initially at rest, find the
longitudinal displacement for t > 0.

The motion of the bar is governed by the differential system

utt = a2uxx, 0 < x < l, t > 0, a = constant,

u (x, 0) = 0, ut (x, 0) = 0,

u (0, t) = 0, ux (l, t) = (f0/E) , where E is a constant and t > 0.

Let u (x, s) be the Laplace transform of u (x, t). Then, u (x, s) satisfies the
system

uxx − s2

a2
u = 0,

u (0, s) = 0, ux (l, s) = (f0/Es) .

The solution of this differential equation is

u (x, s) = Aexs/a + Be−xs/a.

Applying the boundary conditions, we have

A + B = 0,
( s

a
els/a

)
A +

(
− s

a
e−ls/a

)
B = f0/Es.

Solving for A and B, we obtain
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A = −B =
af0

Es2
(
els/a + e−ls/a

) .

Hence, the transform of the displacement function is given by

u (x, s) =
af0

(
exs/a − e−xs/a

)

Es2
(
els/a + e−ls/a

) .

Before finding the inverse transform of u (x, s), multiply the numerator and
denominator by

(
e−ls/a − e−3ls/a

)
. Thus, we have

u (x, s) =

(
af0

Es2

)[
e−(l−x)s/a − e−(l+x)s/a − e−(3l−x)s/a + e−(3l+x)s/a

]

× 1(
1 − e−4ls/a

) .

Since the denominator has the term
(
1 − e−4ls/a

)
, the inverse transform

u (x, t) is periodic with period (4l/a). Hence, the final solution may be
written in the form

u (x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < t < l−x
a ,

af0

E

(
t − l−x

a

)
, l−x

a < t < l+x
a ,

af0

E

[(
t − l−x

a

)
−

(
t − l+x

a

)]
, l+x

a < t < 3l−x
a ,

af0

E

[(
t − l−x

a

)
−

(
t − l+x

a

)
−

(
t − 3l−x

a

)]
, 3l−x

a < t < 3l+x
a ,

af0

E

[(
t − l−x

a

)
−

(
t − l+x

a

)
−

(
t − 3l−x

a

)
+

(
t − 3l+x

a

)]
,

0, 3l+x
a < t < 4l

a ,

which may be simplified to obtain

u (x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < t < (l − x) /a,

af0

E

(
t − l−x

a

)
, (l − x) /a < t < (l + x) /a,

af0

E

(
2x
a

)
, (l + x) /a < t < (3l − x) /a,

af0

E

(
−t + 3l+x

a

)
, (3l − x) /a < t < (3l + x) /a,

0, (3l + x) /a < t < 4l/a.

This result can clearly be seen in Figure 12.11.2.
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Example 12.11.4. Consider a semi-infinite string fixed at the end x = 0.
The string is initially at rest. Let there be an external force

f (x, t) = −f0 δ
(
t − x

v

)
,

acting on the string. This is a concentrated force f0 acting at the point
x = vt.

The motion of the string is governed by the initial boundary-value prob-
lem

utt = c2uxx − f0 δ
(
t − x

v

)
,

u (x, 0) = 0, ut (x, 0) = 0,

u (0, t) = 0, u (x, t) is bounded as x → ∞.

Let u (x, s) be the Laplace transform of u (x, t). Transforming the wave
equation and using the initial conditions, we obtain

uxx − s2

c2
u =

f0

c2
exp (−xs/v) .

The solution of this equation is

u (x, s) =
(
Aesx/c + Be−sx/c

)
+

⎧
⎪⎨
⎪⎩

f0v2e−sx/v

(c2−v2)s2 for v �= c,

− f0xe−sx/v

2cs for v = c.

Figure 12.11.2 Graph of u (x, t).
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The condition that u (x, t) must be bounded at infinity requires that A = 0.
Application of the condition

u (0, s) = 0,

yields

B =

⎧
⎨
⎩

−f0v2

(c2−v2)s2 for v �= c,

0 for v = c.

Hence, the Laplace transform is given by

u (x, s) =

⎧
⎪⎨
⎪⎩

f0v2(e−xs/v−e−xs/c)
(c2−v2)s2 for v �= c,

− f0xe−xs/c

2cs for v = c.

The inverse Laplace transform is therefore given by

u (x, t) =

⎧
⎪⎨
⎪⎩

f0v2

(c2−v2)

[(
t − x

v

)
u
(
t − x

v

)
−

(
t − x

c

)
u
(
t − x

c

)]
, for v �= c,

−
(

f0x
2c

)
u
(
t − x

c

)
, for v = c.

Example 12.11.5. (The Stokes Problem and the Rayleigh Problem in fluid
dynamics). Solve the Stokes problem which is concerned with the unsteady
boundary layer flows induced in a semi-infinite viscous fluid bounded by an
infinite horizontal disk at z = 0 due to oscillations of the disk in its own
plane with a given frequency ω.

We solve the boundary layer equation for the velocity u (z, t)

ut = ν uzz, z > 0, t > 0,

with the boundary and initial conditions

u (z, t) = U0e
iωt, z = 0, t > 0,

u (z, t) → 0, as z → ∞, t > 0,

u (z, 0) = 0, at t ≤ 0 for all z > 0,

where u (z, t) is the velocity of fluid of kinematic viscosity ν and U0 is a
constant.

The Laplace transform solution of the equation with the transformed
boundary conditions is

u (z, s) =
U0

(s − iω)
exp

(
−z

√
s

ν

)
.
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Using a standard table of inverse Laplace transforms, we obtain the solution

u (z, t) =
U0

2
eiωt

[
exp (−λz) erfc

(
ζ −

√
iωt

)

+ exp (λz) erfc
(
ζ +

√
iωt

)]
,

where ζ =
(
z/2

√
νt

)
is called the similarity variable of the viscous boundary

layer theory, and λ = (iω/ν)
1
2 . This result describes the unsteady boundary

layer flow.
In view of the asymptotic formula for the complementary error function

erfc
(
ζ +

√
iωt

)
∼ (2, 0) as t → ∞,

the above solution for u (z, t) has the asymptotic representation

u (z, t) ∼ U0 exp (iωt − λz)

= U0 exp

[
iωt −

( ω

2ν

) 1
2

(1 + i) z

]
. (12.11.8)

This is called the Stokes steady-state solution. This represents the prop-
agation of shear waves which spread out from the oscillating disk with

velocity ω/k =
√

2νω
(
k = (ω/2ν)

1
2

)
and exponentially decaying ampli-

tude. The boundary layer associated with the solution has thickness of the

order (ν/ω)
1
2 in which the shear oscillations imposed by the disk decay

exponentially with distance z from the disk. This boundary layer is called
the Stokes layer. In other words, the thickness of the Stokes layer is equal
to the depth of penetration of vorticity which is essentially confined to the
immediate vicinity of the disk for high frequency ω.

The Stokes problem with ω = 0 becomes the Rayleigh problem. In other
words, the motion is generated in the fluid from rest by moving the disk
impulsively in its own plane with constant velocity U0. In this case, the
Laplace transform solution is

u (z, s) =
U0

s
exp

(
−z

√
s

ν

)
,

so that the inversion gives the Rayleigh solution

u (z, t) = U0 erfc

(
z

2
√

νt

)
. (12.11.9)

This describes the growth of a boundary layer adjacent to the disk. The
associated boundary layer is called the Rayleigh layer of thickness of the
order δ ∼

√
νt which grows with increasing time t. The rate of growth is of

the order dδ/dt ∼
√

ν/t, which diminishes with increasing time.
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The vorticity of the unsteady flow is given by

∂u

∂z
=

U0√
πνt

exp
(
−ζ2

)
(12.11.10)

which decays exponentially to zero as z ≫ δ.
Note that the vorticity is everywhere zero at t = 0 except at z = 0.

This implies that it is generated at the disk and diffuses outward within
the Rayleigh layer. The total viscous diffusion time is Td ∼ δ2/ν.

Another physical quantity related to the Stokes and Rayleigh problems
is the skin friction on the disk defined by

τ0 = µ

(
∂u

∂z

)

z=0

, (12.11.11)

where µ = νρ is the dynamic viscosity and ρ is the density of the fluid. The
skin friction can readily be calculated from the flow field given by (12.11.8)
or (12.11.9).

Example 12.11.6. (The Nonhomogeneous Cauchy Problem for the Wave
Equation). We consider the nonhomogeneous Cauchy problem

utt − c2uxx = q (x, t) , x ∈ R, t > 0, (12.11.12)

u (x, 0) = f (x) , ut (x, 0) = g (x) for all x ∈ R, (12.11.13)

where q (x, t) is a given function representing a source term.
We use the joint Laplace and Fourier transform of u (x, t)

U (k, s) = L [F {u (x, t)}] =
1√
2π

∫ ∞

−∞
e−ikxdx

∫ ∞

0

e−stu (x, t) dt.

(12.11.14)

Application of the joint transform leads to the solution of the trans-
formed Cauchy problem in the form

U (k, s) =
s F (k) + G (k) + Q (k, s)

(s2 + c2k2)
. (12.11.15)

The inverse Laplace transform of (12.11.15) gives

U (k, t) = F (k) cos (ckt) +
1

ck
G (k) sin (ckt) +

1

ck
L−1

{
ck

s2 + c2k2
· Q (k, s)

}

= F (k) cos (ckt) +
G (k)

ck
sin (ckt) +

1

ck

∫ t

0

sin ck (t − τ) Q (k, τ) dτ.

(12.11.16)

The inverse Fourier transform leads to the exact integral solution
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u (x, t) =
1

2
√

2π

∫ ∞

−∞

(
eickt + e−ickt

)
eikxF (k) dk

+
1

2
√

2π

∫ ∞

−∞

(
eickt − e−ickt

)
eikx · G (k)

ick
dk

+
1√
2π

· 1

2c

∫ t

0

dτ

∫ ∞

−∞

Q (k, τ)

ik

[
eick(t−τ) − e−ick(t−τ)

]
eikxdk

=
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g (ξ) dξ

+
1

2c

∫ t

0

dτ
1√
2π

∫ ∞

−∞
Q (k, τ) dk

∫ x+c(t−τ)

x−c(t−τ)

eikξdξ

=
1

2
[f (x − ct) + f (x + ct)] +

1

2c

∫ x+ct

x−ct

g (ξ) dξ

+
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

q (ξ, τ) dξ. (12.11.17)

In the case of the homogeneous Cauchy problem, q (x, t) ≡ 0, the solution
of (12.11.17) reduces to the famous d’Alembert solution (5.3.8).

Example 12.11.7. (The Heat Conduction Equation in a Semi-Infinite Medium
and Fractional Derivatives). Solve the one-dimensional diffusion equation

ut = κuxx, x > 0, t > 0, (12.11.18)

with the initial and boundary conditions

u (x, 0) = 0, x > 0, (12.11.19)

u (0, t) = f (t) , t > 0, (12.11.20)

u (x, t) → 0, as x → ∞, t > 0. (12.11.21)

Application of the Laplace transform with respect to t to (12.11.18)
gives

d2u

dx2
− s

κ
u = 0. (12.11.22)

The general solution of this equation is

u (x, s) = A exp

(
−x

√
s

κ

)
+ B exp

(
x

√
s

κ

)
,

where A and B are integrating constants. For bounded solutions, B ≡ 0,
and using u (0, s) = f (s), we obtain the solution

u (x, s) = f (s) exp

(
−x

√
s

κ

)
. (12.11.23)
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The Laplace inversion theorem gives the solution

u (x, t) =
x

2
√

πκ

∫ t

0

f (t − τ) τ− 3
2 exp

(
− x2

4κτ

)
dτ, (12.11.24)

which, by setting λ = x
2
√

κτ
, or dλ = − x

4
√

κ
τ− 3

2 dτ ,

=
2√
π

∫ ∞

x
2

√
κt

f

(
t − x2

4κλ2

)
e−λ2

dλ. (12.11.25)

This is the formal solution of the heat conduction problem.
In particular, if f (t) = T0 = constant, solution (12.11.25) becomes

u (x, t) =
2T0√

π

∫ ∞

x
2

√
κt

e−λ2

dλ = T0 erfc

(
x

2
√

κt

)
. (12.11.26)

Clearly, the temperature distribution tends asymptotically to the constant
value T0, as t → ∞.

Alternatively, solution (12.11.23) can be written as

u (x, s) = f (s) s u0 (x, s) , (12.11.27)

where

s u0 (x, s) = exp

(
−x

√
s

κ

)
. (12.11.28)

Consequently, the inversion of (12.11.27) gives a new representation

u (x, t) =

∫ t

0

f (t − τ)

(
∂u0

∂τ

)
dτ. (12.11.29)

This is called the Duhamel formula for the diffusion equation.
We consider another physical problem: determining the temperature

distribution of a semi-infinite solid when the rate of flow of heat is prescribed
at the end x = 0. Thus, the problem is to solve diffusion equation (12.11.18)
subject to conditions (12.11.19), (12.11.21), and

−k

(
∂u

∂x

)
= g (t) at x = 0, t > 0, (12.11.30)

where k is a constant called thermal conductivity.
Application of the Laplace transform gives the solution of the trans-

formed problem

u (x, s) =
1

k

√
κ

s
g (s) exp

(
−x

√
s

κ

)
. (12.11.31)
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The inverse Laplace transform yields the solution

u (x, t) =
1

k

√
κ

π

∫ t

0

g (t − τ) τ− 1
2 exp

(
− x2

4κτ

)
dτ, (12.11.32)

which is, by the change of variable λ = x
2
√

κτ
,

=
x

k
√

π

∫ ∞

x
2

√
κt

g

(
t − x2

4κλ2

)
λ−2e−λ2

dλ. (12.11.33)

In particular, if g (t) = T0 = constant, this solution becomes

u (x, t) =
T0 x

k
√

π

∫ ∞

x√
4κt

λ−2e−λ2

dλ.

Integrating this result by parts gives

u (x, t) =
T0

k

[
2

√
κt

π
exp

(
− x2

4κt

)
− x erfc

(
x

2
√

κt

)]
. (12.11.34)

Alternatively, the heat conduction problem (12.11.18)–(12.11.21) can be
solved by using fractional derivatives (Debnath 1995). We recall (12.11.23)
and rewrite it as

∂u

∂x
= −

√
s

κ
u. (12.11.35)

This can be expressed in terms of a fractional derivative of order 1
2 as

∂u

∂x
= − 1√

κ
L−1

{√
s u (x, s)

}
= − 1√

κ
0D

1
2
t u (x, t) . (12.11.36)

Thus, the heat flux is expressed in terms of the fractional derivative. In
particular, when u (0, t) = constant = T0, then the heat flux at the surface
is given by

−k

(
∂u

∂x

)

x=0

=
k√
κ

D
1
2
t T0 =

kT0√
πκt

. (12.11.37)

Example 12.11.8. (Diffusion Equation in a Finite Medium). Solve the dif-
fusion equation

ut = κuxx, 0 < x < a, t > 0, (12.11.38)

with the initial and boundary conditions

u (x, 0) = 0, 0 < x < a, (12.11.39)

u (0, t) = U, t > 0, (12.11.40)

ux (a, t) = 0, t > 0, (12.11.41)
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where U is a constant.
We introduce the Laplace transform of u (x, t) with respect to t to obtain

d2u

dx2
− s

κ
u = 0, 0 < x < a, (12.11.42)

u (0, s) =
U

s
,

(
du

dx

)

x=a

= 0. (12.11.43)

The general solution of (12.11.42) is

u (x, s) = A cosh

(
x

√
s

κ

)
+ B sinh

(
x

√
s

κ

)
, (12.11.44)

where A and B are constants of integration. Using (12.11.43), we obtain
the values of A and B, so that the solution (12.11.44) becomes

u (x, s) =
U

s
·
cosh

[
(a − x)

√
s
κ

]

cosh
(
a
√

s
κ

) . (12.11.45)

The inverse Laplace transform gives the solution

u (x, t) = UL−1

{
cosh (a − x)

√
s
κ

s cosh
√

a s
κ

}
. (12.11.46)

The inversion can be carried out by the Cauchy residue theorem to obtain
the solution

u (x, t) = U

[
1 +

4

π

∞∑

n=1

(−1)
n

(2n − 1)
cos

{
(2n − 1) (a − x) π

2a

}

× exp

{
− (2n − 1)

2
( π

2a

)2

κt

}]
. (12.11.47)

By expanding the cosine term, this becomes

u (x, t) = U

[
1 − 4

π

∞∑

n=1

1

(2n − 1)
sin

{(
2n − 1

2a

)
πx

}

× exp

{
− (2n − 1)

2
( π

2a

)2

κt

}]
. (12.11.48)

This result can be obtained by solving the problem by the method of sep-
aration of variables.

Example 12.11.9. (Diffusion in a Finite Medium). Solve the one-dimensional
diffusion equation in a finite medium 0 < z < a, where the concentration
function C (z, t) satisfies the equation
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Ct = κCzz, 0 < z < a, t > 0, (12.11.49)

and the initial and boundary data

C (z, 0) = 0 for 0 < z < a, (12.11.50)

C (z, t) = C0 for z = a, t > 0, (12.11.51)

∂C

∂z
= 0 for z = 0, t > 0, (12.11.52)

where C0 is a constant.
Application of the Laplace transform of C (z, t) with respect to t gives

d2C

dz2
−

( s

κ

)
C = 0, 0 < z < a,

C (a, s) =
C0

s
,

(
dC

dz

)

z=0

= 0.

The solution of this differential equation system is

C (z, s) =
C0 cosh

(
z
√

s
κ

)

s cosh
(
a
√

s
κ

) , (12.11.53)

which, by writing α =
√

s
κ ,

=
C0

s

(eαz + e−αz)

(eαa + e−αa)

=
C0

s
[exp {−α (a − z)} + exp {−α (a + z)}]

∞∑

n=0

(−1)
n

exp (−2nαa)

=
C0

s

[ ∞∑

n=0

(−1)
n

exp [−α {(2n + 1) a − z}]

+

∞∑

n=0

(−1)
n

exp [−α {(2n + 1) a + z}]

]
.(12.11.54)

Using the result (12.9.1), we obtain the final solution

C (z, t) = C0

{ ∞∑

n=0

(−1)
n

[
erfc

{
(2n + 1) a − z

2
√

κt

}

+ erfc

{
(2n + 1) a + z

2
√

κt

}]}
. (12.11.55)

This solution represents an infinite series of complementary error functions.
The successive terms of this series are, in fact, the concentrations at depth
a− z, a+ z, 3a− z, 3a+ z, . . . in the medium. The series converges rapidly
for all except large values of

(
κt
a2

)
.
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Example 12.11.10. (The Wave Equation for the Transverse Vibration of a
Semi-Infinite String). Find the displacement of a semi-infinite string, which
is initially at rest in its equilibrium position. At time t = 0, the end x = 0 is
constrained to move so that the displacement is u (0, t) = A f (t) for t ≥ 0,
where A is a constant. The problem is to solve the one-dimensional wave
equation

utt = c2uxx, 0 ≤ x < ∞, t > 0, (12.11.56)

with the boundary and initial conditions

u (x, t) = A f (t) at x = 0, t ≥ 0, (12.11.57)

u (x, t) → 0 as x → ∞, t ≥ 0, (12.11.58)

u (x, t) = 0 =
∂u

∂t
at t = 0 for 0 < x < ∞. (12.11.59)

Application of the Laplace transform of u (x, t) with respect to t gives

d2u

dx2
− s2

c2
u = 0, for 0 ≤ x < ∞,

u (x, s) = A f (s) at x = 0,

u (x, s) → 0 as x → ∞.

The solution of this differential equation system is

u (x, s) = A f (s) exp
(
−xs

c

)
. (12.11.60)

Inversion gives the solution

u (x, t) = A f
(
t − x

c

)
H

(
t − x

c

)
. (12.11.61)

In other words, the solution is

u (x, t) =

⎧
⎨
⎩

A f
(
t − x

c

)
, t > x

c

0, t < x
c .

(12.11.62)

This solution represents a wave propagating at a velocity c with the char-
acteristic x = ct.

Example 12.11.11. (The Cauchy–Poisson Wave Problem in Fluid Dynam-
ics). We consider the two-dimensional Cauchy–Poisson problem (Debnath
1994) for an inviscid liquid of infinite depth with a horizontal free surface.
We assume that the liquid has constant density ρ and negligible surface
tension. Waves are generated on the free surface of liquid initially at rest
for time t < 0 by the prescribed free surface displacement at t = 0.
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In terms of the velocity potential φ (x, z, t) and the free surface elevation
η (x, t), the linearized surface wave motion in Cartesian coordinates (x, y, z)
is governed by the following equation and free surface and boundary con-
ditions:

∇2φ = φxx + φzz = 0, −∞ < z ≤ 0, x ∈ R, t < 0, (12.11.63)

φz − ηt = 0
φt + gη = 0

}
on z = 0, t > 0, (12.11.64)

φz → 0 as z → −∞. (12.11.65)

The initial conditions are

φ (x, 0, 0) = 0 and η (x, 0) = η0 (x) , (12.11.66)

where η0 (x) is a given initial elevation with compact support.
We introduce the Laplace transform with respect to t and the Fourier

transform with respect to x defined by

[
φ̃ (k, z, s) , η̃ (k, s)

]
=

1√
2π

∫ ∞

−∞
e−ikxdx

∫ ∞

0

e−st [φ, η] dt. (12.11.67)

Application of the joint transform method to the above system gives

φ̃zz − k2 φ̃ = 0, −∞ < z ≤ 0, (12.11.68)

φ̃ = s η̃ − η̃0 (k)

s φ̃ + gη̃ = 0

⎫
⎪⎬
⎪⎭

on z = 0, (12.11.69)

φ̃z → 0 as z → −∞, (12.11.70)

where

η̃0 (k) = F {η0 (x)} .

The bounded solution of equation (12.11.68) is

φ̃ (k, s) = A exp (|k| z) , (12.11.71)

where A = A (s) is an arbitrary function of s.
Substituting (12.11.71) into (12.11.69) and eliminating η̃ from the re-

sulting equations gives A. Hence, the solutions for φ̃ and η̃ are

[
φ̃, η̃

]
=

[
−g η̃0 exp (|k| z)

s2 + ω2
,

s η̃0

s2 + ω2

]
, (12.11.72)

and the associated the dispersion relation is
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ω2 = g |k| . (12.11.73)

The inverse Laplace and Fourier transforms give the solutions

φ (x, z, t) = − g√
2π

∫ ∞

−∞

sin ωt

ω
exp (ikx + |k| z) η̃0 (k) dk, (12.11.74)

η (x, t) =
1√
2π

∫ ∞

−∞
η̃0 (k) cos ωt eikxdk,

=
1√
2π

∫ ∞

0

η̃0 (k)
[
ei(kx−ωt) + ei(kx+ωt)

]
dk, (12.11.75)

in which η̃0 (−k) = η̃0 (k) is assumed.
Physically, the first and second integrals of (12.11.75) represent waves

traveling in the positive and negative directions of x, respectively, with
phase velocity ω

k . These integrals describe superposition of all such waves
over the wavenumber spectrum 0 < k < ∞.

For the classical Cauchy–Poisson wave problem, η0 (x) = aδ (x), where
δ (x) is the Dirac delta function, so that η̃0 (k) =

(
a/

√
2π

)
. Thus, solution

(12.11.75) becomes

η (x, t) =
a

2π

∫ ∞

0

[
ei(kx−ωt) + ei(kx+ωt)

]
dk. (12.11.76)

The wave integrals (12.11.74) and (12.11.75) represent the exact solution
for the velocity potential φ and the free surface elevation η for all x and
t > 0. However, they do not lend any physical interpretations. In general,
the exact evaluation of these integrals is a formidable task. So it is necessary
to resort to asymptotic methods. It would be sufficient for the determination
of the principal features of the wave motions to investigate (12.11.75) or
(12.11.76) asymptotically for large time t and large distance x with (x, t)
held fixed. The asymptotic solution for this kind of problem is available
in many standard books; (for example, see Debnath 1994, p. 85). We use
the stationary phase approximation of a typical wave integral (12.7.1), for
t → ∞, given by (12.7.8)

η(x, t) =

∫ b

a

F (k) exp[itθ(k)]dk (12.11.77)

∼ f(k1)

[
2π

t |θ′′(k1)|

]1
2

exp
[
i
{
tθ(k1) +

π

4
sgn θ′′(k1)

}]
, (12.11.78)

where θ (k) = kx
t − ω (k), x > 0, and k = k1 is a stationary point that

satisfies the equation

θ′ (k1) =
x

t
− ω′ (k1) = 0, a < k1 < b. (12.11.79)
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Application of (12.11.78) to (12.11.75) shows that only the first integral
in (12.11.75) has a stationary point for x > 0. Hence, the stationary phase
approximation (12.11.78) gives the asymptotic solution, as t → ∞, x > 0,

η(x, t) ∼
[

1

t |ω′′(k1)|

]1
2

η̃0(k1) exp

[
i{k1x − tω(k1)} +

iπ

4
sgn {−ω′′(k1)}

]
,

(12.11.80)

where k1 =
(
gt2/4x2

)
is the root of the equation ω′ (k) = x

t .
On the other hand, when x < 0, only the second integral of (12.11.75)

has a stationary point k1 =
(
gt2/4x2

)
, and hence, the same result (12.11.78)

can be used to obtain the asymptotic solution for t → ∞ and x < 0 as

η(x, t) ∼
[

1

t |ω′′(k1)|

]1
2

η̃0(k1) exp

[
i {tω(k1) − k1 |x|} +

iπ

4
sgn ω′′(k1)

]
.

(12.11.81)

In particular, for the classical Cauchy–Poisson solution (12.11.76), the
asymptotic representation for η (x, t) follows from (12.11.81) in the form

η (x, t) ∼ at

2
√

2π

√
g

x3/2
cos

(
gt2

4x

)
, gt2 ≫ 4x (12.11.82)

and gives a similar result for η (x, t), when x < 0 and t → ∞.

12.12 Hankel Transforms

We introduce the definition of the Hankel transform from the two-dimen-
sional Fourier transform and its inverse given by

F {f (x, y)} = F (k, l) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp {−i (κκκ · r)} f (x, y) dx dy,

(12.12.1)

F−1 {F (k, l)} = f (x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp {i (κκκ · r)} F (k, l) dk dl,

(12.12.2)

where r = (x, y) and κκκ = (k, l). Introducing polar coordinates (x, y) =
r (cos θ, sin θ) and (k, l) = κ (cos φ, sin φ), we find κκκ · r = κr cos (θ − φ) and
then

F (κ, φ) =
1

2π

∫ ∞

0

rdr

∫ 2π

0

exp [−iκr cos (θ − φ)] f (r, θ) dθ. (12.12.3)
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We next assume f (r, θ) = exp (inθ) f (r), which is not a very severe
restriction, and make a change of variable θ−φ = α− π

2 to reduce (12.12.3)
to the form

F (κ, φ) =
1

2π

∫ ∞

0

rf (r) dr

×
∫ 2π+φ0

φ0

exp
[
in

(
φ − π

2

)
+ i (nα − κr sin α)

]
dα, (12.12.4)

where φ0 = π
2 − φ.

We use the integral representation of the Bessel function of order n

Jn (κr) =
1

2π

∫ 2π+φ0

φ0

exp [i (nα − κr sin α)] dα (12.12.5)

so that integral (12.12.4) becomes

F (κ, φ) = exp
[
in

(
φ − π

2

)] ∫ ∞

0

rJn (κr) f (r) dr (12.12.6)

= exp
[
in

(
φ − π

2

)]
f̃n (κ) , (12.12.7)

where f̃n (κ) is called the Hankel transform of f (r) and is defined formally
by

Hn {f (r)} = f̃n (κ) =

∫ ∞

0

rJn (κr) f (r) dr. (12.12.8)

Similarly, in terms of the polar variables with the assumption f (x, y) =
f (r, θ) = einθf (r) and with result (12.12.7), the inverse Fourier transform
(12.12.2) becomes

einθf (r) =
1

2π

∫ ∞

0

κ dκ

∫ 2π

0

exp [iκr cos (θ − φ)]F (κ, φ) dφ

=
1

2π

∫ ∞

0

κ f̃n (κ) dκ

∫ 2π

0

exp
[
in

(
φ − π

2

)
+ iκr cos (θ − φ)

]
dφ,

which is, by the change of variables θ−φ = −
(
α + π

2

)
and θ0 = −

(
θ + π

2

)
,

=
1

2π

∫ ∞

0

κf̃n (κ) dκ

∫ 2π+θ0

θ0

exp [in (θ + α) − iκr sin α] dα

= einθ

∫ ∞

0

κJn (κr) f̃n (κ) dκ, by (12.12.5). (12.12.9)

Thus, the inverse Hankel transform is defined by

H−1
n

[
f̃n (κ)

]
= f (r) =

∫ ∞

0

κJn (κr) f̃n (κ) dκ. (12.12.10)
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Instead of f̃n (κ), we often simply write f̃ (κ) for the Hankel transform
specifying the order. Integrals (12.12.8) and (12.12.10) exist for certain
large classes of functions, which usually occur in physical applications.

Alternatively, the famous Hankel integral formula (Watson, 1966, p 453)

f (r) =

∫ ∞

0

κJn (κr) dκ

∫ ∞

0

p Jn (κp) f (p) dp, (12.12.11)

can be used to define the Hankel transform (12.12.8) and its inverse
(12.12.10).

In particular, the Hankel transforms of zero order (n = 0) and of order
one (n = 1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

Example 12.12.1. Obtain the zero-order Hankel transforms of

(a) r−1 exp (−ar) , (b) δ(r)
r , (c) H (a − r) ,

where H (r) is the Heaviside unit step function.

(a) f̃0 (κ) = H0

{
1
r exp (−ar)

}
=

∫ ∞

0

exp (−ar) J0 (κr) dr = 1√
κ2+a2

.

(b) f̃0 (κ) = H0

{
δ(r)

r

}
=

∫ ∞

0

δ (r) J0 (κr) dr = 1.

(c) f̃0 (κ) = H0 {H (a − r)} =

∫ a

0

rJ0 (κr) dr = 1
κ2

∫ aκ

0

pJ0 (p) dp

= 1
κ2 [pJ1 (p)]

aκ
0 = a

κJ1 (aκ) .

Example 12.12.2. Find the first-order Hankel transform of the following
functions:

(a) f (r) = e−ar, (b) f (r) =
1

r
e−ar.

(a) f̃ (κ) = H1 {e−ar} =

∫ ∞

0

re−arJ1 (κr) dr = κ

(a2+κ2)
3
2
.

(b) f̃ (κ) = H1

{
e−ar

r

}
=

∫ ∞

0

e−arJ1 (κr) dr = 1
κ

[
1 − a

(
κ2 + a2

)− 1
2

]
.

Example 12.12.3. Find the nth-order Hankel transforms of

(a) f (r) = rnH (a − r) , (b) f (r) = rn exp
(
−ar2

)
.
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(a) f̃ (κ) = Hn [rnH (a − r)] =

∫ a

0

rn+1Jn (κr) dr = an+1

κ Jn+1 (aκ) .

(b) f̃ (κ) = Hn

[
rn exp

(
−ar2

)]

=

∫ ∞

0

rn+1Jn (κr) exp
(
−ar2

)
dr = κn

(2a)n+1 exp
(
−κ2

4a

)
.

12.13 Properties of Hankel Transforms and

Applications

We state the following properties of the Hankel transforms:

(i) The Hankel transform operator, Hn is a linear integral operator, that
is,

Hn {af (r) + bg (r)} = aHn {f (r)} + bHn {g (r)}

for any constants a and b.
(ii) The Hankel transform satisfies the Parseval relation

∫ ∞

0

rf (r) g (r) dr =

∫ ∞

0

kf̃ (k) g̃ (k) dk (12.13.1)

where f̃ (k) and g̃ (k) are Hankel transforms of f (r) and g (r) respec-
tively.

To prove (12.13.1), we proceed formally to obtain

∫ ∞

0

kf̃ (k) g̃ (k) dk =

∫ ∞

0

kf̃ (k) dk

∫ ∞

0

rJn (kr) g (r) dr

=

∫ ∞

0

rg (r) dr

∫ ∞

0

kJn (kr) f̃ (k) dk

=

∫ ∞

0

rf (r) g (r) dr.

(iii) Hn {f ′ (r)} = k
2n

[
(n − 1) f̃n+1 (k) − (n + 1) f̃n−1 (k)

]

provided rf (r) vanishes as r → 0 and as r → ∞.

(iv)

Hn

{
1

r

d

dr

(
r
df

dr

)
− n2

r2
f (r)

}
= −k2f̃n (k) (12.13.2)

provided both
(
r df

dr

)
and rf (r) vanish as r → 0 and as r → ∞.
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We have, by definition,

Hn

{
1

r

d

dr

(
r
df

dr

)
− n2

r2
f (r)

}

=

∫ ∞

0

d

dr

(
r
df

dr

)
Jn (kr) dr −

∫ ∞

0

n2

r2
rf (r) Jn (kr) dr

=

[
r
df

dr
Jn (kr)

]∞

0

−
∫ ∞

0

kJ ′
n (kr) r

df

dr
dr

−
∫ ∞

0

n2

r2
[rf (r)]Jn (kr) dr, by partial integration

= − [f (r) krJ ′
n (kr)]

∞
0 +

∫ ∞

0

d

dr
[k rJ ′

n (kr)] f (r) dr

−
∫ ∞

0

n2

r2
rf (r) Jn (kr) dr, by partial integration

which is, by the given assumption and Bessel’s differential equation (8.6.1),

= −
∫ ∞

0

(
k2 − n2

r2

)
rf (r) Jn (kr) dr −

∫ ∞

0

n2

r2
[rf (r)]Jn (kr) dr

= −k2

∫ ∞

0

rf (r) Jn (kr) dr

= −k2Hn {f (r)} = −k2f̃n (k) .

(v) (Scaling). If Hn {f (r)} = f̃n (κ), then

Hn {f (ar)} =
1

a2
f̃n

(κ

a

)
, a > 0. (12.13.3)

Proof. We have, by definition,

Hn {f (ar)} =

∫ ∞

0

rJn (κr) f (ar) dr

=
1

a2

∫ ∞

0

s Jn

(κ

a
s
)

f (s) ds =
1

a2
f̃n

(κ

a

)
.

These results are used very widely in solving partial differential equa-
tions in the axisymmetric cylindrical configurations. We illustrate this point
by considering the following examples of applications.

Example 12.13.1. Obtain the solution of the free vibration of a large circular
membrane governed by the initial-value problem

∂2u

∂r2
+

1

r

∂u

∂r
=

1

c2

∂2u

∂t2
, 0 < r < ∞, t > 0, (12.13.4)

u (r, 0) = f (r) , ut (r, 0) = g (r) , 0 ≤ r < ∞, (12.13.5)
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where c2 = (T/ρ) = constant, T is the tension in the membrane, and ρ is
the surface density of the membrane.

Application of the Hankel transform of order zero

ũ (k, t) =

∫ ∞

0

r u (r, t) J0 (kr) dr

to the vibration problem gives

d2ũ

dt2
+ k2c2ũ = 0

ũ (k, 0) = f̃ (k) , ũt (k, 0) = g̃ (k) .

The general solution of this transformed system is

ũ (k, t) = f̃ (k) cos (ckt) +
g̃ (k)

ck
sin (ckt) .

The inverse Hankel transformation gives

u (r, t) =

∫ ∞

0

kf̃ (k) cos (ckt) J0 (kr) dk

+
1

c

∫ ∞

0

g̃ (k) sin (ckt) J0 (kr) dr. (12.13.6)

This is the desired solution.
In particular, we consider the following initial conditions

u (r, 0) = f (r) =
A

(
1 + r2

a2

) 1
2

, ut (r, 0) = g (r) = 0

so that g̃ (k) = 0 and

f̃ (k) = Aa

∫ ∞

0

rJ0 (kr) dr

(a2 + r2)
1
2

=
Aa

k
e−ak

by means of Example 12.12.1(a).
Thus, solution (12.13.6) becomes

u (r, t) = Aa

∫ ∞

0

e−akJ0 (kr) cos (ckt) dk

= Aa Re

∫ ∞

0

e−k(a+ict)J0 (kr) dk

= Aa Re
{

r2 + (a + ict)
2
}− 1

2

. (12.13.7)
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Example 12.13.2. Obtain the steady-state solution of the axisymmetric
acoustic radiation problem governed by the wave equation in cylindrical
polar coordinates (r, θ, z):

c2∇2u = utt, 0 < r < ∞, z > 0, t > 0 (12.13.8)

uz = f (r, t) on z = 0, (12.13.9)

where f (r, t) is a given function and c is a constant. We also assume that
the solution is bounded and behaves as outgoing spherical waves. This is
referred to as the Sommerfeld radiation condition.

We seek a solution of the acoustic radiation potential u = eiωtφ (r, z) so
that φ satisfies the Helmholtz equation

φrr +
1

r
φr + φzz +

ω2

c2
φ = 0, 0 < r < ∞, z > 0 (12.13.10)

with the boundary condition representing the normal velocity prescribed
on the z = 0 plane

φz = f (r) on z = 0, (12.13.11)

where f (r) is a known function of r.
We solve the problem by means of the zero-order Hankel transformation

φ̃ (k, z) =

∫ ∞

0

rJ0 (kr) φ (r, z) dr

so that the given differential system becomes

φ̃zz = κ2φ̃, z > 0, φ̃z = f̃ (k) on z = 0

where κ =
[
k2 −

(
ω2/c2

)] 1
2 .

The solution of this system is

φ̃ (k, z) = −κ−1f̃ (k) e−κz, (12.13.12)

where κ is real and positive for k > ω/c, and purely imaginary for k < ω/c.
The inverse transformation yields the solution

φ (r, z) = −
∫ ∞

0

κ−1f̃ (k) kJ0 (kr) e−κzdk. (12.13.13)

Since the exact evaluation of this integral is difficult, we choose a simple
form of f (r) as

f (r) = A H (a − r) , (12.13.14)
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where A is a constant and H (x) is the Heaviside unit step function so that

f̃ (k) =

∫ a

0

kJ0 (ak) dk =
a

k
J1 (ak) .

Then the solution for this special case is given by

φ (r, z) = −Aa

∫ ∞

0

κ−1J1 (ak) J0 (kr) e−κzdk. (12.13.15)

For an asymptotic evaluation of this integral, we express it in terms of the
spherical polar coordinates (R, θ, φ), (x = R sin θ cos φ, y = R sin θ sin φ,
z = R cos θ), combined with the asymptotic result

J0 (kr) ∼
(

2

πkr

) 1
2

cos
(
kr − π

4

)
as r → ∞

so that the acoustic potential u = eiωtφ is

u ∼ −Aa
√

2 eiωt

√
πR sin θ

∫ ∞

0

J1 (ka) cos
(
kR sin θ − π

4

)
e−kzdk,

where z = R cos θ.
This integral can be evaluated asymptotically for R → ∞ by using the

stationary phase approximation formula (12.7.8) to obtain

u ∼ − Aac

ωR sin θ
J1 (k1a) ei(ωt−ωR/c), (12.13.16)

where k1 = ω/c sin θ is the stationary point. This solution represents the
outgoing spherical waves with constant velocity c and decaying amplitude
as R → ∞.

12.14 Mellin Transforms and their Operational

Properties

If f (t) is not necessarily zero for t < 0, it is possible to define the two-sided
(or bilateral) Laplace transform

f (p) =

∫ ∞

−∞
e−ptf (t) dt. (12.14.1)

Then replacing f (x) with e−cxf (x) in Fourier integral formula (6.13.9),
we obtain

e−cxf (x) =
1

2π

∫ ∞

−∞
e−ikxdk

∫ ∞

−∞
f (t) e−t(c−ik)dt,
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or

f (x) =
1

2π

∫ ∞

−∞
ex(c−ik)dk

∫ ∞

−∞
f (t) e−t(c−ik)dt.

Making a change of variable p = c − ik and using definition (12.14.1),
we obtain the formal inverse transform after replacing x by t as

f (t) =
1

2πi

∫ c+i∞

c−i∞
ept f (p) dp, c > 0. (12.14.2)

If we put e−t = x into (12.14.1) with f (− log x) = g (x) and f (p) ≡ G (p),
then (12.14.1)–(12.14.2) become

G (p) = M {g (x)} =

∫ ∞

0

xp−1g (x) dx, (12.14.3)

g (x) = M−1 {G (p)} =
1

2πi

∫ c+i∞

c−i∞
x−pG (p) dp. (12.14.4)

The function G (p) is called the Mellin transform of g (x) defined by
(12.14.3). The inverse Mellin transformation is given by (12.14.4).

We state the following operational properties of the Mellin transforms:

(i) Both M and M−1 are linear integral operators,

(ii) M [f (ax)] = a−pF (p),

(iii) M [xaf (x)] = F (p + a),

(iv) M [f ′ (x)] = − (p − 1) F (p − 1), provided that
[
f (x) xp−1

]∞
0

= 0,

M [f ′′ (x)] = (p − 1) (p − 2) F (p − 2),

· · · · · · · · · · · · · · · · · · ,

M
[
f (n) (x)

]
= (−1)nΓ (p)

Γ (p−n) F (p − n),

provided lim
x→0

xp−r−1f (r) (x) = 0, r = 0, 1, 2, . . ., (n − 1),

(v) M {xf ′ (x)} = −pM {f (x)} = −pF (p), provided that [xpf (x)]
∞
0 = 0,

M
{
x2f ′′ (x)

}
= (−1)

2 (
p + p2

)
F (p),

· · · · · · · · · · · · · · · · · · ,

M
{
xnf (n) (x)

}
= (−1)

n Γ (p+n)
Γ (p) F (p).

(vi) M
{(

x d
dx

)n
f (x)

}
= (−1)

n
pnF (p), n = 1, 2, . . ..
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(vii) Convolution Property

M
[∫ ∞

0

f (xξ) g (ξ) dξ

]
= F (p) G (1 − p),

M
[∫ ∞

0

f
(

x
ξ

)
g (ξ) dξ

ξ

]
= F (p) G (p).

(viii) If F (p) = M (f (x)) and G (p) = M (g (x)), then, the following con-
volution result holds:

M [f (x) g (x)] =
1

2πi

∫ c+i∞

c−i∞
F (s) G (p − s) ds.

In particular, when p = 1, we obtain the Parseval formula

∫ ∞

0

f (x) g (x) dx =
1

2πi

∫ c+i∞

c−i∞
F (s) G (1 − s) ds.

The reader is referred to Debnath (1995) for other properties of the
Mellin transform.

Example 12.14.1. Show that the Mellin transform of (1 + x)
−1

is π cosec πp,
0 < Re p < 1.

We consider the standard definite integral

∫ 1

0

(1 − t)
m−1

tp−1dt =
Γ (m) Γ (p)

Γ (m + p)
, Re p > 0, Re m > 0,

and then change the variable t = x
1+x to obtain

∫ ∞

0

xp−1dx

(1 + x)
m+p =

Γ (m) Γ (p)

Γ (m + p)
.

If we replace m + p by α, this gives

M
[
(1 + x)

−α
]

=
Γ (p) Γ (α − p)

Γ (α)
.

Setting α = 1 and using the result

Γ (p) Γ (1 − p) = π cosec πp, 0 < Re p < 1,

we obtain

M
[
(1 + x)

−1
]

= π cosec πp, 0 < Re p < 1.
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Example 12.14.2. Obtain the solution of the boundary-value problem

x2uxx + xux + uyy = 0, 0 ≤ x < ∞, 0 < y < 1,

u (x, 0) = 0, and u (x, 1) =

⎧
⎨
⎩

A, 0 ≤ x ≤ 1

0, x > 1
,

where A is constant.
We apply the Mellin transform

U (p, y) =

∫ ∞

0

xp−1u (x, y) dx

to reduce the system to the form

Uyy + p2U = 0, 0 < y < 1,

U (p, 0) = 0, and U (p, 1) = A

∫ 1

0

xp−1dx =
A

p
.

The solution of this differential system is

U (p, y) =
A

p

sin (py)

sin p
, 0 < Re p < 1.

The inverse Mellin transform gives

u (x, y) =
A

2πi

∫ c+i∞

c−i∞

x−p

p

sin (py)

sin p
dp,

where U (p, y) is analytic in a vertical strip 0 < Re p < π and hence,
0 < c < π. The integrand has simple poles at p = rπ, r = 1, 2, 3, . . . which
lie inside a semi-circular contour in the right half-plane. Application of the
theory of residues gives the solution for x > 1

u (x, y) =
A

π

∞∑

r=1

(−1)
r
x−rπ

r
sin (rπy) .

Example 12.14.3. Find the Mellin transform of the Weyl fractional integral

ω (x, α) = Wα [f (ξ)] =
1

Γ (α)

∫ ∞

x

f (ξ) (ξ − x)
α−1

dξ.

We rewrite the Weyl integral by setting

k (x) = xαf (x) , g (x) =
1

Γ (α)
(1 − x)

α−1
H (1 − x) ,

so that



12.15 Finite Fourier Transforms and Applications 499

ω (x, α) =

∫ ∞

0

k (ξ) g

(
x

ξ

)
dξ

ξ
.

The Mellin transform of this result is obtained by the convolution property
(vii):

Ω (p, a) = K (p) G (p) ,

where K (p) = M [k (x)] = M [xαf (x)] = F (p + α) and

G (p) =
1

Γ (α)

∫ 1

0

(1 − x)
α−1

xp−1dx =
Γ (p)

Γ (p + α)
.

Thus,

Ω (p, a) = M [Wαf (ξ)] =
Γ (p)

Γ (p + α)
F (p + α) . (12.14.5)

If α is complex with a positive real part such that n − 1 < Re α < n where
n is a positive integer, the fractional derivative of order α of a function
f (x) is defined by the formula

Dα
∞f (x) =

dn

dxn
Wn−αf (x) =

1

Γ (n − α)

dn

dxn

∫ ∞

x

f (ξ) (ξ − x)
n−α−1

dξ.

(12.14.6)

The Mellin transform of this fractional derivative can be given by using
operational property (iv) and (12.14.5)

M [Dα
∞f (x)] =

(−1)
n

Γ (p)

Γ (p − n)
Ω (p − n, n − α) ,

=
(−1)

n
Γ (p)

Γ (p − a)
F (p − α) .

This is an obvious generalization of the third result listed under (iv).

12.15 Finite Fourier Transforms and Applications

The finite Fourier transforms are often used in determining solutions of
nonhomogeneous problems. These finite transforms, namely the sine and
cosine transforms, follow immediately from the theory of Fourier series.

Let f (x) be a piecewise continuous function in a finite interval, say,
(0, π). This interval is introduced for convenience, and the change of interval
can be made without difficulty.

The finite Fourier sine transform denoted by Fs (n) of the function f (x)
may be defined by
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Fs (n) = Fs [f (x)] =
2

π

∫ π

0

f (x) sinnx dx, n = 1, 2, 3, . . . , (12.15.1)

and the inverse of the transform follows at once from the Fourier sine series;
that is

f (x) =

∞∑

n=1

Fs (n) sinnx. (12.15.2)

The finite Fourier cosine transform Fc (n) of f (x) may be defined by

Fc (n) = Fc [f (x)] =
2

π

∫ π

0

f (x) cos nx dx, n = 0, 1, 2, . . . . (12.15.3)

The inverse of the Fourier cosine transform is given by

f (x) =
Fc (0)

2
+

∞∑

n=1

Fc (n) cos nx. (12.15.4)

Theorem 12.15.1. Let f ′ (x) be continuous and f ′′ (x) be piecewise con-
tinuous in [0, π]. If Fs (n) is the finite Fourier sine transform of f (x), then

Fs [f ′′ (x)] =
2n

π
[f (0) − (−1)

n
f (π)] − n2Fs (n) . (12.15.5)

Proof. By definition

Fs [f ′′ (x)] =
2

π

∫ π

0

f ′′ (x) sinnx dx

=
2

π
[f ′ (x) sinnx]

π
0 − 2n

π

∫ π

0

f ′ (x) cos nx dx

= −2n

π
[f (x) cos nx]

π
0 − 2n2

π

∫ π

0

f (x) sinnx dx

= −2n

π
[f (π) (−1)

n − f (0)] − n2Fs (n) .

The transforms of higher-order derivatives can be derived in a similar man-
ner.

Theorem 12.15.2. Let f ′ (x) be continuous and f ′′ (x) be piecewise con-
tinuous in [0, π]. If Fc (n) is the finite Fourier cosine transform of f (x),
then

Fc [f ′′ (x)] =
2

π
[(−1)

n
f ′ (π) − f ′ (0)] − n2Fc (n) . (12.15.6)

The proof is left to the reader.
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Example 12.15.1. Consider the motion of a string of length π due to a force
acting on it. Let the string be fixed at both ends. The motion is thus
governed by

utt = c2uxx + f (x, t) , 0 < x < π, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 < x < π, (12.15.7)

u (0, t) = 0, u (π, t) = 0, t > 0.

Applying the finite Fourier sine transform to the equation of motion with
respect to x gives

Fs

[
utt − c2uxx − f (x, t)

]
= 0.

Due to its linearity (see Problem 52, 12.18 Exercises), this can be written
in the form

Fs [utt] − c2Fs [uxx] = Fs [f (x, t)] . (12.15.8)

Let U (n, t) be the finite Fourier sine transform of u (x, t). Then we have

Fs [utt] =
2

π

∫ π

0

utt sin nx dx

=
d2

dt2

[
2

π

∫ π

0

u (x, t) sinnx dx

]
=

d2Us (n, t)

dt2
.

We also have, from Theorem 12.15.1,

Fs [uxx] =
2n

π
[u (0, t) − (−1)

n
u (π, t)] − n2Us (n, t) .

Because of the boundary conditions

u (0, t) = u (π, t) = 0,

Fs [uxx] becomes

Fs [uxx] = −n2Us (n, t) .

If we denote the finite Fourier sine transform of f (x, t) by

Fs (n, t) =
2

π

∫ π

0

f (x, t) sinnx dx,

then, equation (12.15.8) takes the form

d2Us

dt2
+ n2c2Us = Fs (n, t) .

This is a second-order ordinary differential equation, the solution of which
is given by
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Us (n, t) = A cos nct + B sin nct +
1

nc

∫ t

0

Fs (n, τ) sinnc (t − τ) dτ.

Applying the initial conditions

Fs [u (x, 0)] =
2

π

∫ π

0

u (x, 0) sin nx dx = Us (n, 0) = 0,

and

Fs [ut (x, 0)] =
d

dt
Us (n, 0) = 0,

we have

Us (n, t) =
1

nc

∫ t

0

Fs (n, τ) sinnc (t − τ) dτ.

Thus, the inverse transform of Us (n, t) is

u (x, t) =
∞∑

n=1

Us (n, t) sinnx

=

∞∑

n=1

[
1

nc

∫ t

0

Fs (n, τ) sinnc (t − τ) dτ

]
sin nx.

In the case when f (x, t) = h which is a constant, then

Fs [h] =
2

π

∫ π

0

h sin nx dx =
2h

nπ
[1 − (−1)

n
] .

Now, we evaluate

Us (n, t) =
1

nc

∫ t

0

2h

nπ
[1 − (−1)

n
] sinnc (t − τ) dτ

=
2h

n3πc2
[1 − (−1)

n
] (1 − cos nct) .

Hence, the solution is given by

u (x, t) =
2h

πc2

∞∑

n=1

[1 − (−1)
n
]

n3
(1 − cos nct) sinnx.

Example 12.15.2. Find the temperature distribution in a rod of length π.
The heat is generated in the rod at the rate g (x, t) per unit time. The ends
are insulated. The initial temperature distribution is given by f (x).

The problem is to find the temperature function u (x, t) of the system

ut = uxx + g (x, t) , 0 < x < π, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t ≥ 0.
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Let Us (n, t) be the finite Fourier cosine transform of u (x, t). As before,
transformation of the heat equation with respect to x, using the boundary
conditions, yields

dUs

dt
= −n2Us + Gs (n, t) ,

where

Gs (n, t) =
2

π

∫ π

0

g (x, t) cos nx dx.

Rewriting this equation, we obtain

d

dt

(
en2t Us

)
= Gs en2t.

Thus, the solution is

Us (n, t) =

∫ t

0

e−n2(t−τ)Gs (n, τ) dτ + A e−n2t.

Transformation of the initial condition gives

Us (n, 0) =
2

π

∫ π

0

u (x, 0) cos nx dx =
2

π

∫ π

0

f (x) cos nx dx.

Hence, Us (n, t) takes the form

Us (n, t) =

∫ t

0

e−n2(t−τ)Gs (n, τ) dτ + Us (n, 0) e−n2t.

The solution u (x, t), therefore, is given by

u (x, t) =
Us (0, 0)

2
+

∞∑

n=1

Us (n, t) cos nx.

Example 12.15.3. A rod with diffusion constant κ contains a fuel which
produces neutrons by fission. The ends of the rod are perfectly reflecting. If
the initial neutron distribution is f (x), find the neutron distribution u (x, t)
at any subsequent time t.

The problem is governed by

ut = κuxx + bu,

u (x, 0) = f (x) , 0 < x < l, t > 0,

ux (0, t) = ux (l, t) = 0.

If U (n, t) is the finite Fourier cosine transform of u (x, t), then by trans-
forming the equation and using the boundary conditions, we obtain
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Ut +
(
κn2 − b

)
U = 0.

The solution of this equation is

U (n, t) = C e−(κn2−b)t

where C is a constant. Then applying the initial condition, we obtain

U (n, t) = U (n, 0) e−(κn2−b)t,

where

U (n, 0) =
2

l

∫ l

0

f (x) cos nx dx.

Thus, the solution takes the form

u (x, t) =
U (0, 0)

2
+

∞∑

n=1

U (n, t) cos nx.

If for instance f (x) = x in 0 < x < π, then, U (0, 0) = π, and

U (n, 0) =
2

n2π
[(−1)

n − 1] , n = 1, 2, 3, . . .

the solution is given by

u (x, t) =
π

2
+

∞∑

n=1

2

n2π
[(−1)

n − 1] exp
{
−

(
κn2 − b

)
t
}

cos nx.

12.16 Finite Hankel Transforms and Applications

The Fourier–Bessel series representation of a function f (r) defined in 0 ≤
r ≤ a can be stated in the following theorem:

Theorem 12.16.1. If f (r) is defined in 0 ≤ r ≤ a and

Fn (ki) = Hn {f (r)} =

∫ a

0

rf (r) Jn (rki) dr, (12.16.1)

then

f (r) = H−1
n {Fn (ki)} =

2

a2

∞∑

i=1

Fn (ki)
Jn (rki)

J2
n+1 (aki)

, (12.16.2)

where ki (0 < k1 < k2 < . . .) are the roots of the equation

Jn (aki) = 0.
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The function Fn (ki) defined by (12.16.1) is called the nth-order finite
Hankel transform of f (r), and the inverse Hankel transform is defined by
(12.16.2). In particular, when n = 0, the finite Hankel transform of order
zero and its inverse are defined by the integral and series respectively

F (ki) = H0 {f (r)} =

∫ a

0

rf (r) J0 (rki) dr, (12.16.3)

f (r) = H−1
0 {F (ki)} =

2

a2

∞∑

i=1

F (ki)
J0 (rki)

J2
1 (aki)

. (12.16.4)

Example 12.16.1. Find the nth-order finite Hankel transform of f (r) = rn.
We have the following result for the Bessel function

∫ a

0

rn+1Jn (kir) dr =
an+1

ki
Jn+1 (aki) ,

so that

Hn {rn} =
an+1

ki
Jn+1 (aki) .

In particular, when n = 0

H0 {1} =
a

ki
J1 (aki)

or, equivalently,

1 = H−1
0

{
a

ki
J1 (aki)

}
=

2

a

∞∑

i=1

J0 (rki)

kiJ1 (aki)
.

Example 12.16.2. Find H0

{(
a2 − r2

)}
.

We have by definition

H0

{(
a2 − r2

)}
=

∫ a

0

(
a2 − r2

)
rJ0 (kir) dr

=
4a

k3
i

J1 (aki) − 2a2

k2
i

J0 (aki) ,

where ki is a root of J0 (ax) = 0. Hence,

H0

{(
a2 − r2

)}
=

4a

k3
i

J1 (aki) .

We state the following operational properties of the finite Hankel trans-
form:
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(i) Hn

{
df

dr

}
=

ki

2n
[(n − 1) Hn+1 {f (r)} − (n + 1)Hn−1 {f (r)}] ,

(ii) H1

{
df

dr

}
= −kiH0 {f (r)} ,

(iii) Hn

[
1

r

d

dr
{rf ′ (r)} − n2

r2
f (r)

]
= −akif (a) J ′

n (aki) − k2
i Hn {f (r)} ,

(12.16.5)

(iv) H0

[
f ′′ (r) +

1

r
f ′ (r)

]
= akif (a) J1 (aki) − k2

i H0 {f (r)} . (12.16.6)

Example 12.16.3. Find the solution of the axisymmetric heat conduction
equation

ut = κ

(
urr +

1

r
ur

)
, 0 < r < a, t > 0,

with the boundary and initial conditions

u (r, t) = f (t) on r = a, t ≥ 0,

u (r, 0) = 0, 0 ≤ r ≤ a,

where u (r, t) represents the temperature distribution.
We apply the finite Hankel transform defined by

U (k, t) = H0 {u (r, t)} =

∫ a

0

rJ0 (kir) u (r, t) dr

so that the given equation with the boundary condition becomes

dU

dt
+ κk2

i U = κakiJ1 (aki) f (t) .

The solution of this equation with the transformed initial condition is

U (k, t) = aκkiJ1 (aki)

∫ t

0

f (τ) e−κk2
i (t−τ)dτ.

The inverse transformation gives the solution as

u (r, t) =

(
2κ

a

) ∞∑

i=1

kiJ0 (rki)

J1 (aki)

∫ t

0

f (τ) e−κk2
i (t−τ)dτ. (12.16.7)

In particular, if f (t) = T0 = constant, then this solution becomes

u (r, t) =

(
2T0

a

) ∞∑

i=1

J0 (rki)

kiJ1 (aki)

(
1 − e−κk2

i t
)

. (12.16.8)
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In view of Example 12.16.1, result (12.16.8) becomes

u (r, t) = T0

[
1 − 2

a

∞∑

i=1

J0 (rki)

kiJ1 (aki)
e−κk2

i t

]
. (12.16.9)

This solution consists of the steady-state term, and the transient term which
tends to zero as t → ∞. Consequently, the steady-state is attained in the
limit t → ∞.

Example 12.16.4. (Unsteady Viscous Flow in a Rotating Cylinder). The ax-
isymmetric unsteady motion of a viscous fluid in an infinitely long circular
cylinder of radius a is governed by

vt = ν

(
vrr +

1

r
vr − v

r2

)
, 0 ≤ r ≤ a, t > 0,

where v = v (r, t) is the tangential fluid velocity and ν is the kinematic
viscosity of the fluid.

The cylinder is at rest until at t = 0+ it is caused to rotate, so that the
boundary and initial conditions are

v (r, t) = aΩf (t) H (t) on r = a,

v (r, t) = 0, at t = 0 for r < a,

where f (t) is a physically realistic function of t.
We solve the problem by using the joint Laplace and finite Hankel trans-

forms of order one defined by

V (km, s) =

∫ a

0

rJ1 (rkm) dr

∫ ∞

0

e−st v (r, t) dt,

where V (km, s) is the Laplace transform of V (km, t), and km are the roots
of equation J1 (akm) = 0.

Application of the transform yields

( s

ν

)
V (km, s) = −akmV (a, s) J ′

1 (akm) − k2
mV (km, s) ,

V (a, s) = a Ω f (s) ,

where f (s) is the Laplace transform of f (t).
The solution of this system is

V (km, s) = −a2νkmΩ f (s) J ′
1 (akm)

(s + νk2
m)

.

The joint inverse transformation gives
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v (r, t) =
2

a2

∞∑

m=1

J1 (rkm)

[J ′
1 (akm)]

2

1

2πi

∫ c+i∞

c−i∞
est V (km, s) ds

= −2νΩ

∞∑

m=1

kmJ1 (rkm)

J ′
1 (akm)

1

2πi

∫ c+i∞

c−i∞

est f (s)

(s + νk2
m)

ds

= −2νΩ
∞∑

m=1

kmJ1 (rkm)

J ′
1 (akm)

∫ t

0

f (τ) exp
[
−νk2

m (t − τ)
]
dτ,

by the Convolution Theorem of the Laplace transform.
In particular, when f (t) = cos ωt, the velocity field becomes

v (r, t) = −2νΩ
∞∑

m=1

kmJ1 (rkm)

J ′
1 (akm)

∫ t

0

cos ωτ exp
[
−νk2

m (t − τ)
]
dτ

= 2νΩ

∞∑

m=1

kmJ1 (rkm)

J ′
1 (akm)

×
[

νk2
m exp

(
−νtk2

m

)
−

(
ω sin ωt + νk2

m cos ωt
)

(ω2 + ν2k4
m)

]

= vst (s, t) + vtr (r, t) , (12.16.10)

where the steady-state flow field vst and the transient flow field vtr are
given by

vst (r, t) = −2νΩ

∞∑

m=1

kmJ1 (rkm)
(
ω sin ωt + νk2

m cos ωt
)

J ′
1 (akm) (ω2 + ν2k4

m)
, (12.16.11)

vtr (r, t) = 2ν2Ω

∞∑

m=1

J1 (rkm) k3
me−νtk2

m

J ′
1 (akm) (ω2 + ν2k4

m)
. (12.16.12)

Thus, the solution consists of the steady-state and transient components.
In the limit t → ∞, the latter decays to zero, and the ultimate steady-state
is attained and is given by (12.16.11), which has the form

vst (r, t) = −2νΩ

∞∑

m=1

kmJ1 (rkm) cos (ωt − α)

J ′
1 (akm) (ω2 + ν2k4

m)
1
2

, (12.16.13)

where tan α =
(
ω/νk2

m

)
. Thus, we see that the steady solution suffers from

a phase change of α+π. The amplitude of the motion remains bounded for
all values of ω.

The frictional couple exerted on the fluid by unit length of the cylinder
of radius r = a is given by

C =

∫ 2π

0

[Prθ]r=a a2dθ = 2πa2 [Prθ]r=a ,
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where Prθ = µ r (d/dr) (v/r) with µ = νρ calculated from (12.16.10).
Thus,

C =

4πµΩ

[
−a

∞∑

m=1

νkmJ1 (akm)
[
νk2

m exp
(
−νtk2

m

)
−

(
νk2

m cos ωt + ω sin ωt
)]

(ω2 + ν2k4
m) J ′

1 (akm)

+ a2
∞∑

m=1

νk2
m

[
νk2

m exp
(
−νtk2

m

)
−

(
νk2

m cos ωt + ω sin ωt
)]

(ω2 + ν2k4
m) J ′

1 (akm)

]
. (12.16.14)

A particular case corresponding to ω = 0 is of special interest. The
solution assumes the form

v (r, t) = −2Ω
∞∑

m=1

J1 (rkm)
(
1 − e−νtk2

m

)

km J ′
1 (akm)

= vst + vtr, (12.16.15)

where vst and vtr represent the steady-state and the transient flow fields
respectively given by

vst (r, t) = −2Ω

∞∑

m=1

J1 (rkm)

kmJ ′
1 (akm)

, (12.16.16)

vtr (r, t) = 2Ω

∞∑

m=1

J1 (rkm)

kmJ ′
1 (akm)

e−νtk2
m . (12.16.17)

It follows from (12.16.16) that

vst (r, t) = 2Ω

∞∑

m=1

J1 (rkm)

kmJ2 (akm)

=
2Ω

a2

∞∑

m=1

a2

km
J2 (akm) · J1 (rkm)

J2
2 (akm)

= ΩH−1
1

{
a2

km
J2 (akm)

}
= Ωr, by Example 12.16.1.

Thus, the steady-state solution has the closed form

vst (r, t) = rΩ. (12.16.18)

This represents the rigid body rotation of the fluid inside the cylinder. Thus,
the final form of (12.16.15) is given by

v (r, t) = rΩ − 2Ω
∞∑

m=1

J1 (rkm) e−νtk2
m

kmJ2 (akm)
. (12.16.19)

In the limit t → ∞, the transients die out and the ultimate steady-state is
attained as the rigid body rotation about the axis of the cylinder.
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12.17 Solution of Fractional Partial Differential

Equations

(a) Fractional Diffusion Equation
The fractional diffusion equation is given by

∂αu

∂tα
= κ

∂2u

∂x2
, x ∈ R, t > 0, (12.17.1)

with the boundary and initial conditions

u (x, t) → 0 as |x| → ∞, (12.17.2)[
0D

α−1
t u (x, t)

]
t=0

= f (x) for x ∈ R, (12.17.3)

where κ is a diffusivity constant and 0 < α ≤ 1.

