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Preface

The first edition of Gas Dynamics appeared in 1969 and the second edition in 1984.
Thus, at this writing, Gas Dynamics has been in print for over three and one-half
decades and has not been revised in more than two decades. During this time-span,
much has occurred technologically. Accordingly, it was decided that a substantial revi-
sion of the text was needed. To accomplish this task a second author (a former student
and colleague as well as a lifelong friend of the first author) was added. It was apparent
that given the book’s long-term popularity, any revision had to build upon and retain
many of the features of the previous editions. Hence, those who have used the earlier
editions will find familiar material embedded in a more comprehensive treatment.

Albeit Gas Dynamics, Third Edition is an expanded version, it still retains the
fundamental purpose that was described in the Preface of the first edition, viz.: This
book is intended to provide the undergraduate and first-level graduate engineering
student with a knowledge and understanding of the basic fundamentals of compressible
flow and gas dynamics. The material covered should serve to bridge the gap between
sophomore- or junior-level courses in thermodynamics and fluid mechanics as well as
advanced courses in propulsion, turbomachinery, energy conversion, advanced fluid me-
chanics, and advanced aerodynamics.

Gas Dynamics, Third Edition contains a number of modifications and changes
over the earlier versions. These new features include the following:

1. Makes exclusive use of spreadsheet computations (a first in books on gas
dynamics).

* Spreadsheet programs require no knowledge of any computer language (e.g.,
FORTRAN or C). Because every student in engineering is exposed to spread-
sheet programming, they should be very comfortable with this computational
tool.

* Spreadsheet programs eliminate or at least minimize dependence on the use
of tables and charts (along with the laborious table look-up and interpolation
procedures required to solve gas dynamics problems) that are found in every
book on gas dynamics.

* Spreadsheet programs are used throughout the book to solve a wide vari-
ety of gas dynamic problems. For example, they are used to compute the

xiii



Xiv Preface

speed of sound in a real gas, to determine flow properties across shocks and
expansion fans, to determine the confluence of shocks at the trailing edge
of an supersonic airfoil. to numerically solve the Taylor-MacColl conical
shock equation, to compute frictional flow through variable ducts, and
many more.

* An appendix is included that provides details to assist with the development
of spreadsheet solvers.

2. Introduces several computational procedures that have not previously appeared
in gas dynamics texts. For example:

* A noniterative method to locate a normal shock in a C-D nozzle.

* An efficient numerical procedure to determine the flow properties across an
oblique shock wave.

* A noniterative method to locate a normal shock in a constant area duct with
friction that is connected to a reservoir by a C-D nozzle.

3. Many example problems are included in each chapter. Every example problem is
prefaced with a title, which provides a brief indication of the objective of the
problem.

4. A chapter capstone application section is included in the first 10 chapters.

5. New chapters have been written on Moving Normal Shockwaves (Chapter 5) and
on Exact Solutions (Chapter 12).

6. Expanded versions of chapters have been prepared on Characteristics (Chapter
14) and Measurements in Compressible Flow (Chapter 15).

7. An assortment of historical notes has been sprinkled throughout the text. These
notes describe some of the individuals (several who may not be familiar to many)
and their accomplishments in gas dynamics.

Eliminated from previous editions are two chapters entitled Applications I
(Chapter 5) and Applications II (Chapter 8). The material within these chapters was
incorporated into several of the current chapters. Also eliminated were Flow with Ap-
plied Electric and Magnetic Fields (Chapter 11), Imperfect Gas Effects (Chapter 12),
and Rarefied Gas Dynamics (Chapter 16).

Gas Dynamics, Third Edition contains 50% more example and end-of-chapter
problems than the second edition. The book also contains over 90% more references
than earlier editions.

The authors wish to thank a number of individuals without whose help this book
could not have been completed. These include a truly exceptional group of graduate
students (most of whom at this writing have completed their Ph.D) at the University of
Toledo: Sorin Cioc, Carmen Cioc, Anahita Ayasoufi, Ramin Rahmani, Laurentiu
Morau, Nicolete Ene, Peter Kenney, Daniel Wang, and Ping Wang. The group always
miraculously found time to provide their enthusiastic assistance. Special thanks go to a
very special person: Karen Balog, who typed the draft chapters from the second edition
and who was always supportive of the project.
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The authors also wish to thank the reviewers: William W. Liou, Western Michican
University; Gerald S. Jakubowski, Arizona State University; Jay M. Khodadadi, Auburn
University; and Forman A. Williams, University of California at San Diego.

The authors also wish to acknowledge the excellent assistance provided to them
by their production editor at Pearson Education/Prentice Hall, Wendy Kopf.

JAMES E. A. JOBN
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Section 1.3 Viscosity and the Boundary Layer 3

molecules must be analyzed. This field of study is called rarefied gas dynamics, which
is beyond the scope of this book; thus, continuum flow will be assumed throughout
this text.

1.3 VISCOSITY AND THE BOUNDARY LAYER

The coefficient of viscosity of a fluid relates the shearing stress applied to a fluid to the
resultant rate of shearing strain. In a continuum, when a viscous fluid flows over a fixed
surface, layers of fluid next to the surface are held back by the viscous forces and stick
to the surface; in other words, the velocity of the fluid at the fixed wall is zero. As we
move away from the wall, the velocity increases to its free stream value and a velocity
distribution is built up, as shown in Figure 1.1. The effects of viscosity are dominant in
the region near the surface. For most fluids, and certainly for gases, this viscosity is
quite small, so viscous effects are confined to a very thin layer in the vicinity of the sur-
face, called the boundary layer. Outside the boundary layer, the fluid can be analyzed
with inviscid theory.

In a boundary layer, the velocity components of a continuum flow at a fixed sur-
face are zero, both normal and tangential to the wall surface. On the other hand, in an
inviscid flow (zero viscosity), the normal component at the wall is zero, yet the tangen-
tial component need not be zero. The boundary-layer equations, unlike the inviscid-
flow equations, have terms containing the viscous forces, which makes them far more
difficult to handle. Fortunately, the boundary layer is usually thin enough that it can be
assumed that there is no pressure gradient in the direction normal to the wall surface.
Thus, the pressure distribution on a body, even in the presence of a boundary layer,
can often be calculated using the simpler inviscid-flow equations. Furthermore, in
considering the flow of a gas through an internal passage or nozzle, usually the bound-
ary layer thickness can be taken as small enough so as not to appreciably affect the
area available to the inviscid flow outside the boundary layer and thus not to require
the tedious calculation of boundary-layer thickness along the walls, as illustrated in
Figure 1.2.

Figure 1.1 Boundary-Layer Flow
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Boundary
Layer

Figure 1.2 Nozzle Flow

For a wide variety of cases, then, viscous forces can be neglected in the analysis of
gas flows. However, in other cases, such as the calculation of convective heat-transfer
coefficients, skin-friction drag, and flow separation, viscous forces are very important
and play a large part in the resultant analysis.

1.4 EQUATIONS OF MOTION

In a study of basic fluid mechanics covering the flow of water and other liquids, incom-
pressible flow can be assumed, and therefore density does not vary. For this type of
flow, two equations are generally sufficient to solve the problems encountered: the
continuity equation, or conservation of mass, and a form of the Bernoulli equation de-
rivable from either momentum or energy considerations. The variables are generally
pressure and velocity.

For a compressible flow, density becomes an additional variable; furthermore,
significant variations in fluid temperature may occur as a result of density or pressure
changes. There are four possible unknowns, and thus four equations are required for
the solution of a problem in compressible-gas dynamics: equations for the conserva-
tion of mass, momentum, and energy, and a thermodynamic equation of state for the
substance involved. Since a study of compressible flow necessarily involves an interac-
tion between thermodynamics and fluid mechanics, the remainder of this chapter will
be devoted to a review of the basic principles and equations of these two sciences. To
simplify the working of problems involving the fundamental equations, the next sec-
tion will discuss very briefly the system of units to be used throughout the text.

1.5 UNITS OF MEASUREMENT

In any engineering subject, considerable care must be exercised in the use of a consis-
tent set of units. The primary dimensions for an engineer consist of mass, length, time,
and temperature. The system of units to be used throughout this text will be the Inter-
national System (SI). In SI units, the unit of mass is the kilogram (kg), the unit of length
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TABLE 1.1 Prefixes of Units

Factor 107 10° 10° 10° 107 107 107* 107 107"
Prefix Tera Giga Mega Kilo Centi  Milli Micro Nano  Pico

Symbol T G M k c m 7 n P

is the meter (m), the unit of time is the second (s), and the unit of temperature is the
degree Kelvin (K). It is also common practice to express temperature in degrees Cel-
sius (°C), where K = °C + 273.15. (Calculation Note: In the calculations that follow,
we will use 273 for simplicity instead of the more accurate value of 273.15.)

The units of length, time, and temperature present little difficulty. However, the
differentiation between units of force and mass is not as easily grasped and should be
reviewed. Force and mass are related by Newton’s second law of motion, F = ma. In
SI units, the unit of force is the newton (N), defined as the force required to accelerate
a mass of 1 kilogram at the rate of 1 meter per second per second:

IN = 1kg-m/s’

Weight is the force with which a mass is attracted to the earth or some other body. From
the law of conservation of mass, the mass of a body remains constant, independent of
distance from the earth’s surface. However, body weight decreases as it is moved away
from earth.

The multiplying prefixes in Table 1.1 will be used in conjunction with the various
units. For example, 1 kN = 1000 N, 1 cm = 0.0l m, and 1 ug = 0.000001 g. Units of
energy are joules (J), where 1 J = 1 N-m. Power, the rate of doing work, has units of
watts (W), where 1 W = 1 J/s.

Pressure was defined in Section 1.2 as a normal force per unit area. Pressure in S
units is expressed in newtons per square meter (N/m?). One N/m? is called 1 pascal
(Pa). For comparison, 1 standard atmosphere is equal to 101,325 Pa, or 101.325 kPa, or
1.01325 bar, or 0.101325 MPa. Pressure given relative to zero pressure is called absolute
pressure; pressure given relative to the atmospheric pressure of the surroundings is
called gauge pressure. For example, a pressure gauge connected to a tank containing
compressed air registers 100 kPa; if the local atmospheric pressure is 101 kPa, the ab-
solute pressure inside the tank is 201 kPa. Unless indicated otherwise, pressures given
in pascals throughout this text will refer to absolute pressures.

1.6 EQUATION OF STATE

An equation of state for a pure substance is a relation between pressure, density, and
temperature for that substance. Depending on the phase of the substance and on the
range of conditions to which the substance is subjected, one of a number of different
equations of state is applicable. However, for liquids or solids, these equations become
so cumbersome and have such a limited range of application that it is generally more
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convenient to use tables of thermodynamic properties or a computer to solve them.
For gases, an equation that does have a reasonably wide range of application exists: the
perfect-gas law. (Note: This law is also referred to as the ideal-gas law—derived from
Charles’s and Boyle’s laws.) In its usual form, it is expressed as

p = pRT (1.2)

where R is a gas constant whose value is dependent on the gas in question. For any per-
fect gas,

R

R=——
MM

(1.3)

where R (the universal gas constant = 8314.3 J/(kg—mole - K) and MM is the molecular
mass of gas. For example, for air with MM = 28.97 kg/(kg-mole),

8314.3(———-—)
kg-mole-K kJ
R = £ ( 1 kJ )=0.287———

( kg ) 1000J kg-K
2897 —————
kg-mole

In the derivation of the perfect-gas law from kinetic theory, the volume of the gas
molecules and the forces between the molecules are neglected. A real gas only at very
low pressures satisfies these assumptions. However, even at reasonably high pressures,
a real gas approximates a perfect gas as long as the gas temperature is great enough.

For example, for steam at 6 MPa and 500°C, the deviation of a perfect gas from a
real gas is only about 5 percent. As the steam is cooled at this pressure so that its state
approaches the saturation line, the deviation becomes more marked.

More exact equations of state have been derived that account for molecular vol-
umes (the Clausius equation of state) and intermolecular forces (the van der Waals
equation of state). These equations are more complex than the perfect-gas law and lend
added complications to the solutions of the flow equations. The perfect-gas law, simple
as it is, yields uncomplicated expressions for the various thermodynamic properties
and can be applied over a wide range of pressures and temperatures with a high degree
of accuracy.

James Prescott Joule (1818-1889) demonstrated that the specific internal energy
of a perfect gas is a function of temperature only:

u=u(T)

According to the definition of specific heat at constant volume,
du
== 1.4
Cv (aT),U ( )

du = ¢, dT (1.5)

so that, for a perfect gas,
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Enthalpy is defined as

14
h=u+ — 1.6
: (16)
or
dh = du + d(f—)
P
and, for a perfect gas,
dh = du + RdT (1.7

Therefore, the enthalpy of a perfect gas is also a function of temperature only.
The definition of specific heat at constant pressure is

Cp = <g—;—>p (1.8)

dh = c,dT (1.9)

so that, for a perfect gas,

Thus, combining Egs. (1.7), (1.5), and (1.9), we see that

c,— ¢, =R (1.10)

p

where ¢, and ¢, are not necessarily constants, but can vary with temperature.
If a perfect gas undergoes a thermodynamic process between two equilibrium
states, then

2
Uy — Uy = /CU dr (1.11)
i

and
2

hy — hy = /c,, dT (1.12)
1

If a constant specific heat (or else a mean specific heat over the temperature
range of interest) is assumed, then

uy — up = () — Th) (1.13)
and

h2 - h] = Cp(Tz - Tl) (114)
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1.7 CONTROL-VOLUME APPROACH

Two approaches are possible in writing the equations of motion of a fluid. One of
these, the Lagrangian approach, follows a fixed mass of fluid particles as it moves
throughout the flow field. The other, the Eulerian approach, considers a fixed control
volume in the flow field and relates the movements of mass, momentum, and energy
across the control-volume boundaries to changes taking place inside the control vol-
ume. A great majority of the problems that are encountered deal with steady flow, in
which the flow properties at a point in the fluid do not change with time. Whereas a
fluid particle can accelerate or decelerate as it moves from point to point in the flow
field, steady flow requires that the velocity of all particles passing by a given point have
the same value at that point. It is more convenient to use the control-volume approach
so that, for steady flow, time is not an independent variable. This approach will be used
exclusively throughout the text.

To use the familiar form of Newton’s laws of motion, in which a fixed mass of par-
ticles 1s considered, it is necessary to relate the fixed-mass system to the control vol-
ume, as is shown in Figure 1.3. Let S| be the boundary of a system of particles at time .
The control volume is selected as the volume bounded by §,. Hence, the system and
control-volume boundaries are coincident at time . Fluid passes through the control
volume. After a time interval At, the mass of particles within §; at time 7 will have
moved to a new location in the flow field, bounded by S,. Let X() be the total mass,
momentum, or energy possessed by the system of particles at time . Divide regions S;
and S, as shown in Figure 1.3, so that V; + V, equals the volume bounded by §;, and
¥, + V3 equals the volume bounded by §,. Now we have

X(1) = Xy (1) + Xy (1) (1.15)

where, for example, Xy, (t) represents the mass, momentum, or energy possessed by the
fluid particles in V; at time t. At + At,

X(t+ At) = Xy (t + Ar) + Xy (1 + A1) (1.16)

Control Surface (c.s.)

Control Volume (c.v.)

System at ¢

Figure 1.3 Relation between the System and Control Volume
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The change in X of the system of particles during At is determined by subtracting
Eq. (1.15) from Eq. (1.16), vielding

X(t+ Ar) — X(1) = Xo(t + A1) — Xo(0) + Xo,(r + A1) = Xy, (1) (1.17)
or by adding and subtracting X, (1 + At), yielding

X(1+ A1) = X(1) = [Xu(t + Ar) + Xy (r + AD] = [Xo, (1) + Xy, ()]
+ [Xo(t + A1) — X (t + A1)

Divide this equation by At to get

AX _ AXVZ_fv] 4 Xv3(t + At) - le(t + A[)

At At At (1.18)

Let At approach zero so that the volume (V; + V,) approaches that of the control
volume. The left-hand side of Eq. (1.18) represents the time rate of change of X within
the system [i.e., (d X/dt)sqem]- In fluid mechanics, this derivative is written as DX/Dt
and called either the material or substantial derivative because it represents the change
of X with time as a fixed amount of material moves with the fluid. (For more detail,
refer to Chapter 11.) It is the time rate of change of X in following the motion of the
fluid. The first term on the right-hand side of Eq. (1.18) becomes the rate of change of
X within the control volume [i.e., (.X/dt).,]. A partial derivative appropriately ap-
pears because X can be a function of both time and space.

The second term expresses the difference between the rate at which X leaves the
control volume and that at which it enters the control volume. This net rate of efflux
can be expressed in more familiar terms. Let x be equal to the value of X per unit mass.
Consider an elemental area dA on the surface of the control volume in Figure 1.4.
(Note: The vector dA is assumed positive with the normal to the differential area point-
ing outward.) The rate at which mass flows across this area is given by the dot product

N

'V, =Ve.n=Vcosa

o
dA = ndA

Figure 1.4 Efflux from a Control Volume
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pV¥ -dA, so the rate of efflux of X across dA is given by xpV - dA. To account for all
the mass flow across the control surface, we must integrate over the boundary c.s.
Now Eq. (1.18) can be written as

dx DX 0X
(__>for fixedmass — T, (“")for fluidin + <//X(PV : dA))integration around
di system of Dt 0t/ control surface bounding (1 19)

particles moving volume C.s. control volume
with fluid

The time rate of change of X within the control volume can also be written as
an integral because for any small mass dm within the control volume dX.,
= xdm = xpdV. Finally, we integrate over the entire control volume to get

Dt /// xpdy + // (pV-dA) (1.20)

Equation (1.20), often referred to as the Reynolds transport equation, relates
the properties of a fixed-mass system of fluid particles to the properties of the fluid
inside of, and crossing, the boundaries of the control volume. The equations of con-
servation of mass, momentum, and energy for a fluid can now be related to the con-
trol volume.

1.8 CONSERVATION OF MASS

For the equation of conservation of mass, or the continuity equation, let X equal the
total mass m of the system of fluid particles. For this fixed-mass system, Dm/Dt = 0,
since mass can be neither created nor destroyed. Since x refers to the total mass per
unit mass, it is equal to 1. Equation (1.20) reduces to the following form, which is called

the continuity equation:
d
25///pdv+ //pV-dA (1.21)
C.v. C.S.

The rate of increase of mass within the control volume must equal the net rate of
mass flux into the control volume. Note that if the density is uniform over the control
volume, the first integral in Eq. (1.21) may be written as

///pd o (PP (m)cv (1.22)
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The second integral in Eq. (1.21) is positive at outflow boundaries and negative at
inflow boundaries; that is,

// pV-dA = // pV,dA — // pV, dA (1.23)

c.s. outflow inflow

This follows from the fact that if V is in the same direction as dA = ndA (ie,a = 0),
Eq. (1.23) is +pV,A, whereas, on the other hand, if V and n are in opposite directions
(ie.,a = m),Eq. (1.23) yields —pV,A. If V does not vary in either magnitude or direc-
tion across a cross-sectional area A of the flow and if p is uniform across A, then Eq.
(1.23) can be written as

// pV-dA = > (pV,A) = 3 (pVaA) (1.24)

outflow inflow
cs.

where the summations account for flows across all inlets and exits to the control vol-
ume and where V,(=V cos «) is the normal velocity component to the flow area, as
shown in Figure 1.4. The product pV, A is the mass-flow rate m. Thus, Eq. (1.24) may
also be expressed as

inflow

//pV-dA= S m—- > m (1.25)
outflow

Thus, for uniform conditions within and on the boundaries of the control vol-
ume, we may use the following instead of the integral version of the continuity equa-
tion, Eq. (1.21):

%(m)w + > m- >m=0 (1.26)

outflow inflow

Clearly, for steady flow, the properties within the control volume do not change

with time; hence,
] d
2 - = = 1.27
atﬁpdv dt (m)c.v. 0 ( )

Therefore,

//pv-dA= >Sm— >m=0 (1.28)
outflow

inflow
c.s.
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Example 1.1. Mass in a punctured air cylinder

An air cylinder of volume V is accidentally punctured. The puncture creates a hole having
a cross-sectional area A,. The air escapes through the hole according to the relation

i, = 0.040418—2= 4,

VT

where p is the tank pressure and T is the tank temperature. (We will derive this expression
in Chapter 3.) The constant 0.040418 is based on the properties of air, and the units are
N/m? for pressure, K for temperature, m? for area, and kg/s for mass-flow rate. Assuming
that the temperature of the air in the cylinder does not change with time, find the mass of
air, m,, in kg, that remains in the cylinder At sec after the cylinder is punctured. How long
would it take for the tank to lose one half of its mass?

Solution

Select a control volume as shown in Figure 1.5. Because the density may be assumed to
be uniform within the fixed control volume, and the conditions on the boundary of the
control volume are uniform, we may replace the continuity equation, Eq. (1.21). with
Eq. (1.26), which for this application reduces to

N-'m
kg-K

Using the perfect-gas law (with R = 287 for air; refer to Appendix H), we obtain

_ 28ImT
Y

14

We can write the expression for mass-flow rate as

ANT

1, = 0.040418 A, = 11.60007 :

287Tm\/'T
v

Figure 1.5 Control Volume of Punctured Air Cylinder
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Consequently, the mass-balance equation becomes

dm mA,NT
_c_it— = ~-11.6——m—

This equation can be directly integrated to give

- ANTN
m, = mye 11.6 Ar

Finally, the time increment for the cylinder to lose one half of its mass (m, = 0.5m,) is

v v
————In2 = 0.0598——
11.6A,NVT ANT

We observe that it will take longer to lose this amount of mass if A, is small, V is large,
or the air is cold.

Atpar =

Example 1.2. Exit velocity from a liquid-propellant rocket

In Figure 1.6, a steady flow of m1y kilograms per second of liquid hydrogen and rnp kg/s of
liquid oxygen are injected into a rocket combustion chamber. A violent chemical reaction
occurs, and the gaseous products of combustion are expelled at high velocity through the

—I
I
et

. Chamber

Combustion

7
—
PN

Figure 1.6 Control Volume of Liquid Rocket
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exhaust nozzle. Assuming uniform flow in the rocket nozzle exhaust plane, determine the
exit velocity. The nozzle’s exit diameter is D, m, and the density of the gases at the exit
plane is p, kg/m>.

Solution

Select a control volume as shown in Figure 1.6. Since this is a case of steady flow, Eq. (1.28)
is applicable:

//pv-dA= > m— X m=0

outflow inflow
cs

There is a single outflow boundary for which we may write

S = e = peA,
outflow
o . .
where A, = ED‘% There are two inflow boundaries, and thus

2 m= an + r}’lo
inflow

Therefore,
//pV'dA = peAeVe - (mH + mO) =0
c.s
Accordingly,
my + mg
‘ PeAe

1.9 CONSERVATION OF MOMENTUM

Newton’s second law of motion for an inertial reference, as applied to a fixed mass m,
yields

DV  D(mV) DP
F = = = — 1.2
E g Dt Dt Dt (1.29)

where P is the linear momentum of the system, mV.This result can be applied to a con-
trol volume in a fluid by substituting P for X in the Reynolds transport equation [i.e.,
Eq.(1.20)}, with x = P/m = V:

% - j—t///dev + //V(pV-dA) (1.30)
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But, as indicated in Eq. (1.29), the time rate of change of the linear momentum is equal
to the sum of all external forces acting on the system. So,

>F = %///de\/ + //V(pV-dA) (1.31)

1t should be noted that because the Reynolds transport equation connects system
equations to control-volume equations when the system and the control volume are
coincident, the sum of the external forces acting on the system is identical to the sum of
those forces acting on the control volume. No restrictions have been placed on the na-
ture of the forces, so ZF may involve pressure forces, viscous forces, gravity, magnetic
forces, electric forces, surface tension, and so on.

It is important to recognize that, unlike the continuity equation, Eq. (1.21), the
momentum equation is a vector equation. Thus, when performing a momentum balance,
we must define a coordinate system. However, we will generally work with an individual
component of the equation. Whereas the left-hand side of Eq. (1.31) represents the
summation of all forces acting on the control volume, the right-hand side represents the
rate of increase of linear momentum within the control volume added to the net rate of
efflux (outflow — inflow) of linear momentum from the control volume.

A restriction is imposed on Eq. (1.31) by the use of Eq. (1.29) in the former’s de-
rivation. The acceleration in Eq. (1.29) must be measured relative to an inertial refer-
ence. Since fluid velocities in Eq. (1.30) are taken relative to the control volume, this
equation is valid only for fixed control volumes or control volumes translating at a con-
stant velocity relative to an inertial reference.

It is important to observe that two separate signs are contained within the mo-
mentum equation:

1. The forces and velocities are positive when pointing in the direction of the coor-
dinate axis.

2. The scalar product V-dA = V-ndA = V cos(a) dA is positive if a = 90. (See
Figure 1.4.)

It should be stressed that, because of sign (1), a coordinate system must be drawn
for every problem involving the momentum equation. And, because of sign (2), a con-
trol surface must be drawn around the object that is being analyzed.

For steady flow, the time rate of change of linear momentum stored in the control

volume vanishes; that is,
d
— Vdv | =0
ot (/// g )
C.V.

Hence, the momentum equation for steady-flow problems simplifies to

SF= //V(pV-dA) (1.32)
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If the conditions of flow are uniform on all flow boundaries on the control sur-
face, the area integrals may be replaced with summations as follows:

>F= //V(pV-dA) :02 rhV—iE mV (1.33)

utflow nflow

Example 1.3. Thrust of a rocket engine on a stationary test stand

A rocket motor is fired in place on a test stand. The rocket exhausts 10 kg/s at an exit ve-
Jocity of 800 m/s through an area of 0.01 m%. Assume uniform steady conditions at the exit
plane, with an exit-plane static pressure of 50 kPa. For an ambient pressure of 101 kPa, de-
termine the rocket motor thrust transmitted to the test stand as shown in Figure 1.7(a).

Solution

Select a control volume as shown in Figure 1.7(a). The forces acting on this control volume
are the thrust and the unbalanced pressure force acting on the exit plane. Note that, as
may be seen in Figure 1.7(b), the ambient pressure force cancels out over the entire sur-
face of the rocket except over the area A,. Also note that the pressure force is always
drawn as a compressive force on the control surface. Applying Eq. (1.32), we obtain

EFX =T - pA, + pA, = //Vx(pv°dA) = mV,
cs.

(a) Control Volume

PeAside

IRENERRNEER AN

l
JR—

—>
PaA.

W —
| T

(b) Forces Acting on Control Volume

Figure 1.7 Rocket on Stationary Test Stand
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The thrust T (i.e., the force required to keep the rocket attached to the test stand) may
therefore be written as

T=mV, + (pe - pa)Ae
This expression may be replaced by an equivalent expression known as the thrust equation:
T = mV,,

Here, we have introduced an equivalent exhaust velocity V.4, which may be written as

— Pa)Ae
V=V, + (P mp)
We first determine the equivalent velocity:
kN /100
(50 — 101)%( ng>(0.01 m?) I kg m

m .
Veq = 800 m/s + = 749.
< ms 10 kg/s ( N-s2 ) PO mis

Therefore,

k N-s?
T=mV,= <10§>(749.0?)(1 kg-sm> = 7490N = 7.49kN

Example 1.4. A momentum balance across a moving normal shockwave

A normal shockwave moves at a speed of 570.2 m/s through still air at a pressure of 101.3 kPa
and a temperature of 25°C. The pressure behind the shockwave is measured to be three times
the ambient pressure. Determine the velocity behind the shock.

Solution

It can be easily shown that the velocity of the moving shock exceeds the velocity of sound
and that therefore the shock travels at supersonic speed. (See Chapter 2.) Shockwaves in
gases can occur only when the speed is supersonic. We will study this type of compressible-
flow phenomena in later chapters.

The normal shock front is illustrated in Figure 1.8(a). The thickness of the shock front
is extremely small, and across this small thickness, finite changes occur in the flow variables.
The shock is taken to be a discontinuity in the flow, with accompanying abrupt changes in
velocity, pressure, and temperature. The shock front allows the flow to immediately adjust
to the rapidly changing flow conditions as the shock sweeps through the medium.

To solve the problem at hand, we must first immobilize the moving shock. This op-
eration can be accomplished by superimposing on the flow a velocity equal to the shock
speed S, but in the opposite direction. In essence, this approach defines a coordinate sys-
tem on the shock front. By this approach, we reduce the problem to one of steady flow. We
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S
Gas at rest @ @
x
(a) Stationary Coordinate System (b) Moving Coordinate System

Figure 1.8 Coordinate Systems for a Moving Normal Shockwave

now construct a control volume around the shock as shown in Figure 1.8(b), and we use
Eqgs. (1.28) and (1.33) to write the continuity and momentum equations, respectively, as

Di- Dm=p(S-V)A-pSA=0

outflow inflow

SFE=pA-pA= S V- S mnV=mS-V)-mS=-—mV

outflow inflow

Because the shock is so thin, the area on either side of the shock 1s the same. Therefore, it
can be removed from the expressions, and, by combining the continuity and momentum
equations together, we obtain

P2 — P

V=—"—
nS

Since p, = 3p; and since air is a perfect gas (p,/p; = RT), the preceding equation re-
duces to the simple form

N-m kg-m
2(287——-)(298]()(1 )
2RT; kg-K .§2
V = 5 LI & — N-s"/ _ 3002
570.2—5—

1.10 CONSERVATION OF ENERGY: THE FIRST LAW OF THERMODYNAMICS

For a system consisting of a fixed mass of particies, the law of conservation of energy
can be expressed as

8Q — 8W' = dE (1.34)

where 8Q and W', small amounts of heat and work, respectively, are forms of energy
that are defined as they cross the system boundaries, and E is the total energy possessed
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by the system in a given state. W' is used in a broad sense to include not only simple
mechanical work, but also, for example, electrical work and shaft work done by the sys-
tem. The total energy E includes the toral internal energy (U = mu) associated with the
random motions of the molecules possessed by the system, the kinetic energy
(KE = mV?%?2) due to the speed V of the entire system mass, and the potential energy
(PE = mgz) due to the position of the mass of the system a distance z above some
datum. Other forms of storable energy that are characteristic of a fixed-mass system in
a given state may also be included, such as chemical energy or electrical energy that
can be stored, for example, in a capacitor.

The accepted sign convention for Q and W' is as follows: Q is positive when it is
added to the system, and W' is positive when work is done by the system (i.e., is out of
the system).

To apply these results to a control volume, use the Reynolds transport equation,
Eq. (1.20). Replace x with e, which is equal to the total energy, E, of the fixed-mass sys-
tem per unit mass, so that

DE 6Q &W’ . . )

—_— T —— — ———— —_ W’ = - —+ . .

= =0 - /// epdY // e(pV-dA)  (1.35)
C.v. C.5.

If the system can be assumed to possess only internal, kinetic, and potential ener-
gies, then

E=U+ mV?2 + mgz
and

e=FEm=u+V¥2 + gz

Substituting into Eq. (1.35) yields

. ) 3 v?
O-WwW = o //epd\/ + //(u + > + gz)(pV°dA) (1.36)

For cases in which mass flows across the control-volume boundaries, it is conve-
nient to divide the work W' into two parts: (1) the work necessary to push the mass
across the boundaries, and (2) all the other work W crossing the control surface, such as
shaft work, electric and magnetic work, viscous shear work, and so on.

A simple expression can be derived for the former type of work, which is called
flow work. Consider a mass Am, shown in Figure 1.9, that is to flow across the control
surface. It is desired to find the work done by the system in pushing the mass across the
boundaries (i.e., the work that acts against the external pressure at the boundaries). If the
volume of the mass is AV, then the work required is pAV (i.e., FAx = (pdA)Ax = pAY).
Since the density p = Am/AV, the flow work done by the system per unit mass is p/p.
For mass flowing into the control volume, the expression for flow work is negative,
since work must be done by the surroundings on the system. Conversely, for the mass
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Figure 1.9 Flow Work

flowing out of the control volume, the flow-work term is positive. Consequently, the
sign of the flow work is positive for outflow and negative for inflow. Thus,

flow work = :t%AVp - i(%) dAAXp

Hence, in the time At, the amount of flow work that crosses the control surface is given by

P p
+=pV,dA = —(pV-dA
Pl p(P )

(Note that Ax/Ar = V,,.) The flow work must be accounted for over the entire bound-
ary of the control volume. This is accomplished by integrating the expression and writ-
ing Eq. (1.36) as

Q—W—//%(pV-dA)=%/]/epdV+ //<u+v72+gz>(prdA) (137)

The last integral on the left-hand side of Eq. (1.37) (i.e,, the flow-work term) is
now brought to the right-hand side. Because flow work is transported across the control
surface in the same manner as the internal energy, it is convenient to combine internal
energy per unit mass, u, and flow work per unit mass, p/p, into the thermodynamic prop-
erty enthalpy: h = u + p/p. Finally, the energy equation, Eq. (1.37), can be written as

Q—W=%///epd\7+ //<h+Y2—2+gz)(pV~dA) (1.38)

where it is understood that W includes all power except for that associated with the
flow work.
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Example 1.5. The charging of an empty storage tank

A rigid, well-insulated tank is initially evacuated. A valve is opened in a pipeline connected
to the tank, which allows air at 3 MPa and 300 K to flow into the vessel. The valve is closed
when the pressure in the tank reaches 3 MPa. Determine the final equilibrium tempera-
ture of the air in the tank. Over the temperature range of interest, assume that
¢, = 0716 kJ/kg- K and ¢, = 1.005 kJ/kg - K are constants.

Solution

Select a control volume as shown in Figure 1.10. With no heat transfer (adiabatic), no
work, and negligible AKE and APE, Eq. (1.38) simplifies to

S M upav + || n(pv-da) =0

Because all properties are uniform on the boundary and within the interior of the control
volume, this expression becomes

du

— — hm; =0 1.39

dt ln.l! ( )
To proceed further, we perform a mass balance on the control that makes use of the conti-

nuity equation, Eq. (1.26), to obtain

—_— .,=0
a

where m represents the mass inside the control volume and r; is the mass-flow rate of the
air crossing the control surface. We may use the expression to replace the mass-flow rate in

Figure 1.10 Control Volume of an
Empty Storage Cylinder during
Charging
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Eq. (1.39). Accordingly, we have

dU_“ dm

dt " dt

Because the conditions exterior to the tank do not change, and thus 4, is constant, we may
directly integrate this equation to obtain
U, — Uy = myuy = muuy = hi(my — my)

Because the tank is initially evacuated, m; = 0. This value and the ideal-gas relations for
internal energy and enthalpy produce

myc,l; = myc,T;

I =—1;

1.4036 (300 K)
421.1K

Example 1.6. The power input to an air compressor

Air (R = 0.287 kJ/kg- K and ¢, = 1.005 kJ/kg - K) enters a compressor with a velocity of
30 m/s, a pressure of 1 bar, and an absolute temperature of 300 K. The inlet area is 0.1 m?.
At the outlet, the velocity is 10 m/s and the enthalpy is 450 kJ/kg. Assume a rate of heat
loss from the compressor of 200 kJ/min, with negligible changes of potential energy. De-
termine the input power required to operate the compressor at steady state.

Solution

Select a control volume as shown in Figure 1.11.
For a steady flow with uniform conditions at inlet and outlet, Eq. (1.38) yields

L v? Vi
— W =5 + ) il h + 2L
Q-W me(he 2) m,(h, 2)

Since m; = m, = m, this equation becomes
. . V2 —vy?
W=0 - r'n[(he - h) + (—6—2——')]

kJ
(he = hy) = h, — ¢,T; = 450 — (1.005)(300) = 148.500E

3
i
;
i
i
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Figure 1.11 Air Compressor Control Volume

<v§ - v,?> (Ve + Vi)(V. = Vi) (40)(—20) (-‘1‘-2—)<1 N-sz>( 1kJ ) - _oad
2 - 2 B 2 2 /\ kg'm/\103N-m/ kg

105~N—
Di m?
= pAVi = AV =

RT; N-m )
287 ——
( 81k B0 K)

K
(0.1 m2)<30?) - 3.4843?g

kJ /1 min kg) kJ
= —-200—— — 34843 — )(1485 — 04)—
0min<605> 83(5 (148:5 )kg

=
|

—519.3612H<15—W—> = —519.4 kW
S kl/s

I

1.11 SECOND LAW OF THERMODYNAMICS

The second law of thermodynamics places a constraint on the direction thermody-
namic processes may take; not all processes are possible even if they satisfy the
First Law of Thermodynamics. The second law will be essential in the analysis of
shockwaves.

Two concepts that are important to a study of compressible fluid flow are deriv-
able from the second law of thermodynamics: the reversible process and the property
entropy. For a thermodynamic system, a reversible process is a process after which the
system can be restored to its initial state and leave no change in either system or sur-
roundings. As a consequence of this definition, it can be shown that a reversible
process is quasistatic: Changes occur at an infinitely slow rate, with no energy being
dissipated. Since thermodynamics is a study of equilibrium states, definite thermo-
dynamic equations for changes taking place during processes can be derived only
for reversible processes; irreversible processes can be described thermodynamically
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only with the use of inequalities. Irreversible processes involve, for example, the
following:

* friction,

* heat transfer through a finite temperature difference,
* sudden expansion,

e magnetization with hysteresis,

e clectrical resistance heating, and

* mixing of different gases.

In general, any natural process is irreversible, so the assumption of reversibility,
while it may simplify the thermodynamic equations, necessarily yields an approxima-
tion. For many cases, the assumption of reversibility leads to very accurate results; yet
it is well to keep in mind that the reversible process is always an idealization.

The thermodynamic property derivable from the second law is entropy, which is
defined for a system undergoing a reversible process by

ds = (%2) (1.40)

where S denotes the total entropy in kJ/K. The specific entropy is the total entropy di-
vided by the mass (i.e., s = S/m). For an irreversible process, entropy changes can
arise from heat transfer or from irreversibilities. By considering a thermodynamic
cycle consisting of one reversible process and one irreversible process and making use
of Eq. (1.40), it is easy to show that

o
($; — Sl)system = / _TQ— to (1.41)

C.S.

where o accounts for any irreversibilities within the system and therefore must be ei-
ther greater than zero (when irreversibilities are present) or equal to zero (when no ir-
reversibilities are present). Equation (1.41) is called the entropy balance for a closed
system. This equation reveals that the entropy of a system can increase, remain the
same, or decrease. The latter can occur only if heat is removed from the system. During
an adiabatic process, entropy either increases or remains constant. A process that is
adiabatic and reversible involves no change in entropy and is called isentropic.

By making use of the Reynolds transport equation, Eq. (1.20), with X = S,
x = S/m = s, and using the rate form of Eq. (1.41), in which 6Q/At = Q = gd A, we

obtain
ds DS q .
— = —= —dA +
<dt >system Dt / T 7
C.S.

We can write the entropy balance for a control volume as

%‘; = %///mdv + //s(pv-dA) = [/%dA + (142)
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For a control volume in which the entropy is uniformly distributed and has one
inlet and one exit, Eq. (1.42) can be written as

C.S.

= //“q—dA + mys; — mys, + o (1.43a)

T

C.s.

The left-hand side is the rate of entropy change within the control volume. The first
integral on the right-hand side represents the entropy transfer rate accompanying
heat transfer. The second integral in Eq. (1.43), which becomes the difference of mass-
flow specific-entropy products in Eq. (1.43a), represents the entropy transfer rate. The
final term on the right-hand side of Eqgs. (1.43) and (1.43a) is the rate of entropy pro-
duction.

Although we previously stated that the entropy of a system can increase, de-
crease, or remain constant, this is not true for an isolated system. There is no flow of
mass or energy across the boundaries of an isolated system. Because there is no heat
transfer across the boundary of an isolated system, we may write that

(AS)iso]aled = Oisolated

Thus, the entropy can only increase. This phenomenon is known as the increase of
entropy.

A useful thermodynamic equation for a pure substance, derivable from the first
and second laws of thermodynamics, is

dp
Tds = dh — - (1.44)

This equation contains only thermodynamic properties; it is independent of the path of
a process. For example, Eq. (1.44) can be integrated between given end states to deter-
mine the entropy change regardless of whether the thermodynamic process involved is
reversible or irreversible and of whether the process takes place in a closed container
or in steady flow.

An expression for the entropy change of a perfect gas can be derived from
Eq. (1.44):

2 2

dT
/ds =85 — 5 = /CP—T— - Rln% (1.45)
i

1
For an isentropic process (s = constant),
2

ar J22)

= — — RIn—

0 /cp T lnp1
i
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If, in addition, the perfect gas is assumed to possess constant specific heats, then
integration yields

2ln—T—2 = ln&
R T, P
Let
_S
Y ¢

which is called the ratio of specific heats.
From Eq. (1.10), it is easy to show that

%y

R v-1

For a perfect gas with constant specific heats undergoing an isentropic process, then

E _ (&>(v—l)/v _ (Bz)v—l
1 D1 P

Y
% - (%) (1.46)

or

Historical Note: Various symbols for the ratio of specific heats have been used over the years. It ap-
pears that the symbol ¥ was first used by William Rankine (1820-1872) in his study of normal
shockwaves. In other studies of the shockwave, however, Georg Riemann (1826-1866) used the
symbol & and Pierre Hugoniot (1851-1887) used m for this ratio. Refer to Table 4.1.

Example 1.7. One-dimensional isentropic flow in a nozzle

Hydrogen flows isentropically in a nozzle from an initial pressure of 500 kPa, with negli-
gible velocity, to a final pressure of 100 kPa. Because the pressure falls during its journey
through the nozzle, this flow is called an expansion. The initial gas temperature is 500 K.
Assume steady flow, with the hydrogen behaving as a perfect gas with constant specific
heats;c, = 14.5 kJ/kg - K. Determine the final velocity of the gas and the mass flow through
the nozzle for an exit area of 500 cm?,

Solution

With no heat or work terms, the energy equation for steady flow, Eq. (1.38), reduces to

//(h + 122‘>(pV'dA) =0
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Figure 1.12 Nozzle Control Volume

Select a control volume as shown in Figure 1.12. With V; = 0, the preceding expression re-
duces to

vZ
hi=h, + —=

I 4 2
Ve = Vo T, - T,)

To find T,, use Eq. (1.46):
Te pe>(7"])/7
i

For hydrogen, R = 4.124 kJ/kg-K, so

Y = clc, = ¢,/(c, — R) = 1.397

Now we have

-
% - (égg giﬁ = (0.2)%*? = 0.6329
or
T, = (500 K)(0.6329) = 31645 K
Thus,

V, = V2(145kJ/(kg-K))(500K — 316.45K)
= /532295 x 10°N - m/kg

= V/5.32295 x 100 kg - m¥/(s2-kg) = 2307 m/s
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The mass flow rate at the nozzle exit is given by

Il

(pAV),

Pe
= =AY,

RT,” ¢
(100 kN/m?)(500 X 10~ m’) 2307 m/s

(4.124 KN - m/kg K)(316.45 K)
= 8.8388 kg/s

mn,

Example 1.8. Application of the second law of thermodynamics

One kilogram of air is initially at a pressure of 100 kPa and a temperature of 327°C. Can a
final state of 200 kPa and 27°C be attained in an adiabatic process? From Appendix H, we
can find that ¢, = 1.02 kJ/kg-K and R = 0.287 kJ/kg - K.

Solution

The entropy of an ideal gas with constant specific heat may be written from Eq. (1.45) as

T
5 — 85 = cp1n~T—2 - RlnEZ

1 14!
KI (274273 Kl (200
- 1.02——] ~ 0.287——In[ =
TR "(327 n 273) e K “(100)
kJ
= —1.307 2 = —0.906——
0 kg'Km 9 kg K

However, the entropy balance for a closed system reveals that the entropy must increase
or remain unchanged; that is,

5Q
m(52_51): ‘774'0':0'*'0'20

Thus, the process is impossible.

1.12 ONE-DIMENSIONAL FLOW

A complete solution of a problem in compressible fluid mechanics requires a
three-dimensional analysis. However, even for incompressible flow, a complete so-
lution in three dimensions is possible only for cases in which simple geometries are
involved. Fortunately, a great many compressible flow problems can be solved to a
good engineering approximation with the use of a one-dimensional analysis. One-
dimensional flow implies that the flow variables are functions of only one space
coordinate.
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inlet

Figure 1.13 One-Dimensional Flow

Consider the flow in a varying area channel. One-dimensional flow requires that
the velocity profiles be as shown in Figure 1.13. Actually, due to viscosity, the flow
velocity at the fixed wall must be zero. The velocity profiles in a real fluid are as shown
in Figure 1.14.

By definition, one-dimensional flow prohibits velocity components in the y or
z directions, as in area (b) in Figure 1.14. In true one-dimensional flow, area changes
are not allowed. However, the more gradual the area change with x, the more exact
the one-dimensional approximation becomes. The real case, illustrated by Figure 1.14,
can be reduced to the one-dimensional case by assuming a mean velocity at each
cross-section. Note that the one-dimensional approach can yield information only
on variations in the x direction; variations normal to the flow direction are assumed
to be very small.

The value of the one-dimensional approximation lies in its simplifying the equa-
tions of fluid flow. Satisfactory engineering answers can be obtained for many complex
problems that would otherwise be very difficult to solve.

=
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Figure 1.14 Real Flow in a Varying Area
Channel
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1.13 CHAPTER CAPSTONE APPLICATION: THE JET EJECTOR

A jet ejector is a device that uses a high-pressure (or high-velocity) stream of fluid to
entrain a low-pressure (or low-velocity) fluid and discharges the mixture at an inter-
mediate velocity.

Figure 1.15 is a schematic diagram that shows two streams of air mixing in a mix-
ing tube of constant area. The high-pressure, primary stream exits into the mixing tube
at section I, and after it thoroughly mixes with the lower pressure, secondary stream,
the combined gas exits the mixing tube at section e. The flows at both sections i and e
are assumed to be one dimensional; that is, all properties are uniform across the tubes.
The ejector is assumed to be operating at steady state. Because the velocity, pressure,
density, and temperature of the compressible streams are unequal, we must employ the
continuity, momentum, and energy equations, as well as the perfect-gas law, to deter-
mine the flow condition at section e. For the control volume shown in Figure 1.15, we
may write the following:

Continuity Equation

//pV°dA % (pV,A) = D (pV,A) = i, — 1y

inflow
C.S.

= peAcVe — (ppApr + psAsVs) =0 (147)

Momentum Equation

SE- [[vev-aa

PpA, + PsA; — PeAe = (peANV)Ve — [(0sAV)Vs + (ppA,V,)V,]  (1.48)

secondary jet

primary jet @

Figure 1.15 Jet Ejector Control Volume
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//(h + Z22-)(pv-dA) =0

(peA,_,Ve)<he + %ﬁ) - [(ppApr)<hp + K}) + (psASVs)(hs + K;)J =0 (1.49)

Energy Equation

Obviously, the preceding three equations contain many variables, and therefore
we must simplify the expressions. First, we make use of the geometry and write

A, + A, = A,

(Refer to Figure 1.15.) Further, we will assume that the ratio A /A, is known and equal
to a. Therefore, A; = aA,,and A, = (1 + a)A,. We will incorporate these geometric
relations along with the ideal-gas law for density,

- P
P~ RT
into the governing equations. First, the continuity equation, Eq. (1.47), can be rewritten as
P P Ps Pe
—V,+a=V,=(a+ 1)V,
T, * T, ° )Te ¢
For later calculation, let
p
(—Evp + a&VS>
T, T,
= A
1+ a)
Thus, Eq. (1.47) becomes simply
PeVe
= A 1.50
o (1:50)

The geometric-area relations and the perfect-gas law again allow us to rewrite
the momentum equation, Eq. (1.48), as

p
py+ap, — (a+ p, = (1 +a)Leyro Z2y2 o s

fe V?
RT, ° RT, * RT;

We then use Eq. (1.50) to produce

A 1
+ — =
Pet RVe =174

2
PV PsV§> _ g

+ ap, + +
("P *Ps T RT, T “RI,
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That 1s,

A
p.+—=V,=B (1.51)
R
The energy equation, Eq. (1.49), contains terms that include both the enthalpy
and the kinetic energy. This sum is called the total, or stagnation, enthalpy and can be
written as
V2 V?
ho———h+—2-=CpT+-2_

Using this relation along with the ideal-gas law and Eq. (1.49) yields
2

2 2
pPVP VP OIPSVS Vs peve Ve
(Cppr + 7 + T Cp_‘TS + ‘2— = (1 + a) Te Cp(,Te + —2—

We can rewrite the above as

v: 1 PV AN A2 vi
e T. + —25 ~ 0 a)A[( T, (cppr + 7) + a T e, Ty + 5 )= C

or

VZ

e

c, T, + 5 = C (1.52)
Hence, we have obtained three equations to solve for the three unknowns V,, p,,

and 7,. Unfortunately, these equations are nonlinear, and we solve them using an iter-

ative procedure as follows:

AT,
V, = - (1.53)
A
p. =B — EV" (1.54)
1< %)
T,=—\|C - — (1.55)
Cp 2
Here,
1 pP Ps )
A=——| =V, + o=V, 1.56
(1+@<gﬂ 1.7 (1.56)
2 2
B = 1+ p, tall+ p (1.57)
(1 + a) RTp P RT, )"

Sl o ) oo )
= + =+ al = + = 58
C (1 + CY)A l:( Tp CPpTP 2 a TS CP:TS 2 (1 )
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The strategy to solve this nonlinear set of equations is as follows:

1. From the given information, compute the constants A, B, and C from Egs.
(1.56)—(1.58).

Using initial guess values of p, and T,, determine V, from Eq. (1.53).

Using V, from Step 2, calculate p, from Eq. (1.54).

Using V, from Step 2, calculate T, from Eq. (1.55).

If the differences between the computed V,, p,, and T, do not differ from the pre-
vious values, terminate the computations; if they do differ, return to Step 3.

Ao A

Example 1.9. One-dimensional flow in a jet ejector

Two streams of air mix in a constant-area mixing tube. The primary jet enters the tube with
a speed of 300 m/s, a pressure of 300 kPa, and a temperature of 200°C. The secondary
stream enters with a velocity of 10 m/s, a pressure of 101 kPa, and a temperature of 20°C.
The ratio of the area of the secondary flow to the primary jet s 8:1. The air behaves as a per-
fect gas with constant specific heats and ¢, = 1.0045 kJ/kg - K (from Appendix H); that is,
the specific heat at constant pressure is the same for both jets and the exit, mixed, stream.
Determine the velocity, pressure, and temperature of the air exiting the mixing tube.

Solution

From the given information, the values of the constants A, B, and C in Eqgs. (1.56)—(1.58),
respectively, are computed:

A = 242057370
m-s-K

B= 145,317.1585E2
m

2

C = 491,550.6260"
S

TABLE 1.2 Iteration Results from Example 1.9

Iteration V, (m/s) P,(Pa) T.(K)
1 0.0000 101,000.0 293.1500
2 70.2566 139,391.7 486.8916
3 84.5500 138,186.2 485.7902
4 85.0947 138,140.2 485.7442
5 85.1149 138,138.5 485.7425
6 85.1157 138.138.5 485.7424

7 85.1157 138,138.5 485.7424
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To begin the calculations, initial guesses for the pressure and temperature are required.
Experimentation reveals that the convergence of this system of equations, Egs. (1.53)
through (1.55), is not greatly affected by the initial guess. Therefore, to begin the calcu-
lations, set the initial estimates for pressure and temperature at the secondary stream val-
ues (i.e., 101 kPa and 20°C, respectively). Table 1.2 is a summary of the calculations, which
were performed with the use of a simple spreadsheet program that is easy to create.

A noniterative procedure is described in Problem 1.20.

1.14 SUMMARY

Compressible-fluid mechanics is a study of flow in which significant density variations
occur throughout the fluid. With density and temperature as additional variables, the
equations of incompressible-fluid mechanics must be supplemented with those of ther-
modynamics. A solution of a problem in compressible flow requires utilization of the
continuity and momentum equations, as well as the first and second laws of thermody-
namics and an equation of state for the substance involved. The additional complexi-
ties introduced by compressible flow require that approximations be made in order to
simplify the problems so that satisfactory engineering answers can be obtained. The
one-dimensional flow and perfect-gas approximations afford considerable simplicity to
the equations involved and yield results that, for many engineering problems, are with-
in a tolerable degree of accuracy.
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1.16 PROBLEMS

1.1 Air is stored in a pressurized tank at a pressure of 120 kPa (gage) and a temperature of
27°C. The tank volume is 1 m®. Atmospheric pressure is 101 kPa, and the local acceleration
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of gravity is 9.81 m/s>. Determine (a) the density and weight of the air in the tank, and
(b) the density and weight of the air if the tank were located on the moon, where the ac-
celeration of gravity is one sixth that on the earth.

(a) Show that p/p has units of velocity squared. (b) Show that p/p has the same units as &
(kJ/kg). (c) Determine the units conversion factor that must be applied to kinetic energy,
V212 (m%s?), in order to add this term to specific enthalpy h (kJ/kg).

Air flows steadily through a circular jet ejector. (Refer to Figure 1.15.) The primary jet
flows through a 10-cm-diameter tube with a velocity of 20 m/s. The secondary flow is
through the annular region that surrounds the primary jet. The outer diameter of the an-
nular duct is 30 cm, and the velocity entering the annulus is 5 m/s. If the flows at both the
inlet and exit are uniform, determine the exit velocity. Assume the air speeds are small
enough that the flow may be treated as an incompressible flow (i.e., a flow in which the
density is constant).

A slow leak develops in a storage bottle, and oxygen slowly leaks out. The volume of the
bottle is 0.1 m?, and the diameter of the hole is 0.1 mm. The initial pressure is 10 MPa, and
the temperature is 20°C. The oxygen escapes through the hole according to the relation

P

VT

where p is the tank pressure and T is the tank temperature. The constant 0.04248 is based
on the gas constant and the ratio of specific heats of oxygen. The units are N/m? for pres-
sure, K for temperature, m* for area, and kg/s for mass-flow rate. Assuming that the tem-
perature of the oxygen in the bottle does not change with time, determine the time it takes
to reduce the pressure to one half of its initial value.

1, = 0.04248—= A,

A normal shockwave occurs in a nozzle in which air is steadily flowing. Because the shock
has a very small thickness, changes in flow variables across the shock may be assumed to
occur without change of cross-sectional area. The velocity just upstream of the shock is
500 m/s, the static pressure is 50 kPa, and the static temperature is 250 K. On the down-
stream side of the shock, the pressure is 137 kPa and the temperature is 343.3 K. Deter-
mine the velocity of the air just downstream of the shock.

A gas flows steadily in a 2.0-cm-diameter circular tube with a uniform velocity of 1.0 cm/s
and a density py. At a cross-section farther down the tube, the velocity distribution is
given by V = Uy[1 = (r/R)?], with r in centimeters. Find U, assuming the gas density to
be po[1 + (r/R)?].