Application of the Fourier transform to (12.17.1) with respect to x and
using the boundary conditions (12.17.2) and (12.17.3) yields

0D
α
t ũ (k, t) = −κ k2 ũ, (12.17.4)

[
0D

α−1
t ũ (k, t)

]
t=0

= f̃ (k) , (12.17.5)

where ũ (k, t) is the Fourier transform of u (x, t) defined by (12.2.1).
The Laplace transform solution of (12.17.4) and (12.17.5) yields

˜̄u (k, s) =
f̃ (k)

(sα + κ k2)
. (12.17.6)

The inverse Laplace transform of (12.17.6) gives

ũ (k, t) = f̃ (k) tα−1Eα,α

(
−κ k2tα

)
, (12.17.7)

where Eα,β is the Mittag-Leffler function defined by

Eα,β (z) =

∞∑

m=0

zm

Γ (αm + β)
, α > 0, β > 0. (12.17.8)

Finally, the inverse Fourier transform leads to the solution

u (x, t) =

∫ ∞

−∞
G (x − ξ, t) f (ξ) dξ, (12.17.9)

where

G (x, t) =
1

π

∫ ∞

−∞
tα−1Eα,α

(
−κ k2tα

)
cos kx dk. (12.17.10)
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This integral can be evaluated by using the Laplace transform of G (x, t)
as

G (x, s) =
1

π

∫ ∞

−∞

cos kx dk

sα + κk2
=

1√
4κ

s−α/2 exp

(
− |x|√

κ
sα/2

)
, (12.17.11)

where

L
[
tmα+β−1E

(m)
α,β (+atα)

]
=

m! sα−β

(sα + a)
m+1 , (12.17.12)

and

E
(m)
α,β (z) =

dm

dzm
Eα,β (z) . (12.17.13)

The inverse Laplace transform of (12.17.11) gives the explicit solution

G (x, t) =
1√
4κ

t
α
2 −1W

(
−ξ,−α

2
,
α

2

)
, (12.17.14)

where ξ = |x|√
κ tα/2 , and W (z, α, β) is the Wright function (see Erdélyi 1953,

formula 18.1 (27)) defined by

W (z, α, β) =

∞∑

n=0

zn

n! Γ (αn + β)
. (12.17.15)

It is important to note that when α = 1, the initial-value problem
(12.17.1)–(12.17.3) reduces to the classical diffusion problem and solution
(12.17.9) reduces to the classical solution because

G (x, t) =
1√
4κt

W

(
− x√

κt
,−1

2
,
1

2

)
=

1√
4πκt

exp

(
− x2

4κt

)
. (12.17.16)

The fractional diffusion equation (12.17.1) has also been solved by other
authors including Schneider and Wyss (1989), Mainardi (1994, 1995), Deb-
nath (2003) and Nigmatullin (1986) with a physical realistic initial condi-
tion

u (x, 0) = f (x) , x ∈ R. (12.17.17)

The solutions obtained by these authors are in total agreement with
(12.17.9).

It is noted that the order α of the derivative with respect to time t in
equation (12.17.1) can be of arbitrary real order including α = 2 so that
equation (12.17.1) may be called the fractional diffusion-wave equation. For
α = 2, it becomes the classical wave equation. The equation (12.17.1) with
1 < α ≤ 2 will be solved next in some detail.
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(b) Fractional Nonhomogeneous Wave Equation
The fractional nonhomogeneous wave equation is given by

∂αu

∂tα
− c2 ∂2u

∂x2
= q (x, t) , x ∈ R, t > 0 (12.17.18)

with the initial condition

u (x, 0) = f (x) , ut (x, 0) = g (x) , x ∈ R, (12.17.19)

where c is a constant and 1 < α ≤ 2.
Application of the joint Laplace transform with respect to t and the

Fourier transform with respect to x gives the transform solution

˜̄u (k, s) =
f̃ (k) sα−1

sα + c2k2
+

g̃ (k) sα−2

sα + c2k2
+

˜̄q (k, s)

sα + c2k2
, (12.17.20)

where k is the Fourier transform variable and s is the Laplace transform
variable.

The inverse Laplace transform produces the following result:

ũ (k, t) = f̃ (k) L−1

{
sα−1

sα + c2k2

}
+ g̃ (k) L−1

{
sα−2

sα + c2k2

}

+L−1

{
˜̄q (k, s)

sα + c2k2

}
, (12.17.21)

which, by (12.17.12),

= f̃ (k) Eα,1

(
−c2k2tα

)
+ g̃ (k) tEα,2

(
−c2k2tα

)

+

∫ t

0

q̃ (k, t − τ) τα−1Eα,α

(
−c2k2τα

)
dτ. (12.17.22)

Finally, the inverse Fourier transform gives the formal solution

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k) Eα,1

(
−c2k2tα

)
eikxdk

+
1√
2π

∫ ∞

−∞
t g̃ (k) Eα,2

(
−c2k2τα

)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t − τ) Eα,α

(
−c2k2τα

)
eikxdk.

(12.17.23)

In particular, when α = 2, the fractional wave equation (12.17.18) re-
duces to the classical nonhomogeneous wave equation. In this particular
case, we use
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E2,1

(
−c2k2t2

)
= cosh (ickt) = cos (ckt) , (12.17.24)

tE2,2

(
−c2k2t2

)
= t · sinh (ickt)

ickt
=

1

ck
sin ckt. (12.17.25)

Consequently, solution (12.17.23) reduces to solution (12.11.17) for α =
2 as

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k) cos (ckt) eikxdk +

1√
2π

∫ ∞

−∞
g̃ (k)

sin (ckt)

ck
eikxdk

+
1√
2π c

∫ t

0

dτ

∫ ∞

−∞
q̃ (k, τ)

sin ck (t − τ)

k
eikxdk (12.17.26)

=
1

2
[f (x − ct) + f (x + ct)] +

1

2c

∫ x+ct

x−ct

g (ξ) dξ

+
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

q (ξ, τ) dξ. (12.17.27)

We now derive the solution of the nonhomogeneous fractional diffusion
equation (12.17.18) with c2 = κ and g (x) = 0. In this case, the joint
transform solution (12.17.20) becomes

˜̄u (k, s) =
f̃ (k) sα−1

(sα + κk2)
+

˜̄q (k, s)

(sα + κk2)
(12.17.28)

which is inverted by using (12.17.12) to obtain ũ (k, t) in the form

ũ (k, t)

= f̃ (k) Eα,1

(
−κ k2tα

)
+

∫ t

0

(t − τ)
α−1

Eα,α

{
−κ k2 (t − τ)

α}
q̃ (k, τ) dτ.

(12.17.29)

Finally, the inverse Fourier transform gives the exact solution

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k) Eα,1

(
−κ k2tα

)
eikxdk

+
1√
2π

∫ t

0

dτ

∫ ∞

−∞
(t − τ)

α−1
Eα,α

{
−κ k2 (t − τ)

α}
q̃ (k, τ) eikxdk.

(12.17.30)

Application of the Convolution Theorem of the Fourier transform gives
the final solution in the form

u (x, t) =

∫ ∞

−∞
G1 (x − ξ, t) f (ξ) dξ

+

∫ t

0

(t − τ)
α−1

dτ

∫ ∞

−∞
G2 (x − ξ, t − τ) q (ξ, τ) dξ, (12.17.31)
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where

G1 (x, t) =
1

2π

∫ ∞

−∞
eikxEα,1

(
−κ k2tα

)
dk, (12.17.32)

and

G2 (x, t) =
1

2π

∫ ∞

−∞
eikxEα,α

(
−κ k2tα

)
dk. (12.17.33)

In particular, when α = 1, the classical solution of the nonhomogeneous
diffusion equation (12.17.18) is obtained in the form

u (x, t) =

∫ ∞

−∞
G1 (x − ξ, t) f (ξ) dξ

+

∫ t

0

dτ

∫ ∞

−∞
G2 (x − ξ, t − τ) q (ξ, τ) dξ, (12.17.34)

where

G1 (x, t) = G2 (x, t) =
1√

4πκt
exp

(
− x2

4κt

)
. (12.17.35)

In the case of classical homogeneous diffusion equation (12.17.18), so-
lutions (12.17.30) and (12.17.34) are in perfect agreement with those of
Mainardi (1996), who obtained the solution by using the Laplace trans-
form method together with complicated evaluation of the Laplace inversion
integral and the auxiliary function M (z, α). He obtained the solution in
terms of M

(
z, α

2

)
and discussed the nature of the solution for different

values of α. He made some comparisons between ordinary diffusion (α = 1)
and fractional diffusion

(
α = 1

2 andα = 2
3

)
. For cases α = 4

3 and α = 3
2 , the

solution exhibits a striking difference from ordinary diffusion with a tran-
sition from the Gaussian function centered at z = 0 (ordinary diffusion) to
the Dirac delta function centered at z = 1 (wave propagation). This indi-
cates a possibility of an intermediate process between diffusion and wave
propagation. A special difference is observed between the solutions of the
fractional diffusion equation (0 < α ≤ 1) and the fractional wave equation
(1 < α ≤ 2). In addition, the solution exhibits a slow process for the case
with 0 < α ≤ 1 and an intermediate process for 1 < α ≤ 2.

(c) Fractional-Order Diffusion Equation in Semi-Infinite Medium
We consider the fractional-order diffusion equation in a semi-infinite

medium x > 0, when the boundary is kept at a temperature u0f (t) and the
initial temperature is zero in the whole medium. Thus, the initial boundary-
value problem is governed by the equation

∂αu

∂tα
= κ

∂2u

∂x2
, 0 < x < ∞, t > 0, (12.17.36)
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with

u (x, 0) = 0, x > 0, (12.17.37)

u (0, t) = u0f (t) , t > 0, and u (x, t) → 0 as x → ∞. (12.17.38)

Application of the Laplace transform with respect to t gives

d2u

dx2
−

(
sα

κ

)
u (x, s) = 0, x > 0, (12.17.39)

u (0, s) = u0f (s) , u (x, s) → 0 as x → ∞.(12.17.40)

Evidently, the solution of this transformed boundary-value problem is

u (x, s) = u0 f (s) exp (−ax) , (12.17.41)

where a = (sα/κ)
1
2 . Thus, the solution (12.17.41) is given by

u (x, t) = u0

∫ t

0

f (t − τ) g (x, τ) dτ = u0f (t) ∗ g (x, t) , (12.17.42)

where

g (x, t) = L−1 {exp (−ax)} .

When α = 1 and f (t) = 1, solution (12.17.41) becomes

u (x, s) =
u0

s
exp

(
−x

√
s

κ

)
, (12.17.43)

which yields the classical solution in terms of the complementary error
function (see Debnath 1995)

u (x, t) = u0 erfc

(
x

2
√

κt

)
. (12.17.44)

In the classical case (α = 1), the more general solution is given by

u (x, t) = u0

∫ t

0

f (t − τ) g (x, τ) dτ = u0f (t) ∗ g (x, t) , (12.17.45)

where

g (x, t) = L−1

{
exp

(
−x

√
s

κ

)}
=

x

2
√

πκt3
exp

(
− x2

4κt

)
. (12.17.46)

(d) The Fractional Stokes and Rayleigh Problems in Fluid Dynamics
The classical Stokes problem (see Debnath 1995) deals with the un-

steady boundary layer flows induced in a semi-infinite viscous fluid bounded
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by an infinite horizontal disk at z = 0 due to nontorsional oscillations of
the disk in its own plane with a given frequency ω. When ω = 0, the
Stokes problem reduces to the classical Rayleigh problem where the un-
steady boundary layer flow is generated in the fluid from rest by moving
the disk impulsively in its own plane with constant velocity U .

We consider the unsteady fractional boundary layer equation for the
fluid velocity u (z, t) that satisfies the equation

∂αu

∂tα
= ν

∂2u

∂z2
, 0 < z < ∞, t > 0, (12.17.47)

with the given boundary and initial conditions

u (0, t) = Uf (t) , u (z, t) → 0 as z → ∞, t > 0, (12.17.48)

u (z, 0) = 0 for all z > 0, (12.17.49)

where ν is the kinematic viscosity, U is a constant velocity, and f (t) is an
arbitrary function of time t.

Application of the Laplace transform with respect to t gives

sα u (z, s) = ν
d2u

dz2
, 0 < z < ∞, (12.17.50)

u (0, s) = U f (s) , u (z, s) → 0 as z → ∞. (12.17.51)

Use of the Fourier sine transform (see Debnath 1995) with respect to z
yields

Us (k, s) =

(√
2

π
ν U

)
k f (s)

(sα + νk2)
. (12.17.52)

The inverse Fourier sine transform of (12.17.52) leads to the solution

u (z, s) =

(
2

π
ν U

)
f (s)

∫ ∞

0

k sin kz

(sα + νk2)
dk, (12.17.53)

and the inverse Laplace transform gives the solution for the velocity

u (z, t) =

(
2

π
ν U

)∫ ∞

0

k sin kz dk

∫ t

0

f (t − τ) τα−1Eα,α

(
−νk2τα

)
dτ.

(12.17.54)

When f (t) = exp (iωt), the solution of the fractional Stokes problem is

u (z, t) =

(
2νU

π

)
eiωt

∫ ∞

0

k sin kz dk

∫ t

0

e−iωτ τα−1Eα,α

(
−νk2τα

)
dτ.

(12.17.55)
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When α = 1, solution (12.17.55) reduces to the classical Stokes solution

u (z, t) =

(
2νU

π

)∫ ∞

0

(
1 − e−νtk2

) k sin kz

(iω + νk2)
dk. (12.17.56)

For the fractional Rayleigh problem, f (t) = 1 and the solution follows
from (12.17.54) in the form

u (z, t) =

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

τα−1Eα,α

(
−νk2τα

)
dτ. (12.17.57)

This solution reduces to the classical Rayleigh solution when α = 1 as

u (z, t) =

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

E1,1

(
−ντk2

)
dτ

=

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

exp
(
−ντk2

)
dτ

=

(
2U

π

)∫ ∞

0

(
1 − e−νtk2

) sin kz

k
dk,

which is (by (2.10.10) of Debnath 1995),

=

(
2U

π

)[
π

2
− π

2
erf

(
z

2
√

νt

)]
= Uerfc

(
z

2
√

νt

)
. (12.17.58)

The above analysis is in full agreement with the classical solutions of
the Stokes and Rayleigh problems (see Debnath 1995).

(e) The Fractional Unsteady Couette Flow
We consider the unsteady viscous fluid flow between the plate at z = 0 at

rest and the plate z = h in motion parallel to itself with a variable velocity
U (t) in the x-direction. The fluid velocity u (z, t) satisfies the fractional
equation of motion

∂αu

∂tα
= P (t) + ν

∂2u

∂z2
, 0 ≤ z ≤ h, t > 0, (12.17.59)

with the boundary and initial conditions

u (0, t) = 0 and u (h, t) = U (t) , t > 0, (12.17.60)

u (z, t) = 0 at t ≤ 0 for 0 ≤ z ≤ h, (12.17.61)

where − 1
ρ px = P (t) and ν is the kinematic viscosity of the fluid.

We apply the joint Laplace transform with respect to t and the finite
Fourier sine transform with respect to z defined by

¯̃us (n, s) =

∫ ∞

0

e−stdt

∫ h

0

u (z, t) sin
(nπz

h

)
dz (12.17.62)
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to the system (12.17.59)–(12.17.61) so that the transform solution is

¯̃us (n, s) =
P (s) 1

a [1 − (−1)
n
]

(sα + νa2)
+

νa (−1)
n+1

U (s)

(sα + νa2)
, (12.17.63)

where a =
(

nπ
h

)
and n is the finite Fourier sine transform variable.

Thus, the inverse Laplace transform yields

ũs (n, t) =
1

a
[1 − (−1)

n
]

∫ t

0

P (t − τ) τα−1Eα,α

(
−νa2τα

)
dτ

+νa (−1)
n+1

∫ t

0

U (t − τ) τα−1Eα,α

(
−νa2τα

)
dτ. (12.17.64)

Finally, the inverse finite Fourier sine transform leads to the solution

u (z, t) =
2

h

∞∑

n=1

ũs (n, t) sin
(nπz

h

)
. (12.17.65)

In particular, when α = 1, P (t) = constant, and U (t) = constant, then
solution (12.17.65) reduces to the solution of the generalized Couette flow
(see p. 277 Debnath 1995).

(f) Fractional Axisymmetric Wave-Diffusion Equation
The fractional axisymmetric wave-diffusion equation in an infinite do-

main

∂αu

∂tα
= a

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < r < ∞, t > 0, (12.17.66)

is called the diffusion or wave equation accordingly as a = κ or a = c2.
For the fractional diffusion equation, we prescribe the initial condition

u (r, 0) = f (r) , 0 < r < ∞. (12.17.67)

Application of the joint Laplace transform with respect to t and the Hankel
transform of zero order (see Section 12.12) with respect to r to (12.17.66)
and (12.17.67) gives the transform solution

¯̃u (k, s) =
sα−1f̃ (k)

(sα + κk2)
, (12.17.68)

where k, s are the Hankel and Laplace transform variables respectively.
The joint inverse transform leads to the solution

u (r, t) =

∫ ∞

0

kJ0 (kr) f̃ (k) Eα,1

(
−κk2tα

)
dk, (12.17.69)
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where J0 (kr) is the Bessel function of the first kind of order zero and f̃ (k)
is the zero-order Hankel transform of f (r).

When α = 1, solution (12.17.69) reduces to the classical solution that
was obtained by Debnath (see p 66, Debnath 2005).

On the other hand, we can solve the wave equation (12.17.66) with
a = c2 and the initial conditions

u (r, 0) = f (r) , ut (r, 0) = g (r) for 0 < r < ∞, (12.17.70)

provided the Hankel transforms of f (r) and g (r) exist.
Application of the joint Laplace and Hankel transform leads to the trans-

form solution

¯̃u (k, s) =
sα−1f̃ (k)

(sα + c2k2)
+

sα−2 g̃ (k)

(sα + c2k2)
. (12.17.71)

The joint inverse transformation gives the solution

u (r, t) =

∫ ∞

0

kJ0 (k, r) f̃ (k) Eα,1

(
−c2k2tα

)
dk

+

∫ ∞

0

kJ0 (k, r) g̃ (k) tEα,2

(
−c2k2tα

)
dk. (12.17.72)

When α = 2, (12.17.72) reduces to the classical solution (12.13.6).
In a finite domain 0 ≤ r ≤ a, the fractional diffusion equation (12.17.66)

has the boundary and initial data

u (r, t) = f (t) on r = a, t > 0, (12.17.73)

u (r, 0) = 0 for all r in (0, a) . (12.17.74)

Application of the joint Laplace and finite Hankel transform of zero order
(see pp. 317, 318, Debnath 1995) yields the solution

u (r, t) =
2

a2

∞∑

i=1

ũ (ki, t)
J0 (rki)

J2
1 (aki)

, (12.17.75)

where

ũ (ki, t) = (aκ ki) J1 (aki)

∫ t

0

f (t − τ) τα−1Eα,α

(
−κ k2

i τα
)
dτ. (12.17.76)

When α = 1, (12.17.75) reduces to (12.16.7).
Similarly, the fractional wave equation (12.17.66) with a = c2 in a finite

domain 0 ≤ r ≤ a with the boundary and initial conditions

u (r, t) = 0 on r = a, t > 0, (12.17.77)

u (r, 0) = f (r) and ut (r, 0) = g (r) for 0 < r < a, (12.17.78)
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can be solved by means of the joint Laplace and finite Hankel transforms.
The solution of this problem is

u (r, t) =
2

a2

∞∑

i=1

ũ (ki, t)
J0 (rki)

J2
1 (aki)

, (12.17.79)

where

ũ (ki, t) = f̃ (ki) Eα,1

(
−c2k2

i tα
)

+ g̃ (ki) tEα,2

(
−c2k2

i tα
)
. (12.17.80)

When α = 2, solution (12.17.79) reduces to the solution (11.4.26) obtained
by Debnath (1995).

(g) The Fractional Schrödinger Equation in Quantum Mechanics
The one-dimensional fractional Schrödinger equation for a free particle

of mass m is

i�
∂αψ

∂tα
= − �

2

2m

∂2ψ

∂x2
, −∞ < x < ∞, t > 0, (12.17.81)

ψ (x, 0) = ψ0 (x) , −∞ < x < ∞, (12.17.82)

ψ (x, t) → 0 as |x| → ∞, (12.17.83)

where ψ (x, t) is the wave function, h = 2π� = 6.625 × 10−27erg sec =
4.14 × 10−21MeV sec is the Planck constant, and ψ0 (x) is an arbitrary
function.

Application of the joint Laplace and Fourier transform to (12.17.81)–
(12.17.83) gives the solution in the transform space in the form

Ψ (k, s) =
sα−1Ψ0 (k)

sα + ak2
, a =

i�

2m
, (12.17.84)

where k, s represent the Fourier and the Laplace transforms variables.
The use of the joint inverse transform yields the solution

ψ (x, t) =
1√
2π

∫ ∞

−∞
eikxψ̃0 (k) Eα,1

(
−ak2tα

)
dk. (12.17.85)

= F−1
{

ψ̃0 (k) Eα,1

(
−ak2tα

)}
, (12.17.86)

which is, by Theorem 12.4.1, the Convolution Theorem of the Fourier trans-
form

=

∫ ∞

−∞
G (x − ξ, t) ψ0 (ξ) dξ, (12.17.87)

where

G (x, t) =
1√
2π

F−1
{
Eα,1

(
−ak2tα

)}

=
1

2π

∫ ∞

−∞
eikxEα,1

(
−ak2tα

)
dk. (12.17.88)
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When α = 1, solution (12.17.87) becomes

ψ (x, t) =

∫ ∞

−∞
G (x − ξ, t) ψ0 (ξ) dξ, (12.17.89)

where the Green’s function G (x, t) is given by

G (x, t) =
1

2π

∫ ∞

−∞
eikxE1,1

(
−ak2t

)
dk

=
1

2π

∫ ∞

−∞
exp

(
ikx − atk2

)
dk

=
1√
4πat

exp

(
− x2

4at

)
. (12.17.90)

This solution (12.17.89) is in perfect agreement with the classical solution
obtained by Debnath (1995).

12.18 Exercises

1. Find the Fourier transform of

(a) f (x) = exp
(
−ax2

)
, (b) f (x) = exp (−a |x|),

where a is a constant.
2. Find the Fourier transform of the gate function

fa (x) =

⎧
⎨
⎩

1, |x| < a, a is a positive constant.

0, |x| ≥ a.

3. Find the Fourier transform of

(a) f (x) = 1
|x| , (b) f (x) = χ[−a,a] (x) =

⎧
⎨
⎩

1, −a < x < a

0, otherwise,

(c) f (x) =

⎧
⎨
⎩

1 − |x|
a , |x| ≤ a

0, |x| ≥ a,

(d) f (x) = 1
(x2+a2) .

4. Find the Fourier transform of

(a) f (x) = sin
(
x2

)
, (b) f (x) = cos

(
x2

)
.
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5. Show that

I =

∫ ∞

0

e−a2x2

dx =
√

π/2a, a > 0,

by noting that

I2 =

∫ ∞

0

∫ ∞

0

e−a2(x2+y2)dx dy =

∫ π/2

0

∫ ∞

0

e−a2r2

r dr dθ.

6. Show that
∫ ∞

0

e−a2x2

cos bx dx =
(√

π/2a
)
e−b2/4a2

, a > 0.

7. Prove that

(a) f (x) = 1√
2π

∫ ∞

−∞
eikxF (k) dk = F−1 {F (k)},

(b) F [f (ax − b)] = 1
|a|e

ikb/aF (k/a) .

8. Prove the following properties of the Fourier convolution:

(a) f (x) ∗ g (x) = g (x) ∗ f (x), (b) f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(c) f ∗ (ag + bh) = a (f ∗ g) + b (f ∗ h), where a and b are constants,

(d) f ∗ 0 = 0 ∗ f = 0, (e) f ∗ 1 �= f ,

(f) f ∗
√

2π δ = f =
√

2π δ ∗ f ,

(g) F {f (x) g (x)} = (F ∗ G) (k) = 1√
2π

∫ ∞

−∞
F (k − ξ) G (ξ) dξ,

9. Prove the following properties of the Fourier convolution:

(a) d
dx {f (x) ∗ g (x)} = f ′ (x) ∗ g (x) = f (x) ∗ g′ (x),

(b) d2

dx2 [(f ∗ g) (x)] = (f ′ ∗ g′) (x) = (f ′′ ∗ g) (x),

(c) (f ∗ g)
(m+n)

(x) =
[
f (m) ∗ g(n)

]
(x),

(d)

∫ ∞

−∞
(f ∗ g) (x) dx =

∫ ∞

−∞
f (u) du

∫ ∞

−∞
g (v) dv.

(e) If g (x) = 1
2a H (a − x), then

(f ∗ g) (x) is the average value of f (x) in [x − a, x + a].
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(f) If Gt (x) = 1√
4πkt

exp
(
− x2

4κt

)
, then (Gt ∗ Gs) (x) = Gt+s (x).

10. Prove the following results:

(a) 1√
2π

∫ ∞

−∞
e−k2t−ikx dk = 1√

2t
e−x2/4t,

(b)

∫ ∞

−∞
F (k) g (k) eikx dk =

∫ ∞

−∞
f (y) G (y − x) dy,

(c)

∫ ∞

−∞
F (k) g (k) dk =

∫ ∞

−∞
f (y) G (y) dy,

(d) sinx ∗ e−a|x| =
√

2
π

a sin x
(1+a2) , (e) eax ∗ χ[0,∞) (x) = 1

a
eax
√

2π
, a > 0 ,

(f) 1√
2a

exp
(
−x2

4a

)
∗ 1√

2b
exp

(
−x2

4b

)
= 1√

2(a+b)
exp

(
− x2

4(a+b)

)
.

11. Determine the solution of the initial-value problem

utt = c2uxx, −∞ < x < ∞, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) , −∞ < x < ∞.

12. Solve

ut = uxx, x > 0, t > 0,

u (x, 0) = f (x) , u (0, t) = 0.

13. Solve

utt = c2uxxxx = 0, −∞ < x < ∞, t > 0,

u (x, 0) = f (x) , ut (x, 0) = 0, −∞ < x < ∞.

14. Solve

utt + c2uxxxx = 0, x > 0, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, x > 0,

u (0, t) = g (t) , uxx (0, t) = 0, t > 0.

15. Solve

φxx + φyy = 0, −a < x < a, 0 < y < ∞,

φy (x, 0) =

⎧
⎨
⎩

δ0, 0 < |x| < a,

0, |x| > a.

φ (x, y) → 0 uniformly in x as y → ∞.
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16. Solve

ut = uxx + t u, −∞ < x < ∞, t > 0,

u (x, 0) = f (x) , u (x, t) is bounded, −∞ < x < ∞.

17. Solve

ut − uxx + hu = δ (x) δ (t) , −∞ < x < ∞, t > 0,

u (x, 0) = 0, u (x, t) → 0 uniformly in t as |x| → ∞.

18. Solve

ut − uxx + h (t) ux = δ (x) δ (t) , 0 < x < ∞, t > 0,

u (x, 0) = 0, ux (0, t) = 0,

u (x, t) → 0 uniformly in t as x → ∞.

19. Solve

uxx + uyy = 0, 0 < x < ∞, 0 < y < ∞,

u (x, 0) = f (x) , 0 ≤ x < ∞,

ux (0, y) = g (y) , 0 ≤ y < ∞,

u (x, y) → 0 uniformly in x as x → ∞ and uniformly in y as x → ∞.

20. Solve

uxx + uyy = 0, −∞ < x < ∞, 0 < y < a,

u (x, 0) = f (x) , u (x, a) = 0, −∞ < x < ∞,

u (x, y) → 0 uniformly in y as |x| → ∞.

21. Solve

ut = uxx, x > 0, t > 0,

u (x, 0) = 0, x > 0, u (0, t) = f (t) , t > 0,

u (x, t) is bounded for all x and t.

22. Solve

uxx + uyy = 0, x > 0, 0 < y < 1,

u (x, 0) = f (x) , u (x, 1) = 0, x > 0,

u (0, y) = 0, u (x, y) → 0 uniformly in y as x → ∞.



12.18 Exercises 525

23. Find the Laplace transform of each of the following functions:

(a) tn, (b) cos ωt, (c) sinh kt,

(d) cosh kt, (e) teat, (f) eat sin ωt,

(g) eat cos ωt, (h) t sinh kt, (i) t cosh kt,

(j)
√

1
t , (k)

√
t, (l) sin at

t .

24. Find the inverse transform of each of the following functions:

(a) s
(s2+a2)(s2+b2) , (b) 1

(s2+a2)(s2+b2) ,

(c) 1
(s−a)(s−b) , (d) 1

s(s+a)2
,

(e) 1
s(s+a) , (f) s2−a2

(s2+a2)2
.

25. The velocity potential φ (x, z, t) and the free-surface evaluation η (x, t)
for surface waves in water of infinite depth satisfy the Laplace equation

φxx + φzz = 0, −∞ < x < ∞, −∞ < z ≤ 0, t > 0,

with the free-surface, boundary, and initial conditions

φz = ηt on z = 0, t > 0,

φt + gη = 0 on z = 0, t > 0,

φz → 0 as z → −∞,

φ (x, 0, 0) = 0 and η (x, 0) = f (x) , −∞ < x < ∞,

where g is the constant acceleration due to gravity.
Show that

φ (x, z, t) = −
√

g√
2π

∫ ∞

−∞
k− 1

2 F (k) e|k|z−ikx sin
(√

g |k| t
)

dk,

η (x, t) =
1√
2π

∫ ∞

−∞
F (k) e−ikx cos

(√
g |k| t

)
dk,

where k represents the Fourier transform variable.
Find the asymptotic solution for η (x, t) as t → ∞.

26. Use the Fourier transform method to show that the solution of the
one-dimensional Schrödinger equation for a free particle of mass m,

i�ψt = − �
2

2m
ψxx, −∞ < x < ∞, t > 0,

ψ (x, 0) = f (x) , −∞ < x < ∞,
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where ψ and ψx tend to zero as |x| → ∞, and h = 2π� is the Planck
constant, is given by

ψ (x, t) =
1√
2π

∫ ∞

−∞
f (ξ) G (x − ξ) dξ,

where G (x, t) = (1−i)
2
√

γt
exp

[
− x2

4iγt

]
is the Green’s function and γ = �

2m .

27. Prove the following properties of the Laplace convolution:

(a) f ∗ g = g ∗ f , (b) f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(c) f ∗ (αg + βh) = α (f ∗ g) + β (f ∗ h), α and β are constants,

(d) f ∗ 0 = 0 ∗ f ,

(e) d
dt [(f ∗ g) (t)] = f ′ (t) ∗ g (t) + f (0) g (t),

(f) d2

dt2 [(f ∗ g) (t)] = f ′′ (t) ∗ g (t) + f ′ (0) g (t) + f (0) g′ (t),

(g) dn

dtn [(f ∗ g) (t)] = f (n) (t) ∗ g (t) +

n−1∑

k=0

f (k) (0) g(n−k−1) (t).

28. Obtain the solution of the problem

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , ut (x, 0) = 0,

u (0, t) = 0, u (x, t) → 0 uniformly in t as x → ∞.

29. Solve

utt = c2uxx, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = 0,

u (0, t) = f (t) , u (l, t) = 0, t ≥ 0.

30. Solve

ut = κuxx, 0 < x < ∞, t > 0,

u (x, 0) = f0, 0 < x < ∞,

u (0, t) = f1, u (x, t) → f0 uniformly in t as x → ∞, t > 0.

31. Solve

ut = κuxx, 0 < x < ∞, t > 0,

u (x, 0) = x, x > 0,

u (0, t) = 0, u (x, t) → x uniformly in t as x → ∞, t > 0.
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32. Solve

ut = κuxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, 0 < x < ∞,

u (0, t) = t2, u (x, t) → 0 uniformly in t as x → ∞, t ≥ 0.

33. Solve

ut = κuxx − hu, 0 < x < ∞, t > 0, h = constant,

u (x, 0) = f0, x > 0,

u (0, t) = 0, ux (0, t) → 0 uniformly in t as x → ∞, t > 0.

34. Solve

ut = κuxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, 0 < x < ∞,

u (0, t) = f0, u (x, t) → 0 uniformly in t as x → ∞, t > 0.

35. Solve

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, ut (x, 0) = f0, 0 < x < ∞,

u (0, t) = 0, ux (x, t) → 0 uniformly in t as x → ∞, t > 0.

36. Solve

utt = c2uxx, 0 < x < ∞, t > 0,

u (x, 0) = f (x) , ut (x, 0) = 0, 0 < x < ∞,

u (0, t) = 0, ux (x, t) → 0 uniformly in t as x → ∞, t > 0.

37. A semi-infinite lossless transmission line has no initial current or poten-
tial. A time dependent EMF , V0 (t) H (t) is applied at the end x = 0.
Find the potential V (x, t). Then determine the potential for cases: (i)
V0 (t) = V0 = constant, and (ii) V0 (t) = V0 cos ωt.

38. Solve the Blasius problem of an unsteady boundary layer flow in a semi-
infinite body of viscous fluid enclosed by an infinite horizontal disk at
z = 0. The governing equation, boundary, and initial conditions are

∂u

∂t
= ν

∂2u

∂z2
, z > 0, t > 0,

u (z, t) = Ut on z = 0, t > 0,

u (z, t) → 0 as z → ∞, t > 0,

u (z, t) = 0 at t ≤ 0, z > 0.

Explain the implication of the solution.
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39. The stress-strain relation and equation of motion for a viscoelastic rod
in the absence of external force are

∂e

∂t
=

1

E

∂σ

∂t
+

σ

η
,

∂σ

∂x
= ρ

∂2u

∂t2
,

where e is the strain, η is the coefficient of viscosity, and the displace-
ment u (x, t) is related to the strain by e = ∂u/∂x. Prove that the stress
σ (x, t) satisfies the modified wave equation

∂2σ

∂x2
− ρ

η

∂σ

∂t
=

1

c2

∂2σ

∂t2
, c2 = E/ρ.

Show that the stress distribution in a semi-infinite viscoelastic rod sub-
ject to the boundary and initial conditions,

u̇ (0, t) = U H (t) , σ (x, t) → 0 as x → ∞, t > 0,

σ (x, 0) = 0, u̇ (x, 0) = 0,

is given by

σ (x, t) = −Uρc exp

(
−Et

2η

)
I0

[
Et

2η

(
t2 − x2

c2

) 1
2

]
H

(
t − x

c

)
.

40. An elastic string is stretched between x = 0 and x = l and is initially
at rest in the equilibrium position. Show that the Laplace transform
solution for the displacement field subject to the boundary conditions
y (0, t) = f (t) and y (l, t) = 0, t > 0 is

y (x, s) = f (s)
sinh

{
s
c (l − x)

}

sinh sl
c

.

41. The end x = 0 of a semi-infinite submarine cable is maintained at
a potential V0H (t). If the cable has no initial current and potential,
determine the potential V (x, t) at point x and at time t.

42. Obtain the solution of the Stokes–Ekman problem (see Debnath, 1995)
of an unsteady boundary layer flow in a semi-infinite body of viscous
fluid bounded by an infinite horizontal disk at z = 0, when both the
fluid and the disk rotate with a uniform angular velocity Ω about the z-
axis. The governing boundary layer equation, the boundary conditions,
and the initial conditions are

∂q

∂t
+ 2Ωiq = ν

∂2q

∂z2
, z > 0, t > 0,

q (z, t) = aeiωt + be−iωt on z = 0, t > 0,

q (z, t) → 0 as z → ∞, t > 0,

q (z, t) = 0 at t ≤ 0, for all z > 0,
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where q = u + iv, is the complex velocity field, ω is the frequency
of oscillations of the disk, and a and b are complex constants. Hence,
deduce the steady-state solution, and determine the structure of the
associated boundary layers.

43. Show that, when ω = 0 in the Stokes–Ekman problem 42, the steady
flow field is given by

q (z, t) ∼ (a + b) exp

{
−

(
2iΩ

ν

) 1
2

z

}
.

Hence determine the thickness of the Ekman layer.

44. For problem 14 (e) (iii) in 3.9 Exercises, show that the potential V (x, t)
and the current I (x, t) satisfy the partial differential equation

(
∂2

∂t2
+ 2k

∂

∂t
+ k2

)
(V, I) = c2 ∂2

∂x2
(V, I) .

Find the solution for V (x, t) with the boundary and initial data

V (x, t) = V0 (t) at x = 0, t > 0,

V (x, t) → 0 as x → ∞, t > 0,

V (x, 0) = Vt (x, 0) = 0 for 0 ≤ x < ∞.

45. Use the Laplace transform to solve the Abel integral equation

g (t) =

∫ t

0

f ′ (τ) (t − τ)
−α

dτ, 0 < α < 1.

46. Solve Abel’s problem of tautochronous motion described in problem 17
of 14.11 Exercises.

47. The velocity potential φ (r, z, t) and the free-surface elevation η (r, t)
for axisymmetric surface waves in water of infinite depth satisfy the
equation

φrr +
1

r
φr + φzz = 0, 0 ≤ r < ∞, −∞ < z ≤ 0, t > 0,

with the free-surface, boundary, and initial conditions

φz = ηz on z = 0, t > 0,

φt + gη = 0, on z = 0, t > 0,

φz → 0, z → −∞,

φ (r, 0, 0) = 0, and η (r, 0) = f (r) , 0 ≤ r < ∞,

where g is the acceleration due to gravity and f (r) represents the initial
elevation.
Show that
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φ (r, z, t) = −√
g

∫ ∞

0

√
k f̃ (k) J0 (kr) ekz sin

(√
gk t

)
dk,

η (r, t) =

∫ ∞

0

k f̃ (k) J0 (kr) cos
(√

gk t
)

dk,

where f̃ (k) is the zero-order Hankel transform of f (r).
Derive the asymptotic solution

η (r, t) ∼ gt2

2
3
2 r3

f̃

(
gt2

4r2

)
cos

(
gt2

4r

)
as t → ∞.

48. Write the solution for the Cauchy–Poisson problem where the initial
elevation is concentrated in the neighborhood of the origin, that is,
f (r) = (a/2πr) δ (r), where a is the total volume of the fluid displaced.

49. The steady temperature distribution u (r, z) in a semi-infinite solid with
z ≥ 0 is governed by the system

urr +
1

r
ur + uzz = −Aq (r) , 0 < r < ∞, z > 0,

u (r, 0) = 0,

where A is a constant and q (r) represents the steady heat source. Show
that the solution is given by

u (r, z) = A

∫ ∞

0

q̃ (k) J0 (kr) k−1
(
1 − e−kz

)
dk,

where q̃ (k) is the zero-order Hankel transform of q (r).

50. Find the solution for the small deflection u (r) of an elastic membrane
subjected to a concentrated loading distribution which is governed by

urr +
1

r
ur − κ2u =

1

2π

δ (r)

r
, 0 ≤ r < ∞,

where u and its derivatives vanish as r → ∞.

51. Obtain the solution for the potential v (r, z) due to a flat electrified disk
of radius unity with the center of the disk at the origin and the axis
along the z-axis. The function v (r, z) satisfies the Laplace equation

vrr +
1

r
vr − vzz = 0, 0 < r < ∞, z > 0,

with the boundary conditions

v (r, 0) = v0, 0 ≤ r < 1,

vz (r, 0) = 0, r > 1.
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52. Prove that the Fourier sine and cosine transforms are linear.

53. If Fs (n) is the Fourier sine transform of f (x) on 0 ≤ x ≤ l, show that

Fs [f ′′ (x)] =
2nπ

l2
[f (0) − (−1)

n
f (l)] −

(nπ

l

)2

Fs (n) .

54. If Fc (n) is the Fourier cosine transform of f (x) on 0 ≤ x ≤ l, show
that

Fc [f ′′ (x)] =
2

l
[(−1)

n
f ′ (l) − f ′ (0)] −

(nπ

l

)2

Fc (n) .

When l = π, show that

Fc [f ′′ (x)] =
2

π
[(−1)

n
f ′ (π) − f ′ (0)] − n2Fc (n) .

55. By the transform method, solve

ut = uxx + g (x, t) , 0 < x < π, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) → 0 t > 0.

56. By the transform method, solve

ut = uxx + g (x, t) , 0 < x < π, t > 0,

u (x, 0) = 0, 0 < x < π,

u (0, t) = 0, ux (π, t) + hu (π, t) = 0, t > 0.

57. By the transform method, solve

ut = uxx + g (x, t) , 0 < x < π, t > 0,

u (x, 0) = 0, 0 < x < π,

u (0, t) = 0, ux (π, t) = 0, t > 0.

58. By the transform method, solve

ut = uxx − hu, 0 < x < π, t > 0,

u (x, 0) = sinx, 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) = 0, t > 0.

59. By the transform method, solve

utt = uxx + h, 0 < x < π, t > 0, h = constant,

u (x, 0) = 0, ut (x, 0) = 0, 0 < x < π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.
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60. By the transform method, solve

utt = uxx + g (x) , 0 < x < π, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 < x < π,

u (0, t) = 0, u (π, t) = 0, t > 0.

61. By the transform method, solve

utt + c2uxxxx = 0, 0 < x < π, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 < x < π,

u (0, t) = 0, u (π, t) = 0, t > 0.

uxx (0, t) = 0, uxx (π, t) = sin t, t ≥ 0.

62. Find the temperature distribution u (r, t) in a long cylinder of radius
a when the initial temperature is constant, u0, and radiation occurs at
the surface into a medium with zero temperature. Here u (r, t) satisfies
the initial boundary-problem

ut = κ

(
urr +

1

r
ur

)
, 0 ≤ r < a, t > 0,

ur + α u = 0 at r = a, t > 0,

u (r, 0) = u0 for 0 ≤ r < a,

where κ and α are constants.

63. Apply the finite Fourier sine transform to solve the longitudinal dis-
placement field in a uniform bar of length l and cross section A sub-
jected to an external force FA applied at the end x = l. The governing
equation and boundary and initial conditions are

c2uxx = utt,

(
c2 =

E

ρ

)
, 0 < x < l, t > 0,

u (0, t) = 0 E u (l, t) = F, t > 0,

u (x, 0) = ut (x, 0) = 0, 0 < x < l,

where E is the constant Young’s modulus, ρ is the density, and F is
constant.

64. Use the finite Fourier cosine transform to solve the heat conduction
problem

ut = κuxx, 0 < x < l, t > 0,

ux (x, t) = 0 at x = 0 and x = l, t > 0,

u (x, 0) = u0 for 0 < x < l,

where u0 and κ are constant.
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65. Use the Mellin transform to find the solution of the integral equation
∫ ∞

−∞
f (x) k (xt) dx = g (t) , t > 0.

66. Use the Mellin transform to show the following results:

(a)
∞∑

n=1

f (n) = 1
2πi

∫ c+i∞

c−i∞
ζ (p) F (p) dp,

(b)

∞∑

n=1

f (nx) = M−1 [ζ (p) F (p)],

where ζ (s) is the Riemann zeta function defined by (6.7.13).

67. Show that the solution of the boundary-value problem

urr +
1

r
ur + uzz = 0, r ≥ 0, z > 0,

u (r, 0) = u0 for 0 ≤ r ≤ a,

u (r, z) → 0 as z → ∞,

is

u (r, z) = au0

∫ ∞

0

J1 (ak) J0 (kr) e−kzdk.

68. Show that the asymptotic representation of the Bessel function Jn (kr)
for large kr is

Jn (kr) =
1

π

∫ π

0

cos (nθ − kr sin θ) dθ ∼
(

2

πkr

) 1
2

cos
(
kr − nπ

2
− π

4

)
.

69. (a) Use the Laplace transform to solve the heat conduction problem

ut = κuxx, 0 < x < ∞, t > 0,

u (x, 0) = 0, x > 0,

u (0, t) = f (t) , u (x, t) → 0 as x → ∞, t > 0.

(b) Derive Duhamel’s formula

u (x, t) =

∫ t

0

f (t − τ)

(
∂u0

∂τ

)
dτ,

where
(

∂u0

∂t

)
=

x√
4πκ

t−3/2 exp

(
− x2

4κt

)
.





13

Nonlinear Partial Differential Equations with

Applications

“True Laws of Nature cannot be linear.”

Albert Einstein

“... the progress of physics will to a large extent depend on the progress
of nonlinear mathematics, of methods to solve nonlinear equations ... and
therefore we can learn by comparing different nonlinear problems.”

Werner Heisenberg

13.1 Introduction

The three-dimensional linear wave equation

utt = c2 ∇2u, (13.1.1)

arises in the areas of elasticity, fluid dynamics, acoustics, magnetohydrody-
namics, and electromagnetism.

The general solution of the one-dimensional equation (13.1.1) is

u (x, t) = φ (x − ct) + ψ (x + ct) , (13.1.2)

where φ and ψ are determined by the initial or boundary conditions. Phys-
ically, φ and ψ represent waves moving with constant speed c and without
change of shape, along the positive and the negative directions of x respec-
tively.

The solutions φ and ψ correspond to the two factors when the one-
dimensional equation (13.1.1) is written in the form

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = 0. (13.1.3)
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Obviously, the simplest linear wave equation is

ut + c ux = 0, (13.1.4)

and its solution u = φ (x − ct) represents a wave moving with a constant
velocity c in the positive x-direction without change of shape.

13.2 One-Dimensional Wave Equation and Method of

Characteristics

The simplest first-order nonlinear wave equation is given by

ut + c (u) ux = 0, −∞ < x < ∞, t > 0, (13.2.1)

where c (u) is a given function of u.
We solve this nonlinear equation subject to the initial condition

u (x, 0) = f (x) , −∞ < x < ∞. (13.2.2)

Before we discuss the method of solution, the following comments are
in order. First, unlike linear differential equations, the principle of super-
position cannot be applied to find the general solution of nonlinear partial
differential equations. Second, the effect of nonlinearity can change the en-
tire nature of the solution. Third, a study of the above initial-value problem
reveals most of the important ideas for nonlinear hyperbolic waves. Finally,
a large number of physical and engineering problems are governed by the
above nonlinear system or an extension of it.

Although the nonlinear system governed by (13.2.1)–(13.2.2) looks sim-
ple, it poses nontrivial problems in applied mathematics, and it leads sur-
prisingly to new phenomena. We solve the system by the method of char-
acteristics.

In order to construct continuous solutions, we consider the total differ-
ential du given by

du =
∂u

∂t
dt +

∂u

∂x
dx, (13.2.3)

so that the points (x, t) are assumed to lie on a curve Γ . Then, dx/dt
represents the slope of the curve Γ at any point P on Γ . Thus, equation
(13.2.3) becomes

du

dt
= ut +

(
dx

dt

)
ux. (13.2.4)

It follows from this result that (13.2.1) can be regarded as the ordinary
differential equation

du

dt
= 0, (13.2.5)
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along any member of the family of curves Γ which are the solution curves
of

dx

dt
= c (u) . (13.2.6)

These curves Γ are called the characteristic curves of the main equation
(13.2.1). Thus, the solution of (13.2.1) has been reduced to the solution of
a pair of simultaneous ordinary differential equations (13.2.5) and (13.2.6).
Clearly, both the characteristic speed and the characteristics depend on the
solution u.

Equation (13.2.5) implies that u = constant along each characteristic
curve Γ , and each c (u) remains constant on Γ . Therefore, (13.2.6) shows
that the characteristic curves of (13.2.1) form a family of straight lines in
the (x, t)-plane with slope c (u). This indicates that the general solution of
(13.2.1) depends on finding the family of lines. Also, each line with slope
c (u) corresponds to the value of u on it. If the initial point on the charac-
teristic curve Γ is denoted by ξ and if one of the curves Γ intersects t = 0
at x = ξ, then u (ξ, 0) = f (ξ) on the whole of that curve Γ as shown in
Figure 13.2.1.

Thus, we have the following characteristic form on Γ :

dx

dt
= c (u) , x (0) = ξ, (13.2.7)

du

dt
= 0, u (ξ, 0) = f (ξ) . (13.2.8)

These constitute a pair of coupled ordinary differential equations on Γ .
Equation (13.2.7) cannot be solved independently because c is a function

of u. However, (13.2.8) can readily be solved to obtain u = constant and

Figure 13.2.1 A characteristic curve.
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hence, u = f (ξ) on the whole of Γ . Thus, (13.2.7) leads to

dx

dt
= F (ξ) , x (0) = ξ, (13.2.9)

where

F (ξ) = c (f (ξ)) . (13.2.10)

Integrating equation (13.2.9) gives

x = tF (ξ) + ξ. (13.2.11)

This represents the characteristic curve which is a straight line whose slope
is not a constant, but depends on ξ.

Combining these results, we obtain the solution of the initial-value prob-
lem in parametric form

u (x, t)
x

=
=

f (ξ)
ξ + t F (ξ)

}
, (13.2.12)

where

F (ξ) = c (f (ξ)) .

We next verify that this final form represents an analytic expression of
the solution. Differentiating (13.2.12) with respect to x and t, we obtain

ux = f ′ (ξ) ξx, ut = f ′ (ξ) ξt,

1 = {1 + tF ′ (ξ)} ξx,

0 = F (ξ) + {1 + tF ′ (ξ)} ξt.

Elimination of ξx and ξt gives

ux =
f ′ (ξ)

1 + tF ′ (ξ)
, ut = −F (ξ) f ′ (ξ)

1 + tF ′ (ξ)
. (13.2.13)

Since F (ξ) = c (f (ξ)), equation (13.2.1) is satisfied provided 1+tF ′ (ξ) �= 0.
The solution (13.2.12) also satisfies the initial condition at t = 0, since

ξ = x, and the solution (13.2.12) is unique.
Suppose that u (x, t) and v (x, t) are two solutions. Then, on x = ξ +

tF (ξ),

u (x, t) = u (ξ, 0) = f (ξ) = v (x, t) .

Thus, we have proved the following:
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Theorem 13.2.1. The nonlinear initial-value problem

ut + c (u) ux = 0, −∞ < x < ∞, t > 0,

u (x, t) = f (x) , at t = 0, −∞ < x < ∞,

has a unique solution provided 1+tF ′ (ξ) �= 0, f and c are C1 (R) functions
where F (ξ) = c (f (ξ)).

The solution is given in the parametric form:

u (x, t) = f (ξ) ,

x = ξ + tF (ξ) .

Remark: When c (u) = constant = c > 0, equation (13.2.1) becomes the
linear wave equation (13.1.4). The characteristic curves are x = ct + ξ and
the solution u is given by

u (x, t) = f (ξ) = f (x − ct) .

Physical Significance of (13.2.12).

We assume c (u) > 0. The graph of u at t = 0 is the graph of f . In view of
the fact

u (x, t) = u (ξ + tF (ξ) , t) = f (ξ)

the point (ξ, f (ξ)) moves parallel to the x-axis in the positive direction
through a distance tF (ξ) = ct, and the distance moved (x = ξ + ct) de-
pends on ξ. This is a typical nonlinear phenomenon. In the linear case, the
curve moves parallel to the x-axis with constant velocity c, and the solu-
tion represents waves travelling without change of shape. Thus, there is a
striking difference between the linear and the nonlinear solution.

Theorem 13.2.1 asserts that the solution of the nonlinear initial-value
problem exists provided

1 + tF ′ (ξ) �= 0, x = ξ + tF ′ (ξ) . (13.2.14)

However, the former condition is always satisfied for sufficiently small time
t. By a solution of the problem, we mean a differentiable function u (x, t).
It follows from results (13.2.13) that both ux and ut tend to infinity as
1 + tF ′ (ξ) → 0. This means that the solution develops a singularity (dis-
continuity) when 1+ tF ′ (ξ) = 0. We consider a point (x, t) = (ξ, 0) so that
this condition is satisfied on the characteristics through the point (ξ, 0) at
a time t such that

t = − 1

F ′ (ξ)
(13.2.15)
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which is positive provided F ′ (ξ) = c′ (f) f ′ (ξ) < 0. If we assume c′ (f) > 0,
the above inequality implies that f ′ (ξ) < 0. Hence, the solution (13.2.12)
ceases to exist for all time if the initial data is such that f ′ (ξ) < 0 for some
value of ξ. Suppose t = τ is the time when the solution first develops a
singularity (discontinuity) for some value of ξ. Then

τ = − 1

min−∞<ξ<∞ {c′ (f) f ′ (ξ)} > 0.

We draw the graphs of the nonlinear solution u (x, t) = f (ξ) below for
different values of t = 0, τ , 2τ , . . .. The shape of the initial curve for u (x, t)
changes with increasing values of t, and the solution becomes multiple-
valued for t ≥ τ . Therefore, the solution breaks down when F ′ (ξ) < 0 for
some ξ, and such breaking is a typical nonlinear phenomenon. In linear
theory, such breaking will never occur.

More precisely, the development of a singularity in the solution for t ≥ τ
can be seen by the following consideration. If f ′ (ξ) < 0, we can find two
values of ξ = ξ1, ξ2 (ξ1 < ξ2) on the initial line such that the characteristics
through them have different slopes 1/c (u1) and 1/c (u2) where u1 = f (ξ1)
and u2 = f (ξ2) and c (u2) < c (u1). Thus, these two characteristics will
intersect at a point in the (x, t)-plane for some t > 0. Since the character-
istics carry constant values of u, the solution ceases to be single-valued at
their point of intersection. Figure 13.2.2 shows that the wave profile pro-
gressively distorts itself, and at any instant of time there exists an interval
on the x-axis, where u assumes three values for a given x. The end result
is the development of a nonunique solution, and this leads to breaking.

Therefore, when conditions (13.2.14) are violated the solution develops
a discontinuity known as a shock. The analysis of shock involves extension
of a solution to allow for discontinuities. Also, it is necessary to impose on
the solution certain restrictions to be satisfied across its discontinuity. This
point will be discussed further in a subsequent section.

13.3 Linear Dispersive Waves

We consider a single linear partial differential equation with constant coef-
ficients in the form

P

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
u (x, t) = 0, (13.3.1)

where P is a polynomial in partial derivatives and x = (x, y, z).
We seek an elementary plane wave solution of (13.3.1) in the form

u (x, t) = a ei(κκκ·x−ωt), (13.3.2)

where a is the amplitude, κκκ = (k, l, m) is the wavenumber vector, ω is
the frequency and a, κκκ, ω are constants. When this plane wave solution is
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Figure 13.2.2 The solution u (x, t) for different times t = 0, τ and 2τ ; the
characteristics are shown by the dotted lines; two of them from x = ξ1 and
x = ξ2 intersect at t > τ .

substituted in the equation, ∂/∂t, ∂/∂x, ∂/∂y, and ∂/∂z produce factors
−iω, ik, il, and im respectively, and the solution exists provided ω and κκκ
are related by an equation

P (−iω, ik, il, im) = 0. (13.3.3)

This equation is known as the dispersion relation. Evidently, we have a
direct correspondence between equation (13.3.1) and the dispersion relation
(13.3.3) through the correspondence

∂

∂t
↔ −iω,

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
↔ i (k, l, m) . (13.3.4)

Equation (13.3.1) and the corresponding dispersion relation (13.3.3) in-
dicate that the former can be derived from the latter and vice-versa by us-
ing (13.3.4). The dispersion relation characterizes the plane wave motion.
In many problems, the dispersion relation can be written in the explicit
form

ω = W (k, l, m) . (13.3.5)

The phase and the group velocities of the waves are defined by

Cp (κκκ) =
ω

κ
κ̂κκ, (13.3.6)

Cg (κκκ) = ∇κκκω, (13.3.7)
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where κ̂κκ is the unit vector in the direction of wave vector κκκ.
In the one-dimensional case, (13.3.5)–(13.3.7) become

ω = W (k) , Cp =
ω

k
, Cg =

dω

dk
. (13.3.8)

The one-dimensional waves given by (13.3.2) are called dispersive if the
group velocity Cg ≡ ω′ (k) is not constant, that is, ω′′ (k) �= 0. Physically,
as time progresses, the different waves disperse in the medium with the
result that a single hump breaks into wavetrains.

Example 13.3.1.

(i) Linearized one-dimensional wave equation

utt − c2uxx = 0, ω = + ck. (13.3.9)

(ii) Linearized Korteweg and de Vries (KdV) equation for long water waves

ut + αux + βuxxx = 0, ω = αk − βk3. (13.3.10)

(iii) Klein–Gordon equation

utt − c2uxx + α2u = 0, ω = +
(
c2k2 + α2

) 1
2 . (13.3.11)

(iv) Schrödinger equation in quantum mechanics and de Broglie waves

i� ψt −
(

V − �
2

2m
∇2

)
ψ = 0, � ω =

�
2κ2

2m
+ V, (13.3.12)

where V is a constant potential energy, and h = 2π� is the Planck
constant.

The group velocity of de Broglie wave is (�κκκ/m), and through the corre-
spondence principle, �ω is to be interpreted as the total energy,

(
�

2κκκ2/2m
)

as the kinetic energy, and �κκκ as the particle momentum. Hence, the group
velocity is the classical particle velocity.

(v) Equation for vibration of a beam

utt + α2uxxxx = 0, ω = +αk2. (13.3.13)

(vi) The dispersion relation for water waves in an ocean of depth h

ω2 = gk tanh kh, (13.3.14)

where g is the acceleration due to gravity.
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(vii) The Boussinesq equation

utt − α2∇2u − β2∇2utt = 0, ω = +
ακ√

1 + β2κ2
. (13.3.15)

This equation arises in elasticity for longitudinal waves in bars, long
water waves, and plasma waves.

(viii) Electromagnetic waves in dielectrics

(
utt + ω2

0u
) (

utt − c2
0uxx

)
− ω2

putt = 0,
(
ω2 − ω2

0

) (
ω2 − c2

0k
2
)

− ω2
pω2 = 0, (13.3.16)

where ω0 is the natural frequency of the oscillator, c0 is the speed of
light, and ωp is the plasma frequency.

In view of the superposition principle, the general solution can be obtained
from (13.3.2) with the dispersion solution (13.3.3). For the one-dimensional
case, the general solution has the Fourier integral representation

u (x, t) =

∫ ∞

−∞
F (k) ei[kx−tW (k)]dk, (13.3.17)

where F (k) is chosen to satisfy the initial or boundary data provided the
data are physically realistic enough to have Fourier transforms.

In many cases, as cited in Example 13.3.1, there are two modes ω =
+ W (k) so that the solution (13.3.17) has the form

u (x, t) =

∫ ∞

−∞
F1 (k) ei[kx−tW (k)]dk +

∫ ∞

−∞
F2 (k) ei[kx−tW (k)]dk, (13.3.18)

with the initial data at t = 0

u (x, t) = φ (x) , ut (x, t) = ψ (x) . (13.3.19)

The initial conditions give

φ (x) =

∫ ∞

−∞
[F1 (k) + F2 (k)] eikxdk,

ψ (x) = −i

∫ ∞

−∞
[F1 (k) + F2 (k)]W (k) eikxdk.

Applying the Fourier inverse transformations, we have

F1 (k) + F2 (k) = Φ (k) =
1√
2π

∫ ∞

−∞
φ (x) e−ikxdx,

−iW (k) [F1 (k) − F2 (k)] = Ψ (k) =
1√
2π

∫ ∞

−∞
ψ (x) e−ikxdx,
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so that

[F1 (k) + F2 (k)] =
1

2

[
Φ (k) +

i Ψ (k)

W (k)

]
. (13.3.20)

The asymptotic behavior of u (x, t) for large t with fixed (x/t) can be
obtained by the Kelvin stationary phase approximation. For real φ (x),
ψ (x), Φ (−k) = Φ∗ (k) and Ψ (−k) = Ψ∗ (k), where the asterisk denotes a
complex conjugate. It follows from (13.3.20) that, for W (k) even

[F1 (−k) , F2 (−k)] = [F ∗
2 (k) , F ∗

1 (k)] , (13.3.21)

and for W (k) odd,

[F1 (−k) , F2 (−k)] = [F ∗
1 (k) , F ∗

2 (k)] . (13.3.22)

In particular, when φ (x) = δ (x) and ψ (x) ≡ 0, then F1 (k) = F2 (k) =
1/

√
8π, and the solution (13.3.18) reduces to the form

u (x, t) =

√
2

π

∫ ∞

0

cos kx cos {tW (k)} dk. (13.3.23)

In order to obtain the asymptotic approximation by the Kelvin station-
ary phase method (see Section 12.7) for t → ∞, we consider both cases
when W (k) is even (W ′ (k) is odd) and when W (k) is odd (W ′ (k) is even)
and make an extra reasonable assumption that W ′ (k) is monotonic and
positive for k > 0. It turns out that the asymptotic solution for t → ∞ is

u (x, t) ∼ 2 Re

{
F1 (k)

{
2π

t |W ′′ (k)|

} 1
2

exp
[
i
{

θ (x, t) − π

4
sgn W ′′ (k)

}]}

+ O

(
1

t

)
,

= Re
[
a (x, t) eiθ(x,t)

]
, (13.3.24)

where k (x, t) is the positive root of the equation

W ′ (k) =
x

t
, ω = W (k) ,

x

t
> 0, (13.3.25ab)

θ (x, t) = x k (x, t) − t ω (x, t) , (13.3.26)

and

a (x, t) = 2F1 (k)

{
2π

t |W ′′ (k)|

} 1
2

exp

{
− iπ

4
sgn W ′′ (k)

}
. (13.3.27)

It is important to point out that solution (13.3.24) has a form similar
to that of the elementary plane wave solution, but k, ω, and a are no
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longer constants; they are functions of space variable x and time t. The
solution still represents an oscillatory wavetrain with the phase function
θ (x, t) describing the variations between local maxima and minima. Unlike
the elementary plane wavetrain, the present asymptotic result (13.3.24)
represents a nonuniform wavetrain in the sense that the amplitude, the
distance, and the time between successive maxima are not constant.

It also follows from (13.3.25a) that

kt

k
= − W ′ (k)

kW ′′ (k) t

1

t
∼ O

(
1

t

)
, (13.3.28)

kx

k
= − 1

kW ′′ (k)

1

t
∼ O

(
1

t

)
. (13.3.29)

These results indicate the k (x, t) is a slowly varying function of x and t as
t → ∞. Applying a similar argument to ω and a, we conclude that k (x, t),
ω (x, t), and a (x, t) are slowly varying functions of x and t as t → ∞.

Finally, all these results seem to provide an important clue for natural
generalization of the concept of nonlinear and nonuniform wavetrains.

13.4 Nonlinear Dispersive Waves and Whitham’s

Equations

To describe a slowly varying nonlinear and nonuniform oscillatory wavetrain
in a medium (see Whitham, 1974), we assume the existence of a solution
in the form (13.3.24) so that

u (x, t) = a (x, t) eiθ(x,t) + c.c., (13.4.1)

where c.c. stands for the complex conjugate, a (x, t) is the complex ampli-
tude given by (13.3.27), and the phase function θ (x, t) is

θ (x, t) = x k (x, t) − t ω (x, t) , (13.4.2)

and k, ω, and a are slowly varying function of x and t.
Due to slow variations of k and ω, it is reasonable to assume that these

quantities still satisfy the dispersion relation

ω = W (k) . (13.4.3)

Differentiating (13.4.2) with respect to x and t respectively, we obtain

θx = k + {x − tW ′ (k)} kx, (13.4.4)

θt = −W (k) + {x − tW ′ (k)} kt. (13.4.5)

In the neighborhood of stationary points defined by (13.3.25a), these
results become
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θx = k (x, t) , θt = −ω (x, t) . (13.4.6)

These results can be used as a definition of local wavenumber and local
frequency of the slowly varying nonlinear wavetrain.

In view of (13.4.6), relation (13.4.3) gives a nonlinear partial differential
equation for the phase θ in the form

∂θ

∂t
+ W

(
∂θ

∂x

)
= 0. (13.4.7)

The solution of this equation determines the geometry of the wave pattern.
However, it is convenient to eliminate θ from (13.4.6) to obtain

∂k

∂t
+

∂ω

∂t
= 0. (13.4.8)

This is known as the Whitham equation for the conservation of waves, where
k represents the density of waves and ω is the flux of waves.

Using the dispersion relation (13.4.3), we obtain

∂k

∂t
+ Cg (k)

∂k

∂x
= 0, (13.4.9)

where Cg (k) = W ′ (k) is the group velocity. This represents the simplest
nonlinear wave (hyperbolic) equation for the propagation of k with the
group velocity Cg (k).

Since equation (13.4.9) is similar to (13.2.1), we can use the analysis of
Section 13.2 to find the general solution of (13.4.9) with the initial condition
k (x, 0) = f (x) at t = 0. In this case, the solution has the form

k (x, t) = f (ξ) , x = ξ + tF (ξ) , (13.4.10)

where F (ξ) = Cg (f (ξ)). This further confirms the propagation of k with
the velocity Cg. Some physical interpretations of this kind of solution have
already been discussed in Section 13.2.