For the rocket shown in Figure 1.6, determine the thrust. Assume that exit-plane pressure
is equal to ambient pressure.

Determine the force F required to push the flat plate of Figure P1.8 against the round air
jet with a velocity of V- = 10 cm/s. The air jet velocity is V; = 100 cm/s, with a jet diameter
of 5.0 cm. Air density is 1.2 kg/m>.

A jet engine (see Figure P1.9) is traveling through the air with a forward velocity of 300 m/s.
The exhaust gases leave the nozzle with an exit velocity of 800 m/s with respect to the noz-
zle. If the mass-flow rate through the engine is 10 kg/s, determine the jet engine thrust. Exit-
plane static pressure is 80 kPa, inlet-plane static pressure is 20 kPa, ambient pressure
surrounding the engine is 20 kPa, and the exit-plane area is 4.0 m”.

1.10 A high-pressure oxygen cylinder, typically found in most welding shops, is accidentally

knocked over, and the valve on top of the cylinder breaks off. (See Figure P1.10.) This cre-
ates a hole with a cross-sectional area of 6.5 X 107 m?2. Prior to the accident, the internal
pressure of the oxygen is 14 MPa and the temperature is 27°C. Based on critical-flow
calculations (the concept of critical flow will be discussed in Section 3.5), the velocity of
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Figure P1.8

Figure P1.9

Figure P1.10
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the oxygen exiting the cylinder is estimated to be 300 m/s, the exit pressure 7.4 MPa, and
the exit temperature 250 K. How much thrust does the oxygen being expelled from the
cylinder generate? What percentage is due to the pressure difference? What percentage is
due to the exiting momentum? Atmospheric pressure is 101 kPa. To gain an idea of the
size of this thrust force, also note that 0.2248 Ib; = 1 N.

1.11 Air enters a handheld hair dryer with a velocity of 3 m/s at a temperature of 20°C and a
pressure of 101 kPa. (See Figure P1.11.) Internal resistance heaters warm the air, which
exits through an area of 20 cm? with a velocity of 10 m/s at a temperature of 80°C. Assume
that internal obstructions do not appreciably affect the pressure between inlet and exit and
that heat transfer to the surroundings is negligible. Determine the power in kW needed to
operate the hair dryer at steady state.

Figure P1.11

1.12 Air is expanded isentropically in a horizontal nozzle from an initial pressure of 1.0 MPa
and a temperature of 800 K to an exhaust pressure of 101 kPa. If the air enters the nozzle
with a velocity of 100 m/s, determine the air’s exhaust velocity. Assume that the air be-
haves as a perfect gas, with R = 0.287 kJ/kg-K and y = 1.4. Repeat for a vertical nozzle
with exhaust plane 2.0 m above the intake plane.

1.13 Nitrogen is expanded isentropically in a nozzle from a pressure of 2000 kPa, at a tempera-
ture of 1000 K, to a pressure of 101 kPa. If the velocity of the nitrogen entering the nozzle
is negligible, determine the exit-nozzle area required for a nitrogen flow of 0.5 kg/s. As-
sume that the nitrogen behaves as a perfect gas with constant specific heats, that it has a
mean molecular mass of 28.0, and thaty = 1.4.

1.14 Air enters a compressor with a pressure of 100 kPa and a temperature of 20°C; the mass-
flow rate is 0.25 kg/s. Compressed air is discharged from the compressor at 800 kPa and
50°C. Inlet and exit pipe diameters are 4.0 cm. Determine the exit velocity of the air at the
compressor outlet and the compressor power required. Assume an adiabatic, steady flow
and that the air behaves as a perfect gas with constant specific heats; ¢, = 1.005 kJ/kg-K
and R = 0.287 kl/kg- K.

1.15 Hot gases enter a jet engine turbine with a velocity of 50 m/s, a temperature of 1200 K, and
a pressure of 600 kPa. The gases exit the turbine at a pressure of 250 kPa and a velocity of
75 m/s. Assume isentropic steady flow and that the hot gases behave as a perfect gas with
constant specific heats (mean molecular mass = 25;y = 1.37). Find the turbine power
output in kJ/(kg of mass flowing through the turbine).
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1.16 Hydrogen is stored in a tank at 1000 kPa and 30°C. A valve is opened, which vents the hy-

drogen and allows the pressure in the tank to fall to 200 kPa. Assuming that the hydrogen
that remains in the tank has undergone an isentropic process, determine the amount of hy-
drogen left in the tank. Assume that hydrogen is a perfect gas with constant specific heats;
the ratio of specific heats is 1.4, and the gas constant is 4.124 kJ/kg - K. The tank volume
is 2.0 m®.

1.17 Methane enters a constant-diameter, 3-cm duct at a pressure of 200 kPa, a temperature of

250 K, and a velocity of 20 m/s. At the duct exit, the velocity reaches 25 m/s. For isothermal
steady flow in the duct, determine the exit pressure, mass-flow rate, and rate at which heat
is added to the methane. Assume that methane behaves as a perfect gas; the ratio of spe-
cific heats is 1.32 (constant) and the mean molecular mass is 16.0.

1.18 Is it possible for air to be adiabatically compressed from a pressure of 300 kPa and a tem-

perature of 27°C to a pressure of 600 kPa and a temperature of 327°C?

1.19 Two streams of air mix in a constant-area mixing tube of a jet ejector. The primary jet en-

ters the tube with a speed of 600 m/s, a pressure of 200 kPa, and a temperature of 400°C.
The secondary stream enters with a velocity of 30 m/s, a pressure of 200 kPa, and a tem-
perature of 100°C. The ratio of the area of the secondary flow to the primary jet is 5:1. The
air behaves as a perfect gas with constant specific heats; ¢, = 1.0045 kJ/kg - K. Using the
iterative numerical procedure described in Example 1.9, determine the velocity, pressure,
and temperature of the air leaving the mixing tube.

1.20 In this chapter, we determined the flow exiting a jet ejector by utilizing an iterative nu-

merical procedure. A more direct approach is possible, however: Eliminate pressure P, be-
tween Eqgs. (1.53) and (1.54). Solve for the temperature 7, in the resulting expression, and
equate it to Eq. (1.55). This procedure produces a quadratic equation for the velocity V,.
Solve the quadratic equation to determine V, for the same set of conditions given in
Example 1.9.




Chapter 2

Wave Propagation
in Compressible Media

2.1 INTRODUCTION

The method by which a flow adjusts to the presence of a body can be shown visually by
a plot of the flow streamlines about the body. Figure 2.1 depicts the streamline patterns
obtained for ideal flow (inviscid and incompressible) over an airfoil and over a circular
cylinder. Note that the fluid particles are able to sense the presence of the body before
actually reaching it. It may be observed that the fluid particles are displaced vertically
at locations in the flow field ahead of the body. This result, true in the general case of
any body inserted into an incompressible flow, suggests that a signaling mechanism ex-
ists whereby a fluid particle can be forewarned of a disturbance in the flow ahead of it.
The velocity of signal waves sent from the body, relative to the moving fluid, appar-
ently is greater than the absolute fluid velocity, since the flow is able to start to adjust
to the presence of a body before reaching it. Thus, when a body is inserted into an in-
compressible flow, smooth, continuous streamlines result upstream of the body, which
indicates gradual changes in fluid properties as the flow passes over the body. If the
fluid particles were to move faster than the signal waves, the fluid would not be able to
sense the body before actually reaching it, and very abrupt changes in velocity vectors
and other properties would ensue.

In this chapter, the mechanism by which the signal waves are propagated through
incompressible and compressible flows will be studied. An expression for the velocity of
propagation of the waves will be derived. From this result, significant conclusions can be
drawn concerning the basic differences between incompressible and compressible flows.

2.2 WAVE PROPAGATION IN ELASTIC MEDIA

Let us examine what happens when a solid elastic object, such as a steel bar, is sub-
jected to a sudden, uniformly distributed compressive stress applied at one end, as shown

39
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(a) A Symmetrical Airfoil (b) A Circular Cylinder

Figure 2.1 Streamline Pattern of Ideal Flow Past Two Body Shapes

in Figure 2.2. In the first instant of time, a thin layer next to the point of application is
compressed, while the remainder of the bar is unaffected. This compression is then
transmitted to the next layer, and so on down the bar. Thus, a disturbance created at the
left side of the bar is eventually sensed at the opposite end. The compression wave ini-
tiated at the left side of the bar takes a finite time to travel to the right side, the wave ve-
locity being dependent on the elasticity and density of the medium.

Gases and liquids also are elastic substances, and longitudinal waves can be prop-
agated through these media in the same way that waves are propagated through solids.
Figure 2.3 depicts a gas that is confined in a long tube with a piston at the left-hand
side. The piston is given a sudden push to the right. In the first instant, a layer of gas
piles up next to the piston and is compressed; the remainder of the gas is unaffected.
The compression wave created by the piston then moves through the gas until eventu-
ally all the gas is able to sense the movement of the piston. If the impulse given to the
gas is infinitesimally small, the wave is called a sound wave, and the resultant compres-
sion wave moves through the gas at a velocity equal to the velocity of sound.

Figure 2.2 Compression Waves in a
Solid Bar

Figure 2.3 Piston Motion into Gas
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For a truly incompressible medium, no changes in density are allowed. If the pis-
ton in Figure 2.3 were moved to the right in an incompressible medium, no piling up of
fluid, or density changes, would occur at any point in the fluid. All the fluid would have
to move instantaneously with the piston. Thus, the velocity of wave propagation in an
incompressible fluid is infinite. A disturbance created at any point in an incompressible
fluid is sensed instantaneously at all other points in the fluid. However, no medium is
actually incompressible, so the velocity of sound has a finite value in solids, liquids, and
gases. The less compressible the substance through which the wave propagates, the
larger will be the velocity of sound in that substance. Therefore, the velocity of sound in
a solid 1s much greater than the velocity of sound in a liquid, and likewise, the velocity
of sound in a liquid is much greater than the velocity of sound in a gas.

2.3 VELOCITY OF SOUND

If the piston in Figure 2.3 creates an infinitesimal disturbance, the wave propagates
through the medium at the velocity of sound relative to the gas into which the wave is
moving, as shown in Figure 2.4. Let the piston be given a steady velocity to the right, of
magnitude dV, with the resultant sound wave moving at a velocity a. As a result of the
compression created by the piston, the pressure and density next to the piston are in-
finitesimally greater than the pressure and density of the gas at rest ahead of the wave.
The gas between piston and wave must move with the piston velocity dV. Thus, the
wave, moving at speed a, divides the flow field into two parts: On the piston side, the
fluid moves with the speed dV, and on the other side, the fluid is at rest,so V = 0. We
must derive an expression for the velocity of sound, utilizing the flow equations re-
viewed in Sections 1.8 through 1.10.

Because the sound wave propagates into the gas at rest, the flow is unsteady, as
conditions at a given point in the field do not remain constant in time. The problem can
be turned into a steady-flow problem by redefining the coordinate system in which it is

moving wave

a  Basatrest

p.p

pressure

density

velocity

Figure 2.4 Sound Wave
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attached to the moving wave. From this vantage point, the wave does not move; on the
right we would see the flow approaching the wave with a speed a, and on the left we
would see the flow retreating from the wave with a speed a — dV. In essence, we are
superimposing (i.e., adding) a velocity of —a to all flow velocities. We can often obtain
a steady flow from an unsteady flow if the object of interest (in this case, the sound
wave; in Example 1.4, a moving normal shockwave) is traveling at a constant speed
through an initially undisturbed medium. It should be noted that this transformation of
coordinate systems does not affect the thermodynamic variables: pressure, tempera-
ture, density, enthalpy, and entropy. The transformed coordinate system is called a
Galilean reference system (a system that moves with constant velocity).

Now choose a control volume containing the wave; all velocities must be ex-
pressed relative to this control volume. (See Figure 2.5.) Because this is a steady-flow
problem in the new coordinate system, Egs. (1.28) and (1.32) are applicable:

//pV-dA =0 (1.28)

SF, = //Vx(pV-dA) (1.32)

Since the sound wave initiated by the piston is a plane wave, changes in flow
properties occur only in the flow direction. For this one-dimensional flow, Eq. (1.28)
becomes

(p+dp)la—dV)A — paA =0
Simplifying and dropping second-order terms (i.e., the product of the differentials,

dVdp, which can be shown to be vanishingly small and therefore have no effect on the
results) yields

adp — pdV =0 (2.1)

The only forces acting on the control surface are pressure forces. (See Figure 2.6.)
Applying Eq. (1.32) yields

pA = (p +dp)A = [(a — dV) — alpAa

stationary wave
control volume

Figure 2.5 Control Volume for Sound
Wave
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Figure 2.6 Forces Acting on Control
Surface of Wave

Simplifying, we obtain
dp = padV (2.2)

Equation (2.2) indicates that the pressure rise across the wave is directly propor-
tional to the fluid density, wave speed, and piston speed. Thus, given these three quan-
tities, we can compute the pressure increment.

Eliminating the differential speed dV between Egs. (2.1) and (2.2) produces

dp = a*dp
or
dp
2= = 23

It should be observed that speed of sound involves only thermodynamic variables
of the gas. It does not contain any geometric parameter, nor does it depend on the pis-
ton speed. In Eq. (2.3), dp/dp should more properly be written as a partial derivative,
since the manner in which pressure varies with density is dependent on the process oc-
curring in the sound wave. For example, if the process were performed at constant tem-
perature (isothermal), we would obtain a different result than if the process were
performed such that entropy remained constant (isentropic). This is because

(), ()
p /1 op /s

The sound wave is a weak compression wave, across which occur only infinitesi-
mal changes in fluid properties. Therefore, the process occurring in the wave satisfies
the definition of reversibility from Section 1.11. Furthermore, the wave itself is ex-
tremely thin, and changes in properties occur very rapidly. The rapidity of the process
precludes the possibility of any heat transfer between the system of fluid particles and

its surroundings. The sound-wave process is reversible and adiabatic; that is, it is
isentropic. Hence, Eq. (2.3) may be more properly expressed as

@) oo
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It should be noted that if the gas is subjected to high-frequency oscillation,
the process cannot be regarded as isentropic, because the intermolecular motion
due to the oscillation will generate internal frictional heating. Fortunately, this fre-
quency is relatively high. [Reference (2.1) provides an order-of-magnitude estimate
showing that the limiting frequency is azpcp/Sk, where £ 1s the thermal conductivity of the
gas. A rough calculation shows that the limiting frequency is% GHz for air and 1 THz
for water]. Therefore, for most flows, the sound wave may be regarded as an adiabatic
COmpression.

Equation (2.4) has been derived for the case of a weak compression wave; that is,
the piston was pushed into the fluid with a speed dV. It is well known that an audible
sound wave consists of rarefactions, or expansions, as well as compressions. The velocity
of a weak expansion wave can be calculated using the same equations as were used
with the compression wave. Allow the piston of Figure 2.4 to be drawn to the left with
an infinitesimal velocity dV. This creates in the first instant a decrease in density of the
gas at the piston face (same mass, but larger volume). The resulting weak expansion
wave then moves to the right through the gas, traveling at the velocity of sound, as is il-
lustrated in Figure 2.7.

To calculate the wave velocity, select a control volume that includes the wave, and
express velocities relative to the control volume as shown in Figure 2.8.

Using the continuity and momentum equations, we see that the same expression
is obtained for the velocity of the expansion sound wave as was obtained for the com-

pression sound wave:
VG
a= —
ap /s

moving wave

a  gas
—> at

rest

av

Figure 2.7 Generation of an Expansion Wave

stationary wave

Figure 2.8 Control Volume for an
Expansion Wave



Section 2.3 Velocity of Sound

45

The velocity of sound for a perfect gas can be evaluated by using Eq. (1.46),
which expresses the variation of pressure with density for a perfect gas undergoing an

isentropic process:

Y
Leg (ﬂ) (1.46)
P P1
Alternatively, we have
—:—7 = constant (2.5)
Therefore, for a perfect gas,
(f”_ﬁ) _P
p/s P
and
Yp
a=,/— 2.6
p (2.6)
By making use of the perfect gas law, we have
a = VyRT 2.7

Thus, the speed of sound for a perfect gas is dependent on the ratio of specific
heats, the gas constant, and the absolute temperature. Hence, the velocity of sound in
air at 25°C and 101 kPa is identical to that at 25°C and 50 kPa, or that at 25°C and
150 kPa. Also note that since the gas constant is R = 8314.3 J/(kg - K/IMM), where
MM is the molecular mass [see Eq. (1.3)], light gases (small MM—e.g., hydrogen or

helium) will have larger speed-of-sound values than heavier gases.

Historical Note: In 1635, Pierre Gassendi (1592-1655) made the first known measurement of the
speed of sound in air, using firearms. Gassendi was a French Catholic priest, a philosopher, an as-
tronomer, and a major figure of the scientific revolution. Isaac Newton (1642-1727) studied Gassen-
di’s writings in his formative years. However, Gassendi’s measured value was shown to be too large
by French natural philosopher Marin Mersenne (1588-1648). Mersenne made more accurate mea-
surements and produced a value of about 450 m/s. In 1738, the Academy of Sciences in Paris con-
ducted more precise measurements, using cannon fire, and obtained a value of 332 m/s at 0°C. In
1698, Newton developed the first analytical expression of the speed of sound. However, he assumed
the process to be isothermal, and therefore his predictions were low by about 15%. (See Problem
2.9.) In 1816, Pierre Simon Laplace (1749-1827) obtained the correct formula for the speed of
sound by assuming that the process is adiabatic. He calculated the speed to be 331.5 m/s. Conse-
quently, Eq. (2.7) is sometimes referred to as the Newton—Laplace equation or as the Laplace equa-
tion. For greater historical detail, see Ref. (2.2).
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Example 2.1. Speed-of-sound expression from dimensional analysis

Use dimensional analysis to develop an equation for the speed of sound in terms of the
pressure difference across the wave, A p; the density difference across the wave. Ap; and
the dimensional conversion constant g..

Solution

The speed of sound may be written as
a=f(Ap,Ap.g) =~ (Ap)(Ap)°(g)

Inserting units of all quantities on both sides of the expression produces

L F\Y/ M\?/ ML\ a—cy—2a-3b+cpgbtcr—2c
?=<P><F><FT2):F LM

Comparing like exponents yields a set of four equations for the three unknowns, and thus
one equation will provide redundant information:

L: 1=-2a-3b+c¢

T -1=-2
F: O=a-c
M: 0=b+c
. . 1
Solving these equations produces:c = a = —b = 7 Hence,
(Ap)s
(Ap)

It is instructive to observe how the dimensional conversion constant g. enters the calcula-
tions for the speed of sound. In SI units (N, kg, m,and s), g. = 1 (kg-m)/(N - s?) and there-
fore does not affect the numerical calculations for the speed of sound. However, for the
engineering system of units (Iby, Ib, ft,and s), g. = 32.174 (Ib,, - ft)/(lb; - s*) and therefore
will numerically affect the value of a.

For a substance that is not a perfect gas, it is desirable to express the velocity of sound
in terms of a physical property of the substance: the compressibility. Compressibility is a
measure of relative volume change with pressure for a given process and is defined by

1 0
k. = _,(6_v> _ 1(11) 2.8)
v\dp/s P\dp/s

1{ov 1/ ap
)
4 v\op/r P\Op/T 29)

where k, and ky are, respectively, the isentropic and isothermal compressibilities. [See
Ref. (2.3).] The speed of sound may therefore be written as
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It can be shown [see Ref. (2.3)] that
| _(op | Y
a= 'y(*) =, ]— 211
ap pkr )
By comparing Egs. (2.10) and (2.11), we see that
kr
k- v (2.12)
For solids, the change in pressure with density is usually expressed in terms of the
bulk modulus B, defined by
ap
Bs - P(ap )s (2]3)

Thus,

a= \/73_;1 (2.14)

Comparing Egs. (2.8) and (2.13) shows that the bulk modulus is related to the
isentropic compressibility by

1

The bulk modulus for solids can also be related to Young’s modulus E and

Poisson’s ratio v through the following equation [see Ref. (2.4)}:

E

Ps=30 -2

However, it is not uncommon for the bulk modulus to be taken to be equal to E.
Tables 2.1, 2.2, and 2.3 present values [adapted from a table in Ref. (2.5)] of the

TABLE 2.1 Speed-of-Sound Property Data for Various Gases

T Molar R p B, kg kr a

Gases (°C)  mass (N-m/kg-K) (kg/m?) v (kPa) (1/GPa) (1/GPa) (m/s)

Air 0 28.97 287.0 1.29 1.402 1422 7,034 9.861 331.6
Air 20 28.97 287.0 1.21 1.402 142.4 7,025 9,849 343.0
Helium 20 4.003 2,076.9 0.16 1.667 169.0 5,919 9,866 10150
Hydrogen 0 2.016 4,124.0 0.09 1410 1450 6,894 9,721 1,269.5
Oxygen 0 3200 259.8 1.43 1.400 1439 6.950 9,730 3172
Steam 100 18.02 461.4 0.60 1.324 98.3 10,171 13,467 404.8
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TABLE 2.2 Speed-of-Sound Property Data for Various Liquids

T P Bs ks ky a
Liquids °C) (kg/m*) ¥ (kPa) (1/GPa) (1/GPa) (m/s)
Alcohol (ethyl) 20 790 — 1.04 0.957 — 1,150
Glycerine 20 1,260 — 4.94 0.202 — 1,980
Mercury 20 13,600 113 28.59 0.035 0.040 1,450
Seawater 13 1,026 1.01 2.31 0.433 0.438 1.500
Fresh water 20 998 1.004 2.19 0.457 0.459 1,481
Turpentine 20 870 1.27 1.36 0.736 0.934 1,250

TABLE 2.3 Speed-of-Sound Property Data for Various Solids

p Bs ks a
Solids (kg/m?) (kPa) (1/GPa) (m/s)
Aluminum 2,700 71.61 0.014 5,150
Brass 8.500 104.13 0.010 3,500
Copper 8.900 121.84 0.008 3,700
Lead 11,300 16.27 0.061 1,200
Steel 7,700 196.37 0.005 5,050
Glass (Pyrex) 2,300 62.19 0.016 5,200
Silver 11,300 82.38 0.012 2,700
Hard Rubber 1,100 0.01 185.529 70

isentropic and isothermal compressibilities, the bulk modulus, and supporting infor-
mation for a variety of materials.

Example 2.2. Compute the speed of sound in a gas, a liquid, and a solid

At 27°C and one atmosphere, determine the velocity of sound (a) in air (R = 0.287
kJ/kg-K and y = 1.4), (b) in liquid water, which has an isothermal compressibility of
0.51 x 10"%kPa and a density of 1,000 kg/m’ under these conditions, and (c) in copper, for
which p = 8,900 kg/m® and 8, = 1.218 X 10% kPa at these conditions.
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Solution

(a) From Eq. (2.5), we have

a = V(1.4)(0287 kN-m/kg- K)T = V/(1.4)(287 kg-m%kg-K -s2)T
= 20.0449\/T
= 20.0449V/300 = 347.1887 m/s (2.16)

(b) For water,c, = c,, so that y ~ 1.0, and we can use Eq. (2.10) as follows:

[1 \/ 1 [(1.000 Pa)10®
a = _— = ponng
pk (1,000 kg/m>) 0.51 x 107%(kPa)™! 510 kg/m®

= V(196 x 10°) kg/m - s¥kg/m® = 1,400 m/s

Thus, ayaer = 4.03a,;,-
(c) We can use Eq. (2.14) to calculate the velocity of sound in copper:

B; 1.218 x 10'! Pa 1218 x 10" kg/m - s*
a=,/—= = . — = 3,700 m/s
p 8,900 kg/m’ 0.8900 X 10* kg/m’

Thus, acopper = 2.6401er = 10.65a.

Example 2.3. The speed of sound in superheated steam

Calculate the local speed of sound in a flow of superheated steam at a location where the
pressure is 500 kPa and the temperature is 300°C. The accepted experimental value for
this pressure and temperature is 582.46 m/s.

Solution

To accomplish this, we must have access to steam property data, which can be found in any
text on thermodynamics. Table 2.4 is excerpted from Ref. (2.6).

There are several methods by which we can determine the speed of sound in this
case. However, because we are dealing with a singie phase, we must be assured that the
steam is superheated. Since the saturation temperature at 500 kPa is 151.86°C, and since
the local temperature exceeds this value, the steam is clearly superheated.

To begin, we will first assume that the steam is a perfect gas. From Table 2.1, we have
R = 8,314/18.02 = 461.4 J/kg- K and y = 1.324; therefore, using Eq. (2.7), we have

a = V/YRT = \/(1324)(461.4)(300 + 273) = 591.6?

Alternatively, we can make use of Eq. (2.6), as well as the steam property data. Entering
Table 2.4 at the given P and T, we find that v = 0.5226 m3/kg, and, therefore.

a= ./lp’Z = Viypo = V/(1.324)(500.000)(0.5226) = 588.2?
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TABLE 2.4 Steam Property Data

p = 400 kPa p = 500 kPa p = 600 kPa
(T = 143.63°C) (T = 151.86°C) (Ta = 158.85°C)
T(°C)  v(m’kg) s(kJkg+K) v(m’kg) s(kJ/kg+K) v(m/kg) s(kJikg+K)
Sat. 0.4625 6.8959 0.3749 6.8213 0.3157 6.7600
200 0.5342 7.1706 0.4249 7.0592 0.3520 6.9665
250 0.5951 7.3789 0.4744 7.2709 0.3938 7.1816
300 0.6548 7.5662 0.5226 7.4599 0.4344 7.3724
350 0.7726 7.8985 0.5701 7.6329 0.4742 7.5464
400 0.8893 8.1913 0.6173 7.7938 0.5137 7.7079

Another approach is based on first determining the compressibility of the steam through
the use of a simple central finite-difference approximation of the derivative that appears
in Eq. (2.9); that is,

T =

l(?;};) _ v(pl, T)<v(p + Ap,T)zgpv(p - AP,T))

Here, we use Ap = 100 kPa only because this is the available datum. A smaller increment
would lead to improved results. So p + Ap = 500 + 100 = 600kPa, and p — Ap
= 500 ~ 100 = 400 kPa. Using the data in Table 2.4 yields the following:

il

1 (0‘4344 ~ 0.6548

1
ky = — =2.109 X 1075—
T 0.5226\  2(100,000) ) 109 Pa

Hence, using Eq. (2.11), we have
/ ap / /yv 1324) 05226)
ap 2109 x 107

Finally, we may obtain the finite difference of the derivative in the isentropic compress-
ibility relation, Eq. (2.8), to determine the speed of sound:

_ 1fevy 1 [v(p+Ap,s)—v(p-Ap,s)
o ?J(ap):— v(p,s)\ 2Ap )

Now, at p = 500 kPa and T = 300°C, we see from Table 2.4 that s = 7.4599 kJ/kg-K.
This value is then used to determine the specific volumes at the two side pressures.
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To accomplish this, the property data must be interpolated, and we find that at 600 kPa.
v = 0.4544 m*kg, and at 400 kPa, v = 0.6209 m*/kg. Thus,

. <o4544 — 0.6209
* 05226\ 2(100,000)

/ ap / \/ﬁ / (0.5226)
572. 8——
ap pk 1.593 x 107°

)—1593X10'

2.4 SUBSONIC AND SUPERSONIC FLOWS

It has been established that the presence of a small disturbance is signaled throughout a
fluid by means of a wave traveling at the local velocity of sound of the fluid into which the
wave is propagating. If a body travels through a fluid at a velocity greater than the velocity
of sound, the fluid ahead of the body is unable to sense the presence of the body, and
abrupt changes in flow properties occur as the flow passes over the body. If a body travels
through a fluid at a velocity less than the velocity of sound, the presence of the body is sig-
naled to the fluid ahead of it. Thus, the fluid is able to adjust to the movement of the body,
and gradual changes in flow properties result, with smooth, continuous streamlines.

Let us now consider a simplified representation of this discussion. A point pro-
jectile is injected with velocity V into a stationary fluid. Just as the piston of Figure 2.3
produced a compression wave ahead of it traveling at the velocity of sound, so the dis-
turbance here creates a pressure wave propagating throughout the fluid in all direc-
tions (a spherical wave) at the velocity of sound.

The projectile is assumed to travel to the right with a velocity equal to some mul-
tiple of the velocity of sound. Points 0, 1, 2, and 3 denote the locations, given by
x = nalt, of the projectile after 0, 1, 2, and 3 equal time intervals, respectively. The
projectile is continually issuing waves during its motion; the waves move radially out-
ward from the point of emission at the velocity of sound. The locations of the waves
emitted by the projectile while at points 0, 1, 2, and 3 are depicted after three time in-
tervals. For example, while the projectile moves from 0 to 3, the wave emitted at O trav-
els a distance 3aAt. Figure 2.9 shows magnified views of a subsonic and supersonic
case. Figure 2.10 presents an assembly of cases for various projectile speeds.

Historical Note: Diagrams of the type shown in Figures 2.9 and 2.10 were drawn by Ernst Mach
(1838-1916) in his research of projectile motion. As stated in Ref. (2.13), “To one familiar with
the physics of shock waves, it is obvious how familiar Mach already was {in 1886] with these
new supersonic phenomena. He interpreted the bow wave at once as the envelope of disturbances
originating from the projectile and he supposed it to be a shock front.” Figure 2.9(a) “displays the
well-known construction illustrating the idea. The sine of the half-angle of the vertex of the cone
is the ratio of the sound speed to the projectile speed, i.e., the reciprocal of the Mach number.”

It should also be mentioned that Christian Johann Doppler (1803—1853) in 1847, some 40
years before Mach, had constructed diagrams such as Figures 2.9 and 2.10 to explain the phenomena.
Thus, the geometry could be called a Doppler—Mach cone.
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Figure 2.9 Sound Speeds Generated by a Disturbance
Traveling at Subsonic and Supersonic Speeds

Lines have been drawn tangent to the spherical waves for the supersonic-projectile-
speed case in Figure 2.9, with the projectile at the apex of the cone thus formed. As
shown in Figure 2.10, the cone angle diminishes as the speed of the projectile is in-
creased. This cone defines the flow region in which the fluid has “sensed” the projectile
motion. Everywhere outside the cone, the fluid is “unaware of” the presence of the mov-
ing projectile. For this reason, von Karman termed the region inside the cone the zone of
action and the region outside the cone the zone of silence. [See Ref. (2.7).] The nearness
of the waves at any time signifies the strength of the resultant pressure disturbance at a
point in the fluid. From Figure 2.9, it can be seen that the pressure disturbance is greatest
in the vicinity of the cone.

For a subsonic projectile velocity, the pressure wave moves farther ahead of the
projectile as time passes. This case is exemplified in Figure 2.10 (a)—(f). For subsonic
cases, the point projectile has been made to travel to the right with a velocity V equal
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Figure 2.10 Taxonomy of Pressure Wave and Projectile Speeds
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to various fractions of the velocity of sound. The location of the projectile and a pres-
sure wave emitted by the projectile are depicted at one, two, and three equal time in-
tervals At after the projectile has emitted the wave. The spherical wave precedes the
projectile into the fluid, with the distance between projectile and wave increasing with
time [i.e., (a — V)t]. Eventually, all the fluid ahead of the projectile is able to “sense”
its motion and thereby adjust to it.

Figure 2.10(g) depicts the case when the projectile travels at exactly the same
speed as the wave. In this case, the pressure wave, which just keeps pace with the pro-
jectile, is unable to signal the undisturbed fluid that the projectile is about to arrive.

If the projectile travels at a velocity greater than the velocity of sound, it contin-
ually moves into a fluid that has not “sensed” its presence. At each instant, the distur-
bance must push aside undisturbed fluid. This case is illustrated in Figures 2.10(h)-(1).

The lines at which the pressure disturbance is concentrated and that generate the
cone are called Mach lines or waves. The angle between the Mach line and the projec-
tile direction is the Mach angle u, which can be computed from the triangles shown in
Figure 2.10; that 1s,

Gin o = nalt _a
K=var v
or
. f a
= = 2.17
p = sin (V> (2.17)

For subsonic flow, no such zone of silence exists. The entire fluid is able to “sense”
the projectile moving through it, since the signal waves move faster than the projectile.
No concentration of pressure disturbances can occur for subsonic flow; Mach lines can-
not be defined.

It should be noted that the motion of the projectile in the gas is an unsteady-flow
problem. However, by the same reasoning that was used in Example 1.4 to immobilize
a moving shockwave, as well as in Section 2.2 to change the unsteady motion of a sound
wave into a steady-state problem, we may imagine that a velocity of —V is superim-
posed onto the flow. In essence, we are changing the coordinate system by attaching it
to the projectile, and in so doing, the projectile is made stationary in that coordinate
system and the fluid approaches it from the right in all of the figures. Rather than the
projectile traveling at some multiple of the speed of sound, in this situation the fluid is
traveling at a speed above or below the speed of sound. It becomes harder for any dis-
turbance signal to propagate upstream as the fluid speed approaches the speed of
sound. For fluid velocities that equal or exceed the speed of sound, no signal can be
propagated in that direction.

Let us now compare steady, uniform, subsonic, and supersonic flow over a finite
wedge-shaped body. If the velocity of the fluid is less than the velocity of sound, flow
ahead of the body is able to “sense” the presence of the body. As a result, gradual
changes in flow properties take place, with smooth streamlines. (See Figure 2.11.)

If the velocity of the fluid is greater than the velocity of sound, the approaching
flow, being in the zone of silence, is unable to “sense” the presence of the body. Unlike
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Figure 2.11 Subsonic Wedge Flow

the point projectile discussed previously, the body now presents a finite disturbance to
the flow. The wave pattern obtained is a result of the addition of the individual Mach
waves emitted from each point on the wedge. This nonlinear addition yields a com-
pression shockwave across which occur finite changes in velocity, pressure, and other
flow properties. A typical flow pattern obtained for supersonic flow over the wedge is
shown in Figure 2.12.

In this case, the adjustment of the flow to the body is not gradual, but takes place
entirely in the shockwave itself, which is of infinitesimal thickness. As a result, discon-
tinuous changes in flow direction, pressure, temperature, density, and so on, occur
across the wave. In a real fluid, discontinuities cannot exist, since real fluid effects

Shockwave

v

Y

2

Figure 2.12 Supersonic Wedge Flow
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(viscosity and the like) tend to smooth them out. However, the measured thickness of
a shock is on the order of the mean molecular free path, a small fraction of a millimeter.
[See Ref. (2.8).]

The design of an airfoil, or even an aircraft, that operates in a subsonic flow is in-
herently different from the design for supersonic flow. For subsonic flow, a smooth
shape is generally selected. (Figure 2.13 shows various subsonic aircraft.) However, for
supersonic flow, the existence of shocks must be allowed for in design. A thin body with
a pointed nose is preferable in order to minimize the strength of the shock in the vicin-
ity of the front of the body. Figure 2.14 shows aircraft that fly at supersonic speeds.
Clearly, subsonic and supersonic geometries are quite different.

Boeing 727 Boeing 747 Airbus

Figure 2.13 Subsonic Aircraft

Concorde F-16 F-14

Figure 2.14 Supersonic Aircraft
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2.5 MACH NUMBER

From the discussion in the previous section, the significance of the difference between
subsonic and supersonic flow can be appreciated. The criterion for the type of flow is
Mach number, a nondimensional parameter defined by

Vv
M = . (2.18)
The Mach number is the ratio of the speed of the gas divided by the local speed
of sound. Because, as we have seen, the speed of sound depends upon thermodynamic
variables of pressure, density or temperature, its value changes throughout the flow
field as these variables change.
Gas flows can be classified according to the magnitude of the Mach number:

Incompressible M << 1
Subsonic M <1
Transonic M~1
Sonic M=1
Supersonic M >1
Hypersonic M > 1

As has just been described, the speed of sound of a truly incompressible sub-
stance is infinite. Therefore, the Mach number of a truly incompressible substance must
be exactly zero. However, we will find in later chapters that flows with small Mach
numbers physically behave like an incompressible fluid. In fact, only a relatively small
error will be made in treating the compressible flow as an incompressible flow for M
below 0.2.

Mach number is an extremely important parameter in the study of compressible-
fluid flow. In the development of the equations of motion of a compressible fluid, much
of the analysis will appear in terms of Mach number. As a simple illustration, we write
Eq. (2.17) for the Mach angle in terms of the Mach number

p = sin‘1(3M> (2.19)

The significance of the point at which Mach number is equal to unity will be
demonstrated again and again in future chapters.

Historical Note: Mach did not coin the term Mach number. Rather, it was first pub-
licized in 1929 when Swiss engineer Jakob Ackeret (1898-1981) named it in honor
of Mach during a lecture at the Eidgenossiche Technische Hochschule in Zurich. The
name was not immediately accepted. In fact, the Russians at one time preferred the
term “Bairstow number” for the ratio, and years later, in 1947, the French proposed
- the term “Moisson number.” The term “Mach number” first appeared in English pub-
Jakob Ackert lications in 1932, 16 years after Mach’s death.

-
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2.6 CHAPTER CAPSTONE APPLICATION: THE SPEED OF SOUND IN A REAL GAS

When gases are exposed to pressures and temperature far removed from atmospheric
values, the perfect-gas equation of state does not provide an accurate relationship be-
tween the thermodynamic variables. Accordingly, an alternative equation of state
should be used. However, these alternative equations do not possess the simplicity of
pv = RT and therefore are more difficult to work with. For example, the
Beattie-Bridgeman equation contains eight groups of terms and five experimentally
determined constants, and the Benedict—Webb-Rubin equation contains ten groups of
terms and eight constants. To minimize the complexity, two-constant equations of state
have been widely used. There are several members of the so-called two-constant family
of equations of state. The oldest member is van der Waals’s equation, which first ap-
peared in 1873.

In this section, the speed of sound of a real gas. i.e., a nonperfect gas, will be de-
termined using the van der Waals equation of state, which contains only two groups of
terms and two constants. However, before proceeding in that direction, a few words re-
garding gas imperfection are in order.

Thermodynamically, a gas may be imperfect in two ways. If the gas does not satisfy
the perfect-gas law, it is said to be thermally imperfect. If it does not have constant spe-
cific heats, it is said to be calorically imperfect. Eggers has pointed out two cases for
which a gas may not be thermally perfect [see Ref. (2.9)]:

* There are densities in excess of 10 times the sea-level atmospheric value, in which
case the molecules occupy an appreciable fraction of the available volume.

* There are sufficiently high pressures and low temperatures so as to cause inter-
molecular forces to be appreciable.

The compressibility factor Z (not to be confused with compressibilities k; and k7)
is defined by '

7 = % (2.20)

Obviously, if Z is close to unity, the conditions allow the perfect-gas equation to be used.

Next, we employ a two-constant equation of state. Van der Waals’s equation was
selected because it is relatively easy to work with. However, it is not the most accurate.
It should be noted that the equation takes into account intermolecular forces, as well as
molecular volumes. Van der Waals’s equation may be written as

(p + %)(v ~ B) = RT (2.21)

The two constants that appear are generally written as a and b; however, the symbol
for the speed of sound is also a, and thus to avoid confusion, we will use « and 8 for
these constants. Note that for large values of specific volume, v >> B, and for pres-
sures such that p >=> a/v?, the equation reduces to the perfect-gas equation. One
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method to determine values of a and B (or the constants in any two-constant equation
of state) is to make use of the fact that the isotherm passing through the critical point
of a gas passes through an inflection point. This condition requires that

d

(_P) ~ 0
Jav T

82
)
o /T

By differentiating Eq. (2.21) according to these equations and rearranging, it is
not difficult to show that

and

9 27 RT?

a = gRchc = ‘62 D £ = 3pc’03

C
_ % _1RT,

3 8 Pe
3 RT.

Ve =72
8 p.

Note the subscript ¢ is used to signify critical-point values. These values can be found in
Refs. (2.3) and (2.6) for a variety of gases. It is well known that van der Waals’s equa-
tion of state is not particularly accurate. For example, using this equation, we find the
compressibility factor at the critical point to be
_po. 3

= =2 = 0375
RT. 8

Z.

However, generally, Z for most gases at the critical point is somewhere between 0.2
and 0.3. The accuracy of van der Waals’s equation of state can be improved by devel-
oping values for a and B by empirically fitting data in the temperature and pressure
range of interest. Alternatively, a different equation of state can be explored. For ex-
ample, the Redlich-Kwong equation of state is a two-constant equation of state that
was developed in 1949:

(P+;(’v—;%“\7;)(v—ﬁ) = RT

This equation offers about the same simplicity, but better accuracy than, van der
Waals’s equation of state. Recently [see Ref. (2.10)], Redlich-Kwong equation was ex-
tended to provide even more accuracy.

Expanding Eq. (2.21) gives a cubic equation in terms of specific volume:

vs_(g+5?)v2+ﬁv_3§=o (222)
P P 14
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Thus, given values of p and 7, we can obtain the specific volume by solving Eq.
(2.22). To accomplish this, we will use Newton—Raphson’s method. [See, for exam-
ple, Ref. (2.11).] This is a very efficient trial-and-error method that yields a solution
to many nonlinear expressions quite rapidly. We will employ this method at numer-
ous times throughout the book.

A solution strategy for this method can be developed by first writing a functional
equation in terms of the variable whose root we are attempting to find. In the present
case, we would write Eq. (2.22) as

flv)y =0

Since this is a trial-and-error method, a new value of the specific volume v, is ob-
tained from a previous value v,4. One method to establish the link between these two
values is to write a single-term Taylor series

_ af )
f(vnew) = f(vold) + d—v.(’UOld)(vnew — vold) + ... =90

Rearrangement gives

f(vgia)

Unew = Vold — df
dv

(2.23)

(Vota)

The function f(v) that appears in Eq. (2.23) is the cubic equation in Eq. (2.22).
The denominator is the derivative of this function. Given a guess (say, the perfect-gas
value), we are able to compute a value of f(v) and its derivative. In turn, this result will
provide an updated value that will allow us to calculate a new value of f(v) and its de-
rivative, and so on until convergence is obtained. In essence, we are successively ob-
taining an improved approximation of the root of Eq. (2.22) [i.e., the value of specific
volume that brings f(v) as close to zero as possible]. The specific volume, or density, is
then used to compute the speed of sound.

Historical Note: Newton—Raphson’s method has also been called Newton’s method. Around 1669,
Isaac Newton presented a method to algebraically solve polynomial equations. As an example, he
sought to determine the root of x> — 2x — 5 = 0 between 2 and 3. The method involved guessing an
initial value of the root, substituting the sum of the guess plus an additional small term into the poly-
nomial, and then linearizing the equation by dropping higher-order terms. The added term is then
readily calculated from the linear equation. The process is repeated for as many times as needed. In
1690, Joseph Raphson (1648-1715) presented a simplified, successive, approximate version that is
similar to Eq. (2.23). In 1740, Thomas Simpson (1710-1761) greatly improved the method to itera-
tively solve nonlinear equations and generalized the method to systems of two equations. For more de-
tail, refer to Ref. (2.12).
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To determine the expression for speed of sound, a, we start with Eq. (2.11),

Rewriting Eq. (2.21) in terms of density we get

pRT )

S ¢ §

This result allows us to easily determine the partial derivative of pressure with respect
to density for a constant temperature; that is,

(a_g> __RT_, Rpp
op)r 1-Bp (1-ppP 7
Hence,
RT RTpB
= .y 224
‘ \/y{l—ﬁp+(l—ﬁp)2 “ 229

Example 2.4. The speed of sound in a real gas

Determine the speed of sound in nitrogen at a location where the pressure is 300 kPa
and the temperature is 300K for both a perfect gas and a real gas, using van der Waals’s
equation of state. Repeat the calculations for the same temperature, but a pressure 100
times larger. The experimental values for these two cases are 353.47 m/s and 483.18 m/s,
respectively.

Solution

To solve this example, we first develop a spreadsheet solver to determine the specific
volume (density) using the numerical procedure just described and then compute the
speed of sound from Eq. (2.24). The constants used in van der Waals’s equation of state
are as follows:

R = 296.82 (N-m)/(kg-K)
174.11 N - m*/kg?

a p=—
B = 0.001378 m3/kg
vy=14

Case1: p = 300kPa, T = 300K

The first step is to determine the specific volume for the given pressure and temperature,
using the cubic equation in Eq. (2.22) and Newton-Raphson’s method, Eg. (2.23). Once
the density is known for the given pressure and temperature, Eq. (2.24) is used to compute
the speed of sound. Table 2.5 shows the iterations for the real gas, starting from the per-
fect-gas value of v as the initial guess.
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TABLE 2.5 Iteration Results for Case 1 of Example 2.4

Iteration v flv) dfldv v — fi(dfidv) p a
1 0.2968 5.00E-05 8.7866E~02 0.29625 3.3690 352.4043
2 0.29625 1.92E-07 8.7192E-02 0.29625 33755 352.4030
3 0.296251 2.86E-12 8.7190E-02 0.296251 3.3755 352.4030
Perfect gas: v = 0.2968 m*/kg Real gas: v = 0.2963 m’/kg
p = 3.3690 kg/m* p = 3.3755 kg/m’
a = 353.08 m/s = 352.40 m/s

There is not a large difference between the results. This is not surprising, since the
compressibility factor (Z = pv/RT) for the real gas is very close to unity. Actually, the
speed of sound predicted by the perfect-gas model is shightly closer to the experimental
value than the value predicted using van der Waals’s equation. This is because the con-
stants in van der Waals’s equation were set at the critical conditions, which are far from the
given pressure and temperature.

Case 2: p = 30,000 kPa, T = 300 K

Table 2.6 shows the iterations for the real gas.

TABLE 2.6 lteration Results for Case 2 of Example 2.4

Iteration v fv) dfldv v — fl(dfldv) P a
1 0.002968 —2.9130E-09 6.4330E-06 0.003421 336.9016 519.7548
2 0003421  10275E-09  1.1176E-05 0003329 2923081  455.0607
3 0.003329 4.9235E-11 1.0114E-05 0.003324 300.3806 465.3416
4 0.003324  13357E-13  1.0059E-05 0003324 3008205  465.9189
5 0.003324  9.9202E-19  1.0059E-05 0003324 3008217  465.9205
Perfect gas: v = 0.002968 m*/kg Real gas: v = 0.003324 m’/kg
p = 336.90 kg/m® p = 300.82 kg/m>
a = 353.08 m/s a = 465.92 m/s

The specific volume of the real gas is 12 percent larger than the perfect-gas value;
however, the speed of sound of the real gas is 32 percent larger than that of the perfect gas.
Note that the speed of sound of air, computed as a perfect gas, is the same in both cases.
This is because, for nitrogen,a = 20.385 VT (i.e.,depends only on iemperature), and since
the temperature for Case 1 is the same as in Case 2, the speed of sound must be identical
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for both cases. Also, the speed of sound computed from van der Waals’s equation of state
differs from the experimental value by only 3.5 percent.

Example 2.5. The speed of sound in a real gas using finite differences
Use finite differences to determine the speed of sound of nitrogen, using van der Waals’s
equation of state and the data of Case 1 in Example 2.4.

Solution

Instead of calculating the speed of sound from an equation that we develop from the
equation of state [e.g., Eq. (2.24) for van der Waals’s equation of state], here we will start

from Eq. (2.11):
)
a= -
Y p/r

The foregoing partial derivative can be approximated using a central finite difference much
as the speed of sound was computed for superheated steam in Example 2.3. In this case,

<QB> _plp+48p.T) — p(p - Ap,T)
ap/r 2Ap

For p = 300 kPa and T = 300 K, the density was determined, using van der Waals’s equa-
tion, to be 3.3755 kg/m>. The procedure is simply to add and subtract a small increment of
density (i.e., Ap) to the computed value of density and then use van der Waals’s equation
to compute the pressure from

RTp

- 2
1 - bp

ap

P

The accuracy of any finite difference will depend on the size of Ap. Small increments will
produce the best results. Use Ap = 0.1 kg/m>, p = 308,870.07 N/m? (p = 3.4755 kg/m>,
T = 300K), and p = 291,128.94 N/m? (p = 3.2755 kg/m>, T = 300 K). Subtracting the
pressures, dividing by 2A p, multiplying the ratio by v = 1.4, and taking the square root of the
result gives a = 352.403 m/s, which is the same value that was determined previously.

2.7 SUMMARY

As a body moves through a stationary fluid, waves are emitted from each point on the
body and travel outward at the velocity of sound. In an incompressible fluid, the velocity
of sound is infinite, so an entire body of fluid is able to instantaneously “sense” the mo-
tion of an object passing through it. In a compressible fluid, the velocity of sound has a
finite value. If a body travels through a compressible fluid at a velocity Jess than that of
sound, waves emitted by the body are able to move ahead of the body and signal the
fluid to adjust to the oncoming disturbance. If a body travels at a velocity greater than
that of sound, the waves are not able to signal the fluid ahead of the body. For the sub-
sonic case, the fluid is able to adjust gradually to a moving object, and smooth, continuous
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streamline patterns result. For the supersonic case, the fluid must adjust rapidly to a
moving object. Shockwaves result, with discontinuous changes in fluid properties. Be-
cause of its importance, a variety of methods for determining the speed of sound were
presented. The importance of Mach number for compressible flow is established.
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2.9 PROBLEMS

21

22

2.3

24

2.5

Using the expansion wave and control volume depicted in Figures 2.7 and 2.8, along with
the continuity and momentum equations, rederive Eq. (2.4).

(a) Derive an expression for k; for a perfect gas, substitute the result into Eq. (2.10), and
thereby demonstrate Eq. (2.7). (b) Derive an expression for ky for a perfect gas, substitute the
result into Eq. (2.11), and thereby demonstrate Eq. (2.7). (¢) Finaily, derive an expression for
B, for a perfect gas, substitute your result into Eq. (2.14), and thereby demonstrate Eq. (2.7).
Use dimensional analysis to develop an expression for the speed of sound in terms of the
isentropic compressibility, the density, and g..

Using the data provided in Tables 2.1,2.2, and 2.3 (i.e., the density and the isentropic com-
pressibility or the bulk modulus), calculate the velocity of sound in (a) helium, (b) turpen-
tine. and (c) lead at 20°C and one atmosphere pressure.

In Example 2.3, the speed of sound of superheated steam was determined by using a finite-
difference representation of the compressibility and steam-property data. (See Table 2.4.)
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Using the same steam-property data, determine the speed of sound of superheated steam
for the same pressure and temperature (i.e.,at p = 500 kPaand T = 300°C). Then use the
finite-difference method on the following equations to provide two estimates for the
speed of sound:

2 _ Y Y
a =
("’—”—) ()
op/r | ap It
PO W 1/
(93) ra(tu)
ap s L ap ds

2.6

Equation (2.16) provides a convenient expression for calculating the speed of sound in air:

a = 20.05 \/T where T is the absolute temperature in degrees Kelvin. Derive the follow-
ing linear equation for the speed of sound in air, where a; is the speed of sound in air at
0°Cand Tis °C:

a = ay+ 0.6T

To accomplish this, use Eq. (2.16) and the expansion (x + y)” = x" + nx" "'y + ---

2.7 Rather than measuring the bulk modulus directly, it may be easier to measure the speed of
sound as the sound propagates though a material and then use the result to compute the
bulk modulus. For a Lucite plastic of density 1,200 kg/m?, the speed of sound is measured as
2.327 m/s. Determine the bulk modulus. What is the corresponding isentropic compressibility?

2.8 An object of diameter d(m) is rotated in air at a speed of N revolutions per minute. Draw a
plot of the rotational speed required for the velocity at the outer edge of the object to just
reach sonic velocity for a given diameter. Take the speed of sound of the air to be 331 m/s.

(a) Newton assumed that the sound-wave process was isothermal rather than isentropic.
Determine the size of error made in computing the speed of sound that occurs as a result
of this assumption. (b) A flash of lightning occurs in the distance. Twenty seconds later, the
sound of thunder is heard. The temperature in the area is 23°C. How far away was the
lightning strike?

2.10 (a) The pressure increase across a compression pulse moving into still air at one atmos-
phere pressure and 30°C is 100 Pa. Determine the velocity following the pulse. (b) The ve-
locity changes by 0.1 m/s across a pressure wave that moves into hydrogen gas that is at rest
at a pressure of 100 kPa and temperature 300 K. Determine the pressure behind the wave.

2.11 (a) Helium at 35°C is flowing at a Mach number of 1.5. Find the velocity, and determine the

local Mach angle. (b} Determine the velocity of air at 40°C to produce a Mach angle of 38°.

2.12 (a) A jet plane is traveling at Mach 1.8 at an altitude of 10 km, where the temperature is
223.3 K. Determine the speed of the plane. (b) Air at 320 K flows in a supersonic wind tunnel
over a two-dimensional wedge. From a photograph, the Mach angle is measured to be 45°.
Determine the flow velocity, the local speed of sound, and the Mach number of the tunnel.

2.13 A supersonic aircraft, flying horizontally a distance H above the earth, passes overhead. A
time interval At later, the sound wave from the aircraft is heard. In this time increment, the
plane has traveled a distance L. Show that the Mach number of the aircraft can be com-

puted from:
2 2
BRSEN
H H

2.9

M:
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Hint: first show that the Mach angle u can be expressed as tan™'(1/\V/M? — l), and then
connect the Mach angle to the geometric parameters H and L.)

2.14 Given the following speeds and temperatures, determine the corresponding Mach num-

bers (Note: 1 mile = 5,280 ft = 1,609.3 m; 1 mi/h = 1.6093 km/h = 0.447 m/s):

(a) A cheetah running at top speed of 60 mi/h; the local temperature is 40°C

(b) A peregrine falcon in a dive at 217 mi/h; the local temperature is 25°C

(c) Maurice Greene, who in June 1999, in Athens, Greece, became the world’s fastest
human by running 100 m in 9.79 s; the temperature was 21°C

(d) Alexander Popov, who in June 1999 became the world’s fastest swimmer by swim-
ming 50 m in 21.64 s; the temperature of the water was 20°C

2.15 Given the following speeds and Mach numbers, and assuming that air is a perfect gas, de-
termine the corresponding local temperature (Note: 1 mi/h = 0.447 m/s):
(a) A Boeing 747-400 at a cruise speed of 910 kmv/h; M = 0.85
(b) The Concorde at a cruise speed of 1,320 mi/h; M = 2.0
(c) The fastest airplane, the Lockheed SR-71 Blackbird, flying at 2,200 mi/h; M = 3.3
(d) The fastest boat, the Spirit of Australia, which averaged a speed of 317.6 mi/h;
M =041
(e) The fastest car, the ThrustSSC, which averaged a speed of 760.035 mi‘h; M = 0.97
2.16 A baseball, which has a mass of 145 grams and a diameter of 3.66 cm, when dropped from
a very tall building reaches high speeds. If the building is tall enough, the speed will be
controlled by the drag, as the baseball will reach terminal speed. At this state,

WZFD

where W (weight) = mg, g (acceleration of gravity) = 9.81 m/s*, Fj, (drag force) = Cpp,;,
AV?*2,Cp (drag coefficient) = 0.5, and A (projected area of sphere) = 7R Find the ter-
minal speed of the baseball and determine the corresponding Mach number if the ambient
air temperature is 23°C and the ambient air pressure is 101 kPa.

2.17 Berthelot’s equation of state,

pRT ap?

"1-Bp T

p

is a two-constant equation of state that provides more accuracy than van der Waals’s equa-
tion, particularly at low pressures. Use this equation to derive the following equation for
the speed of sound:

a:\/[ RT . RTpB _zﬂ]
=g (1-pp T

2.18 Using the speed-of-sound expression from the previous problem and constants for nitro-
gen of R = 296.82 (N-m)/(kg-K), a = 21,972.68 (N-m*-K)/kg?, B = 0.001378 m’/kg,
and y = 1.4, determine the speed of sound for the two cases described in Example 2.4.
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2.19 Employ the finite-difference method of Example 2.5 to determine the speed of sound in
nitrogen, using the Redlich-Kwong equation of state, which is

RTp a,p’

T1-Bp  (1+B)VT

p

where, for nitrogen

R = 296.823 (N -m)/(kgK)
a, = 1979.453 (N-m*- VK)/(kg?)
B = 0.0009557 m*/kg

vy=14

Compute the speed of sound at a pressure of 30.1 MPa and a temperature of 300 K. Ex-
perimental values of the speed of sound of nitrogen may be found in Ref. (2.14). For the
given conditions, the measured value is 483.730 m/s.



Chapter 3

Isentropic Flow
of a Perfect Gas

3.1 INTRODUCTION

68

In this and subsequent chapters, the effect on compressible flow of area change, fric-
tion, heat transfer, and electromagnetic fields will be studied. In most physical situa-
tions, more than one of these effects occur simultaneously; for example, flow in a
rocket nozzle involves area change, friction, and heat transfer. However, one of the ef-
fects is usually predominant; in the rocket nozzle, area change is the factor that has
greatest influence on the flow. The frequent predominance of one factor provides a jus-
tification for separating the effects, including them one at a time in the equations of
motion, and studying the resultant property variations.

Whereas a certain loss of generality is incurred by treating each effect individually,
this procedure does simplify the equations of motion so that the result of each effect
can be easily appreciated. Furthermore, this simplification enables approximate solu-
tions to be derived for a wide range of problems in compressible flow; such solutions
are sufficiently accurate for many engineering applications. Attempts to include all the
effects simultaneously in the equations of motion lead to mathematical complexities
that mask the physical situation. In many cases, exact solutions to these generalized
equations of motion are impossible.

Chapter 3 is concerned with compressible, isentropic flow through varying area
channels, such as nozzles, diffusers, and turbine-blade passages. Friction and heat trans-
fer are nonexistent in these isentropic flows; variations in properties are brought about
by area change. One-dimensional, steady flow of a perfect gas is assumed in order to
reduce the equations to a workable form. For gas flows, changes in potential energy
and gravitational forces are neglected. To fully understand the limitations imposed by
the various assumptions, reference should be made to Chapter 1. The applicability and
accuracy of the equations derived in this and subsequent chapters depend to a large
extent on the manner in which the assumptions fit the physical situation involved in a
given engineering problem.
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3.2 EQUATIONS OF MOTION

For one-dimensional steady flow through a varying area channel, select a control vol-
ume, as shown in Figure 3.1. The continuity equation for this configuration [refer to
Eq. (1.28)] is

[/pV’dA = ’houtﬂow - minflow =0 (3-1)

C.s.

Thus, the mass rate of flow, m (kg/s), which is the product of the density, cross-sectional
area, and velocity, is constant at all sections of the channel. Accordingly, for one-
dimensional steady flow through a varying area channel,

pAV = m = constant (3.2)

To obtain a differential form of the continuity equation, take the natural loga-
rithm of Eq. (3.2) and then differentiate to obtain

dp dA dV
R

Aty o0 (3.3)

An alternative derivation consists of performing a mass balance on the differen-
tial control volume in Figure 3.1, which produces

(p + dp)(A + dAYV + dV) — pAV =0

Expand, simplify, and divide the entire equation by pAV to obtain Eq. (3.3).

b =

P

p p+dp
A A+dA
1% V+dv

Figure 3.1 Control Volume for Varying
Area Flow
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For steady flow, the momentum equation [refer to Eq. (1.33)] in the x direction is
2Fx = //Vx(pv : dA) = (rhv)outﬂow - (mv)inﬂow (34)
C.S.

In the absence of electromagnetic forces, and with negligible friction, the only forces
acting on the control surface are pressure forces. As illustrated in Figure 3.2, these
forces act compressively on the upstream face, the sidewall face, and the down-
stream face. It may be assumed that an average pressure equal to p + dp/2 acts on
the sidewalls.

Thus, we have

2F = Fupstream + Fidewall — Fdownstream

where

Fupslream = pA

dp dA \ . dp)
dewall = | P+ = —(p+£
Figewan <P > )(sin 6)s1n6 (p 5 dA

Fdownstream = (P + dp)(A + dA)

Combining all terms and expanding gives

SF, = —Adp

Figure 3.2 Pressure Forces Acting on Control
Volume
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It should be noted that this is the same force balance that would be obtained for a
constant-area duct. Completing. the momentum balance using Egs. (3.2) and (3.4),
we get

SF, = —Adp = [m(V + dV)] — mV = mdV = pAVdV

Simplification produces the steady, one-dimensional, differential-momentum equation
called Euler’s equation, which is valid for both constant-area and variable-area
geometries:

dp + pVaVv =0 (3.5)

Because the flow is one dimensional, say, in the x direction, Eq. (3.5) may also be
written as
d p dav

V— =10
dx pdx

Note that the pressure and the velocity act in opposite directions in Euler’s equation.
When the pressure increases, the velocity decreases, and vice versa. Also note that if
the density were constant, integration of Eq. (3.5) would produce the well-known
Bernoulli equation, which can be used for low-Mach-number flows:

V2
p + p‘z— = constant

The energy equation with negligible potential energy, no external heat transfer,
and no work [refer to Eq. (1.38)] becomes

(e = A )

for steady one-dimensional flow.
Performing an energy balance on the differential control volume of Figure 3.1
yields the differential energy equation

d(h + K;) = dh + d(gj) =0 (3.6)

Hence, the sum of the enthalpy and kinetic energy, like the mass-flow rate, is constant
throughout the channel.
Now, from the Gibbs second identity [refer to Eq. (1.44)], we know that

d
Tds = dh — —;)’3 (3.7)
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For isentropic flow, ds = 0; hence, Eq. (3.7) becomes

_4r
p

dh

Combining this equation with Eq. (3.6) produces

d 2
p 2
or

dp + pVdV =0

So, using the energy equation, we have again derived Euler’s equation, Eq. (3.5).

3.3 SUBSONIC AND SUPERSONIC ISENTROPIC FLOW THROUGH A VARYING
AREA CHANNEL

Combining the continuity and momentum equations for isentropic flow [i.e., Egs. (3.3)
and (3.5)], respectively, one obtains

dp + pvz[—7 ~ —] =0 (3.8)

But, as we have seen in the previous chapter,

3
()
ap /s

For isentropic flow, there is no need to use the partial derivatives, and we may therefore
write dp = dpla®. Replacing dp in Eq. (3.8) yields

or
dp(1 — M?) = pV?— (3.9)

Dividing by the pressure and using the perfect-gas expression for the speed of sound,

a’ = yplp, produces

ap_ [—7]‘—4—2—] P (3.10)

dA 1 - M)A

The principal value of Eq. (3.10) is that it demonstrates the influence of Mach number
on steady, isentropic, variable-area flow of a perfect gas.
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For subsonic flow, M < 1, the coefficient on the right-hand side of Eq. (3.10) is
positive. Therefore, dp/d A > 0, which informs us that area and pressure change in the
same direction; that is an increase of one is accompanied by an increase in the other.
Also, from Euler’s equation, Eq. (3.5), if pressure increases, the velocity must decrease.
So, for subsonic flow, a decrease in area results in a decrease in pressure {an expansion)
and an increase in velocity (an acceleration). The results of this analysis are summarized
in Figure 3.3.

For supersonic flow, M > 1, the term (1 — M?) makes the term on the right-
hand side of Eq. (3.10) negative. Accordingly,dp/d A < 0, which indicates that the area
and pressure change in opposite directions; that is, an increase of one is accompanied
by a decrease of the other. In other words, for supersonic flow, pressure and cross-
sectional area are inversely related: A decrease in area results in an increase in pres-
sure (a compression) and therefore a decrease in velocity (a deceleration). These
conditions represent opposite variations to the subsonic flow outcomes. The results of
this analysis are summarized in Figure 3.4.

It is important to observe that, to accelerate a subsonic flow, we decrease the
area, as we would expect; however, to accelerate a supersonic flow, we must actually in-
crease the area!

The results illustrated in Figures 3.3 and 3.4 have several ramifications. For exam-
ple, they indicate that a subsonic flow cannot be accelerated to a velocity greater than
the velocity of sound (supersonic flow) in a converging nozzle, regardless of the pres-
sure difference imposed on the flow through the nozzle. If it is desired to accelerate a
stream from negligible velocity to supersonic velocity, a convergent—divergent channel
must be used. That is, the flow must pass through a throat, or minimum area. (See
Figure 3.5.)

That a minimum area must occur is mathematically realized by noting that to
pass from M < 1to M > 1, the velocity of the flow must reach sonic velocity; that is,
the Mach number must be equal to unity. However, this means that we will divide

Subsonic Flows
M<1
Area decreases Area increases
Velocity increases Velocity decreases
Pressure decreases Pressure increases

Figure 3.3 Subsonic Flows
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Supersonic Flows

M>1
Area decreases Area increases
Velocity decreases Velocity increases
Pressure increases Pressure decreases

Figure 3.4 Supersonic Flow

throat

Figure 3.5 Conversion of
Subsonic-Supersonic Flows through
the Minimum Area of a Duct

Eq. (3.10) by zero. For this equation not be to become infinite, dA must equal zero. It
can be shown that d>A > 0 for this condition. [See Ref. (3.1).] Thus, the location
where M = 1 occurs is at the position in the channel where A is a minimum.

3.4 STAGNATION PROPERTIES

Stagnation properties are useful in that they define a reference state for compressible
flow.

Stagnation enthalpy, or total enthalpy, h, at a point in a flow is the enthalpy at-
tained by bringing the flow adiabatically to rest at that point. The stagnation enthalpy
per unit mass is defined by

hy=h + — (3.11)
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Stagnation temperature, or total temperature, T, is the temperature measured by
bringing a flow adiabatically to rest at a point. For a perfect gas with constant specific
heats, we have from Eq. (3.11)

V2
ho = h = c)(T, = T) = =

So,
v? y?
nlarer(ie )
2cp 2cpT
However,
_ R
cp = —
Hence,
(y - I)VZ]
T =T|1 + —m—
° [ 2yRT
Also,
YyRT = &°

Combining terms, we obtain the following for a perfect gas with constant specific heats:

T, y—1

Z=14+-—M 3.12
7 5 (3.12)
Equation (3.12) can provide the Mach number when the temperature ratio is
known:
2 (T, )
M=,[——{=—-1 3.13
(% (3.13)

Stagnation pressure, or total pressure, p, at a point in a flow is defined as the pres-
sure attained if the flow at that point is brought isentropically to rest. From Eq. (1.46), for
a perfect gas with constant specific heats undergoing an isentropic process, we obtain

T\ 7 (y—1)
—;f— - (f) (3.14)

Let state 2 be the stagnation state; then

Po (To)')'/(y—l)
P \T
Using Eq. (3.12), we obtain

-1 yi(y-1) _
Po _ <1 + X M2> (3.15)
P
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Equation (3.15) can be used to determine the Mach number when the pressure

ratio is known:
2 P \*
M= \/——K—) — 1] 3.16
y-1i\p (3.16)

Stagnation density, or total density, p, at a point in a flow is defined as the density
that is attained if the flow at that point is brought isentropically to rest. The stagnation-
to-static-density ratio is connected to the pressure ratio through the isentropic relation

Py _ (&)5
p p
Utilizing Eq. (3.15) yields

-1 1(y-1)
% - (1 + Z—z—Mz) (3.17)

Solving Eq. (3.16) gives the Mach number in terms of the density ratio:

R

Calculation Note: Equations (3.12), (3.15), and (3.17) are often tabulated for three common ratios
of specific heats: y = 1.4, 1.3, and 5/3, as I/T,, p/p,,, and p/p, versus M. See Appendix B. However,
access to computers has made the use of tables of these ratios less valuable than in the past. Never-

. theless, the isentropic-flow tables are convenient particularly when a computer is not available. Al-
ternatively, it is an easy matter to create a spreadsheet program that replicates these tables and
provides an isentropic-flow solver. (See Appendix A.) Furthermore, flow calculators are available on the
World Wide Web.

Example 3.1. Calculation of stagnation properties

A perfect gas with y = 1.4 is traveling at Mach 3 with a static temperature of 250 K, a
static pressure of 101 kPa, and a static density of 1.4077 kg/m>. Determine the stagnation
temperature, pressure, and density values.

Solution

From Egs. (3.12), (3.15), and (3.17), we find the static-to-stagnation-temperature ratio at
M = 3 to be 0.3571, the static-to-stagnation-pressure ratio to be 0.02722, and the static-to-
stagnation-density ratio to be 0.07623. Thus,

T, 1
= _— = = . 4
T, T( T > 250 03571 700.0840 K
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Po 1
= (22 = 101 = 3.710.5070 kP
Po=p ( » ) 002722 7 :

- (f’-"-)—14o77 1 _ 1346658
Po = P\7p 007623 T U

Because of the high speed of the flow [V = Ma = (3)(317.02) = 951.1 m/s], there are
large differences between the static and stagnation properties. Note that static properties
are used to compute the speed of sound.

It can be difficult to understand the difference between static and stagnation
properties. Static pressure and static temperature of a moving stream are properties ex-
perienced by an observer or instrument moving with the same velocity as the stream.
They are thermodynamic properties of the flow. On the other hand, stagnation pressure
and stagnation temperature are properties experienced by a fixed observer or instru-
ment, the fluid having been brought to rest (isentropically and adiabatically, respec-
tively) at the observer or instrument. The difference between static and stagnation
properties is due to the velocity or kinetic energy of the flow.

For steady adiabatic flow in a variable area channel, we have shown [see

Eq. (3.6)] that
& V2>
+ — ] = + — | =
dh d( > ) d(h > 0

But the sum of the static enthalpy and the kinetic energy is the stagnation enthalpy, Eq.
(3.11), and therefore

dh, = 0

So the stagnation enthalpy remains constant. Since for a perfect gas h, = c,T,, this re-
lationship informs us that the stagnation temperature is also constant for steady, adia-
batic, and isentropic flow.

Example 3.2. Stagnation pressure in steady isentropic flow
Prove that the stagnation pressure of a perfect gas in a steady isentropic flow remains
constant.

Solution

From the Gibbs second identity [Eq. (1.44)],

dp,

Po

T,ds, = dh, —

For steady adiabatic flow, dh, = 0; hence,

1 R
= - = - — = —Rd(ln p,
ds, (Top(,)dp" (po)dpo (In p,)
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Integration between two arbitrary points in the flow produces the following arrangement:

Por _ ~as,1R)
Pot

For isentropic flow, As, = As = 0; hence, p,, = p,;. In other words, the stagnation pres-
sure p, is constant for isentropic flow. Therefore, the stagnation pressure is a useful metric
for evaluating the quality of the flow. For example, to access the value of a subsonic inlet of
a gas turbine engine, the difference in internal and external stagnation pressures (stagnation
pressure recovery) is determined.

The mass-flow rate at cross-sectional area A can be expressed in terms of stagna-
tion pressure and temperature by starting from Eq. (3.2):

m = pAV

For a perfect gas with constant specific heats,

" = %AM\/):RT

where
p= Po
-1 y{y—-1)
<1 + 7 MZ)
2
and
T = L
y—1 2
1+ M
2
Thus,
y+1
-1 ST
"= \/’;_;?A\/yM(l +2 . M2> (3.19)
o
or, more simply,
. DA
m = WF(Y’ M) (3.20)

where F(y, M) is given by

y+1

-1 T3y
F(y,M) = \/§M(1 + 7—2——M2> ( (3.21)



Section 3.4 Stagnation Properties 79

It is useful to determine the Mach number corresponding to the maximum value
of F(y, M) because it will reveal the maximum flow rate for given values of p,, T, and
A.To accomplish this, differentiate Eq. (3.21) and set the result to zero to find that

3y-1
dF vy—1 )‘2(741)
— = 1+ ——M? 1-M%)=0
This equation is satisfied by M = 1. A second derivative evaluated at M = 1 will show

that d’2F/dM? < 0, which is the requirement for this rate to be a maximum. Thus, for
constant values of p,, T,, and A, the maximum flow rate is

. PoA PoA [y + 1\ T
Mpax = ———=F(y,1) = \/;( >
= g Y T Ve O\

Note that for air (y = 1.4 and R = 287 N - m/kg - K), the maximum flow rate is

PoA

VT,

e = 0.040418

as used in Example 1.1.

For isentropic flow, in which p, and T, are both constant, the cross-sectional area
A can be related directly to Mach number. Select the area at which M = 1 as a refer-
ence area. Call this area A™. For steady flow, the mass-flow rate is constant through a
variable-area channel. Thus, the flow rate at area A, say, m 4, is equal to the mass flow
rate at A', say, r1 4-. Hence, using Eq. (3.16), we get

pO pO *
AF(y,M) = AF(y,1
V'RT, ) V'RT, )
or
A _ F(v.1) (3.22)
A F(yv,M) '
where
y + 1\ 12-27)
F(y.1) W< ) =

2 1 2 y—1 \|oD
)(vﬂ)/(z—Zw‘M[(vH)(” 2 M”

F(y, M) 1
(r. M) M\G(H———y M

2
(y i 1)(1 + Y > 1M2>J2(M) (3.23)

Therefore,
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Equation (3.23) is plotted in Figure 3.6 for y = 1.4. As may be seen for each
value of M, there is only one value of A/A"; however, for a given A/A" there are two
possible isentropic solutions, one subsonic and the other supersonic. Also, note that
A/A" is never smaller than unity. Furthermore, around M = 1, the curve is relatively
flat. Physically, this informs us that small changes in area can lead to relatively large
changes in Mach number in the vicinity of the sonic point.

Numerical values of A/A” versus M, as with other 1sentropic ratios, are tabulated
for vy = 1.4,1.3, and 5/3 in Appendix B. However, it is an easy matter to develop a
spreadsheet program to create the isentropic-flow tables. (See Appendix A.) As a
demonstration, from the tables in Appendix B, we find that for y = 1.4 and
AlA" = 1.5, M = 0.43 and 1.85. The results of this example are shown in Figure 3.6,
and the physics of this result are illustrated in Figure 3.7. Note that to determine the
Mach numbers in this example from the tables, we would have had to use linear inter-
polation. If we desire more accurate results, an improved process is required. To ac-
complish this, we can use the numerical procedure, Newton-Raphson’s method, which
was introduced in Section 2.6 to solve a cubic equation for specific volume.

Here, we seek the Mach-number roots of Eq. (3.23), which is rewritten as

MZ b
f(M)=aM — ¢ (1 2bc)
df bl < M2>b—l
——=f=Fa- M1+ ——
am T 2be
A v+ 1 2
h =— pb=————nandc = .
where «a e 2(y~1),an c ——

‘ 7
; /

>
(V]

15| - — — =

N o]
| ]
N :
0 043 0.5 1 15 185 2 2.5 3 3.5 4
M

Figure 3.6 Area Ratio A/A" versus Mach Number
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IM=043] [M=10] [M=1585]

Figure 3.7 Area Ratio and Mach
Number in a Duct

The relation that provides the new value of Mach number from an assumed or
previous value is

f(Mold)

d
E—]{/I_(Mold)

Mnew = Mold - (324)

A simple spreadsheet program can be used to determine the Mach number for a
given A/A" and y. The results for this numerical illustration for A/A" = 1.5andy = 1.4
are presented in Table 3.1.

TABLE 3.1 Summary of Iterations to Determine Mach Number for a Given Area Ratio

Subsonic Solution Supersonic Solution
teration M fiM) (M) M — ff lteration M fiM) My M= ff
1 0.0000 -0.578704 1.50  0.3858 1 3.0000 —8.2037 -14.83  2.4469
2 0.3858 ~0.053236 1.22 0.4296 2 2.4469 -2.4707 -6.71 20785
3 0.4296 —-0.000797 1.18  0.430262 3 2.0785 —-0.6304 -352 1.8992
4 0.430262 0.000000 1.18 0.430262 4 1.8991 -0.1030 -241 1.8564
5 1.8564 —0.0049 -2.18 1.8541
6 1.8541 —0.00001 —-2.17 1.854124

7 1.854124 0.000000 —-2.17 1.854124
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A few observations may be made regarding these results. First, it should be noted
that an initial guess of M < 1 is required to obtain the subsonic solution, whereas an
initial guess of M > 1 is required to obtain the supersonic solution. Clearly, better ini-
tial guesses than those in the table can reduce the number of iterations. It should also
be noted that f(M) becomes very small at convergence. Further, the slope of M) [i.e.,
f'(M)] is positive for the subsonic case and negative for the supersonic case. Finally, it
is seen that the results of M = 0.4303 and 1.8541 are in agreement with the results
from the isentropic relations.

Example 3.3. Isentropic relations at small Mach numbers
When the Mach number is small, isentropic compressible-flow relationships may be writ-
ten in a more compact form. Determine the limiting relation for the pressure ratio.
Solution
The stagnation-to-static-pressure ratio is given in Eq. (3.15) as

-1 Y(y-1)
& = (1 + Y__MZ)
P 2

We can expand this expression by using the binomial theorem, which states that

n(n—1

5 )an—2b2 + ...

(a+b)"=a"+ na"'b +

Memory Aid: A useful method of recalling the binomial theorem is to begin by writing the first term
on the right-hand side as a"B®. To obtain the next term, first differentiate a” to obtain na”" ~1and then
integrate b° to obtain b!/1. The succeeding terms are written by repeatedly differentiating the pre-
ceding a term and integrating the preceding b term.

Now,ifa = 1and b = (y — 1)M?/2, the foregoing expression forms a convergent

series provided that b/a < 1;thatis, M < V2/(y — 1), which,fory = 1.4,is V5 = 2236
and therefore of no concern, since we are considering relatively small Mach numbers here.
So expanding the pressure ratio yields

2_
Po=p1+%M2+ZM“+————-Y( Y)M"Jr ]

8 48

Thus, we may write

Po=p+ %pMz + 0<%pM“>

It should be noted that the second term in the series is actually pV?/2, which is called the
dynamic pressure. Thus, the first two terms in the series are p + pV?2 and consequently
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represent the stagnation pressure of an incompressible flow. The term within the order-of-
magnitude symbol O( ) represents the largest term neglected in the series.
Finally, dividing by the static pressure produces

» —1+2M +0(8M>
It is observed that for negligibly small Mach numbers (speeds), the stagnation and
the static pressures are virtually identical. Furthermore, for small Mach numbers, flows can
be treated as incompressible. It is generally accepted that if M < 0.2, the error in neglect-
ing density effects is only a few percent. However, some texts [e.g., Refs. (3.2) and (3.3)]
state that flows can be treated as incompressible for Mach numbers below 0.3 to 0.4.

3.5 ISENTROPIC FLOW IN A CONVERGING NOZZLE

Consider steady flow through a varying-area nozzle, emanating from a very large
reservoir, as shown in Figure 3.8. Because of the reservoir’s size, the velocity is neg-
ligible. (For steady one-dimensional flow, pAV = constant, and if A is large, we ex-
pect V to be correspondingly small.) Thus, the static pressure and temperature of
the gas in the reservoir can be taken to be identical to the stagnation pressure and
temperature.

As the flow is accelerated through the nozzle, the static pressure and tempera-
ture decrease. However, as we have seen in the energy analysis of the flow in a vari-
able channel, if the flow is adiabatic, the stagnation temperature at any cross-section
of the flow remains constant and therefore must equal the reservoir temperature,
which, as we have determined, can be taken to be the stagnation value T,. If the flow
is reversible as well as adiabatic (i.e., isentropic), both the stagnation pressure and
stagnation temperature are constant within the nozzle flow and must be equal to the
reservoir values.

Figure 3.8 Flow from a Large Tank through a Converging
Nozzle



84  Chapter3 Isentropic Flow of a Perfect Gas

Calculation Note: In the next example, we employ a technique that we will use frequently in com-
putational problems. In this method, we construct products of ratios to form the particular ratio that
we are seeking. For example, suppose we seek the value of p,/p; and we are given M, and M,, as
well as p,,/p,1. We can obtain the desired pressure ratio by first computing p,,/p, and p,/p; from
Eq. (3.15) by using M; and M,, respectively. Then

- ()
D1 Po2/ \Po1/ \ P1

Notice how the various terms cancel with each other to produce the desired pressure ratio.

Example 3.4. Isentropic flow in a converging nozzle
An airstream flows in a converging nozzle (see Figure 3.9) from a cross-sectional area
A, of 50 cm? to a cross-sectional area A, of 40 cm?®. If T, = 300K, p; = 100 kPa, and
V) = 100 nv/s, find M,, p,, and T,. Assume steady, one-dimensional isentropic flow.
Solution

Over the temperature range of interest, air behaves as a perfect gas with y = 1.4, and the
Mach number at section 1 can be computed from the given information:

(100 m/s)

\/(1 2/ o. 287M>(300 K)

= (.288

If isentropic flow in the converging nozzle were to be maintained with the duct ex-
tended, as shown in Figure 3.9, the flow would be accelerated to M = 1, with the area at
this point equal to the reference area A”.

Figure 3.9 Flow through a Converging Nozzle
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At M; = 0.288, from Appendix B [or from Eq. (3.23)], with y = 1.4, we obtain

Ay
— =211
A
However,
A, 40
— =—=0.80
Ay 50

Next, we utilize a procedure that is widely used in gas-dynamic calculations: We de-
termine the unknown ratio from a rearrangement of the products of known quantities,
yielding

Az _ AZ(il) - (i‘i%)(A’> = (0.80)(2.111) = 1.689
A A\A AJ\A . . .

From Appendix B [or by using Newton-Raphson’s method, Eq. (3.24), within a spread-
sheet program], we have M, = 0.372. For isentropic flow, p, and T, are constant. At
M; = 0.288, from Egs. (3.12) and (3.15), we obtain

14!

— = (0.944
Pot
—7:]— = 0.984
Tol -
Therefore,
100
Por = 5oas = 1059 kPa = p,;
300
Th = 0934 = 3049K =T,
Similarly, at M, = 0.372,
P2 0.909
Po2
2 _ o3
To2 )

or

p, = 0.909(105.9 kPa) = 96.3 kPa
T, = 0.973(304.9 K) = 296.7K
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Suppose that fluid stored in a very large reservoir is to be discharged through a con-
verging nozzle. For a constant reservoir pressure p,, we desire to determine the rate of
mass flow through the nozzle as a function of the back pressure p, imposed on the nozzle.

Figure 3.10 depicts the pressure distribution obtained in the nozzle for six different
values of back pressure. Figure 3.11 shows the mass-flow rate through the nozzle for each
of the values of back pressure. For p, = p, (Curve 1 in Figure 3.10), there is no flow in
the nozzle (Point 1 in Figure 3.11), and pressure does not change with x. As p, is reduced
below p,, more and more flow is induced through the nozzle (Curves 2 and 3 in Figure
3.10, and Points 2 and 3 in Figure 3.11), and the static pressure decreases with x for this
subsonic flow. The velocity at the nozzle exit plane increases as pj, is reduced, until even-
tually the velocity of sound is reached at the nozzle exit plane (Curve 4 of Figure 3.10).

The results of Section 3.3, illustrated by Figures 3.3 and 3.4, indicate that the flow
in a converging nozzle cannot be accelerated to a velocity greater than the velocity of

Pp
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! '
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14 : |
Pr 1Pe=Pb= pnMezo

|
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i
|
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6}pe >pb’ Me =1
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Figure 3.10 Pressure Distributions in a Converging Nozzle

Po/p:

Figure 3.11 Mass-Flow Rate versus
Reservoir-to-Back-Pressure Ratio
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sound. To understand the phenomena that occur after sonic velocity is reached at the
nozzle exit plane, let us discuss how the flow is able to physically adjust to changes in
back pressure. The presence of a disturbance, such as a change in back pressure, is sig-
naled through a compressible fluid by means of a wave traveling at the velocity of sound
relative to the moving fluid. For subsonic flow in the nozzle, the signal wave propagates
at a greater velocity than the flow. Changes in back pressure can be “communicated”
back upstream to the fluid in the reservoir in the same way that the motion of the point
projectile in Chapter 2 is “felt” in the fluid ahead of it. For example, when a decrease in
back pressure occurs, the change is telegraphed back through the fluid to the reservoir,
and more flow is issued from the reservoir. The subsonic flow in the nozzle is able to ad-
just gradually to the back pressure; thus, for all values of p,/p, greater than that corre-
sponding to Curve 4, the back pressure is equal to the exit-plane pressure.

For py/p, equal to that of Curve 4 in Figure 3.10, sonic velocity occurs at the nozzle
exit plane. The velocity of the signal wave is equal to the velocity of sound relative to the
fluid into which the wave is propagating. If the fluid at a cross-section is moving at the ve-
locity of sound, the absolute velocity of the signal wave at this cross-section is zero. In
other words, the signal wave cannot travel past this cross-section. (See Figure 3.12.)

After sonic flow is attained at the nozzle exit plane, signal waves are unable to
propagate from the back-pressure region to the reservoir. Therefore, as the back pres-
sure is decreased below that of Curve 4 in Figure 3.10, with the reservoir fluid not able
to “sense” the decrease, flow through the nozzle remains the same as that of Point 4 of
Figure 3.11. Since the entire flow in the nozzle upstream of the exit plane is unable to
“sense” changes in back pressure, the pressure distribution in the nozzle, p versus x,
likewise remains the same as Curve 4 in Figure 3.10. Under these conditions, flow in-
side the nozzle cannot adjust to the changes in back pressure. Therefore, for back pres-
sures less than that of Curve 4, the exit-plane pressure is not equal to the back
pressure; instead, the flow must adjust to the back pressure by means of an expansion
occurring outside the nozzle.

Reductions in back pressure below that of Curve 4 in Figure 3.10 cannot cause any
more flow to be induced through the nozzle. Under these conditions, the nozzle is said
to be choked. The pressure ratio p,/p, below which the nozzle is choked can be calculated
for isentropic flow through the nozzle. For a perfect gas with constant specific heats,

y—1_ \WoD
po=p\1+-——M (3.15)

Sound wave
disturbance

Velocity of wave relative to fluid = a
Absolute velocity of wave =aq-V

Figure 3.12 Motion of a Sound Wave
Propagating into a Moving Fluid
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TABLE 3.2 Critical-Pressure Ratio for
Three Values of the Ratio of Specific Heats

Y Po/py
1.3 0.5457
14 0.5283
1.67 0.4871

For isentropic flow in the nozzle, p, is constant and equal to p,. Therefore, to just
choke the nozzle, set the Mach number at the exit plane equal to unity (i.e,, M, = 1),
and the static pressure at that location equal to the back pressure (i.e., p, = pp); hence,

Dy y — 1\70r-D (7 + 1)7/(7—1)
— =1+ = 3.25
Py ( 2 ) 2 (3.25)

This ratio (actually, its reciprocal) below which the nozzle is choked is termed the
critical-pressure ratio. For a perfect gas, the critical-pressure ratio is clearly dependent
only on the ratio of specific heats. Table 3.2 provides values of the critical-pressure
ratio for various vy.

Example 3.5. Mass flow in a converging nozzle

Air is allowed to flow from a large reservoir through a converging nozzle with an exit area
of 50 cm?. The reservoir is large enough so that negligible changes in reservoir pressure
and temperature occur as fluid is exhausted through the nozzle. Assume isentropic, steady
flow in the nozzle, with p, = 500 kPa and 7, = 400 K. Assume also that air behaves as a
perfect gas with constant specific heats; y = 1.4. Determine the mass flow through the
nozzle for back pressures of 0, 125,250, and 375 kPa.

Solution

For y = 1.4, the critical pressure ratio is 0.5283; therefore, for all back pressures below
(500)(0.5283) = 264.15 kPa, the nozzle is choked. Under these conditions, the Mach num-
ber at the exit plane is unity, the pressure at the exit plane (p,) is 264.15 kPa (does not
equal the back pressure if p, < 264.15 kPa), and the temperature at the exit plane (T,) is
(TIT,).]T, = (0.8333)(400) = 333.3K, where (7/T,), is obtained from Eq. (3.12) at
M, = 1 for y = 1.4 (or from the tables in Appendix B). The mass-flow rate for all back
pressures below the critical pressure is

m = peAeve
Pe
= ( RTE>A8(M6\/yRTe)
B [ (264.15 kN/m?)
[ (0.287 kN -m/kg)(333.3K)

}(50 X 1074 m?)

[(1.0)V/(1.4)(287 N - m/kg - K)(333.3K) |
= 5.053 kg/s
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Figure 3.13 Mass-Flow Rate versus Back
Pressure for Example 3.5

This is the flow rate at back pressures of 0, 125, and 250 kPa. (See Figure 3.13.)

For a back pressure of 375 kPa, which is above the critical pressure, the nozzle is not
choked, and the exit-plane pressure is equal to the back pressure. For p,/p, = 375/500 =
0.75 = (p/p,)e, we find that M, = 0.654 [from Eq. (3.16) or from the tables in Appendix
B] and use it to determine that T,/T, = 0.921. So,

- 375 _ B
= [(0287)(0.921)(400)](50 x 1074)[(0.654) V/(1.4)(287)(0.921)(400) | = 4.462 kg/s

This flow rate is diagrammed in Figure 3.13.

3.6 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE

Fluid stored in a large reservoir is to be discharged through a converging—diverging
(C-D) nozzle. It is desired to determine the mass flow and pressure distribution in the
nozzle over arange of values of p,/p,. The reservoir pressure p, is maintained constant,
with one-dimensional isentropic flow in the nozzle.

Figure 3.14 depicts the pressure distribution obtained in the nozzle for five dif-
ferent values of back pressure. Figure 3.15 shows the mass-flow rate for each value of
Pyl py- For p, equal to p, (Curve 1 in Figure 3.14 and Point 1 in Figure 3.15), there is no
flow in the nozzle, and pressure does not vary with x. For p, slightly less than p, (Curve 2
in Figure 3.14 and Point 2 in Figure 3.15), flow is induced through the nozzle, with sub-
sonic velocities in both converging and diverging sections of the nozzle. Equation
(3.10) tells us that, for subsonic flow, pressure decreases in the converging section and
increases in the diverging section. As the back pressure is decreased, more flow is fur-
ther induced through the nozzle (Curve 3 in Figure 3.14 and Point 3 in Figure 3.15)
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Figure 3.14 Pressure Distributions for Isentropic Flow in a C-D Nozzle
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Figure 3.15 Mass-Flow Rate versus
Pressure Ratio for Isentropic Flow
in a C-D Nozzle

until eventually sonic flow occurs at the throat (Curve 4 in Figure 3.14 and Point 4 in
Figure 3.15). Further decreases in back pressure cannot be “sensed” upstream of the
throat; thus, for all back pressures below that of Curve 4 in Figure 3.14, the reservoir
continues to send out the same flow rate as Point 4 in Figure 3.15, and the pressure dis-
tribution in the nozzle up to the throat remains the same. For all back pressures below
that of Curve 4, the converging—diverging nozzle is choked.

Note that for the same reservoir pressure, a converging—diverging nozzle is
choked at a greater back pressure than a converging nozzle.

There are two possible isentropic solutions for a given area ratio A/A" (see
Figure 3.6), one subsonic and the other supersonic. For a throat Mach number of 1,
isentropic flow can either decelerate to a subsonic exit velocity or continue to acceler-
ate to a supersonic exit velocity. Curve 4 in Figure 3.14 corresponds to the case of sub-
sonic flow at the nozzle exit plane; Curve S corresponds to supersonic flow at the exit
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plane. Thus, if the back pressure is lowered to that of Curve 5, pressure decreases with
x in both the converging and diverging portions of the nozzle, with supersonic flow at
the exit plane.

For back pressures between those of Curves 4 and 5 in Figure 3.14, one-dimensional
isentropic solutions to the equations of motion are not possible. These flows involve
irreversible shockwaves in the diverging section of the nozzle. Nonisentropic solutions
for flows through a converging-diverging nozzle will be discussed in some detail after
the shock process has been introduced in Chapter 4 and the equations of motion for a
shockwave have been derived.

Example 3.6. Isentropic flow in a C-D nozzle

A converging—diverging nozzle is designed to operate isentropically with an exit Mach
number of 1.5. The nozzle is supplied from an air reservoir in which the pressure is 500 kPa;
the temperature is 400 K. The nozzle throat area is 5 cm?. Assume air to behave as a per-
fect gas, with y = 1.4 and R = 0.2870 kJ/kg - K.

(a) Determine the ratio of exit area to throat area.

(b) Given the area ratio in part (a), find the range of back pressure over which the nozzle
is choked.

(c) Determine the mass-flow rate for a back pressure of 450 kPa.
(d) Determine the mass-flow rate for a back pressure of 0 kPa.

Solution

(a) To produce a supersonic Mach number of 1.5 at the nozzle exit, the Mach number at
the throat must be 1. Therefore, the throat area is equal to A" = 5 cm?. From the isen-
tropic relation for M, = 1.5, AJA® = 1.176, so the ratio of exit area to throat area to
produce this exit Mach number is 1.176, or A, = (1.176)(5) = 5.88 cm®.

(b) For all back pressures below that corresponding to Curve 4 of Fig 3.15, the nozzle is
choked. For Curve 4, sonic flow is attained at the throat, followed by subsonic deceler-
ation. The subsonic solution for A/A" = 1.176 is found by solving for the Mach number,
as indicated in Eq. (3.24): M = 0.61. At this Mach number, p/p, = 0.778; therefore, the
greatest back pressure at which the nozzle is choked is (0.778)(500 kPa) = 389 kPa. In
other words, over the range 0 = p, < 389 kPa, the nozzle is choked.

(c) For a back pressure of 450 kPa, the nozzle is not choked; subsonic flow occurs throughout
the nozzle. For this condition, the exit-plane pressure is equal to the back pressure. From
isentropic relations, for p,/p, = 0.90, M, = 0.39 and T,/T, = 0.971. Exit-plane pressure
p. and temperature T, are, respectively, 450 kPa and 388.4 K. Using these values, we obtain

= peAV, = ( b )(Ae)(Me\/ﬁ)

RT,

[ 450 kN/m?
(0.287 kN - m/kg - K)(388.4 K)

3
|

}[5.88 X 1074 m?]

[(0.39)V/(1.4)(287 N - m/kg - K)(388.4 K) |

= (4.037 kg/m3>(5.88 % 107 m?)(0.39)(395.0 m/s) = 0.365 kg/s
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Figure 3.16 Mass-Flow Rate versus
Pressure Ratio for Isentropic Flow in the
C-D Nozzle of Example 3.6

(d) For a back pressure of 0 kPa, the nozzle is choked, with the exit-plane pressure not
equal to the back pressure. For this condition, the Mach number at the throat is 1, with
the throat pressure and temperature equal to 264.2 kPa and 333.3 K, respectively. So,

_ (P)(A)(M)(VYRT,)
- =

"= pAY, = <~p—'>A,(M,)(\/ﬁ?7,)

RT,

_ (2642kN/m?)(5 x 107 m?)(1.0)V/(1.4)(287 N - m/kg - K)(333.3 K)

= 0.505
(0.287 kN - m/kg - K)(3333 K) 0.505 ke/s

The results of this example are plotted in Figure 3.16.

Example 3.7. Isentropic flow in the nozzle of a supersonic wind tunnel

A nozzle is to be designed for a supersonic helium wind tunnel as shown in Figure 3.17.
Test section specifications are as follows:

Diameter, 10 cm

Mach number, 3.0

Static pressure, 12.1 kPa at 15 km altitude (from the table in Appendix I)
Static temperature, 216.7 K at 15 km altitude

Determine the mass flow that must be provided, the nozzle throat area, and the reservoir
temperature and pressure. Assume isentropic flow in the nozzle at the design condition,
and neglect boundary-layer effects. (See Figure 3.17.) Assume that helium behaves as a
perfect gas, with y = 5/3 (constant) and R = 2.077 kJ/kg - K.
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Figure 3.17 Supersonic Wind
Tunnel of Example 3.7

Solution
The mass flow of the test section is given by
0 = (LM ™p2\(MmV
m = pAV (RT)<4 D )(M YRT)
B [ (12.1 kN/m?)
~ [ (2.077 kN -m/kg - K)(216.7 K)

](0.00785 m?)

[(3.0)\/@)(2.077 kN -m/kg - K)(216.7 K)}
= (0.269 kg/m>)(0.00785 m?)(2,598 m/s) = 0.5487 kg/s

From the isentropic flow relations at M = 3.0, we obtain

A 300, 2 =003125 and L = 02500
A o T,
Therefore,
m
il D2)
. 4 ) 2
A" = throat area = _ 000785 m” 0.002617 m?

7

_ 121kPa

Pr = Go3ips = 3872kPa
216.7
= 55500 = 668K

3.7 CHAPTER CAPSTONE APPLICATION: DEPRESSURIZATION OF A STORAGE RESERVOIR
OF FINITE SIZE

The expulsion of gas through a valve or nozzle from a pressurized reservoir of a size
that does not permit the reservoir pressure to remain constant with time is of consid-
erable technical importance, since this situation is common in industry and military
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applications. Often, an analysis of the depressurization process is required to deter-
mine the manner in which some system parameter varies with time.

The gas expulsion problem is well treated in the literature. The published papers
may be divided into two groups: unsteady-state analyses,in which consideration is given
to the effects of pressure gradients within the reservoir, and spatially lumped analyses,
in which the pressure is considered uniform throughout the reservoir at any instant of
time. We now perform the latter type of analysis.

The classical method of analysis is to disregard any heat transfer between the
reservoir walls and the gas and to consider the gas as ideal. [See Ref. (3.4).]

Reynolds and Kays [see Ref. (3.5)] were the first to include heat transfer in the de-
pressurization problem. In their analysis, which also considered the gas-charging
process, a lumped method was used to characterize the gas state. Also, the heat stored in
the walls was treated as being concentrated in a simple uniform-temperature heat ca-
pacitor. Excellent agreement between predictions and experiment was obtained using
free convection as a means of heat transport between the gas and the cylinder walls.

Keith and John [see Ref. (3.6)] analyzed the depressurization of a high-pressure
reservoir. They included real-gas and heat-transfer effects. Predictions were compared
with perfect-gas predictions and with pressure and temperature measurements. Very
good agreement was obtained between the predictions and the measurements.

Figure 3.18 is an illustration of the gas reservoir and the control volume. It is assumed

e that the gas within the cylinder can be treated as spatially lumped (i.e., that gas
properties within the reservoir vary only with time),

¢ that the initial pressure and temperature of gas in the reservoir are p,; and T,
e that the gas can be treated as a perfect gas with constant specific heats, and
e that the flow is isentropic (reversible and no heat transfer).

Since gas flows out of the control volume through only a single opening, we may
write the mass conservation for a control volume, Eq. (1.26), as

dm
— = —-m = —p,A.V, 3.26
dt m pe e e ( )
Equation (3.26) suggests a plan for the analysis: First, develop an expression for
the time rate of change of mass within the reservoir in terms of the reservoir pressure.

Figure 3.18 Air Storage Cylinder
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Second, develop an expression for the exiting mass-flow rate, also in terms of the reser-
voir pressure. Finally, equate these two expressions 10 provide a first-order ordinary
differential equation that can be solved to determine the time history of the reservoir
pressure.

The mass of the gas in the reservoir, m,, is given by the product of the gas density
in the reservoir, p, = p,, and the volume of the tank, V:

m, = p¥V = p,¥
The reservoir density may be replaced using the isentropic relation

Po_ Por _ Pe _ constant 3.27)

Py Pl Pl

Equation (3.27) and the time rate of change of mass within the reservoir can be
written as

W dt Y

T (3.28)

dm _ dpo _ @(&)“yid_f)«z _ [Polv] (1= 3Po

Po1 ,yp(l)/lv ¢ dt

Because the nozzle flow is steady and adiabatic, s, = constant; therefore,

2

Ve
h0=h,=hm=he+—2—

Hence, using perfect-gas relationships, we get

YR Y Po Pe
VZ=2h,—h,) =2c,(T,—-T,) =2 T_Tezz___(____.)
e ( o e) Cp( e) y 1( ) ) y 1\ p, p.

Thus,

G- ()] 629

Next, the expression for the exiting mass-flow rate is determined from the prod-
uct of the exit area, the exit velocity, and the exit density; however, because the exit
conditions of the nozzle change as the reservoir pressure changes, this variation must
be taken into account. Accordingly, the discharge period is divided into two stages,
which have different exit conditions (see Figure 3.10):

v+ 1
2

yly=1)
Stage I: Choked Nozzle: p, = ( ) Pe, Where p, > paymand M, =1
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Stage II: Unchoked Nozzle: pym = p, = ( 5 ) Patm» Where p, = pay
and M, < 1
Stage 1

Because M, = 1 during this stage, the exit pressure is connected to the stagnation, or
reservoir, pressure through Eq. (3.15):

Po y—1 2)7/(7—1) (7 + 1)7/(7—1)
27 - 1+ —M = 3.30
pe ( 2 (4 2 ( )

Equation (3.30) simplifies the exit velocity, Eq. (3.29), and, with Eq. (3.27), produces

2 2y)poy’
V, = \/(.L)(Bﬁ) _ { _(__‘y_).p_l__}p(ov—l)ﬁv (3.31)
y +1/\po (v + Dpor
The exit density of the nozzle may be written using Egs. (3.27) and (3.30):
1/y W(y—-1)
- & _ Pol 2 1y
pe = ”°<po> [ py]v<y n 1) }pO (3:32)

Using Egs. (3.31) and (3.32), we find that the mass-flow rate for Stage I can be
written as

_ 1/
m = p A V - {[ Po1 ( 2 )l/(‘y ])]pI/Y}A {[ (2')’)[7()17 }p(yﬁl)/zy}
€ e’ e o} e (4]
por\y +1 (v + Dpa

- 1/
_ [pol < 2 )l/(y 1):|A I: (2')’)1701y }p(}&l)/zy (333)
por \v + 1 Wy + Dpar 1

Finally, the mass-flow rate leaving the reservoir [Eq. (3.33)] is set equal to the
negative of the time rate of change of mass within the reservoir [Eq. (3.28)] and the re-
sult rearranged:

d
p(glﬂsy)/zy_df% e (3.34)

Here, C; is the Stage I constant, defined as

vAe( 2 )”‘7‘” (2y)pay
(

Cy =
] vV \y+1 Y + Dpo
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Equation (3.34) can be directly integrated to give

Po

pc()l —y)2y

(57)
27 Por

Letb = (1 — y)/2vy, which allows Eq. (3.35) to be written as

= Cy(t - 0) (3.35)

Po = (ph + bCit)'® (3.36)
Solving for time, we have
(= (pt — phy) (3.37)
bCI o ol *

or, in a more complete form,

- (- 2 7+1>Z7;/t—1‘)|:£91)1{71-j|
<Aeaol><y - 1)( 2 (po 1 (3373)

where a,,; is the speed of sound computed from initial reservoir conditions. Once the
reservolr pressure is computed, the reservoir gas density or temperature can be com-
puted from the isentropic relations:

" RT, o \[ To
Po _ (fi’.) - ___p"/(_ - _)_ - (£_><__l> (3.38)
Po1 Po1 Pot/(RT,;) Po1 T,
Stage I1

At the beginning of this stage, the exit Mach number is 1 and p, = p,, (see Curve 4 of
Figure 3.10), and hence

(y—1yy 2 (v=Dly
. (Bﬁ) _ _ (patm> (3.39) .
Po y +1 Po

Equation (3.39) is the lower limit for the integration that follows. The exit velocity
equation [Eq. (3.29)] is rewritten as

(I

L PPt L O B B
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The exit density is

pm>”7 ( Po )”’(pmm>”7 (patm>1/7
. = — = — —_ = p, 3.41
p po( Po Por Poi Po Por Po1 ( )

The mass-flow rate can therefore be expressed as

1y 2 (y=Dly
o= = o 22) ]t (25 e - ()]
Doy Y~ 1 pol(polpol) v Po

Equating this expression to the time rate of change of mass depletion within the
reservoir, given by Eq. (3.28), yields

e

dm &1(&)”1\15{& _
dt Y Po1 Po dt

Al WG DG o

Obviously, Eq. (3.42) is complicated, with a large number of terms. We can simplify it
somewhat by introducing
()
Patm
and defining a Stage II constant as
YA(_ 2 \" [ Pam |V
Cy =~ ( ) aol( )
v Y — 1 Poi

where a,; is the speed of sound based on the initial reservoir conditions. Thus, Eq. (3.42)
can be rewritten as

Bl
i

1 dp
PO /D 2

Equation (3.43) can be integrated more readily by transforming variables as
follows:

= Cudl (343)

r = \/ﬁ(v—l)/v -1

Therefore,

Po
Paim

ﬁ = = (r2 -+ 1)7/(7_1)
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dp = ——(r + DO 2pdy
vy —1

Equation (3.43) may be written as

2 ' t *
(y —71)/ (7 + )2 o-Dgy = C"[dt = Cy(t — 1*) (3.44)
’ t

where r* = \/(7 +1)/2-1= \/(y — 1)/2 and " is the time at which the nozzle un-
chokes [i.e., the last time value computed by Eq. (3.37a)]. In general, the integral on the
left-hand side of Eq. (3.44) requires numerical integration. However, for y = 1.4, the
integration can be performed in closed form:

2v/(y — 1 "
(- =20 )/ (7% + 1)ar
Cy V5is

_ 22y - 1)
Ci

3
[%(Zr2 +5Vrr+1+ gln(r + Vrt+ 1) - 0.49325] (3.45)

where

r= V(pdpa) 7~ 1andr* = \V/5/5 = 04472 for y = 7I5.

Example 3.8. Spatially lumped isothermal flow from a reservoir of finite size

Nitrogen is stored in a tank 2 m® in volume at a pressure of 3 MPa and a temperature of
300 K. (See Figure 3.18.) The gas is discharged through a converging nozzle with an exit
area of 12 cm’. For a back pressure of 101 kPa, find the time required for the tank pres-
sure to drop to 300 kPa. Assume isentropic nozzle flow and that the nitrogen is a per-
fect gas with y = 1.4 (constant) and R = 0.2968 kl/kg-K. Also assume that the
reservoir gas is spatially lumped so that the reservoir gas has a single pressure at each
instant of time [i.e,, p, = p,(t)]. Finally, assume that the discharge process is slow
enough so that 7, is constant.

Solution

As the reservoir pressure drops from 3 MPa to 300 kPa, the ratio p,/p remains below the
critical-pressure ratio, and the nozzle exit Mach number is 1. The exit pressure is given by the
critical-pressure ratio times the reservoir pressure; therefore, for y = 1.4, from Table 3.2 we
have p, = 0.5283p,, and the static temperature in the exit plane of the nozzle is
T, = 0.83337, = (0.8333)(300) = 250 K. The exiting mass-flow rate is therefore

m = p,AV,
_ (P (P \ 4R
- (RTe)Aeae (RTe)Ae ‘YRTe

_(0.5283p,)(12 X 107)V/(1.4)(296.8)(250)
a (0.2968)(250)

= 0.002754p,
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From Eq. (1.8), we have

;%///pdv + //pv-dA =0 (3.46)
CVv. C.S.
A
dv = =
/ﬁ PV = M T R,

Here, m is the mass inside the tank at any time. By substituting into Eq. (3.46), we obtain

where

v, dp,

RT, dr

2 dp,
(0.2968)(300) dr

+ 0.002754p, = 0

+ 0.002754p, = 0
or

dp,

= —0.1226dt

Pr

So,

Il

300

dp, <300>

= — 1554 -8.155 — ] = 8.1554 In(10) = 18.

t /30008 5 0, 8 4 In 3.000 8.1554 In(10) = 18.78 s

’

Example 3.9. Spatially lumped isentropic flow from a reservoir of finite size

Air (y = 1.4 and R = 287 J/kg- K) is stored in a tank 0.037661 m® in volume at an initial
pressure of 5,760.6 kPa and a temperature of 321.4 K. The gas is discharged through a con-
verging nozzle with an exit area of 3.167 X 107> m2 For a back pressure of 101 kPa, as-
suming that the gas within the reservoir follows an isentropic process and that spatial
lumping applies (i.e., p, = p,(t) and T, = T,(t)), compare predicted tank pressures to the
measured values contained in Table 3.3.

Solution

The critical-pressure ratio py/p, for air (y = 1.4 from Table 3.2) is 0.5283. For this prob-
lem, as long as the reservoir pressure is above 101/0.5283 = 191 kPa, the nozzle is choked.
Nondimensionalizing this value by the initial reservoir pressure gives a pressure ratio of
0.033. Thus, except for the value at t+ = 19 s in Table 3.3, we see that the nozzle remains

TABLE 3.3 Experimental Pressure~Time Data for the Expulsion of Air from a Tank

Time(s) 0.0 1.0 20 3.0 4.0 5.0 6.0 7.0 90 110 130 150 170 190

Po/Po1 1.000 0717 0551 0448 0358 0281 0241 0199 0.142 0.104 0.078 0059 0.044 0.033
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TABLE 3.4 Comparison of Predicted and Experimental Pressures for Example 3.9

t (sec) Po/Por Po/Por (€Xp) % Error Po Po (exp)
0.0 1.000 1.000 0.0 5,760.6 5,760.6
1.0 0.786 0.717 9.6 45283 4,130.3
2.0 0.623 0.551 13.0 3,588.2 3,174.1
3.0 0.497 0.448 11.0 2,864.6 2,580.7
4.0 0.400 0.358 117 2,303.1 2,062.3
50 0.324 0.281 15.1 1,863.9 1,618.7
6.0 0.263 0241 93 15178 1,388.3
70 0216 0.199 8.5 12433 1,146.4
9.0 0.147 0.142 37 847.9 818.0

11.0 0.102 0.104 -15 589.8 599.1

13.0 0.073 0.078 -7.0 4177 4493

15.0 0.052 0.059 -115 300.7 339.9

17.0 0.038 0.044 -134 219.6 2535

19.0 0.028 0.033 -14.5 162.6 190.1

choked for all of the experimental values. Consequently, Eq. (3.37a) can be used
to determine the pressure-time history of the expulsion. For the calculations,
a,; = 20.05V/321.39 = 359.4m/s, b = 1/7, and C; = —0.57870s™'. Inserting these con-
stants into Eq. (3.37a), we can construct Table 3.4. (A spreadsheet program was written to
accomplish the calculations.)