Equations (13.4.9) and (13.4.3) reveal that ω also satisfies the nonlinear
wave (hyperbolic) equation

∂ω

∂t
+ W ′ (k)

∂ω

∂x
= 0. (13.4.11)

It follows from equations (13.4.9) and (13.4.11) that both k and ω remain
constant on the characteristic curves defined by

dx

dt
= W ′ (k) = Cg (k) , (13.4.12)

in the (x, t) plane. Since k and ω is constant on each curve, the characteristic
curves are straight lines with slope Cg (k). The solution for k is given by
(13.4.10).
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Finally, it follows from the above analysis that any constant value of
the phase θ propagates according to θ (x, t) = constant, and hence,

θt +

(
dx

dt

)
θx = 0, (13.4.13)

which gives, by (13.4.6),

dx

dt
= − θt

θx
=

ω

k
= Cp. (13.4.14)

Thus, the phase of the waves propagates with the phase speed Cp. On the
other hand, (13.4.9) ensures that the wavenumber k propagates with the
group velocity Cg (k) = (dω/dk) = W ′ (k).

We next investigate how the wave energy propagates in the dispersive
medium. We consider the following integral involving the square of the wave
amplitude (energy) given by (13.3.24) between any two points x = x1 and
x = x2 (0 < x1 < x2)

Q (t) =

∫ x2

x1

|a|2 dx =

∫ x2

x1

aa∗dx, (13.4.15)

= 8π

∫ x2

x1

F1 (k) F ∗
1 (k)

t |W ′′ (k)| dx, (13.4.16)

which is, due to a change of variable x = tW ′ (k),

= 8π

∫ k2

k1

F1 (k) F ∗
1 (k) dk, (13.4.17)

where kr = tW ′ (kr), r = 1, 2.
When kr is kept fixed as t varies, Q (t) remains constant so that

0 =
dQ

dt
=

d

dt

∫ x2

x1

|a|2 dx,

=

∫ x2

x1

∂

∂t
|a|2 dx + |a|22 W ′ (k2) − |a|21 W ′ (k1) . (13.4.18)

In the limit x2 − x1 → 0, this result reduces to the partial differential
equation

∂

∂t
|a|2 +

∂

∂x

[
W ′ (k) |a|2

]
= 0. (13.4.19)

This represents the equation for the conservation of wave energy, where |a|2
and |a|2 W ′ (k) are the energy density and energy flux respectively. It also
follows that the energy propagates with the group velocity W ′ (k). It has
been shown that the wavenumber k also propagates with the group velocity.
Evidently, the group velocity plays a double role.
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The above analysis reveals another important fact; equations (13.4.3),
(13.4.8), and (13.4.19) constitute a closed set of equations for the three
quantities k, ω, and a. Indeed, these are the fundamental equations for
nonlinear dispersive waves and are known as Whitham’s equations.

13.5 Nonlinear Instability

For infinitesimal waves, the wave amplitude (ak ≪ 1) is very small, so that
nonlinear effects can be neglected altogether. However, for finite ampli-
tude waves the terms involving a2 cannot be neglected, and the effects of
nonlinearity become important. In the theory of water waves, Stokes first
obtained the connection due to inherent nonlinearity between the wave-
profile and the frequency of a steady periodic wave system. According to
the Stokes theory, the remarkable fact is the dependence of ω on a which
couples (13.4.8) to (13.4.19). This leads to a new nonlinear phenomenon.

For finite amplitude waves, the frequency ω has the Stokes expansion

ω = ω0 (k) + a2ω2 (k) + . . . = ω
(
k, a2

)
. (13.5.1)

This can be regarded as the nonlinear dispersion relation which depends on
both k and a2. In the linear case, the amplitude a → 0, (13.5.1) gives the
linear dispersion relation (13.4.3), that is, ω = ω0 (k).

In order to discuss nonlinear instability, we substitute (13.5.1) into
(13.4.8) and retain (13.4.19) in the linear approximation to obtain the fol-
lowing coupled system:

∂k

∂t
+

∂

∂x
+

{
ω0 (k) + ω2 (k) a2

}
= 0, (13.5.2)

∂a2

∂t
+

∂

∂x

{
ω′

0 (k) a2
}

= 0, (13.5.3)

where W (k) ≡ ω0 (k).
These equations can be further approximated to obtain

∂k

∂t
+ ω′

0

∂k

∂x
+ ω2

∂a2

∂x
= O

(
a2

)
, (13.5.4)

∂a2

∂t
+ ω′

0

∂a2

∂x
+ ω′′

0a2 ∂k

∂x
= 0. (13.5.5)

In matrix form, these equations read

⎛
⎝

ω′
0 ω2

ω′′
0a2 ω′

0

⎞
⎠

⎛
⎝

∂k
∂x

∂a2

∂x

⎞
⎠ +

⎛
⎝

1 0

0 1

⎞
⎠

⎛
⎝

∂k
∂t

∂a2

∂t

⎞
⎠ = 0. (13.5.6)

Hence, the eigenvalues λ are the roots of the determinant equation
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|aij − λ bij | =

∣∣∣∣∣∣

ω′
0 − λ ω2

ω′′
0a2 ω′

0 − λ

∣∣∣∣∣∣
= 0, (13.5.7)

where aij and bij are the coefficient matrices of (13.5.6). This equation gives
the characteristic velocities

λ =
dx

dt
= ω′

0 + (ω2ω
′′
0 )

1
2 a + O

(
a2

)
. (13.5.8)

If ω2ω
′′
0 > 0, the characteristics are real and the system is hyperbolic.

The double characteristic velocity splits into two separate real velocities.
This provides a new extension of the group velocity to nonlinear problems. If
the disturbance is initially finite in extent, it would eventually split into two
disturbances. In general, any initial disturbance or modulating source would
introduce disturbances in both families of characteristics. In the hyperbolic
case, compressive modulation will progressively distort and steepen so that
the question of breaking will arise. These results are remarkably different
from those found in linear theory, where there is only one characteristic
velocity and any hump may distort, due to the dependence of ω′

0 (k) on k,
but would never split.

On the other hand, if ω2ω
′′
0 < 0, the characteristics are complex and the

system is elliptic. This leads to ill-posed problems. Any small perturbations
in k and a will be given by the solutions of the form exp [iα (x − λt)] where λ
is calculated from (13.5.8) for unperturbed values of k and a. In this elliptic
case, λ is complex, and the perturbation will grow as t → ∞. Hence, the
original wavetrain will become unstable. In the linear theory, the elliptic
case does not arise at all.

Example 13.5.1. For Stokes waves in deep water, the dispersion relation is

ω = (gk)
1
2

(
1 +

1

2
k2a2

)
, (13.5.9)

so that ω0 (k) = (gk)
1
2 and ω2 (k) = 1

2

√
g k

3
2 .

In this case, ω′′
0 (k) = − 1

4

√
g k− 3

2 so that ω′′
0ω2 = − g

8k < 0. The con-
clusion is that Stokes waves in deep water are definitely unstable. This is
one of the most remarkable results in the theory of nonlinear water waves
discovered during the 1960’s.

13.6 The Traffic Flow Model

We consider the flow of cars on a long highway under the assumptions that
cars do not enter or leave the highway at any one of its points. We take the
x-axis along the highway and assume that the traffic flows in the positive
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direction. Suppose ρ (x, t) is the density representing the number of cars
per unit length at the point x of the highway at time t, and q (x, t) is the
flow of cars per unit time.

We assume a conservation law which states that the change in the total
amount of a physical quantity contained in any region of space must be
equal to the flux of that quantity across the boundary of that region. In
this case, the time rate of change of the total number of cars in any segment
x1 ≤ x ≤ x2 of the highway is given by

d

dt

∫ x2

x1

ρ (x, t) dx =

∫ x2

x1

∂ρ

∂t
dx. (13.6.1)

This rate of change must be equal to the net flux across x1 and x2 given by

q (x1, t) − q (x2, t) (13.6.2)

which measures the flow of cars entering the segment at x1 minus the flow
of cars leaving the segment at x2. Thus, we have the conservation equation

d

dt

∫ x2

x1

ρ (x, t) dx = q (x1, t) − q (x2, t) , (13.6.3)

or
∫ x2

x1

∂ρ

∂t
dx = −

∫ x2

x1

∂q

∂x
dx,

or
∫ x2

x1

(
∂ρ

∂t
+

∂q

∂x

)
dx = 0. (13.6.4)

Since the integrand in (13.6.4) is continuous, and (13.6.4) holds for every
segment [x1, x2], it follows that the integrand must vanish so that we have
the partial differential equation

∂ρ

∂t
+

∂q

∂x
= 0. (13.6.5)

We now introduce an additional assumption which is supported by both
theoretical and experimental findings. According to this assumption, the
flow rate q depends on x and t only through the density, that is, q = Q (ρ)
for some function Q. This assumption seems to be reasonable in the sense
that the density of cars surrounding a given car indeed controls the speed of
that car. The functional relation between q and ρ depends on many factors,
including speed limits, weather conditions, and road characteristics. Several
specific relations are suggested by Haight (1963).

We consider here a particular relation q = ρ v where v is the average
local velocity of cars. We assume that v is a function of ρ to a first approxi-
mation. In view of this relation, (13.6.5) reduces to the nonlinear hyperbolic
equation
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∂ρ

∂t
+ c (ρ)

∂ρ

∂x
= 0, (13.6.6)

where

c (ρ) = q′ (ρ) = v + ρ v′ (ρ) . (13.6.7)

In general, the local velocity v (ρ) is a decreasing function of ρ so that
v (ρ) has a finite maximum value vmax at ρ = 0 and decreases to zero at
ρ = ρmax = ρm. For the value of ρ = ρm, the cars are bumper to bumper.
Since q = ρ v, q (ρ) = 0 when ρ = 0 and ρ = ρm. This means that q is an
increasing function of ρ until it attains a maximum value qmax = qM for
some ρ = ρM and then decreases to zero at ρ = ρm. Both q (ρ) and v (ρ)
are shown in Figure 13.6.1.

Equation (13.6.6) is similar to (13.2.1) with the wave propagation ve-
locity c (ρ) = v (ρ) + ρ v′ (ρ). Since v′ (ρ) < 0, c (ρ) < v (ρ), that is, the
propagation velocity is less than the car velocity. In other words, waves
propagate backwards through the stream of cars, and drivers are warned of
disturbances ahead. It follows from Figure 13.6.1a that q (ρ) is an increasing
function in [0, ρM ], a decreasing function in [ρM , ρm], and attains a max-
imum at ρM . Hence, c (ρ) = q′ (ρ) is positive in [0, ρM ], zero at ρM and
negative in [ρM , ρm]. All these mean that waves propagate forward relative
to the highway in [0, ρM ], are stationary at ρM , and then travel backwards
in [ρM , ρm].

We use Section 13.1 to solve the initial-value problem for the nonlinear
equation (13.6.6) with the initial condition ρ (x, 0) = f (x). The solution is

ρ (x, t) = f (ξ) , x = ξ + tF (ξ) , (13.6.8)

where

F (ξ) = c (f (ξ)) .

Figure 13.6.1 Graphs of q (ρ) and v (ρ).
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Since c′ (ρ) = q′′ (ρ) < 0, q (ρ) is convex, and c (ρ) is a decreasing function
of ρ. This means that breaking occurs at the left due to formation of shock
at the back. Waves propagate slower than the cars, so drivers enter such
a local density increase from behind; they must decelerate rapidly through
the shock but speed up slowly as they get out from the crowded area. These
conclusions are in accord with observational results.

Actual observational data of traffic flow indicate that a typical result
on a single lane highway is ρm ≈ 225 cars per mile, ρM ≈ 80 cars per mile,
and qM ≈ 1590 cars per hour. Thus, the maximum flow rate qM occurs at
a low velocity v = qM/ρM ≈ 20 miles per hour.

13.7 Flood Waves in Rivers

We consider flood waves in a long rectangular river of constant breadth. We
take the x-axis along the river which flows in the positive x-direction and
assume that the disturbance is approximately the same across the breadth.
In this problem, the depth h (x, t) of the river plays the role of density in
the traffic flow model discussed in Section 13.6. Let q (x, t) be the flow per
unit breadth and per unit time. According to the Conservation Law, the
rate of change of the mass of the fluid in any section x1 ≤ x ≤ x2 must be
balanced by the net flux across x2 and x1 so that the conservation equation
becomes

d

dt

∫ x2

x1

h (x, t) dx + q (x2, t) − q (x1, t) = 0. (13.7.1)

An argument similar to the previous section gives

∂h

∂t
+

∂q

∂x
= 0. (13.7.2)

Although the fluid flow is extremely complicated, we assume a simple func-
tion relation q = Q (h) as a first approximation to express the increase in
flow as the water level arises. Thus, equation (13.7.2) becomes

ht + c (h) hx = 0, (13.7.3)

where c (h) = Q′ (h) and Q (h) is determined from the balance between the
gravitational force and the frictional force of the river bed. This equation
is similar to (13.2.1) and the method of solution has already been obtained
in Section 13.2.

Here we discuss the velocity of wave propagation for some particular
values of Q (h). One such result is given by the Chezy result as

Q (h) = hv, (13.7.4)
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where v = α
√

h is the velocity of fluid flow and α is a constant, so that the
propagation velocity of flood waves is given by

c (h) = Q′ (h) =
3

2
α
√

h =
3

2
v. (13.7.5)

Thus, the flood waves propagate one and a half times faster than the stream
velocity.

For a general case where v = αhn,

Q (h) = hv = αhn+1, (13.7.6)

so the propagation velocity of flood waves is

c (h) = Q′ (h) = (n + 1) v. (13.7.7)

This result also indicates that flood waves propagate faster than the fluid.

13.8 Riemann’s Simple Waves of Finite Amplitude

We consider a one-dimensional unsteady isentropic flow of gas of density
ρ and pressure p with the direction of motion along the x-axis. Suppose
u (x, t) is the x-component of the velocity at time t and A is an area-
element of the (y, z)-plane. The volume of the rectangular cylinder of height
dx standing on the element A is then A dx and its mass A ρt dx dt is
determined by the mass entering it, which is equal to −A (∂/∂x) (ρu) dxdt.
Its acceleration is (ut + uux) and the force impelling it in the positive x-
direction is −pxA dx = −c2ρxA dx, where p = f (ρ) and c2 = f ′ (ρ). These
results lead to two coupled nonlinear partial differential equations

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (13.8.1)

(ut + uux) +
c2

ρ
ρx = 0. (13.8.2)

In matrix form, this system is

A
∂U

∂x
+ I

∂U

∂t
= 0, (13.8.3)

where U , A and I are matrices given by

U =

⎛
⎝

ρ

u

⎞
⎠ , A =

⎛
⎝

u ρ

c2/ρ u

⎞
⎠ and I =

⎛
⎝

1 0

0 1

⎞
⎠ . (13.8.4)

The concept of characteristic curves introduced briefly in Section 13.2
requires generalization if it is to be applied to quasi-linear systems of first-
order partial differential equations (13.8.1)–(13.8.2).



554 13 Nonlinear Partial Differential Equations with Applications

It is of interest to determine how a solution evolves with time t. Hence,
we leave the time variable unchanged and replace the space variable x by
some arbitrary curvilinear coordinate ξ so that the semi-curvilinear coor-
dinate transformation from (x, t) to (ξ, t′) can be introduced by

ξ = ξ (x, t) , t′ = t. (13.8.5)

If the Jacobian of this transformation is nonzero, we can transform
(13.8.3) by the following correspondence rule:

∂

∂t
≡ ∂ξ

∂t

∂

∂ξ
+

∂t′

∂t
· ∂

∂t′
=

∂ξ

∂t

∂

∂ξ
+

∂

∂t′
,

∂

∂x
≡ ∂ξ

∂x

∂

∂ξ
+

∂t′

∂x

∂

∂t′
=

∂ξ

∂x

∂

∂ξ
.

This rule transforms (13.8.3) into the form

I
∂U

∂t′
+

(
∂ξ

∂t
I +

∂ξ

∂x
A

)
∂U

∂ξ
= 0. (13.8.6)

This equation can be used to determine ∂U/∂ξ provided that the de-
terminant of its coefficient matrix is non-zero. Obviously, this condition de-
pends on the nature of the curvilinear coordinate curves ξ (x, t) = constant,
which has been kept arbitrary. We assume now that the determinant van-
ishes for the particular choice ξ = η so that

∣∣∣∣
∂η

∂t
I +

∂η

∂x
A

∣∣∣∣ = 0. (13.8.7)

In view of this, ∂U/∂η will become indeterminate on the family of curves
η = constant, and hence, ∂U/∂η may be discontinuous across the curves
η = constant. This implies that each element of ∂U/∂η will be discontinuous
across any of the curves η = constant. It is then necessary to find out how
these discontinuities in the elements of ∂U/∂η are related across the curve
η = constant. We next consider the solutions U which are everywhere con-
tinuous with discontinuous derivatives ∂U/∂η across the particular curve
η = constant = η0. Since U is continuous, elements of the matrix A are not
discontinuous across η = η0 so that A can be determined in the neighbor-
hood of a point P on η = η0. And since ∂U/∂t′ is continuous everywhere,
it is continuous across the curve η = η0 at P .

In view of all of the above facts, it follows that differential equation
(13.8.6) across the curve ξ = η = η0 at P becomes

(
∂η

∂t
I +

∂η

∂x
A

)

P

[
∂U

∂η

]

P

= 0, (13.8.8)

where [f ]P = f (P+)−f (P−) denotes the discontinuous jump in the quan-
tity f across the curve η = η0, and f (P−) and f (P+) represent the values
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to the immediate left and immediate right of the curve at P . Since P is
any arbitrary point on the curve, ∂/∂η denotes the differentiation normal
to the curves η = constant so that equation (13.8.8) can be regarded as the
compatibility condition satisfied by ∂U/∂η on either side of and normal to
these curves in the (x, t)-plane.

Obviously, equation (13.8.8) is a homogeneous system of equations for
the two jump quantities [∂U/∂η]. Therefore, for the existence of a non-
trivial solution, the coefficient determinant must vanish, that is,

∣∣∣∣
∂η

∂t
I +

∂η

∂x
A

∣∣∣∣ = 0. (13.8.9)

However, along the curves η = constant, we have

0 = dη = ηt +

(
dx

dt

)
ηx, (13.8.10)

so that these curves have the constant slope, λ

dx

dt
= − ηt

ηx
= λ. (13.8.11)

Consequently, equations (13.8.9) and (13.8.8) can be expressed in terms of
λ in the form

|A − λI| = 0, (13.8.12)

(A − λI)

[
∂U

∂η

]
= 0, (13.8.13)

where λ represents the eigenvalues of the matrix A, and [∂U/∂η] is propor-
tional to the corresponding right eigenvector of A.

Since A is a 2× 2 matrix, it must have two eigenvalues. If these are real
and distinct, integration of (13.8.11) leads to two distinct families of real
curves Γ1 and Γ2 in the (x, t)-plane:

Γr :
dx

dt
= λr, r = 1, 2. (13.8.14)

The families of curves Γr are called the characteristic curves of the system
(13.8.3). Any one of these families of curves Γr may be chosen for the
curvilinear coordinate curves η = constant. The eigenvalues λr have the
dimensions of velocity, and the λr associated with each family will then be
the velocity of propagation of the matrix column vector [∂U/∂η] along the
curves Γr belonging to that family.

In this particular case, the eigenvalues λ of the matrix A are determined
by (13.8.12), that is,

∣∣∣∣∣∣

u − λ ρ

c2/ρ u − λ

∣∣∣∣∣∣
= 0, (13.8.15)
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so that

λ = λr = u+c, r = 1, 2. (13.8.16)

Consequently, the families of the characteristic curves Γr (r = 1, 2) defined
by (13.8.14) become

Γ1 :
dx

dt
= u + c, and Γ2 :

dx

dt
= u − c. (13.8.17)

In physical terms, these results indicate that disturbances propagate
with the sum of the velocities of the fluid and sound along the family of
curves Γ1. In the second family Γ2, they propagate with the difference of
the fluid velocity u and the sound velocity c.

The right eigenvectors µr ≡

⎛
⎜⎝

µ
(1)
r

µ
(2)
r

⎞
⎟⎠ are solutions of the equations

(A − λrI) µr = 0, r = 1, 2, (13.8.18)

or,

⎛
⎝

u − λr ρ

c2/ρ u − λr

⎞
⎠

⎛
⎜⎝

µ
(1)
r

µ
(2)
r

⎞
⎟⎠ = 0, r = 1, 2. (13.8.19)

This result combined with (13.8.13) gives

⎛
⎝

[ρη]

[uη]

⎞
⎠ =

⎛
⎜⎝

µ
(1)
r

µ
(2)
r

⎞
⎟⎠ = α

⎛
⎝

1

+ c/ρ

⎞
⎠ , r = 1, 2, (13.8.20)

where α is a constant.
In other words, across a wavefront in the Γ1 family of characteristic

curves,

[∂ρ/∂η]

1
=

[∂u/∂η]

c/ρ
, (13.8.21)

and across a wavefront in the Γ2 family of characteristic curves,

[∂ρ/∂η]

1
=

[∂u/∂η]

−c/ρ
, (13.8.22)

where c and ρ have values appropriate to the wavefront.
The above method of characteristics can be applied to a more general

system
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∂U

∂t
+ A

∂U

∂x
= 0, (13.8.23)

where U is an n × 1 matrix with elements u1, u2, . . ., un and A is an n × n
matrix with elements aij . An argument similar to that given above leads
to n eigenvalues of (13.8.13). If these eigenvalues are real and distinct,
integration of equations (13.8.14) with r = 1, 2, . . ., n gives n distinct
families of real curves Γr in the (x, t)-plane so that

Γr :
dx

dt
= λr, r = 1, 2, . . . n. (13.8.24)

When the eigenvalues λr of A are all real and distinct, there are n dis-
tinct linearly independent right eigenvectors µr of A satisfying the equation

Aµr = λrµr,

where µr is an n × 1 matrix with elements µ
(1)
r , µ

(2)
r , . . ., µ

(n)
r . Then across

a wavefront belonging to the Γr family of characteristics, it turns out that

[∂u1/∂η]

µ
(1)
r

=
[∂u2/∂η]

µ
(2)
r

= . . . =
[∂un/∂η]

µ
(n)
r

, (13.8.25)

where the elements of µr are known on the wavefront.
In order to introduce the Riemann invariants, we form the linear com-

bination of the eigenvectors (+c/ρ, 1) with equations (13.8.1)–(13.8.2) to
obtain

+
c

ρ
(ρt + ρux + uρx) +

(
ut + uux +

c2

ρ
ρx

)
= 0. (13.8.26)

We use ∂u/∂ρ = + c/ρ from (13.8.21)–(13.8.22) and rewrite (13.8.26) as

+
c

ρ
[ρt + (u + c) ρx] + [ut + (u + c) ux] = 0. (13.8.27)

In view of (13.8.17), equation (13.8.27) becomes

du +
c

ρ
dρ = 0 on Γr, r = 1, 2, (13.8.28)

or,

d [F (ρ) +u] = 0 on Γr, (13.8.29)

where

F (ρ) =

∫ ρ

ρ0

c (ρ)

ρ
dρ. (13.8.30)

Integration of (13.8.29) gives
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F (ρ) + u = 2r on Γ1 and F (ρ) − u = 2s on Γ2, (13.8.31)

where 2r and 2s are constants of integration on Γ1 and Γ2, respectively.
The quantities r and s are called the Riemann invariants. As stated

above, r is an arbitrary constant on characteristics Γ1, and hence, in general,
r will vary on each Γ2. Similarly, s is constant on each Γ2 but will vary on
Γ1. It is natural to introduce r and s as new curvilinear coordinates. Since r
is constant on Γ1, s can be treated as the parameter on Γ1. Similarly, r can
be regarded as the parameter on Γ2. Then, dx = (u + c) dt on Γr implies
that

dx

ds
= (u + c)

dt

ds
on Γ1, (13.8.32)

dx

dr
= (u − c)

dt

dr
on Γ2. (13.8.33)

In fact, r is a constant on Γ1, and s is a constant on Γ2. Therefore, the
derivatives in the two equations are really partial derivations with respect
to s and r so that we can rewrite them as

∂x

∂s
= (u + c)

∂t

∂s
, (13.8.34)

∂x

∂r
= (u − c)

∂t

∂r
. (13.8.35)

These two first-order PDE’s can, in general, be solved for x = x (r, s),
t = t (r, s), and then, by inversion, r and s as functions x and t can be
obtained. Once this is done, we use (13.8.31) to determine u (x, t) and ρ (x, t)
in terms of r and s as

u (x, t) = r − s, F (ρ) = r + s. (13.8.36)

When one of the Riemann invariants r and s is constant throughout
the flow, the corresponding solution is tremendously simplified. The solu-
tions are known as simple wave motions representing simple waves in one
direction only. The generating mechanisms of simple waves with their prop-
agation laws can be illustrated by the piston problem in gas dynamics.

Example 13.8.1. Determine the Riemann invariants for a polytropic gas
characterized by the law p = kργ , where k and γ are constants.

In this case

c2 =
dp

dρ
= kγργ−1, F (ρ) =

∫ ρ

0

c (ρ)

ρ
=

2c

γ − 1
.

Hence, the Riemann invariants are given by

(
2c

γ − 1

)
c + u = (2r, 2s) on Γr. (13.8.37)
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It is also possible to express the dependent variables u and c in terms
of the Riemann invariants. It turns out that

u = r − s, c =
γ − 1

2
(r + s) . (13.8.38)

Example 13.8.2. (The Piston Problem in a Polytropic Gas). The problem
is to determine how a simple wave is produced by the prescribed motion of
a piston in the closed end of a semi-infinite tube filled with gas.

This is a one-dimensional unsteady problem in gas dynamics. We assume
that the gas is initially at rest with a uniform state u = 0, ρ = ρ0, and
c = c0. The piston starts from rest at the origin and is allowed to withdraw
from the tube with a variable velocity for a time t1, after which the velocity
of withdrawal remains constant. The piston path is shown by a dotted
curve in Figure 13.8.1. In the (x, t)-plane, the path of the piston is given
by x = X (t) with X (0) = 0. The fluid velocity u is equal to the piston
velocity Ẋ (t) on the piston x = X (t), which will be used as the boundary
condition for the piston.

The initial state of the gas is given by u = u0, ρ = ρ0, and c = c0

at t = 0, in x ≥ 0. The characteristic line Γ0 that bounds it and passes
through the origin is determined by the equation

dx

dt
= (u + c)t=0 = c0

so that the equation of the characteristic line Γ0 is x = c0t.

Figure 13.8.1 Simple waves generated by the motion of a piston.



560 13 Nonlinear Partial Differential Equations with Applications

In view of the uniform initial state, all the Γ2 characteristics start on
the x-axis so that the Riemann invariants s in (12.8.37b) must be constant
and of the form

2c

γ − 1
− u =

2c0

γ − 1
, (13.8.39)

or,

u =
2 (c − c0)

γ − 1
, c = c0 +

(γ − 1)

2
u. (13.8.40ab)

The characteristics Γ1 meeting the piston are given by

2c

γ − 1
+ u = 2r on each Γ1 and Γ1 :

dx

dt
= u + c, (13.8.41)

which is, since (13.8.40ab) holds everywhere,

u = constant onΓ1 and Γ1 :
dx

dt
= c0 +

1

2
(γ + 1)u. (13.8.42)

Since the flow is continuous with no shocks, u = 0 and c = c0 ahead of
and on Γ0, which separates those Γ1 meeting the x-axis from those meet-
ing the piston. The family of lines Γ1 through the origin has the equation
(dx/dt) = ξ, where ξ is a parameter with ξ = c0 on Γ0. The Γ1 characteris-
tics are also defined by (dx/dt) = u+c so that ξ = u+c. Hence, elimination
of c from (13.8.40b) gives

u =

(
2

γ + 1

)
(ξ − c0) . (13.8.43)

Substituting this value of u in (13.8.40b), we obtain

c =

(
γ − 1

γ + 1

)
ξ +

2c0

γ + 1
. (13.8.44)

It follows from c2 = γ k ργ−1 and (13.8.40b) with the initial data, ρ = ρ0,
c = c0 that

ρ = ρ0

[
1 +

γ − 1

2c0
u

]2/(γ−1)

. (13.8.45)

With ξ = (x/t), results (13.8.43) through (13.8.45) give the complete
solution of the piston problem in terms of x and t.

Finally, the equation of the characteristic line Γ1 is found by integrating
the second equation of (13.8.42) and using the boundary condition on the
piston. When a line Γ1 intersects the piston path at time t = τ , then
u = Ẋ (τ) along it, and the equation becomes
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x = X (τ) +

{
c0 +

γ + 1

2
Ẋ (τ)

}
(t − τ) . (13.8.46)

It is noted that the family Γ1 represents straight lines with slope dx/dt
increasing with velocity u. Consequently, the characteristics are likely to
overlap on the piston, that is, Ẋ (τ) > 0 for any τ . If u increases, so do c,
ρ, and p so that instability develops. It shows that shocks will be formed in
the compressive part of the disturbance.

13.9 Discontinuous Solutions and Shock Waves

The development of a nonunique solution of a nonlinear hyperbolic equation
has already been discussed in connection with several different problems. In
real physical situations, this nonuniqueness usually manifests itself in the
formation of discontinuous solutions which propagate in the medium. Such
discontinuous solutions across some surface are called shock waves. These
waves are found to occur widely in high speed flows in gas dynamics.

In order to investigate the nature of discontinuous solutions, we recon-
sider the nonlinear conservation equation (13.6.5) that is,

∂ρ

∂t
+

∂q

∂x
= 0. (13.9.1)

This equation has been solved under two basic assumptions: (i) There exists
a functional relation between q and ρ, that is, q = Q (ρ); (ii) ρ and q
are continuously differentiable. In some physical situations, the solution of
(13.9.1) leads to breaking phenomenon. When breaking occurs, questions
arise about the validity of these assumptions. To examine the formation
of discontinuities, we consider the following: (a) we assume the relation
q = Q (ρ) but allow jump discontinuity for ρ and q; (b) in addition to the
fact that ρ and q are continuously differentiable, we assume that q is a
function of ρ and ρx. One of the simplest forms is

q = Q (ρ) − νρx, ν > 0. (13.9.2)

In case (a), we assume the conservation equation (13.6.1) still holds and
has the form

d

dt

∫ x2

x1

ρ (x, t) dx + q (x2, t) − q (x1, t) = 0. (13.9.3)

We now assume that there is a discontinuity at x = s (t) where s is a
continuously differentiable function of t, and x1 and x2 are chosen so that
x2 > s (t) > x1, and U (t) = ṡ (t). Equation (13.9.3) can be written as

d

dt

[∫ s−

x1

ρ dx +

∫ x2

s+

ρ dx

]
+ q (x2, t) − q (x1, t) = 0,
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which implies that

∫ s−

x1

ρt dx + ṡρ
(
s−, t

)
+

∫ x2

s+

ρt dx − ṡρ
(
s+, t

)
+ q (x2, t) − q (x1, t) = 0,

(13.9.4)

where ρ (s−, t), ρ (s+, t) are the values of ρ (x, t) as x → s from below and
above respectively. Since ρt is bounded in each of the intervals separately,
the integrals tend to zero as x1 → s− and x2 → s+. Thus, in the limit,

q
(
s+, t

)
− q

(
s−, t

)
= U

{
ρ
(
s+, t

)
− ρ

(
s−, t

)}
. (13.9.5)

In the conventional notation of shock dynamics, this can be written as

q2 − q1 = U (ρ2 − ρ1) , (13.9.6)

or

−U [ρ] + [q] = 0, (13.9.7)

where subscripts 1 and 2 are used to denote the values behind and ahead
of the shock respectively, and [ ] denotes the discontinuous jump in the
quantity involved. Equation (13.9.7) is called the shock condition. Thus, the
basic problem can be written as

∂ρ

∂t
+

∂q

∂x
= 0 at points of continuity, (13.9.8)

−U [ρ] + [q] = 0 at points of discontinuity. (13.9.9)

Therefore, we have a nice correspondence

∂ρ

∂t
↔ −U [ ] ,

∂

∂x
↔ [ ] , (13.9.10)

between the differential equation and the shock condition.
It is now possible to find discontinuous solutions of (13.9.3). In any

continuous part of the solution, equation (13.9.1) is still satisfied and the
assumption q = Q (ρ) remains valid. But we have q1 = Q (ρ1) and q2 =
Q (ρ2) on the two sides of any shock, and the shock condition (13.9.6) has
the form

U (ρ2 − ρ1) = Q (ρ2) − Q (ρ1) . (13.9.11)

Example 13.9.1. The simplest example in which breaking occurs is

ρt + c (ρ) ρx = 0,

with discontinuous initial data at t = 0
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ρ =

⎧
⎨
⎩

ρ2, x < 0

ρ1, x > 0
, (13.9.12)

and

F (x) =

⎧
⎨
⎩

c2 = c2 (ρ) , x < 0

c1 = c1 (ρ) , x > 0
, (13.9.13)

where

ρ1 > ρ2 and c2 > c1.

In this case, breaking will occur immediately and this can be seen from
Figure 13.9.1ab with c′ (ρ) > 0. The multivalued region begins at the origin
ξ = 0 and is bounded by the characteristics x = c1t and x = c2t with
c1 < c2. This corresponds to a centered compression wave with overlapping
characteristics in the (x, t)-plane.

On the other hand, if the initial condition is expansive with c2 < c1,
there is a continuous solution obtained from (13.2.12) in which all values
of F (x) in [c2, c1] are taken on characteristics through the origin ξ = 0.
This corresponds to a centered fan of characteristics x = ct, c2 ≤ c ≤ c1

in the (x, t)-plane so that the solution has the explicit form c = (x/t),
c2 < (x/t) < c1. The density distribution and the expansion wave are
shown in Figure 13.9.2ab.

In this case, the complete solution is given by

c =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c2, x ≤ c2t

x

t
, c2t < x < c1t

c1, x ≥ c1t.

(13.9.14)

13.10 Structure of Shock Waves and Burgers’ Equation

In order to resolve breaking, we assumed a functional relation in ρ and q
with appropriate shock conditions. Now we investigate the case when

q = Q (ρ) − νρx, ν > 0. (13.10.1)

Note that near breaking where ρx is large, (13.10.1) gives a better approx-
imation. With (13.10.1), the basic equation (13.9.1) becomes

ρt + c (ρ) ρx = νρxx, (13.10.2)
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Figure 13.9.1ab Density distribution and centered compression wave with over-
lapping characteristics.
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Figure 13.9.2ab Density distribution and centered expansion wave.
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where c (ρ) = Q′ (ρ), the second and the third terms represent the effects
on nonlinearity and diffusion.

We first solve (13.10.2) for two simple cases: (i) c (ρ) = constant = c,
and (ii) c (ρ) ≡ 0. In the first case, equation (13.10.1) becomes linear and
we seek a plane wave solution

ρ (x, t) = a exp {i (kx − ωt)} . (13.10.3)

Substituting this solution into the linear equation (13.10.2), we have the
dispersion relation

ω = ck − iνk2, (13.10.4)

where

Im ω = −νk2 < 0, since ν > 0.

Thus, the wave profile has the form

ρ (x, t) = a e−νk2t exp [ik (x − ct)] (13.10.5)

which represents a diffusive wave (Im ω < 0) with wavenumbers k and phase
velocity c whose amplitude decays exponentially with time t. The decay

time is given by t0 =
(
νk2

)−1
which becomes smaller and smaller as k

increases with fixed ν. Thus, the waves of smaller wavelengths decay faster
than waves of longer wavelengths. On the other hand, for a fixed wavenum-
ber k, t0 decreases as ν increases so that waves of a given wavelength atten-
uate faster in a medium with larger ν. The quantity ν may be regarded as
a measure of diffusion. Finally, after a sufficiently long time (t ≫ t0) only
disturbances of long wavelength will survive, while all short wavelength
disturbances will decay rapidly.

In the second case, (13.10.2) reduces to the linear diffusion equation

ρt = νρxx. (13.10.6)

This equation with the initial data at t = 0

ρ =

⎧
⎨
⎩

ρ1, x < 0

ρ1, x > 0,
ρ1 > ρ2, (13.10.7)

can readily be solved, and the solution for t > 0 is

ρ (x, t) =
ρ1

2
√

πνt

∫ 0

−∞
e−(x−ξ)2/4νtdξ +

ρ2

2
√

πνt

∫ ∞

0

e−(x−ξ)2/4νtdξ.

(13.10.8)

After some manipulation involving changes of variables of integration
(x − ξ) /2

√
νt = η, the solution is simplified to the form



13.10 Structure of Shock Waves and Burgers’ Equation 567

u (x, t) =
1

2
(ρ1 + ρ2) + (ρ2 − ρ1)

1√
π

∫ x/2
√

νt

0

e−η2

dη, (13.10.9)

=
1

2
(ρ1 + ρ2) +

1

2
(ρ2 − ρ1) erf

(
x

2
√

νt

)
. (13.10.10)

This shows that the effect of the term νρxx is to smooth out the initial

distribution (νt)
− 1

2 . The solution tends to values ρ1, ρ2 as x → + ∞. The
absence of the term νρxx in (13.10.2) leads to nonlinear steepening and
breaking. Indeed, equation (13.10.2) combines the two opposite effects of
breaking and diffusion. The sign of ν is important; indeed, solutions are
stable or unstable according as ν > 0 or ν < 0.

In order to investigate solutions that balance between steepening and
diffusion, we seek solutions of (13.10.2) in the form

ρ = ρ (X) , X = x − Ut, (13.10.11)

where U is a constant to be determined.
It follows from (13.10.2) that

[c (ρ) − U ] ρX = νρXX . (13.10.12)

Integrating this equation gives

Q (ρ) − Uρ + A = νρX , (13.10.13)

where A is a constant of integration.
Integrating (13.10.13) with respect to X gives an implicit relation for

ρ (X) in the form

X

ν
=

∫
dρ

Q (ρ) − Uρ + A
. (13.10.14)

We would like to have a solution which tends to ρ1, ρ2 as X → + ∞. If
such a solution exists with ρX → 0 as |X| → ∞, the quantities U and A
must satisfy

Q (ρ1) − Uρ1 + A = Q (ρ2) − Uρ2 + A = 0, (13.10.15)

which implies that

U =
Q (ρ1) − Q (ρ2)

ρ1 − ρ2
. (13.10.16)

This is exactly the same as the shock velocity obtained before.
Result (13.10.15) shows that ρ1, ρ2 are zeros of Q (ρ) − Uρ + A. In

the limit ρ → ρ1 or ρ2, the integral (13.10.14) diverges and X → + ∞. If
c′ (ρ) > 0, then Q (ρ)−Uρ+A ≤ 0 in ρ2 ≤ ρ ≤ ρ1 and then ρX ≤ 0 because
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Figure 13.10.1 Shock structure and shock thickness.

of (13.10.11). Thus, ρ decreases monotonically from ρ1 at X = −∞ to ρ2

at X = ∞ as shown in Figure 13.10.1.
Physically, a continuous waveform carrying an increase in ρ will progres-

sively distort itself and eventually break forward and require a shock with
ρ1 < ρ2 provided c′ (ρ) > 0. It will break backward and require a shock
with ρ1 > ρ2 and c′ (ρ) < 0.

Example 13.10.1. Obtain the solution of (13.10.2) with the initial data
(13.10.7) and Q (ρ) = αρ2 + βρ + γ, α > 0.

We write

Q (ρ) − Uρ + A = −α (ρ1 − ρ) (ρ − ρ2) ,

where

U = β + α (ρ1 + ρ2) and A = αρ1ρ2 − γ.

Integral (13.10.14) becomes

X

ν
= − 1

α

∫
dρ

(ρ − ρ2) (ρ1 − ρ)
=

1

α (ρ1 − ρ2)
log

(
ρ1 − ρ

ρ − ρ2

)
,

which gives the solution

ρ (X) = ρ2 + (ρ1 − ρ2)
exp

[
αX
ν (ρ2 − ρ1)

]

1 + exp
[

αX
ν (ρ2 − ρ1)

] . (13.10.17)
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The exponential factor in the solution indicates the existence of a tran-
sition layer of thickness δ of the order of ν/ [α (ρ1 − ρ2)]. This can also be
referred to as the shock thickness. The thickness δ increases as ρ1 → ρ2 for
a fixed ν. It tends to zero as ν → 0 for a fixed ρ1 and ρ2.

In this case, the shock velocity (13.10.16) becomes

U = α (ρ1 − ρ2) + β =
1

2
(c1 + c2) , (13.10.18)

where c (ρ) = Q′ (ρ), c1 = c (ρ1), and c2 = c (ρ2).
We multiply (13.10.2) by c′ (ρ) and simplify to obtain

ct + ccx = νcxx − ν c′′ (ρ) ρ2
x. (13.10.19)

Since Q (ρ) is a quadratic expression in ρ, then c (ρ) = Q′ (ρ) becomes
linear in ρ and c′′ (ρ) = 0. Thus, (13.10.19) leads to Burgers’ equation
replacing c with u

ut + uux = ν uxx. (13.10.20)

This equation incorporates the combined opposite effects of nonlinearity
and diffusion. It is the simplest nonlinear model equation for diffusive waves
in fluid dynamics. Using the Cole–Hopf transformation

u = −2ν
φx

φ
. (13.10.21)

Burgers’ equation can be solved exactly, and the opposite effects of nonlin-
earity and diffusion can be investigated in some detail.

We introduce the transformation in two steps. First, we write u = ψx

so that (13.10.20) can readily be integrated to obtain

ψt +
1

2
ψ2

x = ν ψxx. (13.10.22)

The next step is to introduce ψ = −2ν log φ and to transform this
equation into the so called diffusion equation

φt = ν φxx. (13.10.23)

This equation was solved in earlier chapters. We simply quote the solu-
tion of the initial-value problem of (13.10.23) with the initial data

φ (x, 0) = Φ (x) , −∞ < x < ∞. (13.10.24)

The solution for φ is

φ (x, t) =
1

2
√

πνt

∫ ∞

−∞
Φ (ζ) exp

[
− (x − ζ)

2

4νt

]
dζ, (13.10.25)
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where Φ (ζ) can be written in terms of the initial value u (x, 0) = F (x) by
using (13.10.21). It turns out that, at t = 0,

φ (x, t) = Φ (x) = exp

{
− 1

2ν

∫ x

0

F (α) dα

}
. (13.10.26)

It is then convenient to write down φ (x, t) in the form

φ (x, t) =
1

2
√

πνt

∫ ∞

−∞
exp

(
− f

2ν

)
dζ, (13.10.27)

where

f (ζ, x, t) =

∫ ζ

0

F (α) dα +
(x − ζ)

2

2t
. (13.10.28)

Consequently,

φx (x, t) = − 1

4ν
√

πνt

∫ ∞

−∞

(x − ζ)

t
exp

(
− f

2ν

)
dζ. (13.10.29)

Therefore, the solution for u follows from (13.10.21) and has the form

u (x, t) =

∫ ∞
−∞

(
x−ζ

t

)
exp

(
− f

2ν

)
dζ

∫ ∞
−∞ exp

(
− f

2ν

)
dζ

. (13.10.30)

Although this is the exact solution of Burgers’ equation, physical inter-
pretation can hardly be given unless a suitably simple form of F (x) is spec-
ified. Even then, finding an exact evaluation of the integrals in (13.10.30)
is a formidable task. It is then necessary to resort to asymptotic methods.
Before we deal with asymptotic analysis, the following example may be
considered for an investigation of shock formation.

Example 13.10.2. Find the solution of Burgers’ equation with physical sig-
nificance for the case

F (x) =

⎧
⎨
⎩

A δ (x) , x < 0

0, x > 0.

We first find

f (ζ, x, t) = A

∫ ζ

0+

δ (α) dα +
(x − ζ)

2

t

=

⎧
⎪⎨
⎪⎩

(x−ζ)2

2t − A, ζ < 0

(x−ζ)2

2t , ζ > 0.
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Thus,

∫ ∞

−∞

x − ζ

t
exp

(
− f

2ν

)
dζ =

∫ 0

−∞

(
x − ζ

t

)
exp

[
A

2ν
− (x − ζ)

2

4νt

]
dζ

+

∫ ∞

0

(
x − ζ

t

)
exp

[
− (x − ζ)

2

4νt

]
dζ

= 2ν
(
eA/2ν − 1

)
exp

(
− x2

4νt

)
,

which is obtained by substitution,

x − ζ

2
√

νt
= α.

Similarly,

∫ ∞

−∞
exp

(
− f

2ν

)
dζ = 2

√
νt

[√
π +

(
eA/2ν − 1

)
erfc

(
x

2
√

νt

)]
,

where erfc (x) is the complementary error function defined by

erfc (x) =
2√
π

∫ ∞

x

e−η2

dη. (13.10.31)

Therefore, the solution for u (x, t) is

u (x, t) =

√
ν

t

(
eA/2ν − 1

)
exp

(
− x2

4νt

)

√
π +

(
eA/2ν − 1

)
(
√

π/2) erfc
(

x
2
√

νt

) . (13.10.32)

In the limit as ν → ∞, the effect of diffusion would be more significant
than that of nonlinearity. Since

erfc

(
x

2
√

νt

)
→ 0, eA/2ν ∼ 1 +

A

2ν
as ν → ∞,

the solution (13.10.32) tends to the limiting value

u (x, t) ∼ A

2
√

πνt
exp

(
− x2

4νt

)
. (13.10.33)

This represents the well-known source solution of the classical linear heat
equation ut = ν uxx.

On the other hand, when ν → 0 nonlinearity would dominate over
diffusion. It is expected that solution (13.10.32) tends to that of Burgers’
equation as ν → 0.
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We next introduce the similarity variable η = x/
√

2At to rewrite
(13.10.32) in the form

u (x, t) =
(ν

t

) 1
2

(
eA/2ν − 1

)
exp

(
−Aη2

2ν

)

√
π +

(
eA/2ν − 1

)
(
√

π/2) erfc
(√

A
2ν η

) , (13.10.34)

∼
(ν

t

) 1
2 exp

{
A
2ν

(
1 − η2

)}

√
π + (

√
π/2) exp

(
A
2ν

)
erfc

(√
A
2ν η

) as ν → 0 for all η,

(13.10.35)

∼ 0 as ν → 0, for η < 0 and η > 1. (13.10.36)

Invoking the asymptotic result,

erfc (x) ∼
(
2/

√
π
) e−x2

2x
as x → ∞, (13.10.37)

the solution (13.10.34) for 0 < η < 1 has the form,

u (x, t) ∼
(ν

t

) 1
2 2η

(
A
2ν

) 1
2 exp

{
A
2ν

(
1 − η2

)}

2η
(

Aπ
2ν

) 1
2 + exp

{
A
2ν (1 − η2)

} .

=

(
2A

t

) 1
2 η

1 + 2η
(

Aπ
2ν

) 1
2 exp

{
A
2ν (η2 − 1)

}

∼
(

2A

t

) 1
2

as ν → 0.

The final asymptotic solution as ν → 0 is

u (x, t) ∼

⎧
⎨
⎩

x
t , 0 < x < (2At)

1
2

0, otherwise.

(13.10.38)

This result represents a shock at x = (2At)
1
2 with the velocity U = (A/2t)

1
2 .

This solution u has a jump from 0 to x/t = (2A/t)
1
2 so that the shock

condition is fulfilled.

Asymptotic Behavior of Burgers’ Solution as ν → 0.

We use the Kelvin stationary phase approximation method discussed in
Section 12.7 to examine the asymptotic behavior of Burgers’ solution
(13.10.30). According to this method, the significant contribution to the
integrals involved in (13.10.30) comes from points of stationary phase for
fixed x and t, that is, from the roots of the equation
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∂f

∂ζ
= F (ζ) − (x − ζ)

t
= 0. (13.10.39)

Suppose that ζ = ξ (x, t) is a root. According to result (12.7.8), integrals
in (13.10.30) as ν → 0 yield

∫ ∞

−∞

(
x − ξ

t

)
exp

(
− f

2ν

)
dζ ∼ x − ξ

t

{
4πν

|f ′′ (ξ)|

} 1
2

exp

{
−f (ξ)

2ν

}

∫ ∞

−∞
exp

(
− f

2ν

)
dζ ∼

{
4πν

|f ′′ (ξ)|

} 1
2

exp

{
−f (ξ)

2ν

}
.

Therefore, the final asymptotic solution is

u (x, t) ∼ x − ξ

t
, (13.10.40)

where ξ satisfies (13.10.39). In other words, the solution can be rewritten
in the form

u
x

=
=

F (ξ)
ξ + tF (ξ)

}
. (13.10.41)

This is identical with the solution (13.2.12) which was obtained in Sec-
tion 13.2. In this case, the stationary point ξ represents the characteristic
variable.

Although the exact solution of Burgers’ equation is a single-valued and
continuous function for all time t, the asymptotic solution (13.10.41) ex-
hibits instability. It has already been shown that (13.10.41) progressively
distorts itself and becomes multiple-valued after sufficiently long time.
Eventually, breaking will definitely occur.

It follows from the analysis of Burgers’ equation that the nonlinear and
diffusion terms show opposite effects. The former introduces steepening in
the solution profile, whereas the latter tends to diffuse (spread) the sharp
discontinuities into a smooth profile. In view of this property, the solution
represents the diffusive wave. In the context of fluid flows, ν denotes the
kinematic viscosity which measures the viscous dissipation.

Finally, Burgers’ equation arises in many physical problems, includ-
ing one-dimensional turbulence (where this equation had its origin), sound
waves in viscous media, shock waves in viscous media, waves in fluid-filled
viscous elastic pipes, and magnetohydrodynamic waves in media with finite
conductivity.

13.11 The Korteweg–de Vries Equation and Solitons

The celebrated dispersion relation (13.3.14) for dispersive surface waves on
water of constant depth h0 is
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ω = (gk tanh kh0)
1
2

= c0k

(
1 − 1

3
k2h2

0

) 1
2

≈ c0k

(
1 − 1

6
k2h2

0

)
, (13.11.1)

where c0 = (gh0)
1
2 is the shallow water wave speed.

In many physical problems, wave motions with small dispersion exhibit
such a k2 term in contrast to the linearized theory value of c0k. An equation
for the free surface elevation η (x, t) with this dispersion relation is given
by

ηt + c0ηx + σηxxx = 0, (13.11.2)

where σ = 1
6c0h

2
0 is a constant for fairly long waves. This equation is called

the linearized Korteweg–de Vries (KdV) equation for fairly long waves mov-
ing to the positive x direction only. The phase and group velocities of the
waves are found from (13.11.1) and they are given by

Cp =
ω

k
= c0 − σk2, (13.11.3)

Cg =
dω

dk
= c0 − 3σk2. (13.11.4)

It is noted that Cp > Cg, and the dispersion comes from the term involving
k3 in the dispersion relation (13.11.1) and hence, from the term σηxxx. For
sufficiently long waves (k → 0), Cp = Cg = c0, and hence, these waves are
nondispersive.

In 1895, Korteweg–de Vries derived the nonlinear equation for long wa-
ter waves in a channel of depth h0 which has the remarkable form

ηt + c0

(
1 +

3

2

η

h0

)
ηx + σηxxx = 0. (13.11.5)

This is the simplest nonlinear model equation for dispersive waves, and
combines nonlinearity and dispersion. The KdV equation arises in many
physical problems, which include water waves of long wavelengths, plasma
waves, and magnetohydynamics waves. Like Burgers’ equation, the nonlin-
earity and dispersion have opposite effects on the KdV equation. The former
introduces steepening of the wave profile while the latter counteracts wave-
form steepening. The most remarkable features is that the dispersive term
in the KdV equation does allow the solitary and periodic waves which are
not found in shallow water wave theory. In Burgers’ equation the nonlinear
term leads to steepening which produces a shock wave; on the other hand,
in the KdV equation the steepening process is balanced by dispersion to
give a rise to a steady solitary wave.

We now seek the traveling wave solution of the KdV equation (13.11.5)
in the form
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η (x, t) = h0f (X) , X = x − Ut, (13.11.6)

for some function f and constant wave velocity U . We determine f and
U by substitution of the form (13.11.6) into (13.11.5). This gives, with
σ = 1

6c0h
2
0,

1

6
h2

0f
′′′ +

3

2
ff ′ +

(
1 − U

c0

)
f ′ = 0, (13.11.7)

and then integration leads to

1

6
h2

0f
′′ +

3

4
f2 +

(
1 − U

c0

)
f + A = 0,

where A is an integrating constant.
We next multiply this equation by f ′ and integrate again to obtain

1

3
h2

0f
′2 + f3 + 2

(
1 − U

c0

)
f2 + 4Af + B = 0, (13.11.8)

where B is a constant of integration.
We now seek a solitary wave solution under the boundary conditions f ,

f ′, f ′′ → 0 as |X| → ∞. Therefore, A = B = 0 and (13.11.8) assumes the
form

1

3
h2

0f
′2 + f2 (f − α) = 0, (13.11.9)

where

α = 2

(
U

c0
− 1

)
. (13.11.10)

Finally, we obtain

X =

∫ f

0

df

f ′ =

(
h2

0

3

) 1
2
∫ f

0

df

f
√

(α − f)
,

which is, by the substitution f = α sech2θ,

X − X0 =

(
4h2

0

3α

) 1
2

θ, (13.11.11)

for some integrating constant X0.
Therefore, the solution for f (X) is

f (X) = α sech2

[(
3α

4h2
0

) 1
2

(X − X0)

]
. (13.11.12)
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Figure 13.11.1 A soliton.

The solution f (X) increases from f = 0 as X → −∞ so that it attains a
maximum value f = fmax = α at X = 0, and then decreases symmetrically
to f = 0 as X → ∞ as shown in Figure 13.11.1. These features also imply
that X0 = 0, so that (13.11.12) becomes

f (X) = α sech2

[(
3α

4h2
0

) 1
2

X

]
. (13.11.13)

Therefore, the final solution is

η (x, t) = η0 sech2

[(
3η0

4h3
0

) 1
2

(x − Ut)

]
, (13.11.14)

where η0 = (αh0). This is called the solitary wave solution of the KdV
equation for any positive constant η0. However, it has come to be known as
soliton since Zabusky and Kruskal coined the term in 1965. Since η > 0 for
all X, the soliton is a wave of elevation which is symmetrical about X = 0.
It propagates in the medium without change of shape with velocity

U = c0

(
1 +

α

2

)
= c0

(
1 +

1

2

η0

h0

)
, (13.11.15)

which is directly proportional to the amplitude η0. The width,
(
3η0/4h3

0

)− 1
2

is inversely proportional to
√

η0. In other words, the solitary wave propa-
gates to the right with a velocity U which is directly proportional to the
amplitude, and has a width that is inversely proportional to the square root
of the amplitude. Therefore, taller solitons travel faster and are narrower
than the shorter (or slower) ones. They can overtake the shorter ones, and
surprisingly, they emerge from the interaction without change of shape as
shown in Figure 13.11.2. Indeed the discovery of soliton interactions con-
firms that solitons behave like elementary particles.
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Figure 13.11.2 Interaction of two solitons (U1 > U2, t2 > t1, ).

General Waves of Permanent Form.

We now consider the general case given by (13.11.8) which can be written
(

h2
0

3

)
f ′2 = −f3 + αf2 − 4Af − B ≡ F (f) .

We seek real bounded solutions for f (X). Therefore, f ′2 ≥ 0 and varies
monotonically until f ′ is zero. Hence, the zeros of the cubic F (f) are crucial.
For bounded solutions, all the three zeros f1, f2, f3 must be real. Without
loss of generality, we choose f1 = 0 and f2 = α. The third zero must be
negative so we set f3 = α − β with 0 < α < β. Therefore, the equation for
f (X) is

1

3
h2

0

(
df

dX

)2

= f (α − f) (f − α + β) , (13.11.16)

or
√

3

h2
0

dX = − df

[f (α − f) (f − α + β)]
1
2

, (13.11.17)

where

U = c0

(
1 +

2α − β

2

)
. (13.11.18)
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We put α − f = p2 in (13.11.17) to obtain

(
3

4h2
0

) 1
2

dX =
dp

[(α − p2) (β − p2)]
1
2

. (13.11.19)

We next substitute p =
√

α q into (13.11.19) to transform it into the
standard form

(
3β

4h2
0

) 1
2

X =

∫ q

0

dq

[(1 − q2) (1 − m2q2)]
1
2

(13.11.20)

where m = (α/β)
1
2 .

The right hand side is an integral of the first kind, and hence, q can
be expressed in terms of the Jacobian sn function (see Dutta and Debnath
(1965))

q = sn

[(
3β

4h2
0

) 1
2

X, m

]
, (13.11.21)

where m is the modulus of the Jacobian elliptic function sn (z, m). There-
fore,

f (X) = α

[
1 − sn2

{(
3β

4h2
0

) 1
2

X

}]

= α cn2

[(
3β

4h2
0

) 1
2

X

]
, (13.11.22)

where cn (z, m) is also the Jacobian elliptic function of modulus m and
cn2 (z) = 1 − sn2 (z).

From (13.11.20), the period P is given by

P = 2

(
4h2

0

3β

) 1
2
∫ 1

0

dq

[(1 − q2) (1 − m2q2)]
1
2

(13.11.23)

=
4h0√
3β

K (m) ≡ λ, (13.11.24)

where K (m) is the complete elliptic integral of the first kind defined by

K (m) =

∫ π/2

0

(
1 − m sin2 θ

)− 1
2 dθ (13.11.25)

and λ denotes the wavelength of the cnoidal wave.
It is important to note that cn (z, m) is periodic, and hence, η (X) rep-

resents a train of periodic waves in shallow water. Thus, these waves are
called cnoidal waves with wavelength
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Figure 13.11.3 A cnoidal wave.

λ = 2

(
4h3

3b

)1/2

K (m) . (13.11.26)

The outcome of this analysis is that solution (13.11.22) represents a
nonlinear wave whose shape and wavelength (or period) all depend on the
amplitude of the wave. A typical cnoidal wave is shown in Figure 13.11.3.
Sometimes, the cnoidal waves with slowly varying amplitude are observed
in rivers. More often, wavetrains behind a weak bore (called an undular
bore) can be regarded as cnoidal waves.

Two limiting cases are of special interest: (i) m → 1 and (ii) m → 0.
When m → 1 (α → β), it is easy to show that cn (z) → sech z. Hence, the

cnoidal wave solution (13.11.22) tends to the solitary wave with the wave-
length λ, given by (13.11.24) which approaches infinity because K (1) = ∞,
K (0) = π/2. The solution identically reduces to (13.11.14) with (13.11.15).

In the other limit m → 0 (α → 0), sn z → sin z and cn z → cos z so that
solution (13.11.22) becomes

f (X) = α cos2

[(
3β

4h2
0

) 1
2

X

]
, (13.11.27)

where

U = c0

(
1 − β

2

)
. (13.11.28)

Using cos 2θ = 2 cos2 θ − 1, we can rewrite (13.11.27) in the form

f (X) =
α

2

[
1 + cos

(√
3β

h0

)
X

]
. (13.11.29)

We next introduce k =
√

3β/h0 (or β = 1
3k2h2

0) to simplify (13.11.29) as

f (X) =
α

2
[1 + cos (kx − ωt)] , (13.11.30)

where

ω = Uk = c0k

(
1 − 1

6
k2h2

0

)
. (13.11.31)

This corresponds to the first two terms of the series of (gk tanh kh0)
1/2

.
Thus, these results are in perfect agreement with the linearized theory.
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Remark: It is important to point out that the phase velocity (13.11.3)
becomes negative for k2 > (c0/σ) which indicates that waves propagate
in the negative x direction. This contradicts the original assumption of
forward travelling waves. Moreover, the group velocity given by (13.11.4)
assumes large negative values for large k so that the fine-scale features of
the solution are propagated in the negative x direction. The solution of
(13.11.2) involves the Airy function which shows fiercely oscillatory char-
acter for large negative arguments. This leads to a lack of continuity and a
tendency to emphasize short wave components which contradicts the KdV
model representing fairly long waves. In order to eliminate these physically
undesirable features of the KdV equation, Benjamin, Bona, and Mahony
(1972) proposed a new nonlinear model equation in the form

ηt + ηx + ηηx − ηxxt = 0. (13.11.32)

This is known as the Benjamin, Bona and Mahony (BBM) equation. The
advantage of this model over the KdV equation becomes apparent when
we examine their linearized forms and the corresponding solutions. The
linearized form (13.11.32) gives the dispersion relation

ω =
k

1 + k2
, (13.11.33)

which shows that both the phase velocity and the group velocity are
bounded for all k, and both velocities tend to zero for large k. In other
words, the model has the desirable feature of responding very insignifi-
cantly to short wave components that may be introduced into the initial
wave form. Thus, the BBM model seems to be a preferable long wave model
of physical interest. However, whether the BBM equation is a better model
than the KdV equation has not yet been established.

Another important property of the KdV equation is that it satisfies the
conservation law of the form

Tt + Xx = 0, (13.11.34)

where T is called the density and the X is called the flux.
If T and X are integrable in −∞ < x < ∞, and X → 0 as |x| → ∞,

then

d

dt

∫ ∞

−∞
T dx = − |X|∞−∞ = 0.

Therefore,

∫ ∞

−∞
T dx = constant

so that the density is conserved.
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The canonical form of the KdV equation

ut − 6uux + uxxx = 0, (13.11.35)

can be written as

(u)t +
(
−3u2 + uxx

)
x

= 0

so that

T = u and X = −3u2 + uxx. (13.11.36)

If we assume that u is periodic or that u and its derivatives decay very
rapidly as |x| → ∞, then

d

dt

∫ ∞

−∞
u dx = 0.

This leads to the conservation of mass, that is,

∫ ∞

−∞
u dx = constant. (13.11.37)

This is often called the time invariant function of the solutions of the KdV
equation.

The second conservation law for (13.11.34) can be obtained by multi-
plying it by u so that

(
1

2
u2

)

t

+

(
−2u3 + uux − 1

2
u2

x

)

x

= 0. (13.11.38)

This gives

∫ ∞

−∞

1

2
u2dx = constant. (13.11.39)

This is the principle of conservation of energy.
It is well known that the KdV equation has an infinite number of poly-

nomial conservation laws. It is generally believed that the existence of a
soliton solution to the KdV equation is closely related to the existence of
an infinite number of conservation laws.

13.12 The Nonlinear Schrödinger Equation and

Solitary Waves

We first derive the one-dimensional linear Schrödinger equation from the
Fourier integral representation of the plane wave solution
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φ (x, t) =

∫ ∞

−∞
F (k) exp [i (kx − ωt)] dk, (13.12.1)

where the spectrum function F (k) is determined from the given initial or
boundary conditions.

We assume that the wave is slowly modulated as it propagates in a dis-
persive medium. For such a modulated wave, most of the energy is confined
in the neighborhood of k = k0 so that the dispersion relation ω = ω (k) can
be expanded about the point k = k0 as

ω = ω (k) = ω0 + (k − k0) ω′
0 +

1

2
(k − k0)

2
ω′′

0 + . . . , (13.12.2)

where ω0 ≡ ω (k0), ω′
0 ≡ ω′ (k0), ω′′

0 ≡ ω′′ (k0).
In view of (13.12.2), we can rewrite (13.12.1) as

φ (x, t) = ψ (x, t) exp [i (k0x − ω0t)] , (13.12.3)

where the amplitude ψ (x, t) is given by

ψ (x, t) =

∫ ∞

−∞
F (k) exp

[
i (k − k0) x − i

{
(k − k0) ω′

0

+
1

2
(k − k0)

2
ω′′

0

}
t

]
dk. (13.12.4)

Evidently, this represents the slowly varying (or modulated) part of the
basic wave. A simple computation of ψt, ψx, and ψxx gives

ψt = −i

{
(k − k0) ω′

0 +
1

2
(k − k0)

2
ω′′

0

}
ψ

ψx = i (k − k0) ψ

ψxx = − (k − k0)
2
ψ

so that

i (ψt + ω′
0 ψx) +

1

2
ω′′

0 ψxx = 0. (13.12.5)

The dispersion relation associated with this linear equation is given by

ω = k ω′
0 +

1

2
k2ω′′

0 . (13.12.6)

If we choose a frame of reference moving with the linear group velocity,
that is, x∗ = x − ω′

0 t, t∗ = t, the term involving ψx is dropped and then, ψ
satisfies the linear Schrödinger equation, dropping the asterisks,
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i ψt +
1

2
ω′′

0 ψxx = 0. (13.12.7)

We next derive the nonlinear Schrödinger equation from the nonlinear
dispersion relation involving both frequency and amplitude in the most
general form

ω = ω
(
k, a2

)
. (13.12.8)

We first expand ω in a Taylor series about k = k0 and |a|2 = 0 in the
form

ω = ω0 + (k − k0)

(
∂ω

∂k

)

k=k0

+
1

2
(k − k0)

2

(
∂2ω

∂k2

)

k=k0

+

(
∂ω

∂ |a|2

)

|a|2=0

|a|2 , (13.12.9)

where ω0 ≡ ω (k0).
If we now replace , ω − ω0 by i (∂/∂t) and k − k0 by −i (∂/∂x), and

assume that the resulting operators act on a, we obtain

i (at + ω′
0 ax) +

1

2
ω′′

0 axx + γ |a|2 a = 0, (13.12.10)

where

ω′
0 ≡ ω′ (k0) , ω′′

0 ≡ ω′′ (k0) , and γ ≡ −
(

∂ω

∂ |a|2

)

|a|2=0

is a constant.