It can be seen that the computed values differ from the experimental values by ap-
proximately 10%. Some of the differences are a result of real-gas effects; others are due to
the assumption of quasisteady flow. It is unlikely that heat transfer would have much of an
impact, but nevertheless, some error results from neglect of heat-transfer effects, particu-
larly towards the end of the expulsion process.

3.8 SUMMARY

In this chapter, the equations of continuity, momentum, and energy are presented for
one-dimensional isentropic flow through a varying-area channel. The effect of Mach
number on the flow is demonstrated; the variations of pressure, velocity, and temper-
ature with area for supersonic flow are entirely different than for subsonic flow. For
supersonic flow, the increase of velocity and decrease of pressure as area is increased
seems to violate our intuition; however, our intuition is based mainly on liquid-water
flow, in which density does not vary. For flow in a diverging channel at Mach numbers
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greater than unity, density decreases are great enough to outweigh the increase in area
so that, with pAV = constant, the result is an increase in flow velocity.

The phenomenon of choking also seems contrary to our intuition. As the back
pressure on a nozzle is lowered for a constant reservoir pressure, more flow is induced
through the nozzle until a maximum flow rate is reached. Further decreases in back
pressure then have no effect on the mass-flow rate; the nozzle is choked. Choking oc-
curs when changes in back pressure can no longer be “sensed” in the reservoir. For sub-
sonic flow, the reservoir is able to “sense” back pressure changes by means of sonic
signal waves sent back through the fluid. Once the velocity of sound is reached at a
point in the flow, the signal wave is not able to travel back to the reservoir; hence, the
reservoir is unable to “sense” further decreases in back pressure.

It should be clear that certain intuitive notions gained from a knowledge of water
flow cannot always be applied to a study of compressible-fluid mechanics. One should
now begin to appreciate the significance of Mach number and the velocity of sound for
compressible flow.
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3.10 PROBLEMS

3.1 Air flows at Mach 0.25 through a circular duct with a diameter of 60 cm. The stagnation
pressure of the flow is 500 kPa; the stagnation temperature is 175°C. Calculate the mass-
flow rate through the channel, assuming that y = 1.4 and that the air behaves as a perfect
gas with constant specific heats.

3.2 Helium flows at Mach 0.50 in a channel with cross-sectional area of 0.16 m?. The stagna-
tion pressure of the flow is 1 MPa, and stagnation temperature is 1,000 K. Calculate the
mass-flow rate through the channel, with y = 5/3.

3.3 In Problem 3.2, the cross-sectional area is reduced to 0.12 m?. Calculate the Mach number
and flow velocity at the reduced area. What percent of further reduction in area would be
required to reach Mach 1 in the channel?

3.4 (a) For small Mach numbers, determine an expression for the density ratio p/p,(b). Using
Egs. (3.15) and (3.17), prove that

(3)G)-(F)-()
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An airflow at Mach 0.6 passes through a channel with a cross-sectional area of 50 cm?. The
static pressure in the airstream is 50 kPa; the static temperature is 298 K.

(a) Calculate the mass-flow rate through the channel.

(b) What percent of reduction in area would be necessary to increase the flow Mach
number to 0.87 to 1.0?

(c) What would happen if the area were reduced more than necessary to reach Mach 1?

A converging nozzle with an exit area of 1.0 cm? is supplied from an oxygen reservoir in
which the pressure is 500 kPa and the temperature is 1,200 K. Calculate the mass-flow rate
of oxygen for back pressures of 0, 100, 200, 300, and 400 kPa. Assume thaty = 1.3.
Compressed air is discharged through the converging nozzle, as shown in Figure P3.7. The
tank pressure is 500 kPa, and local atmospheric pressure is 101 kPa. The inlet area of the
nozzle is 100 cm?; the exit area is 34 cm?. Find the force of the air on the nozzle, assuming
the air to behave as a perfect gas with constant y = 1.4. Take the temperature in the tank
to be 300 K.

Figure P3.7

3.8 A converging nozzle has an exit area of 56 cm® Nitrogen stored in a reservoir is to

3.9

be discharged through the nozzle to an ambient pressure of 100 kPa. Determine the
flow rate through the nozzle for reservoir pressures of 120 kPa, 140 kPa, 200 kPa,
and 1 MPa. Assume isentropic nozzle flow. In each case, determine the increase in
mass flow to be gained by reducing the back pressure from 100 to 0 kPa. The reser-
voir temperature is 298 K.

Pressurized liquid water flows from a large reservoir through a converging nozzle. Assum-
ing isentropic nozzle flow with a negligible inlet velocity and a back pressure of 101 kPa,
calculate the reservoir pressure necessary to choke the nozzle. Assume that the isothermal
compressibility of water is constant at 5 X 1077 (kPa)™ and equal to the isentropic com-
pressibility. The exit density of the water is 1,000 kg/m>.

3.10 Calculate the stagnation temperature in an airstream traveling at Mach 5 with a static tem-

perature of 273 K. (See Figure P3.10.) An insulated flat plate is inserted into this flow,
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Figure P3.10

aligned parallel with the flow direction, with a boundary layer building up along the plate.
Since the absolute velocity at the plate surface is zero, would you expect the plate temper-
ature to reach the free stream stagnation temperature? Explain.

3.11 A gas stored in a large reservoir is discharged through a converging nozzle. For a con-
stant back pressure, sketch a plot of mass-flow rate versus reservoir pressure. Repeat for
a converging—diverging nozzle.

3.12 A converging—diverging nozzle with an exit area is 0.12 m? is designed to operate isen-
tropically with air at an exit Mach number of 1.75. For a constant chamber pressure and
temperature of 5 MPa and 200°C, respectively, calculate the following:

(a) the maximum back pressure to choke the nozzle,
(b) the flow rate in kilograms per second for a back pressure of 101 kPa, and
(c) the flow rate for a back pressure of 1 MPa.

3.13 A supersonic flow is allowed to expand indefinitely in a diverging channel. Does the flow
velocity approach a finite limit, or does it continue to increase indefinitely? Assume a per-
fect gas with constant specific heats.

3.14 A converging—diverging frictionless nozzle is used to accelerate an airstream emanating
from a large chamber. The nozzle has an exit area of 30 cm? and a throat area of 15 cm?. If
the ambient pressure surrounding the nozzle is 101 kPa and the chamber temperature is
500 K, calculate the following:

(a) the minimum chamber pressure to choke the nozzle,
(b) the mass-flow rate for a chamber pressure of 400 kPa, and
(c) the mass-flow rate for a chamber pressure of 200 kPa.

3.15 Sketch p versus x for the case shown in Figure P3.15.

_—x

Figure P3.15
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3.16 Steam is to be expanded to Mach 2.0 in a converging—diverging nozzle from an inlet ve-
locity of 100 m/s. The inlet area is 50 cm?, and the inlet static temperature is 500 K. Assum-
ing isentropic flow, determine the throat and exit areas required. Assume the steam to
behave as a perfect gas with constant y = 1.3.

3.17 Write a computer program that will yield values of T/T,,, p/p,, and A/ A" for isentropic flow
of a perfect gas with constant y = 1.27. Use Mach-number increments of 0.05 over the
range M = 0to M = 2.0.

3.18 A gasis known to have a molecular mass MM of 18, with ¢, = 2.0 kl/kg - K. The gas is ex-
panded from negligible initial velocity through a converging—diverging nozzle with an
area ratio of 5.0. Assuming an isentropic expansion in the nozzle with initial stagnation
pressure and temperature of 1 MPa and 1,000 K, respectively, determine the exit nozzle
velocity.

3.19 A jet plane is flying at 10 km with a cabin pressure of 101 kPa and a cabin temperature of
20°C. Suddenly, a bullet is fired inside the cabin and pierces the fuselage; the resultant hole
is 2 cm in diameter. Assume that the temperature within the cabin remains constant and
that the flow through the hole behaves as that through a converging nozzle with an exit di-
ameter of 2.0 cm. Take the cabin volume to be 100 m®. Calculate the time for the cabin pres-
sure to decrease to one half the initial value. At 10 km, p = 26.5kPa and T = 223.3K.
(Refer to the altitude table in Appendix 1.)

3.20 A rocket nozzle is designed to operate isentropically at 20 km with a chamber pres-
sure of 2.0 MPa and chamber temperature of 3,000 K. If the products of combustion
are assumed to behave as a perfect gas with constant specific heats and with exhaust
properties of y = 1.3 and MM = 20, determine the design thrust for a nozzle throat
area of 0.25 m®.

3.21 A converging nozzle has a rectangular cross-section of a constant width of 10 cm. For ease
of manufacture, the side walls of the nozzle are straight, making an angle of 10° with the
horizontal, as shown in Figure P3.21. Determine and plot the variation of M, T, and p with
x, taking M; = 0.4, p,; = 200kPa, and T, = 350 K. Assume the working fluid to be air,
which behaves as a perfect gas with constant specific heats and y = 1.4, and that the flow
1s isentropic.

M] =04
Po1 = 200kPa ——
T, = 350K

Cross-section at 2

Figure P3.21
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3.22 A spherical tank contains compressed air at 500 kPa; the volume of the tank is 20 m>. A
5-cm burst diaphragm in the side of the tank ruptures, causing air to escape from the
tank. Find the time required for the tank pressure to drop to 200 kPa. Assume that the
temperature of the air in the tank is 280 K, the ambient pressure is 101 kPa, and the air-
flow through the opening can be treated as isentropic through a converging nozzle with a
5-cm exit diameter.

3.23 A converging-diverging nozzle has an area ratio of 3.3 to 1 (exit area to throat area). The
nozzle is supplied from a tank containing helium at 100 kPa and 270 K. (See Figure P3.23.)
Find the maximum mass flow possible through the nozzle and the range of back pressures
over which the mass flow can be attained. Repeat with hydrogen as the working fluid.
(Use data from Table H.1 in Appendix H.)

Athroat =60 sz

Figure P3.23

3.24 Superheated steam is stored in a large tank at 6 MPa and 800°C. The steam is exhausted
isentropically through a converging—diverging nozzle. Determine the velocity of the steam
flow when the steam starts to condense, assuming the steam to behave as a perfect gas with
v =13

3.25 Air is stored in a tank 0.037661 m® in volume at an initial pressure of 5,760.6 kPa and a
temperature of 321.4 K. The gas is discharged through a converging nozzle with an exit
area of 3.167 X 1075 m% For a back pressure of 101 kPa, assuming quasisteady polytropic
flow in the tank (i.e., pv" = constant) and isentropic flow in the nozzle (i.e., pv” = constant)
compare predicted tank pressures with the measured values contained in Table P3.25. Try var-
ious values of the polytropic exponent n from 1.0 (isothermal) to 1.4 (isentropic) to obtain
the best results.

TABLE P3.25

Time(s) 0.0 1.0 2.0 3.0 4.0 50 6.0 7.0 9.0 11.0 130 150 170 190

PP 1000 0717 0551 0448 0358 0281 0241 0199 0.142 0104 0078 0.059 0.044 0033




Chapter 4

Stationary Normal
Shockwaves

4.1 INTRODUCTION

The shock process represents an abrupt change in fluid properties in which finite vari-
ations in pressure, temperature, and density occur over a shock thickness comparable
to the mean free path of the gas molecules involved. It has been established that su-
personic flow adjusts to the presence of a body by means of such shockwaves, whereas
subsonic flow can adjust by gradual changes in flow properties. Shocks may also occur
in the flow of a compressible medium through nozzles or ducts and thus may have a de-
cisive effect on these flows. An understanding of the shock process and its ramifica- .
tions is essential in the study of compressible flow.

Chapter 4 is devoted to a consideration of the stationary normal shockwave, a
plane shock normal to the flow direction. This case represents the simplest example of
a shock in that changes in flow properties occur only in the direction of flow; thus, it
can be treated with the equations of one-dimensional gas dynamics. Chapter 6 will
cover the oblique shockwave, positioned at an angle to the flow direction.

It was pointed out in Section 2.4 that a series of weak compression waves can co-
alesce to form a finite-compression shockwave. In this chapter, the mechanism by
which this process occurs will be discussed in detail. The thermodynamics of the shock
process will be reviewed, and the one-dimensional equations of continuity, momentum,
and energy applied to the normal shock. Solutions of these equations will be presented
to enable the working of practical engineering problems.

4.2 FORMATION OF A NORMAL SHOCKWAVE

It was shown in Section 2.3 that, when a piston in a tube is given a small constant ve-
locity increment to the right of magnitude dV (see Figure 2.4), a sound wave travels

107
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ahead of the piston through the medium in the tube. Suppose the piston is now given
a second increment of velocity dV, causing a second wave to move into the com-
pressed gas behind the first wave. The location of the waves and the pressure distribu-
tion in the tube after three times 7; > 1, > 13 are shown in Figure 4.1. Each wave

Piston Wave 2 Wave 1
Attime t; [ > Gas at rest
Po
p
l Po
X
Attime bt o > Gas at rest
Po
p
l Po
x
> Gas at rest

At time #3
Po

> X

Figure 41 The Gradual Overtaking of One Compression Wave by Another
Compression Wave
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AV

Figure 4.2 Piston Velocity Increments
as a Function of Time

travels at the velocity of sound with respect to the gas into which it is moving. Since
the second wave is moving into a gas that is already moving to the right with velocity
dV, and since it is moving into a compressed gas having a slightly elevated tempera-
ture, the second wave travels with a greater absolute velocity than the first wave and
gradually overtakes it.

Now suppose the piston is accelerated from rest to a finite velocity increment of
magnitude AV moving to the right. This finite velocity increment can be thought to
consist of a large number of infinitesimal increments, each of magnitude dV. Figure 4.2
shows the velocity of the piston versus time, with the incremental velocities dV super-
imposed. As was demonstrated in Figure 4.1, the waves next to the piston tend to over-
take those farther down the tube. (See Figure 4.3.)

As time passes, the compression wave steepens. The tendency of the higher
density parts of the wave to overtake the lower density parts is finally counteracted
by heat conduction and viscous effects taking place internal to the wave. The resul-
tant constant-shape compression shockwave produced by the addition of the weak
compression waves then moves through the undisturbed gas ahead of the piston. The
slopes of temperature and pressure versus distance in the wave itself are very large
(yet not truly infinite), and so the shock can be approximated by a discontinuity. (See
Figure 4.4.)

If the piston in Figure 4.5 1s suddenly given an incremental velocity dV to the left,
a weak expansion wave propagates to the right at the velocity of sound. When the pis-
ton is given a second increment of velocity, a second expansion wave moves into the
expanded gas behind the first wave, as illustrated in the figure. Again, each wave trav-
els at the velocity of sound with respect to the gas into which it is moving. In this case,
the waves and gas are moving in opposite directions. Furthermore, the second wave is
traveling into a gas that has already been expanded and cooled, which lowers the ve-
locity of the sound. Both effects reduce the absolute wave velocity and cause the sec-
ond wave to fall farther and farther behind the first. In this manner, expansion waves
spread out; they are not able to reinforce one another. (See Figure 4.6.) The creation of
a finite-expansion shockwave is impossible.
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Attime 1 oo

At time t;; Tz

At time 13 Eo— AV

Figure 4.3 The Steepening of Compression Waves

4.3 EQUATIONS GOVERNING A STATIONARY NORMAL SHOCKWAVE

A shock involves finite changes in flow variables (velocity, pressure, temperature, and
density), and these changes occur at virtually the same location. The processes taking
place inside the wave itself are extremely complex and cannot be studied on the basis
of equilibrium thermodynamics. Temperature and velocity gradients internal to the
shock provide heat conduction and viscous dissipation that render the shock process
internally irreversible. In a practical sense, however, primary interest is not generally
focused on the interior details of the shockwave, but on the net changes in fluid
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> X > x
8 = shock thickness (=~ 2.5 X 107 cm)

Figure 44 Pressure and Temperature
Distributions through a Shock Wave

Piston Wave 2 Wave 1

Gas at rest
Po

[_____l

Figure 4.5 Two Expansion Waves Moving through a Tube

properties taking place across the entire wave. If one chooses a control volume encom-
passing the shockwave, the flow equations can be written without regard to the com-
plexities of the internal processes. For this purpose, it is sufficient to note that the shock
process is thermodynamically irreversible. Furthermore, with the shock-temperature
gradient inside the control! volume, there is no external heat transfer across the control
volume boundaries, so the shock process is adiabatic.

Suppose a fixed-plane shock occurs in one-dimensional, steady flow, as shown in
Figure 4.7. The shock is assumed thin enough so that, even though it may occur in a
varying area channel, as in Figure 4.8, there is no area change across the wave.

If one refers to the control volume indicated in Figure 4.7, the steady-state conti-
nuity equation, with uniform conditions on the control surfaces, Eq. (1.28), yields

VI = pV2 (4.1)
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Gas at rest
Po

Po
P
X
Gas at rest
At time ¢, Po
b Po

Figure 4.6 The Spreading Out of Expansion Waves

Control Volume

Control Surface

Vi 7
T, | S
P1 P2

Figure 4.7 Control Volume Placed around
a Normal Shockwave

With pressure forces being the only external forces acting on the control volume,
the momentum equation, Eq. (1.31), becomes

//Vx(pV *dA)

= p,A,V3 — pAVE

P1A — P A
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Figure 4.8 A Normal Shock in a Varying
Area Channel

or
P+ pVi=pt paV3 (4.2)

For an adiabatic process, the energy equation, Eq. (1.38). for steady flow simph-
fies to
Vi V3

h +
L 2

Therefore, from Egs. (4.1), (4.2), and (4.3), across the stationary normal shock-
wave, we have

(p2Va — V1) =0
(P +pV3) — (Pt VD) =0

(hz + K;) - (h, + Y;) =0 (4.4)

Collectively, these equations are known as the jump conditions and must be satisfied to
preserve conservation of mass, momentum, and energy across the shock.

To obtain a solution of this system of equations, it is necessary to incorporate an
equation of state for the medium in which the shock occurs. Because of its reasonably
wide range of application and its inherent simplicity, the perfect-gas equation of state
with constant specific heats will be assumed for the medium. So, we have

p = pRT

YK
dh = c,dT = — ar

and, from Eq. (2.7), we have
a’* = yRT
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For a perfect gas with constant specific heats undergoing an adiabatic process, it
was shown in Section 3.4 that the stagnation temperature remains constant. In other
words, Eq. (4.3) simplifies to

-1 -1
Tl<1 + X . M{-) - T2(1 + X . M%_) (4.5)

For a perfect gas,
p+pV?=p(l+yM?)
so Eq. (4.2) becomes
pi(1 + yM3) = po(1 + yM3) (4.6)

Combining Eqgs. (4.6) and (4.5) with Eq. (4.1) yields

PV = pV;
D1 P2
—MVYRT, = — M,V yRT.
RT, 1 VYRt RT, 2 VYL
M -1 M -1
— e - 2 A1+ o= m3 (4.7)

Equation (4.7) can be solved to yield M, in terms of M. Squaring both sides gives

-1 -1
M%(1 + M%) M%(l 1 M%)
2)2 - 72 (4.8)
(1 + yM3) (1 + yM3)

Expressed in terms of a quadratic in M2, the result is

~1
M‘}(Y - yzL) + M¥1—2yL)— L =0

where L is equal to the left-hand side of Eq. (4.8). Solving the quadratic equation for
M % we obtain

~(1-2yL) % \/(1 ~ 2yL) + 4L<Z——_—l - y2L>

2
M} = 1
Y- 2
2_.____
( 2 “‘)
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The radical simplifies to (M3 — 1)/(1 + yM?). If the negative sign is selected, we
find that M3 = M?3. This solution is trivial, as it involves no change in properties in a
constant-area flow and thus corresponds to isentropic flow and so is not of interest for
the irreversible normal shock. The positive sign leads to the following;

2
vy —1

M? +
2
M5 = 2y ) (4.9)
WMI - 1
y—1
The result of Eq. (4.9) is plotted in Figure 4.9 fory = 1.4.

For My > 1, M, is less than unity, and vice versa. From Eq. (4.6), M; > 1is the case
of a compression shock—that is, p, > p;; M; < 1 is the case of an expansion shock—
thatis, p, < p;.

Equations (4.5) and (4.9) can be combined to yield 75/T; as a function of M; and
v; in the same way, Eqgs. (4.6) and (4.9) can be combined to yield p,/p; as a function of
M, and y. The entropy change for a perfect gas with constant specific heats is given
by Eq. (1.45):

-5 =c, 1n%— - Rlng—j (4.10)
30
25
20
M; 15 \

10
0.5 L
00l |

00 05 10 15 20 25 3.0

M,

Figure 4.9 Downstream Mach Number versus
Upstream Mach Number
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Figure 4.10 Entropy Difference across a Normal Shock versus Mach
Number Upstream of Shock

With p,/p, and T,/T; as functions of M|, As can be expressed in terms of M; alone.
(The development of this expression will be presented shortly.) The result is plotted in
Figure 4.10. The shock process has been determined to be adiabatic and irreversible.
From the second law of thermodynamics, for an irreversible process,

60
ds > =% (1.41)

For an adiabatic process, 6Q = 0, and since dS = mds, ds > 0; that is, the entropy
must increase across a shockwave.

From Figure 4.10, s, — s is greater than zero for M; greater than unity. Thus, the
only solutions to the normal shock equations that do not violate the second law are
those for which M is greater than unity; the approach flow must be supersonic with re-
spect to the wave. The static pressure increases across the shock. Thus, for the conditions
of this analysis, an expansion shockwave violates the second law of thermodynamics
and is therefore impossible. However, it has been found experimentally that an expan-
sion or rarefaction shock can be generated in certain types of fluid called dense gases;
for example, see Refs. (4.1) and (4.2).

From the normal shock equations for a perfect gas with constant specific heats, as
derived in Egs. (4.9), (4.6), and (4.5), M,, p,/p1, T,/T;, and p,/p, can be expressed as a
function of M; alone for a given .
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For example, from Eq. (4.5),

‘Y'—l 2
+
E_l > M1
=—
5 1+Y2 M3

Combining the preceding equation with Eq. (4.9) yields

(- 1)
1+ Mi |\ ——M7 -1
IZ_( 3 17_11

T, -1
1 M%( 27 +7 )

(4.11)
[(7 + 1) ] 2
2ty - ™
From Eq. (4.6),
p_ 1+ yM?
o1+ yM3
Combining this equation with Eq. (4.9) yields
P 2Mi oy (4.12)
o oyt+1 o y+1 )
Finally,
p_ W _M L
P V2 MNT,
Substituting from Egs. (4.9) and (4.11), we obtain
Mz( 2 _ L, Y- 1)
! vy—1 2
y—-1_, 2y ) )
2 M‘)(v M
+ 1)M?
(v yMy (4.13)
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Computational Note: Numerical values of M,, po/p;, T,/T1, and p,/p; may readily be put in tabular
form as a function of M, for various ratios of specific heats. (See Appendix C.) Usually, the latter are
takentobe y = 1.4,y = 1.3, and y = 5/3. Also, refer to Appendix A for guidance in developing a
spreadsheet program.

Changes in stagnation properties across a stationary normal shock can also be re-
lated to M,. For steady flow of a perfect gas with constant specific heats, there is no
change in stagnation temperature for the adiabatic shock process. Physically, the in-
crease of static temperature accompanying the compression process is compensated
for by a decrease in kinetic energy of the gas, which yields no net change in total or
stagnation temperature.

Stagnation pressure variations across a fixed normal shock can be related directly
to the entropy rise across the shock. From Eq. (4.10),

=8 _S% L _ | P
R R T P

Expressing s, — s in terms of stagnation properties for an adiabatic process, we make
use of

so that

-1 -1
M3 1+ 5 M2

Since ¢, /R = y/(y — 1), this expression reduces to

7 5 Po2
—— = ~In— (4.14
R Po1 )

But, from the second law, s, > sy, so that p,;, < p,; for a fixed normal shock. To
obtain the total pressure ratio across the shock, we may form a string of pressure ratios
consisting of the stagnation-to-static-pressure ratio on the downstream side of the
shock, the static-pressure ratio across the shock and the static-to-stagnation-pressure
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ratio on the upstream side of the shock. As may be observed, the string contains con-
siderable flow physics:

- ()
Pol P2 P1 Pol

-1\ b/ 2yMi -1 1
=<1+72 M%> (7 Ty )

Y{y—1)

+ + —1
vy 5 M}
Substituting for M, from Eq. (4.9), we obtain
+1 Yiiy=1) U(vy—1)
Y M%
P _|__ 2 1 (4.15)
Po1 Y~ 1 2 2')/ 2 y—1 )
1 + M] 1
2 vy +1 y +1

Values of p,/p, versus M; may be tabulated. For an adiabatic process, stagnation
pressure represents a measure of available energy of the flow in a given state. A de-
crease in stagnation pressure, Or an increase in entropy, denotes an energy dissipation
or loss of available energy.

In the preceding explanation, all ratios of parameters across the normal shock
were written in terms of M, the Mach number on the upstream side of the shock. It
is, however, possible to write the equations in terms of some other independent vari-
able (e.g., the static-pressure ratio across the shock, p,/p,). Towards that end, we next
develop an expression connecting the static-pressure ratio to the density ratio across

the shock:
Py _ &)
P f( 124!

This expression is known as the Rankine-Hugoniot (the latter name is pronounced
who-GO-knee-oh) relation. Note that this relation involves only thermodynamic
quantities; that is, it contains no Mach numbers or other kinematic variables. To develop
the relation, use the continuity equation, Eq. (4.1), to rewrite the momentum equation,
Eq. (4.2):

no_m_y

piVi p2Va

Multiply this expression by (V, + V) to obtain

1 1°
Vi-Vi=(p, - <— + ——)
1 5=(p2— P) Py 0
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Now, from the energy equation, Eq. (4.3), and the perfect-gas equations, we have
vi-Vvi= 2(hy = hy) = 2¢,(T, — Th)

Y Y P2 P
= 2——(RT, — RT, :2———-<————>
5 —1 KD V=209 Tl

Equating the two expressions and rearranging produces the Rankine-Hugoniot

relation
(-
D2 y—1/p
—= = 4.16a
2! (7 + 1) ) (4162
vy —1 P
or
+1
(Y 1)& o
P _ YT /P (4.16b)

1 +
p (7 1>+&
y—-1 P

We now derive a relation that will be useful in some of the calculations, as well as
in some of the developments that follow. Begin with Eq. (4.2), which has been re-
arranged and modified using Eq. (4.1):

< hr PlV%) _ < P2 n PzV%> -0
piVi  piVi V2 Ve

Next, replace the pressure—density ratios using the perfect-gas equation of state to get

RT; RT,
v, ~ W, Vi=V)=0 (4.17)

Now, from the definition of stagnation enthalpy (k, = h + V?/2) and perfect-gas re-
lations [k = ¢,T = (YRT)/(y — 1) = a*/(y — 1)], we may write

RT; -1
fakiad —1—(7RT0 _Y 5 V%)

Vi i

R, 1 y—1 2)

— = —\V yRT, — 1% 4.18
V, 7V2( ¢ 2 7 (4.18)

Combining Egs. (4.17) and (4.18) gives

vy—1 1 y—1 .
——(yRTO— : v%)—ﬁ(yRTa— . v%)+(vl—vz)=0
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Rearranging this equation produces the simple expression

(_yRTO L7l
W, 2

>(V1 -V)=0 (4.19)

Equation (4.19) can be satisfied in either of two ways: If V; = V,, the solution is a
trivial result and therefore of no interest; on the other hand, if
2

V]V2= y n lao

(4.20)

we obtain a simple result that is known as Prandtl’s relation for normal shockwaves.
(In Chapter 6, a relation for oblique shockwaves will be developed.) We will make use
of Prandt}’s relation in subsequent developments. It should be noted, however, that

V2
al=yRT,= (y = Dh, = (y - 1)(h + 7)

V2 2
YRT + (7“1)—2‘=02+(7“1)—2—

I

There are various ways to write Eq. (4.20), such as

2 5 2 5 7"1‘/2_ 2 5 o v—1.,

= + = + —V 2
y+1ao ‘y+1a1 'y+11 y-{—la2 y+1 2 (420a)

W, =

Example 4.1. Limiting forms of the relations for stationary normal shockwaves

Develop limiting expressions for the flows in which the upstream conditions produce (i) a
strong shock and (ii) a weak shock.

Solution

The strength of a normal shock is defined as the ratio of the pressure difference p, — p;
across the shock divided by the upstream pressure p;. Equation (4.12) can be rearranged
as follows:

P2 — P 2y 2

)21 :7+1(M1—1)

For strong shocks, the left-hand side 1s large, and therefore M; must be very large, whereas
for weak shocks, the strength is close to zero, and thus M, is close to unity.

Strong normal shocks

We may examine each normal-shock expression to determine the limiting form for large
values of the upstream Mach number. For example, consider the expression for the down-
stream Mach number, Eq. (4.9):
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Now, for large values of M,, the numerator is dominated by M %, whereas the denominator
is dominated by 2yM3/(y — 1). Thus, the limiting expression for M, is

vy -1
M —
2 =4/ ——Zy
So,fory = 1.4, M, cannot fall below 0.378, even if M| is infinite. The limiting expressions for
the strong shock case for the other flow variables are found in the same way and written as

T, 2y(y — 1
L vy )M%

T] (’y+ ])2
2
o o vtl1

p_ Vi _(r+1)

4 v, (y—1)

Po2 _ s R] = (y + 1)7/(74)(7 + 1)1/(7»1)
Por y-—1 2yM?

From this list, we see that the temperature ratio, pressure ratio, and entropy change all be-
come infinitely large for infinite M,, whereas the density ratio, the downstream Mach
number, and the velocity ratio approach limit values that depend on 7y. The ratio of the
stagnation pressure tends to zero as M; becomes very large. Of course, these relations
apply only if perfect-gas conditions remain valid. In reality, at large values of M,, gases
will dissociate.

IR

Weak normal shocks

For a weak shock, the pressure change across the shock tends to zero and the pressure
ratio p,/p, approaches unity, and therefore the quantity (M? — 1) is a very small number,
say, . To illustrate the process of determining the weak shock relations, let us reconsider
the expression for Mo:

2
y—1

M3+

M3 =
R

y—1
Replace M7 with 1 + &. Expand using the binomial-expansion relation where appropriate
(see Example 3.3), dropping all second-order and higher terms in &:

M -1

+1
1+e+ Y
Mi=— - y1_12
+
Y Q+e) -1 L4
y—1 v—1

y -1
-1 2 -1 -1 2
=<1+7 s><1+ Y e) =<1+7 g><1— Y s)
vy + v+ 1 vy +1 y+1
Y e=1

+ &

Il
[\
|
<
SN
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The limiting weak shock expressions for the other flow variables are found in the same
manner and written as

[ 2y

p1=1+y+1(M%-1)
%leryH(M%—l)
‘—‘2—21—7+1(M%-1)
R

From Eq. (4.15), we see that the ratio of stagnation pressures is equal to unity at the limit-
ing value of M; = 1, and therefore, from Eq. (4.14), there is no change in entropy. Hence,
the flow tends toward isentropic flow for weak shocks. We can place this result on a firmer
analytical base as follows: Using Eqgs. (4.13) and (4.14), we can write the change in entropy
across a shock as

_ +1 M2 —y/(y~-1) 2 H(y-1)
52 sl-——ln{[ (v YMy 2} [ Y (M%—l)+l] }
R 2+ (y - )M? y +1

Again replace (M? — 1) with £. After a small amount of algebra, the foregoing expression
becomes

52~ 8 (y — 1) }7""” oy { 2y }"(7")}
—— = + + g0 +
ln{[l (v 1)8 1+ ¢} 1 ; ]8

y (7—1)] Y 1 [ 2y ]
1 + - Infl + ] + In[1 +
v—ln[l (y+1)° v—ln[ el y -1 y+1°

Next, we will use the series representation of the natural logarithmic function:

2 X3

x
1 + =xX-—-——4+ =4+ ---
n(l +x)=x > 3

The coefficients of the £ and £ terms both sum to zero, whereas the sum of the coefficients
of & produce
3 2,),

O(e) = W(M% -1y

=8 2y ¢

= -+
R (y +1)?3

+1 -
Replacing the (M$ — 1) with (y )(p2 P1>’ we get
2y P

s-s _(rt 1)(1’2 - Pl)3

R 12y p
The implication is that the change of entropy across a weak shock may be neglected. More-
over, the change of entropy across a shock of moderate strength, say, up to a Ap/p; ~ 3,
may also be ignored without serious error. This may be verified either by showing that the
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Figure 4.11 Comparison of Rankine-Hugoniot and Isentropic Relations

Rankine-Hugoniot relation of Eq. (4.16a) reduces to Ap/p = y Ap/p for a weak shock or
by plotting the Rankine~Hugoniot relation and the isentropic relation p,/p; = (py/p1)? (as
shown in Figure 4.11), from which we observe that the curves merge as the pressure ratio
approaches unity. A concise discussion of this material is given in Ref. (4.3).

Example 4.2. Calculation of properties behind a stationary normal shockwave

An airstream (y = 1.4, R = 287 J/kg - K) with a velocity of 500 m/s, a static pressure of
50 kPa, and a static temperature of 250 K undergoes a normal shock. Determine the air
velocity and the static and stagnation conditions after the wave.

Selution

The Mach number upstream of the shock, My, is given by

v 1% 500
My == = 200 ms S
a1 \VyRT, V1.4(287)kg-K)250K  316.9385
From Egs. (4.11), (4.12), (4.13), and (4.9), respectively, we get
T
22 - 13726, 2 =27370, 22 = 19940, and M, = 0.6753
T, 15! P
However,
Vi_p

Vi P2
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so the gas velocity after the wave is

500
Vo = Toop = 2507523 ms

Also,
Py = 50(2.737) = 136.8500 kPa
T, = 250(1.3726) = 343.1500 K

Because the flow is adiabatic across the shock, T,; = T,,. From the isentropic-flow-tem-
perature relation,

I 0.6677

To] e
So

250
= ——t— 4. =
To 06677 3744196 K =T,

From the isentropic-flow-stagnation-static-pressure relation,

P 02432

Po1
or

= ——— = 7205.
Pa = 55435 05.5921 kPa

Unlike the stagnation temperature, the stagnation pressure is not constant across the
shock. The value of the stagnation pressure is a measure of losses in the flow. Thus,
Po2 < Po1,» Whereas p, > p; across the shock. From normal-shock relations,

P2 _ .9034

Po1
Por = (0.9034)(205.5921) = 185.7319 kPa

The normal shock is a discontinuity in the flow that separates isentropic flows on
either side of it. For isentropic flow, the area at which the Mach number is equal to
unity was defined as A", with this area (which varies with Mach number) being used as
a reference. A normal shock, however, is not an isentropic process; so, for example, if a
shock occurs in a channel [Figure 4.12(a)], flow areas downstream of the shock (be-
tween locations from 2 to e) cannot be referenced to the value of A” for the upstream
flow (between locations from i to 1). Mathematically, we have

(A} = A)) # (43 = A))

Note that the upstream reference area is labeled A;‘, whereas the downstream refer-
ence area is labeled Aj. Next, we develop a relationship between these two refer-
ence areas. From Figure 4.12(b), apply the continuity equation between A and A3,
assuming a perfect gas with constant specific heats. From Eq. (3.20), with
m(A}) = m(A3), we may write

polAT poZA;
—F=fly.M=1) = —F=f(y,M = 1)
Tol T02
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Figure 412 Critical Throat Areas on Both Sides of a Normal Shockwave

This expression incorporates the fact that M = 1 at A] and at A;. Thus, f(v, 1) drops
out of the expression; also, since the flow is steady and adiabatic,T,; = T,,. Thus,

polA;( = poZA; (421)

It should be noted that because of the losses through the shockwave, p,, is larger than
Poz- It therefore follows from Eq. (4.21) that A] must be smaller than A3, as illustrated
in Figure 4.12(b). Also, it must be borne in mind that every isentropic flow has a critical
throat area A’, even though it may not physically exist in the flow field. Thus, the areas
A7 and AJ are sketched with dashed lines in Figure 4.12(b).

Example 4.3. A stationary normal shockwave in a diverging channel

An airstream (y = 1.4, R = 0.287 kJ/kg - K) at Mach 2.0 with a pressure of 100 kPa and a
temperature of 270 K enters a diverging channel with a ratio of exit area to inlet area of
3.0. (See Figure 4.13.) Determine the back pressure p, necessary to produce a normal
shock in the channel at an area equal to twice the inlet area. Assume one-dimensional,
steady flow, with the air behaving as a perfect gas with constant specific heats; also assume
isentropic flow, except for the normal shock.

Figure 4.13 A Stationary Normal Shock in a
Diverging Channel
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Historical Note: The theory of shockwaves presented in this chapter was developed during a period of
just over 100 years. This period marked “... the rich and complex process by which incremental
discoveries are made and fundamental understanding is advanced.” The major contributions during
this period and biosketches of the persons making the contributions are presented in this table. It is
hoped that this presentation will address the material of this chapter in a somewhat different light.
“The object lesson here is that scientific discovery and progress are slow, even for the recognized

greats in the field.” Ref. (4.5)

TABLE 4.1 Milestones and Personalities in the Study of Normal Shockwaves

Year/Event

Person/Biographical Sketch

1808 Poisson publishes MEMOIRE SUR LA
THEORIE DU SON (Paper on the Theory of
Sound). In it, he attempts to find solu-
tions to the nonlinear wave equation
where the convective terms give rise to
solutions of the form
u= flx - (a+ wuj

for simple waves moving in the x direc-
tion. Here, u is defined by the velocity
potential ¢ as u = d¢/dx. The speed of
sound, a, is assumed constant set forth
by isothermal conditions and Boyle’s
law. Challis (1848) observed this equa-
tion cannot always be uniquely solved
for u. Refs. (4.5) and (4.9)

Siméon-Denis Poisson

Born: 21 June 1781 in Pithiviers, France
Died: 25 April 1840 in Sceaux, France
Poisson was taught to read and write by his father. The
senior Poisson guided his son into medicine, but the youn-
ger Poisson lacked both the skills and interest to become
a surgeon. Returning to school, the latter demonstrated great mathemat-
ical talent. He entered the Ecole Polytechnique in 1798, graduated in 1800,
and immediately took the position of répétiteur (coach) there. In 1806, he
became a full professor. Although he devised no innovative theories, he
made major contributions to further develbping the theories of others,
often being the first to exhibit the real significance of the theory. During
his career, he addressed problems in the theory of sound, astronomy, elec-
tricity and magnetism, elasticity, vibrations, heat propagation, and prob-
ability. Refs. (4.5) and (4.6)

1848 Stokes publishes ON A DiFFICULTY
IN THE THEORY OF SOUND in response to
Challis’s claim that there existed a con-
tradiction in the accepted theory of sound
(in gases). Stokes was the first to introduce
the concept of surfaces of discontinuity
(shocks) to account for the situation that
develops when waves steepen to the point
of infinite gradient. Later, Kelvin and
Rayleigh convinced him that such dis-
continuities could not exist, as conserva-
tion of mass, momentum, and energy
could not be satisfied in concert. The
problem here lay in the assumption that
the same pressure—density relationship
that applied to continuous motion must
also apply to discontinuous motion and
that the shock would thus be isentropic.
Basic concepts of irreversibility were like-
ly being developed at this time. Taylor and
Rayleigh later sorted out the problem
after reading the works of Rankine and
Hugoniot. Ref. (4.5)

George Gabriel Stokes
Born: 13 August 1819 in Skreen, County Sligo, Ireland
Died: 1 February 1903 in Cambridge, Cambridgeshire,
England

Stokes received his early education from his father, a
Protestant rector. In 1832, he went to school in Dublin;in
1835, he entered Bristol College in Bristol, England; and
in 1837, he entered Pembroke College, Cambridge. In 1838, he began to
read with the famous tutor Wm. Hopkins. In 1841, Stokes graduated and
took a fellowship from Pembroke. Hopkins advised him to do hydro
dynamic research. so he began by seeking to account for internal friction
in moving fluids. After he had deduced the correct equations of motion
in 1845, he found that Navier, Poisson, and Saint-Venant had already con-
sidered the problem. Considering the motion of a pendulum in a fluid,
he (1) published a work on geodesy of major importance entitled “On
the variation of gravity at the surface of the earth” in 1849, the year he
became Lucasian Professor of Mathematics, and (2) developed a funda-
mental paper on hydrodynamics in 1851, the year during which he also
published his law of viscosity. In addition, he published papers concern-
ing the wave theory of light and named and explained the phenomenon
of fluorescence in 1852. Refs. (4.5) and (4.6)

(Continued)
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TABLE 4.1 (Continued)

Year/Event

Person/Biographical Sketch

1860 Earnshaw publishes ON THE
MATHEMATICAL THEORY OF SOUND.
Earnshaw considered a simple wave
solution for a more general gas flow in
which the pressure and density were
related: p = p(p). He observed that
since the local velocity of propagation
was higher in the compressive part of a
continuous disturbance, the density gra-
dient would steepen (perpetually gain-
ing on its front) with time and eventually
form a discontinuous pressure front.
Refs. (4.8) and (4.9)

Rev. Samuel Earnshaw

Born: 1 February 1805 in Sheffield, England

Died: 6 December 1888 in Sheffield, England
Earnshaw, the son of a file cutter and schoolmaster, was
homeschooled until the age of 8. In 1827, he was admitted
to St. John’s College. Cambridge. He finished as the top
mathematician in 1831. He received an M.A.in 1834. From
1831 to 1847, he easily supported his family as a notable coach. He was
also a rising cleric. In 1847, his health failed and he became chaplain of
Queen Mary’s foundation in Sheffield—a post he held the rest of his life.
He published two texts—Dynamics and Statics—plus papers in mathe-
matics and physics. He also published some sermons and lectures. In 1874,
the University Extension Movement reached Sheffield. Firth College
grew out of this program in 1879. He was elected its vice president and,
later, president. Refs. (4.5) and (4.7)

1860 Riemann publishes UEBER DIE
FORTPFLANZUNG EBENER LUFTWELLEN
VON ENDLICHER SCHWINGUNGSWEITE
(Propagation of Planar Air Waves of
Finite Amplitude). Laplace successfully
calculated the speed of sound waves of
infinitesimal amplitude as an isentropic
process in 1816. Thus, as a first attempt
to calcuiate shock properties (waves of
finmite amplitude where pressure was an
arbitrary function of density), Riemann
assumed an isentropic process. This
assumption. of course, was incorrect. as
shock waves are irreversible processes
caused by viscosity and thermal con-
duction effects inside the shockwave. His
work was independent of Earnshaw’s.
Rankine correctly derived the proper flow
equations across a normal shockwave 12
years later. Refs. (4.10) and (4.11)

Georg Friedrich Bernard Riemann
Born: 17 Sept 1826 in Breselenz, Hanover (now Germany)
Died: 20 July 1866 in Selasca, Italy
Riemann was taught by his father, a Lutheran minister, until
age 10.In 1840, he entered preparatory schools and showed
a talent in mathematics. At age 20, he entered the University
of Gottingen to study theology. There he attended mathe-
matics lectures, changed his major to mathematics. and moved to the
University of Berlin in the spring of 1847. His work was based on intu-
itive reasoning, which was less rigorous than the reasoning required for
firm proofs, but his ideas were much clearer, as his work was not filled
with long computations. In 1849, he returned to Gottingen, and he sub-
mitted his dissertation in late 1851. He delivered his inaugural presenta-
tion—a classic on the foundations of geometry—as a lecturer in 1854.
Einstein later justified this work by using it as a frame to fit his own ideas
of general relativity. In 1862, Riemann developed tuberculosis. He made
many trips to Sicily and Italy for the sake of his health and died in north-
ern Italy. Refs. (4.5) and (4.6)

1870 Rankine publishes ON THE
THERMODYNAMIC THEORY OF WAVES OF
FINITE LONGITUDINAL DISTURBANCE. In
this major breakthrough in shock theo-
ry. Rankine successfully derived a rela-
tion ship for the thermodynamic changes
across a shock. In the paper, he clearly
presented the proper normal shock
equations for continuity. momentum, and
energy. Further, he properly assumed
that the internal structure of the shock-
wave was not isentropic {contrary to
Riemann’s assumption), but rather that

William John Macquorn Rankine

Born: 5 July 1820 in Edinburgh, Ayrshire, Scotland
Died: 24 Dec 1872 in Glasgow, Scotland
Rankine’s childhood health was poor, and he attended
school only for short periods. His early schooling was from
his father, who was a railroad superintendent and who pro-
bably introduced his son to civil engineering. He studied
chemistry, botany, and natural history and gave much attention to music
theory. When he was 14, he was given Newton’s Principia (in Latin),
which he eagerly read. At age 16, he entered the University of
Edinburgh, where he studied a variety of subjects for two years. He
skipped mathematics lectures and seems to have taught himself. During
this time, he also worked with his father. In 1838, he left school without a

(Continued)
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TABLE 4.1 (Continued)

Year/Event

Person/Biographical Sketch

it was a dissipation region. He was think-
ing of thermal conduction, not the com-
panion effect of viscosity within the shock.
Rankine showed that no steady adiabatic
process having forces due only to pressure
can represent a continuous change over a
small infinite region from one constant
state to another. He proposed that across
this region a non-adiabatic process occurs
subject to the condition that heat may be
communicated from one particle to anoth-
er, but that no outside heat is received.
Hugoniot subsequently pointed out that
an adiabatic process would in fact violate
the principle of conservation of energy.
Refs. (4.8),(4.9).and (4.11)

degree to apprentice as a civil engineer to J. MacNeill and others work-
ing on various waterworks, harbor, and railroad projects in Ireland and
Scotland. In 1855, he was appointed Regius Professor of Civil Engineering
and Mechanics at Glasgow University. During his lifetime, he wrote on
railway-axle metal fatigue, earth pressures, stability of retaining walls,
cooling of the earth, thermodynamic cycles, the dynamical theory of heat
and energy, ship hull resistance and motions, explosions in grain mills,
force distributions in framed structures, prediction of the true value of
the specific heat of air, water compressibility, and the oscillatory theory
of light. He also wrote manuals on applied mechanics, steam engines and
other prime movers, civil engineering, machinery and millwork, and useful
rules and tables. He also was a writer, composer, and singer of humorous
and patriotic songs, as well as a keen cellist, pianist, and vocalist. His
health deteriorated rapidly during the final six months of his life. Refs.
(4.6), (4.11),and (4.13)

1887 Hugoniot publishes SUR LA PROPA
GATION DU MOUVEMENT DANS LES CORPS
ET SPECIALEMENT DANS LES GAZ PARFAITS
(On the Propagation of Motion in Bodies
and in Perfect Gases in Particular)-Part 1.
In 1889, Part 11 was published. Unaware of
Rankine's work, this ballistician indepen-
dently discovered the normal shock equa-
tions. To this day. the governing equations
for flow across a shock wave are called the
Rankine-Hugoniot equations, in their
honor. Rankine’s condition agrees with the
first law of thermodynamics, but Hugoniot
clearly showed that an adiabatic reversible
transition in a shock would violate the first
law. He showed that in the absence of vis-
cosity and heat conduction (outside the
shock), the first law implies conservation
of entropy in continuous flow, as well as a
change of entropy across a shock. From
the first law, he also deduced the third
shock condition in its customary form,
which is preferable to Rankine’s form,
although in the case of a perfect gas,
Rankine’s three shock conditions are
equivalent to those of Hugoniot. Refs.
(4.8)-(4.11)

Pierre Henri Hugoniot

Born: 5 June 1851 in Allenjoie. Doubs, France
Died: 1887 in Nantes. Loire-Inférieure, France
Hugoniot, the son of a metallist in a small village, was very
successful in his studies and by the age of 18 had graduated
in the mathematical sciences. At age 19. he was admitted to
the Ecole Polytechnique. His academic performance there
steadily progressed until he was declared acceptable for public service in
1872 and. finally, was accepted in the marine artillery service. He devoted
all of his energies to this service for the remainder of his life. He became
professor of mechanics and ballistics at the Lorient Artillery School in
1879 and, in 1882, assistant director of the central laboratory of the Marine
Artillery. In January 1884, he was appointed captain of the Marine Artillery,
and a few months later he was appointed an auxiliary assistant in mechanics
at the Ecole Polytechnique. There, he finally found the time and sur-
roundings to settle the question with which he was constantly faced as a
gunner: the propagation of movements in bodies, particularly in perfect
gases. 1t took him only 15 months to find the answer. and in October 1885
he submitted his work—a memoir that was published in two volumes, the
first in 1887. The second volume (1889) was delayed, as Hugoniot died sud-
denly on a trip to Nantes and “was unable to make the necessary changes
and additions to his original text which it seems he had the intention of
making.” Ref. (4.5)

(Continued)
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TABLE 4.1 (Continued)

Year/Event

Person/Biographical Sketch

1910 Rayleigh publishes AERIAL PLANE
WAVES OF FINITE AMPLITUDE. The works
of both Rankine and Hugoniot did not tel)
us the direction of the changes across a
shockwave. Both works allow the mathe-
matical possibility of either compression
or rarefaction shocks. It was not until 1910
that this ambiguity was resolved. In two
almost simultaneous and independent
papers, first Rayleigh (in the paper cited
here) and then Taylor invoked the second
law of thermodynamics to show that only
compression shocks are physically possi-
ble: that is, the Rankine-Hugoniot rela-
tions apply physically only to the case
where the pressure behind the shock is
greater than the pressure in front of the
shock. Besides applying the second law of
thermodynamics. Rayleigh also showed
that viscosity played as essential a role in
the structure of a shock as conduction. As
noted previously. Rankine considered con-
duction only: Hugoniot obtained his
results without reference to any dissipa-
tive mechanism. Ref. (4.11)

Lord Rayleigh (John William Strutt)

Born: 12 Nov 1842 in Langford Grove (near Maldon).

Essex, England
Died: 30 June 1919 in Terling Place, Witham,
Essex, England
As a boy, Rayleigh was sickly, and his schooling was dis-
rupted. In 1861, he entered Trinity College, Cambridge,
graduated in 1865, and became a fellow in 1866. After returning from a
trip to America, he set up a laboratory at his family estate in Terling. Soon
after marrying in 1871, he developed rheumatic fever and was advised to
travel to Egypt for his health. Shortly after he returned from Egypt, his
father died and he succeeded to the title Third Baron Rayleigh. From 1879
to 1884, Rayleigh was Cavendish Professor of Experimental Physics at
Cambridge, but in 1884, he resigned to return to his first passion: scien-
tific research at Terling. He helped to found the National Physical
Laboratory, which opened at Teddington in 1900. From 1908 until his
death, he served as chancellor of Cambridge. During his lifetime, he wrote
on many topics in applied mathematics and physics: electro-magnetic phe-
nomena, theory of sound, establishment of the ochm, scattering of light (which
explained why the sky is blue), the method of reproducing colors by pho-
tography, aerodynamic drag theory, and hydrodynamic similarity theo-
ry. He also wrote on unusual topics such as insects and the color of flowers,
the irregular flight of a tennis ball, the soaring of birds, the sailing flight
of the albatross, and “the problem of the whispering gallery.” Rayleigh
is perhaps most famous for his discovery and isolation of argon in 1895,
which earned him a Nobel Prize in 1904. He donated the proceeds of
the prize to build an extension to the Cavendish laboratories. Refs. (4.5)
and (4.6)

1910 G. I. Taylor publishes a short paper
entitled THE CONDITIONS NECESSARY FOR
D1SCONTINUOUS MOTION IN GASES one
month after Rayleigh published his afore-
mentioned paper in the same journal. This
paper supported Rayleigh’s conclusions.
So, finally. the theory of shockwaves was
fully established. Taylor would go on to
become one of the leading fluid dynami-
cists of the 20th century. The blast wave
associated with an explosion is essentially
a shockwave of spherical form initiated by
the impulsive release of a fixed quantity of
energy. The finite-energy condition com-
plicates the flow structure behind the blast
wave. particularly if the wave is a strong
one. This problem was discussed by Taylor
(1950), who compares his theoretical esti-
mates with observations made when the
first atomic bomb was exploded in New
Mexico in 1945. Refs. (4.8) and (4.11)

Geoffrey Ingram Taylor

Born: 7 March 1886 in St. John’s Wood, London,
England
Died: 27 June 1975 in Cambridge, England

In 1899, Taylor entered Trinity College, Cambridge,
to read mathematics, and he stayed at Cambridge for
the rest of his life. His early research was in optics and
discontinuous motion in gases. The Scotia was the first vessel sent on the In-
ternational Ice Patrol in 1913, and Taylor served as its meteorologist for six
months. There, he studied lower-atmosphere mixing processes by taking pres-
sure, humidity, and temperature data. He based his theoretical model of tur-
bulent mixing on these data. His studies of turbulence are considered his
most important scientific contributions. During World War I, he worked on
the stress distribution in propeller shafts. This research led him to consider
the limiting strengths of materials and his theory of dislocations in metals. Af-
terwards, he returned to Trinity College. During World War 11, Taylor worked
on the propagation of blast waves and shockwaves in the air and underwater.
He retired in 1952, yet continued his work at Cambridge until 1972, when he
suffered a stroke. During his lifetime, he worked on solid and fluid mechanics
topics and their application in meteorology, oceanography, aeronautics, metal
physics, mechanical and chemical engineering, and applied mathematics. He
was a keen botanist and took great pleasure in plants. Refs. (4.5) and (4.6)
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Solution

At M; = 2.0, from the isentropic relations with y = 1.4, we have

A;
2L 16875
A

Therefore,

ﬁl—] = (ﬁ)<i> = (2)(1.6875) = 3.3750
A’; A; AT ’ '

Using the Newton—-Raphson iterative procedure discussed in Section 3.4, and taking the
supersonic root because the flow on the upstream side of the shock must be supersonic, we
obtain M; = 2.7617. With the upstream shock Mach number determined, ratios of proper-
ties across the shock can be found from normal shock relations, which are then combined
with Eq. (4.21) to give

*

o A
Por _ 04002 = 21
Po1 Az
or
A (AN AN AF
== — | < )l —5 ) = (3.0)(1.6875)(0.4022) = 2.0361
Az A;JNAT/\ A

Again, using the Newton-Raphson procedure, we see that this area ratio produces the fol-
lowing subsonic value at the exit: M, = 0.2998. We can now solve for the exit pressure p,:

— = — — 1 = (0.9395)(0.4022)}(1.0)| —— ] = 2.9567
Di ( Po2/ \Po1/ \ Poi /' \ Di ( ! )(10) 0.1278

With subsonic flow at the channel exit, the channel back pressure is equal to the exit-plane
pressure:

p. = 100(2.9567) = 295.6705 kPa = p,

4.4 STATIONARY NORMAL SHOCKWAVE IN A CONVERGING-DIVERGING NOZZLE

Isentropic flow in a converging—diverging nozzle was examined in Section 3.6. It was
pointed out that for certain ratios of back pressure to supply pressure, isentropic, one-
dimensional solutions to the equations of motion are not possible. Returning to the
system illustrated in Figure 3.14, we consider the case in which a fluid stored in a large
reservoir is to be discharged through a converging—diverging nozzle. It is desired to
find the pressure distribution in the nozzle over a range of values of py/p,, with p,
maintained constant, as illustrated in Figure 4.14.