Equation (13.12.10) is known as the nonlinear Schrödinger (NLS) equa-
tion. If we choose a frame of reference moving with the linear group velocity
ω′

0, that is, x∗ = x − ω′
0 t and t∗ = t, the term involving ax will drop out

from (13.12.10), and the amplitude a (x, t) satisfies the normalized NLS
equation, dropping the asterisks,

i at +
1

2
ω′′

0 axx + γ |a|2 a = 0. (13.12.11)

The corresponding dispersion relation is given by

ω =
1

2
ω′′

0 k2 − γ a2. (13.12.12)

According to the stability criterion established in Section 13.5, the wave
modulation is stable if γ ω′′

0 < 0 and unstable if γ ω′′
0 > 0.

To study the solitary wave solution, it is convenient to use the NLS
equation in the standard form

i ψt + ψxx + γ |ψ|2 ψ = 0, −∞ < x < ∞, t ≥ 0. (13.12.13)
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We seek waves of permanent form by assuming the solution

ψ = f (X) ei(mX−nt), X = x − Ut (13.12.14)

for some functions f and constant wave speed U to be determined, and m,
n are constants.

Substitution of (13.12.14) into (13.12.13) gives

f ′′ + i (2m − U) f ′ +
(
n − m2

)
f + γ |f |2 f = 0. (13.12.15)

We eliminate f ′ by setting 2m − U = 0, and then, write n = m2 − α so
that f can be assumed to be real. Thus, equation (13.12.15) becomes

f ′′ − αf + γ f3 = 0. (13.12.16)

Multiplying this equation by 2f ′ and integrating, we find that

f ′2 = A + αf2 − γ

2
f4 ≡ F (f) , (13.12.17)

where F (f) ≡
(
α1 − α2f

2
) (

β1 − β2f
2
)
, so that α = − (α1β2 + α2β1),

A = α1β1, γ = −2 (α2β2), and α′s and β′s are assumed to be real and
distinct.

Evidently,

X =

∫ f

0

df√
(α1 − α2f2) (β1 − β2f2)

. (13.12.18)

Putting (α2/α1)
1
2 f = u in this integral, we deduce the following elliptic

integral of the first kind (see Dutta and Debnath (1965)):

σX =

∫ u

0

du√
(1 − u2) (1 − κ2u2)

, (13.12.19)

where σ = (α2β1)
1
2 and κ = (α1β2) / (β1α2).

Thus, the final solution can be expressed in terms of the Jacobian sn
function

u = sn (σX, κ) ,

or,

f (X) =

(
α1

α2

) 1
2

sn (σX, κ) . (13.12.20)

In particular, when A = 0, α > 0, and γ > 0, we obtain a solitary wave
solution. In this case, equation (13.12.17) can be rewritten as
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√
α X =

∫ f

0

df

f
(
1 − γ

2αf2
) 1

2

. (13.12.21)

Substitution of (γ/2α)
1
2 f = sech θ in this integral gives the exact solution

f (X) =

(
2α

γ

) 1
2

sech
[√

α (x − Ut)
]
. (13.12.22)

This represents a solitary wave which propagates without change of shape
with constant velocity U . Unlike the solution of the KdV equation, the
amplitude and the velocity of the wave are independent parameters. It is
noted that the solitary wave exists only for the unstable case (γ > 0). This
means that small modulations of the unstable wavetrain lead to a series of
solitary waves.

The nonlinear dispersion relation for deep water waves is

ω =
√

gk

(
1 +

1

2
a2k2

)
. (13.12.23)

Therefore,

ω′
0 =

ω0

2k0
, ω′′

0 = − ω0

4k2
0

, and γ = −1

2
ω0k

2
0, (13.12.24)

and the NLS equation for deep water waves is obtained from (13.12.10) in
the form

i

(
at +

ω0

2k0
ax

)
−

(
ω0

8k2
0

)
axx − 1

2
ω0 k2

0 |a|2 a = 0. (13.12.25)

The normalized form of this equation in a frame of reference moving with
the linear group velocity ω′

0 is

i at −
(

ω0

8k2
0

)
axx =

1

2
ω0 k2

0 |a|2 a. (13.12.26)

Since γ ω′′
0 =

(
ω2

0/8
)

> 0, this equation confirms the instability of deep
water waves. This is one of the most remarkable recent results in the theory
of water waves.

We next discuss the uniform solution and the solitary wave solution of
(13.12.26). We look for solutions in the form

a (x, t) = A (X) exp
(
i γ2 t

)
, X = x − ω′

0 t (13.12.27)

and substitute this into equation (13.12.26) to obtain

AXX = −
(

8k2
0

ω0

)(
γ2A +

1

2
ω0 k2

0 A3

)
. (13.12.28)
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We multiply this equation by 2AX and then integrate to find

A2
X = −

(
A4

0 m′2 +
8

ω0
γ2k2

0A
2 + 2k4

0A
4

)

=
(
A2

0 − A2
) (

A2 − m′2A2
0

)
, (13.12.29)

where
(
A4

0m
′2) is an integrating constant and 2k4

0 = 1, m′2 = 1 − m2, and

A2
0 = 4γ2/ω0k

2
0

(
m2 − 2

)
which relates A0, γ, and m.

Finally, we rewrite equation (13.12.29) in the form

A2
0 dX =

dA
[(

1 − A2

A2
0

)(
A2

A2
0

− m′2
)] 1

2

, (13.12.30)

or,

A0 (X − X0) =

∫ ′ ds

[(1 − s2) (s2 − m′2)]
1
2

, s = (A/A0) .

This can readily be expressed in terms of the Jacobian dn function (see
Dutta and Debnath (1965))

A = A0 dn [A0 (X − X0) , m] , (13.12.31)

where m is the modulus of the dn function.
In the limit m → 0, dn z → 1 and γ2 → − 1

2 ω0k
2
0A

2
0. Hence, the solution

is

a (x, t) = A (t) = A0 exp

(
−1

2
i ω0 k2

0 A2
0 t

)
. (13.12.32)

On the other hand, when m → 1, dn z → sech z and γ2 → − 1
4ω0k

2
0A

2
0.

Therefore, the solitary wave solution is

a (x, t) = A0 sech [A0 (x − ω′
0t − X0)] exp

(
−1

4
ω0 k2

0 A2
0 t

)
. (13.12.33)

We next use the NLS equation (13.12.26) to discuss the instability of
deep water waves, which is known as the Benjamin and Feir instability. We
consider a perturbation of (13.12.32) and write

a (X, t) = A (t) [1 + B (X, t)] , (13.12.34)

where A (t) is the uniform solution given by (13.12.32).
Substituting equation (13.12.34) into (13.12.26) gives

iAt (1 + B) + iA (t) Bt −
(

ω0

8k2
0

)
A (t) BXX

=
1

2
ω0k

2
0A

2
0 [(1 + B) + BB∗ (1 + B) + (B + B∗) B + (B + B∗)]A,
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where B∗ is the complex conjugate of B.
Neglecting squares of B, it follows that

i Bt −
(

ω0

8k2
0

)
BXX =

1

2
ω0k

2
0A

2
0 (B + B∗) . (13.12.35)

We now seek a solution of the form

B (X, t) = B1 eΩt+iκX + B2 eΩt−iκX , (13.12.36)

where B1, B2 are complex constants, κ is a real wavenumber, and Ω is a
growth rate (possibly complex) to be determined.

Substitution of B into (13.12.35) leads to the pair of coupled equations

(
iΩ +

ω0κ
2

8k2
0

)
B1 − 1

2
ω0k

2
0A

2
0 (B1 + B∗

2) = 0, (13.12.37)

(
iΩ +

ω0κ
2

8k2
0

)
B2 − 1

2
ω0k

2
0A

2
0 (B∗

1 + B2) = 0. (13.12.38)

It is convenient to take the complex conjugate of (13.12.38) so that it as-
sumes the form

(
−iΩ +

ω0κ
2

8k2
0

)
B∗

2 − 1

2
ω0k

2
0A

2
0 (B1 + B∗

2) = 0. (13.12.39)

The pair of linear homogeneous equations (13.12.37) and (13.12.39) for
B1 and B∗

2 admits a nontrivial solution provided

∣∣∣∣∣∣∣∣

iΩ +
(

ω0κ2

8k2
0

)
− 1

2ω0k
2
0A

2
0 − 1

2ω0k
2
0A

2
0

− 1
2ω0k

2
0A

2
0 iΩ +

(
ω0κ2

8k2
0

)
− 1

2ω0k
2
0A

2
0

∣∣∣∣∣∣∣∣
= 0,

or

Ω2 =

(
ω2

0κ2

8k2
0

)(
k2
0A

2
0 − κ2

8k2
0

)
. (13.12.40)

The growth rate Ω is purely imaginary or real and positive depending on
whether

(
κ2/k2

0

)
> 8k2

0A
2
0 or

(
κ2/k2

0

)
< 8k2

0A
2
0. The former case corre-

sponds to a wave (an oscillatory solution) for B, and the latter case rep-
resents the Benjamin and Feir instability criterion with κ̃ = (κ/k0) as the
non-dimensional wavenumber so that

κ̃2 < 8k2
0A

2
0. (13.12.41)

The range of instability is given by

0 < κ̃ < κ̃c = 2
√

2 (k0A0) . (13.12.42)
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Since Ω is a function of κ̃, maximum instability occurs at κ̃ = κ̃max =
2k0A0 with a maximum growth rate given by

(Re Ω)max =
1

2
ω0k

2
0A

2
0. (13.12.43)

To establish the connection with the Benjamin–Feir instability, we have
to find the velocity potential for the fundamental wave mode multiplied by
exp (kz). It turns out that the term proportional to B1 is the upper side-
band, whereas that proportional to B2 is the lower sideband. The main con-
clusion of the preceding analysis is that Stokes water waves are definitely
unstable. In 1967, Benjamin and Feir (see Whitham (1976) or Debnath
(2005)) confirmed these remarkable results both theoretically and experi-
mentally.

Conservation Laws for the NLS Equation

Zakharov and Shabat (1972) proved that equation (13.12.13) has an infinite
number of polynomial conservation laws. Each has the form of an integral,
with respect to x, of a polynomial expression in terms of the function ψ (x, t)
and its derivatives with respect to x. These laws are somewhat similar to
those already proved for the KdV equation. Therefore, the proofs of the
conservation laws are based on similar assumptions used in the context of
the KdV equation.

We prove here three conservation laws for the nonlinear Schrödinger
equation (13.12.13):

∫ ∞

−∞
|ψ|2 dx = constant = C1, (13.12.44)

∫ ∞

−∞
i
(
ψ ψx − ψ ψx

)
dx = constant = C2, (13.12.45)

∫ ∞

−∞

(
|ψx|2 − 1

2
γ |ψ|4

)
dx = constant = C3, (13.12.46)

where the bar denotes the complex conjugate.
We multiply (13.12.13) by ψ and its complex conjugate by ψ and sub-

tract the latter from the former to obtain

i
d

dt

(
ψ ψ

)
+

d

dx

(
ψx ψ − ψx ψ

)
= 0. (13.12.47)

Integration with respect to x in −∞ < x < ∞ gives

i
d

dt

∫ ∞

−∞
|ψ|2 dx = 0.

This proves result (13.12.44).
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We multiply (13.12.13) by ψx and its complex conjugate by ψx and then,
add them to obtain

i
(
ψt ψx − ψt ψx

)
+

(
ψxx ψx + ψxx ψx

)
+ γ |ψ|2

(
ψ ψx + ψx ψx

)
= 0.

(13.12.48)

We differentiate (13.12.13) and its complex conjugate with respect to
x, and multiply the former by ψ and the latter by ψ and then add them
together. This leads to the result

i
(
ψxψxt − ψ ψxt

)
+

(
ψxxx ψ + ψxxx ψ

)

+γ
[
ψ

(
|ψ|2 ψ

)
x

+ ψ
(
|ψ|2 ψ

)
x

]
= 0. (13.12.49)

If we subtract (13.12.49) from (13.12.48) and then simplify, we have

i
d

dt

(
ψ ψx − ψ ψx

)

=
d

dx

(
ψx ψx

)
+

d

dx

(
ψ ψxx + ψ ψxx

)
− d

dx

(
ψx ψx

)
+ γ

d

dx

(
ψ ψ

)2

=
d

dx

(
ψ ψxx + ψ ψxx

)
+ γ

d

dx
|ψ|4 .

Integrating this result with respect to x, we obtain

d

dt

∫ ∞

−∞
i
(
ψ ψx − ψ ψx

)
dx = 0.

This proves the second result.
We multiply (13.12.13) by ψt and its complex conjugate by ψt and add

the resulting equations to derive

(
ψt ψxx + ψxx ψt

)
+ γ

(
ψ2 ψ ψt + ψ

2
ψ ψt

)
= 0,

or,

d

dx

(
ψt ψx + ψt ψx

)
− d

dt

(
ψx ψx

)
+

γ

2

d

dt

(
ψ2 ψ

2
)

= 0.

Integrating this with respect to x, we have

d

dt

∫ ∞

−∞

(
|ψx|2 − γ

2
|ψ|4

)
dx =

∫ ∞

−∞

d

dx

(
ψt ψx + ψt ψx

)
dx = 0. (13.12.50)

This gives (13.12.46).
The above three conservation integrals have a simple physical meaning.

In fact, the constants of motion C1, C2 and C3 are related to the number
of particles, the momentum, and the energy of a system governed by the
nonlinear Schrödinger equation.
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An analysis of this section reveals several remarkable features of the
nonlinear Schrödinger equation. This equation can also be used to investi-
gate instability phenomena in many other physical systems. Like the various
forms of the KdV equation, the NLS equation arises in many physical prob-
lems, including nonlinear water waves and ocean waves, waves in plasma,
propagation of heat pulses in a solid, self-trapping phenomena in nonlinear
optics, nonlinear waves in a fluid filled viscoelastic tube, and various non-
linear instability phenomena in fluids and plasmas (see Debnath (2005)).

13.13 The Lax Pair and the Zakharov and Shabat

Scheme

In his 1968 seminal paper, Lax developed an elegant formalism for finding
isospectral potentials as solutions of a nonlinear evolution equation with
all of its integrals. This work deals with some new and fundamental ideas,
deeper results, and their application to the KdV model. This work sub-
sequently paved the way to generalizations of the technique as a method
for solving other nonlinear partial differential equations. Introducing the
Heisenberg picture, Lax developed the method of inverse scattering based
upon an abstract formulation of evolution equations and certain properties
of operators on a Hilbert space, some of which are familiar in the context of
quantum mechanics. His formulation has the feature of associating certain
nonlinear evolution equations with linear equations that are analogs of the
Schrödinger equation for the KdV equation.

To formulate Lax’s method (1968), we consider two linear operators L
and M . The eigenvalue equation related to the operator L corresponds to
the Schrödinger equation for the KdV equation. The general form of this
eigenvalue equation is

Lψ = λψ, (13.13.1)

where ψ is the eigenfunction and λ is the corresponding eigenvalue. The
operator M describes the change of the eigenvalues with the parameter t,
which usually represents time in a nonlinear evolution equation. The general
form of this evolution equation is

ψt = Mψ. (13.13.2)

Differentiating (13.13.1) with respect to t gives

Ltψ + Lψt = λtψ + λψt. (13.13.3)

We next eliminate ψt from (13.13.3) by using (13.13.2) and obtain

Ltψ + LMψ = λtψ + λMψ = λtψ + Mλψ = λtψ + MLψ, (13.13.4)
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or, equivalently,

∂L

∂t
ψ = λtψ + (ML − LM) ψ. (13.13.5)

Thus, eigenvalues are constant for nonzero eigenfunctions if and only if

∂L

∂t
= − (LM − ML) ψ = − [L, M ] ψ, (13.13.6)

where [L, M ] = (LM − ML) is called the commutator of the operators L
and M , and the derivative on the left-hand side of (13.13.6) is to be in-
terpreted as the time derivative of the operator alone. Equation (13.13.6)
is called the Lax equation and the operators L and M are called the Lax
pair . It is the Heisenberg picture of the KdV equation. The problem, of
course, is how to determine these operators for a given evolution equation.
There is no systematic method of solution for this problem. For a negative
integrable hierarchy, Qiao (1995) and Qiao and Strampp (2002) suggest a
general approach to generate integrable equations; they also devise strate-
gies for finding a Lax pair from a given spectral problem.

We consider the initial-value problem for u (x, t) which satisfies the non-
linear evolution equation system

ut = N (u) (13.13.7)

u (x, 0) = f (x) , (13.13.8)

where u ∈ Y for all t, Y is a suitable function space, and N : Y → Y is a
nonlinear operator that is independent of t but may involve x or derivatives
with respect to x.

We must assume that the evolution equation (13.13.7) can be expressed
in the Lax form

Lt + (LM − ML) = Lt + [L, M ] = 0, (13.13.9)

where L and M are linear operators in x on a Hilbert space H and depend
on u and Lt = ut is a scalar operator. We also assume that L is self-adjoint
so that (Lφ, ψ) = (φ, Lψ) for all φ and ψ ∈ H with (·, ·) as an inner product.

We now formulate the eigenvalue problem for ψ ∈ H:

Lψ = λ (t) ψ, t ≥ 0, x ∈ R. (13.13.10)

Differentiating with respect to t and making use of (13.13.9), we obtain

λtψ = (L − λ) (ψt − Mψ) . (13.13.11)

The inner product of ψ with this equation yields

(ψ, ψ) λt = ((L − λ) ψ, λt − Mψ) , (13.13.12)
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which, since L − λ is self-adjoint, is given by

(ψ, ψ) λt = (0, ψt − Mψ) = 0.

Hence, λt = 0, confirming that each eigenvalue of L is a constant. Conse-
quently, (13.13.11) becomes

L (ψt − Mψ) = λ (ψt − Mψ) . (13.13.13)

This shows that (ψt − Mψ) is an eigenfunction of the operator L with the
eigenvalue λ. It is always possible to redefine M by adding the product
of the identity operator and a suitable function of t, so that the original
equation (13.13.9) remains unchanged. This leads to the time evolution
equation for ψ as

ψt = Mψ, t ≥ 0. (13.13.14)

Thus, we have the following.

Theorem 13.13.1. If the evolution equation (13.13.7) can be expressed as
the Lax equation

Lt + [L, M ] = 0 (13.13.15)

and if (13.13.10) holds, then λt = 0, and ψ satisfies (13.13.14).
It is not yet clear how to find the operators L and M that satisfy the pre-

ceding conditions. To illustrate the Lax method, we choose the Schrödinger
operator L in the form

L ≡ − ∂2

∂x2
+ u, (13.13.16)

so that Lψ = λψ becomes the Sturm–Liouville problem for the self-adjoint
operator L. With this given L, the problem is to find the operator M . Based
on the theory of a linear unitary operator on a Hilbert space H, the linear
operator M can be chosen as antisymmetric, so that (Mφ, ψ) = − (φ, Mψ)
for all φ and ψ ∈ H. So, a suitable linear combination of odd derivatives in
x is a natural choice for M . It follows from the inner product that

(Mφ, ψ) =

∫ ∞

−∞

∂nφ

∂xn
ψdx = −

∫ ∞

−∞
φ

∂nψ

∂xn
dx = − (φ, Mψ) ,(13.13.17)

provided M = ∂nφ/∂xn for odd n, and φ, ψ, and their derivatives with
respect to x tend to zero, as |x| → ∞. Moreover, we require that M has
sufficient freedom in any unknown constants or functions to make Lt +
[L, M ] a multiplicative operator, that is, of degree zero. For n = 1, the
simplest choice for M is M = c (∂/∂x), where c is a constant. It then follows
that [L, M ] = −cux, which is automatically a multiplicative operator. Thus,
the Lax equation is
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Lt + [L, M ] = ut − cux = 0, (13.13.18)

and hence, the one-dimensional wave equation

ut − cux = 0 (13.13.19)

has an associated eigenvalue problem with the eigenvalues that are con-
stants of motion.

The next natural choice is

M = −a
∂3

∂x3
+ A

∂

∂x
+

∂

∂x
A + B, (13.13.20)

where a is a constant, A = A (x, t), and B = B (x, t), and the third term
on the right-hand side of (13.13.20) can be dropped, but we retain it for
convenience. It follows from an algebraic calculation that

[L, M ] = a uxxx − Axxx − Bxx − 2 uxA

+ (3auxx − 4Axx − 2Bx)
∂

∂x
+ (3aux − 4Ax)

∂2

∂x2
.

This would be a multiplicative operator if A = 3
4au and B = B (t). Conse-

quently, the Lax equation (13.13.15) becomes

ut − 3

2
auux +

a

4
uxxx = 0. (13.13.21)

This is the standard KdV equation if a = 4. The operator M defined by
(13.13.20) reduces to the form

M = −4
∂3

∂x3
+ 3

(
u

∂

∂x
+

∂

∂x
u

)
+ B (t) . (13.13.22)

Hence, the time evolution equation for ψ can be simplified by using the
Sturm–Liouville equation, ψxx − (u − λ) ψ = 0, to

ψt = 4 (λψ − uψ)x + 3ψx + 3 (uψ)x + Bψ

= 2 (u + 2λ) ψx − uxψ + Bψ. (13.13.23)

We close this section by adding several comments. First, any evolution
equations solvable by the inverse scattering transform (IST), like the KdV
equation, can be expressed in Lax form. However, the main difficulty is
that there is no completely systematic method for determining whether or
not a given partial differential equation produces a Lax equation and, if
so, how to find the Lax pair L and M . Indeed, Lax proved that there is
an infinite number of operators, M , one associated with each odd order of
∂/∂x, and hence, an infinite family of flows ut under which the spectrum
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of L is preserved. Second, it is possible to study other spectral equations
by choosing alternative forms for L. Third, the restriction that L and M
should be limited to the class of scalar operators could be removed. In fact,
L and M could be matrix operators. The Lax formulation has already been
extended to such operators. Fourth, Zakharov and Shabat (1972, 1974)
published a series of notable papers in this field extending the nonlinear
Schrödinger (NLS) equation and other evolution equations. For the first
time, they have generalized the Lax formalism for equations with more
than one spatial variable. This extension is known as the Zakharov and
Shabat (ZS) scheme, which, essentially, follows the Lax method and recasts
it in a matrix form, leading to a matrix Marchenko equation.

Finally, we briefly discuss the ZS scheme for nonself-adjoint operators
to obtain N -soliton solutions for the NLS equation. Zakharov and Shabat
introduced an ingenious method for any nonlinear evolution equation

ut = Nu, (13.13.24)

that represents the equation in the form

∂L

∂t
= i [L, M ] = i (LM − ML) , (13.13.25)

where L and M are linear differential operators that include the function
u in the coefficients, and L refers to differentiating u with respect to t.

We consider the eigenvalue problem

Lφ = λφ. (13.13.26)

Differentiation of (13.13.26) with respect to t gives

i φ

(
dλ

dt

)
= (L − λ) (iφt − Mφ) . (13.13.27)

If φ satisfies (13.13.26) initially and changes in such a manner that

iφt = Mφ, (13.13.28)

then φ always satisfies (13.13.26). Equations (13.13.26) and (13.13.28) are
the pair of equations coupling the function u (x, t) in the coefficients with
a scattering problem. Indeed, the nature of φ determines the scattering
potential in (13.13.26), and the evolution of φ in time is given by (13.13.28).

Although this formulation is quite general, the crucial step is to factor
L according to (13.13.25). Zakharov and Shabat (1972) introduce 2 × 2
matrices associated with (13.13.25) as follows:

L = i

⎡
⎣

1 + α 0

0 1 − α

⎤
⎦ ∂

∂x
+

⎡
⎣

0 u∗

u 0

⎤
⎦ , (13.13.29)

M = −α

⎡
⎣

1 0

0 1

⎤
⎦ ∂2

∂x2
+

⎡
⎢⎣

|u|2
1+α iu∗

x

−iux
−|u|2
1−α

⎤
⎥⎦ , (13.13.30)
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and the NLS equation for complex u (x, t) is given by

iut + uxx + γ |u|2 u = 0, (13.13.31)

where

γ = 2/
(
1 − α2

)
.

Thus, the eigenvalue problem (13.13.26) and the evolution equation
(13.13.28) complete the inverse scattering problem. The initial-value prob-
lem for u (x, t) can be solved for a given initial condition u (x, 0). It seems
clear that the significant contribution would come from the point spectrum
for large times (t → ∞). Physically, the disturbance tends to disintegrate
into a series of solitary waves. The mathematical analysis is limited to the
asymptotic solutions so that |u| → 0 as |x| → ∞, but a series of solitary
waves is expected to be the end result of the instability of wavetrains to
modulations.

13.14 Exercises

1. For the flow density relation q = vρ (1 − ρ/ρ1), find the solution of the
traffic flow problem with the initial condition ρ (x, 0) = f (x) for all x.
Let

f (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3 , x ≤ 0

1
3 + 5

12x, 0 ≤ x ≤ 1

3
4 , x ≥ 1.

Show that
(i) ρ = 1

3ρ0 along the characteristic lines ct = 3 (x − x0), x0 ≤ 0,

(ii) ρ = 3
4ρ0 along the characteristic lines ct = 2 (x0 − x), x0 ≥ 1,

(iii) ρ = 1
3 + 5

12x0ρ0 along ct
(

2
5 − x0

)
= 6

5 (x − x0), 0 ≤ x0 ≤ 1.

Discuss what happens at the intersection of the two lines ct = 3x and
ct = 2 (1 − x). Draw the characteristic lines ct versus x.

2. A mountain of height h (x, t) is vulnerable to erosion if its slope hx is
very large. If ht and hx satisfy the functional relation ht = −Q (hx),
show that u = hx is governed by the nonlinear wave equation

ut + c (u) ux = 0, c (u) = Q′ (u) .

3. Consider the flow of water in a river carrying some particles through
the solid bed. During the sedimentation process, some particles will
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be deposited in the bed. Assuming that v is the constant velocity of
water and that ρ = ρf + ρb is the density, where ρf is the density of
the particles carried in the fluid and ρb is the density of the material
deposited on the solid bed, the conservation law is

∂ρ

∂t
+

∂q

∂x
= 0, q = vρf .

(a) Show that ρb satisfies the equation

∂ρf

∂t
+ c (ρf )

∂ρf

∂x
= 0, c (ρf ) =

v

1 + Q′ (ρf )
,

where ρb = Q (ρf ) .

(b) This problem also arises in chemical engineering with a second re-
lation between ρf and ρb in the form

∂ρb

∂t
= k1 (α − ρb) − k2 (β − ρf ) ρb,

where k1, k2 represent constant reaction rates and α, β are constant
values of the saturation levels of the particles in the solid bed and fluid
respectively. Show that the propagation speed c is

c =
k2βv

(k1α + k2β)

provided that the densities are small.

4. Show that a steady solution u (x, t) = f (ζ), ζ = x − ct of Burgers’
equation with the boundary conditions f → u−

∞ or u+
∞ as ζ → −∞

or +∞ is

u (x, t) =

[
c − 1

2

(
u−

∞ − u+
∞

)
tanh

{
(u−

∞ − u+
∞)

4ν
(x − ct)

}]
,

where u−
∞ = c +

(
c2 + 2A

) 1
2 , u+

∞ = c −
(
c2 − 2A

) 1
2 are two roots of

f2 − 2cf − 2A = 0 and A is a constant of integration.

5. Show that the transformations x → γ
1
3 x, u → −6γ

1
3 u, t → t reduce

the KdV equation ut + uux + γuxxx = 0 into the canonical form ut −
6uux + uxxx = 0.

Hence or otherwise, prove that the solution of the canonical equation
with the boundary conditions that u (x, t) and its derivatives tend to
zero as |x| → ∞ is

u (x, t) = −a2

2
sech2

{a

2

(
x − a2t

)}
.
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6. Verify that the Riccati transformation u = v2 + vx transforms the KdV
equation so that v satisfies the associated KdV equation

vt − 6v2vx + vxxx = 0.

For a given u, show that the Riccati equation vx + v2 = u becomes the
linear Schrödinger equation, ψxx = uψ (without the energy-level term)
under the transformation v = (ψx/ψ).

7. Apply the method of characteristics to solve the pair of equations

∂u

∂t
+

∂v

∂x
= 0,

∂v

∂t
+

∂u

∂x
= 0,

with the initial data

u (x, 0) = ex, v (x, 0) = e−x,

Show that the Riemann invariants are

2 r (α) = 2 cosh α, 2 s (β) = 2 sinhβ,

Also, show that solutions are u = cosh (x − t) + sinh (x + t) and v =
cosh (x − t) − sinh (x + t).

8. For an isentropic flow, the Euler equations are

ρt + (ρu)x = 0,

ut + uux +
1

ρ
px = 0,

St + uSx = 0,

where ρ is the density, u is the velocity in the x direction, p is the
pressure, and S is the entropy.
Show that this system has three families of characteristics.

Γ0 :
dx

dt
= u, Γ+ :

dx

dt
= u + c,

where c2 =
(

∂p
∂ρ

)
s

= constant.

Hence derive the following full set of characteristic equations

dS

dt
= 0, on Γ0,

dp

dt
+ ρc

du

dt
= 0, on Γ+.

In particular, when the flow is isentropic (S = constant everywhere),
show that the characteristic equations are

∫
c (ρ)

ρ
dρ + u = constant on Γ+ and Γ+ :

dx

dt
= u + c.
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9. (a) Using equations (13.8.32)–(13.8.36), derive the second-order equa-
tion

trs + φ (r + s) (tr + ts) = 0, φ (r + s) =
1

2c

(
1 +

ρ

c

dc

dρ

)
.

(b) For a polytropic gas, show that

φ (r + s) =
γ + 1

4c
=

α

F (ρ)
, α ≡ 1

2

(
γ + 1

γ − 1

)
,

and

trs +
α

r + s
(tr + ts) = 0.

(c) With F (ρ) = 2c
γ−1 = r + s and u = r − s, show that the differential

equation in 9(b) reduces to the Euler–Poisson–Darboux equation

tuu −
(

γ − 1

2

)2 (
tcc +

2α

c
tc

)
= 0,

where u and c are independent variables.

10. Show that the KdV equation

ut − 6uux + uxxx = 0

satisfies the conservation law in the form Ut + Vx = 0 when (a) U = u,
V = −3u2 + uxx, and (b) U = 1

2u2, V = −2u3 + uux − 1
2u2

x.

11. Show that the KdV equation

ut + 6uux + uxxx = 0

satisfies the conservation law

Ut + Vx = 0,

where
(a) U = u, V = 3u2 + uxx,

(b) U = 1
2u2, V = 2u3 + uuxx − 1

2u2
x,

(c) U = u3 − 1
2u2

x, V = 9
2 u4 + 3u2uxx + 1

2u2
xx + uxut.

12. Show that the conservation laws for the associated KdV equation

vt − 6v2vx + vxxx = 0,

are

(a) (v)t +
(

1
3 v3 + vxx

)
x

= 0,

(b)
(

1
2v2

)
t
+

(
1
4 v4 + vvxx − 1

2v2
x

)
x

= 0.
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13. For the nonlinear Schrödinger equation (13.12.13), prove that
∫ ∞

−∞
T dx = constant,

where (i) T ≡ i
(
ψ ψx − ψ ψx

)
and (ii) T ≡ |ψx|2 − 1

2γ |ψ|4.

14. Show that the conservation law for Burgers’ equation (13.10.20) is

(u)t +

(
1

2
u2 + ν ux

)

x

= 0.

15. Show that the conservation laws for the equation

ut − uux − uxxt = 0

are of the forms

(a) (u)t −
(

1
2u2 + uxt

)
x

= 0,

(b) 1
2

(
u2 + u2

x

)
t
−

(
1
3u3 + uuxt

)
x

= 0.

16. Show that the linear Schrödinger system

i ψt + ψxx = 0, −∞ < x < ∞, t > 0,

ψ → 0, |x| → ∞,

ψ (x, 0) = ψ (x) with

∫ ∞

−∞
|ψ|2 dx = 1.

has the conservation law(
i |ψ|2

)
t
+ (ψ∗ψx − ψψ∗

x)x = 0

and the energy integral
∫ ∞

−∞
|ψ|2 dx = 1.

17. Seek a dispersive wave solution of the telegraph equation (see problem
14, 3.9 Exercises)

utt − c2uxx + ac2ut + bc2u = 0

in the form

u (x, t) = A exp [i (kx − ωt)] .

(a) Show that ω = − 1
2

(
iac2

)
+ 1

2

[
4c2k2 +

(
4b − c2

)
c2

] 1
2 .

(b) If 4b = a2c2, show that the solution

u (x, t) = A exp

(
−1

2
ac2t

)
exp [ik (x+ ct)]

represents nondispersive waves with attenuation.





14

Numerical and Approximation Methods

“The strides that have been made recently, in the theory of nonlinear partial
differential equations, are as great as in the linear theory. Unlike the linear
case, no wholesale liquidation of broad classes of problems has taken place;
rather, it is steady progress on old fronts and on some new ones, the com-
plete solution of some special problems, and the discovery of some brand
new phenomena. The old tools – variational methods, fixed point theorems,
mapping degree, and other topological tools have been augmented by some
new ones. Pre-eminent for discovering new phenomena is numerical exper-
imentation; but it is likely that in the future numerical calculations will be
parts of proofs.”

Peter Lax

“Almost everyone using computers has experienced instances where
computational results have sparked new insights.”

Norman J. Zabusky

14.1 Introduction

The preceding chapters have been devoted to the analytical treatment of
linear and nonlinear partial differential equations. Several analytical meth-
ods to find the exact analytical solution of these equations within simple
domains have been discussed. The boundary and initial conditions in these
problems were also relatively simple, and were expressible in simple math-
ematical form. In dealing with many equations arising from the modelling
of physical problems, the determination of such exact solutions in a simple
domain is a formidable task even when the boundary and/or initial data are
simple. It is then necessary to resort to numerical or approximation meth-
ods in order to deal with the problems that cannot be solved analytically. In
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view of the widespread accessibility of today’s high speed electronic com-
puters, numerical and approximation methods are becoming increasingly
important and useful in applications.

In this chapter some of the major numerical and approximation ap-
proaches to the solution of partial differential equations are discussed in
some detail. These include numerical methods based on finite difference ap-
proximations, variational methods, and the Rayleigh–Ritz, Galerkin, and
Kantorovich methods of approximation. The chapter also contains a large
section on analytical treatment of variational methods and the Euler–
Lagrange equations and their applications. A short section on the finite
element method is also included.

14.2 Finite Difference Approximations, Convergence,

and Stability

The Taylor series expansion of a function u (x, y) of two independent vari-
ables x and y is

u (xi + h, yj) = ui + 1,j = ui,j + h (ux)i,j +
h2

2!
(uxx)i,j

+
h3

3!
(uxxx)i,j + . . . , (14.2.1ab)

u (xi, yj + k) = ui,j + 1 = ui,j + k (uy)i,j +
k2

2!
(uyy)i,j

+
k3

3!
(uyyy)i,j + . . . , (14.2.2ab)

where ui,j = u (x, y), ui + 1,j = u (x+ h, y), and ui,j + 1 = u (x, y + k).

We choose a set of uniformly spaced rectangles with vertices at Pi,j with
coordinates (ih, jk), where i, j, are positive or negative integers or zero, as
shown in Figure 14.2.1. We denote u (ih, jk) by ui,j .

Using the above Taylor series expansion, we write approximate expres-
sions for ux at the vertex Pi,j in terms of ui,j , ui + 1,j :

ux =
1

h
[u (x + h, y) − u (x, y)] ∼ 1

h
(ui+1,j − ui,j) + O (h) , (14.2.3)

ux =
1

h
[u (x, y) − u (x − h, y)] ∼ 1

h
(ui,j − ui−1,j) + O (h) , (14.2.4)

ux =
1

2h
[u (x + h, y) − u (x − h, y)] ∼ 1

2h
(ui+1,j − ui−1,j) + O

(
h2

)
.

(14.2.5)

These expressions are called the forward first difference, backward first
difference, and central first difference of ux, respectively. The quantity O (h)
or O

(
h2

)
is known as the truncation error in this discretization process.
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Figure 14.2.1 Uniformly spaced rectangles.

A similar approximate result for uxx at the vertex Pi,j is

uxx =
1

h2
[u (x + h, y) − 2 u (x, y) + u (x − h, y)]

∼ 1

h2
[ui+1,j − 2 ui,j + ui−1,j ] + O

(
h2

)
. (14.2.6)

Similarly, the approximate formulas for uy and uyy at Pi,j are

uy =
1

k
[u (x, y + k) − u (x, y)] ∼ 1

k
(ui,j+1 − ui,j) + O (k) , (14.2.7)

uy =
1

k
[u (x, y) − u (x, y − k)] ∼ 1

k
(ui,j − ui,j−1) + O (k) , (14.2.8)

uy =
1

2k
[u (x, y + k) − u (x, y − k)] ∼ 1

2k
(ui,j+1 − ui,j−1) + O

(
k2

)
,

(14.2.9)

uyy =
1

k2
[u (x, y + k) − 2 u (x, y) + u (x, y − k)]

∼ 1

k2
[ui,j+1 − 2ui,j + ui,j−1] + O

(
k2

)
. (14.2.10)

All these difference formulas are extremely useful in finding numerical
solutions of first or second order partial differential equations.

Suppose U (x, y) represents the exact solution of a partial differential
equation L (U) = 0 with independent variables x and y, and ui,j is the
exact solution of the corresponding finite difference equation F (ui,j) = 0.
Then, the finite difference scheme is said to be convergent if ui,j tends to
U as h and k tend to zero. The difference, di,j ≡ (Ui,j − ui,j) is called the
cummulative truncation (or discretization) error.

This error can generally be minimized by decreasing the grid sizes h
and k. However, this error depends not only on h and k, but also on the
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number of terms in the truncated series which is used to approximate each
partial derivative.

Another kind of error is introduced when a partial differential equation
is approximated by a finite difference equation. If the exact finite difference
solution ui,j is replaced by the exact solution Ui,j of the partial differential
equation at the grid points Pi,j , then the value F (Ui,j) is called the local
truncation error at Pi,j . The finite difference scheme and the partial differ-
ential equation are said to be consistent if F (Ui,j) tends to zero as h and
k tend to zero.

In general, finite difference equations cannot be solved exactly because
the numerical computation is carried out only up to a finite number of
decimal places. Consequently, another kind of error is introduced in the
finite difference solution during the actual process of computation. This
kind of error is called the round-off error, and it also depends upon the
type of computer used. In practice, the actual computational solution is
u∗

i,j , but not ui,j , so that the difference ri,j =
(
ui,j − u∗

i,j

)
is the round-

off error at the grid point Pi,j . In fact, this error is introduced into the
solution of the finite difference equation by round-off errors. In reality, the
round-off error depends mainly on the actual computational process and
the finite difference itself. In contrast to the cummulative truncation error,
the round-off error cannot be made small by allowing h and k to tend to
zero.

Thus, the total error involved in the finite difference analysis at the
point Pi,j is given by

(
Ui,j − u∗

i,j

)
= (Ui,j − ui,j) +

(
ui,j − u∗

i,j

)
= di,j − ri,j . (14.2.11)

Usually the discretization error di,j is bounded when ui,j is bounded
because the value of Ui,j is fixed for a given partial differential equation
with the prescribed boundary and initial data. This fact is used or assumed
in order to introduce the concept of stability. The finite difference algo-
rithm is said to be stable if the round-off errors are sufficiently small for
all i as j → ∞, that is, the growth of ri,j can be controlled. It should be
pointed out again that the round-off error depends not only on the actual
computational process and the type of computer used, but also on the finite
difference equation itself. Lax (1954) proved a remarkable theorem which
establishes the relationship between consistency, stability, and convergence
for the finite difference algorithm.

Theorem 14.2.1. (Lax’s Equivalence Theorem). Given a properly posed
linear initial-value problem and a finite difference approximation to it that
satisfies the consistency criterion, stability is a necessary and sufficient
condition for convergence.
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Von Neumann’s Stability Method

This method is essentially based upon a finite Fourier series. It expresses
the initial errors on the line t = 0 in terms of a finite Fourier series and then
examines the propagation of errors as t → ∞. It is convenient to denote
the error function by er,s instead of ei,j so that er,s gives the initial values
er,0 = e (rh) = er on the line t = 0 between x = 0 and x = l, where r = 0,
1, 2, . . ., N and Nh = l. The finite Fourier series expansion of er is

er =

N∑

n=0

An exp (inπx/l) =

N∑

n=0

An exp (iαnrh) , (14.2.12)

where αn = (nπ/l), x = rh, and An are the Fourier coefficients which are
determined from the (N + 1) equations (14.2.12).

Since we are concerned with the linear finite difference scheme, errors
form an additive system so that the total error can be found by the superpo-
sition principle. Thus, it is sufficient to consider a single term exp (iαrh) in
the Fourier series (14.2.12). Following the method of separation of variables
commonly used for finding the analytical solution of a partial differential
equation, we seek a separable solution of the finite difference equation for
er,s in the form

er,s = exp (iαrh + βsk) = exp (iαrh) ps (14.2.13)

which reduces to exp (iαrh) at s = 0 (t = sk = 0), where p = exp (βk), and
β is a complex constant. This shows that the error is bounded as (t → ∞)
provided that

|p| ≤ 1 (14.2.14)

is satisfied. This condition is found to be necessary and sufficient for the
stability of the finite difference algorithm.

14.3 Lax–Wendroff Explicit Method

To describe this method, we consider the first-order conservation equation

∂u

∂t
+ c

∂u

∂x
= 0 (14.3.1)

where u ≡ u (x, t) is some physical function of space variable x and time t.
This equation occurs frequently in applied mathematics.

Lax and Wendroff use the Taylor series expansion in t in the form

ui,j+1 = ui,j + k (ut)i,j +
k2

2!
(utt)i,j +

k3

3!
(uttt)i,j + . . . , (14.3.2)
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where k ≡ δt.
The partial derivatives in t in (14.3.2) can easily be eliminated by using

ut = −c ux so that (14.3.2) becomes

ui,j+1 = ui,j − c k (ux)i,j +
c2k2

2
(uxx)i,j − . . . . (14.3.3)

Replacing ux, uxx by the central difference formulas, (14.3.3) becomes

ui,j+1 = ui,j −
(

ck

2h

)
(ui+1,j − ui−1,j) +

1

2

(
ck

h

)2

(ui+1,j − 2 ui,j + ui−1,j) ,

or

ui,j+1 =
(
1 − ε2

)
ui,j +

ε

2
(1 + ε) ui−1,j − ε

2
(1 + ε) ui+1,j + O

(
ε3

)
,(14.3.4)

where ε = (ck/h). This is called the Lax–Wendroff second-order finite dif-
ference scheme; it has been widely used to solve first-order hyperbolic equa-
tions.

Von Neumann criterion (14.2.14) can be applied to investigate the sta-
bility of the Lax–Wendroff scheme. It is noted that the error function er,s

given by (14.2.13) satisfies the finite difference equation (14.3.4). We then
substitute (14.2.13) into (14.3.4) and cancel common factors to obtain

p =
(
1 − ε2

)
+

ε

2

[
(1 + ε) e−iαh − (1 − ε) eiαh

]

= 1 − 2 ε2 sin2

(
αh

2

)
− 2iε sin

(
αh

2

)
cos

(
αh

2

)
,

so that

|p|2 = 1 − 4ε2
(
1 − ε2

)
sin4

(
αh

2

)
. (14.3.5)

According to the von Neumann criterion, the Lax–Wendroff scheme
(14.3.4) is stable as t → ∞ if |p| ≤ 1, which gives 4ε2

(
1 − ε2

)
≥ 0, that is,

0 < ε ≤ 1.
The local truncation error of the Lax–Wendroff equation (14.3.4) at Pi,j

is

Ti,j =
1

k
(ui,j+1 − ui−1,j)

which is, by (14.2.2a) and (14.2.1b) with ck = h (ε = 1),

= (ut + cux)i,j +
k

2

(
utt − c2uxxx

)
i,j

+
k2

6

(
uttt + c3uxxx

)
i,j

+ O
(
(ck)

3
)

.

(14.3.6)
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The first two terms on the right side of (14.3.6) vanish by equation (14.3.1)
so that the local truncation error becomes

Ti,j =
1

6

(
k2uttt + c h2uxxx

)
i,j

. (14.3.7)

Another approximation to (14.3.1) with first-order accuracy is

1

k
(ui,j+1 − ui,j) +

c

h
(ui,j − ui−1,j) = 0. (14.3.8)

A final explicit scheme for (14.3.1) is based on the central difference ap-
proximation. This scheme is called the leap frog algorithm. In this method,
the finite difference approximation to (14.3.1) is

1

2k
(ui,j+1 − ui,j−1) +

c

2h
(ui+1,j − ui−1,j) = 0,

or,

ui,j+1 = ui,j−1 − ε (ui+1,j − ui−1,j) . (14.3.9)

As shown in Figure 14.3.1, this equation shows that the value of u at
Pi,j+1 is computed from the previously computed values at three grid points
at two previous time steps.

Figure 14.3.1 Grid system for the leap frog algorithm.
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14.4 Explicit Finite Difference Methods

(A) Wave Equation and the Courant–Friedrichs–Lewy
Convergence Criterion

The method of characteristics provides the most convenient and accurate
procedure for solving Cauchy problems involving hyperbolic equations. One
of the main advantages of this method is that discontinuities of the initial
data propagate into the solution domain along the characteristics. However,
when the initial data are discontinuous, the finite difference algorithm for
the hyperbolic systems is not very convenient. Problems concerning hyper-
bolic equations with continuous initial data can be solved successfully by
finite difference methods with rectangular grid systems.

A commonly cited problem is the propagation of a one-dimensional wave
governed by the system

utt = c2 uxx, −∞ < x < ∞, t > 0, (14.4.1)

u (x, 0) = f (x) , ut (x, 0) = g (x) for all x ∈ R. (14.4.2)

Using a rectangular grid system with h = δx, k = δt, ui,j = u (ih, jk),
−∞ < x < ∞, and 0 ≤ j < ∞, the central difference approximation to
equation (14.4.1) is

1

k2
(ui,j+1 − 2 ui,j + ui,j−1) =

c2

h2
(ui+1,j − 2 ui,j + ui−1,j) ,

or,

ui,j+1 = ε2 (ui+1,j + ui−1,j) + 2
(
1 − ε2

)
ui,j − ui,j−1, (14.4.3)

where ε ≡ (ck/h), and is often called the Courant parameter. This explicit
formula allows us to determine the approximate values at the grid points
on the lines t = 2k, 3k, 4k, . . ., when the grid values at t = k have been
obtained.

The approximate values of the initial data on the line t = 0 are

ui,0 = fi,
1

2k
(ui,1 − ui,−1) = gi,0 (14.4.4)

so that the second result gives

ui,−1 = ui,1 − 2k gi,0. (14.4.5)

When j = 0 in (14.4.3) and (14.4.5) is used, we obtain

ui,1 =
1

2
ε2 (fi−1 + fi+1) +

(
1 − ε2

)
fi + k gi,0. (14.4.6)

This result determines grid values on the line t = k.
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Figure 14.4.1 Computational grid systems and characteristics.

The value of u at Pi,j+1 is obtained in terms of its previously calculated
values at Pi + 1,j , Pi,j , and Pi,j−1, which are determined from previously
computed values on the lines t = (j − 1) k, (j − 2) k, (j − 3) k. Thus, the
computation from the lines t = 0 and t = k suggests that u at Pi,j will rep-
resent a function of the values of u within the domain bounded by the lines
drawn back toward t = 0 from P whose gradients are (+ ε) as shown in Fig-
ure 14.4.1. Thus the triangular regions PAB, PCD represent the domains
of dependence at P of the solutions of the finite difference equation (14.4.3)
and the differential equation (14.4.1). By analogy with real characteristic
lines PC and PD of the differential equation, the straight lines PA and
PB are called the numerical characteristics. Thus, it follows from Figure
14.4.1 that ∆PAB lies inside ∆PCD, which means that the solution of the
finite difference system at P would remain unchanged even when the initial
data along PA and PB are changed. Courant, Friedrichs and Lewy (CFL,
1928) proved that the solution of the finite difference system converges to
that of the differential equation system as h and k tend to zero provided
that the domain of dependence of the difference equation lies inside that of
the partial differential equation. This condition for convergence is known
as the CFL condition, which means 1/c ≥ k/h, that is, 0 < ε ≤ 1.

If the Courant parameter is ε = 1, equation (14.4.3) reduces to a simple
form
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ui,j+1 = ui+1,j + ui−1,j − ui,j−1. (14.4.7)

As shown in Figure 14.3.1, this equation shows that the value of u at
Pi,j+1 is computed from the previously computed values at three grid points
at two previous time steps. This is called the leap frog algorithm.

From equation (5.3.4) in Chapter 5, we know that the solution of the
Cauchy problem for the wave equation has the form

u (x, t) = φ (x + ct) + ψ (x − ct) ,

where the functions φ and ψ represent waves propagating without changing
shape along the negative and positive x directions with a constant speed
c. The lines of slope (dt/dx) = + (1/c) in the x − t plane, which trace the
progress of the waves, are known as the characteristics of the wave equation.

In terms of a grid point (xi, tj), the above solution has the form

ui,j = φ (xi + c tj) + ψ (xi − c tj) . (14.4.8)

It follows from Figure 14.3.1 that xi = x1 + (i − 1) h and tj = t1 +
(j − 1) k so that (14.4.8) takes the form

ui,j = φ (α + ih + jck) + ψ (β + ih − jck) , (14.4.9)

where

α = (x1 − h) + c (t1 − k) , β = (x1 − h) − c (t1 − k) .

Since ε = 1, ck = h, solution (14.4.9) becomes

ui,j = φ (α + (i + j) h) + ψ (β + (i − j) h) .

This satisfies equation (14.4.7). It follows that the leap frog method
gives the exact solution of the partial differential equation (14.4.1).

We apply von Neumann stability analysis to investigate the stability of
the above numerical method for the wave equation. We seek a separable
solution of the error function er,s as

er,s = exp (iαrh) ps, (14.4.10)

where p = exp (βk). This function satisfies the finite difference equation
(14.4.3). Substituting (14.4.10) into (14.4.3) and cancelling the common
factors, we obtain the quadratic equation for p

p2 − 2 b p + 1 = 0, (14.4.11)

where b = 1 − 2ε2 sin2 (αh/2), ε = (ck/h), and b ≤ 1 for all real ε and α.
This quadratic equation has two complex roots p1 and p2 if b2 < 1. Since
p1 ·p2 = 1, it follows that one of the roots will always have modulus greater
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than one unless |p1| = |p2| = 1. Thus, the scheme is unstable as s → ∞ if
the modulus of one of the roots exceeds unity.

On the other hand, when −1 ≤ b ≤ 1, b2 ≤ 1, then |p1| = |p2| = 1.
Thus, the finite difference scheme is stable provided −1 ≤ b ≤ 1, which
leads to the useful condition for stability as b ≥ −1 that

ε2 ≤ cosec2

(
αh

2

)
. (14.4.12)

This shows the dependence of the stability limit on the space-grid size h.
However, this stability condition is always true if ε2 ≤ 1.

Example 14.4.1. Find the explicit finite difference solution of the wave equa-
tion

utt − uxx = 0, 0 < x < 1, t > 0,

with the boundary conditions

u (0, t) = u (1, t) = 0, t ≥ 0,

and the initial conditions

u (x, 0) = sinπx, ut (x, 0) = 0, 0 ≤ x ≤ 1.

Compare the numerical solution with the analytical solution u (x, t) =
cos πt sin πx at several points.

The explicit finite difference approximation to the wave equation with
ε = (k/h) = 1 is found from (14.4.3) in the form

ui,j+1 = ui−1,j + ui+1,j − ui,j−1, j ≥ 1.

The problem is symmetric with respect to x = 1
2 , so we need to calculate

the solution only for 0 ≤ x ≤ 1
2 . We take h = k = 1

10 = 0.1. The bound-
ary conditions give u0,j = 0 for j = 0, 1, 2, 3, 4, 5. The initial condition
ut (x, 0) = 0 yields

ut (x, 0) =
1

2
(ui,1 − ui,−1) = 0,

or,

ui,1 = ui,−1.

The explicit formula with j = 0 gives

ui,1 =
1

2
(ui−1,0 + ui+1,0) , i = 1, 2, 3, 4, 5.

Thus,
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u1,1 =
1

2
(u0,0 + u2,0) =

1

2
u2,0 =

1

2
sin (0.2π) = 0.2939.

Similarly,

u2,1 = 0.5590, u3,1 = 0.7695, u4,1 = 0.9045, u5,1 = 0.9511.

We next use the basic explicit formula to compute

u1,2 = u0,1 + u2,1 − u1,0 = 0 + 0.5590 − 0.3090 = 0.2500,

u2,2 = u1,1 + u3,1 − u2,0 = 0.2939 + 0.7695 − 0.5878 = 0.4756.

Similarly, we compute other values for ui,j which are shown in Table 14.4.1.
The analytical solutions at (x, t) = (0.1, 0.1) and (0.2, 0.3) are given by

u (0.1, 0.1) = cos (0.1π) sin (0.1π) = (0.9511) (0.3090) = 0.2939,

u (0.2, 0.2) = cos (0.2π) sin (0.2π) = (0.8090) (0.5878) = 0.4577,

u (0.2, 0.3) = cos (0.3π) sin (0.2π) = (0.5878) (0.5878) = 0.3455.

Comparison of the analytical solutions with the above finite difference
solutions shows that the latter results are very accurate.

(B) Parabolic Equations

As a prototype diffusion problem, we consider

ut = κuxx, 0 < x < 1, t > 0, (14.4.13)

u (0, t) = u (1, t) = 0, for all t, (14.4.14)

u (x, 0) = f (x) , for all x in (0, 1) , (14.4.15)

where f (x) is a given function.

Table 14.4.1.

i 0 1 2 3 4 5
x 0.0 0.1 0.2 0.3 0.4 0.5

j t

1 0.1 0 0.2939 0.5590 0.7695 0.9045 0.9511
2 0.2 0 0.2500 0.4577 0.6545 0.7695 0.8090
3 0.3 0 0.1817 0.3455 0.4756 0.5590 0.5878
4 0.4 0 0.9045 0.7695 0.2500 0.2939 0.3090
5 0.5 0 0 0 0 0 0
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The explicit finite difference approximation to (14.4.13) is

1

k
(ui,j+1 − ui,j) =

κ

h2
(ui+1,j − 2 ui,j + ui−1,j) , (14.4.16)

or,

ui,j+1 = ε (ui+1,j + ui−1,j) + (1 − 2 ε) ui,j , (14.4.17)

where ε =
(
κk/h2

)
.

This explicit finite difference formula gives approximate values of u on
t = (j + 1) k in terms of values on t = jk with given ui,0 = fi. Thus, ui,j

can be obtained for all j by successive use of (14.4.17).
The problems of stability and convergence of the parabolic equation are

similar to those of the wave equation. It can be shown that the solution of
the finite difference equation converges to that of the differential equation
system (14.4.13)–(14.4.15) as h and k tend to zero provided ε ≤ 1

2 .
In particular, when ε = 1

2 , equation (14.4.17) takes a simple form

ui,j+1 =
1

2
(ui+1,j + ui−1,j) . (14.4.18)

This is called the Bender–Schmidt explicit formula which determines the
solution at (xi, tj+1) as the mean of the values at the grid points (i+ 1, j).
However, more accurate results can be found from (14.4.17) for ε < 1

2 .
To investigate the stability of the numerical scheme, we assume that the

error function is

er,s = exp (iαrh) ps, (14.4.19)

where p = eβk. The error function and urs satisfy the same difference
equation. Hence, we substitute (14.4.19) into (14.4.17) to obtain

p = 1 − 4 ε sin2

(
αh

2

)
. (14.4.20)

Clearly, p is always less than 1 because ε > 0. If p ≥ 0, the function given
by (14.4.19) will decay steadily as s = j → ∞. If −1 < p < 0, then the
solution will have a decaying amplitude as s → ∞. Therefore, the finite
difference scheme will be stable if p > −1, that is, if

0 < ε ≤ 1

2
cosec2

(
αh

2

)
. (14.4.21)

This shows that the stability limit depends on h. However, in view of the
inequality

ε ≤ 1

2
≤ 1

2
cosec2

(
αh

2

)
,

we conclude that the stability condition is ε ≤ 1
2 . Finally, if p < −1, the

solution oscillates with increasing amplitude as s → ∞, and hence, the
scheme will be unstable for ε > 1

2 .
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Example 14.4.2. Show that the Richardson explicit finite difference scheme
for (14.4.13) is unconditionally unstable.

The Richardson finite difference approximation to (14.4.13) is

1

2k
(ui,j+1 − ui,j−1) =

κ

h2
(ui+1,j − 2 ui,j + ui−1,j) . (14.4.22)

To establish the instability of this equation, we use the Fourier method
and assume that

er,s = exp (iαrh) ps, p = eβk.

This function satisfies the Richardson difference equation as does ur,s. Con-
sequently,

p − 1

p
= −8 ε sin2

(
αh

2

)
,

or

p2 + 8 p ε sin2

(
αh

2

)
− 1 = 0.

This quadratic equation has two roots

p1, p2 = −4 ε sin2

(
αh

2

)
+

(
1 + 16 ε2 sin4 αh

2

) 1
2

, (14.4.23)

or

p1, p2 = +1 − 4 ε sin2

(
αh

2

)(
1 + 2 ε sin2 αh

2

)
+ O

(
ε4

)
.

This gives |p1| ≤ 1 and

|p2| > 1 + 4 ε sin2

(
αh

2

)
> 1

for all positive ε and, consequently, the Richardson scheme is always un-
stable.

The unstable feature of the Richardson scheme can be eliminated by
replacing ui,j with 1

2 (ui,j+1 + ui,j−1) in (14.4.22), which now becomes

(1 + 2 ε) ui,j+1 = 2 ε (ui+1,j + ui−1,j) + (1 − 2 ε) ui,j−1. (14.4.24)

This is called the Du Fort–Frankel explicit algorithm, and it can be
shown to be stable for all ε.
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Example 14.4.3. Prove that the solution of the finite difference equation for
the diffusion equation (14.4.13) in −∞ < x < ∞ with the initial condition
u (x, 0) = eiαx converges to the exact solution of (14.4.13) as h and k tend
to zero.

We obtain the exact solution of (14.4.13) by seeking a separable form

u (x, t) = eiαx v (t) ,

where v (t) is a function of t alone which is to be determined.
Substituting this solution into (14.4.13) gives

dv

dt
+ κα2 v = 0

which admits solutions

v (t) = A e−κα2t,

where A is an integrating constant. The initial condition v (0) = 1 gives
A = 1. Hence,

u (x, t) = exp
(
iαx − α2κt

)
. (14.4.25)

We now solve the corresponding finite difference equation (14.4.17) by
replacing i, j with r, s. We seek a separable solution of the difference
equation

ur,s = eiαrh vs

with the initial condition

ur,0 = eiαrh v0, so that v0 = 1.

Substituting this solution into the finite difference equation (14.4.7)
yields

vs+1 =

(
1 − 4 ε sin2 αh

2

)
vs, v0 = 1,

so that the solution can be obtained by a simple inspection as

vs =

(
1 − 4 ε sin2 αh

2

)s

, (14.4.26)

ur,s = eiαrh

(
1 − 4ε sin2 αh

2

)s

, (14.4.27)

where ε =
(
κk/h2

)
.

For small h, 1 − 4 ε sin2 (αh/2) ∼ 1 − ε α2h2 so that 1 − ε α2h2 ≈
exp

(
−ε α2h2

)
for small ε α2h2 = κα2k. Consequently, the final solution

becomes
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ur,s ∼ eiαrh−κα2ks as h, k → 0. (14.4.28)

This is identical with the exact solution of the differential equation (14.4.13)
with rh = x and sk = t. This example shows that the finite difference
approximation is reasonably good.

Example 14.4.4. Calculate a finite difference solution of the initial boundary-
value problem

ut = uxx, 0 < x < 1, t > 0,

with the boundary conditions

u (0, t) = u (1, t) = 0, t ≥ 0,

and the initial condition

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1.

Compare the numerical solution with the exact analytical solution at
x = 0.04 and t = 0.02.

The explicit finite difference approximation to the parabolic equation is

ui,j+1 = ε ui−1,j + (1 − 2 ε) ui,j + ε ui+1,j ,

where ε =
(
k/h2

)
. This gives the unknown value ui,j+1 at the (i, j + 1) th

grid point in terms of given values of u along the jth time row.

We set h = 1
5 and k = 1

100 so that ε =
(
k/h2

)
= 1

4 and the above
formula becomes

ui,j+1 =
1

4
(ui−1,j + 2ui,j + ui+1,j) .

With the notation ui,0 = u (ih, 0), the initial condition gives

u4,0 = 0.16, and u5,0 = 0.

The boundary conditions yield u0,j = u (0, jk) = 0 and u5,j =
u (5h, jk) = u (1, jk) = 0, for all j = 0, 1, 2, . . ..

Using these initial and boundary data, we calculate ui,j as follows:

u1,1 =
1

4
(u0,0 + 2u1,0 + u2,0) = 0.14, u1,2 =

1

4
(u0,1 + 2u1,1 + u2,1)

= 0.125,

u2,1 =
1

4
(u1,0 + 2u2,0 + u3,0) = 0.22, u2,2 =

1

4
(u1,1 + 2u2,1 + u3,1)

= 0.200,

u3,1 =
1

4
(u2,0 + 2u3,0 + u4,0) = 0.22, u3,2 =

1

4
(u2,1 + 2u3,1 + u4,1)

= 0.200,

u4,1 =
1

4
(u3,0 + 2u4,0 + u5,0) = 0.14, u4,2 =

1

4
(u3,1 + 2u4,1 + u5,1)

= 0.125,
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u1,3 =
1

4
(u0,2 + 2u1,2 + u2,2) = 0.1125, u1,4 =

1

4
(u0,3 + 2u1,3 + u2,3)

= 0.1016,

u2,3 =
1

4
(u1,2 + 2u2,2 + u3,2) = 0.1813, u2,4 =

1

4
(u1,3 + 2u2,3 + u3,3)

= 0.1641,

u3,3 =
1

4
(u2,2 + 2u3,2 + u4,2) = 0.1813, u3,4 =

1

4
(u2,3 + 2u3,3 + u4,3)

= 0.1641,

u4,3 =
1

4
(u3,2 + 2u4,2 + u5,2) = 0.1125, u4,4 =

1

4
(u3,3 + 2u4,3 + u5,3)

= 0.1016.

The method of separation of variables gives the analytical solution of
the problem as

u (x, t) =
8

π3

∞∑

n=0

1

(2n + 1)
3 exp

[
− (2n + 1)

2
π2t

]
sin (2n + 1)πx.

This exact solution u (x, t) at x = 0.4 (i = 2) and t = 0.02 (j = 2) gives

u ∼ 8

3

[
1

13
exp

(
−0.02 π2

)
sin (0.4) π +

1

33
exp

(
−0.18 π2

)
sin (1.2) π

]

= 0.2000.

The analytical solution is seen to be identical with the numerical value.

Example 14.4.5. Obtain the numerical solution of the initial boundary-
value problem

ut = κuxx, 0 ≤ x ≤ 1, t > 0,

u (0, t) = 1, u (1, t) = 0, t ≥ 0,

u (x, 0) = 0, 0 ≤ x ≤ 1.

We use the explicit finite-difference formula (14.4.17)

ui.j+1 = ε (ui+1,j + ui−1,j) + (1 − 2 ε) ui,j ,

where ε =
(
κk/h2

)
.

We set h = 0.25 = 1
4 and ε = 2

5 = 0.4 to compute ui.j for i, j = 0, 1, 2,
3, 4 as follows:
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i 0 1 2 3 4
j

0 1.000 0.000 0.000 0.000 0.000
1 1.000 0.400 0.000 0.000 0.000
2 1.000 0.480 0.160 0.000 0.000
3 1.000 0.560 0.224 0.064 0.000
4 1.000 0.602 0.295 0.103 0.000

(C) Elliptic Equations

As a prototype boundary-value problem, we consider the Dirichlet problem
for the Laplace equation

∇2u ≡ uxx + uyy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, (14.4.29)

where the value of u (x, y) is prescribed everywhere on the boundary of the
rectangular domain.

The rectangular grid system is the most common and convenient system
for this problem. We choose the vertices of the rectangular domain as the
nodal points and set h = a/m and k = b/n where m and n are positive
integers so that the domain is divided into mn subrectangles.

The finite difference approximation to the Laplace equation (14.4.29) is

1

h2
(ui+1,j − 2ui,j + ui−1,j) +

1

k2
(ui,j+1 − 2ui,j + ui,j−1) = 0,(14.4.30)

or,

2
(
h2 + k2

)
ui,j = k2 (ui+1,j + ui−1,j) + h2 (ui,j+1 + ui,j−1) , (14.4.31)

where 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1.
The prescribed conditions on the boundary of the rectangular domain

determine the values u0,j , um,j , ui,0, and ui,n. For a square grid system
(k = h), equation (14.4.30) becomes

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) . (14.4.32)

This means that the value of u at an interior point is equal to the average
of the value of u at four adjacent points. This is the well known mean value
theorem for harmonic functions that satisfy the Laplace equation.

As i and j vary, the present scheme reduces to a set of (m − 1) (n − 1)
linear non-homogeneous algebraic equations for (m − 1) (n − 1) unknown
values of u at interior grid points. It can be shown the solution of the finite
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difference equation (14.4.31) converges to the exact solution of the problem
as h, k → 0. The proof of the existence of a solution and its convergence
to the exact solution as h and k tend to zero is essentially based on the
Maximum Modulus Principle. It follows from the finite difference equation
(14.4.30) or (14.4.31) that the value of |u| at any interior grid point does
not exceed its value at any of the four adjoining nodal points. In other
words, the value of u at Pi,j cannot exceed its values at the four adjoining
points Pi + 1,j and Pi,j + 1. The successive application of this argument at
all interior grid points leads to the conclusion that |u| at the interior grid
points cannot be greater than the maximum value of |u| on the boundary.
This may be recognized as the finite difference analogue of the Maximum
Modulus Principle discussed in Section 9.2. Thus, the success of the nu-
merical method is directly associated with the existence of the Maximum
Modulus Principle.

Clearly, the present numerical algorithm deals with a large number of
algebraic equations. Even though numerical accuracy can be improved by
making h and k sufficiently small, there is a major computational difficulty
involved in the numerical solution of a large number of equations. It is
possible to handle such a large number of algebraic equations by direct
methods or by iterative methods, but it would be very difficult to obtain
a numerical solution with sufficient accuracy. It is therefore necessary to
develop some alternative methods of solution that can be conveniently and
efficiently carried out on a computer.

In order to eliminate some of the drawbacks stated above, one of the nu-
merical schemes, the Liebmann’s iterative method, is useful. In this method
values of u are first guessed for all interior grid points in addition to those
given as the boundary points on the edges of the given domain. These values

are denoted by u
(0)
i,j where the superscript 0 indicates the zeroth iteration.

It is convenient to choose a square grid so that the simplified finite differ-
ence equation (14.4.32) can be used. The values of u are calculated for the
next iteration by using (14.4.32) at every interior point based on the values
of u at the present iteration. The sequence of computation starts from the
interior grid point located at the lowest left corner, proceeds upward un-
til reaching the top, and then goes to the bottom of the next vertical line
on the right. This process is repeated until the new value of u at the last
interior grid point at the upper right corner has been obtained.

At the starting point, formula (14.4.32) gives

u
(1)
2,2 =

1

4

(
u

(0)
3,2 + u

(0)
1,2 + u

(0)
2,3 + u

(0)
2,1

)
, (14.4.33)

where u
(0)
1,2 and u

(0)
2,1 are boundary values which remain constant during

the iteration process. They may be replaced, respectively, with u
(1)
1,2, u

(1)
2,1 in

(14.4.33). The computation at the next step involves u
(0)
2,2. Since an improved

value u
(1)
2,2 is available at this time, it will be utilized instead. Hence,
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u
(1)
2,3 =

1

4

(
u

(0)
3,3 + u

(1)
1,3 + u

(0)
2,4 + u

(1)
2,2

)
, (14.4.34)

where u
(1)
1,3 is used to replace the constant boundary value u

(0)
1,3.

We repeat this argument to obtain a general iteration formula for com-
putation of u at step (n + 1)

u
(n+1)
i,j =

1

4

(
u

(n)
i+1,j + u

(n+1)
i−1,j + u

(n)
i,j+1 + u

(n+1)
i,j−1

)
. (14.4.35)

This result is valid for any interior point, whether it is next to some bound-
ary point or not. If Pi,j is a true point, the second and fourth terms on the
right side of (14.4.35) represent, respectively, the values of u at the grid
points to the left of and below that point. These values have already been
recomputed according to our scheme, and therefore, carry the superscript
(n + 1). Result (14.4.35) is known as the Liebmann (n + 1) th iteration for-

mula. It can be proved that u
(n)
i,j converges to ui,j as n → ∞.

Another iteration scheme similar to (14.4.35) is given by

u
(n+1)
i,j =

1

4

(
u

(n)
i+1,j + u

(n)
i−1,j + u

(n)
i,j+1 + u

(n)
i,j−1

)
. (14.4.36)

This is called the Richardson iteration formula, and it is also useful. How-
ever, this scheme converges more slowly than that based on (14.4.35).

One of the major difficulties of the above methods is the slow rate of con-
vergence. An improved numerical method, the Successive Over-Relaxation
(SOR) scheme gives a faster convergence than the Liebmann or Richardson
method in solving the Laplace (or the Poisson) equation. For a rectangular
domain of square grids, the successive iteration scheme is given by

u
(n+1)
i,j = u

(n)
i,j +

ω

4

(
u

(n+1)
i−1,j + u

(n)
i+1,j + u

(n+1)
i,j−1 + u

(n)
i,j+1 − 4 u

(n)
i,j

)
, (14.4.37)

where ω is called the acceleration parameter (or relaxation factor) to be
determined. In general, ω lies in the range 1 ≤ ω < 2. The successive
iterations converge fairly rapidly to the desired solution for 1 ≤ ω < 2. The
most rapid rate of convergence is achieved for the optimum value of ω.

Example 14.4.6. Obtain the standard five-point formula for the Poisson
equation

uxx + uyy = −f (x, y) in D ⊂ R2

with the prescribed value of u (x, y) on the boundary ∂D.
We assume that the domain D is covered by a system of squares with

sides of length h parallel to the x and y axes. Using the central difference
approximation to the Laplace operator, we obtain

1

h2
(ui+1,j − 2 ui,j + ui−1,j) +

1

h2
(ui,j+1 − 2 ui,j + ui,j−1) = −fi,j ,



14.4 Explicit Finite Difference Methods 621

or,

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) +

1

4
h2fi,j

where fi,j = f (ih, jh). This is known as the five-point formula.

Example 14.4.7. Find the numerical solution of the torsion problem in a
square beam governed by

∇2u = −2 in D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

with u (x, y) = 0 on ∂D.
From the above five-point formula, we obtain

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) − 1

2
h2

where h is the side-length of the unit square net.
We choose h = 1

2 , 1/22, 1/23, 1/24 to calculate the corresponding nu-
merical values ui,j = 0.1250, 0.1401, 0.1456, 0.1469.

Note that the known exact analytical solution is 0.1474.

Example 14.4.8. Using the explicit finite difference method, find the solu-
tion of the Dirichlet problem

uxx + uyy = 0, in 0 < x < 1, 0 < y < 1,

u (x, 0) = x, u (x, 1) = 0, on 0 ≤ x ≤ 1,

u (x, y) = 0, for x = 0, x = 1 and 0 ≤ y ≤ 1.

We use four interior grid points (that is, i, j = 1, 2, 3, 4) as shown in
Figure 14.4.2 in the (x, y)-plane.

We apply the explicit finite difference formula (14.4.32) to obtain four
algebraic equations

−4u2,2 + u3,2 + u1,2 + u2,3 + u2,1 = 0,

−4u2,3 + u3,3 + u1,3 + u2,4 + u2,2 = 0,

−4u3,2 + u4,2 + u2,2 + u3,3 + u3,1 = 0,

−4u3,3 + u4,3 + u2,3 + u3,4 + u3,2 = 0.

The given boundary conditions imply that u2,1 = u2,4 = u3,1 = u3,4 =
u4,2 = u4,3 = 0, u1,2 = 1

3 and u1,3 = 2
3 so that the above system of equations

becomes

−4u2,2 + u3,2 +
1

3
+ u2,3 = 0,

−4u2,3 + u3,3 +
2

3
+ u2,2 = 0,

−4u3,2 + u2,2 + u3,3 = 0,

−4u3,3 + u2,3 + u3,2 = 0.
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Figure 14.4.2 The square grid system.

In matrix notation, this system reads as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 1 0

1 −4 0 1

1 0 −4 1

0 1 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2,2

u2,3

u3,2

u3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
3

− 2
3

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The solutions of this system are

u2,2 =
11

72
, u2,3 =

16

72
, u3,2 =

4

72
, u3,3 =

5

72
.

(D) Simultaneous First-Order Equations

We recall the wave equation (14.4.1) in 0 < x < 1, t > 0. Introducing two
auxiliary variables v and w by v = ut and w = c2ux, the wave equation
gives two simultaneous first-order equations

vt = wx, wt = c2vx. (14.4.38)
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The initial values of v and w are given at t = 0 for all x in 0 < x < 1.
The boundary condition on v and w is also prescribed on the lines x = 0
and x = 1 for t > 0.

The explicit finite difference method can be used to determine v and
w in the triangular domain of dependence bounded by the characteristics
x − ct = 0 and x + ct = 1.

The finite difference approximations to the differential equations (14.4.38)
are

1

k
(vi,j+1 − vi,j) =

1

2h
(wi+1,j − wi−1,j) , (14.4.39)

1

k
(wi,j+1 − wi,j) =

c2

2h
(vi+1,j − vi−1,j) , (14.4.40)

where the forward difference for vt or wt and the central difference for vx

or wx are used. However, the central difference approximations to (14.4.38)
can also be utilized to obtain

1

2k
(vi,j+1 − vi,j−1) =

1

2h
(wi+1,j − wi−1,j) , (14.4.41)

1

2k
(wi,j+1 − wi,j−1) =

c2

2h
(vi+1,j − vi−1,j) . (14.4.42)

We examine the stability of the above two sets of finite difference formu-
las with c = 1. The von Neumann stability method is applied by replacing
i and j by r and s respectively. The error function er,s given by (14.4.10)
is substituted in (14.4.39)–(14.4.40) to obtain the stability relations

A (p − 1) = εiB sin αh, (14.4.43)

B (p − 1) = εiA sin αh, (14.4.44)

where the initial perturbations in v and w along t = 0 are A exp (iαrh) and
B exp (iαrh) respectively with two different constants A and B.

Elimination of A and B from the above relations gives

(p − 1)
2

+ ε2 sin2 αh = 0

or

p = 1 + iε sin αh,

and

|p| =
(
1 + ε2 sin2 αh

) 1
2 ∼ 1 +

1

2
ε2 sin2 αh = 1 + O

(
ε2

)
. (14.4.45)

Since |p| > 1 + O (ε), the finite difference scheme for the finite time-step
t = sk would be unstable as the grid sizes tend to zero.

A similar stability analysis for (14.4.41)–(14.4.42) leads to the condition
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(
p − 1

p

)2

+ 4 ε2 sin2 αh = 0. (14.4.46)

This scheme is stable for ε ≤ 1.
Another finite difference approximation to the coupled system (14.4.38)

is

1

2h
(vr+1,s − vr−1,s) =

1

k

[
wr,s+1 − 1

2
(wr+1,s − wr−1,s)

]
, (14.4.47)

1

2h
(wr+1,s − wr−1,s) =

1

k

[
vr,s+1 − 1

2
(vr+1,s − vr−1,s)

]
. (14.4.48)

A similar stability analysis can be carried out for these systems by
substituting vr,s = Apseiαrh and wr,s = Bpseiαrh into the equations. Elim-
ination of A/B yields the stability equation

p = cos αh +
i

ε
sin αh,

or

|p|2 = cos2 αh +
1

ε2
sin2 αh ≤ 1. (14.4.49)

Hence, the scheme is stable provided that

ε ≥ 1, that is, k ≤ h. (14.4.50)

14.5 Implicit Finite Difference Methods

From a computational point of view, the explicit finite difference algorithm
is simple and convenient. However, as shown in Section 14.4(B), the major
difficulty in the method for solving parabolic partial differential equations
is the severe restriction on the time-step imposed by the stability condi-
tion ε ≤ 1

2 or k ≤ h2/2κ. This difficulty is also present in the explicit finite
difference method for the solution of hyperbolic equations. In order to over-
come the above difficulty, we develop implicit finite difference schemes for
solving partial differential equations.

(A) Parabolic Equations

One of the successful implicit finite difference schemes is the Crank and
Nicolson Method (1947), which is based on six grid points. This method
eliminates the major difficulty involved in the explicit scheme. When
the Crank–Nicolson implicit scheme is applied to the parabolic equation
(14.4.13), uxx is replaced by the mean value of the finite difference values
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in the jth and the (j + 1) th row so that the finite difference approximation
(14.4.13) becomes

1

k
(ui,j+1 − ui,j) =

κ

2h2
[(ui+1,j+1 − 2ui,j+1 + ui−1,j+1)

+ (ui+1,j − 2ui,j + ui−1,j)] , (14.5.1)

or

2 (1 + ε) ui,j+1 − ε (ui−1,j+1 + ui+1,j+1)

= 2 (1 − ε) ui,j + ε (ui−1,j + ui+1,j) , (14.5.2)

where ε =
(
kκ/h2

)
is a parameter.

The left side of (14.5.2) is a linear combination of three unknowns in
the (j + 1) th row, and the right side involves three known values of u in
the jth row of the grid system in the (x, t)-plane. Equation (14.5.2) is
called the Crank–Nicolson implicit formula. This formula (or its suitable
modification) is widely used for solving parabolic equations. If there are n
internal grid points along each jth row, then, for j = 0 and i = 1, 2, 3, . . .,
n, the implicit formula (14.5.2) gives n simultaneous algebraic equations
for n unknown values of u along the first jth row (j = 0) in terms of given
boundary and initial data. Similarly, if j = 1 and i = 1, 2, 3, . . ., n, equation
(14.5.2) represents n unknown values of u along the second jth row (j = 1)
and so on. This means that the method involves the solution of a system of
simultaneous algebraic equations. In practice, the Crank–Nicolson scheme
is convergent and unconditionally stable for all finite values of ε, and has
the advantage of reducing the amount of numerical computation.

This implicit scheme can be further generalized by introducing a numer-
ical weight factor λ in the modified version of the explicit equation (14.4.16)
which is written below by approximating uxx in (14.4.13) in the (j + 1) th
row instead of the jth row.

1

k
(ui,j+1 − ui,j) =

κ

h2
(ui+1,j+1 − 2ui,j+1 + ui−1,j+1) , (14.5.3)

or

ui,j+1 − ui,j = ε (ui+1,j+1 − 2ui,j+1 + ui−1,j+1) . (14.5.4)

Introducing the numerical factor λ, this can be replaced by a more
general difference equation in the form

ui,j+1 − ui,j = ε
[
λ δ2

x ui,j+1 + (1 − λ) δ2
x ui,j

]
, (14.5.5)

where 0 ≤ λ ≤ 1 and δ2
x is the difference operator defined by

δ2
xui,j = ui+1,j − 2ui,j + ui−1,j . (14.5.6)

Another equivalent form of (14.5.5) is
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(1 + 2ελ) ui,j+1 − ελ (ui+1,j+1 + ui−1,j+1)

= {1 − 2ε (1 − λ)} ui,j + ε (1 − λ) (ui+1,j − ui−1,j) . (14.5.7)

This is a fairly general implicit formula which reduces to (14.5.4) when
λ = 1. When λ = 1

2 , (14.5.7) becomes the Crank–Nicolson formula (14.5.2).
Finally, if λ = 0, this implicit difference equation reduces to the explicit
equation (14.4.17).

The Richardson explicit scheme was found to be unconditionally unsta-
ble in Section 14.4. This undesirable feature of the scheme can be elimi-
nated by considering the corresponding implicit scheme. In terms of δ2

x, the
Richardson equation (14.4.22) can be expressed as

ui,j+1 = 2 ε δ2
x ui,j + ui,j−1. (14.5.8)

To obtain the implicit Richardson formula, we replace δ2
x ui,j by

1
3δ2

x (ui,j+1 + ui,j + ui,j−1) in (14.5.8) and we obtain

(
1 − 2 ε

3
δ2
x

)
ui,j+1 =

2ε

3
δ2
xui,j +

(
1 +

2ε

3

)
ui,j−1. (14.5.9)

This implicit scheme can be shown to be unconditionally stable. To
prove this result, we apply the von Neumann stability method with the
error function (14.5.9) to obtain the equation for p as

(1 + a) p2 + ap + (a − 1) = 0, (14.5.10)

where

a ≡
(

8ε

3

)
sin2

(
αh

2

)
. (14.5.11)

The roots of the quadratic equation are

p =
−a +

(
4 − 3a2

) 1
2

2 (1 + a)
. (14.5.12)

This gives |p| ≤ 1 for all values of a. Hence, the result is proved.

Example 14.5.1. Obtain the numerical solution of the following parabolic
system by using the Crank–Nicolson method

ut = uxx, 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0, t ≥ 0,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1.

We recall the Crank–Nicolson equation (14.5.2) and then set h = 0.2
and k = 0.01 so that ε = 1

4 . The boundary and initial conditions give
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u0,0 = u5,0 = u0,1 = u5,1 = 0 and ui,0 = u (ih, 0) = ih (1 − ih), i = 1, 2,
3, 4. Consequently, formula (14.5.2) leads to the following system of four
equations:

−u0,1 − u2,1 + 10u1,1 = u0,0 + u2,0 + 6u1,0

−u1,1 − u3,1 + 10u2,1 = u1,0 + u3,0 + 6u2,0

−u2,1 − u4,1 + 10u3,1 = u2,0 + u4,0 + 6u3,0

−u3,1 − u5,1 + 10u4,1 = u3,0 + u5,0 + 6u4,0.

Using the boundary and initial conditions, the above system becomes

−u2,1 + 10u1,1 = 1.20

−u1,1 + 10u2,1 − u3,1 = 1.84

−u2,1 − u4,1 + 10u3,1 = 1.84

−u3,1 + 10u4,1 = 1.20.

These equations can be solved by direct elimination to obtain the solutions
as u1,1 = 0.1418, u2,1 = 0.2202, u3,1 = 0.2202, u4,1 = 0.1420.

(B) Hyperbolic Equations

We consider an implicit finite difference scheme to solve the initial boundary-
value problem consisting of the first-order hyperbolic equation

∂u

∂t
+ c

∂u

∂x
= 0, (c > 0) , (14.5.13)

with the initial data u (x, 0) = U (x) and the boundary condition u (0, t) =
V (t) where 0 ≤ x, t < ∞.

The implicit finite difference approximation to (14.5.13) is

1

k
(ui,j+1 − ui,j) +

c

h
(ui,j+1 − ui−1,j+1) = 0,

or

ui,j = (1 + ε) ui,j+1 − ε ui−1,j+1, (14.5.14)

where ε = (ck/h).
The stability of the scheme can be examined by using the von Neumann

method with the error function (14.4.10). It turns out that

p = [1 − ε + ε exp (−iαh)]
−1

, (14.5.15)

from which it follows that |p| ≤ 1 for all h. Hence, the implicit scheme is
unconditionally stable.
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We next solve the wave equation utt = c2uxx by an implicit finite differ-
ence scheme. In this case, utt is replaced by the central difference formula,
and uxx by the mean value of the central difference values in the (j − 1) th
and (j + 1) th rows. Consequently, the implicit difference approximation to
the wave equation is

ui,j+1 − 2 ui,j + ui,j−1 =
ε2

2
[(ui+1,j+1 − 2ui,j+1 + ui−1,j+1)

+ (ui+1,j−1 − 2 ui,j−1 + ui−1,j−1)] ,

(14.5.16)

where ε = (ck/h).
Expressing the solution for the (j + 1) th step in terms of the two pre-

ceding steps gives

2
(
1 + ε2

)
ui,j+1 − ε2 (ui−1,j+1 + ui+1,j+1)

= 4ui,j + ε2 (ui−1,j−1 + ui+1,j−1) − 2
(
1 + ε2

)
ui,j−1.

(14.5.17)

The N grid points along the time step, j = 0, i = 1, 2, 3, . . ., N ,
(14.5.17) along with the finite difference approximation to the boundary
condition give N simultaneous equations for the N unknown values of u
along the first time step. This constitutes a tridiagonal system of equations
that can be solved by direct or iterative numerical methods.

To investigate the stability of the implicit scheme, we apply the von
Neumann stability method with the error function (14.4.10). This leads to
the equation

p +
1

p
= 2

(
1 + 2 ε2 sin2 αh

2

)−1

,

or

p2 − 2bp + 1 = 0, (14.5.18)

where b =
(
1 + 2ε2 sin2 αh/2

)−1
so that 0 < b ≤ 1.

Hence, the stability condition is

|p| ≤ 1 (14.5.19)

which is always satisfied provided 0 < b ≤ 1, that is, ε < 1 for all positive
h. This confirms the unconditional stability of the scheme.

A more general implicit scheme can be introduced by replacing uxx in
the wave equation (14.4.1) with

uxx ∼ 1

h2

[
λ
(
δ2
x ui,j+1 + δ2

x ui,j−1

)
+ (1 + 2λ) δ2

x ui,j

]
, (14.5.20)
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where λ is a numerical weight (relaxation) factor and the central difference
operator δ2

x is given by (14.5.6). This general scheme allows us to approxi-
mate the wave equation with c = 1 by the form

δ2
t ui,j = ε2

[
λ
(
δ2
x ui,j+1 + δ2

x ui,j−1

)
+ (1 − 2λ) δ2

x ui,j

]
, (14.5.21)

where ε = k/h. This equation reduces to (14.5.16) when λ = 1
2 , and to the

explicit finite difference result when λ = 0.
It follows from von Neumann stability analysis that the implicit scheme

is unconditionally stable for λ ≥ 1
4 . Von Neumann introduced another fairly

general finite difference algorithm for the wave equation (14.4.1) in the form

δ2
t ui,j = ε2δ2

xui,j +
ω

h2
δ2
t δ2

xui,j . (14.5.22)

This equation with appropriate boundary conditions can be solved by
the tridiagonal method. Von Neumann discussed the question of stability
of this implicit scheme and proved that the scheme is conditionally stable
if ω ≤ 1

4 and unconditionally stable if ω > 1
4 .

14.6 Variational Methods and the Euler–Lagrange

Equations

To describe the variational methods and Rayleigh–Ritz approximate method,
it is convenient to introduce the concepts of the inner product (pre-Hilbert)
and Hilbert spaces. An inner product space X consisting of elements u, v,
w, . . . over the complex number field C is a complex linear space with an
inner product 〈u, v〉 : X × X → C such that

(i) 〈u, v〉 = 〈v, u〉, where the bar denotes the complex conjugate of 〈v, u〉,
(ii) 〈αu + βv, w〉 = α 〈u, w〉 + β 〈v, w〉 for any scalars α, β ∈ C,
(iii) 〈u, u〉 ≥ 0; equality holds if and only if u = 0.

By (i) 〈u, u〉 = 〈u, u〉, and so 〈u, u〉 is real. We denote 〈u, u〉
1
2 = ‖u‖, which

is called the norm of u. Thus, the norm is induced by the inner product.
Thus, every inner product space is a normed linear space under the norm
‖u‖ =

√
〈u, u〉.

Let X be an inner product space. A sequence {un} where un ∈ X for
every n is called a Cauchy sequence in X if and only if for every given ε > 0
(no matter how small) we can find an N (ε) such that

‖un − um‖ < ε for all n, m > N (ε) .

The space X is called complete if every Cauchy sequence converges to
a point in X. A complete normed linear space is called a Banach Space. A
complete linear inner product space is called a Hilbert Space and is usually
denoted by H.
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Example 14.6.1. Let Cn be the set of all n-tuples of complex numbers. Thus,
Cn is an n-dimensional Hilbert space with the inner product

〈x, y〉 =

n∑

k=1

xk yk.

Obviously, the set of all n-tuples of real numbers Rn is an n-dimensional
Hilbert space.

Example 14.6.2. Let l2 be the set of all sequences with entries from C such
that

∑∞
k=1 |xk|2 < ∞. This forms a Hilbert space with the inner product

〈x, y〉 =

∞∑

k=1

xk yk.

Example 14.6.3. Let L2 ([a, b]) be the set of all square integrable functions
in the Lebesgue sense in an interval [a, b]. L2 ([a, b]) is a Hilbert space with
the inner product

〈u, v〉 =

∫ b

a

u (x) v (x) dx.

We next introduce the notion of an operator in a Hilbert space H. An
operator A is a mapping from H to H (that is, A : H → H). It assigns to
an element u in H a new element Au in H. An operator A is called linear
if it satisfies the property

A (αu + βv) = αAu + βAv for every α, β ∈ C.

An operator is said to be bounded if there exists a constant k such that
‖Au‖ ≤ k ‖u‖ for all u ∈ H.

We consider a bounded operator A on a Hilbert space H. For a fixed
element v in H, the inner product 〈Au, v〉 in H can be regarded as a number
I (u) which varies with u. Thus, 〈Au, v〉 = I (u) is a linear functional on H.

If there exists an operator A∗ on a Hilbert space (A∗ : H → H) such
that

〈Au, v〉 = 〈u, A∗v〉 for all u, v ∈ H,

then A∗ is called the adjoint of A. In general, A �= A∗. If A = A∗, that is,
〈Au, v〉 = 〈u, Av〉 for all u, v in H, then A is called self-adjoint.

It is important to note that any bounded operator T on a real Hilbert
space (T : H → H) of the form T = A∗A is self-adjoint. This follows from
the fact that

〈Tu, v〉 = 〈A∗Au, v〉 = 〈Au, Av〉 = 〈u, A∗Au〉 = 〈u, Tv〉 .
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A self-adjoint operator A on a Hilbert space H is said to be positive if
〈Au, u〉 ≥ 0 for all u in H, where equality implies that u = 0 in H. Further,
if there exists a positive constant k such that 〈Au, u〉 ≥ k 〈u, u〉 for all u in
H, then A is called positive definite in H.

The rest of this section is essentially concerned with linear operators in
a real Hilbert space, which means that the associated scalar field involved
is real. Some specific inner products which will be used in the subsequent
sections include

〈u, v〉 =

∫ b

a

u (x) v (x) dx, 〈u, v〉 =

∫∫

D

u (x, y) v (x, y) dx dy,

where D ⊂ R2.

Example 14.6.4. Determine whether the differentiable operators (i) A =
d/dx, (ii) A = d2/dx2, and (iii) A = ∇2 =

(
∂2/∂x2

)
+

(
∂2/∂y2

)
are self-

adjoint for functions that are differentiable in a ≤ x ≤ b or in D ⊂ R2 and
vanish on the boundary.

(i) 〈Au, v〉 =

∫ b

a

(
du

dx

)
v dx =

∫ b

a

u

(
−dv

dx

)
dx + [u, v]

b
a

= 〈u, A∗v〉 where A∗ = − d

dx
�= A.

Hence, A is not self-adjoint.

(ii) 〈Au, v〉 =

∫ b

a

(
d2u

dx2

)
v dx =

∫ b

a

(
du

dx

)(
−dv

dx

)
dx +

[
v
du

dx

]b

a

=

∫ b

a

u

(
d2v

dx2

)
dx +

[
v
du

dx
− u

dv

dx

]b

a

=

∫ b

a

u

(
d2v

dx2

)
dx = 〈u, Av〉 .

Thus, A is self-adjoint.

(iii) 〈Au, v〉 =

∫∫

D

(
∇2u

)
v dx dy =

∫∫

D

[∇ · (∇u) v − ∇u · ∇v] dx dy

=

∫

∂D

(n̂ · ∇u) v dS −
∫∫

D

∇u · ∇v dx dy

= −
∫∫

D

(∇u · ∇v) dx dy,

where the divergence theorem is used with the unit outward normal vector
n̂.

Noting the symmetry of the right hand side in u and v, it follows that

〈Au, v〉 = 〈Av, u〉 = 〈u, Av〉 .

This means that the operator A = ∇2 is self-adjoint.
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Example 14.6.5. Use the inner product 〈u,v〉 =
∫∫∫

D
(u · v) dV and the

operator A = grad to show that A∗ = −div provided the functions vanish
on the boundary surface ∂D of D.

We use the divergence theorem to obtain

〈Aφ,v〉 =

∫∫∫

D

(gradφ · v) dV =

∫∫∫

D

[div (φv) − φ divv] dV,

=

∫∫∫

D

φ (−divv) dV +

∫∫

∂D

(n̂ · φv) dS,

=

∫∫∫

D

φ (−divv) dV = 〈φ,−divv〉 = 〈φ, A∗v〉 .

In the theory of calculus of variations it is a common practice to use δu,
δ2u, etc. to denote the first and second variations of a function u. Thus, δ
can be regarded as an operator that changes u into δu, ux into δ (ux), and
uxx into δ (uxx) with the meaning, δu = εv, δ (ux) = εvx, δ (uxx) = εvxx,
where ε is a small arbitrary real parameter. The operators δ, δ2 are called
the first and second variational operators respectively.

Some simple properties of the operator δ are given by

∂

∂x
(δu) =

∂

∂x
(εv) = ε

∂v

∂x
= δ

(
∂u

∂x

)
, (14.6.1)

δ

[∫ b

a

u dx

]
= ε

∫ b

a

v dx =

∫ b

a

ε v dx =

∫ b

a

(δu) dx. (14.6.2)

The variational operator can be interchanged with the differential and in-
tegral operators, and proves to be very useful in the calculation of the
variation of a functional.

The main task of the calculus of variations is concerned with the problem
of minimizing or maximizing functionals involved in mathematical, physical
and engineering problems. The variational principles have their origins in
the simplest kind of variational problem, which was first considered by Euler
in 1744 and Lagrange in 1760-61.

The classical Euler–Lagrange variational problem is to determine the
extremum value of the functional

I (u) =

∫ b

a

F (x, u, u′) dx, u′ =
du

dx
, (14.6.3)

with the boundary conditions

u (a) = α and u (b) = β, (14.6.4)

where u belongs to the class C2 ([a, b]) of functions which have continuous
derivatives up to second-order in a ≤ x ≤ b, and F has continuous second-
order derivatives with respect to all of its arguments.
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We assume that I (u) has an extremum at some u ∈ C(2) ([a, b]). Then
we consider the set of all variations u + ǫv for fixed u where v is an arbi-
trary function belonging to C2 ([a, b]) such that v (a) = v (b) = 0. We next
consider the increment of the functional

δI = I (u + εv) − I (u) =

∫ b

a

[F (x, u + ε v, u′ + ε v′) − F (x, u, u′)] dx.

(14.6.5)

From the Taylor series expansion

F (x, u + ε v, u′ + ε v′) = F (x, u, u′) + ε

(
v

∂F

∂u
+ v′ ∂F

∂u′

)

+
ε2

2!

(
v

∂F

∂u
+ v′ ∂F

∂u′

)2

+ · · · ,

it follows from (14.6.5) that

I (u + εv) = I (u) + ε δI +
ε2

2!
δ2I + · · · , (14.6.6)

where the first and second variations of I are given by

δI =

∫ b

a

(
v

∂F

∂u
+ v′ ∂F

∂u′

)
dx, (14.6.7)

δ2I =

∫ b

a

(
v

∂F

∂u
+ v′ ∂F

∂u′

)2

dx. (14.6.8)

The necessary condition for the functional I (u) to have an extremum (that
is, I (u) is stationary at u) is that the first variation becomes zero at u so

0 = δI =

∫ b

a

(
v

∂F

∂u
+ v′ ∂F

∂u′

)
dx (14.6.9)

which is, by partial integration of the second integral,

=

∫ b

a

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
v dx +

[
v

∂F

∂u′

]b

a

.

Because v (a) = v (b) = 0, this means that
∫ b

a

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
v dx = 0. (14.6.10)

Since v is arbitrary in a ≤ x ≤ b, it follows from (14.6.10) that

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0. (14.6.11)

This is the famous Euler–Lagrange equation. We therefore can state:
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Theorem 14.6.1. A necessary condition for the functional I (u) to be sta-
tionary at u is that u is a solution of the Euler–Lagrange equation

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0, a ≤ x ≤ b (14.6.12)

with

u (a) = α, u (b) = β. (14.6.13)

This is called the Euler–Lagrange variational principle.

Note that, in general, equation (14.6.12) is a nonlinear second-order
ordinary differential equations, and, although such an equation is very dif-
ficult to solve, still it seems to be more accessible analytically than the
functional (14.6.3) from which it is derived.

The derivative d
dx in (14.6.12) can be computed by recalling u = u (x)

and u′ = du
dx , and equation (14.6.12) becomes

∂F

∂u
− ∂2F

∂x∂u′ − ∂2F

∂u∂u′

(
du

dx

)
− ∂2F

∂u′2
d2u

∂x2
= 0.

It is left to the reader to verify that the functional with one independent
variable and nth-order derivatives in the form

I (u) =

∫ b

a

F (x, u, ux, uxx, . . . , uxn , . . . , ) dx

admits the Euler–Lagrange equation

∂F

∂u
− d

dx

(
∂F

∂ux

)
+

d2

dx2

(
∂F

∂uxx

)
− . . . (−1)

n dn

dxn

(
∂2F

∂uxn

)
= 0.

After we have determined the function u which makes I (u) stationary,
the question of the nature of the extremum arises, that is, its minimum,
maximum, or saddle point properties. To answer this question, we look at
the second variation defined in (14.6.8). If terms of O

(
ε3

)
can be neglected

in (14.6.6), or if they vanish for the case of quadratic F , it follows from
(14.6.6) that a necessary condition for the functional I (u) to have a mini-
mum I (u) ≥ I (u0) at u = u0 is that δ2I ≥ 0, for I (u) to have a maximum
I (u) ≤ I (u0) at u = u0 is that δ2I ≤ 0 at u = u0 respectively for all
admissible values of v. These results enable us to determine the upper or
lower bounds for the stationary value I (u0) of the functional.

Example 14.6.6. Find out the shortest distance between given points A and
B in the (x, y)-plane.

Suppose APB is any curve in the plane through A and B, and s =
arcAP . The problem is to determine the curve for which the functional
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I (y) =

∫ B

A

ds, (14.6.14)

is a minimum.
Since ds/dx =

(
1 + y′2) 1

2 , functional (14.6.14) becomes

I (y) =

∫ x2

x1

(
1 + y′2) 1

2 dx. (14.6.15)

In this case, F =
(
1 + y′2) 1

2 which depends on y′ only, so ∂F/∂y = 0.
Hence, the Euler–Lagrange equation (14.6.12) becomes

d

dx

(
∂F

∂y′

)
= 0.

This gives the differential equation

y′′ = 0. (14.6.16)

This means that the curvature for all points on the curve AB is zero. Hence,
the path AB is a straight line. It follows from the integration of (14.6.16)
that y = mx + c is a two-parameter family of straight lines.

Example 14.6.7. (Fermat principle in optics). In an optically homogeneous
isotro-pic medium, light travels from one point A to another point B along
the path for which the travel time is minimum.

The velocity of light v is the same at all points of the medium; hence, the
minimum time is equivalent to the minimum path length. For simplicity,
consider a path joining the two points A and B in the (x, y)-plane. The
time to travel an elementary arc length ds is ds/v. Thus, the variational
problem is to find the path for which

∫ B

A

ds

v
=

∫ x2

x1

(
1 + y′2) 1

2 dx

v
=

∫ x2

x1

F (y, y′) dx (14.6.17)

is a minimum, where y′ = dy/dx, and v = v (y).
When F is a function of y and y′, the Euler–Lagrange equation (14.6.12)

becomes

d

dx
(F − y′Fy′) = 0. (14.6.18)

This follows from the result

d

dx
(F − y′Fy′) =

d

dx
F (y, y′) − y′′Fy′ − y′ d

dx
(Fy′)

= y′Fy + y′′Fy − y′′Fy − y′ d

dx
(Fy′)

= y′
[
Fy − d

dx
(Fy′)

]
= 0, by (14.6.12) .
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Hence,

F − y′Fy′ = constant, (14.6.19)

or

(
1 + y′2) 1

2

v
− y′2

v (1 + y′2)
1
2

= constant,

or

v−1
(
1 + y′2)− 1

2 = constant. (14.6.20)

In order to give a simple physical interpretation, we rewrite (14.6.20) in
terms of the angle φ made by the tangent to the minimum path with the
vertical y-axis so that

sin φ =
(
1 + y′2)− 1

2 .

Hence,

1

v
sin φ = constant = K (14.6.21)

for all points on the minimum curve. For a ray of light, (1/v) must be
directly proportional to the refractive index n of the medium through which
light is travelling. Equation (14.6.21) is called the Snell law of refraction of
light. Often this law is stated as

n sin φ = constant. (14.6.22)

(A) Hamilton Principle

The difference between the kinetic energy T and the potential energy V
of a dynamical system is denoted by L = T − V . The quantity L is called
the Lagrangian of the system. The Hamilton principle states that the first
variation of the time integral of L is zero, that is,

δ

∫ t2

t1

L dt = δ

∫ t2

t1

(T − V ) dt = 0. (14.6.23)

This result is supposed to be valid for all dynamical systems whether they
are conservative or nonconservative.

For a conservative system the force field F = −∇V and T + V = C,
where C is a constant, and so (14.6.23) gives the principle of least action

δA = 0, A =

∫ t2

t1

L dt, (14.6.24)

where A is called the action integral or simply the action of the system.
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Example 14.6.8. Derive the Newton second law of motion from the Hamil-
ton principle.

Consider a particle of mass m at the position r = (x, y, z) which is
moving under the action of a field of force F. The kinetic energy of the
particle is T = 1

2mṙ2, and the variation of work done is δW = F · δr and
δV = −δW . Thus, the Hamilton principle for the system is

0 = δ

∫ t2

t1

(T − V ) dt =

∫ t2

t1

(δT − δV ) dt =

∫ t2

t1

(mṙ · δṙ + F · δr) dt.

Integrating this result by parts and noting that δr vanishes at t = t1
and t = t2, we obtain

∫ t2

t1

(mr̈ − F) · δr dt = 0.

This is true for every virtual displacement δr, and hence, the integrand
must vanish, that is,

mr̈ = F. (14.6.25)

This is the celebrated Newton second law of motion.

Example 14.6.9. Derive the equation for a simple harmonic oscillator in a
non-resisting medium from the Hamilton principle.

For a simple harmonic oscillator, T = 1
2mẋ2 and V = 1

2mω2x2. Accord-
ing to the Hamilton principle

δ

∫ t2

t1

(
1

2
mẋ2 − 1

2
mω2x2

)
dt = δ

∫ t2

t1

F (x, ẋ) dt = 0.

This leads to the Euler–Lagrange equation

∂F

∂x
− d

dt
(mẋ) = 0,

or

ẍ + ω2x = 0. (14.6.26)

This is the equation for the simple harmonic oscillator.

Example 14.6.10. A straight uniform elastic beam of length l, line density ρ,
cross-sectional moment of inertia I, and modulus of elasticity E is fixed at
each end. The beam performs small transverse oscillations in the horizontal
(x, y)-plane. Derive the equation of motion of the beam.

The potential energy of the elastic beam is

V =
1

2

∫ l

0

M2

EI
dx =

1

2

∫ l

0

EIy′′2dx,
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where the bending moment M is proportional to the curvature so that

M = EI
y′′

(1 + y′2)
1
2

∼ EIy′′ for small y′.

The variational principle gives

δ

∫ t2

t1

(T − V ) dt = δ

∫ t2

t1

F (y′′, ẏ) dt = 0,

where

F (y′′, ẏ) =
1

2

∫ l

0

(
ρẏ2 − EIy′′2) dx.

This principle leads to the Euler–Lagrange equation

−
∫ l

0

(
ρÿ + EIy(iv)

)
dx = 0,

or

ρÿ + EIy(iv) = 0. (14.6.27)

This represents the partial differential equation of the transverse vibration
of the beam.

(B) The Generalized Coordinates, Lagrange Equation, and
Hamilton Equation

The Euler–Lagrange analysis of a dynamical system can be extended to
more complex cases where the configuration of the system is described by
generalized coordinates q1, q2, . . ., qn. Without loss of generality, we consider
a system of three variables where the familiar Cartesian coordinates x, y,
z can be expressed in terms of the generalized coordinates q1, q2, q3 as

x = x (q1, q2, q3) , y = y (q1, q2, q3) , z = z (q1, q2, q3) . (14.6.28)

For example, if (q1, q2, q3) represents the cylindrical polar coordinates
(r, θ, z), the above result becomes

x = r cos θ, y = r sin θ, z = z.

Since the coordinates are functions of time t, we obtain the following
result by differentiation

ẋ =
∂x

∂q1
q̇1 +

∂x

∂q2
q̇2 +

∂x

∂q3
q̇3 (14.6.29)
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with similar expressions for ẏ and ż.
If these results are substituted into T = 1

2m
(
ẋ2 + ẏ2 + ż2

)
and V =

V (x, y, z), then both T and V can be written in terms of the generalized
coordinates qi and the generalized velocities q̇i, as

T = T (q1, q2, q3; q̇1, q̇2, q̇3) , V = V (q1, q2, q3) , (14.6.30)

so that the Lagrangian has the form

L = T − V = L (qi, q̇i) . (14.6.31)

The Hamilton principle gives

δ

∫ t2

t1

L (qi, q̇i) dt = 0. (14.6.32)

The simple variation of this integral with fixed end points, the inter-
change of the variation operations and time derivatives for the variation of
the generalized velocities, and then integration by parts yield

∫ t2

t1

[
3∑

i=1

{
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
δqi

]
dt = 0, (14.6.33)

where the integrated components vanish because of the conditions δqi = 0
(i = 1, 2, 3) at t = t1 and t = t2.

When the generalized coordinates are independent and the variations
δqi are independent for all t in (t1, t2), the coefficients of the variations δqi

vanish independently for arbitrary values of t1 and t2. This means that the
integrand in (14.6.33) vanishes, that is,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, 3. (14.6.34)

These are called the Lagrange equations of motion.
If a particle of mass m at position r = (x1, x2, x3) moves under the

action of a conservative force field Fi = −∂V/∂xi, the Lagrangian function
is

L = T − V =
1

2
m

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
− V (x1, x2, x3) . (14.6.35)

Consequently,

∂L

∂ẋi
= mẋi,

∂L

∂xi
= − ∂V

∂xi
= Fi. (14.6.36)

The former represents the momentum of the particle and the latter is the
force acting on the particle. In view of (14.6.36), the Lagrange equation
(14.6.34) gives the Newton second law of motion in the form

d

dt
(mẋi) = Fi. (14.6.37)
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Example 14.6.11. Apply the Lagrange equations of motion to derive the
equations of motion of a particle under the action of a central force,
−mF (r) where r is the distance of the particle of mass m from the center
of force.

It is convenient to use the polar coordinates r and θ. In terms of the
generalized coordinates q1 = r and q2 = θ, we write

x = r cos θ = q1 cos q2, y = r sin θ = q1 sin q2.

The kinetic energy T is

T =
1

2
m

(
ẋ2 + ẏ2

)
=

1

2
m

(
ṙ2 + r2θ̇2

)
=

1

2
m

(
q̇2
1 + q2

1 q̇2
2

)
. (14.6.38)

Since F = ∇V , the potential is

V (r) =

∫ r

F (r) dr =

∫ q1

F (q1) dq1. (14.6.39)

Then, the Lagrangian L is

L = T − V =
1

2
m

[(
q̇2
1 + q2

1 q̇2
2

)
− 2

∫ q1

F (q1) dq1

]
. (14.6.40)

Thus, the Lagrange equations (14.6.34) with i = 1, 2, 3 give the equations
of motion

q̈1 − q1q̇
2
2 + F (q1) = 0,

d

dt

(
q2
1 q̇2

)
= 0. (14.6.41)

In term of the polar coordinates, these equations become

r̈ − rθ̇2 = −F (r) ,
d

dt

(
r2θ̇

)
= 0. (14.6.42ab)

Equation (14.6.42b) gives immediately

r2θ̇ = h, (14.6.43)

where h is a constant. In this case, rθ̇ represents the transverse velocity
component, and mr2θ̇ = mh is the constant angular momentum of the
particle about the center of force.

Introducing r = 1/u, we obtain

ṙ =
dr

dt
= − 1

u2

du

dt
= − 1

u2

du

dθ
· dθ

dt
= −h

du

dθ
,

r̈ =
d2r

dt2
= −h

d

dt

(
du

dθ

)
= −h

d2u

dθ2

dθ

dt
= −h2u2 d2u

dθ2
.

Substituting these into (14.6.42a) gives
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−h2u2 d2u

dθ2
− h2u3 = −F

(
1

u

)
,

or

d2u

dθ2
+ u =

1

h2u2
F

(
1

u

)
. (14.6.44)

This is the differential equation of the central orbit and can be solved by
standard methods.

In particular, if the law of force is the attractive inverse square, F (r) =
µ/r2 so that the potential V (r) = −µ/r, the differential equation (14.6.44)
becomes

d2u

dθ2
+ u =

µ

h2
, (14.6.45)

if the particle is projected initially from distance a with velocity V at an
angle β that the direction of motion makes with the outward radius vector.
Thus, the constant h in (14.6.43) is h = V a sin β. The angle φ between the
tangent and radius vector of the orbit at any point is given by

cot φ =
1

r

dr

dθ
= u

d

dθ

(
1

u

)
= − 1

u

du

dθ
. (14.6.46)

At t = 0, the initial conditions are

u =
1

a
,

du

dθ
= −1

a
cot β when θ = 0. (14.6.47)

The general solution of equation (14.6.45) is

u =
µ

h2
[1 + e cos (θ + α)] , (14.6.48)

where e and α are constants to be determined from the initial data.
Finally, the solution can be written as

l

r
= 1 + e cos (θ + α) , (14.6.49)

where

l =
h2

µ
= (V a sin β)

2
/µ. (14.6.50)

This represents a conic section of semi-latus rectum l and eccentricity
e with its axis inclined at an angle α to the radius vector at the point of
projection.

The initial conditions (14.6.47) lead to
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l

a
= 1 + e cos α, − l

a
cot β = −e sin α, (14.6.51)

which give

tanα =
l cot β

l − a
,

e2 =

(
l

a
− 1

)2

+
l2

a2
cot2 β =

l2

a2
cosec2β − 2l

a
+ 1,

= 1 − 2aV 2 sin2 β

µ
+

a2V 4 sin2 β

µ2
. (14.6.52)

Thus, the conic is an ellipse, parabola, or hyperbola accordingly as e <=> 1
that is, V 2 < = > 2µ/a.

To derive the Hamilton equations, we introduce the concept of general-
ized momentum, pi and generalized force, Fi as

pi =
∂L

∂q̇i
, Fi =

∂L

∂qi
. (14.6.53ab)

Consequently, the Lagrange equations (14.6.34) become

∂L

∂qi
=

d

dt
pi = ṗi. (14.6.54)

The Hamiltonian function H is defined by

H =

n∑

i=1

pi q̇i − L. (14.6.55)

In general, L = L (qi, q̇i, t) is a function of qi, q̇i and t, where q̇i enters
through the kinetic energy as a quadratic term. Hence, equation (14.6.53a)
will give pi as a linear function of q̇i. This system of linear equations in-
volving pi and q̇i can be solved to determine q̇i in terms of pi, and then, the
q̇i can, in principle, be eliminated from (14.6.55). This means that H can
always be expressed as a function of pi, qi and t so that H = H (pi, qi, t).
Thus,

dH =
∑ ∂H

∂pi
dpi +

∑ ∂H

∂qi
dqi +

∂H

∂t
dt. (14.6.56)

On the other hand, differentiating H in (14.6.55) with respect to t gives

dH

dt
=

∑
pi

d

dt
q̇i +

∑
q̇i

d

dt
pi −

∑ ∂L

∂qi

d

dt
qi −

∑ ∂L

∂q̇i

d

dt
q̇i − ∂L

∂t
,

(14.6.57)

or
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dH =
∑

pi dq̇i +
∑

q̇i dpi −
∑ ∂L

∂qi
dqi −

∑ ∂L

∂q̇i
dq̇i − ∂L

∂t
dt, (14.6.58)

which becomes, in view of (14.6.53a),

dH =
∑

q̇i dpi −
∑ ∂L

∂qi
dqi − ∂L

∂t
dt. (14.6.59)

Evidently, two expressions of dH in (14.6.56) and (14.6.59) must be
equal so that the coefficients of the corresponding differentials can be
equated to obtain

q̇i =
∂H

∂pi
, − ∂L

∂qi
=

∂H

∂qi
, −∂L

∂t
=

∂H

∂t
. (14.6.60abc)

Using the Lagrange equation (14.6.54), the first two of the above equations
become

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (14.6.61ab)

These are commonly known as the Hamilton canonical equations of motion.
They play a fundamental role in advanced analytical dynamics.

Finally, the Lagrange–Hamilton theory can be used to derive the law
of conservation of energy. In general, the Lagrangian L is independent of
time t and hence, (14.6.60c) implies that H = constant. Again, T involved
in L = T − V is given by

T =
1

2

n∑

i=1

n∑

j=1

aij q̇i q̇j , (14.6.62)

where the coefficients aij are symmetric functions of the generalized coor-
dinates qij , that is, aij = aji.

On the other hand, V is, in general, independent of qi and hence,

pi =
∂L

∂q̇i
=

∂T

∂q̇i
=

n∑

j=1

aij q̇j . (14.6.63)

Thus, the Hamiltonian H becomes

H =

n∑

i=1

piq̇i − L =

n∑

i=1

⎛
⎝

n∑

j=1

aij q̇j

⎞
⎠ q̇i − L = 2T − L = T + V. (14.6.64)

Thus, H is equal to the total energy. It has already been observed that,
if L does not contain t explicitly, H is a constant. This means that the
sum of the potential and kinetic energies is constant. This is the law of the
conservation of energy.
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Example 14.6.12. Use the Hamiltonian equations to derive the equations of
motion for the problem stated in Example 14.6.11.

The Lagrangian L for this problem is given by (14.6.40) with q1 = r
and q2 = θ. It follows from the definition (14.6.53a) of the generalized
momentum that

p1 = mq̇1 = mṙ, p2 = mq2
1 q̇2 = mr2θ̇. (14.6.65)

Expressing the results of the kinetic energy (14.6.38) and the potential
energy (14.6.39) in terms of p1 and p2 the Hamiltonian H = T + V can be
written as

H =
1

2m

(
p2
1 +

p2
2

q2
1

)
+ m

∫ q1

F (q1) dq1. (14.6.66)

Then, equations (14.6.65) and the Hamilton equation (14.6.61b) give

p1 = mṙ, p2 = mr2θ̇, (14.6.67)

ṗ1 =
1

m

p2
2

q3
1

+ mF (q1) , ṗ2 = 0. (14.6.68)

Clearly, these equations are identical with the equations of motion
(14.6.42ab).

Example 14.6.13. Derive the equation of a simple pendulum by using (i) the
Lagrange equations and (ii) the Hamilton equations.

We consider the motion of simple pendulum of mass m attached at the
end of a rigid massless string of length l that pivots about a fixed point.
We suppose that the pendulum makes an angle θ with its vertical position.
The force F acting on the mass m is F = −mg sin θ, so that the potential
V is obtained from F = −∇V as V = mgl (1 − cos θ). The kinetic energy
T = 1

2ml2θ̇2.
Thus the Lagrangian L is

L = T − V =
1

2
ml2θ̇2 − mgl (1 − cos θ) = L

(
θ, θ̇

)
. (14.6.69)

The Lagrange equation is

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0, (14.6.70)

or

−mgl sin θ − d

dt

(
ml2θ̇

)
= 0,

or

θ̈ + ω2 sin θ = 0, ω2 = g/l. (14.6.71ab)
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This is the equation of the simple pendulum.
To derive the same equation from the Hamilton equations, we choose

q1 = l (q̇1 = 0) and q2 = θ as the generalized (polar) coordinates. The
kinetic and potential energies are

T =
1

2
ml2q̇2

2 , V = mgl (1 − cos q2) . (14.6.72ab)

Thus, H = T + V and L = T − V are given by

(H, L) =
1

2
ml2q̇2

2 + mgl (1 − cos q2) . (14.6.73ab)

From the definition of the generalized momentum, we find that

p2 =
∂L

∂q̇2
= ml2q̇2

so that the Hamiltonian H in terms of p2 and q2 is

H =
1

2

p2
2

ml2
+ mgl (1 − cos q2) .

Thus, the Hamilton equation (14.6.61ab) gives

θ̈ + ω2 sin θ = 0, ω2 =
g

l
. (14.6.74)

The variational methods can be further extended for functionals de-
pending on functions or more independent variables in the form

I [u (x, y)] =

∫∫

D

F (x, y, u, ux, uy) dx dy (14.6.75)

where the values of the function u (x, y) are prescribed on the boundary
∂D of a finite domain D in the (x, y)-plane. We assume that F is differen-
tiable and the surface u = u (x, y) giving an extremum is also continuously
differentiable twice.

The first variation δI of I is defined by

δI [u, ε] = I (u + ε) − I (u) (14.6.76)

which is, by Taylor’s expansion theorem

=

∫∫

D

[εFu + εxFp + εyFq] dx dy (14.6.77)

where ε ≡ ε (x, y) is small and p = ux and q = uy. According to the
variational principle, δI = 0 for all admissible values of ε. The partial
integration of (14.6.77) combined with ε = 0 on ∂D gives
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0 = δI =

∫∫

D

[
Fu − ∂

∂x
Fp − ∂

∂y
Fq

]
ε (x, y) dx dy. (14.6.78)

This is true for all arbitrary ε, and hence, the integrand must vanish, that
is

∂

∂x
Fp +

∂

∂y
Fq − Fu = 0. (14.6.79)

This is the Euler–Lagrange equation which is the second-order partial dif-
ferential equation to be satisfied by the extremizing function u (x, y).

Example 14.6.14. Derive the equation of motion for the free vibration of an
elastic string of length l.

The potential energy V of the string is

V =
1

2
T ∗

∫ l

0

u2
xdx (14.6.80)

where u = u (x, y) is the displacement of the string from its equilibrium
position and T ∗ is the constant tension of the string.

The kinetic energy T is

T =
1

2

∫ l

0

ρu2
t dx (14.6.81)

where ρ is the constant line-density of the string.
According to the Hamilton principle

δI = δ

∫ t2

t1

(T − V ) dt = δ

∫ t2

t1

∫ l

0

1

2

(
ρu2

t − T ∗u2
x

)
dx dt = 0 (14.6.82)

which has the form

δ

∫ t2

t1

∫ l

0

L (ut, ux) = 0, (14.6.83)

where

L =
1

2

(
ρ u2

t − T ∗u2
x

)
.

Then the Euler–Lagrange equation is given by

∂

∂t
(ρut) − ∂

∂x
(T ∗ux) = 0, (14.6.84)

or

utt − c2uxx = 0, c2 = T ∗/ρ. (14.6.85)

This is the wave equation of motion of the string.
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Example 14.6.15. Derive the Laplace equation from the functional

I (u) =

∫∫

D

(
u2

x + u2
y

)
dx dy

with a boundary condition u = f (x, y) on ∂D.
The variational principle gives

δI = δ

∫∫

D

(
u2

x + u2
y

)
dx dy = 0.

This leads to the Euler–Lagrange equation

uxx + uyy = 0 in D.

Similarly, the functional

I [u (x, y, z)] =

∫∫∫

D

(
u2

x + u2
y + u2

z

)
dx dy dz

will lead to the three-dimensional Laplace equation

∇2u = uxx + uyy + uzz = 0.

14.7 The Rayleigh–Ritz Approximation Method

We consider the boundary-value problem governed by the differential equa-
tion

Au = f in D (14.7.1)

with the boundary condition

B (u) = 0 on ∂D (14.7.2)

where A is a self-adjoint differential operator in a Hilbert space H and
f ∈ H.

In general, the determination of the exact solution of the problem is of-
ten a difficult task. However, it can be shown that the solution of (14.7.1)–
(14.7.2) is equivalent to finding the minimum of a functional I (u) associated
with the differential system. In other words, the solution can be character-
ized as the function which minimizes (or maximizes) the functional I (u). A
simple and efficient method for an approximate solution of the extremum
problem was independently formulated by Lord Rayleigh and W. Ritz.

We next prove a fundamental result which states that the solution of
the equation (14.7.1) is equivalent to finding the minimum of the quadratic
functional
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I (u) ≡ A 〈u, u〉 − 2 〈f, u〉 . (14.7.3)

Suppose that u = u0 is the solution of (14.7.1) so that Au0 = f . Conse-
quently,

I (u) ≡ A 〈u, u〉 − 2 〈Au0, u〉 = 〈A (u − u0) , u〉 − 〈Au0, u〉 .

Since the inner product is symmetrical and 〈Au0, u〉 = 〈u0, Au〉 =
〈Au, u0〉, I (u) can be written as

I (u) = 〈A (u − u0) , u〉 − 〈Au, u0〉 + 〈Au0, u〉 − 〈Au0, u0〉 ,

= 〈A (u − u0) , u − u0〉 − 〈Au0, u0〉 ,

= 〈A (u − u0) , u − u0〉 + I (u0) . (14.7.4)

Since A is a positive operator, 〈A (u − u0) , u − u0〉 ≥ 0 where equality
holds if and only if u − u0 = 0. It follows that

I (u) ≥ I (u0) , (14.7.5)

where equality holds if and only if u = u0. We conclude from this inequality
that I (u) assumes its minimum at the solution u = u0 of equation (14.7.1).

Conversely, the function u = u0 that minimizes I (u) is a solution of
equation (14.7.1). Clearly, I (u) ≥ I (u0), that is, in particular, I (u0 + αv) ≥
I (u0) for any real α and any function v. Explicitly,

I (u0 + αv) = 〈A (u0 + αv) , u0 + αv〉 − 2 〈f, u0 + αv〉 ,

= 〈Au0, u0〉 + 2α 〈Au0, v〉 + α2 〈Av, v〉 − 2 〈f, u0〉 − 2α 〈f, v〉 .

This means that I (u0 + αv) is a quadratic expression in α. Since I (u) is
minimum at u = u0, then δI (u0, v) = 0, that is,

0 =

[
d

dα
I (u0 + αv)

]

α=0

= 2 〈Au0, v〉 − 2 〈f, v〉
= 2 〈Au0 − f, v〉 .

This is true for any arbitrary but fixed v. Hence, Au0 − f = 0. This proves
the assertion.

In the Rayleigh–Ritz method an approximate solution of (14.7.1)–
(14.7.2) is sought in the form

un (x) =

n∑

i=1

aiφi (x) , (14.7.6)

where a1, a2, . . ., an are n unknown coefficients to be determined so that
I (un) is minimum, and φ1, φ2, . . ., φn represent a linearly independent and
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complete set of arbitrarily chosen functions that satisfy (14.7.2). This set
of functions is often called a trial set. We substitute (14.7.6) into (14.7.3)
to obtain

I (un) =

〈
n∑

i=1

aiA (φi) ,

n∑

j=1

ajφj

〉
− 2

〈
f,

n∑

i=1

aiφi

〉
.

Then the necessary condition for I to obtain a minimum (or maximum) is
that

∂I

∂aj
(a1, a2, . . . , an) = 0, j = 1, 2, . . . , n, (14.7.7)

or

∂I

∂aj

⎡
⎣
〈

n∑

i=1

aiA (φi) ,

n∑

j=1

ajφj

〉
− 2

〈
f,

n∑

i=1

aiφi

〉⎤
⎦ = 0,

or

n∑

i=1

〈A (φi) , φj〉 ai +

n∑

i=1

〈A (φj) , φi〉 aj − 2 〈f, φj〉 = 0,

or

2

n∑

i=1

〈A (φi) , φj〉 ai = 2 〈f, φj〉 .

Therefore,

n∑

i=1

〈A (φi) , φj〉 ai = 〈f, φj〉 , j = 1, 2, . . . , n. (14.7.8)

This is a linear system of n equations for the n unknown coefficients aj .
Once a1, a2, . . ., an are determined, the approximate solution is given by
(14.7.6).

In particular, when

〈A (φi) , φj〉 =

⎧
⎨
⎩

0, i �= j

1, i = j,
(14.7.9)

equation (14.7.8) gives aj as

aj = 〈φj , f〉 , (14.7.10)

so that the Rayleigh–Ritz approximate series (14.7.6) becomes
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un (x) =

n∑

i=1

〈φi, f〉 φi (x) . (14.7.11)

This is similar to the Fourier series solution with known Fourier coefficients
ai.

In the limit n → ∞, a limit function can be obtained from (14.7.6) as

u (x) = lim
n→∞

n∑

i=1

ai φi (x) =

∞∑

i=1

ai φi (x) , (14.7.12)

provided that the series converges. Under certain assumptions imposed on
the functional I (u) and the trial functions φ1, φ2, . . ., φn, the limit function
u (x) represents an exact solution of the problem. In any event, (14.7.6) or
(14.7.11) gives a reasonable approximate solution.

In the simplest case corresponding to n = 1, the Rayleigh–Ritz method
gives a simple form of the functional

I (u1) = I (a1φ1) = a2
1 〈Aφ1, φ1〉 − 2a1 〈f, φ1〉 ,

where a1 is readily determined from the necessary condition for extremum

0 =
∂

∂a1
I (a1φ1) = 2a1 〈Aφ1, φ1〉 − 2 〈f, φ1〉 ,

or

a1 =
〈f, φ1〉

〈Aφ1, φ1〉
. (14.7.13)

The corresponding minimum value of the functional is given by

I (a1φ1) = − 〈f, φ1〉2
〈Aφ1, φ1〉

. (14.7.14)

Thus, the essence of the Rayleigh–Ritz method is as follows. For a given
boundary-value problem, an approximate series solution is sought so that
the trial functions φi satisfy the boundary conditions. We solve the system
of algebraic equations (14.7.7) to determine the coefficients ai.

We now illustrate the method by several examples.

Example 14.7.1. Find an approximate solution of the Dirichlet problem

∇2u ≡ uxx + uyy = 0 in D

u = f on ∂D,

where D ⊂ R2, and f is a given function.
This problem is equivalent to finding the minimum of the associated

functional
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I (u) =

∫∫

D

(
u2

x + u2
y

)
dx dy.

We seek an approximate series solution in the form

u2 (x, y) = a1φ1 + a2φ2

with a1 = 1 so that u2 satisfies the given boundary conditions, that is,
φ1 = f and φ2 = 0 on ∂D. Substituting u2 into the functional gives

I (u2) =

∫∫

D

[(
∂u2

∂x

)2

+

(
∂u2

∂y

)2
]

dx dy

=

∫∫

D

(∇φ1)
2
dx dy + 2a2

∫∫

D

(∇φ1 · ∇φ2) dx dy

+ a2
2

∫∫

D

|∇φ2|2 dx dy.

The necessary condition for an extremum of I (u2) is

∂I

∂a2
= 0,

or

2

∫∫

D

(∇φ1 · ∇φ2) dx dy + 2a2

∫∫

D

|∇φ2|2 dx dy = 0.

Therefore,

a2 = −
∫∫

(∇φ1 · ∇φ2) dx dy∫∫
|∇φ2|2 dx dy

.

This a2 minimizes the functional and the approximate solution is obtained.
However, this procedure can be generalized by seeking an approximate

solution in the form

un =

n∑

i=1

aiφi (a1 = 1)

so that φ1 = f and φi = 0 (i = 2, 3, . . . , n) on ∂D.
The coefficients ai can be obtained by solving the system (14.7.7) with

j = 2, 3, . . ., n.

Example 14.7.2. A uniform elastic beam of length l carrying a uniform load
W per unit length is freely hinged at x = 0 and x = l. Find the approximate
solution of the boundary-value problem

EI(iν)
y (x) = W,

y = y′′ = 0 at x = 0 and x = l,
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where y = y (x) is the displacement function.
This problem is equivalent to finding a function y (x) that minimizes

the energy functional

I (y) =

∫ l

0

(
Wy − EI

2
y′′2

)
dx.