With p, = p,, there is no flow in the nozzle. As p, is reduced below p,, subsonic
flow is induced through the nozzle, with pressure decreasing until the throat and then
increasing in the diverging portion of the nozzle.

For subsonic flow, the pressure is at a minimum at the throat, which we can
prove as follows: It was pointed out in Section 3.3 that the condition dA/dx = 0 was
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p, = constant

Pr

Figure 4.14 Pressure Distribution in a C-D Nozzle

required at the throat in order to avoid the mathematical problem with Eq. (3.9)
when M =1,

dp _ pV>  dA

dx  A(1 - M?) dx (39)

Consequently, we may use the chain rule to obtain

dA (dA)(dp) _o

dx dp/\dx
Because this expression is a product of two terms, it can be satisfied if either term van-
ishes. However, from Eq. (3.9),at M # 1, dA/dp # 0. Therefore, dp/dx must be zero.
Further analysis reveals that d*p/dx? > 0, which indicates that the pressure distribu-
tion for steady, one-dimensional, isentropic, subsonic flow in a C-D nozzle has a mini-
mum value at the throat.

When the back pressure is lowered to that of Curve 4, sonic flow occurs at the

nozzle throat. Further reductions in back pressure can induce no more flow through
the nozzle. As the back pressure is reduced below that of Curve 4, a normal shock ap-

pears in the nozzle just downstream of the throat (Curve a). Further reduction of p,
results in the shock being pushed farther downstream (for example, Curve b), until, for
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Figure 4.15 Pressure Distribution in a C-D with a Shockwave

a low-enough back pressure, the normal shock positions itself at the nozzle exit plane
(Curve ).

Consider in detail a curve of p versus x with a shock in the nozzle. (See Figure 4.15.)
The static pressure decreases in the converging portion of the nozzle, with M = 1 at the
throat. In the diverging portion, with the flow supersonic, the pressure continues to de-
crease up to the normal shock. After the shock, flow in the diverging part of the nozzle is
subsonic, and the static pressure increases to the exit plane pressure. With subsonic flow
at the exit, the exit-plane pressure is equal to the back pressure.

As the back pressure is lowered below that of Curve ¢ in Figure 4.14, a shock-
wave inclined at an angle to the flow appears at the exit plane of the nozzle. (See
Figure 4.16.) This discontinuity, weaker than a normal shock, is called an oblique shock.

Oblique Shockwave

Figure 416 Oblique Shocks at the Exit of a C-D
Nozzle
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Figure 4.17 Oblique Shocks at the Exit
of a C-D Nozzle

Further reductions in back pressure cause the angle between the oblique shock and the
flow to decrease, thus decreasing the shock strength (see Figure 4.17), until eventually
the isentropic case, Curve 5 in Figure 4.14, is reached.

Curve 5 corresponds to the design condition in which the flow is perfectly ex-
panded in the nozzle to the back pressure. For back pressures below that of Curve 5,
the exit-plane pressure is greater than the back pressure. A pressure decrease occurs
outside the nozzle in the form of expansion waves. (See Figure 4.18.) Oblique shock-
waves and expansion waves represent flows that are not one dimensional and there-
fore cannot be treated directly with the methods of Chapters 3 and 4. These flows will
be analyzed in detail in Chapters 6 and 7.

It is important to realize that, for all back pressures below that of Curve ¢ in
Figure 4.14, the flow downstream of the exit plane adjusts to the back pressure outside
the nozzle. Over this range of back pressures (below Curve c), flow inside the nozzle
remains unchanged as the back pressure is diminished. Accordingly, the exit-plane
pressure and exit velocity are the same for all back pressures below Curve c. If a rocket
nozzle is designed to operate isentropically at sea level, the rocket exhaust velocity and
exit-plane pressure do not change as the rocket moves upward through the atmosphere
(assuming constant chamber temperature and pressure).

Figure 4.19 depicts the variation of exit-plane pressure with back pressure. For
subsonic flow at the exit plane (Curves 1 to 4 and a to ¢ in Figure 4.14) and for the

Expansion
Waves

Figure 4.18 Expansion Waves at the Exit of a C-D Nozzle
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Figure 4.19 Exit Pressure versus Back Pressure for a
C-D Nozzle

supersonic design condition (Curve 5), the exit-plane pressure is equal to the back
pressure. For supersonic flow at the exit plane (Curves d, 5, and e), the exit-plane pres-
sure is equal to that for the design condition. For back pressures between Curves c and
5 in Figure 4.14, the exit-plane pressure is less than the back pressure, so the nozzle is
termed overexpanded. For back pressures below Curve 5, with the exit-plane pressure
greater than the back pressure, the nozzie is termed underexpanded.

Nozzle design and operation have been studied up to this point by means of a one-
dimensional flow analysis. Although this method of analysis is adequate for the solution
of many engineering problems, certain limitations become apparent. For example, in the
design of a supersonic nozzle, area ratios can be determined for a given supersonic Mach
number. However, the length of the nozzle or the rate of change of area with axial dis-
tance cannot be prescribed from one-dimensional-flow considerations. Furthermore,
due to the presence of boundary layers on the nozzle walls, the area available to the
main flow is somewhat reduced; the areas calculated from a one-dimensional flow
analysis may have to be enlarged to account for boundary layers. For an exact and com-
plete analysis of the operation and design of a converging-diverging nozzle, a study of
two- and three-dimensional compressible flow is required. However, this work should
not detract from the one-dimensional analysis under study; good engineering approxi-
mations can be obtained for the solution of a wide range of compressible-flow problems.

As we have seen under certain conditions, a normal shockwave can exist within
the diverging section of a C-D nozzle.

The upper pressure ratio limit (Curve 4 in Figure 4.14) occurs when the throat
area A, = A'—that is, the throat Mach number is unity. The subsonic solution of Eq.
(3.23) for the given A,/A,, where the Newton-Raphson method is used to solve Eq.
(3.24), yields the corresponding exit Mach number M,. With this Mach number in
Eq. (3.15), we can determine the overall pressure ratio p,/p,1 = Pp/Poi-
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The lower pressure ratio limit (Curve ¢ in Figure 4.14) occurs when a normal
shock stands in the exit plane of the C-D nozzle. In this case, we first obtain the super-
sonic solution of Eq. (3.23) for the given A,/A,, using the Newton-Raphson method.
This produces the Mach number just upstream of the shock. From this Mach number,
we can then find the static-pressure ratio across the shock, p,/p;, from Eq. (4.12), as
well as py/p,; from Eq. (3.15). A shock appears at the exit of the nozzle for an overall

pressure ratio py/p, = (Pa/P1)(P1/Por)-

Example 4.4. Calculations of a stationary normal shockwave in a C-D nozzle

A converging-diverging nozzle is designed to operate with an exit Mach number of 1.75.
The nozzle is supplied from an air reservoir at 5 MPa. Assuming one-dimensional, steady
flow with y = 1.4, calculate the following:

(a) the maximum back pressure to choke the nozzle;

(b) the range of back pressures over which a normal shock will appear in the nozzle;

(c) the back pressure for the nozzle to be perfectly expanded to the design Mach number;
(d) the range of back pressures for supersonic flow at the nozzle exit plane.

Solution

The nozzle is designed for M, = 1.75. From the isentropic-area—Mach-number relation,
Eq. (3.23),at M,, we find that A,/A, = AJA" = 1.3865.

(a)

(b)

The nozzle is choked with M = 1 at the throat, followed by subsonic flow in the di-
verging portion of the nozzle. From the isentropic relations at A/A" = 1.3865, we
have M, = 04770 and (p/p,). = 0.8558. Therefore, the nozzle is choked for
Py = (0.8558)(5) = 4.2790 MPa.

For a normal shock at the nozzle exit plane (see Figure 4.20), M; = 1.75 and
(p/po)1 = 0.1878. Therefore, p; = (0.1878)(5) = 0.9390 MPa. From the normal
shock relations at M, = 1.75, we have p,/p, = 3.4063. For a normal shock at the noz-
zle exit, p, = p, = (3.4063)(0.9390) = 3.1985 MPa. Referring to Figure 4.14, for a
shock just downstream of the nozzle throat (Curve a), we find that p, = 4.279 MPa. A
normal shock will appear in the nozzle over the range of back pressures from 3.1985 to
4.2790 MPa.

Figure 4.20 Normal Shock Standing
in the Exit Plane of a C-D Nozzle



Section 4.5 Determining the Location of a Stationary Normal Shock in a C-D Nozzie 137

(c) From the isentropic relations at M, = 1.75, we have (p/p,). = 0.1878. For a perfectly
expanded, supersonic nozzle, p, = p, = (0.1878)(5) = 0.9390 MPa.

(d) Referring again to Figure 4.14, we find that supersonic flow will exist at the nozzle
exit plane for all back pressures less than 3.1985 MPa.

4.5 DETERMINING THE LOCATION OF A STATIONARY NORMAL SHOCK
IN A C-D NOZZLE

There are two procedures for locating a stationary normal shock in a C-D nozzle. For
both methods, it is assumed here that we are given the area ratio (exit to throat), A,/A,,
and the pressure ratio py/p,;.

In one method, the location of the shock is specified as A/A,, where A; is the
cross-sectional area at the location of the shock. In this method, the corresponding
properties are determined based on this location. If the computed values do not agree
with the given information, the shock is moved to a new location and the calculations
are repeated. Ultimately, this trial-and-error procedure can lead to the correct solu-
tion. The following detailed set of steps describes how to perform the calculations:

Trial-and-Error Procedure When the Shock Location Is Specified:

From A,/A], use the Newton-Raphson method, Eq.(3.23), to determine M,.
Use M, to determine p,,/p,, from Eq. (4.15).

Note from Eq. (4.21) that A3/A] = poi/pPor.

Compute A,/A; = (A,/A])(A]IA3).

From A,/ A3, use the Newton-Raphson method, Eq. (3.23), to determine M,.
Use M, in Eq. (3.15) to determine p,/p,,.

Note that p./p,; = (Pe/Po2){ Por! Por)-

(a) It (pe/pol)computed < (pb/pal)given, move the shock upstream; or
(b) if (pe/ Por)computed > (Pb/Pot)given MOVE the shock downstream.

O HNE BN

One method to accomplish either Step 8(a) or 8(b) is to compute the following:

(Al/A)lk)new = [(pe/pol)compuled/(pb/pol)given - 1](A1/AT)01d

Typically, only a few iterations are required to locate the position of the shock to a rea-
sonable degree of accuracy.

In the second method, the actual location of the shock is determined either
graphically, as in Ref. (4.4), or analytically, as will be explained next. To develop a direct
method of solution, we will utilize some of the same equations that were used in the
trial-and-error method. We begin by writing the pressure ratio from Step 7 in the trial-
and-error method. Then the total pressure ratio is replaced, using the reference area
relation, Eq. (4.21), and we have

B2 (D @G e
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But from Egs. (3.15) and (3.23) evaluated at the exit plane, we have

o -1 y(y-1)
%?- - (1 4 Y . ME,) (4.23)
e
+1
Ao 1 2 y — 1 2)]7%7)
R — + — N
M, (y ¥ 1)<1 7 M (424)

Combining Egs. (4.22), (4.23), and (4.24) and rearranging the result yields

+1

(&)(ﬁ) = (Pb)(f{;) - __1_( 2 )217-1)(1 4 Y 1M§>2(y+—ll)_WZT)
Po1 Ax Po1 Al Me Y + 1 2
+1 1
Po \[ Ae 1 ( 2 )fﬁ( y -1 2)-5
— N =5 1+—M 4.25
(pol)(A,> M Ay T 1 2 M (425)

Note that the left-hand side of Eq. (4.25) is the product of the given information, while
the right-hand side depends only on y and M,. Equation (4.25) is a quadratic in terms
of M,%, which can be solved to produce

M2 = -1 +J< 1 >2+( 2 >( 2 )”m/”_])(@)z(f&)z (4.26)
¢ y — 1 y — 1 y—-1/\y +1 ry/) \A, '

Once the exit Mach number is computed, the remaining portion of the problem is

straightforward:
Direct Procedure When the Shock Location Is Not Specified

Determine M, from Eq. (4.26).
Use M, to determine p,/p,, from Eq. (4.23).
Since M, < 1, p, = pp, so form the product (py/p,1)(Por/Pe) = Por! Por-

Use the Newton—-Raphson method to solve Eq. (4.15), given p,,/p,; from Step 3,
to determine M,.

5. Determine A,/A] = AJA, from Eq. (3.23).

Sl

Example 4.5. Determining the location of a stationary normal shock wave in a C-D nozzle

The back-pressure-to-reservoir-pressure ratio is 0.7 for a C-D nozzle, with an exit-to-
throat-area ratio of 2.0. Determine the cross-sectional area location of a normal shock for
vy = 14.

Solution

The first step in the process is to find the range of pressure ratios that will produce a shock
in the diverging portion. Using the area ratio, we find the upper limit (i.e., the pressure
ratio that will produce a shock just downstream of the throat) to be p,/p,; = 0.9372. Using
the Newton-Raphson method, we find that this procedure requires the subsonic solution
for the given area ratio. Next, the lower limit is determined in which a shock stands in the
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exit plane. This task is accomplished first by determining the Mach number just upstream
of the shock (using the Newton-Raphson method to find the supersonic solution for the
given area ratio) to be M; = 2.1972. from which we find the static-to-stagnation-pressure
ratio py/p,; = 0.0939 and the static-pressure ratio across the shock p,/p, = 5.4656. Thus,
taking the product of these gives the lower pressure ratio limit of 0.5134.

Accordingly, since the given pressure ratio of 0.7 is between the upper limit 0.9372
and the lower limit 0.5134, a shock will reside somewhere within the nozzle. To determine
its location, we will use the five-step direct procedure described previously. Using the
given information, we obtain

M, = 0.4067,

Dol Por = 0.8923,

Do po1 = 0.7/0.8923 = 0.7845,
M; = 1.8627, and

AJA, = 15101

SRR =

A spreadsheet program may be easily constructed to perform the calculations. To check
these calculations, we could use our result (i.e., A/A,) and the trial-and-error procedure,
for the situation when the shock location is specified, to make certain that we have not
made an error. This operation will be left as an exercise. (See Problem 4.25.)

4.6 CONVERGING-DIVERGING SUPERSONIC DIFFUSER

In an air-breathing jet-propulsion engine, forward thrust is provided by the acceleration
of an airstream. In both the turbojet and ramjet, the air is compressed, energy is added
from the combustion of a fuel, and the resultant products are ejected from the exhaust
nozzle at high velocity. (See Figure 4.21.) With the jet engine, the inlet or diffuser must
take the incoming air, traveling at high velocity with respect to the engine, and slow it
down before entrance to the axial compressor of the turbojet or the combustion zone of
the ramjet engine. The amount of static-pressure rise achieved during deceleration of
the flow in the diffuser is of prime importance to the operation of the jet engine, since
the pressure of the air entering the nozzle determines to a large extent the magnitude of
the nozzle exhaust velocity. The maximum pressure that can be achieved in the diffuser
1s the isentropic stagnation pressure. Any loss in available energy (or stagnation pres-
sure) in the diffuser, or, for that matter, in any other component of the engine, will have
a harmful effect on the operation of the engine as a whole. For a supersonic diffuser, it
would be highly desirable to provide shock-free isentropic flow.

A first approach to obtaining shock-free flow is to operate a converging-diverging
nozzle in reverse. (See Figure 4.22.) At the design Mach number M, for such a dif-
fuser, there 1s no loss in stagnation pressure (neglecting friction). However, off-design
performance has to be considered, since the external flow must be accelerated to
the design condition. For example, if a supersonic converging-diverging diffuser is
to be designed for a flight Mach number of 2.0, the ratio A(inlet)/A(throat)=
AJA, = AJA" = 1.6875 [from Eq. (3.23)]. However, for a supersonic-flight Mach
number less than the design Mach number, A/A” is less than 1.6875, which indicates
that the throat area is not large enough to handle this flow. Under these conditions,
flow must be bypassed around the diffuser. A normal shock stands in front of the
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Figure 4.21 Two Jet-Propulsion Engines

diffuser, with subsonic flow after the shock able to sense the presence of the inlet.
Now, an appropriate amount of the flow “spills over,” or bypasses, the inlet. (See
Figure 4.23.)

As the flight Mach number is increased, the normal shock moves toward the inlet
lip. When the design Mach number M, is reached during startup, however, with a nor-
mal shock in front of the diffuser, some of the flow must still be bypassed, since the
throat area of less than A, is still not able to handle the entire subsonic flow after the
shock. As the flight Mach number is increased above Mp, the shock eventually moves to
the inlet lip. A further increase in M causes the shock to reach a new equilibrium posi-
tion in the diverging portion of the diffuser; in other words, the shock is swallowed.
Once the shock has been swallowed, a decrease in flight Mach number causes the
shock to move back toward the throat, where it reaches an equilibrium position for M

Figure 422 C-D Nozzle Operated
in Reverse
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M<Mp>1

Normal
Shock

Figure 4.23 Bypass Inlet Flow Phenomena for Flight
Mach Numbers below the Design Value

equal to Mp. At this position, the shock is of vanishing strength, occurring at M = 1.0,
so no loss in stagnation pressure occurs at the design condition. In actual operation, it is
desirable to operate with the shock slightly past the throat; operation at the design con-
dition is unstable in that a slight decrease in Mach number results in the shock’s mov-
ing back out in front of the inlet. In this case, the operation of overspeeding to swallow
the shock would have to be repeated. This process is summarized in Figure 4.24.
Another method for swallowing the shock is to use a variable throat area. With a
shock in front of the diffuser, the throat area would be increased (say, from A] to A3),
which would allow more flow to pass through the inlet and consequently bring the

(a) M(a) < MD

e

(d) Mgy = M+ M (e) M= Mp
(shock is swallowed) (Design)

Figure 4.24 Overspeeding of a Supersonic Inlet to Swallow a Startup
Normal Shock
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(@) Ay = Ap= A, (b) Ay = Ay + 8A (A= Ap<Ay

Figure 4.25 Varying the Throat Area of a Supersonic Inlet to Swallow a
Startup Normal Shock

shock closer to the inlet lip. To swallow the shock, the throat area would have to be
slightly larger than the area required to accept the flow with a shock at Mp at the inlet
lip (i.e., slightly larger than A3, with a normal shock at the design Mach number). For
Mp = 2.0, from normal-shock relations, we have

Ay A]
n_ 21 P _ 7509
At2 Az Po1

Therefore, an increase of greater than (1 — 0.7209)/0.7209 ~ 39 percent is required to
swallow the shock. Once the shock is swallowed, the throat area must be decreased to
reach the design condition, as shown in Figure 4.25.

It can be readily seen that, although the converging—diverging diffuser has favor-
able operating characteristics at the design condition, off-design operation of such a
device involves severe losses. Operation with a normal shock in front of an inlet entails
prohibitive losses in stagnation pressure. To swallow this shock, the inlet flow must be
accelerated beyond its design speed, or a variable throat area must be provided. Ex-
cept for very low supersonic Mach numbers, the amount of overspeeding required to
swallow the shock during startup becomes large enough to be totally impractical. Fur-
thermore, the incorporation of a variable throat area into a diffuser presents many
mechanical difficulties. For these reasons, the converging—diverging diffuser is not
commonly used; most engines utilize the oblique-shock type described in Chapter 6.

Example 4.6. Determination of the amount of overspeeding to swallow a normal shock

A supersonic converging—diverging diffuser is designed to operate at a Mach number of
1.7. To what Mach number would the inlet have to be accelerated in order to swallow the
shock during startup?

Solution

From Eq. (3.23), we find that at M; = 1.7, A/A, = A/A" = 1.3376, so the diffuser is de-
signed with an inlet-to-throat-area ratio of 1.3376. The inlet flow must be accelerated to a
Mach number slightly greater than that required to position the shock at the inlet lip. (See
Figure 4.26.)

For M = 1.0 at the diffuser throat, with subsonic flow after a shock at the inlet lip,
A/ A" = 1.3376. Using this area ratio and the Newton-Raphson procedure to determine the
subsonic Mach number, we find that M, = 0.5012. From Eq. (4.9), we have M, = 2.6316.



Section 4.7 Chapter Capstone Application: Supersonic Wind Tunnels 143

A

Figure 426 Normal Shock
at Inlet Lip

If the back-pressure conditions imposed on the diffuser are such that a Mach number of 1.0
cannot be achieved at the throat, then M, will be less than 0.5012, and a value of M, greater
than 2.6316 will be required. However, with M = 1.0 at the diffuser throat, the diffuser must
be accelerated to a Mach number slightly greater than 2.6316 in order to swallow the initial
shock during startup. The impracticality of overspeeding, at least at the flight Mach numbers
discussed here and for greater Mach numbers, can be readily seen from this example.

4.7 CHAPTER CAPSTONE APPLICATION: SUPERSONIC WIND TUNNELS

In a wind tunnel, it is desired to subject a test object to the flow conditions that the ob-
ject will undergo in actual flight. The creation of a uniform supersonic flow in a test sec-
tion of appreciable size, and the maintenance of this flow for a sufficient time to make
meaningful measurements on a test object, may involve a large consumption of power.
This section is concerned with the use of a supersonic diffuser to recover the fluid pres-
sure after the test section and to improve the operation and reduce the power require-
ments of the wind tunnel.

An intermittent, or blow-down, supersonic wind tunnel can be constructed by al-
lowing air at atmospheric pressure to pass through a converging—diverging nozzle into
a vacuum tank. (See Figure 4.27.) With this setup, constant conditions are maintained
in the test section until the back pressure in the vacuum tank rises to a value such that

Vacuum Tank
(initial pressure

Test Section
= 0 kPa)

Figure 4.27 A Blow-Down Supersonic Wind Tunnel
without Diffuser
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Patm ——— Vacuum Tank
Po2

Figure 4.28 A Blow-Down Supersonic Wind Tunnel with Diffuser

a normal shock appears in the test section (corresponding to Curve c of Figure 4.13).
To provide a longer running time at the design Mach number, a diffuser can be placed
at the test section exit. Isentropic flow in the diffuser provides a recovery of static pres-
sure. Ideally, the wind tunnel can now be run until the pressure in the vacuum tank
rises to the stagnation pressure after a shock at the design Mach number. This limiting
condition is illustrated in Figure 4.28. Intermittent wind tunnels present the problem of
providing only a relatively short test time before the back pressure rises to a limiting
value, at which point flow in the test section ceases to be supersonic.

In a continuous closed-circuit tunnel, test conditions can be maintained almost in-
definitely. A compressor is used to boost the air pressure from a somewhat reduced
value after the test section to the inlet stagnation pressure p,;. (See Figure 4.29.) Nat-
urally, the greater the pressure recovery after the test section, the smaller are the com-
pressor power requirements. The use of a normal shock pressure recovery, as shown in
Figure 4.28, has the disadvantage of always entailing a loss in stagnation pressure. Even
if a perfect diffuser were provided after the shock, causing a rise in pressure to p,,, the
compressor would still need to provide the pressure difference p, — p,;, which in-
creases as the test section Mach number is increased.

Po1 — > Test Section

Figure 4.29 Continuous, Closed-Circuit, Supersonic Wind Tunnel
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Figure 4.30 Ideal Case of a Double-Throated Supersonic
Wind Tunnel

To provide isentropic deceleration and complete pressure recovery after the test
section, consider the system shown in Figure 4.30, with a second throat after the test
section. In the configuration shown, neglecting friction and boundary-layer effects, the
wind tunnel could be run at design conditions indefinitely, with no pressure difference
required to maintain the flow. However, difficulties arise during startup of the system.
To initiate flow, a pressure difference must be maintained across the entire system. As
the pressure ratio p,/p; is decreased from 1.0, the situation for the converging—diverging
nozzle is the same as that discussed in Section 4.4. Eventually, the flow condition shown
in Figure 4.31 is attained.

Now a decrease in overall pressure ratio p,/p; causes a shock to appear down-
stream of the nozzle throat [see Figure 4.32(a)], with a further decrease moving the
shock downstream to the nozzle exit [test section entrance; see Figure 4.32(b)]. With a
shock in the diverging portion of the nozzle, there is a loss in stagnation pressure in the
system. To pass the flow after the shock, the second throat must be at least A5. The

Figure 4.31 Flow in a Double-Throated Supersonic
Wind Tunnel Prior to the Appearance of a Shock

(a) Shock Downstream of Nozzle Throat (b) Shock at Nozzle Exit

Figure 4.32 Location of Shocks in a Double-Throated Supersonic Wind
Tunnel
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worst possible case, involving the maximum loss in stagnation pressure, is that of a nor-
mal shock in the test section. [See Figure 4.32(b).] For this case, the second throat area
must be at least A3, with a shock at the test section Mach number. If the second throat
area is less than A3, it cannot pass the required flow, and the shock can never reach the
test section and will remain in the diverging part of the nozzle. Under these conditions,
supersonic flow can never be established in the test section.

For example, if the test section Mach number is 2.0,

Al A
P _ 97200 = 21 = 21
Po1 Az AIZ

During startup, then, the second throat must be larger than the first by a factor of
1/0.7209, or 1.3872. This condition is illustrated in Figure 4.33. As the ratio p,/p; is fur-
ther lowered, the shock jumps to an area in the diverging part of the diffuser greater
than the test section area; the shock is “swallowed” by the diffuser. (See Figure 4.34.)

To maximize the pressure recovery in the diffuser, the pressure ratio p,/p; can
now be increased, which moves the shock upstream to the diffuser throat, the position
at which the shock strength is at a minimum. (See Figure 4.35.)

A,z = 1387214,]

Figure 4.33 Relation of Throat Areas Needed to

Produce Supersonic Flow in the Test Section at
M=20

Test Section

M>1

Figure 4.35 Optimal Operating Condition of a
Double-Throated Supersonic Wind Tunnel
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Nozzle Diffuser

Test Section /_\——ﬁ ‘

Figure 4.36 Continuous Closed-Circuit Supersonic Wind Tunnel

Figure 4.35 represents the optimal operating condition for a fixed-geometry dif-
fuser. There is still a loss of stagnation pressure across the shock at the diffuser throat,
which must be made up for by a compressor.

An improvement can be obtained with a variable-area diffuser throat. After the
initial shock has been “swallowed.” we reduce the diffuser throat area to that of the
nozzle throat and again raise the overall pressure ratio p,/p; so as to bring the shock to
the diffuser throat. But at the diffuser throat, the Mach number is unity, so the shock is
of vanishing strength. This situation approaches the ideal of Figure 4.30.

To complete this discussion of supersonic wind tunnels, several of the components
required for a continuous, cyclic system should be reviewed. (See Figure 4.36.) Besides
the compressor, nozzle, and diffuser, a drier must be provided to remove water vapor
from the air so as to prevent its condensation at the low static temperatures encountered
in the test section. The condensation of water can lead to shockwaves, negate any mea-
surements made in the test section, and possibly damage the test object. At higher Mach
numbers, a heater may be required to raise the stagnation temperature of the inlet air
and prevent condensation of the air gases (oxygen and nitrogen) in the test section. If
this is impractical, a gas with low boiling point (such as helium) may have to be used in
place of air. Finally, for a cycle, f 8Q = $8W, so that an amount of energy equal to that
supplied to the air by the compressor and the heater must be rejected by a cooler.

Example 4.7. Calculation of compressor power requirements in a supersonic wind tunnel

A continuous supersonic wind tunnel is designed to operate at a test section Mach number
of 2.0, with static conditions duplicating those at an altitude of 20 km (y = 1.4 and
¢, = 1.004 kJ/kg - K). The test section is to be circular, 25 cm in diameter, with a fixed
geometry and with a supersonic diffuser downstream of the test section. Neglecting fric-
tion and boundary-layer effects, determine the power requirements of the compressor
during startup and during steady-state operation. [See Figure 4.37(a).] Assume an isen-
tropic compressor, with a cooler located between compressor and nozzle (after the com-
pressor), so the compressor inlet static temperature can be assumed equal to the test
section stagnation temperature.
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&@W : S~a

(a) Steady-State Operation (b) Control-Volume Analysis
of Compressor

(c) Worst Case during Startup

Figure 4.37 Continuous Supersonic Wind Tunnel of Example 4.7

Solution

During startup, the worst possible case [see Figure 4.37(c)] is that of a shock in the test sec-
tion with M; = 2.0. For this situation, which fixes the ratio of the two throat areas, we have

Al A
P2 07200 = 51 = 21
Po1 A2 A!Z

To fix the size of the diffuser throat area, we first use the design Mach number to find
(A/A") st = 1.6875. The throat area is then determined from the following string of area
ratios:

A12 All A’:esl ( 1 ) ( 1 ) 5
=5 Al = 1 0.04909) = 0.4035
Ag Abg At o \0.7209 (\ 76875 )¢ ) m

During steady-state operation [see Figure 4.37(a)], the mass flow through the test section
is given by

A

"= pAV = R—pTAM\/yRT

At 20 km, from Appendix H, p = 5.5kPaand T = 216.7 K. Therefore,

, 5.5 kN/m? T 2]
= %0, 0V1.4(287 Nikg-K)(216.7 K
7 = | (0287 kN/kg - K)(216.7 K)]LO25 m? [2.0V14(287 Nikg-K)(216.7K)|

= (0.08843 kg/m>)(0.04909 m?)(590.1527 m/s) = 2.5619 kg/s

At the design Mach number of 2.0, T/T, = 0.5556. So, the test section stagnation tempera-
ture during steady-state operation is 216.7/0.5556 = 390.0288 K.

For this fixed geometry (i.e., A;;/A,; = 0.7209), the optimum condition for steady-
state operation is a normal shock at the diffuser throat. Since M;; = 1, A = A". Conse-
quently, (A/A"),, = 1/0.7209 = 1.3872. Using the Newton-Raphson method, we find that
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M, = 1.7506. At steady state, this is the upstream Mach number of the shock at the dif-
fuser throat [i.e., M, in Figure 4.37(a)]. Now from Eq. (4.15), we obtain p,,/p,, = 0.8343,
where it should again be pointed out that the “1” and “2” in the subscripts are the locations
within Figure 4.37(a). The loss in stagnation pressure must be compensated for by the com-
pressor. [See Figure 4.37(b).] Performing an energy balance on the compressor, we have

w=h, = b = (T, = T)

_Tﬂ _ (&)(Y‘l)/'y
T; Pi

P\ 0.2857
—T.=7/(£ - = . —_— - 11 =20.7197
T, ; T,[(p) l] 3900288{(0.8343) J 20.7197 K

w = c,(T, — T)) = (1.004 kJ/kg- K)(20.7197 K) = 20.8026 k/kg

For an isentropic compressor.

or
Power required = mw = (2.5619 kg/s)(20.8026 kJ/kg) = 53.2941 kW

As mentioned previously, during startup, p,./p,; = 0.7209. Now the isentropic compressor
work required is determined as follows

o\~ Dy 1 0.2857
T, -T =T =2 -1} =1390.0 — - 1| =382276 K
o [( p,) } 0 288{(0.7209) J

w = c,(T, — T}) = (1.004 k/kg - K)(38.2276 K) = 38.3805 kJ/kg

or
Power required = mw = (2.5619 kg/s)(38.3805 kJ/kg) = 98.3269 kW

Hence, 84.5% more power is required during startup.

4.8 SUMMARY

The normal shock represents a sudden, almost discontinuous, change in fluid proper-
ties that takes place in the direction of flow. Although the shock process is adiabatic,
viscous dissipation and heat conduction effects occurring internal to the wave render
the shock wave an irreversible process. Thus, from the second law of thermodynamics,
there must be an accompanying rise in entropy across the wave. The equations of con-
tinuity, momentum, and energy applied to the fixed shockwave reveal the variations of
pressure, temperature, density, velocity, Mach number, entropy, and so on, across the
wave. For an increase of entropy, the Mach number of the flow ahead of the wave must
be supersonic with respect to the wave, and the flow behind the wave must be subson-
ic, corresponding to a compression shock. Possible solutions to the equations of motion
corresponding to an expansion shock that involve a decrease of entropy are generally
impossible, since they would violate the second law of thermodynamics.

The stationary normal shock often appears in supersonic flows. Thus, the ability
to determine when a normal shock is present, to determine properties across it, and to
determine its location is a fundamental and important gas dynamics skill.



150

Chapter 4 Stationary Normal Shockwaves

4.9 REFERENCES

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Cramer, M. S., and Fry, R. N. “Nozzle Flows of Dense Gases,” Physics of Fluids,Vol. A5,
1993, pp. 1246-1259.

Brown, B. P, and Argrow, B. M. “Two-Dimensional Shock Tube Flow in Dense Gases,”
J Fluid Mech 1997; 349:95-115.

Chapman, C. J. High Speed Flow, Cambridge University Press, Cambridge, UK, 2000,
pp. 87-98.

Sullivan, J. A.,and Hansen, A. G. “A Method for Locating the Position of a Normal Shock
in a Converging-Diverging Nozzle,” Bull Mech Engng Educ 1964;3: 119-122.

Johnson, J. N., and Chéret, R., eds. Classic Papers in Shock Compression Science,
Springer-Verlag, New York, 1998.

MacTutor, School of Mathematics and Statistics, University of St. Andrews, Fife, Scot-
land. http://www-groups.dcs.st-and.ac.uk.

Department of Chemistry Web site, Yale University, New Haven, CT. http://www.chem.
yale.edu/~chem125/levitron/Earnshaw.html.

Pain, H. J., and Rogers, H. J. “Shock Waves in Gases,” Reports on Progress in Physics
1962;25(1): 287-336.

Courant, R., and Friedrichs, K. O. Supersonic Flow and Shock Waves, Interscience Pub-
lishers, New York, 1948, pp. 118-119.

Anderson, J. D., Jr. “Research in Supersonic Flight and the Breaking of the Sound Barri-
er,” NASA SP-4219, Chapter 3.

Anderson, J. D., Ir. Modern Compressible Flow with Historical Perspective, McGraw-Hill,
New York, 1982.

Glasgow Digital Library, Memoirs and Portraits of One Hundred Glasgow Men.

4.10 PROBLEMS

41

4.2

A helium flow with a velocity of 2,500 m/s and static temperature of 300 K undergoes a
normal shock. Determine the helium’s velocity and the static and stagnation temperatures
after the wave. Assume the helium to behave as a perfect gas with constant y = 5/3 and
R =2,077J/kg-K.

A normal shock occurs at the inlet to a supersonic diffuser, as shown in Figure P4.2. A /A;
is equal to 3.0. Find M,, p,, and the loss in stagnation pressure (p,; — Po.)- Repeat for a
shock at the exit. Assume y = 1.4.

Y

Figure P4.2
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4.3 Sketch p versus x for the three cases shown in Figure P4.3. Assume isentropic flow except
for flow across the normal shocks.

Figure P4.3

4.4 Air expands from a storage tank through a converging-diverging nozzle. (See Figure P4.4.)
Under certain conditions, it is found that a normal shock exists in the diverging section of
the nozzle at an area equal to twice the throat area, with the exit area of the nozzle equal to
four times the throat area. Assuming isentropic flow except for the shockwaves, that the air
behaves as a perfect gas with constant y = 1.4, and that the storage tank pressure and tem-
perature are 200 kPa and 300 K, respectively, determine the following:

(a) A" for flow from inlet to shock,

(b) A" for flow from shock to exit,

(c) the mach number at the nozzle exit plane,

(d) the stagnation pressure at the nozzle exit plane,
(e) the exit plane static pressure, and

(f) the exit plane velocity.

Athmat =50 sz

Aexil =4 Alhroat

Ashock =2 Athroat

Figure P4.4

4.5 A supersonic flow at Mach 3.0 and y = 1.4 is to be slowed down via a normal shock in a
diverging channel. For the conditions shown in Figure P4.5, find p,/p; and p,/p;.
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Inlet

Figure P4.5

A body is reentering the earth’s atmosphere at a Mach number of 20. In front of the body
is a shockwave, as shown in Figure P4.6. Opposite the nose of the body, the shock can be
seen to be normal to the flow direction. Determine the stagnation pressure and tempera-
ture to which the nose is subjected. Assume that the air behaves as a perfect gas (neglect
dissociation) with constant y = 1.4. The ambient pressure and temperature are 1.0 kPa
and 220 K, respectively.

Figure P4.6

Determine the back pressure necessary for a normal shock to appear at the exit of a con-
verging—diverging nozzle, as shown in Figure P4.7. Assume thaty = 1.4.

A normal shock is found to occur in the diverging portion of a converging-diverging noz-
zle at an area equal to 1.1 times the throat area. If the nozzle has a ratio of exit area to
throat area of 2.2, determine the percent of decrease in nozzle exit velocity caused by the
presence of the shock (compared with the exit velocity of a perfectly expanded isentropic
supersonic nozzle flow). Assume that the flow is expanded from negligible velocity, that
the stagnation temperature of the flow is the same for both cases, and that the working
fluid is steam, which behaves as a perfect gas with constant y = 1.3.
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Athroal

Figure P4.7

4.9 A flow system consists of two converging—diverging nozzles in series, separated by a duct.
[See Figure P4.9(a).] If the area ratio (exit to throat) of each nozzle is 3 to 1, find the area
ratio A,/ A, necessary to produce sonic flow at the second throat, with a shock at A,. As-
sume isentropic flow except for the normal shock. Find the percentage of loss in stagna-
tion pressure for this flow. At another operating condition, a shock appears at A;. [See
Figure P4.9(b).] Find the percentage of loss of stagnation pressure for this condition for
the same geometry.

A : : i Az

Figure P4.9

4.10 For the system shown in Figure P4.10, M, = 2.0, A, = 20 cm?, throat area = 15 cm?, shock
area = 22 cm?, and exit area = 25 cm®. With the working fluid behaving as a perfect gas
with constant y = 1.3, find the following:

(a) the throat Mach number,
(b) the exit Mach number, and
(c) the ratio of exit static pressure to static pressure at I.

Figure P4.10
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Figure P4.11

4.11 A jet engine uses a diverging passage as a diffuser. (See Figure P4.11.) For a flight Mach
number of 1.8, determine the range of back pressures over which a normal shock will ap-
pear in the diffuser. Ambient pressure and temperature are 25 kPa and 220 K, respectively.
Find the mass-flow range handled by the diffuser for the determined back-pressure range.
Also, the inlet and exit areas are A, = 250 cm? and A, = 500 cm?, respectively. Assume
isentropic flow except for the shocks. Take y = 1.4.

412 Air (y = 1.4) enters a converging—diverging diffuser with a Mach number of 2.8, static
pressure p; of 100 kPa, and static temperature of 20°C. For the flow situation shown in
Figure P4.12, find the exit velocity, exit static pressure, and exit stagnation pressure.

A;=025m’ A, = 0.50 m?

Figure P4.12

4.13 Write a computer program that will yield values of p,/p,, po/py, T»/T}, and p,/p,; for a
fixed normal shock with a working fluid consisting of a perfect gas with constant y = 1.20.
Use Mach number increments of 0.05 over therange M = 1.0to M = 2.5.

4.14 A converging-diverging nozzle has an area ratio (exit to throat) of 3.0. The nozzle is sup-
plied from an air (y = 1.4, R = 287 J/kg - K) reservoir in which the pressure and temper-
ature are maintained at 270 kPa and 35°C, respectively. The nozzle is exhausted to a back
pressure of 101 kPa. Find the nozzle exit velocity and nozzle exit-plane static pressure.

4.15 A supersonic nozzle possessing an area ratio (exit to throat) of 3.0 is supplied from a large
reservoir and is allowed to exhaust to atmospheric pressure (101 kPa). Determine the
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range of reservoir pressures over which a normal shock will appear in the nozzle. For what
value of reservoir pressure will the nozzle be perfectly expanded, with supersonic flow at
the exit plane? Find the minimum reservoir pressure to produce sonic flow at the nozzle
throat. Assume isentropic flow except for shocks, withy = 1.4.

4.16 A converging-diverging nozzle with an area ratio (exit to throat) of 3.0 exhausts air
(y = 1.4) from a large high-pressure reservoir to a region of back pressure p,. Under a
certain operating condition, a normal shock is observed in the nozzle at an area equal to
2.2 times the throat area. What percent of decrease in back pressure would be necessary to
rid the nozzle of the normal shock?

4.17 Due to variations in fuel flow rate, it is found that the stagnation pressure at the inlet to a
jet-engine nozzle varies with time according to p, = 200[1 + 0.1 sin (#r/4)¢], with 1 in sec-
onds and p, in kilopascals. Determine the resultant variation in nozzle flow rate, nozzle ex-
haust velocity, and exit-plane static pressure. Assume the nozzle area ratio (exit to throat)
to be 2.0 to 1, with inlet stagnation temperature of 600 K and negligible inlet velocity. The
nozzle exhausts to an ambient pressure of 30 kPa;y = 1.4; the nozzle exit area is 0.3 m?;
and R = 0.3 kJ/kg-K.

4.18 Helium enters a converging—diverging nozzle with a negligible velocity; stagnation pres-
sure is 500 kPa and stagnation temperature is 300 K. The nozzle throat area is 50 cm?, and
the exit area is 300 cm®. Determine the range of nozzle back pressures over which a nor-
mal shock will appear in the nozzle. Also, find the nozzle exit velocity if the nozzle ex-
hausts into a vacuum.

4.19 A jet engine uses a diverging passage as a diffuser. (See Figure P4.19.) For a flight Mach
number of 1.92, determine the range of back pressures over which a normal shock will ap-
pear in the diffuser. Ambient pressure and temperature are 70 kPa and 270 K, respec-
tively. Find the mass-flow rates handled by the diffuser for the determined back-pressure
ranges, with A, = 100 cm? and A, = 200 cm?®. Assume isentropic airflow (y = 1.4,
R = 287 J/kg - K) except for across the shocks.

Aexit

T=210K
p =70kPa
Figure P4.19

4.20 For the converging~diverging nozzle shown in Figure P4.20, find the range of back pres-
sures for which p, > p, the range of back pressures for which p, < p,, and the range of
back pressures over which the nozzle is choked. Take y = 1.4.

4.21 Nitrogen (y = 1.4, R = 296.8 J/kg - K) expands in a converging—diverging nozzle from neg-
ligible velocity, a stagnation pressure of 1 MPa, and a stagnation temperature of 1,000 K to
supersonic velocity in the diverging portion of the nozzle. If the area ratio (exit to throat) of
the nozzle is 4.0, determine the back pressure necessary for a normal shock to position itself
at an area equal to twice the throat area. For this condition, find the nozzle exit velocity.
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Aproat = 15 cm?

Ay = 60 cm?

Figure P4.20

4.22 (a) Develop a relation for the upstream Mach number M, in terms of the downstream
Mach number M,. (b) Use the result from part (a) and Eq. (4.12) to prove that

- () )

2y y+1 p

4,23 Prove that the Rankine-Hugoniot relation reduces to the equation for an isentropic
process for very weak shocks. [Hint: Start from Eq. (4.16b) and replace p, with p + dp
and p; with p. Repeat this operation for the densities. Then use the expansion technique
employed in Example 4.1. Note that to properly use the expansion approach, we must first
express the term to be expanded as 1 + (small quantity).]

4.24 The back-pressure-to-reservoir-pressure ratio is 0.7 for a C-D nozzle, with an exit to
throat area ratio of 2.0. Use the procedure for cases in which the shock location is not
specified (i.e., the direct approach to determine the location of a normal shock for a ratio
of specific heats equal to 1.3). Repeat the problem fory = 5/3. Draw a conclusion regard-
ing shock location and the value of y.

4.25 The back-pressure-to-reservoir-pressure ratio is 0.7 for a C-D nozzle, with an exit to throat
area ratio of 2.0. Use the procedure for cases in which the shock location is specified (i.e.,

the trial-and-error approach to determine the location of a normal shock for a ratio of spe-
cific heats equal to 1.4). To start, assume that the shock is at the exit of the nozzle.

4.26 A converging-diverging supersonic diffuser is to be used at Mach 3.0. The diffuser is to use
a variable throat area so as to swallow the starting shock. What percentage of increase in
throat area will be necessary? Solve for air (y = 1.4) and for helium (y = 5/3) as working
fluids.

4.27 A supersonic wind tunnel is to be constructed as shown in Figure 4.27, with air (y = 1.4,

R = 287 J/kg - K) at atmospheric pressure passing through a converging-diverging nozzle

into a constant-area test section and then into a large vacuum tank. The test run is started
with a pressure 0 kPa in the tank. How long can uniform flow conditions be maintained in
the test section? That is, how long will it be before the tank pressure rises to a value such
that a shock will appear in the test section? Assume the test section to be circular, 10 cm in
diameter, with a design Mach number of 2.4. The tank volume is 3 m>, with atmospheric
conditions of 101 kPa and 20°C. Assume the air to be brought to rest adiabatically in
the tank.

4.28 Repeat Problem 4.27, but assume that there is a diffuser of area ratio 2 to 1 between the
test section and the tank.




Chapter 5

Moving Normal Shockwaves

5.1 INTRODUCTION

Chapters 3 and 4 covered the subjects of isentropic flow and stationary normal shock-
waves. Compressible flows can also involve moving shocks. Accordingly, we will next
consider the unsteady problem of a moving normal shockwave and then use the mater-
ial developed to study the flow physics of a shock tube, an unusually simple experimen-
tal device that is widely used to study transient wave and high-temperature phenomena.

5.2 MOVING NORMAL SHOCKWAVES

In the previous chapter, we dealt exclusively with stationary normal shockwaves. How-
ever, many physical situations arise in which a normal shock is moving. For example,
when an explosion occurs, a shockwave propagates through the atmosphere from the
point of the explosion. As a blunt body reenters the atmosphere from space, a shock
travels a short distance ahead of the body. When a valve in a gas line is suddenly closed,
a shock propagates back through the gas. To treat these cases, it is necessary to extend
the procedures already developed for the stationary normal shockwave.

The Fundamental Problem: A normal shock moving at constant speed into a
motionless gas.

Consider a normal shock moving at constant velocity into a motionless gas. [See
Figure 5.1(a).] Although the arrangement is not the most general, it does represent the
most widely encountered case. Moreover, we will repeatedly transform other cases to
this arrangement, and for that reason, we regard this case as the fundamental problem.
Define S to be the shock velocity and V to be the velocity of the gas behind the shock;
both velocities are measured with respect to a stationary observer. For a stationary ob-
server, the flow is not steady, since conditions at a point are dependent on whether the

shock has passed over that point.
157
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@ Motionless
Gas

(a) Moving Shock (b) Stationary Shock
Stationary Coordinate System Moving Coordinate System

Figure 5.1 Normal Shockwave Moving into a Gas at Rest

Now consider the same physical situation with an observer moving at a speed
that is identical to that of the shockwave velocity—a situation, for instance, with the
observer “sitting on the shockwave.” Accordingly, the shock is now stationary with re-
spect to the observer. [See Figure 5.1(b).] Example 1.4 served as an introduction to this
type of coordinate change.

The strategy behind the coordinate change is that the flow is now unchanging
with time; that is, the problem is steady in this moving coordinate system. So, we may
utilize the relations and results that were obtained in Sections 4.2 and 4.3 for the sta-
tionary normal shockwave. However, in order to apply these results to moving normal
shocks, consideration must be given to the effect of observer velocity on static and
stagnation properties.

As may be recalled, static-flow properties are defined as properties measured
with an instrument moving at the absolute flow velocity. Thus, static properties are in-
dependent of the velocity of the observer. Hence, comparing Figure 5.1(a) with Figure
5.1(b), we may write that

P2 Do L T,
—=—and — = —

P1 Pa Tl Ta

Stagnation properties, on the other hand, are measured by bringing the flow
to rest. Comparing the situations shown in Figure 5.1, we find that if 7; = T, and
P1 = Ppo itisevident that T, > T,, and p,; > p,., since the gas at state 1 has velocity
S, while the gas at state a has zero velocity. Thus, stagnation properties are dependent
on the observer velocity. To calculate the variation of stagnation properties across a
moving shockwave, static conditions and velocities must first be determined. (See Ex-
ample 5.1.)

Because of the transformation of a stationary coordinate system to a coordi-
nate system that moves with the shock, analysis of the moving normal shock is re-
duced to consideration of the steady-flow situation shown in Figure 5.1(b). We may
apply the jump conditions across the shock and arrive at the following set of conser-
vation relations:

pAS = V) =piS (5.1)
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P2+ p(S = V) = p + p§ (5.2)
S - V)? 52

We also require an equation of state. The perfect-gas model with constant specific heats
will be employed, and therefore we have, in addition to the jump conditions,

P P
pI,  pTh
_ R
Cp - ;—:—1
h = c,T
a’> = yRT = 'y—g 5.4)

Since only static properties appear in it, we may use the Rankine-Hugoniot rela-
tion, eq. (4.16b) written as

p_(rtp+(y - )p (5.5)

pr (y+1)pp+(y—1)p,

Now the preceding set of equations can be algebraically manipulated to obtain
the following set of equations:

4] 1%

=1 (5.6)

%= 1+ Y:ZV (5.7)
1

n_ 2y <£)2 _y-1 (5.8)

Doyt 1\m v+ 1

)

s=<7:1>v+\/[<”:1>v 2+a% (5.10)

R CEE e
2o - N TR e

T 2 -1 2
L_a_,,0 <SV—V> (5.13)
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TABLE 5.1 Summary of a Process to Develop Eqgs. (5.6) to (5.13)

To Obtain Use

Eq. (5.6) Eq.(5.1)

Eq.(5.7) Egs. (5.2),(5.1),and (5.6)
Eq. (5.8) Egs. (5.2),(5.1).and (5.5)
Eq.(5.9) Egs. (5.7) and (5.8)

Eq. (5.10) Eq. (5.9), solve quadratic
Eq.(5.11) ' Eq.(58)and a; = \/T%
Eq. (5.12) Egs. (5.7). (5.8),and (5.9)
Eq. (5.13) Eq.(5.3)and h = i

(y- 1)

The development of most of these relations is not difficult. Table 5.1 summarizes their
development. Combinations of equations other than those shown in Table 5.1 are possi-
ble as well.

Example 5.1. Calculation of properties behind a moving normal shock using physical variables

An explosion occurs which produces a normal shockwave that propagates at a speed of
600 m/s into still air (a perfect gas with y = 1.4). The pressure and temperature of the
motionless air in front of the shock are 101.3 kPa and 20°C, respectively. Determine the
velocity, static pressure, and static temperature of the air following the shock.

Solution

Examination of Egs. (5.6) to (5.13) in relation to the given information (S, p,, and 7)), as
well as the expected results (V, p,, and T), reveals that we may use Egs. (5.9), (5.7), and
(5.13) in turn. First, we must compute the speed of sound ay:

a, = VyRT, = V/(1.4)(287)(293) = 343.1143 m/s

Therefore,
2 2)(600 43.1143\? :
V= 251[1 - (95—1) } - 20 )2(4 ){1 - <———~3 50 3) ] = 336.4897 m/s
Y . ‘
ySV (1.4)(600)(336.4897)
p=pl1+ = (101.3)|1 + = 344.5109 kPa :
i (343.1143)?
-1 vZ
T, = T][l L : )<SV - —ﬂ
aj 2
) (336.4897)?
= (293)1 1 + —————=1(600)(336.4897) ~ —————
(343.1143) 2

437.6303 K
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Note: Had we been given the speed of the gas trailing the shock, V, instead of the shock
speed S, the procedure would be essentially the same, except that the solution of Eq. (5.9)
would be replaced with the solution of Eq. (5.10).

Rather than proceeding with an entirely new analysis, as in the foregoing solu-
tion, we may also use the results developed for the stationary normal shock in the pre-
vious chapter. Table 5.2 contains appropriate relations for the stationary shock and
contrasts them with the moving-shock relations just developed.

In the moving-shock equations, p, T, and p are properties that refer to the ther-
modynamic state of the flowing fluid and are the static properties of the fluid. (Again,
static properties are those properties that would be measured by instruments at rest
with respect to the fluid.) As has been mentioned, changing the coordinate system
from stationary to moving does not affect the static properties, but this transformation
will have an impact on the stagnation properties. We can easily demonstrate these ef-
fects by calculating the change in static temperature across the shock for a stationary
normal shock.

Since for a normal shock that is stationary in a moving coordinate system,

Tol = T02

TABLE 5.2 Comparison of Equations across Moving and Stationary Normal Shocks

Moving Normal-Shock Relations Stationary Normal-Shock Relations
0 S
My=—=240 M =—
ay
Po1 = P Pot = pl(
T, =T T, =
1+
y-1 5] 2(y = 1) (
T2=T11+ 2(2SV'—V) T2=
2(11 ]
Vv
M = — =
2= 0 M;
SV) [ 2y , (r- 1)]
= 14 y— = p|——M? -~
P2 P1< Ya% P2 P17+1 1 (y + 1)
’ v - 1 VZ yly—1 y - 1 YHy-1)
poz=p2(l + 7) Pa=pl1+ M3
2 4 2
~-1y? -1
T, = T2<] + 2 ——) T, = T2<1 + 2 M%)
2 4 2
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and hence

-1 -1
T]<l +7 : M%) - T2<1 +7Y . M%)
rearranging gives

y -1 y-1 SY? S-V)?
(TZ - T])stationary = 5 (TIM% - TZM%) = _T[Tl<_> - T2< a, )

7—1[5_2_ (S—V)z}
2 |yR YR

(v - DT
= 242 (2SV - Vz) = (TZ - Tl)moving
1

On the other hand,

y—1 y—1
(To2 = To1)moving = T2<1 + 3 M%) -Th=(I,-T) + 2R V2
28V - v?2  v? S

2c, 2¢, Cp
# (T02 - Tol)s(alionary

Example 5.2. Calculation of properties behind a moving normal shock, using stationary
normal shock relations

An explosion occurs which produces a normal shockwave that propagates at a speed of
600 m/s into stil} air (a perfect gas with y = 1.4).The pressure and temperature of the mo-
tionless air in front of the shock are 101.3 kPa and 20°C, respectively. Use the relations for
a stationary normal shock, and determine the static and stagnation conditions present in
the air after passage of the wave, as well as the gas velocity behind the wave.

Solution

For the normal shock in the coordinate system moving with the shock,

S S 600 m/s

== = = 1.7487
a;  VyRT, V(14)(287 J/kg-K)(293 K)

M]:

From the isentropic relations and stationary normal-shock relations at this Mach number,

we have
T
P 018820 and —* = 0.6205
Po1 ol
T o
P2 _ 34009, 22 = 1.4936, 22 = 0.8351, and M, = 0.6284
14} T Pot
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S = 600 m/s
i
V,=3364m/is | V,=00mis V, = 263.6 m/s : V, = 600.0 m/s
\
py=3445kPa f p, = 101.3kPa py=3445kPa I p, =1013kPa
$
T,=4376K T,=293.0K T,=4376K || T,=293.0K
M, = 0.8025 M, =0 M, = 0.6284 [ M, = 1.7487
|
T, = 4940K T, =2930K Tp=4722K || T, =4722K
x !
| 1
Po2 = 526.5kPa il p, = 101.3kPa Doz = 449.5kPa { Po1 = 5383 kPa
I

Figure 5.2 Computed Properties on Both Sides of the Moving
Normal Shock in Two Coordinate Systems of Example 5.2

Using p; = 101.3kPa and T; = 293, we compute parameters within the moving
coordinate system:

T, 293

T, = = = 4721 =T

T (TUT,)  0.6205 721998 K =T
p 1013

= = = 5382572 kP
Pot = pipa)  0.18820 a

Po2 = (5"—2)1)01 = (0.8351)(538.2572) = 449.4986 kPa
ol

= (%2.) pr = (3.4009)(101.3) = 344.5112 kPa
1

T

T
(Fz)n = (1.4936)(293) = 437.6248 K
1

a, = VyRT, = 419.3300 m/s
S — V = a,M, = (419.3300)(0.6284) = 263.5070 m/s
V=S-(S-V)=600 - 263.5070 = 336.4930 m/s

il

Now, for the moving shock in the stationary coordinate system,

vV 336.4930
= =2~ 08025
M, a, 419.3300
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From the isentropic flow relations at M, = 0.8025, we obtain

T:
P2 _ 06544 and —2 = 0.8859
Po2 To2
P 344.5112
- = ~ 526.4535 kP
P2 = b)) 0.6544 a
T 437.6248
T, 2 BT _ 39880 K

T (TyT,)  0.8859

Figure 5.2 compares the computed values for both the stationary and moving coordinate
systems for this example.

Example 5.3. Relations for a normal shoeck moving into a gas in motion

Develop expressions for the case of a normal shock traveling at a constant speed S into
a gas that is moving with a speed W. The shock induces a speed V of the gas it passes over,
as shown in Figure 5.3.

Solution

To begin, we must transform the coordinate system to one in which the shock is stationary.
This can be accomplished by locating the coordinate system on the shock and therefore
obtaining the arrangement shown in Figure 5.3(b).

We could next perform an analysis in which we write the jump conditions across the
shock and perform the algebraic manipulations to obtain the desired results. However, by
contrasting the arrangement in Figure 5.3(b) with that in Figure 5.1(b), it can be seen that
if the shock speed S and the gas speed V are replaced with S — W and V — W, respec-
tively, in Egs. (5.6)—(5.13), we will obtain the desired results.

Analysis Aid: It is helpful to perform an intermediate step in the coordinate transformation process;
in which the gas ahead of the shock is made motionless by superimposing on the entire flow field the
speed of this gas (for the case at hand, /), but in the opposite direction. This intermediate step would
result in the arrangement shown in Figure 5.4. It should be more apparent why S — W andV — W
are used to replace S and V, respectively, in the relations developed for the fundamental problem.

S w S-w
> > A
Gas in £ @
Motion ey
(a) Moving Shock (b) Stationary Shock
Stationary Coordinate System Moving Coordinate System

Figure 5.3 Normal Shock Moving into a Gas in Motion
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Motionless
V - W: S - W: GaS

Intermediate Step

Figure 54 Transformed Normal
Shock Moving into a Motionless Gas

To demonstrate the utility of the various transformations, consider Eq. (5.7), which
can be immediately written for the problem under consideration as

S-W)v - w
Py N )2( )
P aj

(5.18)

If we set W to zero, the pressure ratio for the fundamental problem is obtained. Next, we
can develop an expression of the speed of the shock from Eq. (5.10), which can be rewrit-

ten as
S—-W-= (—7—%—1)(v - W)+ \/Klg—l>(v - W)T + a}

S=W + (Y_Zi)(v - W) + \/[(—Y—F)(v - W)]2 + a}

G z B-nW \/Kv ;r l)(v _ W)]z ral (5.15)

or

Other relations may be readily obtained in the same manner.

Example 5.4. Calculation of properties behind two moving normal shocks in a tube

A piston in a tube is suddenly accelerated to a constant velocity of 50 m/s, which causes a
normal shock to move into the air at rest in the tube. {See Figure 5.5(a).} Several seconds

Second Shock First Shock

(a) Generation of the First Shock (b) Flow Field Involving Both Shocks

Figure 5.5 Two Normal Shocks Moving into a Motionless Gas
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later, the piston is suddenly accelerated from 50 to 100 m/s, which causes a second shock to
move down the tube. [See Figure 5.5(b).] Calculate the velocities of the two shockwaves if
the temperature of the air (y = 1.4, R = 287 J/kg - K) at rest is 300 K.

Solution

This example involves three zones of uniform flow conditions and two shocks, as opposed
to the two zones and one shock in previous examples, and therefore the notation requires
some care. We take Zone 1 to be downstream of the first shock, Zone 2 between the two
shocks, and Zone 3 upstream of the second shock. The first shock travels at a speed S,
whereas the second shock has the speed S;.

The air next to the piston must move at the same velocity as the piston, since it can
neither move through the face of the piston nor move away from the piston and leave a
vacuum behind.

First Shock:

For a moving observer fixed to the shock, the air velocities after the first shock has been
generated are as shown in Figure 5.6.

Now, from Eq. (5.10), with V, = 50m/s and a; = VyRT,; = V/1.4(287)300 =
347.1887 m/s, we have

o= (2 [ (] e

2.4(50) (2.4)°(50)?
T g +\/ 16

+ (347.1887)% = 378.4824 m/s

The Mach number within Zone 1 is

Sk 378.4824

=20 - 227 10901
V7 g, T 347.1887

With M;, we can determine the temperature in Zone 2 from Eq. (4.11) or Eq. (5.13):

T
T, = (—f)T, = (1.05865)(300) = 317.5950 K

Figure 5.6 First Shock in a
Coordinate System
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Ss Va Vi=V; Ss—V, Ss—V,
—_— —— —_— B
Gas at rest @
(a) Moving Normal Shock (b) Intermediate Step (c) Moving Normal Shock
Stationary Coordinate System Moving Coordinate System

Figure 5.7 Transforming the Second Shock to a Coordinate System Moving with
the Shock

Second Shock:

167

To determine the speed of the second shock, we must fix the shock by defining a new co-
ordinate system equivalent to superimposing a speed Sg — V; = Sg — 50 on the entire
flow, as shown in Figure 5.7. As previously indicated, it may be helpful to perform this op-
eration in separate steps. First, superimpose a speed V5, to the left, to bring the gas in front
of the moving shock to rest. (This condition allows us to use the results from the funda-
mental problem.) Second, bring the shock to rest by superimposing a speed Sg — V,, to the

left, on the entire flow.
Employing Eq. (4.13), we have

SS_V2)2
) (v+1)( p
TS -Vs (y-1MI+2 S — V,\2
P2 S5s = Vs (v - 1)M; (y—l)(S 2) 49

as

s Ss— Vo (y+ 1M}

Expanding this expression yields the quadratic equation
S3+bSg+c=0

where

V, = 50 m/s, V; = 100m/s, and @, = VyRT, = V1.4(287)317.6 = 3572 m/s

So, we have

b=(y-1)V, +

2D+ v

li

(0.4)50 — 1.2(50 + 100) = —160
y -1 v+ 1
c=-a}— (——2——>V§ + (T)V2V3

—(357.2)% — (0.2)(50)2 + (1.2)(50)(100) = —122,091.8

Solution yields

S¢ = 4385 m/s
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Alternatively, we can avoid having to solve the quadratic by modifying Eq. (5.15)

with V = V5 = 100 m/s and W = V, = 50 m/s [compare Figure 5.7(c) with Figure 5.3(b)]
and replacing a, with a, = 357.2 m/s to obtain

PAREACEL) N \/[(%i)(v} _ Vz)r y

2.4)100 + (1.6)50 :
(24) : (1.6)50 J[(%)(mo - 50)] +357.2% = 438.5 mis

Thus, the second wave travels at a greater velocity than the first and eventually
overtakes it. This result is a demonstration of the principles discussed in Section 4.2: Com-
pression waves are able to overtake and reinforce one another. In this example, the second
wave travels at a greater velocity because it is both moving into the compressed, higher
temperature gas behind the first wave and moving into a gas stream already traveling in
the same direction with a velocity of 50 m/s.

5.3 REFLECTED NORMAL SHOCKWAVES

To continue our study of moving normal shockwaves, consider a wave impinging on the
end of a tube. Two physical arrangements should be considered: a closed-end tube and
a tube open to the atmosphere. (See Figure 5.8.) In both cases, it is desired to deter-
mine whether the reflected wave is a compression shockwave or a series of weak ex-
pansion waves.

For case (a) in Figure 5.9(a), the gas next to the closed end of the tube must be at
rest, with the gas behind the incident shock moving to the right with velocity V. For an ob-
server moving with the reflected wave, the physical situation is as shown in Figure 5.9(b),
which indicates a decrease in velocity and a corresponding increase in static pressure
across the reflected wave, which is physically the situation for a normal shock. Therefore,
an incident normal shock reflects from the solid surface of a closed tube as a normal
shock.

For case (b) in Figure 5.8, the static pressure at the end of the tube is the bound-
ary condition imposed on the system. Because the flow in front of the moving shock is
subsonic, the back pressure and the exit pressure must be the same. From Figure 5.8(b),

Incident Shock Incident Shock

s, Gas at Rest Epatm
Patm :

Reflected Expansion Waves

P = Pam

(a) Moving Shock in a Closed Tube (b) Moving Shock in an Open Tube

Figure 5.8 Moving Normal Reflections from a Closed- and Open-ended Tube
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V=20 Sp+V Sr
Motionless
ON RO,
(a) Moving Reflected Shock (b) Moving Reflected Shock
Stationary Coordinate System Moving Coordinate System

Figure 5.9 Transformation of the Coordinate System for a Reflected
Normal Shock

we see a decrease in pressure across the reflected wave. Consequently, a normal shock
reflects from an open end of a tube as a series of expansion waves.

In order to analyze a normal shock reflected from a solid surface, consider both
the incident and reflected shocks in moving and stationary coordinate systems. (See
Figure 5.10.) As noted in the previous example, when the system includes various
shock speeds and zones, we must exercise care with the notation. Moreover, because
we will be combining these analyses, we must be consistent and assign the same direc-
tion to the coordinate axes in both incident and reflected systems. We will take the pos-
itive direction to be towards the solid surface.

To initiate the analysis, we will use Prandtl’s relation, Eq. (4.20a), in which V; and
V, (the speeds in front of and behind the incident shock, respectively) have been re-
placed with V; and V,,, respectively:

2 -1 2 -1 2
af,:y Vi + a2=y Vi+ ag

! f
v+ 1 v+ 1 v+ 1 v+ 1 vy +1

Vf Vb =

Therefore, referring to Figure 5.10(a), we find that for the incident-shock case,

Vf = ~‘S]
Vb = V2 - SI
ap = a
Thus, for the incident shock,
y~1 2
(=SnN(Va = §)) = (Y T 1)(V2 — 5 + (y n 1)“% (5-16)
Referring to Figure 5.10(b), we find that for the reflected-shock case,
Vf = SR + V2
Vp = Sk

ag = as
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S

Gas at

rest
Moving Incident Shock in a Moving Incident Shock in a
Stationary Coordinate System Moving Coordinate System

(a) Incident Shock
x
V=0

Moving Reflected Shock in a Moving Reflected Shock in a
Stationary Coordinate System Moving Coordinate System

(b) Reflected Shock

Figure 5.10 Transformation of Coordinate Systems for Moving Incident and

Reflected Shocks

So, for the reflected-shock case,

s+ ) = (T Jesw 122 + (g )

Equations (5.16) and (5.17) can be rearranged as

(5 - (R
(5 -1 )

respectively. Divide Eq. (5.18) by Eq. (5.19) to get
Sg + V1 \? Vo = 85;\?
< R 2> 1 < 2 51) _1
az _ az
(SR + VQ) <V2 - S,)
a a;

and

(5.17)

(5.18)

(5.19)

(5.20)
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Equation (5.20) is a quadratic in terms of (Sg + V,)/a,. To see this, let (Sg + V,)/
a; = x and (V, — $;)/a, = y. The right-hand side of Eq. (5.20) can be written as
(y* — 1)/y, which we will set equal to b for convenience. Thus, Eq. (5.20) may be sim-
ply written as
x2=bx—-1=0

Solution of this equation produces two roots, one possible and one impossible:

x=bi\fb2+4:<y2;1)i\/<y2;1)2+4 (P -1 £ P+ 1)

2 2y

So,
Xy =y

1
X_. = —=
y

Substituting back the physical terms of the problem, we get
S+ Vo (- §))

a; a
SR+ Vy 1
a (Vo = 8p)
a
. V2 Vo= S . .
Since p > 1 and p < 0, only the second solution is possible:
2 2
SR + Vz a
= — 5.21
a V2 e S] ( )
Now, across a stationary shock,
_PQ _ 2y 2 (7 - 1)
oy 1T (v 1)
Therefore, for a reflection,
2y [Sp+ W\? -1
b3 _ Y ( R 2) _ (v ) (5.22)
pp y+1i\ o (y +1)

It can be shown (see Problem 4.22) that

+1 —
i (3G
2y y+1 p

Hence, for the incident shock,

- 2 —
L2l =( 2y )<V2 S’) _rt (5.23)
§25) Yy + 1 a, y + 1




172 Chapter 5 Moving Normal Shockwaves

P
—_—
P2
) 25 TN SR ——
; x
(a) Incident Normal Shock (b) Reflected Norma! Shock

Figure 5.11 Reflection of a Normal Shock

Eliminating (V, — S;)/a; and (Sg + V,)/a, between Eqgs. (5.22) and (5.23), using
Eq. (5.21), produces

w Gen) G)G) GE)G)-6G5)

= = (5.24)
-1 -1
S )R8 ) I ) ()
P y +1 y +1/\p
Figure 5.11 illustrates the magnification effect on pressure caused by reflection of
a normal shock from a solid surface.

Example 5.5. Calculation of shock speeds and pressures for a normal shock reflecting off a
solid surface

A normal shockwave with pressure ratio of 4.5 impinges on a plane wall. (See Figure 5.10.)
Determine the speeds of the incident and reflected shocks, the speed of the gas behind the
incident shock, and the static-pressure ratio for the reflected normal shockwave. The air
(¥ = 1.4, R = 287 J/kg-K) temperature in front of the incident wave is 20°C.

Solution
To solve this problem, we utilize a coordinate system moving with the shock, as shown in
Figure 5.10. For py/p; = 4.5 and y = 1.4, we find that M; = 2.0. The speed of the incident

shock is determined from S; = Mya; = 2.0V (1.4)(287)293 = 686.2285 m/s. From the
normal-shock relations, we have

T
P2 _ 26667 and =% = 1.6875
p1 I
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and from the continuity equation, we get

S P
S -V P

Therefore, the velocity of the air behind the incident wave is

L
p1 2.6667 — 1)
V, = = 686.2 —_— | = . /
h =8 ” 8 285( 5 6667 428.8960 m/s
M
T
T, = {3 T = (16875)293 = 494.4375K
1

ay = VyRT, = V/(1.4)(287)(494.4375) = 445.7185 m/s
From Eq. (5.21), we obtain

2 2

a 445.7185
Sg=—Vy— ——% = 478896 + = 343.1207 m/
R= "N, s) 8896 + 862285 — 42889 s

Finally, from Eq. (5.24), we can compute the static-pressure ratio across the reflected shock:

3y -1 -1 4 1
p ('3 1 )@”) - (‘ZT 1) 343 — %
22 = = 3.3333

- - 1
P2 1+(7 l)<£2-) 1+ —(45)
Y+ 1\p 6
The pressure in Zone 3 is 15 {(3.3333)(4.5}] times larger than the pressure in Zone 1.

For a more comprehensive treatment of unsteady flows involving moving normal
shockwaves, see Ref. (5.1).

5.4 CHAPTER CAPSTONE APPLICATION: THE SHOCK TUBE (THE RIEMANN PROBLEM)

The shock tube [see Refs. (5.2) and (5.3)] is a device in which normal shockwaves are
generated by the rupture of a diaphragm separating a high-pressure gas from a gas at
low pressure. As such, the shock tube is a useful research tool for investigating not only
shock phenomena, but also the behavior of materials and objects when subjected to
the extreme conditions of pressure and temperature prevalent in the gas flow behind
the wave. Thus, the kinetics of a chemical reaction taking place at high temperature can
be studied, as well as the performance, for example, of a body during reentry from
space back into the earth’s atmosphere.

A shock tube is shown in Figure 5.12. After rupture of the diaphragm, the system
eventually approaches thermodynamic equilibrium, with the final state in the closed-
end tube determined from the first law of thermodynamics. With no external heat
transfer, the total internal energy of the gases at the final state is equal to the sum of
the internal energies of the gases initially present on either side of the diaphragm.



174  Chapter 5 Moving Normal Shockwaves

Diaphragm

b Tl
Low-

@ pressure side

Figure 5.12 Shock Tube Geometry

However, of primary interest is not the final equilibrium state of the gases, but the tran-
sient shock phenomena occurring immediately after rupture of the diaphragm. Upon
rupture of the diaphragm, a normal shockwave moves into the low-pressure side, while
a series of expansion waves propagates into the high-pressure gas. Curves of p versus x
and T versus x shortly after rupture of the diaphragm are shown in Figure 5.13. Fol-
lowing the initial normal shockwave down the tube is a contact surface, a temperature
discontinuity separating the gases compressed by the shock from the gases cooled by
the expansion. The contact surface is a remnant of the diaphragm. The gases in Zones 2

Expansion waves
. Contact surface
Front Tail
Normal shock

© *@ﬂ/‘@

P3= D2

14!

T4 T]

T

Figure 5.13 Shock Tube Pressure and Temperature
Distributions Shortly after Rupture of the Diaphragm
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and 3 move with the same velocity and are at the same pressure, yet there is a density
and temperature difference distinguishing these regions. The shock strength and gas
velocities are dependent on the initial pressure ratio across the diaphragm, the proper-
ties of the gases involved, and the initial temperatures of the gases.

For shock-tube operation, it is of prime interest to develop an expression for
shock strength p,/p; as a function of the initial pressure ratio p,/p; set across the di-
aphragm. The method we shall use in this analysis will be first to obtain an expression
for p4/p; across the expansion-wave system as a function of V3, then to develop an ex-
pression for the normal-shock pressure ratio p,/p; in terms of V,, and finally to match
the two solutions at the contact surface where V, = V5 and p, = p;, thus obtaining a
resultant equation relating p,/p; and p,/p;. (See Figure 5.14.)

First, we shall determine the variation of properties across the expansion waves.
Let us consider the general case of an infinitesimal wave moving leftward down a tube
into a gas stream moving toward the wave. As usual, assume that the gas behaves as a
perfect gas, with constant specific heats. The wave moves at the velocity of sound with
respect to the gas into which it is moving, so the absolute velocity of the wave will be
(a — V) (see Figure 5.15.). Following our usual procedure, let us fix this wave, as
shown in Figure 5.16. From the continuity equation, we have

pa = (p +dp)(a + dV)

or

dp  dv
s (5.25)

For an infinitesimal wave, the flow is isentropic (i.e., p/p? = constant), so we may
write
p=Cp’ = C2T7/7—1 = C3a27/(v—1)

Figure 5.14 Speeds within a Shock Tube

|4 a-V V+dv

Figure 5.15 Left-running
Expansion Wave
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a a+dV
—_— —_—
p p+dp

Figure 5.16 Left-Running
Expansion Wave in a Moving
Coordinate System

Therefore,
p = Ca?t—1)
Take the logarithm of this expression and then differentiate to obtain
dp_ 2 da
p vy—1a
Combine this result with Eq. (5.25) to find for the left-moving wave

2
y —- 1
Equation (5.26) can be directly integrated to produce

da +dV =0 (5.26)

- 74 + V = constant = O, (5.27)

If the infinitesimal wave were moving to the right, as shown in Figure 5.17, a sim-

ilar analysis yields

2
y—1

a — V = constant = O, (5.28)

The quantities [2/(y — 1)]a + V, appearing in Egs. (5.27) and (5.28), are con-
stants Oy and Q, and called the Riemann invariants. They play a critical role in the nu-
merical analysis of unsteady compressible-flow problems.

Returning to the shock-tube flow of Figure 5.12, we see that Eq. (5.27) can be ap-
plied between Zone 3 and Zone 4. Note that the gas is at rest in Zone 4 (i.e,, V, = 0)
and that y; = vy,. Therefore,

2 -
y_1a4+0=y_la3+v3 (5.29)
4 4
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V+dv a+V |4 a—dv a
—> > > - -~
p+dp P
(a) Stationary Coordinate System (b) Moving Coordinate System

Figure 5.17 Right-Running Expansion Wave in Stationary and
Moving Coordinate Systems

In the region separating Zones 3 and 4, the expansion waves do not coalesce, but
rather spread out as they move down the tube. Therefore, we can assume that the flow
from within this region is isentropic, and so

al(vs—1) W (ya—
-GG
D4 P4 T, ag '

Combining the isentropic relations with a rearranged version of Eq. (5.29) yields

2a4 ( a3> 2a4 <p3)(74_])/274
Vi = -2}y (2 531
} ve — 1 ay vs — 1 P4 ( )

This completes the first portion of the analysis.

We may now proceed to determine the velocity V, of the gas behind the rightward-
moving normal shock as a function of the shock-pressure ratio. {See Figure 5.18(a).] To
reduce the problem to one of steady flow, first we must redefine the coordinate system to
fix the shock. [See Figure 5.18(b).]

Vv S S-V S
—_— - -
Gas at P2 p
oR NO
(a) Moving Shock in a (b) Moving Shock ina
Stationary Coordinate System Moving Coordinate System

Figure 5.18 Normal Shock in Fixed and Moving
Coordinate Systems
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Because the shock 1s moving into a gas at rest, this is the same problem that was
treated in Section 5.2, and therefore we may utilize the expressions developed there.
The pressure ratio across the shock is related to the shock Mach number (M, =
M; = S/a;) by Eq. (5.8):

&:L(i)z_ﬁ:_l
| Z B 20 AN v+ 1

This equation may be rewritten as

1+ 1\p2 v — 1
S=a \/<—>‘— + <—) 532
! 2vi /D 2y (5:32)

The continuity equation, written as Eq. (5.6), may be used to introduce V, into the
analysis:

2122 (5.33)

To eliminate the density ratio, we may make use of the Rankine-Hugoniot relation,
Eq. (5.5):
(vi +1)p

+ 1
p_n-1m

= 5.34
pr (nt1) ) (534
r—1 m
Combining Egs. (5.32)-(5.34) yields
Gi)
+1
V, = ﬂ(ﬂ - 1) il (5.35)
Y1\ D2

-1
P (71 )
141 1+ 1
To complete the solution to the problem, Egs. (5.35) and (5.31) are equated, since
Vz = ‘/3:

2y )
_ ﬂ(PZ 1) <71 +1 2a5 | _ <£E)m~1)/2y4
P2

2 yi\p m+<71—1> oy -1 Pa
14} 7 t1
Finally, making use of the fact that p, = p; and rearranging terms produces
r a D2 —[2y4/(ya—1)]
ps _ P (s~ 1)(a_l>(p— } 1)
22 4/ F (5.36)
I &

vzyl\/zyl + (p + 1)<£2— - 1)

P
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Figure 5.19 Shock-pressure Ratio Versus Diaphragm-pressure Ratio.

It should be noted that if the shock-pressure ratio p,/p; is known, it is a simple
matter to obtain the diaphragm pressure ratio p,/p; for given values of vy, v,, a;, and
as. However, the opposite is the case; that is, generally, we seek the shock-pressure
ratio given the diaphragm ratio. Unfortunately, this is not as simple as we might think,
because Eq. (5.36) is highly nonlinear. It is this fact that makes the shock tube (the Rie-
mann problem) computationally difficult. To determine the shock-pressure ratio from
Eq. (5.36), some form of iterative procedure will be required. (See Example 5.6.)
Figure 5.19 provides a plot of the shock-pressure ratio versus the diaphragm-pressure
ratio for a shock tube, withy = 1.4and T} = T,.

Once the shock-pressure ratio is known, the temperature ratio across the shock
can be determined by combining the perfect law with the Rankine—Hugoniot relation
to obtain

(rn — 1)£g +
T +1 2
L _ (r ) 1 _ (gz) (5.37)
T, (vi — 1) p ay
1+ ———
(vi +1) p2

The temperature ratio across the expansion is determined from the isentropic
relations of Eq. (5.30):

D2 (va=Dlya

Ig _ (!ﬁ>(v4—l)m _ E _ (13_)2 538)
N Pa \
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The following is a summary of the computational procedure to determine the

shock-tube parameters following rupture of the diaphragm:

PN R WD =

Given: vy, v4, Ry, Ry, Th, Ty, Py, and pg; also, V) =V, = 0
Determine:

ay, a4, p1, and p, from the perfect-gas relations,

D>/ py by solving Eq. (5.36),

S from Eq. (5.32),

V, and V; from Eq. (5.35) (note that V3 = V),

T,/T, from Eq. (5.37),

polp; from Eq. (5.34),

T;/T, from Eq. (5.38), and

p4/ps from Eq. (5.30).

Example 5.6. Calculation of the shock pressure ratio in a shock tube

Develop a numerical procedure to determine the shock-pressure ratio from the diaphragm-
pressure ratio. As an example, find p,/p, giveny, = y, = 1.4, a; = a4, and py/p; = 50.

Solution:

The Newton-Raphson method wili be used to determine the shock-pressure ratio. This
root-solving technique has been frequently used in previous chapters. To utilize the
method, we rewrite Eq. (5.36) as

O - @G L p
nen \/2;\/271 +(yn + 1)(% - 1) P
BN 1 PO o

where p,/p; has been replaced by p for convenience, and the constants within the function are

- 22(2)
: 2y as

& 2y
(T
vs— 1

The Newton-Raphson method for this case may be expressed as

f(Poia)

pnew = pold - df( )
dp Pold
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TABLE 5.3 Spreadsheet Calculations Used to Determine the Shock-
Pressure Ratio of Example 5.6

Pold f f(p +8p) f(p—Ap) dfldp Prew

2.00000 21.03105  20.87650  21.18696  —15.52281  3.35485
3.35485  7.72947 7.66697 7.79230 —6.26662  4.58828
458828  1.84580 1.80926 1.88246 -3.65990  5.09261
509261 0.15297 0.12219 0.18385 -3.08291  5.14223
514223 0.00119  —0.02911 0.03159 —-3.03503  5.14263
514263 000000  —0.03030 0.03039 —3.03466  5.14263

Because the derivative of the function is somewhat complicated, a central finite-difference
representation will be used to compute the required derivative:

daf _ f(p+ Aap) — f(p — Ap)
dp 2Ap

The computations for the given conditions are contained within Table 5.3, which has been
prepared using a simple spreadsheet program. An arbitrary initial guess of 2.00 was used
to begin the process. The following constants were used:

¢ = 0.14286
¢ = 0.85714
¢ =170

Ap = 0.01

Thus, the shock pressure ratio p,/p; is 5.1426. With this value, it is a relatively easy task to de-
termine all other shock-tube parameters, as will be shown in the following example.

Example 5.7. Calculation of speeds and flow properties in a shock tube

The air pressure on the high-pressure side (also called the driver side) of the diaphragm in
a shock tube is set at 500 kPa, and the air pressure on the low-pressure side (also called the
driven side) is 20 kPa; the initial air temperature on both sides of the diaphragm is 30°C.
The diaphragm is suddenly broken, which causes a normal shock to propagate rightward
into the low-pressure air and a series of expansion waves to propagate leftward into the
high-pressure air, as shown in Figures 5.13 and 5.14. Determine the following:

(a) the velocity of the normal shock,

(b) the velocity of the air behind the normal shock,

(c) the velocity of the contact surface,

(d) the static temperature behind the normal shock,

(e) the static temperature behind the contact surface, and

(f) the velocity of the expansion waves at front and tail of the system of expansion waves.
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Solution

(a)

(b)

()
(d)

(e)

Following the shock-tube calculation procedure just delineated, we first determine
the speed of sound of the low-pressure, driven air:

a1 = VyRiTy = V(1.4)(287)(303) = 348.9203 m/s

For ps/p; = 500120 = 2§, using the procedure described in Example 5.6, we find
that p,/p; = 4.0471. The shock speed can be determined from Eq. (5.32):

o (75 = s (3 Jwomy + (55)
- nr N, = 348.9203 4.0471) +
al\/( 2,),1 12 2‘)'1 8 2.8 ( ) 2.8

(348.9203)(1.9005) = 663.1138 m/s

92)
|

il

Note that the shock Mach number M; = S/a; is 1.9005.
The speed of the gas behind the shock is computed from Eq. (5.35):

(2”)
71+1

-1
e
14 v + 1

348. 9203 1.1667
3 471
< 047 )\/(4.0471 + 0.1667)

= 399.6019 m/s

The contact surface moves at the same velocity as that of the air behind the nor-
mal shock.

The static temperature behind the shock is determined from Eq. (5.37):

-1
n=Dp 40471

— +1
T; +1
L _ (n ) Py - = 1.6083
h 1+ (y1 — l)ﬂ 1+ 1
(y1+ 1) p, 6(4.0471)
Alternatively, since the Mach number behind the shock is M; = = 1.9005, the

ratio of static temperatures across the shock can be determined from Eg. (4.11).
Hence,
T, = 1.6083(303) = 487.3149K

For the expansion flow, the region between Zones 3 and 4 in Figure 5.14,
—& (74"1)/74
T (Ya=1)/vs . 0.2857
L_ (!’_3) O _ I p _ <__4 0471) — 0.5944
T4 Da & 25
P

Hence,
T; = 0.5944(303) = 180.1032 K
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(f) The wave at the front of the system of expansion waves moves at the velocity of
sound with respect to the air ahead of it. Since V; = Oand a4 = a; (because T, = T,
and y4 = v;), the velocity of the front wave is equal to a; = 348.9203 m/s.

At the taii of the expansion-wave system,

a3 = Vy3RsTy = V/(1.4)(287)(180.1032) = 269.0083 m/s

The absolute velocity of the last wave is a; — V3 = 269.0083 — 399.6019 =
—130.5936 m/s. (The negative sign indicates that the wave is moving rightward.)

An x-t diagram showing the location of normal shock, contact surface, and ex-
pansion waves as a function of time is given in Figure 5.20.

In a shock tube, it is often desirable to be able to subject a test object to uniform
conditions of high pressure and temperature for as long a period of time as possible.
Uniform conditions prevail behind the initial shock until the passage of either the
contact surface, the shock reflected from the closed end of the tube, or the front of the
expansion waves reflected from the opposite end. Figure 5.21 depicts the location of
each of these waves as a function of time from rupture of the diaphragm for a typical
shock-tube system. For the system shown, the position at which the test object should
be placed in order to subject it to uniform conditions for a maximum time interval is
indicated in Figure 5.21. The test object is exposed to the pressure and temperature
behind the imitial shock for a period 1,,,, from passage of the initial wave to passage

Expansion Wave
(tail)

rd
4

'
7

7
) »7 Contact Surface
Expansion Wave N\ X\’ o 7
(front) NAVLH | ,

\ Ry - Normal Shock

&——— Low-Pressure
Side

High-Pressure
Side

Diaphragm
Figure 5.20 Shock Tube x—t Diagram
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High-Pressure o——1— Low-Pressure
Side Side
Diaphragm
} Expansion Wave
(Reflected) Normal Shock
. (Reflected)
Time, ¢

Contact Surface

Expansion Wave Normal Shock

(Front)

‘Wave Position, x

Figure 5.21 x—t Diagram of Wave Motion within a Shock Tube

over the object of the contact surface. The test time is clearly a function of the shock-
tube length, as well as of the shock and expansion velocities. An object can be tested
under uniform conditions for periods up to several milliseconds in a shock tube, which
is sufficient in many cases to make meaningful measurements on a test object.

5.5 SUMMARY

In this chapter, the case of moving normal shockwaves has been considered in some
detail. The governing equations were developed in both stationary (attached to the
earth) and moving (attached to the moving wave) coordinate systems. Numerous illus-
trations of the transformation between the two coordinate systems were provided.
These illustrations €owed a clear picture to emerge of the distinction between stagna-
tion and static fluid properties. Finally, the simple, but very useful, test device the shock
tube was analyzed. This analysis was accompanied by the introduction of expansion
waves and the contact discontinuity. Both will be studied in greater depth in subse-
quent chapters.
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5.7 PROBLEMS

51

5.2

53

54

5.5

A projectile moves down a gun barrel with a velocity of 500 m/s. (See Figure P5.1.) Calcu-
late the velocity of the normal shock that would precede the projectile. Assume the pres-
sure in the undisturbed air (y = 1.4, R = 287 J/kg - K) to be 101 kPa and the temperature
to be 25°C. How fast would the projectile have to be moving in order for the shock veloc-
ity to be two times the projectile velocity?

Projectile

Air,V =20

Figure P5.1

A normal shock moves into still air (y = 1.4, R = 287 J/kg - K) with a velocity of 1,000
m/s. The motionless air is at 101 kPa and 20°C. Calculate the following:

(a) the velocity of the air flow behind the wave,
(b) the static pressure behind the wave, and
(c) the stagnation temperature behind the wave.

A normal shock is observed to move through a constant-area tube into air (y = 1.4,
R = 287 J/kg-K) at rest at 25°C. (See Figure P5.3.) The velocity of the air behind the
wave is measured to be 150 m/s. Calculate the shock velocity.

S Air at rest
V=150m/s ~——> at 25°C

Figure P5.3

A piston in a tube is suddenly accelerated to a velocity of 25 m/s, causing a normal shock
to move into helium (y = 5/3, R = 2,077 J/kg-K) at rest in the tube and at a temperature
of 27°C in the tube. One second later, the piston is suddenly accelerated from 25 to 50 m/s,
causing a second shock to move down the tube. How much time will elapse from the initial
acceleration of the piston to the intersection of the two shocks?

Air (y = 1.4, R = 287 J/kg-K) at 100 kPa and 290 K is flowing in a constant-area tube
with a velocity of 100 mys. (See Figure P5.5.) Suddenly, the end of the tube is closed, which
causes a normal shock to propagate back through the airstream. Find the absolute velocity
of this shock.

V = 100 m/s S

e R

Figure P5.5
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5.6

5.7

5.8

5.9

Chapter 5 Moving Normal Shockwaves

A normal shock traveling at 1,000 mv/s into still air (y = 1.4, R = 287 J/kg-K) at 0°C and
101 kPa reflects from a plane wall. Determine the velocity of the reflected shock. Compare
the pressure ratio across the reflected shock with that across the incident shock. Find the stag-
nation pressure that would be measured by a stationary observer behind the reflected wave.

Under a certain operating condition, the piston speed in an auto engine is 10 m/s. We will
approximate engine knock as the occurrence of a normal shockwave traveling at 1,000 m/s
downward, as shown in Figure P5.7, into the unburned mixture at 700 kPa and 500 K. De-
termine the pressure acting on the piston face after the shock reflects from it. Assume that
the gas has the properties of air (R = 287 J/kg - K) and acts as a perfect gas, with y = 1.4.

I I L

700 kPa
500 K

Incident Shock Reflected Shock

Figure P5.7

A normal shock moves down a tube with a velocity of 600 m/s into a gas with a static pres-
sure of p = 50kPa and a static temperature of 300 K. At the end of the tube, a piston is
moving with a velocity of 60 m/s, as shown in Figure P5.8. Calculate the velocity of the re-
flected wave and the static pressure behind the reflected wave. Assume that the gas has
the properties of air (y = 1.4, R = 287 J/kg - K).

p = S0kPa
T=30K
Incident Normal Shock Reflected Normal Shock
Figure P5.8

For both y = 7/5 and 5/3, determine the limits of the static-pressure ratio of a reflected
normal shock (i.e., ps/p,) (a) for a strong incident shock (i.e., p/p; — ©0) and (b) for a
weak incident wave (i.e., p,/p; — 1).

5.10 A shock tube is to be used to subject an object to momentary conditions of high pressure

and temperature. To provide an adequate measuring time, the tube is to be made long
enough so that a period of 100 ms is provided between the time of passage over the body
of the initial shock and the time of passage of the shock reflected from the closed end of
the tube. The initial pressure ratio across the diaphragm is 400 to 1, with the object located
3 m from the diaphragm. The initial temperature of the air (y = 1.4, R = 287 J/kg+K) in
the shock tube is 35°C. Determine a suitable length for the low-pressure end of the tube.
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5.11 Air (y = 1.4, R = 287 J/kg - K) is stored in a tube at 200 kPa and 300 K. (See Figure P5.11.)
A diaphragm at the end of the tube separates the high-pressure air and the ambient air,
which has a pressure of 101 kPa. The diaphragm is suddenly ruptured, which causes ex-
pansion waves to move down the duct. Determine both the time required for the first ex-
pansion wave to reach the closed end of the tube and the velocity of the air behind the
expansion waves.

.

|
<

200 kPa
300K

Figure P5.11

5.12 Write a computer program that will yield values of the diaphragm-pressure ratio for given
values of the shock-pressure ratio for a shock tube with helium (y = 5/3) at the same tem-
perature on both sides of the diaphragm. Determine values of diaphragm-pressure ratios
for shock-pressure ratios from 1.0 to 5.0, using increments of 0.2.

5.13 A circular tube of length 1.5 m is evacuated to a pressure of 2.5 kPa, with the ambient
pressure at 101 kPa. A diaphragm at the end of the tube is ruptured, which causes a normal
shock to move down the tube. Determine the velocity of the initial shock that moves down
the tube, the velocity and Mach number of the air (y = 1.4, R = 287 J/kg - K) behind the
shock, and the velocity of the shock that reflects from the closed end. The initial air tem-
perature before diaphragm rupture is 300 K. A test object is located midway along the
tube. Determine the time that this object is subjected to the pressure and temperature
conditions behind the initial shock (before the arrival of the reflected shock). Find the sta-
tic pressure and temperature behind the initial shock.

5.14 The pressure ratio across the diaphragm in a shock tube is set at 10. The diaphragm is
then ruptured. Determine the velocity of the initial normal shock, the Mach number of
the gas behind the shock, and the static pressure and temperature behind the shock
for air (y = 1.4, R = 287 J/kg-K) as the working fluid and for helium (y = 5/3,
R = 2,077 J/kg - K) as the working fluid. Assume the initial temperatures on each side of
the diaphragm to be 25°C and the initial pressure in the low-pressure end to be 25 kPa.

515 A normal shock moves down an open-ended tube with a velocity of 1,000 m/s. (See
Figure P5.15.) The ambient pressure and temperature are 101 kPa and 25°C, respectively.
Determine the velocities of the first and last expansion waves that move down the tube
after reflection of the shock from the open end.

] Ambient
S AIr

L L
Incident Normal Shock on the Open Reflected Expansion Waves
End of a Tube

Figure P5.15
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5.16 A shock tube is 10 m long, with a 30-cm diameter. The high-pressure section is 4 m long and
contains air (y = 1.4, R = 287 J/kg-K) at 200 kPa; the low-pressure section is 6 m long
and contains air at 5 kPa. A test object is placed in the low-pressure section 3 m from the di-
aphragm. Both sections initially contain air at 25°C. The diaphragm is suddenly ruptured,
which causes a shock to move into the low-pressure section. Determine the following:

(a) the shock velocity,

(b) the contact-surface velocity,

(c) the Mach number of air behind the shock,

(d) the time between passage of the normal shock and the contact surface over the test
object, and

(e) the time between passage of the normal shock and the reflected shock over the test
object.

(f) Provide an x—t diagram showing the location of the initial shock, the reflected shock,
and the contact surface as a function of time.



Chapter 6

Oblique Shockwaves

6.1 INTRODUCTION

In Chapter 4, the stationary normal shockwave, a compression discontinuity normal to
the flow direction, was studied in some detail. However, in a wide variety of physical
situations, a compression shockwave occurs that is inclined at an angle to the flow. Such
a wave is called an oblique shock.

An oblique shockwave, either straight or curved, can occur in such varied exam-
ples as supersonic flow over a thin airfoil, as explained in Chapter 2, or in supersonic
flow through an overexpanded nozzle, as mentioned in Chapter 4. The frequency of
occurrence of such oblique waves makes the material presented in this chapter es-
sential to an understanding of compressible supersonic flow.

A study of the multidimensional oblique shockwave represents a departure from
the one-dimensional flow covered previously, yet, in many ways, the method of han-
dling the oblique shock parallels that of handling the normal shock. Even though inclined
to the flow direction, the oblique shock still represents a sudden, almost discontinuous
change in fluid properties, with the shock process itself being adiabatic. In this chapter,
attention will be focused on the two-dimensional straight oblique shockwave, a type that
might occur because of the presence of a wedge in a supersonic stream [see Figure 6.1(a)]
or during a supersonic compression in a corner [see Figure 6.1(b)]. Note that in either case
the surface is directed into the flow.

As with the normal shockwave, the conservation equations of mass, momentum,
and energy will first be derived. An additional variable is introduced because of the
change in flow direction across the wave. However, momentum is a vector quantity, so
two momentum equations are derivable for this two-dimensional flow. With the addi-
tional variable and equation, the analysis of two-dimensional shock flow is more com-
plex than that for normal shock flow. However, as with the normal shockwave,
solutions to the equations of motion will be presented in a form suitable for the work-
ing of practical engineering problems. Moreover, utilization of the spreadsheet compu-
tation can remove tedious calculations and the reliance on graphical methodology that
generally accompany work with oblique shocks.

189
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(a) A Symmetrical Wedge (b) A Concave Corner

Figure 6.1 Geometries Involving Straight Oblique Shocks

6.2 EQUATIONS OF MOTION FOR A STRAIGHT OBLIQUE SHOCKWAVE

When a uniform supersonic stream is forced to undergo a finite change in direction
due to the presence of a body in the flow, the stream cannot adjust gradually to the
presence of the body; rather, a shockwave or sudden change in flow properties must
occur, as described in Chapter 2.

A simple case is that of supersonic flow about a two-dimensional wedge whose
axis is aligned parallel to the flow direction. For small wedge angles, designated by A,
the flow is turned by means of an oblique shockwave attached to the apex of the wedge
and inclined at an angle 6 to the flow direction. 8 is called the shockwave angle. Flow
behind the shock is uniform, parallel to the wedge surface (as shown in Figure 6.2),
with the entire flow having been turned through the wedge half-angle. Since the flow is
turned or deflected through the angle 8, it is also referred to as the deflection angle. In
this simple case, it is seen that 6 = A. It must be kept in mind that 8 is the amount of
turn the flow makes relative to the upstream flow angle () and that 6 is measured rel-
ative to this flow direction. (See Figure 6.3.)

It should be noted that there is no standard notation for the shockwave and de-
flection angles. Reference to a variety of texts reveals that the shockwave angle has
been given numerous symbols. Usually, the deflection angle is designated by the sym-
bol §; however, 8 has also been used. Thus, when referring to other texts, it is imperative
to make certain of the notation being used.

Before proceeding with the analysis of the flow through an oblique shockwave,
it is important to assume a sign convention for the angles involved in the problems.
Towards that end, the counterclockwise (CCW) direction will be taken as the positive
angular direction and the clockwise direction (CW) as the negative angular direction.

The equations of continuity, momentum, and energy will now be written for uni-
form, supersonic flow turned through a given deflection. If one selects the control volume
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a, (downstream
_____ —- flow angle)

y Vi

o

a; (upstream
flow angle)

Figure 6.2 Notation and Control Volume for an Oblique Shock

upstream flow angle

@ shockwave angle

a, downstream flow angle

Figure 6.3 Relationship between Flow Directions and the Deflection and
Shockwave Angles

drawn around a portion of the shockwave as indicated in Figure 6.2, the continuity equa-
tion for steady flow is

//pv-dA =0 (1.28)

For the control volume under study, this expression simplifies to

PV = P2V (6.1)

where V,; and V), are the velocity components normal to the wave on the upstream and
downstream sides of the shock, respectively. The momentum equation for steady flow is

SF = //V(pV-dA) (1.32)
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Momentum is a vector quantity, so momentum balance equations can be written both
in the direction normal to the wave and in the direction tangential to the wave. The
normal momentum equation yields

PiAL — pAy = pAVi — pAVE
The shock is very thin so that A; = A,. Thus, the areas drop out, leaving

p— P = eV — plVh (6.2)

In the tangential direction there is no change in pressure; thus, there are no ex-
ternal forces acting on the control volume, and so the flux of tangential momentum

must sum to zero:
// Vi(pV-dA) =0
C.S.

This expression can be rewritten as
Va(p1A41Va) = Va(p2AaVie) = 0

where V}; and V), are the velocity components tangential to the wave. Canceling the

mass-flow rate, we obtain
Vi =W (6-3)

Because the tangential component is the same on both sides of the shock, there is no
momentum transfer along the shock front, and consequently there is no need to apply
subscripts 1 and 2 to the tangential velocity components.

The energy equation for adiabatic steady flow simplifies to

Vi 4
hy + —=hy + —
S )
Expanding this equation, we obtain
h+v3,1+v,2: +V§,2+V,2
! 2 2 2
Canceling the tangential velocity component gives
& &
h, +—2—‘:h2+ 22 (6.4)

Equations (6.1), (6.2), and (6.4) can be written as

(pZVnZ - pIVn]) =0
(p2+ paVi) — (p2+ piVa) =0 (6.5)

1% V2
(h2 + 2"2) - <h1 + 2’”) =0

and
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which are the jump conditions across an oblique shockwave. Comparing this set of con-
ditions to the jump conditions across a normal shockwave [see Eq. (4.4)], we observe
that the only difference between the two is that the normal velocity component ap-
pears in the oblique shock equations where the absolute velocity appeared in the normal
shock equations. From a physical standpoint, this observation means that an oblique
shock acts as a normal shock for the component normal to the wave, while the tangen-
tial velocity component remains unchanged. From an analytical standpoint, the results
from the normal shock analysis may be used by appropriately modifying normal
shockwave expressions, which can save a considerable amount of effort. Towards that
end, from the geometry of the flow, we have (see Figure 6.4)

V., =Vicos 8 (6.6a)
Viu = Vysiné (6.6b)
V, = V,cos(0 — 8) (6.7a)
Vo = V5 sin(6 — §) (6.7b)

We can form the following equations from these various Mach number relations:

M, = aK; = 4 Z(:S 6 = M, cos (6.8a)
M, = M,sin8 (6.8b)
M, = M,cos(6 — &) (6.9a)
M,, = M,sin(f — 8) (6.9b)

The expressions for the pressure ratio, temperature ratio, and so on, across an oblique
shock are simply obtained by replacing M; in the corresponding normal shock relations

Downstream flow ang]e:
ay = A

(6-9)

Upstream flow angle: Vi
a) = 0

Figure 6.4 Oblique Shock Geometry
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with M, sin 6 and by replacing M, with M, sin(§ — &). Thus, the working relations for an
oblique shock are

P2 _ 2yMisinf9  y -1

3 o o (6.10)
pr VYV Wsing (v + 1)M? sin® 6 (611)
p1 Vi Vasin(0 — 8) (y — 1)Misin’0 + 2 '
-1 2
) (1 + XM sinz(a)(——I—M% sin? 6 — 1)
Q—(”) - 2 r- ! (6.12
Tl B al B (,y + 1)2 M2 } 29 - )
— sin
2ty -7
tad Misite 170D 1(y-1)
Po2 _awn| 2 !
P IS 2y y—1
Po1 14+___Msin’0 _ MP?sinfe—_
2 y+1 y+1
(6.13)
T,
T—f =1 (6.14)

Example 6.1. Obtaining Prandt{l’s relation for an oblique shock by transforming the relation
for a normal shock

Derive Prandtl’s relation for an oblique shockwave by making use of the expression al-
ready developed in Chapter 4, Eq. (4.20), for a stationary normal shockwave.

Solution

The classical development of Prandtl’s relation was performed for a stationary normal
shockwave in Chapter 4. The result obtained connects the velocities on either side of the
shock to the speed of sound at stagnation conditions:

2
ViV, = ﬁaf, (4.20)
To develop the relation for an oblique shockwave, we could pursue the traditional ap-
proach (see Problem 6.17), in which we write the energy equation at locations both ahead
of and behind the shock, solve for the pressure on both sides, and incorporate the results
with the momentum equation. Finally, by using the continuity equation, we obtain the re-
lationship. Alternatively, however, we may take advantage of the relationship between
normal shocks and oblique shocks and simply rewrite Prandtl’s expression. We now make
the following replacements (indicated by the — symbol) in Eq. (4.20):

V]—> nl

Vo=V,
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. V2
2 1
a, = yRT, = (y - l)ho =(y — l)(hl + ) )

V% : sz]
(v - 1)(’!1 + —2“)—’(7 - 1)("1 5 )
Vi Vi, Vi Vi
(7—1)(h1+ > )=(7-1)<h1+7+—2——7)
vi

=(7—1)<ho—¥>=a§—(7—1)—2—

2 2_(7—1)V2

a, — a, ) I

Replacing all the parameters in Eq. (4.20) with their oblique shock counterparts gives

2 y—l)
ViV = 2= =i
nt¥n2 ’)’+1a0 ('}""1 t

It must be kept in mind that transformations of relationships from normal to
oblique shocks will affect velocities, Mach numbers, and stagnation values. Transforma-
tions do not affect static property values. Accordingly, for example, the Rankine-Hugoniot
relation, which connects the static pressure ratio to the density ratio across an oblique
shock, is exactly the same as for the normal shock:

(Lil)ﬂz__l

P _\y—-1/p

Pi (Y+1>_Bg
y—1 P1

The Mach number downstream of the shock, M,, can be obtained by employing
the following strategy:

- (5 (I - (IO s

(4.16a)

However,

2 _ 2 2_/Yﬁ22 2_3122.2 2 2
VZ—V,,2+V,—\ Vig + Vi = Visin“6 + V{cos“ 8

an P2
Thus,
V2 2
—% = (Bl) sin? 6 + cos’ 6 (6.16)
V] P2



196 Chapter 6 Oblique Shockwaves

Now insert Eq. (6.16) into Eq. (6.15) and make use of Egs. (6.11) and (6.12) to
find, after some algebraic effort, that

Y — 1 2
+
) ! M; M3 cos? 6
M3 = + (6.17)

-1 -1
yM3sin® g — v ) Y 5 M?sin’ 6

1+

Normal shock theory requires that M; = 1 and M, =< 1in order not to violate the
second Jaw of thermodynamics. For the oblique shock, these conditions apply only to
the velocity component normal to the shock. Therefore, M;sin = 1 and M, sin
(6 — 8) = 1. Because sin 6 is less then or equal to unity, the first relation indicates that
M, must be supersonic; further, the relation on the upstream side of the shock provides
a range of possible shock angles: 6,,;, = sin_}(1/M;), which is the relation for a Mach
wave [see Eq. (2.19)], whereas 6,,,, = sin (1) = 7 (i.e., the normal shock). According-
ly, the range of values over which the shock angle may vary is given by

sin“1<i> <g=<Z
M, 2

So, for example, if M; = 2.0, all shock angles must lie in the range from 30° to 90°.

On the other hand, the Mach number downstream of the oblique shock, M;, need
not be subsonic, as it must be for the normal shock, because the downstream relation
requires that the product of M, and sin(# — &) be smaller than unity. This enables M,
to be greater than, equal to, or less than unity.

We can determine an expression that connects the deflection angle § (= a; — ay)
to the upstream Mach number M; and the shock angle 0 by taking the ratio of Eqgs. (6.6a)
and (6.6b) to obtain

2~ tan @

v
Similarly, from Eqgs. (6.7a) and (6.7b), we get

tand — tan
1 +tanftan d

Yo _ ance — 5) =
Vr—an( ) =

Eliminate V, between these two expressions and make use of the density relation of
Eq. (6.11) to find that

Misin?6 — 1
tan 8 = cot @ 1 L2 (6.18)
LZ—M% ~ (M2sin?6 — 1)

For a normal shockwave, which is actually a special case of an oblique shock in
which the shock angle is always 7/2, only one independent parameter (generally, M) is
needed to determine the other shock parameters (the downstream Mach number, the
pressure ratio, the temperature ratio, and so forth). Examination of the equations for
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the oblique shock reveals that two independent parameters are required to fully de-
scribe the conditions on either side of the front. In the preceding expressions, M, and
the shock angle 6 are used to determine the various parameters; that is, for any para-
meter (pressure ratio, temperature ratio, etc.) ¢ = f(M,, 0). It is not much more diffi-
cult to develop working relations for oblique shocks in terms of the deflection angle
and the shock angle—that is, & = f(8, 6). [See Refs. (6.1) and (6.2).] In most cases, the
shock angle is not known, but rather M; and & appear as the independent variables.
Therefore, it is more advantageous to be able to express the working relations as
& = f(M,, 8). Unfortunately, development of an explicit set of oblique shock relations
of this form is not possible.

A procedure that was presented in Ref. (6.3) can, however, be used to numeri-
cally extract the shock angle from Eq. (6.18), which will enable the other parameters to
be determined in turn. To utilize this procedure, which we will call Collar’s method, first
rewrite Eq. (6.18) as the cubic equation

f(x)=x>+Cx?- Ax + (B— AC) =0 (6.19)

where x = cot§, A = M — 1,B = [(y + 1)/2]M{tan 8, and C = {1 + [(y + 1)/2]
M?}tan 8.

In deriving Eq. (6.19), it should be mentioned that the identity sin® 8 = 1/(1 + x?)
was used. The validity of Eq. (6.19) can be substantiated by substituting x, A4, B, and C
into Eq. (6.19) and rearranging it to obtain Eq. (6.18).

Because Eq. (6.19) is a third-order equation, it will have three roots, or zeros. If
we were to plot f{x), with the coefficients A, B, and C determined from the given values
of v, 8, and M;, it would cross the x-axis three times. Each crossing is a root of the
equation. Note that A, B, C,and (B — AC) are positive for all values of M, and 8. Ac-
cording to Descartes’s Rule of Signs, since the coefficients in Eq. (6.19) change sign
twice, the equation has two positive roots and one negative root. The largest root can
be found from a simple successive approximation method, which can be developed by
rewriting Eq. (6.19) as

(x+C)- A(x+C)+B=0

This expression can be rearranged to produce an iterative algorithm:

B
X411 = \/A - m (6.20)

Now, for a starting value of x (i.e., xg), the right-hand side of Eq. (6.20) may be com-
puted to yield x;. This value is then used to determine x,. The process continues simi-
larly until the value used on the right, x,, yields virtually the same value as that on

the left, x,,,,. A good starting value for this rootis VA = VM? — 1.