We seek an approximate solution

yn (x) =

n∑

r=1

ar sin
(rπx

l

)

which satisfies the boundary conditions.
Substitution of this solution into the energy functional gives

I (yn) =

n∑

r=1

[∫ l

0

War sin
(rπx

l

)
dx − EI

2

∫ l

0

r4π4

l4
a2

r sin2
(rπx

l

)
dx

]

=
2Wl

π

n∑

r=1

ar

r
− EIπ4

4l3

n∑

r=1

r4a2
r.

The necessary conditions for extremum are

0 =
∂I

∂ar
=

2Wl

rπ
− EIπ4

4l3
2arr

4, r = 1, 2, . . . , n

which give ar as

ar =
4Wl4

π5r5EI
, r = 1, 2, . . . , n.

Thus, the approximate function y (x) is

yn (x) =
4Wl4

π5EI

n∑

r=1

1

r5
sin

(rπx

l

)
.

The maximum deflection at x = l/2 is

ymax =
4Wl4

π5EI

(
1 − 1

35
+

1

55
− . . .

)
.

In this case, the first term of the series solution gives a reasonably good
approximate solution as

y1 (x) ∼ 4Wl4

EIπ5
sin

(πx

l

)
.
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Example 14.7.3. Apply the Rayleigh–Ritz method to investigate the free
vibration of a fixed elastic wedge of constant thickness governed by the
energy functional

I (y) =

∫ 1

0

(
αx3y′′2 − ωxy2

)
dx, y (1) = y′′ (1) = 0,

where the free vibration is described by the function u (x, t) = eiωty (x), ω
is the frequency.

We seek an approximate solution in the form

yn (x) =

n∑

r=1

aryr (x) =

n∑

r=1

ar (x − 1)
2
xr−1

which satisfies the given boundary conditions.
We take only the first two terms so that y2 (x) = a1y1 +a2y2 = (x − 1)

2

(a1 + a2x). Substituting y2 into the functional we obtain

I2 = I (y2) =

∫ 1

0

[
αx3 (6a2x + 2a1 − 4a2)

2 − ωx (x − 1)
4
(a1 + a2x)

2
]
dx

= α

[
(a1 − 2a2)

2
+

24

5
(a1 − 2a2) a2 + 6a2

2

]
− ω

5

[
a2
1

6
+

2a1a2

21
+

a2
2

56

]
.

The necessary conditions for an extremum are

∂I2

∂a1
= 2a1

(
α − ω

30

)
+

2

5
a2

(
2α − ω

21

)
= 0,

∂I2

∂a2
=

2a1

5

(
2α − ω

21

)
+

2a2

5

(
2α − ω

56

)
= 0.

For nontrivial solutions, the determinant of this algebraic system must be
zero, that is,

∣∣∣∣∣∣

α − ω
30

1
5

(
2α − ω

21

)

2α − ω
21 2α − ω

56

∣∣∣∣∣∣
= 0,

or

5
(
α − ω

30

)(
2α − ω

56

)
−

(
2α − ω

21

)2

= 0.

This represents the frequency equation of the vibration which has two roots
ω1 and ω2. The smaller of these two frequencies gives an approximate value
of the fundamental frequency of the vibration of the wedge.

Example 14.7.4. An elastic beam of length l, density ρ, cross-sectional area
A, and modulus of elasticity E has its end x = 0 fixed and the other end
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connected to a rigid support through a linear elastic spring with spring
constant k. Apply the Rayleigh–Ritz method to investigate the harmonic
axial motion of the beam.

The kinetic energy and the potential energy associated with the axial
motion of the beam are

T =

∫ l

0

ρA

2
U2

t dx, V =

∫ l

0

EA

2
U2

x dx +
k

2
U2 (l, t) ,

where U (x, t) is the displacement function.
Since the axial motion is simple harmonic, U (x, t) = u (x) eiωt, where

ω is the frequency of vibration. Consequently, the expressions for T and V
can be written in terms of u (x). We then apply the Hamilton variational
principle

δI (u) = δ

[∫ t2

t1

∫ l

0

1

2

(
ρ A ω2 u2 − EA u2

x

)
dx − k

2
u2 (l)

]
dt = 0.

The Euler–Lagrange equation for the variational principle is

d

dx

(
EA

du

dx

)
+ ρ A ω2 u = 0, 0 < x < l,

EA
du

dx
+ ku = 0, at x = l.

In terms of nondimensional variables (x∗, u∗) = (1/l) (x, u) and parame-
ters λ =

(
ω2ρl2/E

)
and α = (kl/EA), this system becomes, dropping the

asterisks,

uxx + λu = 0, 0 < x < 1,

ux + α u = 0, at x = 1.

The associated functional for the system is

I (u) =
1

2

∫ 1

0

(
λu2 − u2

x

)
dx − α

2
u2 (1) .

According to the Rayleigh–Ritz method, we seek approximate solution with
α = 1 in the form

u2 (x) = a1x + a2x
2

so that I (u2) is minimum.
We substitute u2 (x) into the functional to obtain

I2 = I (u2) =
1

2

∫ l

0

[
λ
(
a1x + a2x

2
)2 − (a1 + 2a2x)

2
]
dx − 1

2
(a1 + a2)

2
.
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The necessary conditions for extremum of the functional are

0 =
∂I2

∂a1
= a1

(
λ

3
− 2

)
+ a2

(
λ

4
− 2

)
,

0 =
∂I2

∂a2
= a1

(
λ

4
− 2

)
+ a2

(
λ

5
− 7

3

)
.

For nontrivial solutions, the determinant of system must be zero, that is,

∣∣∣∣∣∣

λ
3 − 2 λ

4 − 2

λ
4 − 2 λ

5 − 7
3

∣∣∣∣∣∣
= 0,

or

3λ2 − 128λ + 480 = 0.

This quadratic equation gives two solutions:

λ1 = 4.155, λ2 = 38.512.

The corresponding values of the frequency are given by

ω1 = 2.038

(
E

ρ l2

) 1
2

, ω2 = 6.206

(
E

ρ l2

) 1
2

.

The exact solution is determined by the transcendental equation

√
λ + tan

√
λ = 0.

The first two roots of this equation can be obtained graphically as

ω01 ∼ 2.0288

(
E

ρ l2

) 1
2

, ω02 ∼ 4.9132

(
E

ρ l2

) 1
2

.

14.8 The Galerkin Approximation Method

As an extension of the Rayleigh–Ritz method, Galerkin formulated an in-
genious approximation method which may be applied to a problem for
which no simple variational principle exists. The differential operator A in
equation (14.7.1) need not be linear for the solution of this equation. In
order to solve the boundary-value problem (14.7.1)–(14.7.2), we construct
an approximate solution u (x) in the form

un (x) = u0 (x) +

n∑

i=1

aiφi (x) , (14.8.1)
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where the φi (x) are known functions, u0 is introduced to satisfy the bound-
ary conditions, and the coefficients ai are to be determined. Substituting
(14.8.1) into (14.7.1) gives a non-zero residual Rn

Rn (a1, a2, . . . , an, x, y) = A (un) = A (u0) +

n∑

i=1

aiA (φi) . (14.8.2)

In this method the unknown coefficients ai are determined by solving the
following system of equations

〈Rn, φj〉 = 0, j = 1, 2, . . . , N. (14.8.3)

Since A is linear, this can be written as

n∑

i=1

ai 〈A (φi) , φj〉 = − 〈Au0, φj〉 , (14.8.4)

which determines the a′
js. Substitution of the a′

js obtained from the solution
of (14.8.4) into (14.8.1) gives the required approximate solution un.

We find an interesting connection between the Galerkin solution and
the Fourier representation of the function u. We seek a Galerkin solution
in the form

un (x) =

n∑

i=1

ai φi (x) , (14.8.5)

with a special restriction on the operator A which satisfies the condition

〈Aφi, φj〉 =

⎧
⎨
⎩

0, i �= j

1, i = j.
(14.8.6)

Thus, the application of the Galerkin method to (14.7.1) gives

n∑

i=1

〈A (φi) , φj〉 ai = 〈f, φi〉 , (14.8.7)

which is, by (14.8.6),

aj = 〈f, φj〉 , (14.8.8)

so the Galerkin solution (14.8.5) becomes

un (x) =

n∑

i=1

〈f, φi〉 φi (x) . (14.8.9)

Evidently, the Galerkin solution (14.8.5) is just the finite Fourier series
solution.
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Finally, we shall cite an example to show the equivalence of the Galerkin
and Rayleigh–Ritz methods. We consider the Poisson equation

uxx + uyy = f (x, y) in D ⊂ R2 (14.8.10)

with a homogeneous boundary condition u = 0 on ∂D. The solution of this
equation is equivalent to finding the minimum of the functional

I (u) =

∫∫

D

(
u2

x + u2
y + 2fu

)
dx dy. (14.8.11)

According to the Rayleigh–Ritz method, we seek a trial solution in the
form

un =

n∑

i=1

ai φi (x, y) , (14.8.12)

where the trial functions φi are chosen so that they satisfy the given bound-
ary condition on ∂D.

We substitute the Rayleigh–Ritz solution un into I (u) and then use
∂I (un) /∂ak = 0, for k = 1, 2, . . ., n to obtain

2

∫∫

D

(
∂un

∂x

∂φk

∂x
+

∂un

∂y

∂φk

∂y
+ fφk

)
dx dy = 0. (14.8.13)

Application of Greens theorem with the homogeneous boundary condition
leads to

∫∫

D

(
∇2un − f

)
φk dx dy = 0, (14.8.14)

or

〈Rn, φk〉 = 0, Rn ≡ ∇2un − f. (14.8.15)

This is the Galerkin equation for the undetermined coefficients ak. This
establishes the equivalence of the two methods.

Example 14.8.1. Use the Galerkin method to find an approximate solution
of the Poisson equation

∇2u ≡ uxx + uyy = −1 in D = {(x, y) : |x| < a, |y| < b}

with the boundary conditions

u = 0 on ∂D = {(x, y) : x = + a, y = + b} .

We seek a trial solution in the form
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uN (x, y) =

N∑

m,n=1

N∑

3,5,...

amn φmn (x, y) ,

where

φmn (x, y) = cos
(mπx

2a

)
cos

(nπy

2b

)
.

In this case A = ∇2 and the residual RN is

RN = AuN + 1 = ∇2uN + 1

= −
[

N∑

m=1

N∑

n=1

(
m2π2

4a2
+

n2π2

4b2

)
amn φmn

]
+ 1.

According to the Galerkin method

0 = 〈RN , φkl〉 =

∫ a

−a

∫ b

−b

RN cos

(
kπx

2a

)
cos

(
lπy

2b

)
dx dy

=
abπ2

4

(
k2

a2
+

l2

b2

)
akl − 16ab

π2kl
(−1)

{(k+l)/2}−1
,

or

akl =

(
8ab

π2

)2
(−1)

1
2 (k+l)−1

(b2k2 + a2l2)
.

Thus, the solution of the problem is

uN (x, y) =

(
8ab

π2

)2 N∑

m,n=1

N∑

3,5,...

(−1)
1
2 (m+n)−1

φmn (x, y)

(b2m2 + a2n2)
.

In particular, the solution for uN (x, y) can be derived for the square
domain D = {(x, y) : |x| < 1, |y| < 1}. In the limit N → ∞, these solutions
are in perfect agreement with those obtained by the double Fourier series.

Example 14.8.2. Solve the problem in Example 14.8.1 by using algebraic
polynomials as trial functions.

We seek an appropriate solution in the form

uN (x, y) =
(
x2 − a2

) (
y2 − b2

) (
a1 + a2x

2 + a3y
2 + a4x

4y4 + . . .
)
.

Obviously, this satisfies the boundary conditions. In the first approximation,
the solution assumes the form

u1 (x, y) ≡ a1φ1 = a1

(
x2 − a2

) (
y2 − b2

)
,
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where the coefficient a1 is determined by the Galerkin integral

∫ a

−a

∫ b

−b

(
∇2u1 + 1

)
φ1dx dy = 0,

or

∫ a

−a

∫ b

−b

[
2a1

(
y2 − b2

)
+ 2a1

(
x2 − a2

)
+ 1

] (
x2 − a2

) (
y2 − b2

)
dx dy = 0.

A simple evaluation gives

a1 =
5

4

(
a2 + b2

)−1
,

and hence, the solution is

u1 (x, y) =
5

4

(
a2 + b2

)−1 (
x2 − a2

) (
y2 − b2

)
.

14.9 The Kantorovich Method

In 1932, Kantorovich gave an interesting generalization of the Rayleigh–
Ritz method which leads from the solution of a partial differential equation
to the solution of a system of algebraic equations in terms of unknown
coefficients. The essence of the Kantorovich method is to reduce the problem
of the solution of partial differential equations to the solution of ordinary
differential equations in terms of undetermined functions.

Consider the boundary-value problem governed by (14.7.1)–(14.7.2). It
has been shown in Section 14.7 that the solution of the problem is equivalent
to finding the minimum of the quadratic functional I (u) given by (14.7.3).

When the Rayleigh–Ritz method is applied to this problem, we seek
an approximate solution in the form (14.7.6) where the coefficients ak are
constants. We then determine ak so as to minimize I (un).

In the Kantorovich method, we assume that ak in (14.7.6) are no longer
constants but unknown functions of one of the independent variables x of
x so that the Kantorovich solution has the form

un (x) =

n∑

k=1

ak (x) φk (x) , (14.9.1)

where the products ak (x) φk (x) satisfy the same boundary conditions as
u. Thus, the problem leads to minimizing the functional

I (un (x)) = I

(
n∑

k=1

ak (x) φk (x)

)
. (14.9.2)
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Since φk (x) are known functions, we can perform integration with
respect to all independent variables except x and obtain a functional
Ī (a1 (x) , a2 (x) , . . . , an (x)) depending on n unknown functions ak (x) of
one independent variable x. These functions must be so determined that
they minimize the functional Ī (a1, a2, . . . , an). Finally, under certain con-
ditions, the solution un (x) converges to the exact solution u (x) as n → ∞.

In order to describe the method more precisely, we consider the following
example in two dimensions:

∇2u = f (x, y) in D, (14.9.3)

u (x, y) = 0 on ∂D, (14.9.4)

where D is a closed domain bounded by the curves y = α (x), y = β (x)
and two vertical lines x = a and x = b.

The solution of the problem is equivalent to finding the minimum of the
functional

I (u) =

∫∫

D

(
u2

x + u2
y + 2fu

)
dx dy. (14.9.5)

We seek the solution in the form

un (x, y) =

n∑

k=1

ak (x) φk (x, y) (14.9.6)

which satisfies the given boundary condition, where φk (x, y) are known
trial functions, and ak (x) are unknown functions to be determined so that
they minimize I (un). Substitution of un in the functional I (u) gives

I (un) =

∫∫

D

[(
∂un

∂x

)2

+

(
∂un

∂y

)2

+ 2fun

]
dx dy

=

∫ b

a

dx

∫ β(x)

α(x)

⎧
⎨
⎩

[
n∑

k=1

(
∂φk

∂x
ak − φk a′

k

)]2

+

[
n∑

k=1

ak
∂φk

∂y

]2

+ 2f

n∑

k=1

akφk

⎫
⎬
⎭ dy (14.9.7)

=

∫ b

a

F (x, ak, a′
k) dx, (14.9.8)

where the integrand in (14.9.7) is a known function of y and the integration
with respect to y is assumed to have been performed so that the result can
be denoted by F (x, ak, a′

k). Thus, the problem is reduced to determining
the functions ak so that they minimize I (un). Hence, ak (x) can be found
by solving the following system of linear Euler equations:
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∂F

∂ak
− d

dx

(
∂F

∂a′
k

)
= 0, k = 1, 2, 3, . . . , n. (14.9.9)

This system of ordinary differential equations for the functions ak is to be
solved with the boundary conditions ak (a) = ak (b) = 0, k = 1, 2, . . ., n.
Consequently, the required solution un (x, y) is determined.

Example 14.9.1. Find a solution of the torsion problem governed by the
Poisson equation ∇2u = −2 in the rectangle D = {(x, y) : −a < x < a ,
−b < y < b} with the boundary condition u = 0 on ∂D = {x = +a, y = +b}.

In the first approximation, we seek a solution in the form

u1 (x, y) =
(
y2 − b2

)
a1 (x)

which satisfies the boundary condition on y = + b. We next determine
a1 (x) so that a1 (x) = a1 (−a) = 0.

The functional associated with the problem is

I (u) =

∫∫

D

(
u2

x + u2
y − 4u

)
dx dy.

Substituting u1 into this functional yields

I (u1) =

∫ a

−a

dx

∫ b

−b

[(
y2 − a2

)2
a

′2
1 + 4y2a2

1 − 4
(
y2 − b2

)
a1

]
dy

=

∫ a

−a

[
16

15
b5 a

′2
1 +

8

3
b3a2

1 +
16

3
b3a1

]
dx.

The Euler equation for the functional is

a′′
1 − 5

2b2
a1 − 5

2b2
= 0.

This is a linear ordinary differential equation for a1 with constant coeffi-
cients, and has the general solution

a1 (x) = A cosh kx + B sinh kx − 1, k =
1

b

√
5

2
,

where the constants A and B are determined by the boundary conditions
a1 (a) = a1 (−a) = 0 so that B = 0 and

A =
1

cosh ka
.

Thus, an approximate solution is

u1 (x, y) =
(
y2 − b2

)(
cosh kx

cosh ka
− 1

)
.
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Finally, the torsional moment is given by

M = 2µα

∫∫

D

u dx dy ∼ 2µα

∫∫

D

u1dx dy

= 2µα

∫ a

−a

(
cosh kx

cosh ka
− 1

)
dx

∫ b

−b

(
y2 − b2

)
dy

=
16

3
µαb3a

[
1 − 1

ka
tanh (ak)

]
.

Example 14.9.2. Solve the Poisson equation ∇2u = −1 in a triangular do-
main D bounded by x = a and y = +

(
x/

√
3
)

with u = 0 on ∂D.
The associated functional for the Poisson equation is

I (u) =

∫∫

D

(
u2

x + u2
y − 2u

)
dx dy.

We seek the Kantorovich solution in the first approximation

u (x, y) ∼
(

y2 − x2

3

)
u1 (x)

so that u1 (a) = 0.
Substituting the solution into I (u) gives

I (u1) =

∫ a

0

dx

∫ x/
√

3

−x/
√

3

[{(
y2 − x2

3

)
u′

1 − 2xu1

3

}2

+

+ 4y2u2
1 (x) − 2

(
y2 − x2

3

)
u1

]
dy

=
8

135
√

3

∫ a

0

(
2x5u

′2
1 + 10x4u1u

′
1 + 30x3u2

1 + 15x3u1

)
dx.

The Euler equation for this functional is

4
(
x2u′′

1 + 5xu′
1 − 5u1

)
= 15.

This is a nonhomogeneous ordinary differential equation of order two. We
seek a solution of the corresponding homogeneous equation in the form xr

where r is determined by the equation (r − 1) (r + 5) = 0. The particular
integral of the equation is u1 = − 3

4 . Hence, the general solution is

u1 (x) = Ax + Bx−5 − 3

4
,

where the constants A and B are to be determined by the boundary con-
ditions. For the bounded solution, B ≡ 0. The condition u1 (a) = 0 implies
A = (3/4a). Therefore, the final solution is

u (x, y) =
3

4

(x

a
− 1

)(
y2 − x2

3

)
.
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14.10 The Finite Element Method

Many problems in mathematics, science and engineering are not simple
and cannot be solved by exact closed-form analytical formulas. It is often
necessary to obtain approximate numerical or asymptotic solutions rather
than exact solutions. Many numerical methods that have evolved over the
years reduce algebraic or differential equations to discrete form which can
be solved easily by computer. However, if the numerical method is not care-
fully chosen, the numerically computed solution may not be anywhere close
to the true solution. Another problem is that the computation for a difficult
problem may take so long that it is impractical for a computer to carry out.
The most commonly used numerical methods are finite differences that give
pointwise approximations of the governing equations. These methods can
be used successfully to solve many fairly difficult problems, but their major
weakness is that they are not suitable for problems with irregular geome-
tries, curved boundaries or unusual boundary conditions. For example, the
finite difference methods are not particularly effective for a circular domain
because a circle cannot be accurately partitioned into rectangles. However,
there are other numerical methods including the finite element method and
the boundary element method.

Unlike finite difference methods, the finite element method can be used
effectively to determine fairly accurate approximate solutions to a wide
variety of governing equations defined over irregular regions. The entire so-
lution domain can be modeled analytically or approximated by replacing it
with small, interconnected discrete finite elements (hence the name finite
element). The solution is then approximated by extremely simple functions
(linear functions) on these small elements such as triangles. These small ele-
ments are collected together and requirements of continuity and equilibrium
are satisfied between neighboring elements.

In a nutshell, the basic idea of the finite element method (FEM) con-
sists of decomposing a given domain into a set of finite elements of arbitrary
shape and size. This decomposition is usually called a mesh or a grid with
the restriction that elements cannot overlap nor leave any part of the do-
main uncovered. For each element, a certain number of points is introduced
that can be located on the edges of the elements or inside. These points are
called nodes that are usually vertices of triangles as shown in Figure 14.10.1.
Finally, these nodes are used to approximate a function under consideration
over the whole domain by interpolation in the finite elements.

Historically, the finite element method was developed originally to study
stress fields in complicated aircraft structures in the early 1960s. Subse-
quently, it has been extended and widely applied to find approximate solu-
tions to a wide variety of problems in mathematics, science, and engineering.
It was Richard Courant (1888–1972) who first introduced piecewise contin-
uous functions defined over triangular domains in 1943; he then used these
triangular elements combined with the principle of minimum potential en-
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ergy to study the St. Venant torsion problem in continuum mechanics. He
also described element properties and finite element equations based on a
variational principle. In 1965, the finite element method received an even
broader interpretation when Zienkiewicz and Cheung (1965) suggested that
it is applicable to all field problems that can be cast in variational form.
During the late 1960s and early 1970s, considerable attention has been given
to errors, bounds and convergence criteria for finite element approximations
to solutions of various problems in continuum mechanics.

In order to develop the finite element method, we recall the celebrated
Euler–Lagrange equation (14.6.12) with u (a) = α and u (b) = β. We divide
the interval a ≤ x ≤ b into n parts by the Rn+1 set: a = x0 < x1 < x2 <
. . . < xn = b. Each such subinterval is called an element. In general, the
length of the elements need not be equal, though for simplicity, we assume
that they are equal in length so that h = 1

n (b − a). We set uk = u (xk),
k = 0, 1, 2, . . . , n so that u0 (x0) = α and un (xn) = β, while u1, u2, . . .,
un−1 are unknown quantities. We next rewrite the functional (14.6.3) as

I (u) =

∫ x1

x0

F (x, u, u′) dx +

∫ x2

x1

F (x, u, u′) dx + . . . +

∫ xn

xn−1

F (x, u, u′) dx.

(14.10.1)

We define a piecewise linear interpolating function L (x) of ui as the
function which is continuous on [a, b] and whose graph consists of straight
line segments joining the consecutive pairs of points (xk, uk), (xk+1, uk+1)
for k = 0, 1, 2, . . ., (n − 1), that is,

L (x) = uk +
1

h
(uk+1 − uk) (x − xk) , xk ≤ x ≤ xk+1, (14.10.2)

where k = 0, 1, 2, . . ., (n − 1).
Substituting L for u and L′ for u′ in (14.10.1) and assuming that the

integrals can be computed exactly yields

In−1 = In−1 (u1, u2, . . . , un−1) . (14.10.3)

We next find the minimum of In−1 by solving the system of equations

∂In−1

∂uk
= 0, k = 1, 2, . . . , (n − 1) . (14.10.4)

The solution of this system (14.10.4) is then substituted into (14.10.2) to
obtain a continuous, piecewise linear approximation for the exact solution
u (x).

Example 14.10.1. (The Dirichlet problem for the Poisson equation in a
plane).

We consider the problem
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− △ u = f (x, y) in D, (14.10.5)

u = 0 on the boundary ∂D. (14.10.6)

The region D is first triangulated so that it is approximated by a region
Dn which is the union of a finite number of triangles as shown in Figures
14.10.1 (a) and 14.10.1 (b). We denote the interior vertices by V1, V2, . . .,
Vn.

We next choose n trial functions v1 (x, y), v2 (x, y), . . ., vn (x, y), one for
each interior vertex. Each trial function vm (x, y) is assumed to be equal to
1 at its vertices Vm and equal to zero at all other vertices as in shown in
Figure 14.10.1 (c).

Each linear trial function vm (x, y) = ax + by + c, where a, b, and c
are different for each trial function and for each triangle. This requirement
determines vm (x, y) uniquely. Indeed, its graph is simply a pyramid of unit
height with its peak at Vm and it is zero on all the triangles which do not
touch Vm.

We next approximate the solution u (x, y) by a linear combination of
the vm (x, y) so that

un (x, y) = a1v1 (x, y) + a2v2 (x, y) + . . . + anvn (x, y) =

n∑

m=1

amvm (x, y) ,

(14.10.7)

where the coefficients a1, a2, . . ., an are to be determined.
We multiply the Poisson equation (14.10.5) by any function v (x, y)

which is zero on ∂D and next use Green’s first identity to obtain
∫∫

D

∇u · ∇v dx dy =

∫∫

D

f v dx dy. (14.10.8)

We assume that (14.10.8) is valid only for the first n trial functions so
that v = vk for k = 1, 2, . . ., n. With u (x, y) = un (x, y) and v (x, y) =
vk (x, y), result (14.10.8) becomes

Figure 14.10.1 (a), (b), and (c). Triangular elements.



666 14 Numerical and Approximation Methods

n∑

m=1

am

[∫∫

D

(∇um · ∇vk) dx dy

]
=

∫∫

D

f vk dx dy. (14.10.9)

This is a system of n linear equations, where m = 1, 2, . . ., n in the n
unknown coefficients am, and can be rewritten in the form

n∑

m=1

αmk am = fk, k = 1, 2, . . . , n, (14.10.10)

where

αmk =

∫∫

D

(∇um · ∇vk) dx dy, fk =

∫∫

D

f vk dx dy. (14.10.11)

Consequently, the finite element method leads to finding αmk and fk from
(14.10.11) and then solving (14.10.10). Finally, the approximate value of
the solution u (x, y) is then given by (14.10.7).

Several comments are in order. First, the trial functions vm (x, y) depend
on the geometry of the problem and are completely known. Second, the
approximate solution un (x, y) vanishes on the boundary ∂Dn. Third, at a
vertex Vi = (xi, yi),

un (xi, yi) = aivi (xi, yi) + . . . + anvn (xi, yi) =

n∑

r=1

arvr (xi, yi) = ai

where

vr (xk, yk) =

⎧
⎨
⎩

0, r �= k

1, r = k.

Fourth, the coefficients ai are exactly the values of the approximate solution
at the vertices Vi = (xi, yi).

Example 14.10.2. We consider the variational problem of finding the ex-
tremes of the functional

I (u) =

∫ 6

0

(
u′2 + u2 − 2u − 2xu

)
dx (14.10.12)

with the boundary conditions u (0) = 1 and u (6) = 7.
We divide 0 ≤ x ≤ 6 into three equal parts of length h = 2 by x0 = 0,

x1 = 2, x2 = 4 and x3 = 6. We set uk = u (xk) so that u0 = u (0) = 1 and
u3 = u (6) = 7, while u1 and u2 are unknown quantities. We have

F (x, u, u′) = u′2 + u2 − 2u − 2xu (14.10.13)

so that
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I =

∫ 2

0

F (x, u, u′) dx +

∫ 4

2

F (x, u, u′) dx +

∫ 6

4

F (x, u, u′) dx. (14.10.14)

We take

L (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 + 1
2 (u1 − u0) x, 0 ≤ x ≤ 2

u1 + 1
2 (u2 − u1) (x − 2) , 2 ≤ x ≤ 4

u2 + 1
2 (u3 − u1) (x − 4) , 4 ≤ x ≤ 6,

, (14.10.15)

so that its derivative is

L′ (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 (u1 − u0) , 0 ≤ x ≤ 2

1
2 (u2 − u1) , 2 < x ≤ 4

1
2 (u3 − u1) , 4 < x ≤ 6.

(14.10.16)

Substituting (14.10.15)–(14.10.16) into (14.10.14) and using (14.10.13) we
get

I =

∫ 2

0

[(
u1 − u0

2

)2

+

{
u0 +

1

2
(u1 − u0) x

}2

− 2

{
u0 +

1

2
(u1 − u0) x

}

−2x

{
u0 +

1

2
(u1 − u0) x

}]
dx

+

∫ 4

2

[(
u2 − u1

2

)2

+

{
u1 +

1

2
(u2 − u1) (x − 2)

}2

−2

{
u1 +

1

2
(u2 − u1) (x − 2)

}
− 2x

{
u1 +

1

2
(u2 − u1) (x − 2)

}]
dx

+

∫ 6

4

[(
u3 − u1

2

)2

+

{
u2 +

1

2
(u3 − u1) (x − 4)

}2

−2

{
u2 +

1

2
(u3 − u1) (x − 4)

}
−2x

{
u2 +

1

2
(u3 − u1) (x − 4)

}]
dx.

Using the known values of u0 and u3 and integrating we obtain (n = 3)

I2 =
7

3

(
u2

1 + u2
2

)
− 1

3
u1u2 − 37

3
u1 − 67

3
u2 − 101

3
.

Consequently, equation (14.10.4) gives two equations

∂I2

∂u1
=

14

3
u1 − 1

3
u2 − 37

3
= 0,

∂I2

∂u2
= −1

3
u1 +

14

3
u2 − 67

3
= 0.
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Thus, the solutions for u1 and u2 are u1 = 3 and u2 = 5.
Putting these values into (14.10.15) leads to the approximate solution

L (x) = 1 + x, 0 ≤ x ≤ 6. (14.10.17)

In this problem, the Euler–Lagrange equation for (14.10.12) is given by

u′′ − u = − (1 + x) . (14.10.18)

Solving this equation with u (0) = 1 and u (6) = 7 yields the exact solution

u (x) = 1 + x.

In this example, the exact and approximate solutions are identical due
to the simplicity of the problem. In general, these solutions will be different.

We close this section by adding some comments on another numerical
technique known as the boundary element method (boundary integral equa-
tion method). This method was widely used in early research in solid me-
chanics, fluid mechanics, potential theory and electromagnetic theory. How-
ever, the major breakthrough in the boundary integral equation method
came in 1963 when two classic papers were published by Jaswon (1963) and
Symm (1963). The boundary element method is based on the mathemati-
cal aspect of finding the Green’s function solution of differential equations
with prescribed boundary conditions. It also uses Green’s theorem to re-
duce a volume problem to a surface problem, and a surface problem to a
line problem. This technique is not only very useful but also very accurate
for linear problems, especially for three dimensional problems with rapidly
changing variables in fracture and contact problems in solid mechanics.
However, this method is computationally less efficient than the finite ele-
ment method, and is not widely used in industry. It is fairly popular for
finding numerical solutions of acoustic problems. Since the early 1970s the
boundary element method has continued to develop at a fast pace and has
been extended to include a wide variety of linear and nonlinear problems
in continuum mechanics.

14.11 Exercises

1. Obtain the explicit finite difference solution of the problem

utt − 4uxx = 0, 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0, t ≥ 0,

u (x, 0) = sin 2πx, ut (x, 0) = 0, 0 ≤ x ≤ 1.

Compare the numerical solution with the analytical solution

u (x, t) = cos 4πt sin 2πx

at several points.
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2. (a) Calculate an explicit finite difference solution of the wave equation

uxx − utt = 0, 0 < x < 1, t > 0,

satisfying the boundary conditions

u (0, t) = u (1, t) = 0, t ≥ 0,

and the initial conditions

u (x, 0) =
1

8
sin πx, ut (x, 0) = 0, 0 ≤ x ≤ 1.

Show that the exact solution of the problem is

u (x, t) =
1

8
cos πt sin πx.

Compare the two solutions at several points.
(b) Solve the wave equation in (a) with the same boundary data and
the initial data

u (x, 0) = sinπx, ut (x, 0) = 0, 0 ≤ x ≤ 1.

3. Use the Lax–Wendroff method to find a numerical solution of the prob-
lem

ux + ut = 0, x > 0, t > 0,

u (x, 0) = 2 + x, x > 0,

u (0, t) = 2 − t, t > 0.

Show that the exact solution of the problem is

u (x, t) = 2 + (x − t) .

Compare the two solutions at various points.

4. Show that the finite difference approximation to the equation

aut + bux = f (x, t)

is

ui,j+1 − 1

2
(ui+1,j + ui−1,j) +

(
εb

2a

)
(ui+1,j − ui−1,j) − fi,j = 0,

where a, b are constants and ε = k/h.
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5. Obtain a finite difference solution of the heat conduction problem

ut = κuxx, 0 < x < l, t > 0,

with the boundary conditions

u (0, t) = u (l, t) = 0, t > 0,

and the initial condition

u (x, 0) =
4x

l
(l − x) , 0 ≤ x ≤ l.

6. (a) Find an explicit finite difference solution of the parabolic system

ut = uxx, 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0, t > 0,

u (0, t) = sinxπ on 0 ≤ x ≤ 1.

Compare the numerical results with the analytical solution

u (x, t) = e−π2t sin πx,

at t = 0.5 and t = 0.05.
(b) Prove that the Richardson finite difference scheme for problem 6(a)
is

ui,j+1 = ui,j−1 + 2 ε δ2
x ui,j .

Hence, show that the exact solution of this equation is

ui,j =
(
A1α

j
1 + A2α

j
2

)
sin πhi,

where α1 and α2 are the roots of the quadratic equation

x2 + 8εx sin2 (πh/2) − 1 = 0.

7. Using four internal grid points, find the explicit finite difference solution
of the Dirichlet problem

∇2u ≡ uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = x (1 − x) , u (x, 1) = 0 on 0 ≤ x ≤ 1,

u (0, y) = u (1, y) = 0, on 0 ≤ y ≤ 1.

Compare the numerical solution with the exact analytical solution

u (x, y) =
4

π3

∞∑

n=0

2

(2n + 1)
3

sin nπx sinhnπ (1 − y)

sinhnπ

at the point (x, y) =
(

1
3 , 1

3

)
.



14.11 Exercises 671

8. Solve the Dirichlet problem by the explicit finite difference method

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u (x, 0) = sinπx, u (x, 1) = 0 on 0 ≤ x ≤ 1,

u (x, y) = 0, for x = 0, x = 1 and 0 ≤ y ≤ 1.

9. Using a square grid system with h = 1
2 , find the finite difference solution

of the Laplace equation on the quarter-disk given by

uxx + uyy = 0, x2 + y2 < 1, y > 0,

u (x, 0) = 0, −1 < x < 1,

u (x, y) = 102, x2 + y2 = 1, y > 0.

10. Find a finite difference solution of the wave problem

utt − uxx = 0, 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0, t ≥ 0,

u (x, 0) =
1

2
x (1 − x) , ut (x, 0) = 0, 0 ≤ x ≤ 1.

Compare the numerical results with the exact analytical solution

u (x, t) =
2

π3

∞∑

r=1

1

r3
{1 − (−1)

r} cos πrt sin πrx,

at various points.

11. Obtain a finite difference solution of the problem

utt = c2uxx, 0 < x < 1, t > 0,

u (0, t) = sinπct, u (1, t) = 0, t ≥ 0,

u (x, 0) = ut (x, 0) = 0, 0 ≤ x ≤ 1.

12. Show that the transformation v = log u transforms the nonlinear system

vt = vxx + v2
x, 0 < x < 1, t > 0,

vx (0, t) = 1, v (1, t) = 0, t ≥ 0,

v (x, 0) = 0, 0 ≤ x ≤ 1

into the linear system

ut = uxx, 0 < x < 1, t > 0,

ux (0, t) = u (0, t) , u (x, 1) = 1, t ≥ 0,

u (x, 0) = 1, 0 ≤ x ≤ 1.

Solve the linear system by the explicit finite difference method with the
derivative boundary condition approximated by the central difference
formula.
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13. Solve the following parabolic system by the Crank–Nicolson method

ut = uxx, 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0, t ≥ 0,

with the initial condition

(a) u (x, 0) = 1, 0 ≤ x ≤ 1,

(b) u (x, 0) = sinπx, 0 ≤ x ≤ 1.

(c) u (x, 0) = sinπx, 0 ≤ x ≤ 1

with 0 ≤ t ≤ 0.2 and in formula (14.5.2) κ = 1, k = h2.

14. Use the Crank–Nicolson implicit method with the central difference
formula for the boundary conditions to find a numerical solution of the
differential system

ut = uxx, 0 < x < 1, t > 0,

ux (0, t) = ux (1, t) = −u, t ≥ 0,

u (x, 0) = 1, 0 ≤ x ≤ 1.

15. Find a numerical solution of the wave equation

utt = c2uxx, 0 < x < l, t > 0,

with the boundary and initial conditions

u =
1

20
ux at x = 0 and x = l, t > 0,

u (x, 0) = 0, ut (x, 0) = a sin
(πx

l

)
0 ≤ x ≤ l.

16. Determine the function representing a curve which makes the following
functional extremum:

(a) I (y (x)) =

∫ 1

0

(
y′2 + 12xy

)
dx, y (0) = 0, y (1) = 1,

(b) I (y (x)) =

∫ π/2

0

(
y′2 − y2

)
dx, y (0) = 0, y

(π

2

)
= 1,

(c) I (y (x)) =

∫ x1

x0

1

x

(
1 + y′2) 1

2 dx.

17. In the problem of tautochroneous motion, find the equation of the curve
joining the origin O and a point A in the vertical (x, y)-plane so that a
particle sliding freely from A to O under the action of gravity reaches
the origin O in the shortest time, friction and resistance of the medium
being neglected.
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18. In the problem of minimum surface of revolution, determine a curve
with given boundary points (x0, y0) and (x1, y1) such that rotation of
the curve about the x-axis generates a surface of revolution of minimum
area.

19. Show that the Euler equation of the variational principle

δI [u (x, y)] = δ

∫∫

D

F (x, y, u, p, q, l, m, n) dx dy = 0

is

Fu − ∂

∂x
Fp − ∂

∂y
Fq +

∂2

∂x2
Fl +

∂2

∂x∂y
Fm +

∂2

∂y2
Fn = 0,

where

p = ux, q = uy, l = uxx, m = uxy, n = uyy.

20. Prove that the Euler–Lagrange equation for the functional

I =

∫∫∫

R

F (x, y, z, u, p, q, r, l, m, n, a, b, c) dx dy dz

is

Fu − ∂

∂x
Fp − ∂

∂y
Fq +

∂2

∂z
Fr +

∂2

∂x2
Fl +

∂2

∂y2
Fm

+
∂2

∂z2
Fn +

∂2

∂x∂y
Fa +

∂2

∂y∂z
Fb +

∂2

∂z∂x
Fc = 0,

where (p, q, r) = (ux, uy, uz), (l, m, n) = (uxx, uyy, uzz), and (a, b, c) =
(uxy, uyz, uzx).

21. In each of the following cases apply the variational principle or its sim-
ple extension with appropriate boundary conditions to derive the cor-
responding equations:

(a) F = u2
x + u2

y + 2u2
xy.

(b) F = 1
2

[
u2

t − α
(
u2

x + u2
y

)
− β2u2

]
,

(c) F = 1
2

(
utux + αu2

x − βu2
xx

)
,

(d) F = 1
2

(
u2

t − α2u2
xx

)
,

(e) F = p (x) u′2 + d
dx

(
q (x) u2

)
− [r (x) + λs (x)]u2,

where p, q, r, and s are given functions of x, and α, β are constants.
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22. Derive the Schrödinger equation from the variational principle

δ

∫∫∫

R

[
�

2

2m

(
ψ2

x + ψ2
y + ψ2

z

)
+ (V − E) ψ2

]
dx dy dz = 0,

where h = 2π� is the Planck constant, m is the mass of a particle moving
under the action of a force field described by the potential V (x, y, z)
and E is the total energy of the particle.

23. Derive the Poisson equation ∇2u = F (x, y) from the variational prin-
ciple with the functional

I (u) =

∫∫

D

[
u2

x + u2
y + 2uF (x, y)

]
dx dy,

where u = u (x, y) is given on the boundary ∂D of D.

24. Derive the equation of motion of a vibrating string of length l under
the action of an external force F (x, t) from the variational principle

δ

∫ t2

t1

∫ l

0

[(
1

2
ρ u2

t − T ∗u2
x

)
+ ρ uF (x, t)

]
dx dt = 0,

where ρ is the line density and T ∗ is the constant tension of the string.

25. The kinetic and potential energies associated with the transverse vibra-
tion of a thin elastic plate of constant thickness h are

T =
1

2
ρ

∫∫

D

u̇2dx dy,

V =
1

2
µ0

∫∫

D

[
(∇u)

2 − 2 (1 − σ)
(
uxxuyy − u2

xy

)]
dx dy,

where ρ is the surface density and µ0 = 2h3E/3
(
1 − σ2

)
.

Use the variational principle

δ

∫ t2

t1

∫∫

D

[(T − V ) + fu] dx dy dt = 0

to derive the equation of motion of the plate

ρü + µ0∇4u = f (x, y, t) ,

where f is the transverse force per unit area acting on the plate.

26. The kinetic and potential energies associated with the wave motion in
elastic solids are
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T =
1

2

∫∫∫

D

ρ
(
u2

t + v2
t + w2

t

)
dx dy dz

V =
1

2

∫∫∫

D

[
λ (ux + vy + wz)

2
+ 2µ

(
u2

x + v2
y + w2

z

)

+µ
{

(vx + uy)
2

+ (wy + vz)
2

+ (uz + wx)
2
}]

dx dy dz.

Use the variational principle

δ

∫ t2

t1

∫∫∫

D

(T − V ) dx dy dz = 0

to derive the equation of wave motion in an elastic medium

(λ + µ) grad divu + µ∇2u = ρutt,

where u = (u, v, w) is the displacement vector.

27. From the variational principle

δ

∫∫

D

L dx dt = 0 with L = −ρ

∫ η

−h

{
φt +

1

2
(∇φ)

2
+ gz

}
dz

derive the basic equations of water waves

∇2φ = 0, −h (x, y) < z < η (x, y, t) , t > 0,

ηt + ∇φ · ∇η − φz = 0, on z = η,

φz +
1

2
(∇φ)

2
+ gz = 0, on z = η,

φz = 0, on z = −h,

where φ (x, y, z, t) is the velocity potential, and η (x, y, t) is the free
surface displacement function in a fluid of depth h.

28. Derive the Boussinesq equation for water waves

utt − c2uxx − µ uxxtt =
1

2

(
u2

)
xx

from the variational principle

δ

∫∫
L dx dt = 0,

where L ≡ 1
2 φ2

t − 1
2 c2 φ2

x + 1
2µ φ2

xt − 1
6φ3

x and φ is the potential for
u (u = φx).

29. Determine an approximate solution of the problem of finding an ex-
tremum of the functional

I (y (x)) =

∫ 1

0

(
y′2 − y2 − 2xy

)
dx, y (0) = y (1) = 0.
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30. Find an approximate solution of the torsion problem of a cylinder with
an elliptic base; the domain of integration D is the interior of the ellipse
with the major and minor axes 2a and 2b respectively. The associated
functional is

I (u (x, y)) =

∫∫

D

[(
∂u

∂x
− y

)2

u +

(
∂u

∂y
+ x

)2

u

]
dx dy.

31. Use the Rayleigh–Ritz method to find an approximate solution of the
problem

∇2u = 0, 0 < x < 1, 0 < y < 1,

u (0, y) = 0 = u (1, y) ,

u (x, 0) = x (1 − x) .

32. Find an approximate solution of the boundary-value problem

∇2u = 0, x > 0, y > 0, x + 2y < 2,

u (0, y) = 0, u (x, 0) = x (2 − x) ,

u (2 − 2y, y) = 0.

33. In the torsion problem in elasticity, the Prandtl stress function
Ψ (x, y) = ψ (x, y) − 1

2

(
x2 + y2

)
satisfies the boundary value problem

∇2Ψ = −2 in D

Ψ = 0 on ∂D.

Use the Galerkin method to find an approximate solution of the problem
in a rectangular domain D = {(x, y) : −a ≤ x ≤ a,−b ≤ y ≤ b}.

34. Apply the Galerkin approximation method to find the first eigenvalue
of the problem of a circular membrane of radius a governed by the
equation

∇2u ≡ d2u

dr2
+

1

r

du

dr
= λu in 0 < r < a

u = 0, on r = a.

35. Use the Rayleigh–Ritz method to find the solution in the first approxi-
mation of the problem of deformation of an elastic plate (−a ≤ x ≤ a ,
−a ≤ y ≤ a) by a parabolic distribution of tensile forces over its op-
posite sides at x = + a. The problem is governed by the differential
system

∇4u =
2α

a2
in |x| < a and |y| < a,

(
u,

∂u

∂x

)
= (0, 0) on |x| = a,

(
u,

∂u

∂y

)
= (0, 0) on |y| = a,
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where U = u0 + u = 1
2αy2

(
1 − 1

6y2
)

+ u, and ∇4U = 0.

36. Show that the Kantorovich solution of the torsion problem in exercise
33 is

Ψ1 (x, y) =
1

2

(
b2 − y2

)(
1 − cosh kx

cosh ka

)
, k =

1

b

√
5

2
.

37. (a) If the functional I in (14.6.3) depends on two functions u and v,
that is,

I (u, v) =

∫ b

a

F (x, u, v, u′, v′) dx,

show that there are two Euler–Lagrange equations for this functional

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0, and

∂F

∂v
− d

dx

(
∂F

∂v′

)
= 0.

(b) Generalize the above result for the functional

I (u) =

∫ b

a

F (x,u,u′) dx,

where u = (u1, u2, . . . , un), ui ∈ C2 ([a, b]), and ui (a) = ai and ui (b) =
bi, i = 1, 2, . . ., n.

38. Show that the Euler–Lagrange equation for the functional

I [u (x, y)] =

∫∫

D

(
1 + u2

x + u2
y

) 1
2 dx dy

is

(
1 + u2

y

)
uxx − 2ux uy uxy +

(
1 + u2

x

)
uyy = 0.

39. Show that the Euler–Lagrange equation for the functional

I (u) =

∫∫

D

F (x, y, u, ux, uy, uxx, uxy, uyy) dx dy

is

∂F

∂u
− ∂

∂x
(Fux) − ∂

∂y

(
Fuy

)
+

∂2

∂x2
(Fuxx) +

∂2

∂x∂y

(
Fuxy

)

+
∂2

∂y2

(
Fuyy

)
= 0.



678 14 Numerical and Approximation Methods

40. Derive the Euler–Lagrange equation for the functional

I [y (x)] =

∫ b

a

F (x, y, y′) dx

where

(a) F (x, y, y′) = u (x, y)
√

1 + y′2,

(b) F (x, y, y′) = 1√
2g

(
1+y′2

y1−y

) 1
2

with y (a) = y1 and y (b) = y2 < y1, (Brachistochrone problem).

(c) F (x, y, y′) = y′2 (
1 + y′2)2

,

(d) F (x, y, y′) =
(
xy3 − y′2 + 3xyy′).

41. Show that there are an infinite number of continuous functions with
piecewise continuous first derivatives that minimize the functional

I [y (x)] =

∫ 2

0

y′2 (1 + y′)
2
dx

with y (0) = 1 and y (2) = 0.

42. The torsion of a prismatic rod of rectangular cross section of length 2a
and width 2b is governed by

∇2u = 2 in R = {(x, y) : −a < x < a, −b < y < b}
u = 0 on ∂R.

(a) Find an approximate solution u1 (x, y). Hence, calculate the tor-
sional moment M for a �= b and for a = b.

(b) Find the exact classical solution for u (x, y) and the torsional mo-
ment M .

43. Find an approximate solution of the biharmonic problem

∇4u = 0, R = {(x, y) : −a < x < a, −b < y < b}

with the boundary conditions

uxy = 0, uyy = c

(
1 − y2

b2

)
for x = + a,

uxy = 0, uxx = 0 for y = + b,

where c is a constant.
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44. Show that the Euler–Lagrange equation (14.6.12) can be written in the
form

d

dx

(
F − u′ ∂F

∂u′

)
− ∂F

∂x
= 0.

45. Show that the extremals of the functional

I [y (x)] =

∫ b

a

[
p (x) y′2 − q (x) y2

]
dx

subject to the constraint

J [y (x)] =

∫ b

a

r (x) y2dx = 1,

are solutions of the Sturm–Liouville equation

d

dx

[
p (x)

dy

dx

]
+ [q (x) + λ r (x)] y = 0.

46. Consider the finite element method for the wave equation

utt − uxx = 0, 0 ≤ x ≤ l, t > 0,

u (0) = u (l) = 0,

with given initial conditions.

(a) Show that an appropriate requirement is that

n∑

i=1

A
′′

i (t)

∫ l

0

vi (x) vj (x) dx +

n∑

i=1

Ai (t)

∫ l

0

∂vi

∂x
· ∂vj

∂x
dx = 0,

where j = 1, 2, . . ., n and that the approximate solution is given by

un (x) = A1 (t) v1 (x) + . . . + An (t) vn (t) =

n∑

i=1

Ai (t) vi (x) .

(b) Show that the finite element method leads to a system of ordinary
differential equations

B
d2A

dt2
+ C A (t) = 0, A (0) = D

where B and C are n × n matrices, A (t) is a n-vector function and D
is an n-vector.
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Tables of Integral Transforms

In this chapter we provide a set of short tables of integral transforms of the
functions that are either cited in the text or are in most common use in
mathematical, physical, and engineering applications. For exhaustive lists of
integral transforms, the reader is referred to Erdélyi et al. (1954), Campbell
and Foster (1948), Ditkin and Prudnikov (1965), Doetsch (1970), Marichev
(1983), Debnath (1995), and Oberhettinger (1972).

15.1 Fourier Transforms

f (x) F (k) = 1√
2π

∫ ∞

−∞
exp (−ikx) f (x) dx

1 exp (−a |x|) , a > 0
(√

2
π

)
a
(
a2 + k2

)−1

2 x exp (−a |x|) , a > 0
(√

2
π

)
(−2aik)

(
a2 + k2

)−2

3 exp
(
−ax2

)
, a > 0 1√

2a
exp

(
−k2

4a

)

4
(
x2 + a2

)−1
, a > 0

√
π
2

exp(−a|k|)
a

5 x
(
x2 + a2

)−1 √
π
2

(
ik
2a

)
exp (−a |k|)
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f (x) F (k) = 1√
2π

∫ ∞

−∞
exp (−ikx) f (x) dx

6

{
c, a ≤ x ≤ b
0, outside.

ic√
2π

1
k

(
e−ibk − e−iak

)

7 |x| exp (−a |x|) , a > 0
√

2
π

(
a2 − k2

) (
a2 + k2

)−2

8 sin ax
x

√
π
2 H (a − |k|)

9 exp {−x (a − iω)} H (x) 1√
2π

i
(ω−k+ia)

10
(
a2 − x2

)− 1
2 H (a − |x|)

√
π
2 J0 (ak)

11
sin

[

b(x2+a2)
1
2

]

(x2+a2)
1
2

√
π
2 J0

(
a
√

b2 − k2
)
H (b − |k|)

12
cos(b

√
a2−x2)

(a2−x2)
1
2

H (a − |x|)
√

π
2 J0

(
a
√

b2 + k2
)

13 e−ax H (x) , a > 0 1√
2π

(a − ik)
(
a2 + k2

)−1

14 1√
|x|

exp (−a |x|) , a > 0
(
a2 + k2

)− 1
2

[
a +

(
a2 + k2

) 1
2

] 1
2

15 δ(n) (x − a) , n = 0, 1, 2, . . . 1√
2π

(ik)
n

exp (−iak)

16 exp (iax)
√

2π δ (k − a)
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15.2 Fourier Sine Transforms

f (x) Fs (k) =
√

2
π

∫ ∞

0

sin (kx) f (x) dx

1 exp (−ax) , a > 0
√

2
π k

(
a2 + k2

)−1

2 x exp (−ax) , a > 0
√

2
π (2ak)

(
a2 + k2

)−2

3 xα−1, 0 < α < 1
√

2
π k−αΓ (α) sin

(
πα
2

)

4 1√
x

1√
k
, k > 0

5 xα−1e−ax, α > −1,
a > 0

√
2
π Γ (α) r−α sin (αθ) , where

r =
(
a2 + k2

) 1
2 , θ = tan−1

(
k
a

)

6 x−1e−ax, a > 0
√

2
π tan−1

(
k
a

)
, k > 0

7 x exp
(
−a2x2

)
2−3/2

(
k
a3

)
exp

(
− k2

4a2

)

8 erfc (ax)
√

2
π

1
k

[
1 − exp

(
− k2

4a2

)]

9 x
(
a2 + x2

)−1 √
π
2 exp (−ak) , a > 0

10 x
(
a2 + x2

)−2 1√
2π

(
k
a

)
exp (−ak) , (a > 0)
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f (x) Fs (k) =
√

2
π

∫ ∞

0

sin (kx) f (x) dx

11 H (a − x) , a > 0
√

2
π

1
k (1 − cos ak)

12 x−1J0 (ax)

⎧
⎪⎨
⎪⎩

√
2
π sin−1

(
k
a

)
, 0 < k < a

√
π
2 , a < k < ∞

13 x
(
a2 + x2

)−1
J0 (bx) ,

a > 0, b > 0

√
π
2 e−akI0 (ab) , a < k < ∞

14 J0 (a
√

x) , a > 0
√

2
π

1
k cos

(
a2

4k

)

15
(
x2 − a2

)ν− 1
2 H (x − a) ,

|ν| < 1
2

2ν− 1
2

(
a
k

)ν
Γ

(
ν + 1

2

)
J−ν (ak)

16 x1−ν
(
x2 + a2

)−1
Jν (ax) ,

ν > − 3
2 , a, b > 0

√
π
2 a−ν exp (−ak) Iν (ab) ,

a < k < ∞

17 x−νJν+1 (ax) , ν > − 1
2

k(a2−k2)
ν− 1

2

2ν− 1
2 aν+1Γ(ν+ 1

2 )
H (a − k)

18 erfc (ax)
√

2
π

1
k

[
1 − exp

(
− k2

4a2

)]

19 x−α, 0 < Re α < 2
√

2
π Γ (1 − α) kα−1 cos

(
απ
2

)

20
(
ax − x2

)α− 1
2 H (a − x),

α > − 1
2

√
2 Γ

(
α + 1

2

) (
a
k

)α
sin

(
ak
2

)
Jα

(
ak
2

)
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15.3 Fourier Cosine Transforms

f (x) Fc (k) =
√

2
π

∫ ∞

0

cos (kx) f (x) dx

1 exp (−ax) , a > 0
(√

2
π

)
a
(
a2 + k2

)−1

2 x exp (−ax) , a > 0
(√

2
π

) (
a2 − k2

) (
a2 + k2

)−2

3 exp
(
−a2x2

)
1

a
√

2
exp

(
− k2

4a2

)

4 H (a − x)
√

2
π

(
sin ak

k

)

5 xa−1, 0 < a < 1
√

2
π Γ (a) k−a cos

(
aπ
2

)

6 cos
(
ax2

)
, a > 0 1

2
√

a

[
cos

(
k2

4a

)
+ sin

(
k2

4a

)]

7 sin
(
ax2

)
, a > 0 1

2
√

a

[
cos

(
k2

4a

)
− sin

(
k2

4a

)]

8
(
a2 − x2

)ν− 1
2 H (a − x) , ν > − 1

2 2ν− 1
2 Γ

(
ν + 1

2

) (
a
k

)ν
Jν (ak)

9
(
a2 + x2

)−1
J0 (bx) , a, b > 0

√
π
2 a−1 exp (−ak) I0 (ab),

b < k < ∞

10 x−νJν (ax) , ν > − 1
2

(a2−k2)
ν− 1

2 H(a−k)

2ν− 1
2 aνΓ(ν+ 1

2 )
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f (x) Fc (k) =
√

2
π

∫ ∞

0

cos (kx) f (x) dx

11
(
x2 + a2

)− 1
2 exp

[
−b

(
x2 + a2

) 1
2

]
K0

[
a
(
k2 + b2

) 1
2

]
, a > 0, b > 0

12 xν−1e−ax, ν > 0, a > 0
√

2
π Γ (ν) r−ν cos nθ, where

r =
(
a2 + k2

) 1
2 , θ = tan−1

(
k
a

)

13 2
x e−x sin x

√
2
π tan−1

(
2
k2

)

14 sin
[
a
(
b2 − x2

) 1
2 H (b − x)

] √
π
2 (ab)

(
a2 + k2

)− 1
2

× J1

[
b
(
a2 + k2

) 1
2

]

15
(1−x2)
(1+x2)2

√
π
2 k exp (−k)

16 x−α, 0 < α < 1
√

π
2

kα−1

Γ (α) sec
(

πα
2

)

17
(

1
a + x

)
e−ax, a > 0

√
π
2

2a2

(a2+k2)2

18 log
(
1 + a2

x2

)
, a > 0

√
2π

(1−e−ak)
k

19 log
(

a2+x2

b2+x2

)
, a, b > 0

√
2π

(e−bk−e−ak)
k

20 a
(
x2 + a2

)−1
, a > 0

√
π
2 exp (−ak) , k > 0
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15.4 Laplace Transforms

f (t) f (s) =

∫ ∞

0

exp (−st) f (t) dt

1 f (n) (t) snf (s) −
n−1∑

r=0

sn−r−1f (r) (0)

2

∫ t

0

f (t − τ) g (τ) dτ f (s) g (s)

3 tnf (t) (−1)
n dn

dsn f (s)

4 f (t − a) H (t − a) exp (−as) f (s)

5 tn (n = 0, 1, 2, 3, . . .) n!
sn+1

6 eat 1
s−a

7 tne−at Γ (n+1)

(s+a)n+1

8 ta (a > −1) Γ (a+1)
sa+1

9 eat cos bt s−a
(s−a)2+b2

10 eat sin bt b
(s−a)2+b2

11 1√
t

√
π
s

12 2
√

t 1
s

√
π
s
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f (t) f (s) =

∫ ∞

0

exp (−st) f (t) dt

13 t−1/2 exp
(
−a

t

) √
π
s exp (−2

√
as)

14 t−3/2 exp
(
−a

t

) √
π
a exp (−2

√
as)

15 1√
πt

(1 + 2at) eat s
(s−a)

√
s−a

16 1

2
√

πt3

(
ebt − eat

) √
s − a −

√
s − b

17 exp
(
a2t

)
erf

(
a
√

t
)

a√
s(s−a2)

18 exp
(
a2t

)
erfc

(
a
√

t
)

1√
s(

√
s+a)

19 1√
πt

+ a exp
(
a2t

)
erf

(
a
√

t
) √

s
(s−a2)

20 1√
πt

− a exp
(
a2t

)
erfc

(
a
√

t
)

1√
s+a

21 exp(−at)√
b−a

erf
(√

(b − a) t
)

1
(s+a)

√
s+b

22
1

2
eiωt

[
exp (−λz) erfc

(
ζ −

√
iωt

)

+ exp (λz) erfc
(
ζ +

√
iωt

)]
,

where ζ = z/2
√

νt, λ =
√

iω
ν

(s − iω)
−1

exp
(
−z

√
s
ν

)

23 1
2

[
exp (−ab) erfc

(
b−2at
2
√

t

)

+ exp (ab) erfc
(

b+2at
2
√

t

)]
exp

[
−b

(
s + a2

) 1
2

]
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f (t) f (s) =

∫ ∞

0

exp (−st) f (t) dt

24 J0 (at)
(
s2 + a2

)− 1
2

25 I0 (at)
(
s2 − a2

)− 1
2

26 tα−1 exp (−at) , α > 0 Γ (α) (s + a)
−α

27 t−1Jν (at) ν−1aν
(√

s2 + a2 + s
)−ν

,
Re ν > − 1

2

28 J0

(
a
√

t
)

1
s exp

(
−a2

4s

)

29
(

2
a

)ν
tν/2Jν

(
a
√

t
)

s−(ν+1) exp
(
−a2

4s

)
,

Re ν > − 1
2

30 a
2t

√
πt

exp
(
−a2

4t

)
exp (−a

√
s) , a > 0

31 1√
πt

exp
(
−a2

4t

)
1√
s

exp (−a
√

s) , a ≥ 0

32 exp
(
−a2t2

4

) √
π

a exp
(

s2

a2

)
erfc

(
s
a

)
,

a ≥ 0

33
(
t2 − a2

)− 1
2 H (t − a) K0 (as) , a > 0

34 δ(n) (t − a) , n = 0, 1, . . . sn exp (−as)
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f (t) f (s) =

∫ ∞

0

exp (−st) f (t) dt

35 tmα+β−1E
(m)
α,β (+ at) ,

m = 0, 1, 2, . . .

m! sα−β

(sα+ a)
m+1

36
√

π

Γ(ν+ 1
2 )

(
t
2a

)ν
Jν (at)

(
s2 + a2

)−(ν+ 1
2 ),

Re ν > − 1
2

37 1
2e−ct

[
exp

(
−a

√
b − c

)

×erfc
{

a√
4t

−
√

(b − c) t
}

− exp
(
a
√

b − c
)

×erfc
{

a√
4t

+
√

(b − c) t
}]

exp(−a
√

s+b)
(s+c)

√
(s+b)

38 1
2e−ct

[
exp

(
−a

√
b − c

)

×erfc
{

a√
4t

− t
√

b − c
}

− exp
(
a
√

b − c
)

×erfc
{

a√
4t

+ t
√

b − c
}]

exp(−a
√

s+b)
(s+c)

39 e−bt
[√

4t
π exp

(
−a2

4t

)

−a erfc
(

a√
4t

)]
exp(−a

√
s+b)

(s+b)3/2

40 e−bt
[(

t + 1
2a2

)
erfc

(
a√
4t

)

−
√

ta2

π exp
(
−a2

4t

)]
exp(−a

√
s+b)

(s+b)2
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15.5 Hankel Transforms

f (r) order
n

f̃n (k) =

∫ ∞

0

r Jn (kr) f (r) dr

1 H (a − r) 0 a
kJ1 (ak)

2 exp (−ar) 0 a
(
a2 + k2

)− 3
2

3 1
r exp (−ar) 0

(
a2 + k2

)− 1
2

4
(
a2 − r2

)
H (a − r) 0 4a

k3 J1 (ak) − 2a2

k2 J0 (ak)

5 a
(
a2 + r2

)− 3
2 0 exp (−ak)

6 1
r cos (ar) 0

(
k2 − a2

)− 1
2 H (k − a)

7 1
r sin (ar) 0

(
a2 − k2

)− 1
2 H (a − k)

8 1
r2 (1 − cos ar) 0 cosh−1

(
a
k

)
H (a − k)

9 1
r J1 (ar) 0 1

a H (a − k) , a > 0

10 Y0 (ar) 0
(

2
π

) (
a2 − k2

)−1

11 K0 (ar) 0
(
a2 + k2

)−1
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f (r) order
n

f̃n (k) =

∫ ∞

0

r Jn (kr) f (r) dr

12 δ(r)
r 0 1

13
(
r2 + b2

)− 1
2

× exp
{

−a
(
r2 + b2

) 1
2

}
0

(
k2 + a2

)− 1
2 exp

{
−b

(
k2 + a2

) 1
2

}

14
(
r2 + a2

)− 1
2 0 1

k exp (−ak)

15 exp (−ar) 1 k
(
a2 + k2

)−3/2

16 sin ar
r 1 a H(k−a)

k(k2−a2)
1
2

17 1
r exp (−ar) 1 1

k

[
1 − a

(k2+a2)
1
2

]

18 1
r2 exp (−ar) 1 1

k

[(
k2 + a2

) 1
2 − a

]

19 rn H (a − r) > −1 1
k an+1 Jn+1 (ak)

20 rn exp (−ar), (Re a > 0) > −1 1√
π

2n+1 Γ(n+ 3
2 ) a kn

(a2+k2)n+ 3
2

21 rn exp
(
−ar2

)
> −1 kn

(2a)n+1 exp
(
−k2

4a

)
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f (r) order
n

f̃n (k) =

∫ ∞

0

r Jn (kr) f (r) dr

22 ra−1 > −1
2a Γ [ 1

2 (a+n+1)]
ka+1 Γ [ 1

2 (1−a+n)]

23 rn
(
a2 − r2

)m−n−1

× H (a − r)
> −1 2m−n−1 Γ (m − n) amkn−mJm (ak)

24 rm exp
(
−r2/a2

)
> −1 kn am+n+2

2n+1 Γ (n+1) Γ
(
1 + m

2 + n
2

)

× 1F1

(
1 + m

2 + n
2 ; n + 1; − 1

4a2k2
)

25 1
r Jn+1 (ar) > −1 kna−(n+1)H (a − k), a > 0

26 rn
(
a2 − r2

)m
H (a − r),

m > −1
> −1 2manΓ (m + 1)

(
a
k

)m+1

× Jn+m+1 (ak)

27 1
r2 Jn (ar) > 1

2

⎧
⎨
⎩

1
2n

(
k
a

)n
, 0 < k ≤ a

1
2n

(
a
k

)n
, a < k < ∞

28 rn

(a2+r2)m+1 , a > 0 > −1
(

k
2

)m an−m

Γ (m+1) Kn−m (ak)

29 exp
(
−p2r2

)
Jn (ar) > −1

(
2p2

)−1
exp

(
−a2+k2

4p2

)
In

(
ak
2p2

)

30 1
r exp (−ar) > −1

[

(k2+a2)
1
2 −a

]n

kn(k2+a2)
1
2

31 rn

(r2+a2)n+1 > −1
(

k
2

)n K0(ak)
Γ (n+1)
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f (r) order
n

f̃n (k) =

∫ ∞

0

r Jn (kr) f (r) dr

32 rn

(a2−r2)n+ 1
2

H (a − r) < 1 1√
π

(
k
2

)n
Γ

(
1
2 − n

) (
sin ak

k

)

33 f (ar) n 1
a2 f̃n

(
k
a

)

34 r−1 exp
(
−ar2

)
1 1

k

[
1 − exp

(
−k2

4a

)]

35 r−1 sin
(
ar2

)
, a > 0 1 1

k sin
(

k2

4a

)

36 r−1 cos
(
ar2

)
, a > 0 1 1 − cos

(
k2

4a

)

37 exp (−ar) , a > 0 > −1
(a+n

√
k2+a2)

(k2+a2)3/2

(
k

a+
√

a2+k2

)n

38 exp
(
−ar2

)
J0 (br) 0 a

2 exp
(
−k2−b2

4a

)
I0

(
bk
2a

)

39 H(a−r)√
a2−r2

0
√

aπ
2k J 1

2
(ak) , a > 0

40 rnH(a−r)√
a2−r2

> −1
√

π
2k an+ 1

2 Jn+1 (ak) , a > 0

41 r−2 sin r 0 sin−1
(

1
k

)
, (k > 1)



15.6 Finite Hankel Transforms 695

15.6 Finite Hankel Transforms

f (r) order
n

f̃n (ki) =

∫ a

0

r Jn (r ki) f (r) dr

1 c, where c is a constant 0
(

ac
ki

)
J1 (aki)

2
(
a2 − r2

)
0 4a

k3
i
J1 (aki)

3
(
a2 − r2

)− 1
2 0 k−1

i sin (aki)

4 J0(αr)
J0(αa) 0 − aki

(α2−k2
i )

J1 (aki)

5 1
r 1 k−1

i {1 − J0 (aki)}

6 r−1
(
a2 − r2

)− 1
2 1 (1−cos aki)

(aki)

7 rn > −1 an+1

ki
Jn+1 (aki)

8 Jν(αr)
Jν(αa) > −1 aki

(α2−k2
i )

J ′
ν (aki)

9 r−n
(
a2 − r2

)− 1
2 > −1 π

2

{
Jn

2

(
aki

2

)}2

10 rn
(
a2 − r2

)−(n+ 1
2 ) < 1

2

Γ( 1
2 −n)√
π 2n kn−1

i sin (aki)

11 rn−1
(
a2 − r2

)n− 1
2 > − 1

2

√
π

2 Γ
(
n + 1

2

) (
2
ki

)n

a2nJ2
n

(
aki

2

)





Answers and Hints to Selected Exercises

1.6 Exercises

1. (a) Linear, nonhomogeneous, second-order; (b) quasi-linear, first-order;

(c) nonlinear, first-order; (d) linear, homogeneous, fourth-order; (e) lin-

ear, nonhomogeneous, second-order; (f) quasi-linear, third-order; (g)

nonlinear, second-order; and (h) nonlinear, homogeneous.

5. u (x, y) = f (x) cos y + g (x) sin y.

6. u (x, y) = f (x) e−y + g (y).

7. u (x, y) = f (x + y) + g (3x + y).

8. u (x, y) = f (y + x) + g (y − x).

11. ux = vy ⇒ uxx = vxy, vx = −uy ⇒ vyx = −uyy.

Thus, uxx + uyy = 0. Similarly, vxx + vyy = 0.

12. Since u (x, y) is a homogeneous function of degree n, u = xnf
(

y
x

)
.

ux = nxn−1f
(

y
x

)
− xn−2y f ′ ( y

x

)
, and uy = xn−1f ′ ( y

x

)
.

Thus, x ux + y uy = nxnf
(

y
x

)
= nu.

23. ux = − 1
b exp

(
−x

b

)
f (ax − by)

+ exp
(
−x

b

)
d

d(ax−by)f (ax − by) · d(ax−by)
dx

= − 1
b exp

(
−x

b

)
f + a exp

(
−x

b

)
f ′ (ax − by)

uy = (−b) exp
(
−x

b

)
f ′ (ax − by) . Thus, b ux + a uy + u = 0.
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24. V ′′ (t) + 2b V ′ (t) + k2c2V (t) = 0.

25. Differentiating with respect to r and t partially gives

V ′′ (r) + n2V (r) = 0.

2.8 Exercises

2. (a) xp − yq = x − y, (d) yp − xq = y2 − x2.

3. (a) u = f (y), (b) u = f (bx − ay), (c) u = f (y e−x),

(d) u = f
(
y − tan−1 x

)
, (e) u = f

(
x2−y2

x

)
,

(f) Hint: dx
y+u = dy

y = du
x−y = d(x+u)

x+u = d(u+y)
x , x dx = (u + y) d (u + y) ⇒

(u + y)
2 − x2 = c1.

d(u+x)
u+x = dy

y ⇒ u+x
y = c2,

f
(

u+x
y , (u + y)

2 − x2
)

= 0.

(g) dx
y2 = dy

−xy = du
xu−2xy = d(u−y)

x(u−y) .

From the second and the fourth, (u − y) y = c1 and x2 + y2 = c2.

Hence, (u − y) y = f
(
x2 + y2

)
. Thus, u = y + y−1f

(
x2 + y2

)
.

(h) u + log x = f (xy), (i) f
(
x2 + u2, y3 + u3

)
= 0.

4. u (x, y) = f
(
x2 + y−1

)
. Verify by differentiation that u satisfies the

original equation.

5. (a) u = sin
(
x − 3

2y
)
, (b) u = exp

(
x2 − y2

)
,

(c) u = xy + f
(

y
x

)
, u = xy + 2 −

(
y
x

)3
, (d) u = sin

(
y − 1

2x2
)
,

(e) u =

⎧
⎪⎨
⎪⎩

1
2y2 + exp

[
−

(
x2 − y2

)]
for x > y,

1
2x2 + exp

[
−

(
y2 − x2

)]
for x < y.

(f) Hint: y = 1
2x2 + C1, u = C2

1 x + C2,

u = x
(
y − 1

2x2
)2

+f
(
y − 1

2x2
)
, u = x

(
y − 1

2x2
)2

+exp
(
y − 1

2x2
)
.

(g) y
x = C1 and u+1

y = C2, C2 = 1 + 1
C2

1
. Thus, u = y + x2

y − 1,

y �= 0.

(h) Hint: x + y = C1,
dy
−u = du

u2+C2
1
, u2 + C2

1 = C2 exp (−2y).
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From the Cauchy data, it follows that 1 + C2
1 = C2, and hence,

u =
[{

1 + (x + y)
2
}

e−2y − (x + y)
2
] 1

2

.

(i) dy
dx − y

x = 1, d
dx

(
y
x

)
= 1

x which implies that x = C1 exp
(

y
x

)
.

u+1
x = C2. Hence, f

(
u+1

x , x exp
(
− y

x

))
= 0.

Initial data imply x = C1 and x2+1
x = C2. Hence C2 = C1 + 1

C1
.

u+1
x = x exp

(
− y

x

)
+ 1

x exp
(

y
x

)
. Thus, u = x2 exp

(
− y

x

)
+ exp

(
y
x

)
− 1.

(j) dx√
x

= dy
u = du

−u2 . The second and the third give y = − log (Au) and

hence, A = 1 and u = exp (−y). The first and the third yield

u−1 = 2
√

x − B. At (x0, 0), x0 > 0, B = 2
√

x0 − 1. Hence,

u−1 = 2
(√

x − √
x0

)
+ 1 = 1

y . The solution along the characteristic is

u = exp (−y) or u−1 = 2
(√

x − √
x0

)
+ 1.

(k) dx
ux2 = dy

exp(−y) = du
−u2 . The first and the third give x−1 = log u + A

and hence, A = 1
x0

, x0 > 0. The second and third yield u = exp (−y).

Or, eliminating u gives y =
(
x−1

0 − x−1
)
.

6. u2 − 2ut + 2x = 0, and hence, u = t +
√

t2 − 2x.

7. u (x, y) = exp
(

x
x2−y2

)
.

8. (a) u = f
(

y
x , z

x

)
(b) Hint: u1 = x−y

xy = C1,

d(x−y)
x2−y2 = dz

z(x+y) gives u = x−z
z = C2. Hence, u = f

(
x−y
xy , x−y

z

)
.

(c) φ = (x + y + z) = C1.

Hint:
( dx

x )
y−z =

( dy
y )

z−x =
( dz

z )
x−y =

dx
x + dy

y + dz
z

0 = d log(xyz)
0 ,

ψ = xyz = C2, and hence, u = f (x + y + z, xyz) is the general

solution.

(d) Hint: x dx + y dy = 0, x2 + y2 = C1

z dz = −
(
x2 + y2

)
y dy = −C1 y dy, z2 +

(
x2 + y2

)
y2 = C2,

u = f
(
x2 + y2, z2 +

(
x2 + y2

)
y2

)
.

(e) x−1dx
y2−z2 = y−1dy

z2−x2 = z−1dz
y2−x2 = d(log xyz)

0 . u = f
(
x2 + y2 + z2, xyz

)
.
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9. (a) Hint: y − x2

2 = C1, u = xy − x3

3 +C2, φ
(
u − xy + x3

3 , y − x2

2

)
= 0.

u = xy − x3

3 + f
(
y − x2

2

)
, u = xy − x3

3 +
(
y − x2

2

)2

.

(b) u = xy − 1
3x3 + y − x2

2 + 5
6 .

11. x+u
y = C1, u2 − (x − y)

2
= C2, u2 − 2u

y − (x − y)
2 − 2

y (x − y) = 0.

u = 2
y + (x − y), y > 0.

12. (a) x = τ2

2 + τs + s, y = τ + 2s, u = τ + s =
(2x−2y+y2)

2(y−1)

(b) x = τ2

2 + τs + s2, y = τ + 2s, u = τ + s,

(y − s)
2

= 2x − s2, which is a set of parabolas.

(c) x = 1
2 (τ + s)

2
, y = u = τ + s.

13. Hint: The initial curve is a characteristic, and hence, no solution exists.

14. (a) u = exp
(

xy
x+y

)
, (b) u = sin

[(
x2−y2+1

2

) 1
2

]
,

(c) u = 2
(

xy
3

) 1
2 + 1

2 log
(

y
3x

)
, (e) u = 1

2x2 − 1
4y2 + 1

2x2y + 1
4 .

(f) Hint: dx
1 = dy

2 = du
1+u , y − 2x = c1 and (1 + u) e−x = c2,

(1 + u) e−x = f (y − 2x), 1+u = exp (3x − y + 1) [1 + sin (y − 2x − 1)].

(g) Hint: dx
1 = dy

2 = du
u , y−2x = c1, and u e−x = c2, u e−x = f (y − 2x),

u = exp
(

y−x
2

)
cos

(
y−3x

2

)
.

(h) dx
1 = dy

2x = du
2x u , (y − x)

2
= c1, and u e−x2

= c2, u e−x2

=

f
(
y − x2

)
, u (x, y) =

(
x2 − y

)
ey.

(i) dx
u = dy

1 = du
u , u − x = c1, and u e−y = c2, f (u e−y, u − x) = 0,

u ey = g (u − x), u = 2x ey

2ey−1 , dx
dy = u, x = A (2ey − 1) is the family of

characteristics.

(j) dx
1 = dy

1 = du
u2 , y − x = c1, and 1

u + x = c2,
1
u + x = f (y − x),

f (x) = −
(

1−tanh x
tanh x

)
, u (x, y) = tanh(x−y)

1−y tanh(x−y) .

15. 3uy = u2 + x2 + y2. Hint: x dx+y dy+u du
0 , x2 + y2 + u2 = c1,

dy
y = −du

u gives uy = c2.

x2 + y2 + u2 = f (uy), and hence, 3u2 = f
(
u2

)
.
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16. (a) x (s, τ) = τ , y (s, τ) = τ2

2 + aτs + s, u (s, τ) = τ + as.

τ = x, s = (1 + ax)
−1 (

y − 1
2x2

)
a, and hence,

u (x, y) = x + as = (1 + ax)
−1 {

x + a
(
y + 1

2x2
)}

, singular at x = − 1
a .

(b) y = u2

2 + f (u − x), 2y = u2 + (u − x)
2
, u (0, y) =

√
y.

17. (a) Hint: d(x+y+u)
2(x+y+u) = d(y−u)

−(y−u) = d(u−x)
−(u−x)

(x + y + u) (y − u)
2

= c1 and (x + y + u) (u − x)
2

= c2.

(b) Hint: dx
x = dy

−y . Hence, xy = a.

dx
xu(u2+a) = du

x4 . So, dx
du =

u(u2+a)
x3 giving x4 = u4 + 2au2 + b

and, thus, x4 − u4 − 2u2xy = b.

(c) dx
x+y = dy

x−y = dy
0 (exact equation). u = f

(
x2 − 2xy − y2

)
.

(d) f
(
x2 − y2, u − 1

2y2
(
x2 − y2

))
= 0.

(e) f
(
x2 + y2 + z2, ax + by + cz

)
= 0.

18. Hint: dx
x = dy

y = dz
z , and hence, x

z = c, y
z = d.

x2 + y2 = a2 and z = tan−1
(

y
x

)
give

(
c2 + d2

)
z2 = a2

and z = b tan−1
(

d
c

)
.

c =
(

a
z

)
cos θ, d =

(
a
z

)
sin θ, and z = b tan−1 (tan θ) = bθ.

Thus, the curves are x b θ = az cos θ and y b θ = az sin θ.

19. F
{

x + y + u, (x − 2y)
2

+ 3u2
}

= 0. Hint: (dx−2dy)
9u = du

−3(x−2y) .

(x − 2y)
2

+ 3u2 = (x + y + u)
2
.

20. F
(
x2 + y, yu

)
= 0,

(
x2 + y

)4
= yu.

21. Hint: x − y + z = c1,
dz

−(x+y+z) = (dx+dy+dz)
8z , and hence,

8z2 + (x + y + z)
2

= c2. F
{

(x − y + z) , 8z2 + (x + y + z)
2
}

= 0.

c2
1 + c2 = 2a2, or (x − y + z)

2
+ (x + y + z)

2
+ 8z2 = 2a2.

22. F
(
x2 + y2 + z2, y2 − 2yz − z2

)
= 0.

(a) y2 − 2yz − z2 = 0, two planes y =
(
1+

√
2
)
z.

(b) x2 + 2yz + 2z2 = 0, a quadric cone with vertex at the origin.

(c) x2 − 2yz + 2y2 = 0, a quadric cone with vertex at the origin.
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23. Use the Hint of 17(c).

dx
dt = x + y, dy

dt = x − y, d2x
dt2 = 2x.

(
dx
dt

)2
= 2x2 + c. When x = 0 = y, dx

dt =
√

2 x.
√

2 u = ln x + x2 − 2xy + 2y.

24. (a) a = f
(
x + 3

2y
)
.

(b) x = at + c1, y = bt, u = c2 ect, c2 = f (c1),

u (x, y) = f
(
x − a

b y
)
exp

(
cy
b

)
.

(c) u = f
(

x
1−y

)
(1 − y)

c
.

(d) x = 1
2 t2 + αst + s, y = t; u = y + 1

2α (αy + 1)
−1 (

2x − y2
)
.

26. (a) Hint: (f ′)2 = 1 − (g′)2 = λ2; f ′ (x) = λ and g′ (y) =
√

1 − λ2.

f (x) = λx + c1 and g (y) = y
√

1 − λ2 + c2.

Hence, u (x, y) = λx + y
√

1 − λ2 + c.

(b) Hint: (f ′)2 +(g′)2 = f (x)+g (y) or (f ′)2 −f (x) = g (y)−(g′)2 = λ.

Hence, (f ′)2 = f (x) + λ and g′ =
√

g (y) − λ.

Or, df√
f+λ

= dx and dg√
g−λ

= dy.

f (x) + λ =
(

x+c1

2

)2
and g (y) − λ =

(
y+c2

2

)2
.

u (x, y) =
(

x+c1

2

)2
+

(
y+c2

2

)2
.

(c) Hint: (f ′)2 + x2 = −g′ (y) = λ2.

Or f ′ (x) =
√

λ2 − x2, and g (y) = −λ2y + c2.

Putting x = λ sin θ, we obtain

f (x) = 1
2λ2 sin−1

(
x
λ

)
+ x

2

√
λ2 − x2 + c1,

u (x, y) = 1
2λ2 sin−1

(
x
λ

)
+ x

2

√
λ2 − x2 − λ2y + (c1 + c2).

(d) Hint: x2 (f ′)2 = λ2 and 1 − y2 (g′)2 = λ2.

Or, f (x) = λ lnx + c1 and g (y) =
√

1 − λ2 ln y + c2.

27. (a) Hint: v = lnu gives vx = 1
u · ux, and vy = 1

u · uy.

x2
(

ux

u

)2
+ y2

(uy

u

)2
= 1.

Or, x2v2
x + y2v2

y = 1 gives x2 (f ′)2 + y2 (g′)2 = 1.
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x2 {f ′ (x)}2
= 1 − y2 (g′)2 = λ2.

Or, f (x) = λ lnx + c1 and g (y) =
√

1 − λ2 (ln y) + c2.

Thus, v (x, y) = λ lnx +
√

1 − λ2 (ln y) + ln c, (c1 + c2 = ln c).

u (x, y) = c xλ y
√

1−λ2
.

(b) Hint: v = u2 and v (x, y) = f (x) + g (y) may not work.

Try u = u (s), s = λx y, so that ux = u′ (y)·(λy) and uy = u′ (s)·(λx).

Consequently, 2λ2
(

1
u

du
ds

)2
= 1. Or, 1

u
du
ds = 1√

2
1
λ .

Hence, u (s) = c1 exp
(

s
λ

√
2

)
. u (x, y) = c1 exp

(
xy√

2

)
.

28. Hint: vx = 1
2

ux√
u
, vy = 1

2
uy√

u
. This gives x4 (f ′)2 + y2 (g′)2 = 1.

Or, x4 (f ′)2 = 1 − y2 (g′)2 = λ2.

Or, x4 (f ′)2 = λ2 and y2 (g′)2 = 1 − λ2.

Hence, f (x) = −λ
x + c1 and g (y) =

√
1 − λ2 ln y + c2

u (x, y) =
(
−λ

x +
√

1 − λ2 ln y + c
)2

.

29. Hint: vx = ux

u , vy =
uy

u .
v2

x

x2 +
v2

y

y2 = 1, and v = f (x) + g (y).

Or,
(f ′)

2

x2 = 1 − 1
y2 (g′)2 = λ2.

f ′ (x) = λx, and g′ (y) =
√

1 − λ2 y.

Or, f (x) = λ
2 x2 + c1, and g (y) = 1

2y2
√

1 − λ2 + c2.

v (x, y) = λ
2 x2 + y2

2

√
1 − λ2 + c = lnu.

u (x, y) = c exp
(

λ
2 x2 + y2

2

√
1 − λ2

)
, c1 + c2 = ln c.

ex2

= u (x, 0) = c e
λ
2 x2

, which gives c = 1 and λ = 2.

30. (a) Hint: ξ = x − y, η = y; u (x, y) = eyf (x − y),

(b) ξ = x, η = y − x2

2 , uξ = η + 1
2ξ2, u = ξη + 1

6ξ3 + f (η).

u (x, y) = xy − 1
3x3 + f

(
y − x2

2

)
.

(c) ξ = y exp
(
−x2

)
, η = y, and e2uf (ξ) = η, e2uf

(
y e−x2

)
= y,

(d) dx
1 = dy

−y = du
1+u , ξ = y ex, η = y.

Thus, (1 + u) f (ξ) = 1
η . Or, (1 + u) f (y ex) = y−1.

31. (c) u (x, y) = α exp
(
βx − a

b βy
)
.
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32. (a) v (x, t) = x + ct, u (x, t) =
(6x+3ct2+5ct3)

6(1+2t) .

(b) v (x, t) = x + ct, u (x, t) =
(6x+3ct2+4ct3)

6(1+2t) .

33. (a) v (x, t) = ex+at, u − 1
a eat = c1, and

u − 1
a eat = f

(
x − ut + t

a eat − 1
a2 eat

)
.

u (x, t) = (1 + t)
−1 {

(x − ut) +
(

1
a + t

a − 1
a2

)
eat +

(
1
a2 − 1

a

)}
.

(b) v = x − ct, u (x, t) =
(6x−3ct2+4ct3)

6(1−2t) .

34. dt
1 = dy

−x = du
u , t + lnx = c1, and xu = c2. g (xu, t + lnx) = 0.

Or, u = 1
x h (t + lnx). u (x, t) = et ln (xet),

where g and h are arbitrary functions.

3.9 Exercises

11. Hint: Differentiate the first equation with respect to t to obtain ρtt +

ρ0divut = 0. Take gradient of the last equation to get ∇ρ = −
(
ρ0/c2

0

)
ut.

We next combine these two equations to obtain ρtt = c2
0 ∇2ρ. Ap-

plication of ∇2 to p − p0 = c2
0 (ρ − ρ0) leads to ∇2p = c2

0 ∇2ρ. Also

ptt = c2
0 ρtt = c4

0 ∇2ρ = c2
0 ∇2p.

Using u = ∇φ in the first equation gives ρt + ρ0∇2φ = 0, and dif-

ferenting the last equation with respect to t yields ρt = −
(
ρ0/c2

0

)
φtt.

Combining these two equations produces the wave equation for φ. Fi-

nally, we take gradient of the first and the last equations to obtain

∇ρt + ρ0∇2u = 0 and ∇ρ = −
(
ρ0/c2

0

)
ut that leads to the wave equa-

tion for ut.

14. (a) Differentiate the first equation with respect to t and the second

equation with respect to x. Then eliminate Vxt and Vx to obtain the

desired telegraph equation.

(e) (i) ∂2

∂x2 (I, V ) = 1
c2

∂2

∂t2 (I, V ) , c2 = 1
LC .
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(ii) ∂
∂t (I, V ) = κ ∂2

∂x2 (I, V ) , κ = 1
RC .

(iii)
(

∂2

∂t2 + 2k ∂
∂t + k2

)
(I, V ) = c2 ∂2

∂x2 (I, V ).

17. (a) The two-dimensional unsteady Euler equations are

du
dt = − 1

ρ
∂p
∂x , dv

dt = − 1
ρ

∂p
∂y ,

where d
dt = ∂

∂t + u · ∇ = ∂
∂t + u ∂

∂x + v ∂
∂y , and u = (u, v).

(b) For two-dimensional steady flow, the Euler equations are

uux + v uy = − 1
ρ px, u vx + v vy = − 1

ρ py.

Using dp
dρ = c2, these equations become

uux + v uy = −c2 (ρx/ρ), u vx + v vy = −c2 (ρy/ρ).

Multiply the first equation by u and the second by v and add to obtain

u2 ux + uv (uy + vx) + v2vy = −
(

c2

ρ

)
(uρx + vρy).

Using the continuity equation (ρu)x + (ρv)y = 0, the right hand of this

equation becomes c2 (ux + vy). Hence is the desired equation.

(c) Using u = ∇φ = (φx, φy), the result follows.

(d) Substitute ρx and ρy from 17(b) into the continuity equation

uρx + vρy + ρ (ux + vy) = 0 to obtain
(
c2 − u2

)
φxx − 2uvφxy +

(
c2 − v2

)
φyy = 0.

Also

du = ux dx + uy dy = −φxxdx − φxydy,

dv = vx dx + vy dy = −φxydx − φyydy.

Denoting D for the coefficient determinant of the above equations for

φxx, φxy and φyy gives the solutions

φxx = −D1

D , φxy = D2

D , φyy = −D3

D .

D = 0 gives a quadratic equation for the slope of the characteristic C,

that is,
(
c2 − u2

) (
dy
dx

)2

+ 2uv
(

dy
dx

)
+

(
c2 − v2

)
= 0.

Thus, directions are real and distinct provided
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4u2v2 − 4
(
c2 − u2

) (
c2 − v2

)
> 0, or

(
u2 + v2

)
> c2.

D2 = 0 gives − dy
dx =

(c2−v2)
(c2−u2)

(
dv
du

)
.

Substitute into the quadratic equation to obtain
(
c2 − v2

) (
dv
du

)2 − 2uv
(

dv
du

)
+

(
c2 − u2

)
= 0.

Note that when D1 = D2 = D3 = D = 0, any one of the second order

φ derivatives can be discontinuous.

18. (a) Hint: Use ∇× ∂u

∂t = ∂ω
∂t , ∇× (u · ∇u)u ·∇ω −ω∇u, where we have

used ∇·u = 0 and ∇·ω = 0. Since ∇×∇f = 0 for any scalar function

f , these lead to the vorticity equation in this simplified model.

(b) The rate of change of vorticity as we follow the fluid is given by the

term ω · ∇u.

(c) u = iu (x, y) + j v (x, y) and ω = ω (x, y)k and hence,

ω · ∇u = ω (x, y) ∂
∂z [iu (x, y) + j v (x, y)] = 0. This gives the result.

20. We differentiate the first equation partially with respect to t to find

Ett = c curl Ht. We then substitute Ht from the second equation to ob-

tain Ett = −c2 curl (curl E). Using the vector identity curl (curl E) =

grad (div E)−∇2E with div E = 0 gives the desired equation. A similar

procedure shows that H satisfies the same equation.

21. When Hooke’s law is used to the rod of variable cross section, the

tension at point P is given by TP = λA (x) ux, where λ is a constant. A

longitudinal vibration would displace each cross sectional element of the

rod along the x-axis of the rod. An element PQ of length δx and mass

m = ρ A (x) δx will be displaced to P ′Q′ with length (δx + δu) with the

same mass m. The acceleration of the element P ′Q′ is utt so that the

difference of the tensions at P ′ and Q′ must be equal to the product

m utt. Hence, m utt = TQ′ − TP ′ =
(

∂
∂t TP ′

)
δx = ∂

∂x (λA (x) ux) δx.

This gives the equation.
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4.6 Exercises

1. (a) x < 0, hyperbolic;

uξη = 1
4

(
ξ−η
4

)4

− 1
2

(
1

ξ−η

)
(uξ − uη),

x = 0, parabolic, the given equation is then in canonical form;

x > 0, elliptic and the canonical form is

uαα + uββ = 1
β uβ + β4

16 .

(b) y = 0, parabolic; y �= 0, elliptic, and hence,

uαα + uββ = uα + eα.

(d) Parabolic everywhere and hence,

uηη = 2ξ
η2 uξ + 1

η2 eξ/η.

(f) Elliptic everywhere for finite values of x and y, then

uαα + uββ = u − 1
αuα − 1

β uβ .

(g) Parabolic everywhere

uηη = 1
1−e2(η−ξ)

[
sin−1

(
eη−ξ

)
− uξ

]
.

(h) B2 − 4AC = y − 4x. Equation is hyperbolic if y > 4x, parabolic if

y = 4x and elliptic if y < 4x.

(i) y = 0, parabolic; and y �= 0, hyperbolic,

uξη = (1+ξ−ln η)
η uξ + uη + 1

η u.

2. (i) u (x, y) = f (y/x) + g (y/x) e−y,

(ii) Hint: ϕ = ru and check the solution by substitution.

u (r, t) = (1/r) f (r + ct) + (1/r) g (r − ct);

(iii) A = 4, B = 12, C = 9. Hence, B2 − 4AC = 0. Parabolic at every

point in (x, y)-plane. dy
dx = 3

2 or y = 3
2x+c ⇒ 2y−3x = c1, ξ = 2y−3x,

η = y. The canonical form is uηη − u = 1 ⇒ u (ξ, η) = f (ξ) cosh η +

g (ξ) sinh η−1. Or, u (x, y) = f (2y − 3x) cosh y+g (2y − 3x) sinh y−1.

(iv) Hyperbolic at all points in the (x, y)-plane. ξ = y − 2x, η = y + x.

Thus, uξη + uη = ξ, u (ξ, η) = η (ξ − 1) + f (ξ) e−ξ + g (ξ).
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u (x, y) = (x + y) (y − 2x − 1) + f (x + y) exp (2x − y) + g (y − 2x).

(v) Hyperbolic. ξ = y, η = y−3x. ξuξη+uη = 0, u (ξ, η) = 1
ξ f (η)+g (ξ).

u (x, y) = 1
y fu (y − 3x) + g (y).

(vi) A = 1, B = 0, C = 1, B2 − 4AC = −4 < 0. So, this equation

is elliptic. dy
dx = + i or dx

dy = + i or ξ = x + i y = c1 and

η = x − i y = c2.

The general solution is u = φ (ξ) + ψ (η) = φ (x + iy) + ψ (x − iy).

(vii) u = φ (x + 2iy) + ψ (x − 2iy).

(viii) B2 − 4AC = 0. Equation is parabolic. The general solution is

given by (4.3.16), where λ =
(

B
2A

)
= −1 and hence, the general solution

becomes u = φ (y + x) + y ψ (y + x).

(xi) B2 − 4AC = 25 > 0. Hyperbolic. The general solution is

u = φ
(
y − 3

2x
)

+ ψ
(
y − 1

6x
)
.

3. (a) ξ = (y − x) + i
√

2 x, η = (y − x) − i
√

2 x, α = y − x, β =
√

2 x,

uαα + uββ = − 1
2uα − 2

√
2 uβ − 1

2u + 1
2 exp

(
β/

√
2
)
.

(b) ξ = y + x, η = y; uηη = − 3
2u.

(c) ξ = y − x, η = y − 4x; uξη = 7
9 (uξ + uη) − 1

9 sin [(ξ − η) /3].

(d) ξ = y + ix, η = y − ix. Thus, α = y, β = x.

The given equation is already in canonical form.

(e) ξ = x, η = x − (y/2); uξη = 18uξ + 17uη − 4.

(f) ξ = y + (x/6), η = y; uξη = 6u − 6η2.

(g) ξ = x, η = y; the given equation is already in canonical form.

(h) ξ = x, η = y; the given equation is already in canonical form.

(i) Hyperbolic in the (x, y) plane except the axes x = y = 0. ξ = xy, η =

(y/x); y =
√

ξη, x =
√

ξ/η; uξη = 1
2

(
1 + 1

2

√
η
ξ

)
uη − 1

4
1√
ξη

− 1
4ξη − 1

2 .

(j) Elliptic when y > 0; dy
dx = + i

√
y, α = 2

√
y and β = −x;

uαα + uββ = α2uβ . Parabolic when y = 0; uxx + 1
2uy = 0.
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Hyperbolic when y < 0; ξ = x − 2
√−y, η = −x − 2

√−y.

The canonical form is uξη = 1
16 (ξ + η)

2
(uη − uξ).

(k) Parabolic, dy
dx = (xy)

−1
. Integrating gives 1

2y2 = lnx+ln ξ, where

ξ is an integrating constant. Hence, ξ = 1
x exp

(
1
2y2

)
, η = x.

uxx = x−4ey2

uξξ − 2x−2 exp
(

1
2y2

)
uξη + uηη + 2x−2 exp

(
1
2y2

)
uξ,

uxy = −yx−3 exp
(
y2

)
uξξ + yx−1 exp

(
1
2y2

)
uξη − yx−2 exp

(
1
2y2

)
uξ,

uyy =
(
y2x−2

)
ey2

uξξ +
(
y2x−2

)
exp

(
1
2y2

)
uξ. uηη +

(
ξ/η2

)
uξ = 0.

(l) Elliptic if y > 0, ξ = x + 2i
√

y, η = x − 2i
√

y,

α = 1
2 (ξ + η) = x, β = 1

2i (ξ − η) = 2
√

y; uαα + uββ = 1
β uβ .

Hyperbolic y < 0, ξ = x + 2i
√

y, η = x − 2i
√

y, ξ − η = 4i
√

y;

uξη + 1
2

(
uξ−uη

ξ−η

)
= 0. The equations of the characteristic curves are

dy
dx = + i

√
y that gives 2

√
y = + i (x − c), or y = + 1

4 (x − c)
2
,

where c is an integrating constant. Two branches of parabolas with

positive or negative slopes.

4. (i) u (x, y) = f (x + cy)+g (x − cy); (ii) u (x, y) = f (x + iy)+f (x − iy);

(iii) Use z = x + iy. Hence, u (x, y) = (x − iy) f1 (x + iy) + f2 (x + iy)

+ (x + iy) + f3 (x − iy) + f4 (x − iy)

(iv) u (x, y) = f (y + x)+g (y + 2x); (v) u (x, y) = f (y)+g (y − x);

(vi) u (x, y) = (−y/128) (y − x) (y − 9x) + f (y − 9x) + g (y − x).

5. (i) vξη = − (1/16) v, (ii) vξη = (84/625) v.

7. (ii) Use α = 3y
2 , β = −x3/2.

8. x = r cos θ, y = r sin θ; r =
√

x2 + y2, θ = tan−1
(

y
x

)
.

∂u
∂x = ∂u

∂r · ∂r
∂x + ∂u

∂θ · ∂θ
∂x = ur · x

r + uθ ·
(
− y

r2

)
.

uxx = (ux)x = (ux)r · ∂r
∂x + (ux)θ

∂θ
∂x

=
(

x
r ur − y

r2 uθ

)
r

=
(

x
r

)
+

(
x
r ur − y

r2 uθ

) (
− y

r2

)

=
(

x
r urr − x

r2 ur + 1
r ur

∂x
∂r

)
x
r −

(
y
r2 urθ − 2y

r3 uθ + 1
r2

∂y
∂r uθ

)
x
r

+
(

x
r urθ + 1

r ur · ∂x
∂θ

) (
− y

r2

)
+

(
y
r2 uθθ + 1

r2 uθ · ∂y
∂θ

)
y
r2
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= x2

r2 urr − 2xy
r3 urθ + y2

r4 uθθ + y2

r3 ur + 2xy
r4 uθ.

Similarly,

uyy = y2

r2 urr +
(

2xy
r3

)
urθ + x2

r4 uθθ + x2

r3 ur − 2xy
r4 uθ.

Adding gives the result: ∇2u = uxx + uyy = urr + 1
r ur + 1

r2 uθθ = 0.

9. (c) Use Exercise 8.

10. (a) ux = uξξx + uηηx = a uξ + c uη =
(
a ∂

∂ξ + c ∂
∂η

)
u,

uy = uξξy + uηηy = b uξ + d uη =
(
b ∂

∂ξ + d ∂
∂η

)
u.

uxx = (ux)x =
(
a ∂

∂ξ + c ∂
∂η

)(
a ∂

∂ξ + c ∂
∂η

)
u

=
(
a2uξξ + 2ac uξη + c2uηη

)
.

uyy = (uy)y =
(
b ∂

∂ξ + d ∂
∂η

)(
b ∂

∂ξ + d ∂
∂η

)
u

= b2uξξ + 2bd uξη + d2uηη.

uxy = (uy)x =
(
a ∂

∂ξ + c ∂
∂η

)(
b ∂

∂ξ + d ∂
∂η

)
u

= ab uξξ + (ad + bc) uξη + cd uηη.

Consequently,

0 = A uxx + 2B uxy + C uyy

=
(
A a2 + 2Bab + C b2

)
uξξ+2 [ac A + (ad + bc) B + bdC] uξη

+
(
A c2 + 2Bcd + C d2

)
uηη.

Choose arbitrary constants a, b, c and d such that a = c = 1 and such

that b and d are the two roots of the equation

Cλ2 + 2Bλ + A = 0, and

λ =
−B +

√
D

C = b, d, D = B2 − AC.

Thus, the transformed equation with a = c = 1 is given by

[A + (b + d) B + bdC] uξη = 0.

Or,
(

2
C

) (
AC − B2

)
uξη = 0.

If B2 −AC > 0, the equation is hyperbolic, and the equation uξη = 0 is

in the canonical form. The general solution of this canonical equation
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is u = φ (ξ) + ψ (η), where φ and ψ are arbitrary functions and the

transformation becomes ξ = x + by and η = x + dy, where b, d are real

and distinct.

If B2 −AC < 0, the equation is elliptic, and b and d are complex conju-

gate numbers
(
d = b

)
. With a = c = 1, the transformation is given by

ξ = x+by and η = x+b y. Then α = 1
2 (ξ + η) and β = 1

2i (ξ − η) can be

used to transform the equation into the canonical form uαα + uββ = 0.

If B2 − AC = 0, the equation is parabolic, here b = −B
C , a, c and d are

arbitrary, but c and d are not both zero. Choose a = c = 1, d = 0 so

that ξ = x − B
C y and η = y are used to transform the equation into the

form uηη = 0. The general solution is u = φ (ξ)+ηψ (η), where φ and ψ

are arbitrary functions, and b is the double root of Cλ2 +2Bλ+A = 0,

and ξ = x + by.

11. Seek a trial solution u (x, y) = f (x + my) so that uxx = f ′′, uyy =

m2f ′′. Substituting into the Laplace equation yields
(
m2 + 1

)
f ′′ = 0

which gives that either f ′′ = 0 or m2 + 1 = 0. Thus, m = + i. The

general solution is u (x, y) = F (x + iy) + G (x − iy). Identifying c with

i gives the d’Alembert solution

u (x, y) =
1

2
[f (x + iy) + f (x − iy)] +

1

2i

∫ x+iy

x−iy

g (α) dα.

12. (a) Hyperbolic. (ξ, η) = 2
3

(
y3/2 + x3/2

)
, 3

(
ξ2 − η2

)
uξη = ηuη − ξuη.

(b) Elliptic. dy
dx = + i sech2x, ξ = y + i tanhx, η = y − i tanhx;

α = y, β = tanhx. Thus, uαα + uββ = 2β
(1−β2)uβ .

(d) Hyperbolic. ξ = y + tanhx, η = y − tanhx.

uξη =
[
4 − (ξ − η)

2
]−1

(η − ξ) (uξ − uη) in the domain (η − ξ)
2

< 4.

(e) Parabolic. ξ = y − 3x, η = y; uηη = −η
3 (uξ + uη).

(f) Elliptic. α = 1
2

(
y2 − x2

)
, β = 1

2x2. The canonical form is
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uαα + uββ = [2β (α + β)]
−1

[αuα − (α + 2β) uβ ].

(g) Elliptic. α = sinx + y, β = x, uαα + uββ = (sinβ) uα − u.

(h) Parabolic. ξ = x + cos y, η = y. Thus, uηη =
(
sin2 η cos η

)
uξ.

13. The general solution is

u (x, y) = ex

∫ x

0

e−α cos (α + y eα−x) dα + ex f (y e−x) + g (x),

where f and g are arbitrary functions.

5.12 Exercises

1. (a) u (x, t) = t, (b) u (x, t) = sinx cos ct + x2t + 1
3c2t3,

(c) u (x, t) = x3 + 3c2xt2 + xt, (d) u (x, t) = cos x cos ct + (t/e),

(e) u (x, t) = 2t + 1
2

[
log

(
1 + x2 + 2cxt + c2t2

)

+ log
(
1 + x2 − 2cxt + c2t2

)]
,

(f) u (x, t) = x + (1/c) sinx sin ct.

2. (a) u (x, t) = 3t + 1
2xt2.

(c) u (x, t) = 5 + x2t + 1
3c2t3 +

(
1/2c2

)
(ex+ct + ex−ct − 2ex),

(e) u (x, t) = sinx cos ct + (et − 1) (xt + x) − x t et,

(f) u (x, t) = x2 + t2
(
1 + c2

)
+ (1/c) cos x sin ct.

3. s (r, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ t < r − R

s0(r−t)
2r , r − R < t < r + R

0, r + R < t < ∞

4. u (x, t) = 1
4 sin (y + x) + 3

4 sin (−y/3 + x) + y2/3 + xy.

5. u (x, t) = sinx cos at + xt, where a is a physical constant.

6. (b) u (x, t) = 1
2f (xt)+ 1

2 tf
(

x
t

)
+ 1

4

√
xt

∫ x/t

xt

f(τ)

τ
3
2

dτ − 1
2

√
xt

∫ x/t

xt

g(τ)

τ
3
2

dτ .

19. u (x, t) = f

(√
y2+x2−8

2

)
+ g

(√
y2−x2+16

2

)
− f (2).

22. u (x, t) = g

(
y− x2

2 +4

2

)
+ f

(
y+x2/2

2

)
− f (2).



5.12 Exercises 713

28. The wave equation is

utt − c2uxx = q (x, t) , c2 = T/ρ.

Multiply the wave equation by ut and rewrite to obtain

d
dt

(
1
2u2

t + 1
2c2u2

x

)
− c2 ∂

∂x (utux) = q (x, t) ut.

Integrating this result gives the energy equation. In view of the fact

that ut (0, t) = 0 = ut (l, t), the energy equation with no external forces

gives

dE
dt = 0 ⇒ E (t) = constant.

29. This problem is identically the same as that of (5.5.1). In this case

f (x) = 0 = g (x), and U (t) = p (t). So the solution is given by (5.5.2)

and (5.5.3). Consequently,

u (x, t) =

⎧
⎪⎨
⎪⎩

U
(
t − x

c

)
, x < ct,

0, x > ct.

30. (a) When ω �= ck,

u (x, t) = 1
(k2c2−ω2) sin (kx − ωt) − (ω−kc)

2kc(ω2−c2k2) sin [k (x + ct)]

+ (ω+kc)
2kc(ω2−c2k2) sin [k (x − ct)] .

This solution represents three harmonic waves which propagate with

different amplitudes and with speeds + c and the phase velocity (ω/k).

(b) When ω = ck,

u (x, t) = 1
4 sin (x − t) − 1

4 sin (x + t) + 1
2 t cos (x − t) .

This solution represents two harmonic waves with constant amplitude

and another harmonic wave whose amplitude grows linearly with time.

31. (a) u (x, t) = 1
2 [cos (x − 3t) + cos (x + 3t)] + 1

6

∫ x+3t

x−3t

sin (2α) dα

= cos x cos (3t) + 1
6 sin (2x) sin (6t).

(c) u (x, t) = cos (3x) cos (21t) + tx.

(e) u (x, t) = x3 + 27xt2 + 1
6 [cos (x + 3t) − cos (x − 3t)]

+ 1
6 [(x + 3t) sin (x + 3t) − (x − 3t) sin (x − 3t)].
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(f) u (x, t) = 1
2 [cos (x − 4t) + cos (x + 4t)]

+ 1
8 e−x

[
(x + 1 − 4t) e4t − (x + 1 + 4t) e−4t

]
.

32. Verify that

u (x, t) =

∫ t

0

v (x, t; τ) dτ

satisfies the Cauchy problem.

ut (x, t) = v (x, t; t) +

∫ t

0

vt (x, t; τ) dτ =

∫ t

0

vt (x, t; τ) dτ

utt (x, t) = vt (x, t; t)+

∫ t

0

vtt (x, t; τ) dτ = p (x, t)+

∫ t

0

vtt (x, t; τ) dτ

uxx (x, t) =

∫ t

0

vxx (x, t; τ) dτ.

Thus,

utt − c2uxx = p (x, t) +

∫ t

0

(
vtt − c2vxx

)
dτ = p (x, t) .

33. ut = v (x, t; t) +

∫ t

0

vt (x, t; τ) dτ = p (x, t) +

∫ t

0

vt (x, t; τ) dτ

uxx =

∫ t

0

vxx (x, t; τ) dτ .

Hence,

ut − κuxx = p (x, t) +

∫ t

0

(vt − κ vxx) dτ = p (x, t).

34. According to the Duhamel principle

u (x, t) =

∫ t

0

v (x, t; τ) dτ

is the solution of the problem where v (x, t; τ) satisfies

vt = κ vxx, 0 ≤ x < 1, t > 0,

v (0, t; τ) = 0 = v (1, t; τ),

v (x, τ ; τ) = e−τ sin πx, 0 ≤ x ≤ 1.

Using the separation of variables, the solution is given by

v (x, t) = X (x) T (t) so that

X ′′ + λ2X = 0 and T ′ + κλ2T = 0.

The solution is

v (x, t; τ) =

∞∑

n=1

an (τ) e−λ2
nκt sin λnx,

when λn = nπ, n = 1, 2, 3, . . ..
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Since v (x, τ ; τ) = e−τ sin πx,

e−τ sin πx =

∞∑

n=1

an (τ) exp
(
−n2π2κτ

)
sin (πnx).

Equating the coefficients gives

e−τ = a1 (τ) exp
(
−π2κτ

)
, an (τ) = 0, n = 2, 3, . . ..

Consequently,

v (x, t; τ) = exp
[(

π2κ − 1
)
τ
]
exp

(
−π2κt

)
sin πx.

Thus,

u (x, t) = exp
(
−π2κt

)
sin πx

∫ t

0

exp
[(

π2κ − 1
)
τ
]
dτ

=
e−t−exp(−π2κt)

(π2κ−1) · sin πx.

36. (a) The solution is u (x, t) = 1
n

[
enx sin

(
2n2t + nx

)
+ e−nx sin

(
2n2t − nx

)]
,

and u (x, t) → ∞ as n → ∞ for certain values of x and t.

(b) un (x, y) = 1
n exp (−√

n ) sinnx sinhny is the solution. For y �= 0,

un (x, y) → ∞ as n → ∞. But (un)y (x, 0) = exp (−√
n ) sinnx → 0 as

n → ∞.

6.14 Exercises

1. (a) f (x) = −π
4 + h

2 +

∞∑

k=1

{
1

πk2

[
1 + (−1)

k+1
]
cos kx

+ 1
πk

[
h + (h + π) (−1)

k+1
]
sin kx

}
.

(c) f (x) = sinx +

∞∑

k=1

2(−1)k+1

k sin kx.

(e) f (x) = sinh π
π

[
1 +

∞∑

k=1

2(−1)k

1+k2 (cos kx − k sin kx)

]
.

2. (a) f (x) =

∞∑

k=1

2
k sin kx

(b) f (x) =

∞∑

k=1

(
2

πk

) [
1 − 2 (−1)

k
+ cos kπ

2

]
sin kx.
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(c) f (x) =

∞∑

k=1

[
2 (−1)

k+1 π
k + 4

πk3

(
(−1)

k − 1
)]

sin kx.

(d) f (x) =

∞∑

k=2

2k
π

[
1+(−1)k

k2−1

]
sin kx.

3. (a) f (x) = 3
2π +

∞∑

k=1

2
πk2

[
(−1)

k − 1
]
cos kx.

(b) f (x) = π
2 +

∞∑

k=1

2
πk2

[
(−1)

k − 1
]
cos kx.

(c) f (x) = π2

3 +

∞∑

k=1

4(−1)k

k2 cos kx.

(d) f (x) = 2
3π +

∞∑

k=1,2,4,...

6
π

[
1+(−1)k

9−k2

]
cos kx, k �= 3.

4. (b) f (x) =

∞∑

k=1

(
2

kπ

)
sin kπ

2 cos
(

kπx
6

)
.

(c) f (x) = 2
π +

∞∑

k=2

(
2

kπ

) [
1+(−1)k

1−k2

]
cos

(
kπx

l

)
.

(f) f (x) =

∞∑

k=1

kπ
1+k2π2 (−1)

k+1 (
e − e−1

)
sin (kπx).

5. (a) f (x) =

∞∑

k=−∞

1
π

(
2+ik
4+k2

)
(−1)

k
sinh 2π eikx.

(b) f (x) =

∞∑

k=−∞

(−1)k

π(1+k2) sinhπ eikx.

(d) f (x) =

∞∑

k=−∞
(−1)

k (
i

kπ

)
eikπx.

6. (a) f (x) = π
8 +

∞∑

k=1

[
1

2πk2

{
(−1)

k − 1
}

cos kx + (−1)k+1

2k sin kx
]
.

7. (a) f (x) = l2

3 +

∞∑

k=1

4 (−1)
k (

1
kπ

)2
cos

(
kπx

l

)
.

8. (a) sin2 x =

∞∑

k=1,3,4,...

4(1−cos kπ)
kπ(4−k2) sin kx.

(b) cos2 x =

∞∑

k=1,3,4,...

2
kπ

(
1−k2

4−k2

)
(1 − cos kπ) sin kx.

(d) sinx cos x =

∞∑

k=1,3,4,...

2
π

(
1−cos kπ

4−k2

)
cos kx.
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9. (a) x2

4 = π2

12 −
∞∑

k=1

(−1)k+1

k2 cos kx.

(c)

∫ ∞

0

ln
(
2 cos x

2

)
dx =

∞∑

k=1

(−1)
k+1 sin kx

k2 .

(e) π
2 − 4

π

∞∑

k=1

cos(2k−1)x

(2k−1)2
=

⎧
⎪⎨
⎪⎩

−x, −π < x < 0

x, 0 < x < π.

10. (a) f (x, y) = 16
π2

∞∑

m=1,3,...

∞∑

n=1,3,...

(
1

mn

)
sin mx sin ny

(c) f (x, y) = π4

9 + 1
2

∞∑

m=1

8
3π2 (−1)m

m2 cos mx + 1
2

∞∑

n=1

8
3π2 (−1)m

n2 cos ny

+

∞∑

m=1

∞∑

n=1

16(−1)m+n

m2n2 cos mx cos ny.

(e) f (x, y) =

∞∑

m=1

2(−1)m+1

m sin mx sin y.

(g) f (x, y) =

∞∑

m=1

∞∑

n=1

dmn sin
(

mπx
1

)
sin

(
nπy
2

)
,

where

dmn =
4

1.2

∫ 2

0

∫ 1

0

xy sin (mπx) sin
(nπy

2

)
dx dy

= 2

∫ 2

0

[
sin mπx

m2π2
− x cos mπx

mπ

]1

0

y sin
(nπy

2

)
dy

=
−2 (−1)

m

mπ

∫ 2

0

y sin
(nπy

2

)
dy =

−2 (−1)
m

mπ

(−4 (−1)
n

nπ

)

=
8 (−1)

m+n

π2mn
.

(h) f (x, y) =
(

16
π2

) ∞∑

m=1

∞∑

n=1

[(2m − 1) (2n − 1)]
−1

sin
[

(2m−1)πx
a

]

× sin
[

(2n−1)πy
b

]
.

(Double Fourier sine series).

(i) f (x, y) =
(

sin 2
π

) ∞∑

m=1

(−1)m+1

m sin πmx
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+
(

8 sin 2
π

) ∞∑

m=1

∞∑

n=1

[
(−1)m+n+1

m(4−π2n2)

]
sin (mπx) cos

(
πny
2

)
.

(j) f (x, y) = 2
3π2

∞∑

m=1

(−1)m+1

m sin mx+

∞∑

m=1

∞∑

n=1

8(−1)m+n+1

m n2 sin mx cos ny.

(k) f (x, y) = π4

9 +
(

4π2

3

)[ ∞∑

m=1

(−1)m

m2 cos mx +

∞∑

n=1

(−1)n

n2 cos ny

]

+16

∞∑

m=1

∞∑

n=1

(−1)m+n

m2n2 cos mx cos ny.

20. (a) b2n = 0, b2n+1 = 8
π(2n+1)3

.

f (x) = x (π − x) = 8
π

(
sin x
13 + sin 3x

33 + sin 5x
53 + . . .

)
.

(b) Put x = π
2 and x = π

4 to find the sum of the series.

21. (a) bn = 2
π

∫ π

0

f (x) sinnx dx =
(

8
n2π2

)
sin

(
nπ
2

)
, n = 0, 1, 2, . . ..

b2n = 0 and b2n+1 = 8(−1)n

π2(2n+1)2
, n = 0, 1, 2, . . ..

(b) Put x = π
2 .

22. (a) f (x) =

∞∑

n=1

bn sin
(

nπx
a

)
,

bn = 2
a

∫ a

0

sin
(

nπx
a

)
dx = 2

nπ (1 − cos nπ)

= 2
nπ [1 − (−1)

n
] =

⎧
⎪⎨
⎪⎩

4
nπ , for odd n,

0, for even n.

f (x) ∼ 4
π

[
sin

(
πx
a

)
+ 1

3 sin
(

3πx
a

)
+ 1

5 sin
(

5πx
a

)
+ . . .

]

f (x) ∼ 1
2a0 +

∞∑

n=1

an cos
(

nπx
a

)
, a0 = 2,

an = 2
nπ (sin nπ − 0) = 0, n �= 0,

1 = 1 + 0 · cos
(

nπ
a

)
+ 0 · cos

(
2nπ

a

)
+ . . .

(b) f (x) =
∞∑

n=1

(−1)
n+1 (

2a
nπ

)
sin

(
nπx

a

)

f (x) ∼ 1
2a0 +

∞∑

n=1

an cos
(

nπx
a

)
, where a0 = 2

a

∫ a

0

x dx = a,

an = 2
a

∫ a

0

x cos
(

nπx
a

)
dx = 2a

n2π2 ((−1)
n − 1)

= 0, for even n, and − 4a
n2π2 , for odd n.
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23. (a) a0 = 1
a

∫ a

−a

x dx = 0,

an = 1
a

∫ a

−a

x cos
(

nπx
a

)
dx =

[
x

nπ sin
(

nπx
a

)
+ a

π2n2 cos
(

nπx
a

)]a

−a

= a
n2π2 (cos nπ − cos (−nπ)) = 0

bn = 1
a

∫ a

0

x sin
(

nπx
a

)
dx

= −x
nπ cos

(
nπx

a

)
+ a

n2π2 sin
(

nπx
a

)∣∣a
−a

= −a
nπ cos nπ + −a

nπ cos (−nπ) = (−1)
n+1 (

2a
nπ

)
.

(c) a0 = 1
2π

∫ 2π

0

f (x) dx = 1
2π

∫ 2π

π

dx = 1
2

an = 1
π

∫ 2π

0

f (x) cos nx dx = 1
π

∫ 2π

π

cos nx dx = 0 for all n.

bn = 1
π

∫ 2π

0

f (x) sinnx dx = 1
π

∫ 2π

π

sin nx dx

= 1
π [−1 + (−1)

n
] =

⎧
⎪⎨
⎪⎩

0, n is even

− 2
nπ , n is odd.

f (x) = 1
2 − 2

π

∞∑

k=0

sin(2k+1)x
(2k+1) .

24. f (x) =
(

1
π + 1

2 cos x
)

+ 2
π

∞∑

n=1

(−1)n+1 cos 2nx
(4n2−1) .

26. Hint: An argument similar to that used in Section 6.5 can be employed

to prove this general Parseval relation. More precisely, use (6.5.10) for

(f + g) to obtain

1
π

∫ π

−π

(f + g)
2
dx = 1

2 (a0 + α0)
2

+

∞∑

k=1

[
(ak + αk)

2
+ (bk + βk)

2
]
.

Subtracting the later equality from the former gives

1
π

∫ π

−π

f (x) g (x) dx = a0α0

2 +

∞∑

k=1

(akαk + bkβk) .

27. (a) f (x) = 2
π

∫ ∞

0

1
α cos αx sin aα dα, (b) f (x) = 2

π

∫ ∞

0

sin πα sin αx
(1−α2) dα.
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33. ck =
1

2π

∫ π

−π

x e−ikxdx =
1

2π

[
x e−ikx

−ik

∣∣∣∣
π

−π

+
1

ik

∫ π

−π

e−ikxdx

]

=
1

2π

[
π e−ikπ

−ik
+

π eikπ

(−ik)
+

e−ikπ

k2

]

=
π

2π

[(
eikπ + e−ikπ

)

(−ik)

]
=

i cos kπ

k
= (−1)

k i

k
.

c0 =
1

2π

∫ π

−π

x dx = 0.

35. (a) f (x) =
∞∑

k=−∞
ckeikx,

ck =
1

2
(ak − ibk) =

1

2π

∫ π

−π

f (x) e−ikxdx,

=
1

4π

∫ π

−π

[
ei(a−k)x + e−i(a+k)x

]
dx,

=
1

4πi (a − k)

[
ei(a−k)x

]π

−π
− 1

4πi (a + k)

[
e−i(a+k)x

]π

−π

=
1

2π

[
1

a − k
sin (a − k) π +

1

a + k
sin (a + k) π

]
.

This is a real quantity and hence, bk = 0 for k = 1, 2, 3, . . ., and

ak =
2 (−1)

k
a sin (πa)

π (a2 − k2)
, k = 0, 1, 2, . . . .

Thus,

cos (ax) =
2a sin aπ

π

(
1

2a2
− cos x

k2 − 12
+

cos 2x

k2 − 22
− . . .

)
.

Since cos ax is even, the above series is continuous, even at x = +nπ.

(b) Putting π for x and treating a = x is a variable

cot πx =
2x

π

(
1

2x2
+

1

x2 − 12
+

1

x2 − 22
+ . . .

)

or,

cot πx − 1

πx
= −2x

π

∞∑

n=1

1

(n2 − x2)
.

(c) Since the convergence is uniform in any interval of the x-axis that
does not contain any integers, term-by-term integration in 0 < a < x <
1, gives
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π

∫ x

a

(
cos πt − 1

πt

)
dt = ln

(
sin πx

πx

)
− ln

(
sin πa

πa

)

=
∞∑

n=1

ln

(
n2 − x2

n2 − a2

)
.

In the limit as a → 0, we find

ln

(
sin πx

πx

)
=

∞∑

n=1

ln

(
1 − x2

n2

)
,

or

sin πx = πx

∞∏

n=1

(
1 − x2

n2

)
.

This is the product representation of sinπx.

(d) Putting x = 1
2 , we obtain the Wallis formula for π

2 as an infinite
product

π

2
=

∞∏

n=1

(2n)
2

(2n − 1) (2n + 1)
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· · · · .

36. (a) f (x + 2π) = f (x).

ak =
1

π

∫ 2π

0

ex cos kx dx, bk =
1

π

∫ 2π

0

ex sin kx dx.

Evaluating these integrals gives

f (x) ∼ 1

π

(
e2π − 1

)
[

1

2
+

∞∑

k=1

1

(k2 + 1)
(cos kx − k sin kx)

]
.

(b) In this case, f (−x) = −f (x) and f (x) is odd, and periodic of
period 2π.

Hence, ak = 0, and bk is given by

bk =
2

π

∫ π/2

0

sin kx dx − 2

π

∫ π

π
2

sin kx dx.

Thus,

f (x) =
4

π

(
sin 2x +

1

3
sin 6x +

1

5
sin 10x + . . .

)
.

(c) f (x) is periodic with period 1. Hence,
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ak = 2

∫ 1

0

f (x) cos (2πkx) dx, bk = 2

∫ 1

0

f (x) sin (2πkx) dx,

f (x) ∼ 1

2
− 1

π

∞∑

k=1

sin (2πkx)

k
, x �= k.

f (x) = 0 for all x = k, and the corresponding infinite series does not
represent the value 0 of f (x) for x = 0, +1, + 2, . . .. Thus,

1

2
[f (n+) + f (n−)] =

1

2
.

37. (a) This represents a square wave function.

a0 =
1

l

∫ l

−l

f (x) dx =

∫ l

0

dx = l,

ak =
1

l

∫ l

−l

f (x) cos

(
πkx

l

)
dx

=

∫ l

0

cos

(
πkx

l

)
dx = 0, k �= 0.

bk =
1

l

∫ l

−l

f (x) sin

(
πkx

l

)
dx =

∫ l

0

sin

(
πkx

l

)
dx

=

(
l

πk

)
(1 − cos πk) =

⎧
⎨
⎩

0, k is even,

2l
πk , k is odd.

f (x) =
l

2
+

(
2l

π

)[
sin

(πx

l

)
+

1

3
sin

(
3πx

l

)
+

1

5
sin

(
5πx

l

)
+ . . .

]

=
l

2
+

(
2l

π

) ∞∑

k=1

sin
[
(2k − 1)

(
πx
l

)]

(2k − 1)
.

At x = 0, +nl, f is not continuous, all terms in the above series after
the first vanish and the sum is (l/2). The graphs of the partial sums

sn (x) =
l

2
+

(
2l

π

)[
sin

(πx

l

)
+ . . . +

1

(2n − 1)
sin

{
(2n − 1)

(πx

l

)}]

can be drawn. These graphs show how the Fourier series converges at
the points of continuity of f (x), sn (x) → f (x) as n → ∞. However,
at points of discontinuity at x = 0 and x = + l, sn (x) does not con-
verge to the mean value. Just beyond the discontinuities at x = 0 and
x = + l, the partial sums, sn (x) overshoot the value |l|. This behavior
of the Fourier series at points of discontinuity is known as the Gibbs
phenomenon.
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(b) a0 = l, ak =
2l

(πk)
2 (cos kπ − 1) , bk = 0, k = 1, 2, . . . .

f (x) =
l

2
−

(
4l

π2

)[
cos

(πx

l

)
+

1

32
cos

(
3πx

l

)

+
1

52
cos

(
5πx

l

)
+ . . .

]

=
l

2
−

(
4l

π2

) ∞∑

k=1

1

(2k − 1)
2 cos

{
(2k − 1)

πx

l

}
.

(c) f (x) =
l

2
+

(
4l

π2

) ∞∑

k=1

1

(2k − 1)
2 cos

[
(2k − 1)

πx

l

]
.

(d) f (x) =
a0

2
+

∞∑

k=1

[ak cos (πkx) + bk sin (πkx)] ,

a0 =
l

3
, ak =

2 (−1)
k

π2k2
, bk =

⎧
⎨
⎩

− 1
πk , k is even,

(
1

πk − 4
π3k3

)
, k is odd.

38. (a) We have

cos kx sin
1

2
x =

1

2

[
sin

(
k +

1

2

)
x − sin

(
k − 1

2

)
x

]
.

Summing from k = 1 to k = n gives

(
sin

1

2
x

) n∑

k=1

cos kx =
1

2

n∑

k=1

[
sin

(
k +

1

2

)
x − sin

(
k − 1

2

)
x

]

=
1

2

[
sin

(
n +

1

2

)
x − sin

1

2
x

]

Dividing this result by sin 1
2x and adding 1

2 to both sides gives the
result.

(b) sn (x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx) , where

(ak cos kx + bk sin kx)

=

[
1

π

∫ π

−π

f (t) cos kt dt

]
cos kx

+

[
1

π

∫ π

−π

f (t) sin kt dt

]
sin kx =

1

π

∫ π

−π

f (t) cos k (t − x) dt.

Thus,
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a0

2
=

1

2π

∫ π

−π

f (t) dt and hence,

sn (x) =
a0

2
+

n∑

k=1

(ak cos kx + bk sin kx)

=
1

2π

∫ π

−π

f (t) dt +
1

π

n∑

k=1

∫ π

−π

f (t) cos k (t − x) dt

=
1

π

∫ π

−π

f (t)

[
1

2
+

n∑

k=1

cos k (t − x)

]
dt

=
1

π

∫ π

−π

f (t)
sin

{(
n + 1

2

)
(t − x)

}

2 sin 1
2 (t − x)

dt from (a)

which is, from t − x = ξ,

=
1

π

∫ π−x

−π−x

f (x + ξ)
sin

(
n + 1

2

)
ξ

2 sin 1
2ξ

dξ,

since the integrand has a period of 2π, we can replace the interval−π−x,
π−x by any interval of length 2π, that is, (−π, π). This gives the result.

7.9 Exercises

1. (a) u (x, t) =

∞∑

n=1

4
(nπ)3

[1 − (−1)
n
] cos (nπct) sin (nπx).

(b) u (x, t) = 3 cos ct sin x.

2. (a) u (x, t) =

∞∑

n=1,3,4,...

32[(−1)n−1]
πcn2(n2−4) sin (nct) sin (nx).