The second positive root is obtained by root extraction. To accomplish this op-
eration, simply divide Eq. (6.19) by the term (x — x;), where x; is the root obtained
by the iterative procedure of Eq. (6.20). This division yields a quadratic equation for x.
In other words, we can rewrite Eq. (6.19) as

(x — x>+ (4 +O)x + (x; + Clx; — Al =0 (6.21)
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Solution of the quadratic portion of Eq. (6.21) yields the second root:

Xy = %[—(xl +C) + V(x; + C)(C — 3x)) + 44] (6.22)

Note that the negative root was discarded as not meaningful. The following example
demonstrates the iterative procedure.

Example 6.2. Use of Collar’s method to determine parameters behind an oblique shock

A uniform supersonic flow (y = 1.3) traveling horizontally (a; = 0) at Mach 2.0 passes
over a wedge with a half-angle of 9°. (See Figure 6.5.) An oblique shock is attached to the
wedge under these flow conditions. If the static pressure and temperature in the uniform
flow are, respectively, 20 kPa and —10°C, determine the shock angle, the static pressure, the
temperature behind the wave, and the Mach number of the flow passing over the wedge.

Solutien

We may incorporate Collar’s successive-approximation technique into a simple spread-
sheet program. The given information, along with the computed coefficients of Eq. (6.19),
are contained in Table 6.1. The results of the calculations within the program are provided
in Table 6.2.

Thus. the shockwave angle is 8 = cot™'(1.2885768) = 37.81°. The second root is
determined from Eq. (6.22), which yields 8 = cot™!(0.0869245) = 85.03°. With these
shock angles, Egs. (6.10), (6.11), (6.12), and (6.17) can be used to determine the values in
Table 6.3.

Figure 6.5 Configuration for Example 6.2
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TABLE 6.1 Parameters (Given and Computed) for Use in Collar’s Method of Example 6.2

v M, 8 A B C B-AC First Guess

1.3 2.0 9.0 3.0 2.914274 0.886953 0.253415 1.7320508

TABLE 6.2 Results of Calculations for Example 6.2

Iteration Xn X, 41
1 1.7320508 1.3737753
2 1.3737753 1.3080190
3 1.3080190 1.2931727
4 1.2931727 1.2896721
5 1.2896721 1.2888384
6 1.2888384 1.2886393
7 1.2886393 1.2885918
8 1.2885918 1.2885804
9 1.2885804 1.2885777
10 12885777 1.2885771
11 1.2885771 12885769
12 1.2885769 1.2885769

TABLE 6.3 Oblique Shock Results of Example 6.2

cot @ = 1.2885768 0 = 37.81° cot 8 = 0.0869245 0 = 85.03°

PP p2/p 2 M, pap p2/py LR M,

1.5692 1.4109 1.1122 1.7099 4.3574 2.8615 1.5228 0.5815

Thus, for the smaller root,
P2
Py = (;)—)pl = (1.5692)20 = 31.38 kPa
1
T
T, = T Ty = (1.1122)263 = 292.5K
1

Further discussion regarding this choice accompanies description of Figure 6.7.

199
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As already mentioned, the Mach number downstream of the oblique shockwave,
M,, can have a value greater than unity without violating the second law of thermody-
namics. However, the normal component of M, must be subsonic. To verify this condition,
we compute the following:

M., = Mysin(9 — 8) = (1.7099)sin(37.81 — 9) = 0.8240

It should be pointed out that the successive approximation method [i.e., Eq. (6.20)]
used in Collar’s method is not unique, and other methods may be created from Eq.
(6.19). Collar experimented with several others, but found that the procedure in
Eq. (6.20) worked the best. Alternatively, Newton’s method can be used to solve
Eq. (6.19). (See Problem 6.14.) You will find that Newton’s method requires
fewer iterations than Collar’s method. However, for spreadsheet computations,
this is not a significant advantage.

Historical Note: Arthur Rederick Collar (1908-1986), aeronautical engineer: After graduvating
from Cambridge in 1929, Dr. Collar worked in the aerodynamics department, National Physical Lab-
oratory, Teddington, and at the Royal Aircraft Establishment, Farnborough. His early papers involved
application of matrix methods to a variety of engineering problems. Along with R. A. Frazer and
W. J. Duncan, he co-authored Elementary Matrices and Some Applications to Dynamics and Differ-
ential Equations, Cambridge University Press, 1938 [7th (paperback) printing, 1963]. Later papers
reveal that he had a research interest in aeroelasticity. In 1946, he was appointed the first Sir George
White Professor of Aeronautical Engineering at Bristol University, where he remained for the rest of
his career. He served in the Vice Chancellor’s Office at Bristol for a period of three years. From
1936, Collar was also involved with the work of the Aeronautical Research Committee (later the
Aeronautical Research Council). He served in various capacities with the council and its subcom-
mittees until its abolition in 1980, holding the chairmanship from 1964-1968. He was elected a fel-
low of the Royal Society in 1965. See Ref. (6.4).

Detailed oblique-shock charts for y = 1.4 [for example, see Appendix D, Refs.
(6.5) and (6.6)] have traditionally been used along with normal-shockwave tables as the
basis for most oblique-shock computations. The use of Collar’s method in conjunction
with spreadsheet computation eliminates the need for these charts because this method
enables us to directly connect the deflection angle to the shock angle. Nevertheless, the
form of one oblique-shock chart will be examined as several important characteristics
of the solution to the oblique-shock equations emerge. In particular, we will consider
the plot of shock angle against deflection angle for given values of M, and .

From Eq. (6.18), at the minimum value of the shock angle [i.e., the angle of incli-
nation of a Mach wave, 6 = sin”!(1/M,)], we find that § = 0, so the flow at this angle is
not turned. [See Figure 6.6(a).] At the maximum value of the shock angle (i.e.,6 = 7/2),
Eq. (6.18) again reveals that the flow is not turned through an angle. [See Figure 6.6(b).]
At angles between these two extremes, the deflection is positive, which suggests that a
maximum value of § lies somewhere between the limiting values. To determine the
maximum value of the deflection angle that will allow a solution for given values of M,

and vy, rewrite Eq. (6.18) as
+1 M3
<7 ) ] -1 (6.23)
2 (Misin“6 — 1)

cotd = tan 6
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(a) Mach wave (b) Normal shock

Figure 6.6 Limiting Shock Angles at which the Deflection Is Zero

Differentiate Eq. (6.23) to obtain

d(cot §)
do

= sec? 9

(y+l> M3 —l}
2 J(Misin’6 — 1)

y+ 1\ —2M? sin 6 cos 0
+ tan 6 M] 3 - 3
2 (Misin“0 — 1)

Since we seek the maximum value of §, we set this expression equal to zero and re-
arrange the remaining expression to obtain the following quadratic equation:

+1 +1
2M3 — (Z———)M‘}Jsinz() - (1 + 2 5 M%) =0

(yM7?)sin* 6 + 5

Solution of this quadratic yields the value of 8 at 6,,,,, which we define as 6,,,,:

. 1 y + 1)
2 = 2 —
SIN” 004 ()’M%> ( y M1 -1

+ \ﬂy+l)[(7;1)M?+ (7;1)1\4%+1 (6.24)

From Eq. (6.24), the shock angle at this location can be determined and the result used
to find 8,,,, from Eq. (6.18). Table 6.4 contains a sampling of values of these angles that
were determined from a spreadsheet calculation of Egs. (6.24) and (6.18) for three val-
ues of y.

It is of interest to determine where on the 8-38 plot the downstream Mach number
is unity. This location divides the subsonic and supersonic solutions. To determine this
point, Eq. (6.17), with M, = 1, can be rearranged into a quadratic equation of the form

-3 +1
(yM¥)sin* 6 — KV . )M% + (%—-—)M‘{Jsinz 8-1=0
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TABLE 6.4 Maximum Deflection and Shock Angles for Various ¥ and M, Values

Omax Smax Omax Smax Omax Bmax

Y M, (deg)  (deg) Yy M (deg)  (deg) y My (deg) (deg)
13 10 90 0 14 10 90 0 1667 1.0 90 0

15 6686  12.89 15 6659 1211 15 6601 1043

20 6534 2473 20 6467 2297 20 6327 1934

25 658 3228 25 6478 298 25 6269  24.79

30 6656 37.07 30 6524 3407 30 6264 2814

35 6721 4022 35 6569 3687 35 6271 303

40 6774 4239 40 6606  38.77 40 6281 3176

45 6815  43.94 45 6635 4013 45 629 3279

50 6848 4508 50 6658 4112 50 6297 3354

10 6968 4893 10 6745 4443 10 633 3602

This quadratic can be readily solved to produce the value of 8 at M, = 1, which we de-
fine as O,

. 1 Y + 1) <3 - y)
2 2

n° Ogonic = M

S1 sonic < M%) ( A 1 4

1 — 3 9
+\/(y+1){——(712 )M;‘+——(78 )M§+————(71+6 )J (6.25)

Equation (6.25) can be used in a spreadsheet program to determine the values con-
tained in Table 6.5.

Comparison of the values contained in Tables 6.4 and 6.5 reveals that either
as M;—1 or as M; —large, O,onic = Omax and Sgopic = Oax. For other values of
M;, Ogonic < Omax and Sopic < Spax- Therefore, the location where the downstream
Mach number is unity does not coincide with the location of the maximum value of the
deflection angle. There is a smail region below the maximum deflection angle where
the downstream flow is subsonic.

For the given values of M; = 2 and y = 1.4, a plot of the oblique shock angle ver-
sus the deflection angle can be constructed as shown in Figure 6.7. To understand the
shape of the curve within this figure, begin at the point where § = sin_l(%) = 30° and
8 = 0 (the Mach wave limit). As we have seen, at this point, M, = M; = 2. Increasing 6
above 30° results in § increasing and M, decreasing, but remaining supersonic. Eventually, the
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TABLE 6.5 Deflection and Shock Angles Required to Produce M, = 1 for Various y and M, Values

esonic asonic esonic 850nic Osonic 6sonic
Y M, (deg)  (deg) y M, (deg) (deg) Y M,  (deg) (deg)
1.3 1.0 90 0 1.4 10 90 0 1.667 1.0 90 0
1.5 62.52 12.45 1.5 62.26 11.69 1.5 61.69 10.07
2.0 62.21 24.45 2.0 61.49 221 2.0 60 19.11
2.5 63.76 32.15 2.5 62.65 29.67 2.5 60.42 24.67
3.0 65.16 37 3.0 63.77 34.01 3.0 61.02 28.08
35 66.22 40.19 3.5 64.62 36.83 3.5 61.51 30.27
4.0 67 42.37 4.0 65.26 38.75 4.0 61.89 31.74
4.5 67.58 43.93 45 65.73 40.11 4.5 62.17 32.78
5.0 68.02 45.07 5.0 66.08 41.11 5.0 62.39 33.53
10 69.57 48.93 10 67.34 44.43 10 63.15 36.02
0
strong shock
/ solution — — -
90° @ —— —.—— -
; T~ ~
) \\
Oy = 64.67° :L
Oonic = 61.49° [-===————~- e B ‘
5 i
30° 4 . '
1 |
i :
i weak shock :
. solution '
! 1
1
: i
' i
1 |
! i
X N
| I
1 5 5
Seonic = 22.71° Sinax = 22.97°

Figure 6.7 Shock Angle versus Deflection Angle for M; = 2andy = 1.4
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increase in @ results in the downstream Mach number becoming sonic (i.e., M, = 1).This
occurs at the location where 6., = 61.49° and &, = 22.71°. For values of 6 beyond
Osonics M, 1s subsonic. A slight increase in 6 beyond 6,,,,;. brings us to the point of maxi-
mum deflection at the location where 6,,,,, = 64.67° and 8,,,, = 22.97°. By continuously
increasing 6 beyond 6,,,,, we find that the normal shock limit will be reached at the point
where # = 90°and 6 = 0.

Because of the shape of the curve, as may be seen in Figure 6.7, for values of
M, v, and 6, either two, one, or no attached oblique shock solutions are possible. If a
solution exists, there may be a weak oblique shock, with M, either supersonic or slightly
less than unity, or a strong shock, with M, subsonic. For the strong shock, the wave
makes a large angle 6 (close to 90°) with the approach flow; for the weak shock, the
angle is much smaller. (See Figure 6.8.) The supersonic flow is turned through the same
angle in both cases, yet the characteristics of the oblique shocks are quite different. The
weak shock is accompanied, for example, by a relatively small pressure ratio, and the
strong shock by a large pressure ratio.

Since the characteristics of the strong and weak oblique shocks are so different, it
1s essential to have an understanding of which solution will occur in a given flow situa-
tion. It is instructive at this point to refer back to a similar discussion about the possi-
bility of occurrence of a normal shock. It was shown in Chapter 4 that the normal
shock equations are satisfied by the trivial solution M, = M, [refer to the development
of Eq. (4.9)], which corresponds to isentropic flow. This condition prompts the question,
What determines whether isentropic flow or a normal shock will occur in a supersonic

strong oblique shock
(larger shock angle) weak oblique shock
(smaller shock angle)

Gslrong

Figure 6.8 Strong versus Weak Oblique Shocks
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flow? The answer, at least for flow through converging-diverging nozzles, was present-
ed in Section 4.4: For low-enough back pressures, isentropic flow occurs in the nozzle;
for higher back pressures, a normal shock takes place in the diverging section of the
nozzle. Thus, for supersonic flow in varying area channels, it is the pressure boundary
conditions imposed on the channel that determine the type of solution.

The normal shock represents the limiting case of a strong oblique shock (& = 0),
whereas the limiting case of a weak oblique shock (6 = 0) is isentropic flow. Therefore,
the result presented for the normal wave can be generalized to the oblique shock. The
strong oblique shock occurs when a large back pressure is imposed on a supersonic
flow, as might possibly take place during flow through a duct or inlet. When a wedge or
airfoil travels through the atmosphere at supersonic velocities with an oblique shock
attached to the body, however, only the weak shock solution is found to occur, since in
this physical situation, with a uniform pressure after the shock, large pressure differ-
ences cannot be supported.

Another characteristic of the oblique-shock equations is that, for a great-enough
turning angle 8, no solution is possible. Under these conditions, it is observed that the
shock is no longer attached to the wedge, but stands detached, in front of the body. (See
Figure 6.9.) The detached shock is curved, as shown in the figure, with the shock
strength diminishing progressively from that of a normal shock at the apex of the
wedge to that of a Mach wave far from the body. Thus, with a detached shock, the en-
tire range of oblique-shock solutions is obtained for the given Mach number M;. The
shape of the wave and the shock-detachment distance are dependent on the Mach
number and the body shape. Flow over the body is subsonic in the vicinity of the wedge
apex, where the strong oblique shocks occur, and it is supersonic farther back along the
wedge, where the weak oblique shocks are present.

A detached oblique shock can also occur with supersonic flow in a concave cor-
ner. Again, if the turning angle is too great, an oblique-shock solution cannot be found,

Detached shock

M,

Figure 6.9 A Detached Shock from a
Wedge



206 Chapter 6 Oblique Shockwaves

Detached shock

Figure 6.10 Detached Flow in a Corner

so a detached shock forms ahead of the corner. (See Figure 6.10.) The characteristics of
this shock are exactly the same as those of the upper half of the detached shock shown
in Figure 6.9.This can be seen if one replaces the center streamline of Figure 6.9 with a
plane wall. (The boundary conditions of the flow are not altered, since there can be no
flow across a streamline.) Thus, flow after the shock is subsonic near the wall and su-
personic farther out in the flow.

Example 6.3. Determination of the minimum value of M, to keep shock attached

Develop a method to determine the minimum upstream Mach number that is required if
the shock is to remain attached.

Solution

We have seen that an oblique shock will detach itself from a wedge or concave corner if
the upstream supersonic flow has to be turned through too large of an angle (i.e.,6 > 8,,,)
for a given M; and y. Alternatively, a shock can become detached if M; is too small for a
given & and . The distinction between the problem under consideration here and that pre-
viously analyzed is illustrated in Figure 6.11.

8 (given)

[MI] min Ml
(find) (given)

Figure 6.11 Relation between
Omax and (M) min Problems
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The analysis begins as follows from Eq. (6.18):

(6=t 9[(7+ 1) Mi 1} (623
CcO = {an - .
2/ (M?isin’6 - 1) )

Considerable rearrangement yields

| y+ l) 1
YRR ( 2 )T+ (cot8)(cot 6) (6:26)

Keeping in mind that § is given and therefore may be treated as a constant, we may differ-
entiate Eq. (6.26) to obtain

Ga)

ae

+1 1

)cot ) ;=
sin“ 8(1 + cot & cot 6)

=2sinfcosh — (Y

Expanding and rearranging produces

, +1
£(8) = (sin 28)sin 28 + sin 20 + <°°S223)sin 40 - (7 )sin 26=0  (627)

We must find the shock angle that satisfies Eq. (6.27) and then use it to compute (M) yip.
In the problem in which M; was given and &,,,, was to be found, this was accomplished by
first finding an analytical expression for the shock angle and then using Eq. (6.23). For this
problem, however, no explicit analytical solution for the shock angle can be found. On the
other hand, it is not very difficult to find the solution numerically using spreadsheet calcu-
lations; we may use Newton’s method to do so. This task requires that we possess the de-
rivative of Eq. (6.27), which is easily found to be

d
;{;— = f' = 2(2sin28sin 20 + 1)cos 26 + 2 cos 28 cos 46

The shock angle we seek is found from the iterative algorithm

f(gold)
f'(61a)

One problem with obtaining the solution to Eq. (6.27) via this approach is that because it
involves sines and cosines, the function can cross the #-axis at a number of values. To avoid
running into trouble, we require a good starting value for the initial guess. This can be ac-
complished very easily by simply substituting values into f(#) [i.e., into Eq. (6.27)] and lo-
cating where it changes sign, which indicates a potential root.

As a concrete example, suppose 6 = 20° and y = 1.4. The first step would be to
input f(6) into a spreadsheet program and systematically increase 6 to determine where
the root we seek might lie. These computations produce the results shown in Table 6.6.

It is seen that f(6) changes sign for a shock angle somewhere between 60° and 70°.
Thus, using 60° as the initial guess, we find that the computations yield a solution in just a
few tries, as may be seen in Table 6.7.

gnew = Bold -
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TABLE 6.6 Method to Approximately Determine the Root of Eq. (6.27)

9 (deg) 20 30 40 50 60 70 80 90

f(6) 0.5142 0.9085  0.9679  0.7059 02451  -0.2402 -0.6003 -0.7713

TABLE 6.7 Spreadsheet Calculations to Determine the Root of Eq. (6.27)

Iteration 6 (deg) f(6) dfrde Onew M,
1 60.0 0.24506 —2.87939 64.87643 1.840049
2 64.87643 0.00078 —2.82208 64.89229 1.840049
3 64.89229 0.00000 —2.82152 64.89229 1.840049

Note that with the shock angle of 64.892° and a deflection angle of 20°, Eq. (6.26) was used
to compute the minimum upstream Mach number for which the shock remains attached.
Thus, for a wedge angle of 20°, v = 1.4, and M, < 1.84, an oblique shock is detached from
the body. For the same deflection angle, but y = 1.3, (M; ), is readily found to be 1.775,
whereas fory = 5/3, (M) min 1s 2.048.

Example 6.4. Oblique-shock relations for M; —

Develop working relations across an oblique shock for situations in which M; >> 1.

Solution

Cases where the upstream Mach number is large are important—for example, in hyper-
sonic flows. This exercise is a companion to Example 4.1,in which we found limiting forms
of the relations for normal shocks. Therefore, we may utilize the results of that example by
replacing the upstream Mach number M; with M sin 6 to obtain

2
L —Z“M%sinze
o ytl1
& an . (’)’+1)

P Vo (y—1)

T; 2 -1

2= —y—(y———z—)M% sin’ @
On the other hand, the limiting form of the Mach number downstream of the oblique
shock, M,, is obtained by analyzing

Y~ 1 2
1+
M? cos? 6
M3 = 2 + s (6.17)

1
yM3sin 9 — 1+ M?sin® @
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As M, — oo, this expression reduces to

o= 2 2 Al 2

27 2ysin?e (y - 1)sin’8 (v — 1) 2y(y — 1)sin6 (y—1)
Unlike M, for the normal shock, which reduces to a particular value that depends only on
v, the limiting form of M, for the oblique shock also depends on the shock angle. The rela-
tion between the shock angle and the deflection angle for a flow with an infinite upstream
Mach number can be determined as follows:

M?sin?6 - 1
tané = cot 6 (6.18)

1
72 M? — (M3sin?0 — 1)

Now, as M, — 00, this expression becomes

cos 0 2sin’ @ _ sin26
sinf (y +1) — 2sin’6 vy + cos 20

tan 8 = (6.28)

The largest deflection angle for this limiting Mach number can be found by differentiating
the foregoing equation, setting the result to zero, and then solving for 6. (See Problem
6.18.) Alternatively, we may find the limit value from Eq. (6.24), which, for an infinite M|,

yields
- 3 y+1> (y+l)_<‘y+l>
= + =
I Bonax ( 4y 4y 2y
Thus,
+1
0. =sinl /Y o (6.29)

For v = 1.4, this equation yields the solution 67.792°. Note further that examining the
shock angle where the downstream flow is sonic [see Eq. (6.25)] for this limiting case reveals
that O;ypic = Opax- The maximum deflection angle is found by using Eq. (6.29) in Eq. (6.28) to
obtain, for M; — oo,

1
8 = tanﬂ(—-———)
max ‘\/’;2—.__—1

For y = 1.4, this equation yields the solution 45.585°.

Example 6.5. Comparison of the pressure recovery in two supersonic inlets

A supersonic two-dimensional inlet is to be designed to operate at Mach 3.0. Two possibili-
ties will be considered, as shown in Figure 6.12. In one, the compression and slowing down
of the flow take place through a single normal shock; in the other, a wedge-shaped diffuser,
the deceleration occurs through two weak oblique shocks, foilowed by a normal shock. The
wedge turning angles are each 8°. Compare the loss in stagnation pressure for the two cases.
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(a) Normal-Shock Diffuser (b) Wedge-Shaped Diffuser

Figure 6.12 Flow in Two Supersonic Inlets

Solution

Case 1: Normal-Shock Diffuser: For the normal-shock diffuser, the ratio p,,/p,; can be
found from the stagnation pressure ratio for a normal shock through Eq. (4.15) at
M; = 3.0: pp/psy = 0.3283.

Case 2: Wedge-Shaped Diffuser: For the first oblique shock with M; = 3.0 and § = 8°, we
obtain from Appendix D or from the numerical procedure that the shock angle is
# = 25.61° and, in turn, from Eq. (6.17), that M, = 2.6031. We also find from Eq. (6.13)
that p,y/p,; = 0.9799. The process is then repeated using M, = 2.6031 and 5 = 8° to ob-
tain a shock angle of 6 = 28.94°, a downstream Mach number M; = 2.2595, and
Poi/ Doy = 0.9858. At M; = 2.2595, from the normal-shock relations, we find that
Pod/ Po3 = 0.6013. Finally, we obtain

Pot _ <@)<@)(@> = (0.6013)(0.9858)(0.9799) = 0.5808
Po1 Po3 Po2 Poi

Therefore, the overall stagnation pressure ratio is 0.5808. The advantage of diffusing
through several oblique shocks rather than one normal shock can be seen: The greater the
number of oblique shocks, the less the overall loss in stagnation pressure is. Theoretically,
if the flow is allowed to pass through an extremely large number of oblique shocks, each
turning the flow through a very small angle, the inlet flow should approach that of an isen-
tropic compression. The oblique-shock diffuser will be discussed in detail in Chapter 8.

6.3 OBLIQUE-SHOCK REFLECTIONS

When a weak, two-dimensional oblique shock impinges on a plane wall, the presence of
a reflected wave is required to straighten the flow, since the boundary condition at the
wall imposes the restriction that there can be no flow across the wall surface. (See
Figure 6.13.) Flow after the incident wave is deflected toward the wall. Hence, a re-
flected oblique shockwave must be present to deflect the flow back through the same
angle and restore the flow direction parallel to the wall. Although the deflection angle
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reflected shock

Figure 6.13 Regular Oblique-Shock Reflection from a Plane Wall

6 has the same magnitude for both the incident and reflected shocks, the pressure ratios
across them are not the same, since M, < M; (that is, the reflected shock is weaker than
the incident shock). The overall static pressure ratio may computed from

2- (1)
Pi P2/ \P1
Experiments reveal that the reflected shock is always a weak shock. In general,

the angle that the incident shock makes with the wall—in this case, §; —is not equal to
the angle that the reflected shock makes with the wall—in this case, 8, — 6.

Example 6.6. Computations of a reflected obligue shock

For a horizontal flow (a; = 0), My = 2.0,y = 1.4,and 8, = —40°, determine 8,, M,, and M;.
Refer to Figure 6.13.

Solution
As shown in Figure 6.13, the flow field is divided into three angular regions, each having
uniform properties. For M; = 2.0 and 8§ = —40°, the weak shock deflection angle 6 may be

readily computed from Eq. (6.18) as —10.6229°. (The deflection angle has the same sign as
the shock angle.) This corresponds to the angle through which the flow is turned after the
incident wave, as well as the angle through which the flow is turned back after the re-
flected wave. For the given shockwave angle and upstream Mach number, M, is deter-
mined from Eq. (6.17) to be 1.6173. With this value of M, and with § = 10.6229° from
Collar’s method, we find the weak shock angle 6, to be 51.3846° and M; to be 1.2331. The
shockwave angle 6, is the angle between the flow direction in region 2 and the reflected wave.
From geometrical consideration, the angle of reflectionis 8, — & = 51.3846° — 10.6229° =
40.7617°. The accuracy obtained in these computations was realized through the use of

spreadsheet computation.
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Figure 6.14 A Mach Reflection at a Plane Wall

If M, is low enough, a regular shock reflection, as shown in Figure 6.13, may be
impossible. That is, for a given M, the required turning angle may be great enough so
that no solution exists. In this case, a Mach reflection, named after Ernst Mach, who was
the first person to observe this phenomena in experiments performed in 1878 [see
Ref. (6.7)], occurs. (See Figure 6.14.) A curved, strong oblique shock forms in the
stream, extending from O to the wall at W. At W, the shock must be normal to the wall
to prevent the possibility of any flow deflection and hence satisfy the wall boundary
condition at this point. Flow after the curved shock OW is subsonic, with this flow ad-
justing smoothly to the presence of the wall. A weak oblique shock OR also appears,
with flow after this shock supersonic. The combination of supersonic and subsonic flow
after the waves makes an analysis of the Mach reflection extremely difficult, and cer-
tainly beyond the scope of this text. :

In a real fluid, the problem of oblique-shock reflections is complicated by the
presence of a boundary layer on the wall. The interaction of the incident oblique shock
with the wall boundary layer may have a pronounced effect on the resultant flow. It
must be emphasized, then, that the analysis presented here of oblique-shock reflec-
tions is an approximate one that neglects real fluid effects.

6.4 CHAPTER CAPSTONE APPLICATION: THE INTERSECTION OF TWO OBLIQUE SHOCKS

In the previous section, we considered the turning of a supersonic flow as it passed
through a system of shocks composed of incident and reflected oblique shocks. In
essence, the solution of this problem amounted to solving flow through an oblique-
shock twice, but under differing conditions. It should be mentioned that not all
oblique-shock problems are as straightforward. In fact, depending upon the geometry
and the flow conditions, oblique-shock problems can become very difficult, requiring
the solution of high-order polynomials.

In this section, we will consider two additional oblique-shock problems.
Figure 6.15(a) concerns the confluence of two supersonic streams at the trailing
edge of an airfoil; Figure 6.15(b) deals with the crossing of two oblique shocks of
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slip line
T slip line

(a) Confluence of Two Oblique Shocks (b) Interaction of Two Oblique Shocks

Figure 6.15 Two Oblique-Shock Systems

different strengths in the mouth of a supersonic inlet. Both problems result in the
introduction of another type of flow discontinuity. This discontinuity is distinct from a
compression discontinuity (the shockwave) in that no flow crosses it. Across this dis-
continuity, the pressure is continuous, but other flow variables (velocity, density, en-
tropy, and temperature) need not be. The discontinuity has been given various names:
slip line, contact discontinuity, and vortex sheet.

To assist us with the solution of these types of problems, we use a pressure-deflection
diagram. The diagram, which is also called a shock polar diagram, will be useful in visual-
izing the solution we seek. Basically, the pressure-deflection diagram is a plot of all vi-
able downstream oblique-shock pressures against corresponding deflection angles
for a given set of upstream conditions. We now develop the equation to construct this
figure.

The expression for the pressure ratio across an oblique shock is

P 2yM?%sin® 0 Y -1

6.10
121 Y +1 Y +1 ( )
This expression can be rearranged to obtain
+1 2
M3sin? 0 = (Z—*)(f’—“ - 1) +1 (6.30)
2y P
The following identity is also used in this development:
cotf = + ! -1 (6.31)
\/ sin’ ¢ '

Now the deflection angle is connected to the shockwave angle and the upstream Mach
number:
Misin® 6 — 1
tan 8 = cot 0 12 (6.18)

1
72 M2 — (M3sin? 6 — 1)
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Combining Egs. (6.18), (6.30), and (6.31) yields the pressure-deflection equation:

2 -1
21 < :1M%—7+1>_%
tan § = tan(a, — o) = % b Y — 17 ! (6.32) 5
1+ ymy -2 <7 >+-p—2
2 y+1 2

This relation may be written in an a more compact form, called the pressure-flow direc-

tion equation, as
-1 b —
R tan“]<y J—=2 ) (6.33)
a—-yvVc+y

P2 2y y—1
Wherex:az’ y:<E>v a:(1+’)’M%), b=<'y+1M%_'y+l>,

Both the pressure-deflection equation [Eq. (6.32)] and the pressure-flow direction
equation [Eq. (6.33)] describe a closed curve known as Descartes’s loop. Figure 6.16
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Figure 6.16 Pressure-Deflection Diagram for M; = 2.0 and
vy =14
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shows the plot of Eq. (6.32) for M; = 2.0 and y = 1.4. Note that the constants 4, b, and
cin Eq. (6.33) depend only upon M, and y. By virtue of the =+ sign that appears in the
equations, the curve is symmetrical about 8 = 0 for Eq. (6.32) and about the line x = o
for Eq. (6.33). The positive sign corresponds to the right lobe of the curve, while the neg-
ative sign corresponds to the left lobe.

It is useful to recognize several features of the diagram. First, it can be seen
from Eq. (6.33) that at y = p)/p; = 1,6 = 0(a; = a;). This point corresponds to a
Mach wave. The shockwave angle for this point is 0., = sin”'(1/M,). For § < §,,,,,
there is the possibility of two pressure ratios (the smaller one for the weak shock so-
lution and the larger one for the strong shock solution). If 6 = 8., Which for
M, = 2 and y = 1.4 from Table 6.4 is 22.97°, the flow has a unique pressure ratio. If
6 > 8max, DO attached shock solution exists. When y = p,/p; = b, the deflection is
again zero. This point corresponds to that of the normal shock. It is also important to
recognize that in order to avoid the possibility of the square root of a negative num-
ber, y can never exceed b. Thus, we see that b = y = 1, which is in complete agree-
ment with Eq. (6.10).

It is instructive to demonstrate the solution of the regular oblique-shock re-
flection problem of Example 6.6 by way of the pressure-deflection diagram. Figure 6.17
was drawn to show the solution process. Figure 6.17(a) is a repeat of Figure 6.16 be-
cause the upstream conditions are the same;thatis, M; = 2 andy = 1.4. Example 6.6
indicates that after passing through the oblique shock, which is inclined at an angle
of 40° to the horizontal, the flow is deflected downwards by 10.6229°. The pressure
ratio p,/p; across the incident oblique shock is readily computed from Eq. (6.10)
to be 1.7615. So in Figure 6.17(a), the coordinates corresponding to region 2 have
been drawn. The origin for this region is labeled the anchor point and has the coor-
dinates a3 = a, = —10.623 and pi/p; = p)/p; = 1.762. In Figure 6.17(b), we now
construct a second pressure-flow direction diagram based on the conditions of re-
gion 2, viz., M, = 1.6173 and a, = —10.6229°. The equation for the diagram of

(e sV (7 570)
a — c +
P2/ P2 p

This expression provides all possible pressure-flow direction states within region 3.
It is extremely important to note that y = ps/p;. When y = pi/p; = po/py, a3 = ay,
and therefore the deflection is zero. The downstream condition in region 3 requires
that the flow be parallel to the horizontal wall (i.e., a3 = 0°). Thus, intersection with the
ordinate axis provides the downstream pressure ratio, which is 2.9881. Unless these di-
agrams are drawn to a small scale, they do not provide accurate results. They can be re-
placed by numerical procedures that are guided by the diagrams. This approach is
llustrated in the next two examples.

(6.34)

X=a3=m % tan™!
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Figure 6.17 Pressure-Flow Direction Diagrams for a Regular Reflection for
Example 6.6

Example 6.7. Confluence of two eblique shocks

Figure 6.18 shows two supersonic flows, from the upper and lower surfaces of an airfoil,
merging at the trailing edge. Because the flows must be turned in order to flow in the
same direction, they pass through oblique shocks that reside at the trailing edge. More-
over, because each flow passes through a shock of different strength, each will possess dif-
ferent properties, and therefore a contact discontinuity or slip line will separate the two
merged streams.
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Figure 6.18 Merging of Two Supersonic Flows at the Trailing Edge of an

Airfoil

Find the resuiting flow direction and downstream fluid properties in regions 3 and 4 if
the flow in region 1 follows the horizontal lower surface (a; = 0) with M; = 2.0 and
the flow in region 2 follows the upper surface (@, = —10) with M, = 3.0. Assume that
both streams have the same pressure, so that p,/p; = 1, and let y = 1.4 for both
streams.

Solution

To solve this problem, we first draw the pressure-flow direction diagram, as it will serve as
a guide to subsequent numerical solutions.

The first step in this procedure is to create two data files, using Eq. (6.33). The
coefficients within this expression (a, b, and ¢) are computed using M; and y for one
set and M, and vy for the other. Choose the number of points that will be ultimately
plotted. (Fifty points should be more than adequate.) Take this number and divide it
into the difference between b and unity. The result provides the plot increment. Start-
ing from y = b, reduce y by this increment until the value of unity is reached. For each
y value and the computed coefficients a, b, and ¢, determine the value of x. Repeat the
process starting from y = 1 and returning to b by adding the increment to each previ-
ous y. Prior to calculating x with these y values, change the sign of the arctangent in
Eq. (6.33). This sign change will provide data for both lobes of the curve. Once the
data files have been developed, follow the chart-drawing procedure in the spreadsheet
program.

Because the flow conditions are the same as those used to draw Figures 6.16 and
6.17(a), the diagram for region 1 is already known. The same procedure can be used to plot
the pressure-flow direction diagram for region 2. Superimposing these two diagrams pro-
vides a reasonably accurate solution to this problem. The combined diagram is shown in
Figure 6.19. It is seen that the curves intersect twice; the lower pressure intersection, at the
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Figure 6.19 Combined Pressure-Flow Direction Diagram for the Confluence
of Two Shocks for Example 6.7

negative flow angle, is the weak shock solution, and the larger pressure intersection, at the
positive flow angle, is the strong shock solution.

The accuracy of the results can be improved by using spreadsheet computa-
tions. A solution is realized when the following two downstream flow conditions are
satisfied:

¢ the pressure is the same in regions 3 and 4: Py p1 = pdpr; and

 the flow direction is the same in regions 3 and 4: a3 = ay.

Using versions of Eq. (6.33), we see that a function that is dependent upon the pres-
sure may be formulated as

— 1 lb B -1 |bp—y
ay—yvec+y a,—yNc+y

(6.35)

where a; and b, are computed using M, and vy, and a, and b, computed using M, and y.
The solution procedure is to vary y until f(y) becomes zero. This condition will occur for
two values: one for the weak shock solution and the other for the strong shock solution.
The Newton-Raphson method may be used to find these values:

f(,‘)old>

o= —— 6.36
Ynew Yold df(yo]d)/dy ( )
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Because of the complexity of fly) in Eq. (6.35), the derivative required in the
Newton-Raphson method is best computed using a central finite difference rather than
actually differentiating Eq. (6.35):

daf _ f(y + Ay) — f(y — Ay)
dy 2Ay

Here, Ay is a small number.

The results of the computations are shown in Tables 6.8 and 6.9. Thus, the weak-
shock solution requires that the pressure ratio p;/p; = ps/p, = 1.3723 and that the flow
direction a3 = a4 = —5.7977°.

The strong shock solution requires two revisions to the foregoing procedure. In
both of these revisions, the pressure-flow direction diagram is of great assistance. First,a
sign change within f(y) must be made. This change is necessary because the strong shock
solution for this case is an intersection of the right lobes of the two individual diagrams;
therefore, select the + sign for both tan"! functions. On the other hand, the weak shock
solution was an intersection of the right lobe of one diagram (use the +tan™') and the
left lobe of the other (use the —tan‘l). Second, because of the slopes involved, an initial
guess close to the solution must be used for the strong shock solution. An inadequate
guess causes the value of y to be corrected beyond the value of b;, which results in a

TABLE 6.8 Results of Pressure-Deflection Diagram Spreadsheet Computations for Example 6.7

Weak Shock Solution

Iteration

Yoid

y+4 y-A ) fy+a) fiy-a) dfidy  Ynew x x (deg)

1

2

2.0000  2.0001 1.9999 0.2224 0.2224 02223 03049 1.27081 —0.07602 —4.3555

12708 1.2709 12707 -0.0434 -0.0434 —-0.0435 0.4411 136925 -0.10045 -5.7551

13692 13693 13691 -0.0013 —0.0012 —0.0013 0.4156 137233 -0.10119 -5.7976

1.3723 13724 13722 0.0000 0.0000 0.0000 0.4149 137233 -010119 -—5.7977

13723 13724 13722 0.0000 0.0000 0.0000 04149 137233 -0.10119 -5.7977

TABLE 6.9 Results of Pressure-Flow Direction Diagram Spreadsheet Computations for Example 6.7

Strong Shock Solution

leration  yyu y+A y-A  fO)  fy+B8) fy-4) dfidy e x x (deg)
1 42500 42501 4.2499 -0.1051 -0.1050 —0.1051 0.4864 4.4660 0.1382 7.9175
2 44660 4.40661 4.4659 0.0909 0.0911 0.0907 1.9939  4.4205 0.2038 11.6764
3 4.4205 44206 4.4204 0.0219 0.0220 0.0218 1.1931 4.4021 0.2228 12.7666
4 44021 4.4022 4.4020 0.0015 0.0016 0.0014 1.0377  4.4007 0.2242 12.8457
S 4.4007 4.4008 4.4006 0.0000 0.0001 —0.0001 1.0272 4.4007 0.2242 12.8461
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negative square-root error. The problem is easily resolved by trying various values for
the initial guess. Again, the pressure-flow direction diagram is of great assistance, since
the approximate location of the intersection point for the strong shock solution is avail-
able from Figure 6.19. Thus, the strong shock solution requires that the pressure ratio
Dpilpr = pa/py = 4.4007 and that the flow direction a3 = ay = +12.8461°.

From the flow angles, it is straightforward to determine the deflection angles,
and with M, and M,, all parameters in regions 3 and 4 can be readily computed. (See
Problem 6.22.)

Example 6.8. Intersection of two oblique shocks of different strengths

A supersonic stream with M = 3.5 flows into an inlet. The geometry is similar to that in
Figure 6.15(b). The lower lip of the inlet has a wedge angle of 10°, while the upper lip has
a wedge angle of —15°. The oblique shocks formed on these inlet lips intersect with each
other, and two shocks and a slip line emanate from the point of intersection. Five angular
regions of uniform properties are created and numbered as shown in Figure 6.20. Deter-
mine the downstream flow directions and pressures for the weak shock solution. Take
vy = 1.3 for all flows.

Solution

A pressure-flow direction diagram is first drawn for M; = 3.5 and y = 1.3. This is accom-
plished by using Eq. (6.33) to create a file of data of y versus x (as discussed in the solution
of Example 6.7) and then employing the chart-drawing portion of a spreadsheet program.
The result is Figure 6.21.

Shown on the curve within Figure 6.21 are two bullets. One represents the anchor
point for region 2 (y = p,/p; = 2.1587 and x = a, = 10°) and the other the anchor point
for region 3 (v = ps/p; = 3.0227 and x = a3 = —15°). The Mach numbers within regions

Figure 6.20 Intersection of Oblique Shocks within an Inlet
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Figure 6.21 Pressure-Flow Direction Diagram for Region 1 of Example 6.8

(M, = 35,y = 1.3)

2 and 3 are 2.9976 and 2.7361, respectively. With these Mach numbers, pressure ratios,
and y, we can compute two more data files, using Eq. (6.34). This enables us to draw
two additional pressure-flow direction diagrams that are shown as Figure 6.22(a) and
6.22(b) for regions 3 and 2, respectively. Finally, the two diagrams are united as shown

in Figure 6.22(c).

The development of the diagram for the shock interaction problem is similar to that
for the shock confluence problem of Example 6.7. The principal difference lies in the an-
chor points. In the confluence problem, both anchor points were at y = 1. Here, the points
are at two different pressure ratios. Note carefully that all pressures on these diagrams

have been nondimensionalized using p;.

It is seen that the weak shock solution occurs at y = ps/p, = pi/p; =

g = Qg5 = —5°.

6 and

To improve the accuracy of the results, we next employ a numerical procedure. Gen-
erally, the approach for problems involving shock interactions is to assume a range of pos-
sible flow directions for the slip line that are thought to blanket the actual solution and
then to use interpolation of the pressure result to obtain an equality of pressure in regions 4
and 5. While the accuracy using this approach is better than the graphical results just de-

scribed, it could be even better, as will be shown next.

Here, we write a function f{y) just as we did in the previous example, where y is the
pressure, and we numerically determine (as in example 6.7) the value of y that will cause

the function to go to zero. The function is created using Eq. (6.34) as follows:

f(y) = as — as
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Here,

a; = a + tan™

az tan™!

as

Table 6.10 provides the results of the numerical iterations from the spreadsheet program
developed to solve this problem.

TABLE 6.10 Results of Pressure-Flow Direction Diagram Spreadsheet Computations
for Example 6.8

Yold y+A y—Aa o) fly +a) fiy—4) dfidy Vnew ay
2.0000 2.0001 1.9999 0.5589 0.5588 0.5589 -0.2409 4.3197 11.0514
4.3197 4.3198 4.3196 0.1597 0.1597 0.1597 -0.1299 55486  —-0.3082
5.5486 5.5487 5.5485 0.0147 0.0146 0.0147 -0.1079 5.6845 —4.4705
5.6845 5.6846 5.6844 0.0001 0.0001 0.0001 —0.1060 56857 —4.8889
5.6857 5.6858 5.6856 9.83E-09 0.0000 0.0000 —0.1060  5.6857 —4.8926
5.6857 5.6858 5.6856 0.00E+00 0.0000 0.0000 -0.1060  5.6857 —4.8926

TABLE 6.11 Property Values in the Various Regions for Example 6.8

Region 1 to Region 2 to Region 4

Y M, 812 612 p2/m palp L/ Po2/Por

1.3000 3.5000 10.0000 23.9901 2.1587 1.7862 1.2085 0.9500

M; 024 04 | 2% 2 palpa T/T, Pod/Po2 My

2.9976 —14.8926  —31.4440 2.6339 2.0575 1.2802 0.9032  2.3580

Region 1 to Region 3 to Region 5

Y M, 813 03 j 24 p3lp /T Po¥Por
1.3000 3.5000 —-15.0000 —28.5011 3.0227 2.2615 1.3366 0.8598
M, 835 035 psP3 psips T/T, Pos/Po3 Ms

2.7361 10.1074 29.1782 1.8810 1.6152 1.1646 09719  2.3422
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It is seen that the solution is quickly obtainedto be y = py/p; = ps/p; = 5.6857 and
that the flow direction is a4 = a5 = —4.8926°. With these values, it is not difficult to deter-
mine all other parameters and obtain the results in Table 6.11.

6.5 SUMMARY

Chapter 6 has presented an analysis of the oblique shockwave. Emphasis has been
placed on demonstrating how accurate values of the oblique-shock properties and
geometries can be determined by using spreadsheet computation. With this approach,
the oblique shock and resultant two-dimensional flow can be readily found with the
equations derived in this chapter.

The student should now appreciate the importance of recognizing the boundary
conditions in a given flow situation. It is the boundary conditions, for example, that de-
termine whether the strong or weak oblique-shock solution is to occur; again, it is the
boundary conditions that determine the characteristics of the flow after impingement
of an oblique shock on a plane wall.

Finally, the importance and usefulness of the pressure-deflection or pressure-
flow direction shock-polar diagrams was illustrated through the solution of systems of
oblique shocks. Most texts employ tedious trial-and-error methods. Here, the pressure-
flow direction diagram provided reasonably accurate results, which were subsequently
improved by more accurate numerical computations using spreadsheet methods.
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6.7 PROBLEMS

6.1

6.2

6.3

6.4

6.5

Uniform air flow at Mach 3 passes into a concave corner of angle 15°, as shown in
Figure P6.1. The pressure and temperature in the supersonic flow are, respectively, 72 kPa
and 290 K. Determine the tangential and normal components of velocity and Mach
number upstream and downstream of the wave. Also, find the static and stagnation
pressure ratios across the wave. How great would the corner angle have to be before
the shock would detach from the corner?

Figure P6.1

In a helium wind tunnel, flow at Mach 4.0 passes over a wedge of unknown half-angle
aligned symmetrically with the flow. An oblique shock is observed attached to the wedge,
making an angie of 30° with the flow direction. Determine the half-angle of the wedge and
the ratios of stagnation pressure and stagnation temperature across the wave.

A wedge is to be used as an instrument to determine the Mach number of a supersonic
airstream; that is, with the wedge axis aligned to the flow, the shock angle of the attached
oblique shock is measured, permitting a determination of the incident Mach number. If
the total included angle of such a wedge is 45°, give the Mach number range over which
such an instrument would be effective.

The leading edge of a supersonic wing is wedge shaped, with a total included angle of 10°.
(See Figure P6.4.) If the wing is flying at zero angle of attack, determine the lift and drag
force on the front portion of the wing per meter of span. Repeat for an angle of attack of 3°.
Assume that the wing is traveling at Mach 2.5.

Leading edge of wing

2.0m

Figure P6.4

An oblique shockwave is incident on a solid boundary, as shown in Figure P6.5. The
boundary is to be turned through such an angle that there will be no reflected wave. De-
termine the angle 8.
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Figure P6.5

6.6 [Explain in physical terms why the angle of incidence and the angle of reflection of a re-
flected oblique shock are not equal.

6.7 A converging—diverging nozzle is designed to provide flow at Mach 2.0. With the nozzle
exhausting to a back pressure of 80 kPa and a reservoir pressure of 280 kPa, the nozzle is
overexpanded, with oblique shocks at the exit. (See Figure P6.7.) Determine the flow
direction and flow Mach number in region R with air as the working fluid.

Figure P6.7

6.8 Oblique shockwaves appear at the exit of a supersonic nozzle, as shown in Figure P6.8. Air
is the working fluid. The stagnation temperature of the flow is 500 K. The nozzle throat
area is 50 cm?, and the nozzle exit area is 120 cm?. If the nozzle back pressure is 101 kPa,
(a) determine the nozzle inlet stagnation pressure; (b) find the velocity at the nozzle exit
plane; and (c) find the mass-flow rate through the nozzle.

Figure P6.8

6.9 A supersonic flow leaves a two-dimensional nozzle as parallel, horizontal flow (region A)
with a Mach number of 2.6 and static pressure of 50 kPa. The pressure of the atmosphere
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into which the jet discharges is 101 kPa. Find the pressures in regions B and C of
Figure P6.9.

Figure P6.9

6.10 For the two-dimensional diffuser shown in Figure P6.10, find V; and p,..

Figure P6.10

6.11 A two-dimensional supersonic inlet is to be designed to operate at Mach 2.4. Deceleration
is to occur through a series of oblique shocks followed by a normal shock, as shown in
Figure 6.12(b). Determine the loss of stagnation pressure for the cases of two, three, and
four oblique shocks. Assume that the wedge turning angles are each 6°.

6.12 Two oblique shocks intersect as shown in Figure P6.12. Determine the flow conditions
after the intersection, withy = 1.4,

p = 70kPa
T=210K

Figure P6.12
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6.13 Show that the entropy increase across an oblique shock is given by the following [see
Ref. (6.8)]:

A 2 -1 -1 2 Y
25 ln[(—y M%sinzﬁ _7 )(Y + T ) }
Cy y+1 y+1/\y+1 (y+ 1)Misin*6

6.14 Repeat the computations of Example 6.2. However, instead of using the successive-substi-
tution method proposed by Collar and described in Section 6.2, solve the problem by using
the Newton-Raphson method.

6.15 For the two-dimensional case shown in Figure P6.15, where y = 1.4, determine M3 and ps.

Figure P6.15

6.16 Prove that (a) at the minimum shock angle, M, = M,, and (b) at the maximum value of
the shock angle, Eq. (6.17) becomes Eq. (4.9).

6.17 Develop Prandtl’s relation for oblique shocks from conservation principles.

6.18 Show that the largest deflection angle for the limiting upstream Mach number M; — 00
can be found by differentiating Eq. (6.26), setting the result to zero, and then solving for 6.
In other words, verify that Eq. (6.27) is correct.

6.19 In general, the angle of incidence, 6;, and the angle of reflection, §,, of an oblique shock re-
flected from a flat surface are not equal. However, there is an angle 6* such that the two
angles are equal. [See Refs. (6.9) and (6.10).] Also, if §; < §", then (8, — 8) < 6, and if
6, > 6", then (6, — 8) > ;. Computationally verify that for M; = 2,3, and 4 at y = 1.4,
the angle of incidence and the angle of reflection of an oblique shock reflected from a flat
surface will be equal if

1 -1
0, =06 = Ecos_l(z——z—)

6.20 Repeat the computations of Example 6.8 to find the angle the slip line makes with the hor-
izontal for y = 1.4 and 1.667. How does the angle vary with y?

6.21 Derive the pressure-deflection equation [i.e., Eq. (6.32)].

6.22 Complete the computations of Example 6.7; that is, use the computed flow angles to de-
termine the deflection angles, and with M, and M,, determine all parameters in regions 3
and 4 of Figure 6.18.



Chapter 7

Prandtli-Meyer Flow

7.1 INTRODUCTION

When a supersonic compression takes place at a concave corner an oblique shock is
known to occur at the corner. [See Figure 7.1(a).] When supersonic flow passes over a
convex corner it is evident that some sort of supersonic expansion must take place. [See
Figure 7.1(b).] Previous results indicate that, except for the unusual case involving
dense gases [see Ref. (7.1)], an expansion normal shock is impossible. However, a
means must be available for the supersonic flow of Figure 7.1(b) to negotiate the cor-
ner. This chapter will present an analysis of the mechanism of two-dimensional, super-
sonic expansion flow, as might occur, for example, during supersonic flow over a
convex corner or at the exit of an underexpanded supersonic nozzle.

7.2 THERMODYNAMIC CONSIDERATIONS

Two-dimensional, supersonic flow is to be turned through a finite angle at a convex
corner. The mechanism of the resultant flow is of interest. Consider first the possibility
of an expansion oblique shockwave occurring at the corner. Figure 7.2 shows the ve-
locity vectors normal and tangential to such a wave. For this two-dimensional adiabatic

(a) Supersonic flow over a concave corner (b) Supersonic flow over a convex corner

Figure 7.1 Supersonic Flow over Two Types of Corners

229
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Expansion
Oblique shock

Figure 7.2 Supersonic Flow around a Convex
Corner '

flow, uniform conditions prevail upstream and downstream of the wave. The equations
of motion are exactly the same as those presented in Chapter 6 for the oblique com-
pression shock. Again, with no pressure gradient in the direction tangential to the wave,
the tangential momentum equation yields V;; = V,,. From geometrical considerations,
then, it follows that V,;, must be greater than V,,; (Problem 7.1). The normal momentum
equation, Eq. (6.2), yields

eV =p+ Vi
Combining this with the continuity equation, Eq. (6.1), we obtain

P2 = P = pVu(Vm — Vo)

Since V,, > V,,;, it follows that p, < p,, indicating that the resultant flow must be
an expansion. It has been shown that an oblique shock reduces to a normal shock for
the velocity component normal to the wave, with the tangential component remaining
unchanged. The ratios of pressure, temperature, and density across an oblique shock are
functions of M,; alone. (See Section 6.2.) The entropy change across an oblique shock
can be written, then, in terms of M, the resultant variation of As with M,,; being exactly
the same as that shown in Figure 4.11 for the normal shock. Hence, an oblique expan-
sion shock of a perfect gas (V,; > V,;), just as a normal expansion shock of a perfect
gas, would involve a decrease in entropy during an adiabatic process. This violates the
second law of thermodynamics and is impossible. Therefore, the expansion shock of a
perfect gas, with sudden changes in flow properties, cannot occur at the convex corner.
Instead, a more gradual type of supersonic expansion must take place.

7.3 GRADUAL COMPRESSIONS AND EXPANSIONS

When a supersonic stream undergoes a compression due to a finite, sudden change of
direction at a concave corner, an oblique shock occurs at the corner. However, if the
flow is allowed to change direction in a more gradual fashion, the compression can
approach an isentropic process. Allowing supersonic flow to pass through several
weak oblique shocks rather than one strong shock (see Figure 7.3) has been shown to
reduce the resultant loss in stagnation pressure (or entropy rise) for a given change
in flow direction. In the limit, as the number of oblique shocks becomes larger, with
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Figure 7.3 Supersonic Flow through Weak Oblique Shockwaves

each shock turning the flow through a smaller and smaller angle, the oblique shocks
approach the Mach waves, as discussed in Chapter 2. The Mach wave, brought about
by the presence of an infinitesimal disturbance in a supersonic flow, here corre-
sponds to an oblique shock of vanishing strength, with infinitesimally small changes
of velocity, flow direction, entropy, and so on, taking place across the wave. (See
Figure 7.4.) As we have seen in Section 6.2, the wave angle of an oblique shock of
vanishing strength is given by § = u = sin"}(1/M). So, by employing a smooth turn,
with the resultant oblique shocks approaching Mach waves, we see that a continuous
compression is achieved in the vicinity of the wall with vanishingly small entropy
rise. (See Figure 7.5.)

Away from the wall, however, the compression waves converge, coalescing to
form a finite oblique shockwave. (See Figure 7.6.) The characteristics of this shock are
the same as those already discussed in Chapter 6 for an oblique shockwave of given M,

Mach Wave

i

Figure 7.4 Supersonic Flow through a Mach
Wave

Mach Waves

Figure 7.5 Supersonic Flow through
Weak Oblique Shocks in a Smooth Turn
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Figure 7.6 Coalescing of Mach Waves
into an Oblique Shock in a Concave
Corner

and a deflection or turning angle 8. In fact, far enough away from the wall, flow about
the smooth turn cannot be distinguished from the flow about a sharp, concave corner
of angle A = §. It is important to note that here, again, the weak compression waves,
each involving only an infinitesimal entropy rise, are able to reinforce one another to
form a compression shockwave, with the resultant shock process involving a finite in-
crease of entropy.