5. u (x, t) =

∞∑

n=1

anTn (t) sin
(

nπx
l

)
, where an = 2

l

∫ l

0

f (x) sin
(

nπx
l

)
dx, and

Tn (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−at/2
(
cosh αt + a

2α sinhαt
)
, for α2 > 0

e−at/2
(
1 + at

2

)
, for α = 0

e−at/2
(
cos βt + a

2β sin βt
)

, for α2 < 0,

in which

α = 1
2

[
a2 − 4

(
b + n2π2c2

l2

)] 1
2

, β = 1
2

[
4
(
b + n2π2c2

l2

)
− a2

] 1
2

.
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6. u (x, t) =

∞∑

n=1

anTn (t) sin
(

nπx
l

)
, an = 2

l

∫ l

0

g (x) sin nπx
l dx, and

Tn (t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2e−at/2√
(a2−α)

sinh

(√
(a2−α)

2 t

)
, for a2 > α,

t e−at/2, for a2 = α,

2e−at/2√
(α−a2)

sin

(√
(α−a2)

2 t

)
, for a2 < α.

7. θ (x, t) =

∞∑

n=1

an cos (aαnt) sin (αnx + φn), where

an =
2(α2

n+h2)
2h+(α2

n+h2)l

∫ l

0

f (x) sin (αnx + φn) dx

and

φn = tan−1
(

αn

h

)
; αn are the roots of the equation tanαl =

(
2hα

α2−h2

)
.

11. u (x, t) = v (x, t) + U (x), where

v (x, t) =

∞∑

n=1

[
−

(
2
l

) ∫ l

0

U (τ) sin
(

nπτ
l

)
dτ

]
cos

(
nπct

l

)
sin

(
nπx

l

)

and

U (x) = − A
c2 sinhx + A

c2 sinh (l + k − h) x
l + h.

12. u (x, t) = A
6c2 x2 (1 − x) +

∞∑

n=1

12
(nπ)3

(−1)
n

cos (nπct) sin (nπx).

14. (a) u (x, t) = −hx2

2k +
(
2u0 + h

2k

)
x − 4h

kπ e−kπ2t sin (πx)

+

∞∑

n=2

ane−kn2π2t sin (nπx),

where

an = 2u0

nπ [1 + (−1)
n
] + 2u0n

(n2−1)π [1 + (−1)
n
] + 2h

kπ3n3 [(−1)
n − 1].

(b) Hint: v (x, t) = e−htu (x, t).

u (x, t) = e−ht

[
1
2 a0 +

∞∑

n=1

an cos
(

nπx
l

)
exp

(
−n2π2kt/l2

)
]
, where

an = 2
l

∫ l

0

f (ξ) cos
(

nπξ
l

)
dξ.

15. (a) u (x, t) =

∞∑

n=1

4
n3π3

[
2 (−1)

n+1 − 1
]
e−4n2π2t sin (nπx).

(b) u (x, t) =

∞∑

n=1,3,4,...

[(−1)
n − 1]

[
n

π(4−n2) − 1
nπ

]
e−n2kt sin (nx).
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16. u (x, t) =

∞∑

n=1

2l2

n3π3 [1 − (−1)
n
] e−(nπ/l)2t cos

(
nπx

l

)
.

18. v (x, t) = Ct
(
1 − x

l

)
− Cl2

6k

[(
x
l

)3 − 3
(

x
l

)2
+ 2

(
x
l

)]

+
(

2Cl2

π3k

) ∞∑

k=1

e−n2π2kt/l2

n3 sin
(

nπx
l

)
.

21. u (x, t) = v (x, t) + w (x), where

v (x, t) = e−kt sin x +

∞∑

n=1

an e−n2kt sin (nx), and

an = −n
(n2+a2) [(−1) e−n−ax − 1] + 2A

a2kπ

[
1
n {(−1)

n − 1}
]

+ (−1)n

n [e−aπ − 1]

w (x) = A
a2k

[
1 − e−ax + x

π (e−aπ − 1)
]
.

36. Hint: Suppose R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b and ∂R is

its boundary positively oriented. Suppose that u1 and u2 are solutions

of the problem, and put v = (u1 − u2). Then v satisfies the Laplace

equation with v = (x, 0) = 0 = v (x, b), vx (0, y) = 0 = vx (a, y).

8.14 Exercises

1. (a) λn = n2, φn (x) = sinnx for n = 1, 2, 3, . . .

(b) λn = ((2n − 1) /2)
2
, φn (x) = sin ((2n − 1) /2) πx for n = 1, 2, 3, . . .

(c) λn = n2, φn (x) = cos nx for n = 1, 2, 3, . . ..

2. (a) λn = 0, n2π2, φn (x) = 1, sin nπx, cos nπx for n = 1, 2, 3, . . .

(b) λn = 0, n2, φn (x) = 1, sin nx, cos nx for n = 1, 2, 3, . . .

(c) λn = 0, 4n2, φn (x) = 1, sin 2nx, cos 2nx for n = 1, 2, 3, . . ..

3. (a) λn = −
(
3/4 + n2π2

)
, φn (x) = e−x/2 sin nπx, n = 1, 2, 3, . . ..

4. (a) λn = 1 + n2π2, φn (x) = (1/x) sin (nπ lnx), n = 1, 2, 3, . . ..

(b) λn = 1
4+(nπ/ ln 3)

2
, φn (x) =

[
1/ (x + 2)

1
2

]
sin [(nπ/ ln 3) ln (x + 2)],

n = 1, 2, 3, . . ..
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(c) λn = 1
12

[
1 + (2nπ/ ln 2)

2
]
,

φn (x) =
[
1/ (1 + x)

1
2

]
sin [(nπ/ ln 2) ln (1 + x)], n = 1, 2, 3, . . ..

5. (a) φ (x) = sin
(√

λ lnx
)
, λ > 0.

(b) φ (x) = sin
(√

λx
)
, λ > 0.

7. f (x) ∼
∞∑

n=1

2
π

[
(−1)n−1

n2

]
cos nx.

11. (a) G (x, ξ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x, x ≤ ξ

ξ, x > ξ.

12. (a) u (x) = − cos x +
(

cos 1−1
sin 1

)
sin x + 1,

(b) u (x) = − 2
5 cos 2x − 1

10

(
1+2 sin 2

cos 2

)
sin 2x + 1

5ex.

16. G (x, ξ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
x3ξ/2

)
+

(
xξ3/2

)
− (9xξ/5) + x, for 0 ≤ x < ξ

(
x3ξ/2

)
+

(
xξ3/2

)
− (9xξ/5) + ξ, for ξ ≤ x ≤ 1.

24. (a) Hint: Differentiate cot θ = py′

y with respect to x to find

−cosec2 θ
dθ

dx
=

1

y
(py′)

′ − 1

y2

(
py′2) = −

(
λr + q +

1

p
cot2 θ

)
.

dθ

dx
= (q + λr) sin2 θ +

1

p
cos2 θ,

dr

dx
=

r

2

(
1

p
− q − λr

)
sin 2θ.

(b) At θ = nπ, dθ
dx = 1

p , and at θ =
(
n + 1

2

)
π, dθ

dx = (q + λp).

9.10 Exercises

8. (a) u (r, θ) = 4
3

(
1
r − r

4

)
sin θ.

(c) u (r, θ) =
∞∑

n=1

an sinh
[
(nπ/ ln 3)

(
θ − π

2

)]
sin [(nπ/ ln 3) ln r],

where
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an = 2
ln 3 sinh(nπ2/2 ln 3)

{
nπ ln 3

n2π2+4(ln 3)2
[9 (−1)

n − 1]

− 4nπ ln 3
n2π2+(ln 3)2

[3 (−1)
n − 1] + 3 ln 3

nπ [(−1)
n − 1]

}
.

9. u (r, θ) =

∞∑

n=1

an

(
r−nπ/α − b−2nπ/α rnπ/α

)
sin

(
nπθ
α

)

+

∞∑

n=1

bn sinh
[

nπ
ln(b/a) (θ − α)

]
sin

[
nπ

ln(b/a) (ln r − ln a)
]
,

where

an = 2
[
α
(
a−nπ/α − b−2nπ/αanπ/α

)]−1
∫ α

0

f (θ) sin
(

nπθ
α

)
dθ,

bn = −2
[
ln

(
b
a

)
sinh {αnπ/ ln (b/a)}

]−1

+

∫ b

a

f (r) sin [(nπ/ ln [b/a]) ln (ra)] dr
r .

12. u (r, θ) =

∞∑

n=1

2
αJν(a)

[∫ α

0

f (θ) sin
(

nπτ
α

)
dτ

]
Jν (r) sin

(
nπθ
α

)
, ν = nπ/α.

13. u (r, θ) = 1
2

(
a2 − r2

)
.

14. (a) u (r, θ) = − 1
3

(
r + 4

r

)
sin θ + constant.

16. u (r, θ) =
∞∑

n=1

1
nRn−1 rn sin nθ.

18. u (r, θ) = a0

2 +

∞∑

n=1

rn (an cos nθ + bn sin nθ),

where

an = R1−n

(n+Rh)π

∫ 2π

0

f (θ) cos nθ dθ, n = 0, 1, 2, . . ..

bn = R1−n

(n+Rh)π

∫ 2π

0

f (θ) sinnθ dθ, n = 1, 2, 3, . . ..

20. u (r, θ) = c− r4

12 sin 2θ + 1
6

(
r6
1−r6

2

r4
1−r4

2

)
r2 sin 2θ + 1

6

(
r2
1−r2

2

r4
1−r4

2

)
r4
1 r4

2 r−2 sin 2θ.

21. u (r, θ) =

∞∑

n=1

an

(
r−nπ/α − b−2nπ/αrnπ/α

)
sin

(
nπθ
α

)

+

∞∑

n=1

bn sinh
[

nπ
ln(b/a) (θ − α)

]
sin

[
nπ

ln(b/a) (ln r − ln a)
]
.
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22. (a) u (x, y) =

∞∑

n=1

4[1−(−1)n]

(nπ)3 sinh nπ
sin nπx sinh {nπ (y − 1)}

(c) u (x, y) =

∞∑

n=1

an (sinhnπx − tanhnπ cosh nπx) sinnπy, where

an = 1
tanh nπ

[
2nπ3

n2π4−4 + 1−(−1)n

nπ

]
.

23. (a) u (x, y) = c +

∞∑

n=1

an (cosh nx − tanhnπ sinhnx) cos ny, where

an = 2 [1 − (−1)
n
]
/(

n3π tanhnπ
)
.

(c) u (x, y) = − 1
tanh π [cosh y − tanhπ sinh y] cos x + C.

25. u (x, y) = xy (1 − x) +

∞∑

n=1

4(−1)n

(nπ)3 sinh nπ
sin (nπx) sinh (nπy).

27. u (x, y) = c +
(
x2/2

) (
x2

3 − y2
)

+

∞∑

n=1

8a4(−1)n+1

(nπ)3 sinh nπ
cosh

(
nπx

a

)
cos

(
nπy

a

)
.

29. u (x, y) = x [(x/2) − π] +

∞∑

n=1

an sin
{(

2n−1
2

)
x
}

cosh
{(

2n−1
2

)
y
}
, where

an = 2
Aπ

∫ π

0

[
f (x) − h

(
x2

2 − πx
)]

sin
[(

2n−1
2

)
x
]
dx

with

A =
(

2n−1
2

)
sinh

(
2n−1

2

)
π + h cosh

(
2n−1

2

)
π.

32. Hint: The solution is given by (9.5.3) and the boundary conditions re-

quire

sin2 θ = 1
2a0 +

∞∑

n=1

[(an + bn) cos nθ + (cn + dn) sinnθ] ,

0 = 1
4b0 +

∞∑

n=1

n
[(

an 2n−1 − bn 2−n−1
)
cos nθ

+
(
cn 2n−1 − dn 2−n−1

)
sin nθ

]
.

Using sin2 θ = 1
2 (1 − cos 2θ), we equate coefficients to obtain

a0 = 1, b0 = 0; a2 + b2 = − 1
2 , 2a2 − 1

8b2 = 0;

an + bn = 0

2n−1 an − 2−n−1 bn = 0

⎫
⎪⎬
⎪⎭

n = 1, 3, 4, 5, . . . .
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cn + dn = 0

2n−1 cn − 2−n−1 dn = 0

⎫
⎪⎬
⎪⎭

n = 1, 2, 3, . . . .

Thus, a0 = 1, b0 = 1, a2 = − 1
34 , b2 = − 8

17 , and the remaining coeffi-

cients are zero; finally

u (r, θ) = 1
2 − 1

34

(
r2 + 16

r2

)
cos 2θ.

33. (a) Hint: Seek a separable solution u (r, z) = R (r) Z (z) so that

r2R′′ + r R′ − λr2R = 0, and Z ′′ + λZ = 0, with Z (0) = 0 = Z (h).

The solution of this eigenvalue problem is

λn =
(

nπ
h

)2
, Zn (z) = sin

(
nπz
h

)
, n = 1, 2, 3, . . . .

The solution of the radial equation is

Rn (r) = anI0

(
nπr
h

)
+ bnK0

(
nπr
h

)
,

where I0 and K0 are modified Bessel functions. Since K0 is unbounded

at r = 0, all bn ≡ 0. Thus,

u (r, z) =

∞∑

n=1

an I0

(
nπr
h

)
sin

(
nπz

h

)
.

f (z) = u (1, z) =
∞∑

n=1

an I0

(
nπ
h

)
sin

(
nπz
h

)
.

This is a Fourier sine series for f (z) and hence,

anI0

(
nπ
h

)
= 2

h

∫ h

0

f (z) sin
(

nπz
h

)
dz.

(d) u (r, z) = a I0

(
3πr
h

)
sin

(
3πz
h

) /
I0

(
3π
h

)
.

35. (a) u (r, z) = 8

∞∑

n=1

sinh z kn

z kn sinh kn

J0(knr)
J0(kn) .

(b) u (r, z) =
(

4a
π

) ∞∑

n=1

1
(2n−1)

I0[ 1
2 (2n−1)r]

I0[ 1
2 (2n−1)]

sin
{

1
2 (2n − 1) z

}
.

(c) u (r, z) =

∞∑

n=1

anI0

(
nπr
h

)
sin

(
nπz
h

)
, where

anI0

(
nπa

h

)
= 2

h

∫ h

0

f (z) sin
(

nπz
h

)
dz.
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10.13 Exercises

1. u (x, y, z) =
sinh[(π/b)2+(π/c)2]

1
2 (a−x)

sinh[(π/b)2+(π/c)2]
1
2 a

sin
(

πy
b

)
sin

(
πz
c

)
.

2. u (x, y, z) =

[
sinh(

√
2 πz)√

2 π
− cosh(

√
2 πz)√

2 π tanh
√

2 π

]
cos πx cos πy.

4. (a) u (r, θ, z) =

∞∑

m=0

∞∑

n=1

(amn cos mθ + bmn sin mθ) Jmn (amnr/a)

× sinh αmn(l−z)/a
sinh αmnl/a ,

where

amn =
2

a2πεn [Jm+1 (αmn)]
2

∫ 2π

0

∫ a

0

f (r, θ) Jm (αmnr/a) cos mθ r dr dθ

bmn =
2

a2π [Jm+1 (αmn)]
2

∫ 2π

0

∫ a

0

f (r, θ) Jm (αmnr/a) sinmθ r dr dθ

with

εn =

⎧
⎪⎨
⎪⎩

1, for m �= 0

2, for m = 0

and αmn is the nth root of the equation Jm (αmn) = 0.

5. u (r, θ) = 1
3 +

(
2/3a2

)
r2P2 (cos θ).

7. u (r, z) =

∞∑

n=1

an sinh αn(l−z)/a
cosh αnl/a J0 (αnr/a), where an = 2qu

kα2
nJ0(αn) and

αn is the root of J0 (αn) = 0 and k is the coefficient of heat conduction.

8. u (r, z) = 4u0

π

∞∑

n=1

[I0(2n+1)(πr/l)]
[I0(2n+1)(πa/l)]

sin(2n+1)πz/l
(2n+1) .

9. u (r, θ) = u2 +
(

u1−u2

2

) ∞∑

n=1

(
2n+1
n+1

)
Pn−1 (0)

(
r
a

)n
Pn (cos θ).

11. u (r, θ, φ) = C +
∞∑

n=1

∞∑

m=0

rnPm
n (cos θ) [anm cos mφ + bnm sin nφ],

where
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anm =
(2n + 1) (n − m)!

2nπ (n + m)!

∫ 2π

0

∫ π

0

f (θ, ϕ) Pm
n (cos θ) cos mϕ sin θ dθ dϕ

bnm =
(2n + 1) (n − m)!

2nπ (n + m)!

∫ 2π

0

∫ π

0

f (θ, ϕ) Pm
n (cos θ) sinmϕ sin θ dθ dϕ

an0 =
(2n + 1)

4nπ

∫ 2π

0

∫ π

0

f (θ, ϕ) Pn (cos θ) sin θ dθ dϕ.

12. u (x, y, t) =
∞∑

n=1,3,4,...

(
− 4

π

) [1−(−1)n]
n(n2−4) cos

(√
(n2 + 1)πct

)
(sin nπx sin nπy).

13. u (r, θ, t) =
∞∑

n=0

∞∑

m=1

Jn (αmnr/a) cos (αmnct/a) [amn cos nθ + bmn sin nθ]

+

∞∑

n=0

∞∑

m=1

Jn (αmnr/a) sin (αmnct/a) [cmn cos nθ + dmn sin nθ],

where

amn =
2

πa2εn [J ′
n (αmn)]

2

∫ 2π

0

∫ a

0

f (r, θ) Jn (αmnr/a) cos nθ r dr dθ

bmn =
2

πa2 [J ′
n (αmn)]

2

∫ 2π

0

∫ a

0

f (r, θ) Jn (αmnr/a) sinnθ r dr dθ

cmn =
2

πacαmnεn [J ′
n (αmn)]

2

∫ 2π

0

∫ a

0

g (r, θ) Jn (αmnr/a) cos nθ r dr dθ

dmn =
2

πacαmn [J ′
n (αmn)]

2

∫ 2π

0

∫ a

0

g (r, θ) Jn (αmnr/a) sinnθ r dr dθ

in which αmn is the root of the equation Jn (αmn) = 0 and

εn =

⎧
⎪⎨
⎪⎩

2 n = 0

1 n �= 0
.
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15. u (r, θ, t) =

∞∑

n=0

∞∑

m=1

Jn (αmnr) exp (−αmnkt) [amn cos nθ + bmn sin nθ],

where

anm =
2

πεn [J ′
n (αmn)]

2

∫ 2π

0

∫ 1

0

f (r, θ) Jn (αmnr) cos nθ r dr dθ,

bnm =
2

π [J ′
n (αmn)]

2

∫ 2π

0

∫ 1

0

f (r, θ) Jn (αmnr) sinnθ r dr dθ,

where αmn is the root of the equation Jn (αmn) = 0 and

εn =

⎧
⎪⎨
⎪⎩

1 for n �= 0

2 for n = 0.

16. u (x, y, z, t) = sinπx sin πy sin πz cos
(√

3 πct
)
.

18. u (r, θ, z, t) =

∞∑

n=0

∞∑

m=1

∞∑

l=1

Jn (αmnr/a) sin (mπz/l) cos (ωct)

× [anml cos nθ + bnml sin nθ]

+

∞∑

n=0

∞∑

m=1

∞∑

l=1

Jn (αmnr/a) sin (mπz/l) sin (ωct)

× [cnml cos nθ + dnml sin nθ],

where

anml =
4

πa2lεn [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

f (r, θ, z) Jn (αmnr/a)

× sin (mπz/l) cos nθ r dr dθ dz,

bnml =
4

πa2l [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

f (r, θ, z) Jn (αmnr/a)

× sin (mπz/l) sinnθ r dr dθ dz,

cnml =
4 ω−1

πa2lεn [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

g (r, θ, z) Jn (αmnr/a)

× sin (mπz/l) cos nθ r dr dθ dz,



734 Answers and Hints to Selected Exercises

dnml =
4 ω−1

πa2l [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

g (r, θ, z) Jn (αmnr/a)

× sin (mπz/l) sinnθ r dr dθ dz,

where αmn is the root of the equation Jn (αmn) = 0 and

ω =
[
(mπ/l)

2
+ (αmn/a)

2
] 1

2

, εn =

⎧
⎪⎨
⎪⎩

1; for n �= 0

2; for n = 0.

20. u (r, θ, z, t) =
∞∑

n=0

∞∑

m=1

∞∑

p=1

(anmp cos nθ + bnmp sin nθ)

×Jn (αmnr/a) sin (pπz/l) e−ωt,

where

anmp =
4

πa2lεn [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

f (r, θ, z) Jn (αmnr/a)

× sin (pπz/l) cos nθ r dr dθ dz

bnmp =
4

πa2l [J ′
n (αmn)]

2

∫ a

0

∫ 2π

0

∫ l

0

f (r, θ, z) Jn (αmnr/a)

× sin (pπz/l) sinnθ r dr dθ dz,

in which

εn =

⎧
⎪⎨
⎪⎩

1 for n �= 0

2 for n = 0
and ω =

[
(pπ/l)

2
+ (αmn/a)

2
]
.

23. u (x, y, t) =

∞∑

m=1

∞∑

n=1

umn (t) sinmx sin ny,

where
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umn (t) =
4 (−1)

m+n+1

mn αmnc

[
sin (αmnct)

{
cos (1 − αmnc) t − 1

2 (1 − αmnc)

+
cos (1 + αmnc) t − 1

2 (1 + αmnc)

}]

+ cos (αmnct)

{
sin (1 − αmnc) t

2 (1 − αmnc)
+

sin (1 + αmnc) t

2 (1 + αmnc)

}
,

and αmn =
(
m2 + n2

) 1
2 .

25. u (x, y, t) =
∞∑

n=1

∞∑

m=1

4A
mnπ2

[(−1)n−1][(−1)n−1]
k(n2+m2)

[
1 − e−k(n2+m2)t

]

× sin nx (sin my − m cos my).

27. u (x, y, t) = x (x − π)
(
1 − y

π

)
sin t +

∞∑

n=1

∞∑

m=1

vmn (t) sinnx sin my, where

α2
mn =

(
m2 + n2

)
and

vmn (t) =
8 exp

(
−c2α2tα2

mn

)
[1 − (−1)

n
]

π2mn (1 + c4α4
mn)

[
c2

n2

(
α2

mn − n2
)

×
{
cos t exp

(
−c2α2tα2

mn

)
− 1

}

+

(
1

n2
+ c4α2

mn

)
sin t exp

(
−c2α2tα2

mn

)]
.

30. u (x, y, t) =
(

4qb4

π5D

) ∞∑

n=1,3,...

1
n5

[
1 − vn(x)

1+cosh(nπa/b)

]
sin (nπy/b), where

vn (x) = 2 cosh
(nπa

2b

)
cosh

(nπx

b

)
+

(nπa

2b

)
sinh

(nπa

2b

)
cosh

(nπx

b

)

−
(nπx

b

)
sinh

(nπx

b

)
cosh

(nπa

2b

)
.

32. Hint: In region 1, x ≤ −a, the solution of the Schrödinger equation

d2ψ
dx2 = κ2ψ, κ2 = 2M

�2 (V0 − E) ,

is

ψ1 (x) = A eκx + B e−κx,

where A and B are constants. For boundedness of the solution as
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x → −∞, B ≡ 0, and hence, ψ1 (x) = A eκx.

In region 2, x ≥ a, the solution of the Schrödinger equation is

ψ2 (x) = C eκx + D e−κx.

For boundedness as x → ∞, C ≡ 0. The solution is ψ2 (x) = D e−κx.

In region 3, −a ≤ x ≤ a, the potential is zero and hence, the equation

takes the simple form ψxx + k2ψ = 0, where k2 =
(

2M
�2

)
E. The solu-

tion is ψ3 (x) = E sin kx + F cos kx. For matching conditions at x = a,

ψ2 (a) = ψ3 (a),

or, De−aκ = E sin ka+F cos ak. (1)

Similarly, matching conditions at x = −a gives ψ1 (−a) = ψ3 (−a),

or A e−aκ = −E sin ak + F cos ak. (2)

Further, matching the derivatives ψ′ (a), ψ′ (−a) gives ψ′
2 (a) = ψ′

3 (a)

and ψ′
1 (−a) = ψ′

3 (−a),

or −κDe−aκ = k (E cos ak − F sin ak), (3)

κAe−κa = k (E cos ak − F sin ak). (4)

Adding and subtracting (1) and (2) gives

2F cos ak = (A + D) e−aκ, 2E sin ak = − (A − D) e−aκ.

Adding and subtracting (3) and (4) gives

2k E cos ak = −κ (A − D) e−aκ, 2k F sin ak = κ (A + D) e−aκ.

Setting A − D = −A1 and A + D = A2, the last two sets of equations

can be combined and rewritten as

2E sin ak − A1e
−aκ = 0

2k E cos ak + κA1e
−aκ = 0

⎫
⎪⎬
⎪⎭

(5)

and

2F cos ak − A2e
−aκ = 0

2k F sin ak − κA2e
−aκ = 0

⎫
⎪⎬
⎪⎭

. (6)

The set (5) has nontrivial solutions for E and A1 only if
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∣∣∣∣∣∣∣∣∣∣

2 sin ak −e−aκ

2k cos ak κe−aκ

∣∣∣∣∣∣∣∣∣∣

= 0 which gives k cot ak = −κ.

Similarly, the set (6) has nontrivial solutions for F and A2 only if

k tan ak = κ.

Note that it is impossible to satisfy both k cot ak = −κ and k tan ak = κ

simultaneously. Hence, there are two classes of solutions, and solution

is possible in quantum mechanics only if the energy satisfies certain

conditions.

1. Odd solutions: k cot ak = −κ. In this case, F = A2 = 0. In terms

of dimensionless variables, ξ = ak and η = aκ with definitions of k and

κ, it follows that

ξ2 + η2 = a2
(
k2 + κ2

)
= a2

[
2M
�2 (V0 − E) + 2M

�2 E
]

= 2M V0a2

�2 . (7)

This represents a circle. In terms of ξ and η, we write k cot ak = −κ as

ak cot ak = −aκ, or ξ cot ξ = −η. (8)

The simultaneous solutions of equations (7) and (8) can be determined

from graphs of these functions at their point of intersection. It turns out

that both ξ and η assume the positive values in the first quadrant only.

Clearly, in the range 0 ≤ α = 2M V0a2

�2 < π2

4 , there is no solution. For
(

π
2

)2 ≤ α ≤
(

3π
2

)2
, there is one solution. Thus, the existence of solu-

tions depends on the parameters, M , V0 and the range of the potential.

A simultaneous solution determines the allowed energy for which the

quantum mechanical motion is described by an odd solution.

2. Even solutions: k tan ak = κ. In this case, E = A1 = 0, and (5)

still holds. We can write the above condition in terms of nondimensional

variables as
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ξ tan ξ = η. (9)

The simultaneous solutions of (7) and (9) can be found graphically as

before. It follows from the graphical representation that (7) and (9) in-

tersect once if 0 ≤ α < π2 in the first quadrant. There are two points of

intersection if π2 ≤ α < (2π)
2
. The number of intersections (solutions)

increases with the value of the parameter α. For each such allowed

value of the energy determined from the points of intersection, there is

an even solution in the present case.

Note also that, for both even and odd solutions, ψ (x) is nonzero out-

side the finite square well so that there exists a nonzero probability for

finding the particle there. This result is different from what is expected

in classical mechanics. Finally, if V0 → ∞, it is easy to see that the

intersections occur at ξ = nπ,
(
n + 1

2

)
π which are in agreement with

the analysis of the infinite square well potential discussed in Example

10.10.1.

33. Hint: The boundary conditions at x = −a yields the matching condi-

tions

A e−ika + B eika = C eaκ + D e−aκ,

A e−ika − B eika =

(
iκ

k

)(
C eaκ − D e−aκ

)
.

These results give the desired solution.

Similarly, matching conditions at x = a gives the desired answer.

Combining the matching relations leads to the final matrix equation.
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11.11 Exercises

3. u (ρ, θ) = 1
2π

∫ 2π

0

(ρ2−1)f(β)dβ

[1−ρ2−2ρ cos(β−θ)] .

7. u (x, y) = −
(

2
b

) ∞∑

n=1

sin(nπy/b)
sinh(nπa/b)

[
sinh

{
nπ
b (a − x)

}∫ x

0

f (ξ) sinh nπξ
b dξ

+ sinh
(

nπx
b

) ∫ a

0

f (ξ) sinh
{

nπ
b (a − ξ)

}
dξ

]
.

8. u (r, θ) = −
∞∑

n=0

∞∑

k=1

(R/αnk)
2
Jn (αnkr/R) (Ank cos nθ + Bnk sin nθ),

where

A0k = 1
πR2J2

1 (α0k)

∫ R

0

∫ 2π

0

rf (r, θ) J0 (α0kr/R) dr dθ

Ank = 2
πR2J2

n+1(αnk)

∫ R

0

∫ 2π

0

rf (r, θ) Jn (αnkr/R) cos nθ dr dθ

Bnk = 2
πR2J2

n+1(αnk)

∫ R

0

∫ 2π

0

rf (r, θ) Jn (αnkr/R) sinnθ dr dθ

n = 1, 2, 3, . . .; k = 1, 2, 3, . . . and αnk are the roots of J (αnk) = 0.

9. G (r, r′) = eik|r−r′|
|r−r′| − eik|ρ−r′|

|ρ−r′| ,

where r = (ξ, η, ζ), r′ = (x, y, z), and ρ = (ξ, η,−ζ).

10. G (r, r′) = eik|r−r′|
|r−r′| + eik|ρ−r′|

|ρ−r′| .

14. G = − 4a
π

∞∑

n=1

∫ ∞

0

1
(α2a2+n2π2) sin

(
nπx

a

)
sin

(
nπξ

a

)
sin αy sin αη dα.

16. u (r, z) = 2C
π

∫ ∞

0

∫ ∞

0

1
(κ2−λ2−β2)J0 (βr) J1 (βa) cos λz dβ dλ.

17. u (r, θ) = A r
1
2 sin (θ/2).

18. G = − 2
a

∞∑

n=1

sinh σy′ sinh σ(y−b)
σ sinh σb sin

(
nπx

a

)
sin

(
mπx′

a

)
,

σ =
√

(κ2 + (n2π2) /α2), 0 < x′ < x < a, 0 < y′ < y < b.
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12.18 Exercises

1. (a) F (k) =
√

(1/2a) e−k2/4a, (b) F (k) =
√

2
π

a
(a2+k2) .

2. Fa (k) =
√

(2/π) (sin ka) /k. This function Fa (k) is called the band

limited function.

3. (a) Fa (k) = 1/ |k|. (b) F (k) = 1√
2π

∫ a

−a

e−iωxdx =
√

2
π

(
sin aω

ω

)
.

(c) F (k) = 1√
2π

∫ a

−a

e−ikx
(
1 − |x|

a

)
dx = 2√

2π

∫ a

0

(
1 − x

a

)
cos kx dx

= 2a√
2π

∫ 1

0

(1 − x) cos (akx) dx = 2a√
2π

∫ 1

0

(1 − x) d
dx

(
sin akx

ak

)
dx

= 2a√
2π

∫ 1

0

sin(akx)
ak dx = a√

2π

∫ 1

0

d
dx

[
sin2( 1

2 akx)
( 1

2 ak)
2

]
dx

= a√
2π

sin2( 1
2 ak)

( 1
2 ak)

2 .

(d) F (k) =
√

π
2

exp(−a|k|)
a .

4. (a) F (k) =
√

(1/2) sin
(

k2

4 + π
4

)
, (b) F (k) =

√
(1/2) cos

(
k2

4 − π
4

)
.

6. Hint: I (a, b) =

∫ ∞

0

e−a2x2

cos bx dx.

∂I
∂b = − b

2a2 I ⇒ I = C exp
(
− b2

4a2

)
.

Since I (a, 0) = C =

∫ ∞

0

e−a2x2

dx =
√

π
2a , I (a, b) =

√
π

2a exp
(
−b2/4a2

)
.

7. (a) f (x) =

∫ ∞

−∞
f (t) δ (x − t) dt =

∫ ∞

−∞
f (t) dt 1

2π

∫ ∞

−∞
eik(x−t)dk

= 1√
2π

∫ ∞

−∞
eikx dk 1√

2π

∫ ∞

−∞
e−ikt f (t) dt = 1√

2π

∫ ∞

−∞
eikxF (k) dk.

8. (b) Omit the factor 1√
2π

in the definition of convolution.

[f ∗ (g ∗ h)] (x) =

∫ ∞

−∞
f (x − ξ) (g ∗ h) (ξ) dξ

=

∫ ∞

−∞
f (x − ξ) dξ

∫ ∞

−∞
g (ξ − t) h (t) dt

=

∫ ∞

−∞

[∫ ∞

−∞
f (x − ξ) g (ξ − t)

]
h (t) dt (ξ − t = η)
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=

∫ ∞

−∞

[∫ ∞

−∞
f (x − t − η) g (η) dη

]
h (t) dt

=

∫ ∞

−∞
(f ∗ g) (x − t) h (t) dt = [ (f ∗ g) ∗ h] (t).

(g) F−1 {(F ∗ G) (k)} = 1√
2π

∫ ∞

−∞
eikx [F (k) ∗ G (k)] dk

= 1√
2π

∫ ∞

−∞
eikx dk 1√

2π

∫ ∞

−∞
F (k − ξ) G (ξ) dξ

= 1√
2π

∫ ∞

−∞
G (ξ) dξ 1√

2π

∫ ∞

−∞
eikx F (k − ξ) dk

= 1√
2π

∫ ∞

−∞
G (ξ) dξ 1√

2π

∫ ∞

−∞
ei(ξ+η)x F (η) dη = f (x) g (x).

9. (a) (f ∗ g)
′
(x) = d

dx

∫ ∞

−∞
f (x − ξ) g (ξ) dξ =

∫ ∞

−∞

[
d
dx f (x − ξ)

]
g (ξ) dξ

=

∫ ∞

−∞
f ′ (x − ξ) g (ξ) dξ = (f ′ ∗ g) (x).

(c) Apply the Fourier transform and then use the convolution theorem.

The use of the inverse Fourier transform proves the result.

(d)

∫ ∞

−∞
(f ∗ g) (x) dx =

∫ ∞

−∞

[∫ ∞

−∞
f (x − ξ) g (ξ) dξ

]
dx

=

∫ ∞

−∞
g (ξ)

[∫ ∞

−∞
f (x − ξ) dx

]
dξ

=

∫ ∞

−∞
g (ξ)

[∫ ∞

−∞
f (η) dη

]
dξ

=

∫ ∞

−∞
g (ξ) dξ

∫ ∞

−∞
f (η) dη.

(f) Apply the definition of the Fourier transform without the factor

1√
2π

. This means that F
{
exp

(
−ax2

)}
=

√
π
a exp

(
−k2

4a

)
.

F {(Gt ∗ Gs) (x)} = F {Gt (x)} F {Gs (x)}

= exp
(
−k2κ t

)
exp

(
−k2κ s

)
.

= exp
[
−k2 (t + s) κ

]
.

The inverse Fourier transform gives the result.
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10. (b) L.H.S. =

∫ ∞

−∞
g (k) eikxdk 1√

2π

∫ ∞

−∞
e−ikyf (y) dy

=

∫ ∞

−∞
f (y) dy 1√

2π

∫ ∞

−∞
e−ik(y−x)g (k) dk

=

∫ ∞

−∞
G (y − x) f (y) dy.

(c) Putting x = 0 in the result of 10(b) gives the desired result.

(d) sinx ∗ e−a|x| = 1√
2π

∫ ∞

−∞
sin (x − ξ) e−a|ξ|dξ

= 1√
2π

[∫ ∞

0

sin (x + η) e−aηdη +

∫ ∞

0

sin (x − ξ) e−aξdξ

]

= 1√
2π

∫ ∞

0

[sin (x + ξ) + sin (x − ξ)] e−aξdξ

= 1√
2π

2 sin x

∫ ∞

0

cos ξ e−aξdξ = 1√
2π

sin x
(

a
1+a2

)
.

(e) eax ∗ χ[0,∞) (x) = 1√
2π

∫ ∞

0

ea(x−ξ)dξ = 1
a

eax
√

2π
.

(f) Apply the Fourier transform to the left hand side to obtain

1√
4ab

F
{

exp
(
−x2

4a

)}
F

{
exp

(
−x2

4b

)}

= 1√
4ab

√
2a e−ak2 ·

√
2b e−bk2

= e−(a+b)k2

which can be inverted to find the result.

11. u (x, t) = 1
2 [f (x + ct) + f (x − ct)] + 1

2c

∫ x+ct

x−ct

g (τ) dτ .

12. u (x, t) = 1
2
√

πt

∫ ∞

0

[
e−(x−ξ)2/4t − e−(x+ξ)2/4

]
f (ξ) dξ.

13. u (x, t) = 1√
2π

∫ ∞

−∞
F (ξ) cos

(
c ξ2t

)
e−iξxdξ.

14. u (x, t) = 1√
π

∫ ∞

x/
√

2at

g
(

t−x2

2aξ2

)(
sin ξ2

2 + cos ξ2

2

)
dξ.

15. u (x, t) = δ0

2π

∫ ∞

−∞

sin aξ
ξ

eiξx

|ξ| e−|ξ|ydξ.

16. φ (x, t) =
√

4πt

∫ ∞

−∞
e−(x−ξ)2/4tf (ξ) dξ.
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19. u (x, y) = 2y
π

∫ ∞

0

(x2+τ2+y2)f(τ)dτ

[y2+(x−τ)2][y2+(x+τ)2]

− 1
2π

∫ ∞

0

g (τ) log

(
[x2+(y+τ)2]
[x2+(y−τ)2]

)
dτ.

21. u (x, y) = 2
π

∫ ∞

0

ξ sin xξ

∫ t

0

e−ξ2(t−τ)f (τ) dτ dξ.

22. u (x, y) = 2
π

∫ ∞

0

sin ξx sin hξ(1−y)
sin hξ

∫ ∞

0

f (τ) sin ξτ dτ dξ.

24. (a)
(
b2 − a2

)−1
(cos at − cos bt), (b)

(
b2 − a2

)−1 (
sin at

a − sin bt
b

)
,

(c) (a − b)
−1 (

eat − ebt
)
, (d) 1 − e−at − ate−at,

(e) 1
a (1 − e−at), (f) 1

a sin at − 2 (sin at ∗ sin at).

28. u (x, t) =

⎧
⎪⎨
⎪⎩

1
2 [f (ct + x) − f (ct − x)] for t > x/c

1
2 [f (x + ct) + f (x − ct)] for t < x/c.

29. u (x, t) =

⎧
⎪⎨
⎪⎩

0, for t < x/c

f (t − x/c) , for x/c < t ≤ (2 − x) /c.

30. u (x, t) = f0 + (f1 − f0) erfc
(√

(x2/4κt)
)
.

31. u (x, t) = x − x erfc
(
x/

√
4κt

)
.

32. u (x, t) = 2

∫ t

0

∫ η

0

erfc
(
x/

√
4κξ

)
dη dξ.

33. u (x, t) = f0 e−ht
[
1 − erfc

(
x/

√
4κt

)]
.

34. u (x, t) = f0 erfc
(
x/

√
4κt

)
.

35. u (x, t) =

⎧
⎪⎨
⎪⎩

f0t, for t < x/c

f0x/c, for t > x/c.

36. u (x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 [f (x + ct) − f (ct − x)] , t < x/c

1
2 [f (x + ct) + f (x − ct)] , t > x/c.
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37. V (x, t) = V0

(
t − x

c

)
H

(
t − x

c

)
.

(i) V = V0H
(
t − x

c

)
, (ii) V = V0 cos

{
ω
(
t − x

c

)}
H

(
t − x

c

)
.

38. u (z, t) = Ut
[(

1 + 2ζ2
)
erfc (ζ) − 2ζ√

π
e−ζ2

]
, where ζ = z

2
√

νt
.

41. V (x, t) = V0erfc
(

x
2
√

κt

)
.

42. q (z, t) = a
2eiωt

[
e−λ1zerfc

{
ζ − [it (2Ω + ω)]

1
2

}

+eλ1zerfc
{

ζ + [it (2Ω + ω)]
1
2

}]

+ b
2e−iωt

[
e−λ2zerfc

{
ζ − [it (2Ω − ω)]

1
2

}

+eλ2zerfc
{

ζ + [it (2Ω − ω)]
1
2

}]
,

where

λ1,2 =

{
i(2Ω + ω)

ν

}
.

q (z, t) ∼ a exp (iωt − λ1z) + b exp (−iωt − λ2z), δ1,2 =

{
ν

|2Ω + ω|

} 1
2

.

43.
(

ν
2Ω

) 1
2 .

45. f (t) = f (0) + 1
Γ (α)Γ (1−α)

∫ t

0

g (x) (t − x)
α−1

dx.

46. x = a (θ − sin θ), y = a (1 − cos θ).

55. u (x, t) =

∞∑

n=1

sin nx

∫ t

0

e−n2(t−τ)an (τ) dτ +

∞∑

n=1

bn (0) sinnx e−n2t,

where

an (t) = 2
π

∫ π

0

g (x, t) sinnx dx, bn (0) = 2
π

∫ π

0

f (x) sinnx dx.

57. u (x, t) =

∞∑

n=1

2
π sin

{(
n − 1

2

)
x
}∫ t

0

∫ π

0

e−(2n−1)2(t−τ)/4

× sin
{(

n − 1
2

)
ξ
}

g (ξ, τ) dξ dτ .

61. u (x, t) = c
2

[
sinh

(

x
√

1/c
)

sinh
(

π
√

1/c
) −

sin
(

x
√

1/c
)

sin
(

π
√

1/c
)

]
sin t

+
(

2
πc

) ∞∑

n=1

(−1)
n+1 n

n4−(1/c)2
sin n2ct sin nx,

in which
√

1/c is not an integer.
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65. f (x) =

∫ ∞

0

g (t) h (xt) dt, where h (x) = M−1
[

1
K(1−p)

]
.

14.11 Exercises

13. (c) With h = 0.2, the initial values are ui,0 (ih, 0) = sinπ (ih).

u1,0 = sin 0.2π = 0.5878, u2,0 = sin 0.4π = 0.9511.

Also, u2,0 = u3,0 and u1,0 = u4,0.

In each time step, there are 4 internal mesh points. We have to solve

4 equations with 4 unknowns. However, the initial temperature distri-

bution is symmetric about x = 0.5, and u = 0 at the endpoints for all

time t. We have u3,1 = u2,1 and u4,1 = u1,1 in the first time row and

similarly for the other time rows. This gives two equations with two

unknowns.

16. (a) y = x3, (b) y = sinx, (c) x2 + (y − β)
2

= r2,

where β and r are constants.

17. x = a (θ − sin θ), y = a (1 − cos θ).

18. Hint: I (y (x)) = 2π

∫ x1

x0

y
(
1 + y′2) 1

2 dx.

x = c1t + c2, y = c1 cosh t = c1 cosh
(

x−c2

c1

)
.

(A surface generated by rotation of a catenary is called a catenoid).

21. (a) ∇4u = 0 (Biharmonic equation)

(b) utt − α2∇2u + β2u = 0 (Klein–Gordon equation)

(c) φt + αφx + βφxxx = 0, (φ = ux) (KdV equation)

(d) utt + α2uxxxx = 0 (Elastic beam equation)

(e) d
dx (pu′) + (r + λs) u = 0 (Sturm–Liouville equation).

22. �
2

2m∇2ψ + (E − V ) ψ = 0 (Schrödinger equation).

24. utt − c2uxx = F (x, t), where c2 = T ∗/ρ.
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29. Hint: yn = x (1 − x)

n∑

r=1

arx
r−1. Find the solution for n = 1 and n = 2.

n = 1 : a1 = 5
18 , y1 = a1x (1 − x).

n = 2 : a1 = 71
369 , a2 = 7

41 , y2 = x (1 − x) (a1 + a2x).

30. Hint: u1 (x, y) = a1xy.

I (u1) = πab
4

[
(a1 + 1)

2
a2 + (a1 − 1)

2
b2

]
, a1 =

(
b2−a2

b2+a2

)
.

31. Hint: u3 = x (1 − x) (1 − y) + x (1 − x) y (1 − y) (a2 + a3y).

32. Hint: u2 = x (2 − x − 2y) + a2 xy (2 − x − 2y).

33. Hint: ΨN =

N∑

m,n=1

amn φmn =

N∑

m,n=1

amn cos
(

mπx
2a

)
cos

(
nπy
2b

)
.

34. Hint: φn = cos
[
(2n − 1) πr

2a

]
.

35. Hint: I (u) =

∫ a

−a

∫ a

−a

[(
∇2u

)2 −
(

4α
a2

)
u
]
dx dy = min, and

un =
(
x2 − a2

)2 (
y2 − a2

)2 (
a1 + a2x

2 + a3y
3 + . . .

)
.

36. Hint: Ψ1 =
(
b2 − y2

)
U (x).

37. (a) Introduce two functions φ and ψ and two parameters α and β such

that U = u + αφ (x) and V = v + βψ (x). Then ∂I
∂α = 0 and ∂I

∂β = 0.

40. (a) uy − uxy′ = uy′′

1+y′2 .

(b) y′2 = 1−A2(y1−y)
A2(y1−y) , (d) 2y′′ − 3y + 3xy2 = 0.

42. Seek an approximate solution

un (x, y) =
(
a2 − x2

) (
b2 − y2

) (
a1 + a2x

2 + a3y
2 + . . . + anx2ry2s

)
.

For n = 1, f = 2

0 =

∫∫

R

(−u1xx − u1yy − 2)
(
a2 − x2

) (
b2 − y2

)
dx dy

= 2

∫ a

−a

∫ b

−b

[
1 − a1

(
a2 − x2

)
− a1

(
b2 − y2

)] (
a2 − x2

) (
b2 − y2

)
dx dy

= 32
9 a2b3 − 128

45 (ab)
3 (

a2 + b2
)
a1, a1 = 5

4

(
a2 + b2

)−1

and u1 = 5
4

(a2−x2)(b2−y2)
(a2+b2) .
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The torsional moment

M = 2Gθ

∫ a

−a

∫ b

−b

u1dx dy =
(

40
9

)
(Gθ)

(
a3b3

a2+b2

)
,

where G is the shear modulus and θ is the angle of twist per unit length.

When a = b, M =
(

20
9

)
Gθa4 ∼ 0.1388 (2a)

4
Gθ. The tangential stresses

are

τzx = Gθ
(

∂u1

∂y

)
, τzy = Gθ

(
∂u1

∂x

)
.

(b) The exact solution is

u (x, y) = x (a − x) − 8a2

π3

∞∑

n=1

cosh{(2n−1) πy
2a } sin{(2n−1) πx

a }
(2n−1)3 cosh{(2n−1) πb

2a } .

M = 2Gθ

[
a3b
6 − 32a4

π5

∞∑

n=1

1
(2n−1)5

tanh
{
(2n − 1) πb

2a

}
]

.

For a = b, M = 0.1406 (2a)
4
Gθ.

43. This problem deals with the expansion of a rectangular plate under

tensile forces. Make the boundary conditions homogeneous. Integrating

the boundary conditions gives

u0 = 1
2c y2

(
1 − y2

6b2

)
.

Set u = u0+ũ so that ∇4ũ =
(

2c
b2

)
and the boundary conditions become

ũxy = 0 = ũyy for x = + a, ũxy = 0 = ũxx for y = + b.

These boundary conditions hold if

ũ = 0, ũx = 0 for x = + a,

ũ = 0, ũy = 0 for y = + b.

By the Rayleigh–Ritz method∫∫

R

(
∇4un − f

)
φkdx dy = 0, k = 1, 2, . . . , n,

where the nth approximate solution un (x, y) has the form

un (x, y) =
(
x2 − a2

)2 (
y2 − b2

)2 (
a1 + a2x

2 + a3y
2 + . . .

)
.

For n = 1,

0 =

∫ a

−a

∫ b

−b

[
24a1

(
y2 − b2

)2
+ 16a1

(
3x2 − a2

) (
3y2 − b2

)

+24a1

(
x2 − a2

)2 −
(

2c
b

)] (
x2 − a2

)2 (
y2 − b2

)2
dx dy,
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or
(

54
7 + 256

49
b2

a2 + 64
7

b4

a4

)
a1 = c

a6b2 .

When a = b, a1 = (0.04325) c
a6 .

u1 ∼ u0 + ũ1 = 1
2c y2

(
1 − y2

6b2

)
+ (0.04325)

(
c a−6

)

×
(
x2 − a2

)2 (
y2 − b2

)2
.

44. dF
dx = ∂F

∂x + ∂F
∂u

du
dx + ∂F

∂u′ · du′

dx = ∂F
∂x + u′ ∂F

∂u + u′′ ∂F
∂u′

d
dx

(
u′ ∂F

∂u′

)
= u′ d

dx

(
∂F
∂u′

)
+ ∂F

∂u′ · u′′.

Subtracting the latter from the former with (14.6.12) we obtain

d
dx

(
F − u′ ∂F

∂u′

)
= ∂F

∂x + u′ [∂F
∂u − d

dx

(
∂F
∂u′

)]
= ∂F

∂x .

45. H = I − λJ =

∫ b

a

F (x, y, y′) dx

=

∫ b

0

[
p (x) y′2 − q (x) y2 − λ r (x) y2

]
dx.

The extremum of H leads to the Euler–Lagrange equation

d
dx

(
∂F
∂y′

)
− ∂F

∂y = 0.

This leads to the answer.

46. (a) For simplicity, we assume that l is an integer and partition the

interval into l equal subintervals. Each of the l − 1 = n interior vertices

has the trial function vj (x) defined by

vj (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − j + x for j − 1 ≤ x ≤ j,

1 + j − x for j ≤ x ≤ j + 1,

0 otherwise.

vj (x) is continuous and piecewise linear with vj (j) = 1 and vj (k) = 0

for all integers k �= j.



Appendix: Some Special Functions and Their

Properties

“One of the properties inherent in mathematics is that any real progress is
accompanied by the discovery and development of new methods and sim-
plifications of previous procedures ... The unified character of mathematics
lies in its very nature; indeed, mathematics is the foundation of all exact
natural sciences.”

David Hilbert

This appendix is a short introduction to some special functions used in
the book. These functions include gamma, beta, error, and Airy functions
and their main properties. Also included are Hermite and Webber–Hermite
functions and their properties. Our discussion is brief since we assume that
the reader is already familiar with this material. For more details, the reader
is referred to appropriate books listed in the bibliography.

A-1 Gamma, Beta, Error, and Airy Functions

The Gamma function (also called the factorial function) is defined by a
definite integral in which a variable appears as a parameter

Γ (x) =

∫ ∞

0

e−ttx−1dt, x > 0. (A-1.1)

In view of the fact that the integral (A-1.1) is uniformly convergent for all
x in [a, b] where 0 < a ≤ b < ∞, Γ (x) is a continuous function for all x > 0.

Integrating (A-1.1) by parts, we obtain the fundamental property of
Γ (x)
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Γ (x) =
[
−e−ttx−1

]∞
0

+ (x − 1)

∫ ∞

0

e−ttx−2dt

= (x − 1) Γ (x − 1) , for x − 1 > 0.

Then we replace x by x + 1 to obtain the fundamental result

Γ (x + 1) = x Γ (x) . (A-1.2)

In particular, when x = n is a positive integer, we make repeated use of
(A-1.2) to obtain

Γ (n + 1) = nΓ (n) = n (n − 1) Γ (n − 1) = · · ·
= n (n − 1) (n − 2) · · · 3 · 2 · 1 Γ (1) = n!, (A-1.3)

where Γ (1) = 1.
We put t = u2 in (A-1.1) to obtain

Γ (x) = 2

∫ ∞

0

exp
(
−u2

)
u2x−1du, x > 0. (A-1.4)

Letting x = 1
2 , we find

Γ

(
1

2

)
= 2

∫ ∞

0

exp
(
−u2

)
du = 2

√
π

2
=

√
π. (A-1.5)

Using (A-1.2), we deduce

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
. (A-1.6)

Similarly, we can obtain the values of Γ
(

5
2

)
, Γ

(
7
2

)
, . . . , Γ

(
2n+1

2

)
.

The gamma function can also be defined for negative values of x by
rewriting (A-1.2) as

Γ (x) =
Γ (x + 1)

x
, x �= 0,−1,−2, . . . (A-1.7)

For example

Γ

(
−1

2

)
=

Γ
(

1
2

)

− 1
2

= −2 Γ

(
1

2

)
= −2

√
π, (A-1.8)

Γ

(
−3

2

)
=

Γ
(
− 1

2

)

− 3
2

=
4

3

√
π. (A-1.9)

We differentiate (A-1.1) with respect to x to obtain
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Figure A-1.1 The gamma function.

d

dx
Γ (x) = Γ ′ (x) =

∫ ∞

0

d

dx
(tx)

e−t

t
dt

=

∫ ∞

0

d

dx
[exp (x log t)]

e−t

t
dt

=

∫ ∞

0

tx−1 (log t) e−tdt. (A-1.10)

At x = 1, this gives

Γ ′ (1) =

∫ ∞

0

e−t log t dt = −γ, (A-1.11)

where γ is called the Euler constant and has the value 0.5772.
The graph of the gamma function is shown in Figure A-1.1.
Several useful properties of the gamma function are recorded below

without proof for reference.

Legendre Duplication Formula

22x−1 Γ (x) Γ

(
x +

1

2

)
=

√
π Γ (2x) , (A-1.12)
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In particular, when x = n (n = 0, 1, 2, . . .)

Γ

(
n +

1

2

)
=

√
π (2n)!

22n n!
. (A-1.13)

The following properties also hold for Γ (x):

Γ (x) Γ (1 − x) = π cosec πx, x is a noninteger, (A-1.14)

Γ (x) = px

∫ ∞

0

exp (−pt) tx−1dt, (A-1.15)

Γ (x) =

∫ ∞

−∞
exp

(
xt − et

)
dt. (A-1.16)

Γ (x + 1) ∼
√

2π exp (−x) xx+ 1
2 for large x, (A-1.17)

n! ∼
√

2π exp (−n) xn+ 1
2 for large n. (A-1.18)

The incomplete gamma function, γ (x, a), is defined by the integral

γ (a, x) =

∫ x

0

e−tta−1dt, a > 0. (A-1.19)

The complementary incomplete gamma function, Γ (a, x), is defined by the
integral

Γ (a, x) =

∫ ∞

x

e−t ta−1dt, a > 0. (A-1.20)

Thus, it follows that

γ (a, x) + Γ (a, x) = Γ (a) . (A-1.21)

The beta function, denoted by B (x, y) is defined by the integral

B (x, y) =

∫ t

0

tx−1 (1 − t)
y−1

dt, x > 0, y > 0. (A-1.22)

The beta function B (x, y) is symmetric with respect to its arguments
x and y, that is,

B (x, y) = B (y, x) . (A-1.23)

This follows from (A-1.22) by the change of variable 1 − t = u, that is,

B (x, y) =

∫ 1

0

uy−1 (1 − u)
x−1

du = B (y, x) .

If we make the change of variable t = u /(1 + u) in (A-1.22), we obtain
another integral representation of the beta function
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B (x, y) =

∫ ∞

0

ux−1 (1 + u)
−(x+y)

du =

∫ ∞

0

uy−1 (1 + u)
−(x+y)

du,

(A-1.24)

Putting t = cos2 θ in (A-1.22), we derive

B (x, y) = 2

∫ π/2

0

cos2x−1 θ sin2y−1 θ dθ. (A-1.25)

Several important results are recorded below without proof for ready
reference.

B (1, 1) = 1, B

(
1

2
,
1

2

)
= π, (A-1.26)

B (x, y) =

(
x − 1

x + y − 1

)
B (x − 1, y) , (A-1.27)

B (x, y) =
Γ (x) Γ (y)

Γ (x + y)
, (A-1.28)

B

(
1 + x

2
,
1 − x

2

)
= π sec

(πx

2

)
, 0 < x < 1. (A-1.29)

The error function, erf (x) is defined by the integral

erf (x) =
2√
π

∫ x

0

exp
(
−t2

)
dt, −∞ < x < ∞. (A-1.30)

Clearly, it follows from (A-1.30) that

erf (−x) = −erf (x) , (A-1.31)

d

dx
[erf (x)] =

2√
π

exp
(
−x2

)
, (A-1.32)

erf (0) = 0, erf (∞) = 1. (A-1.33)

The complementary error function, erfc (x) is defined by the integral

erfc (x) =
2√
π

∫ ∞

x

exp
(
−t2

)
dt. (A-1.34)

Clearly, it follows that

erfc (x) = 1 − erf (x) , (A-1.35)

erfc (0) = 1, erfc (∞) = 0, (A-1.36)

erfc (x) ∼ 1

x
√

π
exp

(
−x2

)
for large x. (A-1.37)

The graphs of erf (x) and erfc (x) are shown in Figure A-1.2.
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Figure A-1.2 The error function and the complementary error function.

Closely associated with the error function are the Fresnel integrals,
which are defined by

C (x) =

∫ x

0

cos

(
πt2

2

)
dt and S (x) =

∫ x

0

sin

(
πt2

2

)
dt. (A-1.38)

These integrals arise in diffraction problems in optics, in water waves, in
elasticity, and elsewhere.

Clearly, it follows from (A-1.38) that

C (0) = 0 = S (0) (A-1.39)

C (∞) = S (∞) =
π

2
, (A-1.40)

d

dx
C (x) = cos

(
πx2

2

)
,

d

dx
S (x) = sin

(
πx2

2

)
. (A-1.41)

It also follows from (A-1.38) that C (x) has extrema at the points where
x2 = (2n + 1), n = 0, 1, 2, 3, . . . , and S (x) has extrema at the points where
x2 = 2n, n = 1, 2, 3, . . . . The largest maxima occur first and are C (1) =
0.7799 and S

(√
2
)

= 0.7139. We also infer that both C (x) and S (x) are
oscillatory about the line y = 0.5. The graphs of C (x) and S (x) for non-
negative real x are shown in Figure A-1.3.

The Airy differential equation

d2y

dx2
− xy = 0 (A-1.42)

has solutions y1 = Ai (x) and y2 = Bi (x) which are called Airy functions.
Using the transformation y (x) = xαf

(
xβ

)
, where α and β are constants,

the Airy functions can be expressed in term of Bessel functions. Differenti-
ating y (x) with respect to x gives
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Figure A-1.3 The Fresnel integrals C (x) and S (x).

y′ (x) = α xα−1f + β xα+β−1f ′,

y′′ (x) = α (α − 1) xα−2f +
(
2αβ + β2 − β

)
xα+β−2f ′ + β2xα+2β−2f ′′.

Substituting y and y′′ into the Airy equation (A-1.42) gives

β2xα+2β−2f ′′ +
(
2αβ + β2 − β

)
xα+β−2f ′ + xα−2

[
α (α − 1) − x3

]
f = 0.

Multiplying this equation by
(
x2−αβ−2

)
yields

x2βf ′′ + (2α + β − 1) β−1xβf ′ + β−2
[
α (α − 1) − x3

]
f = 0. (A-1.43)

Considering the coefficient of f , we require that x3 be proportional to
x2β so that β = 3/2. The coefficient of f ′ gives α = 1

2 . Hence, y (x) =

x
1
2 f

(
x3/2

)
. Consequently, equation (A-1.43) becomes

x3f ′′ + x3/2f ′ −
[(

2

3
x3/2

)2

− 1

9

]
= 0. (A-1.44)

This equation admits solutions in terms of Bessel functions K1/3 (ξ) and

I1/3 (ξ) where ξ = 2
3x3/2. The general solution of the Airy equation in terms

of Bessel functions is given by

y (x) =
√

x
[
AK1/3 (ξ) + BI1/3 (ξ)

]
. (A-1.45)

In fact, the Airy functions can be expressed as

Ai (x) =
1

π

√
x

3
K1/3 (ξ) , (A-1.46)

Bi (x) =

√
x

3

[
I1/3 (ξ) + I−1/3 (ξ)

]
. (A-1.47)
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The Airy equation (A-1.42) can also be solved by the method of Laplace,
that is, by seeking a solution in integral form

y (x) =

∫

C

exzu (z) dz, (A-1.48)

where the path of integration C is chosen such that u vanishes on the
boundary. It follows that u satisfies the first-order differential equation

du

dz
+ z2u = 0.

The solution of this equation can be obtained in an integral form except
for a normalization factor as

y (x) =
1

2πi

∫ i∞

−i∞
exp

(
xz − 1

3
z3

)
dz = Ai (x) , (A-1.49)

or, equivalently,

Ai (x) =
1

2π

∫ ∞

−∞
exp

[
i

(
xz +

1

3
z3

)]
dz =

1

π

∫ ∞

0

cos

(
xz +

1

3
z3

)
dz.

(A-1.50)

More generally,

Ai (ax) =
1

2πa

∫ ∞

−∞
exp

[
i

(
xz +

z3

3a3

)]
dz

=
1

πa

∫ ∞

0

cos

(
xz +

z3

3a3

)
dz. (A-1.51)

The graph of y = Ai (x) is shown in Figure A-1.4.
Finally, the method of power series can be used to solve the Airy equa-

tion to obtain the solution as

y (x) = a0

[
1 +

∞∑

n=1

x3n

(3n) (3n − 1) (3n − 3) (3n − 4) . . . 3.2

]

+a1

[
x +

∞∑

n=1

x3n+1

(3n + 1) (3n) (3n − 2) (3n − 3) . . . 4.3

]
, (A-1.52)

where a0 and a1 are constants.
The series solution (A-1.52) converges for all x rapidly due to the rapid

decay of the coefficients as n → ∞.
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Figure A-1.4 Graph of the Airy function.

A-2 Hermite Polynomials and Weber–Hermite

Functions

The Hermite polynomials Hn (x) are defined by the Rodrigues formula

Hn (x) = (−1)
n

exp
(
x2

) dn

dxn

[
exp

(
−x2

)]
, (A-2.1)

where n = 0, 1, 2, 3, . . . .
The first seven Hermite polynomials are

H0 (x) = 1

H1 (x) = 2x

H2 (x) = 4x2 − 2

H3 (x) = 8x3 − 12x

H4 (x) = 16x4 − 48x2 + 12

H5 (x) = 32x5 − 16x3 + 120x

H6 (x) = 64x6 − 480x4 + 720x2 − 120.

The generating function of Hn (x) is

exp
(
2x t − t2

)
=

∞∑

n=0

tn

n!
Hn (x) . (A-2.2)

It follows from (A-2.2) that Hn (x) satisfies the parity relation

Hn (−x) = (−1)
n

Hn (x) . (A-2.3)

Also, it follows from (A-2.2) that
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H2n+1 (0) = 0, H2n (0) = (−1)
n (2n)!

n!
. (A-2.4)

The recurrence relations for Hermite polynomials are

Hn+1 (x) − 2x Hn (x) + 2nHn−1 (x) = 0, (A-2.5)

H ′
n (x) = 2x Hn−1 (x) . (A-2.6)

The Hermite polynomials, y = Hn (x), are solutions of the Hermite differ-
ential equation

y′′ − 2xy′ + 2ny = 0. (A-2.7)

The orthogonal property of Hermite polynomials is

∫ ∞

−∞
exp

(
−x2

)
Hn (x) Hm (x) dx = 2nn!

√
π δmn. (A-2.8)

With repeated use of integration by parts, it follows from (A-2.1) that

∫ ∞

−∞
exp

(
−x2

)
Hn (x) xm dx = 0, m = 0, 1, . . . , (n − 1) , (A-2.9)

∫ ∞

−∞
exp

(
−x2

)
Hn (x) xn dx =

√
π n!. (A-2.10)

The Weber–Hermite or, simply the Hermite function

y = hn (x) = exp

(
−x2

2

)
Hn (x) (A-2.11)

satisfies the differential equation

h′′
n (x) +

(
λ − x2

)
hn (x) = 0, (A-2.12)

where λ = 2n + 1. If λ �= 2n + 1, then hn (x) is not finite as |x| → ∞.
The Hermite functions {hn (x)}∞

0 are an orthogonal basis for L2 (R)
with weight function one. They satisfy the following relations:

h′
n (x) = −x hn (x) + 2nhn−1 (x) , (A-2.13)

h′
n (x) = x hn (x) − hn+1 (x) , (A-2.14)

h′′
n (x) − x2 hn (x) + (2n + 1)hn (x) = 0. (A-2.15)

The normalized Weber–Hermite functions are given by

ψn (x) =
hn (x)

(2nn!
√

π)
exp

(
−x2

2

)
Hn (x) . (A-2.16)

The functions {ψn (x)} form a orthornormal set in (−∞,∞), that is,
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∫ ∞

−∞
ψm (x) ψn (x) dx = δmn. (A-2.17)

Physically, they represent quantum mechanical oscillator wave functions.
Some graphs of these functions are shown in Figure A-2.1.

The Fourier transform of hn (x) is (−i)
n

hn (x), that is,

F {hn (x)} = (−i)
n

hn (x) . (A-2.18)

Figure A-2.1 The normalized Weber–Hermite functions.
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