Now consider a supersonic expansion through a series of infinitesimally small
convex turns. (See Figure 7.7.) Mach waves are generated at each corner, with each
wave inclined at an angle to the flow direction. For this expansion flow, unlike the com-
pressive flow previously discussed, waves do not coalesce, but rather spread out. The
divergent waves cannot reinforce one another; an expansion oblique shock is physically
impossible. Flow between each of the waves in Figure 7.7 is uniform, so the length of
the wall between waves has no effect on the variation of flow properties. Thus, the
lengths of the wall segments can be made vanishingly small, without affecting the over-
all variation of flow properties across the expansion. By thus reducing the wall seg-
ments, the series of convex turns becomes a sharp corner. (See Figure 7.8.) The
resultant series of expansion waves, centered at the corner, is called a Prandtl-Meyer
expansion fan. It is named after Ludwig Prandtl and Theodor Meyer. Prandtl, who orig-
inated the boundary-layer concept, studied simple waves in supersonic flows in the
early 1900s. Meyer, one of Prandtl’s students, wrote his doctoral dissertation on the
topic in 1908. [See Refs. (7.2), (7.3), and (7.4); the latter reference contains Meyer’s
Ph.D. dissertation (in German).]

Figure 7.7 Supersonic Flow around a
Segmented Convex Corner
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Initial Wave

Final Wave

Figure 7.8 Centered Expansion Fan at a
Convex Corner

Historical Note: Ludwig Prandtl (1875-1953) was born in Freising, Ger-
many. Because his mother was very sickly during most of his youth, Prandtl
spent much time with his father, an Agricultural Central School Professor,
who encouraged him to observe nature and think about his observations.

In 1894 in Munich, Prandtl began studying Mechanical Engineering at
the Technische Hochschule (TH) and became an assistant of August Foppl—
his advisor and future father-in-law. After completing his thesis (on elastic sta-
bility) and graduating in early 1900, Prandtl worked for less than two years at
a Nuremburg factory. While there, he failed to improve the suction of sawdust
from a wood-cutting machine because he used a diffuser with too large of a diverging angle. This
haunted him until he invented boundary layer theory and used it to describe flow separation.

In 1901, Prandtl was appointed Professor at the TH in Hanover. There he made friends with
Carle Runge (see Historical Note in Section 9.7). In 1904, Felix Klein, the reknowned mathemati-
cian at Géttingen, based on the strong recommendation of Foppl, enticed Prandtl to Géttingen in
order to organize a new department of mechanics.

In August 1904, Prandtl delivered a revolutionary paper (it contained just eight equations) de-
scribing his boundary layer theory entitled Ueber Flussigkeitsbewegung Bei Sehr Kleiner Reibung
(“Fluid Flow in Very Little Friction”). He became Director of the Institute for Technical Physics at
the University of Gottingen later that year.

In 1906, Prandtl published the first estimate of the thickness of a shock wave and, during
WW]I, created his thin-airfoil theory for determining lift of thin, cambered airfoils. Prandtl worked
with Albert Betz and Max Munk for almost ten years to solve the induced drag problem. The result
was his lifting line theory to describe the lift and drag of wings of finite span which revealed the
third source of subsonic drag. This was published in 1918-1919. English scientist Frederick Lan-
chester published the foundation for Prandtl’s theory years earlier and this theory is aiso referred to
as the Lanchester-Prandtl theory. In 1922 Prandtl contributed to a method that describes the com-
pressibility effects at high speeds (Prandtl-Glauert rule for subsonic airflow). Prandtl also made im-
portant contributions to the theories of supersonic flow and turbulence, and contributed much to the
development of wind tunnels and other aerodynamic equipment. In addition, he devised the soap-
film analogy for the torsion of noncircular sections and wrote on the theories of plasticity and of me-
teorology.

By the 1920s Gottingen was an unparalleled scientific institution; it eventually turned into
the Kaiser Wilhelm Institute for Fluid Mechanics (now the Max Planck Institute). Many of Prandtl’s

(Continued)
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(Continued)

students and colleagues went on to make many fundamental contributions to fluid dynamics. A list
of their names reads like a who’s who of fluid mechanics. A partial list includes: Jacob Ackeret,
Albert Betz, Heinrich Blasius, Adolf Busemann, Henry Gértler, Karl Hiemenz, Theodore von Kar-
mén, Theodor Meyer, Klaus Oswatitsch, Karl Pohthausen, Hans Reichardt, Hermann Schlichting
and Walther Tollmien. Prandtl would become recognized as the father of modern fluid mechanics
and the father of aerodynamic theory.

Prandt], also an accomplished pianist, remained at Gottingen as Professor of Applied Me-
chanics for 49 years until his death on August 15, 1953. See Refs. (7.5) - (7.7).

7.4 FLOW EQUATIONS FOR A PRANDTL-MEYER EXPANSION FAN

It has been shown that supersonic expansion flow around a convex corner involves a
smooth, gradual change in flow properties. The Prandtl-Meyer expansion fan consists of
a series of Mach waves, centered at the convex corner. The initial wave is inclined to the
approach flow at an angle u, = sin”!(1/M;), see Figure 7.8. The final wave in the fan is
inclined to the downstream flow at an angle u, = sin"(1/M,), with the component of ve-
locity normal to the wave at each point in the flow equal to the local velocity of sound. (See
Section 2.4.) Flow conditions along each Mach wave are uniform; the variation of pressure,
velocity, and so on, through the expansion is only a function of angular position.

The equations for two-dimensional Prandtl-Meyer flow will now be presented so
that, just as with oblique shock flow, the variation of flow properties can be determined
for a given flow turning angle. A perfect gas with constant specific heats will be as-
sumed in the following analysis.

Consider first a single Mach wave, expanding and deflecting the supersonic flow
through a very small angle of magnitude A = dv. With no pressure gradient in the tan-
gential direction, again, there is no change of the tangential velocity component across
the wave. Equating the expressions for V, upstream and downstream of the Mach wave
(see Figure 7.9), we have

V., = Vcosu
= (V + dV)cos(u + dv) (7.1)
= (V + dV)(cosdvcosp — sindvsinpu)
Since dv is a very small angle, we may use the following approximations:

cosdr = 1
sindv = dv

Therefore, Eq. (7.1) can be written as
Veosu = (V + dV)(cosu — dvsinpu)
Expanding yields

Veosp = Veosu + (cosp)dV — (Vsinp)dv — (sinu)dV dv
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Mach Wave

Figure 7.9 Supersonic Flow through a Mach Wave at a
Convex Corner

The last term, containing the product of two differentials, can be dropped in compari-
son with the other terms of the equation. Simplifying, we obtain

dv
—V_ = (tanu)dv

Since sinu = 1/M, it follows that

. sin p sinp 1
cosp 1 —sinp  VMI-1
Therefore,
dav 1
— =y (7.2)
4 M? -1

To obtain an expression for M as a function of the angle v, V must be written in
terms of M. From the definition of the Mach number for a perfect gas with constant
specific heats, we have

V = MVyRT
Taking the logarithm of each side and differentiating, we obtain

dv _dM  1dT

4+ = — 73
%4 M 2T (7.3)

But, for this adiabatic flow, there is no change in stagnation temperature. So,

-1
T, = constant = T(l + Y > Mz)
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Taking the logarithm of each side and differentiating, we find that

ar  (y — 1)MdM
0=?+(7——1—1—— (1.4)
1+y2 M?

Equations (7.3) and (7.4) are combined to produce

dv._dM 1 - 1)MdM
vV M 2 ! z1 (7:5)
1+ 1 —m2
2
or
av 1
& - d]y (7.6)
1+ ——m?
2
Substituting Eq. (7.6) into Eq. (7.2) yields
J VM? -1 |dM a7
v = .
-1
1+ 7—2—M2 M

Equation (7.7) can be integrated to determine the change of Mach number asso-
ciated with the turning of the supersonic flow through a finite angle. For the physical
arrangement of Figure 7.10 for a finite turning angle A = (v, — v;), we have

/Vzd M2 VM? -1 dM (78)
v = .
" M‘1+——7;1M2M

Figure 7.10 Angles and Nomenclature for a Prandtl-Meyer Expansion
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Formal integration leads to the following (see Problem 7.3):

y+r1 o [y 1 -
v, v = ,/7_1tan 1[\/7+1(M2-—1>]—tan (VM? - 1)

For the purpose of tabulating this result, it is convenient to define a reference state, so that

+1 -1
Y ltan‘][\/er 1<M2— 1)]—tan’l( M? — 1)
Y~ Y

Let the reference state be v = 0 at M = 1 so that

V={ 1iitan_l[\/3;1(M2—l)]—tan‘l( M2—1)} (7.10)

The symbol v, which is called the Prandtl-Meyer function [see Appendix E and
Refs. (7.8)—(7.11)], represents the angle through which a stream, initially at Mach 1,
must be expanded to reach a supersonic Mach number M. (See Figure 7.10.) Note that
the Prandtl-Meyer function depends only on y and M. A plot of v against M reveals
that the Prandtl-Meyer function increases with increasing Mach number.

To determine the angle through which a flow would have to be turned to expand
from M, to M,, with M, not equal to 1, it is necessary only to subtract the value of v; at
M, from the value of v, at M,, (see Figure 7.10). The change in the Prandtl-Meyer func-
tion 1s connected to the change of the flow angle through

M,

M,
(1.9)

M

V = Veef =

M ref

A= Oy — ) = Vyp — Vy (711)

Equation (7.11) applies to the case in which an isentropic supersonic stream is turned
through a positive angle (counterclockwise)

vy =v;+{(a; —a;)) =v + A (7.12)

For a supersonic expansion about a convex corner in which o, — a; = A < 0 (clock-
wise), use v, = v; — A. In either case, the static pressure decreases, (p, < p,) whereas
the Mach number increases, (M, > M,), therefore, the Prandtl-Meyer function must
always increase, (i.e., v, > vy).

The variation of pressure, temperature, and other thermodynamic properties
through the expansion can be found from the usual thermodynamic relations for isen-
tropic flow, presented in Chapter 3. For this isentropic process, with no change in stag-
nation pressure (P, = Po1)s

/ 1+ 1= 1M§ Yir-1)

-1
P pl/pol 1+ Y . M%
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Since the expansion is adiabatic, there is no change of stagnation temperature,
and, therefore,

y—1 2
1+ M
L _ DT, _ ’ (7.14)
T, -1 ’
I TiT, 1+ Y

2

Example 7.1. A method to determine the Mach number from the Prandtl-Meyer function

Develop a method to determine the Mach number in Eq. (7.9) for a given value of v. Use
the procedure to find M (a) for the case in which v = 70° and y = 1.4 and (b) for the case
in which v = 10° and y = 5/3.

Selution
Equation (7.9) can be written in the following form:

y+1t _][ v—1
y+1

f(M)=[ (Mz—l)]—tan"( Mz—l)]—u

For given values of v and y, we seek a value of M that will result in f(M) = 0. To accom-
plish this task, use will again be made of the Newton—Raphson method. The derivative re-
quired in this method is readily obtained by reference to Egs. (7.8) and (7.9) and is

df MP-1 |1

am T y-1 . Im
1+YTM2

Alternatively, the derivative may be found by taking a central finite difference of f{M):

df  f(M + AM) - f(M - AM)

dM 2AM

The task of finding the value of M that will satisfy f(M) = 0 for given values of v and 7y is
readily performed using spreadsheet computations. Table 7.1 provides the calculation de-
tails for the test case.

Case (a):v = 70°andy = 14

TABLE 7.1 Results of the Computations in Example 7.1, Case (a), to Determine M for a Given
Value of v

Iteration Moy AM) F(M+AM) F(M~AM) AfIAM My
1 2.0000 -0.7613 ~0.7565 —0.7661 0.4811 3.5824
2 3.5824 ~0.1777 -0.1750 —0.1804 0.2692 4.2423
3 42423 -0.0201 ~0.0180 —0.0222 02113 43374
4 43374 ~0.0003 0.0017 —0.0024 0.2043 43390
5 43390  —9.692E-08 0.0020 —0.0020 0.2042 43390
6 43390  —2.711E-13 0.0020 —0.0020 0.2042 43390
7 4.3390 0.000E+00 0.0020 ~0.0020 0.2042 4.3390
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Clearly, the iterations could be reduced with a better initial guess. Nevertheless, an
initial guess of M = 2.0 is satisfactory for most problems. The Mach number for this case
is 4.3390.

Case (b):v = 10° and y = 53

TABLE 7.2 Results of the Computations in Example 7.1, Case (b), to Determine M for a Given
Value of v

Tteration Moy AM) f(M+AM) F(M—=AM) AfIAM Moo
1 2.0000 0.2057 0.2094 0.2020 03712 1.4457
2 1.4457 -0.0192 ~0.0150 -0.0235 0.4256 1.4909
3 1.4909 1.601E-05 0.0043 —0.0042 0.4260 1.4909
4 14909  —4.768E-10 0.0043 ~0.0043 0.4260 1.4909
5 1.4909 1402E- 14 0.0043 ~0.0043 0.4260 1.4909
6 1.4909 0.000E+00 0.0043 ~0.0043 0.4260 1.4909

The spreadsheet program developed for this example is of value for problems involving expan-
sions, as will be demonstrated in the following example.

Example 7.2. Computations of an expansion fan at a convex corner

A uniform supersonic flow at Mach 2.0 and y = 1.4, with static pressure of 75 kPa and a

temperature of 250 K, expands around a 10" convex corner. Determine the downstream

Mach number M,, pressure p,, temperature 15, and the fan angle. See Figure 7.11.
Solution

Fora M, = 20 and y = 14, Eq. (7.9) gives v; = 26.3798°. From Eq. (7.10) with a; = 0°

and a, = —10°,

vy = v, — (ar — ay) = 263798 — (—10) + 0 = 36.3798°

¢, fan angle

Figure 7.11 Flow Configuration for Example 7.2
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Again, because this is an expansion, v, > vy. Using Appendix E or the solver developed in
Example 7.1, we obtain

M, = 2.3849

From the isentropic-flow relations for y = 1.4 at M, = 2.3849,

T
P2 007003, 22 = 04678
Po2 T02
and at M, = 2.0,
T,
P 01278, 2L = 05556
pol Tol
Then
P _ P2 P2 P

1
= = (0.07003)(1.0 (—-—) = ().5480
P P2 Pol Pi ( )(19) 0.1278

Since p; = 75kPa,

py = 41.0974 kPa

and since T; = 250 K,

L_TLTaTa

1
= = (0.4678)(1.0){ ———} = 0.8420
T, T,Th T, ( I )< )

0.5556
T, = 210.4932 K

The included angle of the expansion fan may be computed as follows (refer to Figure 7.12):

=~ (- A)=p —u, + A

¢, fan angle

Figure 7.12 Flow Configuration for Example 7.2
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The wave angles u, and u, are computed from the Mach numbers:

M1

py = sin"<Mi) = sin—l(i—%zg> = 24.7908°
2 .

Also, according to Eq. (7.10),

I
z
o]
/:‘\
N
N—
Il
4.
=
L
TN
DN | —
N
il
I
<
[+

(e —ay) = —(vy —vy) = —10°

Thus,
@ = 30° — 24.7908° + 10° = 15.2092°

Example 7.3. Supersonic flow through expansion fans at two convex corners

Flow in Example 7.2 is expanded through a second convex turn of angle 10°. (See Figure 7.13.)
Determine the downstream Mach number M, and the angle of the second fan.

Solution

The initial wave of the second fan must be parallel to the final wave of the first fan. Again,
the distance between waves can have no effect on the resultant flow, since the flow be-
tween the waves is uniform. Therefore, the variation of properties is the same whether the
flow is expanded through two 10° turns or one 20° turn:

vy = vy + 10° = 36.3798° + 10° = 46.3798°
Using the Prandtl-Meyer functions in Appendix E or the solver of Example 7.1, we find that
M; = 2.8306

Alternatively,

vy = vy + 20° = 26.3798° + 20° = 46.3798°

Figure 7.13 Configuration for Example 7.3
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Note the difference between Prandtl-Meyer flow and oblique-shock flow. In the latter,
there was an advantage to be derived from compressing through several weak shocks
rather than one strong shock.
The fan angle for the second fan is ¢, = pu; — pp, + A = 24.7908° — 20.6882° +
10° = 14.1026°.

Example 7.4. Supersonic flow from an underexpanded nozzle

An underexpanded, two-dimensional, supersonic nozzle exhausts into a region where
p = 100 kPa. (See Figure 7.14.) Flow at the nozzle exit plane is uniform, with p; = 200 kPa
and M; = 2.0. Determine the flow direction and Mach number after the initial expansion
(i.e., Mz)

Solution
From the isentropic flow relations at M; = 2.0, we have

Pr_ 1078

Po1

Since p,, = p,; for this isentropic expansion,

P2 (m )(m)(m) <100> _
L= === ) = (01278 — | = 0.0639
Po2 Pol D1 Po2 ( ) 200

In addition, from the isentropic flow relations, we find that
M, = 2.4436
Now, at M, and M,, the Prandtl-Meyer functions in regions 1 and 2 are, respectively,

v, = 26.3798°
v, = 37.7935°
Thus, the supersonic flow that passes through the expansion fan at the nozzle exit is

turned through the angle «, — a; = —(», — v;) = —11.4137°. The minus sign indicates that
the flow is turned in a clockwise direction.

Figure 7.14 Flow Configuration for
Example 7.4
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7.5 PRANDTL-MEYER FLOW IN A SMOOTH COMPRESSION

It was described in Section 7.3 that, at a smooth compressive turn in supersonic flow,
Mach waves emanate from the wall, coalescing farther out in the stream to form an
oblique shockwave. In the region from the wall out to the point of coalescence of the
waves (see Figure 7.6), the flow is isentropic and possesses the same characteristics
as Prandtl-Meyer flow. Therefore, the equations derived for Prandtl-Meyer flow can
be applied to the isentropic flow region at a concave corner, even though a compres-
sion takes place at the corner. Naturally, the turning angle Av will here be negative,
corresponding to a decrease in Mach number. The extent of the isentropic flow re-
gion at a concave corner depends on the curvature of the wall. For a sharp turn, the
region that can be treated as Prandtl-Meyer flow is negligible; for a gradual turn,
with a large radius of curvature, a much greater region has the characteristics of
Prandtl-Meyer flow.

7.6 MAXIMUM TURNING ANGLE FOR PRANDTL-MEYER FLOW

As M, — o0 (or, equivalently, as the static pressure p, — 0), the arctangents in Eq. (7.9)
approach 7/2. Consequently, the turning angle approaches the following finite value
that only depends upon v:

fr +1 )77 ( y+1 )771800 ( [v +1 )
= -1)= = -1 })—= = —_— = 0°  (7.15
Viax ( ’Y—l 2 ’)/—1 > 7_1 1 j9 (1)

For y = 1.4, the maximum turning angle is 130.4541°. This represents the largest
turn that a stream initially at Mach 1 can make. If the flow is initially supersonic, the
maximum turn can be obtained by first determining the value of the Prandtl-Meyer
function at the given Mach number and then subtracting this value from v,,,,. For ex-
ample, if M; = 2.0, v, = 26.3798°, and, therefore, Av,,, = 130.4541° — 26.3798° =
104.0743°. This is illustrated in Figure 7.15.

Figure 7.15 Maximum Turning Angle for a
Supersonic Flow Exiting a Nozzle into a Vacuum
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This result has significance, for example, in the determination of the shape of the
exhaust plume of an underexpanded nozzle discharging into the vacuum of space. To
prevent the impingement of rocket exhaust gases on a part of a spacecraft, the designer
must have knowledge of the shape of the rocket-nozzle exhaust plume; modification of
a spacecraft geometrical design may be required to prevent possible damage from the
hot exhaust gases. Furthermore, the axial thrust of a rocket depends on the direction of
the exhaust velocity vectors.

The actual magnitude of the maximum turning angle presented here has only
academic interest, in that effects such as liquefaction of air or gases and other depar-
tures from perfect-gas flow would occur long before the ultimate pressure could be at-
tained. However, the result does indicate the presence of a maximum turning angle for
a supersonic expansion.

7.7 REFLECTIONS

When a Prandtl-Meyer expansion flow impinges on a plane wall, as shown in Figure 7.16,
sufficient waves must be generated to maintain the wall boundary condition; that is, at the wall
surface, the flow must be parallel to the wall. Each Mach wave of the initial Prandtl-Meyer
fan, then, must reflect as an expansion Mach wave. The resultant wave interactions present
complexities that render an exact analysis of the flow extremely difficult; however, the gen-
eral nature of the flow can be recognized. An application is the expansion that takes place
at the exit of an underexpanded, two-dimensional nozzle. Since, from symmetry, there
can be no flow across the center streamline, this streamline can be replaced by a plane
wall. The resultant flow situation is shown in Figure 7.17.

Saln R R R R

Figure 7.16 Reflection of a
Prandtl-Meyer Expansion Fan
from a Plane Wall

pb<pe

Figure 7.17 Supersonic Flow from an Underexpanded
Nozzle
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7.8 CHAPTER CAPSTONE APPLICATION: CONFLUENCE OF AN OBLIQUE SHOCK
AND AN EXPANSION FAN

When a thin body, taken here to be a flat plate of zero thickness, is placed at an angle
of attack within a supersonic stream, both oblique shocks and expansion fans will ap-
pear at various locations on the body. (See Figure 7.18.) Oblique shocks will appear at
locations where the flow must be turned because the plate forms a concave corner with
the stream (on the bottom of the plate at the leading edge and on the top of the plate
at the trailing edge). Expansion fans will appear at locations where the flow must be
turned because the plate forms a convex corner with the stream (on the top of the plate
at the leading edge and the bottom of the plate at the trailing edge). This type of prob-
lem will be studied in some detail in Section 8.5.

Here, we are interested only in the flow at the trailing edge of the plate. At this lo-
cation, there is a confluence of an oblique shock and an expansion fan, as shown in
Figure 7.18. Moreover, because the streams that pass over the top and bottom surfaces
of the plate will not have the same value of entropy as after they have passed through
the shock and expansions on each side of the plate, a contact discontinuity, originating
at the trailing edge, will separate the two streams. The flow direction of the contact dis-
continuity is determined by requiring that the flow on either side of the discontinuity
have the same flow angle and that the pressure across the discontinuity remain con-
stant. This same approach was used in the previous chapter to determine the flow di-
rection of the contact discontinuity involved with the confluence of two oblique shocks
at the trailing edge of an airfoil. In that problem, the flow angles of the two streams dif-
fered so that the streams were each turned through a concave corner.

Because the flow through a Prandtl-Meyer expansion fan is isentropic, the Mach
number in Eq. (7.9) may be replaced with the stagnation-to-static-pressure ratio from

Contact
discontinuity

/

Figure 7.18 Supersonic Flow past a Flat Plate at an Angle of Attack
to the Flow
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Eg. (3.15), which may be written in a form that is convenient for substitution:

Mz:_z—{(&)()’—l)/}'_l}:_”—2—_<&>(7_1)/7_<y+1)+1
y—-1l\p y-—1\p y -1

Accordingly, Eq. (7.9) can be written as

v + 1 2 Do\~
- )
vy—1 y+1\p
_ 2 [(p\TY y+1
S (fEETCR)) o
y—1\p y-—1 (7.16)

As will be demonstrated in the following example, this relation may be used along
with that of the pressure-flow deflection equation for an oblique shock, Eq. (6.30), on
the pressure-flow angle shock—polar diagram, to determine the flow direction beyond
the trailing edge of a flat plate in supersonic flow.

Example 7.5. Determination of the flow direction at the rear of a flat plate in supersonic flow

The Mach number on the lower side of a flat plate, placed at an angle of attack of —10° to
the horizontal, is 2.0. The pressure on the lower side is 4 times the ambient pressure. The
Mach number on the upper side of the plate is 3.0, and the pressure is equal to the ambi-
ent pressure. The ratio of specific heats is 1.4. For these conditions, determine the flow
angle, the pressure ratios, and the Mach numbers downstream of the trailing edge.

Solution

Figure 7.19 shows the flow field in the trailing edge region. It may be seen that the region
is divided into four zones. The flow properties within each of the zones are uniform.
The flow angle within zone 3 is

a3 = ap vy — 1y (717)

Figure 7.19 Given Information and Nomenclature for Example 7.5
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where vy 1s 26.3798°, which is determined from Mj, and «; is given as —10°. The value of v
depends upon the value of p;, as may be seen by reference to Eq. (7.16), and therefore is
unknown. Consequently, ay = a3(p3).

The flow direction within zone 4 is

a4 = + 62_4 (718)

where a; is —10°. The value of the flow deflection through the shock, 8,_4, depends upon
the value of p,. as may be seen by Eq. (6.30), and therefore is also unknown. Consequently,
ag = ay(pa).

Because p; must equal py, by equating Eq.(7.16) and Eq.(7.17), we produce a single
equation that contains only one unknown, p;. The task of this example will be to solve the
resulting expression for the unknown pressure and in turn determine the flow angle from
either a3 = as(p;) or ay = a4(ps). To accomplish this, we form the following desired ex-
pression, which is a combination of Egs. (7.16), (7.17), (7.18), and (6.30):

F(p3) = [vs(p3) — vi + aq] = [8,-4(p3) + ] = va(ps) — v1 — 82-4(p3) (7.19)

e T
vy = tan —_——— -1
y—-1 Yy + 1\ p px P3

} t(\/ 2 <£e£1_£°2)”'1)” _ (v + 1))}
Yy —1\p; ps p3 y—-1

In this expression, p,/p; is determined from the isentropic relations equation, Eq. (3.15), for
the given My, and the value of p,/pw is specified in the statement of the problem. Further,
_ PolpPeo

using Eq. (6.30), we get
) (- 55)
4| \P2lpeo P2/ Poo
< p4/poo) < p4/poo>
a, — c+ ——
PP P2/ Po
These values can be plotted on a pressure-flow angle diagram to obtain all possible pres-
sure-flow angle combinations. The result is shown in Figure 7.20. The intersection of the
two curves provides a graphical result p3/px = pi/po = 2.1 and a3 = ag = 0.5°
Next, we obtain a more accurate result by solving Eq. (7.19) numerically, using the
Newton-Raphson method to determine the root of an equation involving a single un-
known. As in other problems, we developed a spreadsheet program to solve this problem.
Furthermore, because f(p;) is rather complicated, we use a central finite difference in-
stead of the derivative in the Newton-Raphson algorithm. Table 7.3 contains the results of
the iterations required to numerically determine the unknown pressure. In this table, y is
the pressure ratio ps/ps and x is the flow angle aj3.
The intersection of the two curves is numerically found to be at y = pi/ps =

PalPoc = 2.1229 and x = a3 = a; = 0.4964°. With these values, it is not difficult to obtain
other flow variables. For example, M; = 2.4054 and M, = 2.4805.

Here,

52_4 =0y T ay = +tan
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Y = p3lp=
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T
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downstream flow angle, x = a3

Figure 7.20 Pressure versus Flow Angle for the Confluence of an
Oblique Shock and Expansion Fan

TABLE 7.3 Iteration Results to Determine the Direction of the Flow behind a Flat Plate in Example 7.5

Iteration yjqa  y+d& y-A  f(y) fly+4)  fly-4) AfAYy  Ynew x x (deg)
1 1.0000 1.0001 09999 —0.3715 ~-0.3715  —03715 04561 181451 0.14234 -—1.8444
2 1.8145 1.8146 1.8144 -0.0826 —-0.0825 —0.0826 02847 2.10453 0.18089  0.3643
3 21045 2.1046 2.1044  —0.0047 ~-0.0046  —0.0047 02540 2.12284 0.18319  0.4960
4 21228 21229 21227 —154E-05  0.0000 0.0000 02523 2.12290 0.18320  0.4964
5 21229 21230 21228 —168E-10  0.0000 0.0000 02523 212290 0.18320  0.4964

7.9 SUMMARY

Just as Chapter 6 presented an analysis of supersonic, compressive oblique flow,so Chap-
ter 7 has provided a study of supersonic, oblique expansion flow. A discussion of expan-
sion and compression supersonic flows around convex and concave corners bears many
similarities to the previous discussion of wave motion in constant-area tubes. In Chapter
4,1t was shown that weak compression waves moving down a tube overtake one another
and eventually coalesce to form a finite normal shock; expansion waves move farther
apart and hence cannot reinforce one another. At a convex turn, the expansion waves di-
verge from the corner and, again, no reinforcement is possible; at a concave turn, the
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compression waves converge to form a finite oblique shock. It was shown, in each case,
that the expansion shock represents a violation of the second law of thermodynamics.

So, at a convex corner in supersonic flow, an isentropic expansion takes place. This
flow consists of a large number of expansion Mach waves; across each wave, the changes
in flow properties are infinitesimally small. The resultant flow is analyzed by using the
equations of continuity, momentum, and energy for a perfect gas with constant specific
heats. The result of this analysis has been presented in a form that allows the develop-
ment of useful numerical tools. These tools may be readily employed to obtain the
change in Mach number occurring for a given flow turning angle. The use of the isen-
tropic relationships then permits an evaluation of the change of pressure and tempera-
ture taking place through the expansion. Moreover, these tools and a numerical
procedure that uses spreadsheet calculations enables more complex problems to be
undertaken.
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7.11 PROBLEMS

7.1 Use a trigonometric development to demonstrate that, for an expansion flow around a
convex corner, V,; > V,;. (See Figure 7.2 in Section 7.2.)

7.2 A uniform supersonic flow of air (y = 1.4) at Mach 2.6, with stagnation pressure of 5 MPa
and stagnation temperature of 1000 K, expands around a 20° convex corner. Determine
the downstream Mach number, the stagnation pressure and temperature, and the static
pressure and temperature.
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1.3

7.4

1.5

7.6

1.7

Chapter 7 Prandti-Meyer Flow

Integrate Eq. (7.7). To accomplish this, first use a transformation in which x? = M? — 1,
and then use the method of partial fractions to break the transformed integrand into two
groups of terms, which may be integrated using:

[
a® + b?  ab a

A reservoir containing air at 2 MPa is connected to ambient air (y = 1.4) at 101 kPa through
a C-D nozzle designed to produce flow at Mach 2.0, with axial flow at the nozzle exit plane.
(See Figure P7.4.) Under these conditions, the nozzle is underexpanded, with a Prandtl-Meyer
expansion fan at the exit. Find the flow direction after the initial expansion fan. How does this
turning angle affect the net axial thrust forces exerted by the fluid on the nozzle?

Figure P7.4

Develop a computer program that will yield values of v and u versus M for Prandtl-Meyer
flow fory = 1.3 over therange M = 1.0to M = 2.5, using Mach-number increments of 0.1.
A uniform supersonic flow of a perfect gas with y = 1.3 and Mach number 3.0 expands
around a 5° convex corner. Determine the downstream Mach number, the ratio of down-
stream to upstream velocity, and the ratio of downstream to upstream stagnation temperature.

For flow at Mach 2.5 and y = 1.4 over the symmetrical protrusion shown in Figure P7.7,
find Mz, M}, M4, Tz, T’;, and T4.

T, = 300K

—

12°

Figure P7.7
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7.8 A uniform supersonic flow of a perfect gas with y = 1.4, a Mach number of 3.0, and an up-
stream static pressure of 100 kPa flows over a geometry as shown in Figure P7.8. Deter-
mine the downstream static pressure for both profiles.

(a) Expansion Fan-Oblique Shock Geometry  (b) Oblique Shock-Expansion Fan Geometry
Figure P7.8

7.9 A wwo-dimensional, flat plate is inclined at a positive angle of attack in a supersonic
airstream of Mach 2.0. (See Figure P7.9.) Below the plate, an oblique shockwave starts at
the leading edge, making an angle of 42° with the stream direction. On the upper side, an
expansion occurs at the leading edge.

(a) Find the angle of attack (AoA) of the plate.
(b) What is the pressure on the lower surface of the plate?
{c) What is the pressure on the upper surface of the plate?

Figure P7.9

7.10 A two-dimensional supersonic wing has the profile shown in Figure P7.10. At zero angle of
attack, determine the drag force on the wing per unit length of span at Mach 2 and at
Mach 4. Repeat for the lift force. Assume y = 1.4.



252 Chapter 7 Prandtl-Meyer Flow

M t=02m
—_—
— Li2=12m
e L =24m
Figure P7.10

7.11 In Problem 7.10, a compression occurs at the trailing edge, with the resultant parallel flows
in regions 4 and 5. (See Figure P7.11.) Is there any difference in pressure, velocity, or en-
tropy between regions 4 and 5? Discuss.

Figure P7.11

7.12 A reservoir containing air (a perfect gas with constant y = 1.4) at 10 MPa is discharged
through a C-D nozzle of area ratio 3.0. An expansion fan is observed at the exit, with the
flow immediately downstream of the fan turned through an angle of 10°. Determine the
pressure of the region into which the nozzle is exhausting.

7.13 Determine the value of y for which v, = 180°.

7.14 For the geometry shown in P7.14 and the given values of the fan angle and the deflection
angle, determine M; and M,.

(2 =) = —15°

Figure P7.14



Section 7.11 Problems 253

7.15 For the geometry of Figure P7.14 and for given values of the wall turning angle A and the
static pressure ratio across the expansion fan, p,/p;, define a process that will yield M,
and M,. Use the process to solve for these Mach numbers if p, = 0.4p, and A = 10°. As-
sume thaty = 1.4,

7.16 A gas (y = 1.44; R = 256 J/kg-K) flows towards a convex corner with M; =3 and
T, = 300 K. Determine the downstream Mach number M, and the downstream velocity
V, if the wall is turned 15°. Repeat the calculations if the wall is turned 30°.

717 Air (y = 1.4) at M, = 2 and p; = 150 kPa flows in a duct as shown in Figure 7.15. The
upper wall turns the uniform supersonic stream through 5° “away” from the flow, resulting
in the formation of a Prandtl-Meyer fan at the corner. Waves of the fan reflect off the
lower surface of the duct. Determine the Mach number and pressure downstream of the
leading reflected expansion wave.

7.18 When Theodor Meyer presented his dissertation in 1908, the Mach number had not been
named,; it appeared 20 years later. (See the Historical Note in Section 2.5.) Accordingly, at
the time Meyer’s thesis was written, the static-to-total-pressure ratio was used. Use the
pressure ratio to write the Prandti-Meyer function much as Meyer would have.

7.19 Obtain the following pressure-Mach number relation from the continuity and normal mo-
mentum equations applied to a control volume containing a Mach wave:

dp ___ M dM
B -1 .M
P 1+
2
Integrate this relation to derive the expression for the pressure ratio across the Mach wave

P2/ py in terms of M, and M,; that is, obtain Eq. (7.13).

7.20 Repeat Example 7.5 for y = 1.25. [Note that this problem would best be performed using
a numerical method, as there is no table for this value of vy.]



Chapter 8

Applications Involving
Shocks and Expansion Fans

8.1 INTRODUCTION

Chapters 6 and 7 presented cases of two-dimensional flow: the oblique shockwave and
the Prandtl-Meyer expansion. To analyze supersonic flow over a finite body in which
changes in flow direction must occur, it is necessary to apply the characteristics of
Prandtl-Meyer flow and oblique-shock flow to a physical situation. It is appropriate,
then, at this point in the text, to present several applications in which the two-dimensional
flows discussed in the previous chapters are present. Several such examples have already
been considered in the text. The oblique-shock diffuser and the expansion or compres-
sion flows that take place at the exit of an underexpanded or overexpanded supersonic
nozzle have been introduced in previous chapters.

In the current chapter, we will extend consideration of supersonic flows in dif-
fusers by investigating the shock diffuser and a spike-type inlet. This examination will
be followed by an investigation of the plug nozzle, a jet-propulsion system flow com-
ponent that essentially replaces the diverging portion of a conventional supersonic
nozzle with a Prandtl-Meyer expansion so as to increase the off-design performance of
the nozzle. Finally, an analysis of a variety of supersonic airfoils that involve both
oblique shocks and Prandtl-Meyer flow will be presented. The latter material is often
termed shock-expansion theory.

8.2 SUPERSONIC OBLIQUE-SHOCK DIFFUSER

254

For a turbojet or ramjet traveling at high velocity, it is necessary to provide an inlet, or
diffuser, that will perform the function of slowing down the incoming air with a minimum
loss of stagnation pressure. The use of a converging—diverging passage as an inlet for
supersonic flow was studied in Chapter 4. Because such an internal deceleration device
can operate isentropically only at the design speed, this type of diffuser has been found
to be impractical during startup and when operating in an off-design condition. In fact,
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without provisions for either varying the throat area or overspeeding, the design
condition could not be attained.

To eliminate the starting problem involved with the converging—diverging pas-
sage, the internal throat must be removed. Thus, a possible design is the normal-shock
diffuser, where the deceleration takes place through a normal shock followed by sub-
sonic diffusion in a diverging passage. (See Figure 8.1.) The disadvantage of this setup
is the large loss in stagnation pressure incurred by the normal shock. Only at Mach
numbers close to unity would this design be practicable.

In Chapter 6, the advantage of decelerating through several oblique shocks
rather than one normal shock was demonstrated. (See Example 6.5.) The oblique-shock
spike-type diffuser takes advantage of this condition and hence represents a practical
device for decelerating a supersonic flow. The operation of a single oblique-shock inlet
at design speed is depicted in Figure 8.2. External deceleration is accomplished through
an oblique shock attached to the spike. Further deceleration takes place through a nor-
mal shock at the engine cowl inlet, with subsonic deceleration occurring internally. Even
though a normal shock occurs in this system, the flight Mach number M has been re-
duced by the oblique shock, thus reducing the normal-shock strength and resultant
stagnation pressure loss.

Figure 8.1 A Normal-Shock
Diffuser

Figure 8.2 A Single Oblique-Shock Spike-Type
Inlet at Design Speed
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Figure 8.3 A Two-Oblique-Shock
Spike-Type Inlet at Design Speed

Theoretically, the greater the number of oblique shocks, the less the resultant
total loss in stagnation pressure becomes. For example, a two-shock inlet is shown in
Figure 8.3. Note, however, that along the surface of the spike, the boundary layer in-
creases in thickness. The adverse pressure gradient created by the second shock may be
sufficient to cause flow separation, with resultant loss of available energy.

The greater the number of shocks, then, the greater the tendency toward flow
separation is. It is necessary to effect a compromise in supersonic diffuser design be-
tween the increased total-pressure recovery achieved by increasing the number of
oblique shocks through which the flow must be diffused and the increased tendency
toward separation brought about by the shocks. For this reason, with flight Mach num-
bers up to 2.0, a single-shock diffuser is generally employed, whereas multiple-shock
inlets are required for higher flight Mach numbers.

Several different modes of operation of the spike diffuser may occur, depending
on the downstream engine conditions such as nozzle opening, turbine speed, and fuel
flow rate. This situation is in contrast to the converging—diverging inlet, where opera-
tion was dependent on the inlet’s geometry. The spike diffuser’s modes of operation
are termed subcritical, critical, and supercritical, depending on the location of the nor-
mal shock.

Critical operation occurs with the normal shock at the cowl inlet, as shown in
Figure 8.4(a), with the engine operating at design speed. If the flow resistance down-
stream of the inlet is increased, with the engine still at the design flight Mach num-
ber, the normal shock moves ahead of the inlet, with some of the subsonic flow after
the shock able to spill over or bypass the inlet. [See Figure 8.4(b).] For this
subcritical condition, the inlet is not handling the maximum flow rate; furthermore,
the pressure recovery is unfavorable, since at least some of the inlet air passes through
a normal shock at the design Mach number. If the downstream resistance is reduced
below that for critical operation, the normal shock reaches an equilibrium position
inside the diffuser. For this supercritical condition [see Figure 8.4(c)]}, the inlet is
still handling maximum mass flow, yet the pressure recovery is less than that for
critical operation, since the normal shock occurs at a higher Mach number in the
diverging passage.
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Spiliover (subsonic flow)

(b) Subcritical Mode

(c) Supercritical Mode

Figure 8.4 Modes of Operation of the Spike Diffuser

A turbojet engine must be able to operate efficiently both at other-than-design
speeds and at different angles of attack. An engine operating at the critical mode may
be pushed over into the undesirable subcritical mode by a small change of speed or
angle of attack. For this reason, in actual operation, it is more practical to operate in
the supercritical mode. While not providing quite as good a pressure recovery as criti-
cal operation, the supercritical mode still yields maximum engine-mass flow and fur-
nishes a safety margin so that a small decrease in engine speed will not cause a
transition to the subcritical mode. Thus, the supercritical mode provides a more stable
engine operation.

Example 8.1. Computation of pressure recovery in one- and two-shock spike inlets

Compare the loss in total pressure incurred by a one-shock spike diffuser (two dimensional)
with that incurred by a two-shock diffuser operating at Mach 2.0. Repeat at Mach 4.0. (See
Figure 8.5.) Assume that each oblique shock turns the flow through an angle of 10°. Take
y = 1.4

Solution

From the charts in Appendix D [or an oblique-shock solver using Collar’s method (see
Chapter 6)] at M; = 2.0 and § = 10°, the weak solution yields § = 39.3139°. Moreover,
the Mach number downstream of the shock is M, = 1.6405. For the one-shock diffuser,

( £_> _ (&)(&3)
\ Po1/ one shock Po2 Po1
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(a) One-shock inlet (b) Two-shock inlet

Figure 8.5 Flow Regions within the Spike Diffusers of Example 8.1

From the oblique-shock relations at M; = 2.0, p,»/p,; = 0.9846, and from the normal-
shock relations at M, = 1.6405, p,3/p,, = 0.8797. Hence,

(@> = (0.8797)(0.9846) = 0.8662
Po1 7 one shock

For the two-shock inlet, M, = 1.6405. At the latter Mach number and § = 10°, the wave
angle for the weak-shock solution 8 = 49.3849°, p.s/p,, = 0.9877, and M; = 1.2849. At
M;, from the normal-shock relations, p,4/p,; = 0.9819. Thus,

(@) = <p;'4>(@><f"—2> = (0.9819)(0.9877)(0.9846) = 0.9549
Po1/ two shocks Do3 Po? Poi

Now, at M; = 4.0 and 6 = 10°, the weak solution (again, either from the charts in Appen-
dix D or from Collar’s method, described in Chapter 6) yields 8 = 22.2341°, p,/p, =
0.9254, and M, = 3.2861. From the normal-shock relations at M, = 3.2861, we have
Po3/ Doz = 0.2563. Therefore, for the one-oblique-shock diffuser,

(5‘13—) - (ﬁ‘ﬁ)(ﬁ‘ﬁ> = (0.2563)(0.9254) = 0.2372
Po1/ one shock Poz Dot

For the two-shock inlet, M, = 3.2861. At M, = 32861 and 6 = 10°,8 = 25.5371°, pys/poz =
0.9539, and M; = 2.7358. Using M; in the normal-shock relations gives p,4/p,; = 0.4111.
For this case,

<@) = <@><@)<@> = (0.4111)(0.9539)(0.9254) = 0.3629
Po1/ two shocks Po3/ \Po2/ \Po1

It can be seen that, whereas the improvement in total-pressure ratio gained by using a two-
shock inlet over a one-shock inlet is only about 10 percent at Mach 2, this improvement
amounts to 53 percent at Mach 4. Thus, at flight Mach numbers of 2.0 and below, the use of
an inlet with one oblique shock is satisfactory; at flight Mach numbers of 4.0, an inlet with
two oblique shocks (or more) is necessary.
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Example 8.2. Pressure recovery in a spike inlet operating at the supercritical mode

A two-dimensional, spike-type inlet is operating in the supercritical mode at a flight Mach
number of 3.0. The local static pressure and temperature are 50 kPa and 260 K, respectively.
The flow cross-sectional area at the cowl inlet A, is 0.1 m%; the cross-sectional area at the
location where the normal shock occurs in the diverging passage A; = A4is 0.12 m%. (See
Figure 8.6.) Calculate the mass-flow rate and total-pressure ratio p,4/p,s. Neglect friction.
The spike half-angle is 10°, and the ratio of specific heatsisy = 1.4.

Solution

From the oblique charts in Appendix D or an oblique-shock solver at M; = 3.0 and
& = 10°, the weak solution yields 8 = 27.3827°. Moreover, the Mach number down-
stream of the shock is M, = 2.5050, and the total-pressure ratio across the shock
Po2/Po1 = 0.9631. The flow from region 2 to region 3 is assumed to be isentropic. Thus,

2 ()
A3 A /N A /\ AL

Using the isentropic area relations at M, = 2.5050, we have

Az

o <%>(2.6491)(1.0) ~ 3.1789
A

0.10

The Mach number corresponding to this value is determined to be

M; = 2.6986

Bﬁ:<£ﬁ><£&3)(fﬁ)
Po1 Po3/ \Po2/ \ Po1

Next,

Figure 8.6 Flow Regions within a Spike Diffuser
Operating in the Supercritical Mode



260 Chapter 8 Applications Involving Shocks and Expansion Fans

From the normal-shock relations at M;,

Pos

P4 = 04241
Do3

Therefore,

% = (0.4241)(1.0)(0.9631) = 0.40845

ol
(P2, (L Ys0-

Dot = (m >p1 (0.0272>50 1,838.2353 kPa

So
Po = <%£)p,,1 = 0.9631(1838.2) = 1,770.4044 kPa
ol

Since

P = (ﬂ) ,
2 Do 02
where p,/p,, = 0.0581 at M, = 2.5050, we have

p, = (0.0581)(1770.4) = 102.8605 kPa

Since no change in stagnation temperature occurs across a normal shock,

T, = (%)(L%)(Q)Tl = (0.4435)(1.0)(——1——>260 = 322.9067 K

2/\T,,J\ T, 03571
m = pyAVy = (ﬁz‘)AzMz VyRT,
RT,
102.8605
= [(0‘287)(322.9067) }(0.10)[2.505\/(1.4)(287)(322.9067)]
= 100.1477 kg/s

8.3 EXIT FLOW FOR UNDEREXPANDED AND OVEREXPANDED SUPERSONIC NOZZLES

In Chapters 3 and 4, the flow through a converging-diverging nozzle was studied in de-
tail. The variation in flow patterns inside the nozzle obtained by changing the back
pressure, with a constant reservoir pressure, was discussed. It was shown that, over a
certain range of back pressures, the flow inside the nozzle was unable to adjust to the
prescribed back pressure inside the nozzle, but rather adjusted externally in the form
of compression waves or expansion waves. Having studied oblique waves in Chapter 6
and Prandtl-Meyer flow in Chapter 7, we can now discuss in detail the wave pattern
occurring at the exit of an underexpanded or overexpanded nozzle.
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P2= P Ps = Pp

Jet centerline

Jet boundary

Figure 8.7 Underexpanded Supersonic Nozzle

Consider first the flow at the exit plane of an underexpanded, two-dimensional
nozzle. (See Figure 8.7.) Since the pressure drop due to the expansion inside the nozzle
was less than the back pressure, expansion fans form at the nozzle exit plane. As is
shown in Figure 8.7, flow at the exit plane is assumed to be uniform and parallel, with
p1 > py. For this case, from symmetry, there can be no flow across the centerline of the
jet. Thus, the boundary conditions along the centerline are the same as those at a plane
wall in nonviscous flow, and the normal velocity component must be equal to zero. The
pressure is reduced to the prescribed value of back pressure in region 2 by the expan-
sion fans. However, the flow in region 2 is turned away from the exhaust-jet centerline.
To maintain the zero normal-velocity component along the centerline, the flow must
be turned back toward the horizontal. Thus, the intersection of the expansion fans
centered at the nozzle exit lip yields another set of expansion waves, just as did the re-
flection of the expansion fan from a plane wall discussed in Section 7.7. The second
expansion, however, produces a pressure in region 3 that is less than the back pres-
sure, so the expansion waves reflect from the external air as oblique shocks. These
compression waves produce a static pressure in region 4 equal to the back pressure,
but again turn the flow away from the centerline. The intersection of the oblique
shocks from either side of the jet then requires another set of oblique shocks to turn
the flow back toward the horizontal, with the shocks reflecting from the external air
as expansion waves. The process thus goes through a complete cycle and continues to
repeat itself, with an appropriate reduction in the stagnation pressure. The flow pat-
tern discussed appears as a series of diamonds, often visible at the exit of rocket noz-
zles. Theoretically, the wave pattern should extend to infinity. Actually, however,
mixing of the jet with ambient air along the jet boundaries eventually causes the wave
pattern to die out.

Flow at the exit of an overexpanded nozzle is shown in Figure 8.8. Since the exit-
plane pressure is less than the back pressure, oblique shockwaves form at the nozzle
exit. The intersection of these shocks at the centerline yields a second set of oblique
shocks, which in turn reflect from the ambient air as expansion waves. Thus, except
for being out of phase with the wave pattern from the underexpanded nozzle, the jet
flow of the overexpanded nozzle exhibits the same characteristics as the underex-
panded nozzle.
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P2=Ps Ps = P»

Jet centerline

Jet boundary

Figure 8.8 Overexpanded Supersonic Nozzle

Example 8.3. Computations involving an overexpanded supersonic nozzle

A supersonic nozzle is designed to operate at Mach 2.0. Under a certain operating condi-
tion, however, an oblique shock making a 45° angle with the flow direction is observed at
the nozzle exit plane. What percent of increase in stagnation pressure would be necessary
to eliminate this shock and maintain supersonic flow at the nozzle exit? (See Figure 8.9.)

Solution

For M, = 2.0, py/p,; = 0.1278. For this case, then, p, is equal to (0.1278) p,;. The com-
ponent of M; normal to the oblique wave is M, sin 45° = 1.4142. From the normal-
shock relations, py/p; = 2.1667. Of course, this pressure ratio can also be found using
the oblique-shock solver described in Chapter 6. Therefore, with the oblique shock, the
ratio  py/po1 = (po/P1)(P1/Po1) = (2.1667)(0.1278) = 0.2769. With the shock, p,=
(1/0.2769)p;, = (3.6114)p,. On the other hand, for supersonic exit flow with no shocks
(i.e., the perfectly expanded case), p,; = (1/0.1278)p, = 7.8247p,. Thus, an increase of
[(7.8247 — 3.6114)/3.6114}100 = 116.7 percent in stagnation pressure is required.

Figure 8.9 Supersonic Nozzle of Example 8.3

8.4 PLUG NOZZLE

The enormous expense of sending a payload into space provides the basis for explo-
ration of propulsion systems and propulsion components that can reduce costs. One
approach for future space transportation systems is to employ a single-stage-to-orbit,
reusable launch vehicle. It has been estimated that this type of vehicle will diminish the
costs by a factor of 10; see Ref. (8.1).
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Figure 8.10 Conventional Bell-Shaped Nozzle

An essential component of any space transportation system is the exit nozzle.
Over the years, various nozzle profiles have been used. Early rockets employed conical
shapes. Currently, the conventional shape of the exit nozzle on rockets has the profile
of a bell. (See Figure 8.10.) The bell nozzle is essentially a converging—-diverging nozzle;
see Ref. (8.2).

The expansion of a high-pressure gas through a converging—diverging nozzle
has been shown, at least over a reasonably wide range of operating pressure ratios, to
be independent of back pressure. The adjustment to the back pressure in these cases
occurs outside the nozzle in the form of expansion waves and oblique shockwaves, as
shown in the previous section. Hence, the actual expansion of the gases in the noz-
zle is controlled solely by the nozzle walls. For example, in an underexpanded nozzle,
the gases continue to expand to pressures well below the ambient pressure.

The thrust developed by a nozzle is dependent on the nozzle exhaust velocity and
the pressure at the nozzle exit plane. (See Example 1.3.) In a jet propulsion device, for
example, an exit-plane pressure greater than ambient gives a positive contribution to
the thrust of the device, whereas an exit-plane pressure less than ambient gives a nega-
tive thrust component.

Let us consider a rocket moving at constant velocity and write the momentum
equation for a control volume as shown in Figure 8.11. If one assumes one-dimensional
flow at the nozzle exit, then

T - (pe - pa)Ae = mVe
or
T= (pe - pa)Ae + mVe (81)

When a supersonic nozzle is operating in the under- or overexpanded regimes,
with flow in the nozzle independent of back pressure, the exit velocity is unaffected by
back pressure. Thus, over this range of back pressures, Eq. (8.1) shows that larger thrusts
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’
Control Volume / i ~<

Figure 8.11 Net Force Acting on the Control
Surface of a Rocket Moving at Constant
Velocity

are developed in the underexpanded case (p, > p,) and smaller thrusts in the overex-
panded case (p, < p,).

A conceptual plot of thrust versus back pressure for a converging-diverging noz-
zle 1s shown in Figure 8.12. For back pressures greater than the upper limit indicated, a
normal shock appears in the diverging portion of the nozzle, the exit velocity becomes
subsonic, and this analysis no longer applies.

The plug nozzle (sketched in Figure 8.13a) was studied in the 1950s and ’60s [see
Refs. (8.3)—(8.6)] and reconsidered for use on the RLV X-33 in the 1990s. This device is
intended to allow the flow to be directed or controlled by the ambient pressure (since
ambient pressure varies with altitude, this mechanism is termed altitude adaptation)
rather than by the nozzle walls. In this nozzle, the supersonic flow is not confined with-
in solid walls, but is exposed to the ambient pressure.

Plug nozzle operation at the design pressure ratio is depicted in Figure 8.14.
Figure 8.14(a) shows the expansion wave pattern, and Figure 8.14(b) shows the
streamlines at the nozzle exit. The annular flow first expands internally up to Mach 1 at
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Figure 8.12 Conceptual Diagram of Thrust versus Back Pressure for a C-D
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Figure 8.13 Plug Nozzles

the throat. The remainder of the expansion to the back pressure occurs with the flow
exposed to ambient pressure. Since the throat pressure is considerably higher than the
back pressure, a Prandtl-Meyer expansion fan is attached to the throat cowling as
shown. The plug is designed so that, at the design pressure ratio, the final expansion
wave intersects the plug apex. Thus, under this operating condition, the pressure at the
plug wall decreases continuously from throat pressure to ambient pressure, just as with
the converging—diverging perfectly expanded nozzle.

To produce a maximum axial thrust, it is necessary for the exit flow to have an axial
direction. Therefore, the flow at the throat cowling must be directed toward the axis so
that the turning produced by the expansion fan will yield axial flow at the plug apex.

For the underexpanded case, the operation of the plug nozzle [Figure 8.15(a)] is
similar to that of the converging—diverging nozzle. (See Section 4.4.) The pressure
along the plug is the same as for the design case, just as the static pressure along the
converging-diverging nozzle wall is the same as for the perfectly expanded case. With
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(a) Wave pattern for design (b) Streamlines for design

Figure 8.14 Wave Pattern and Streamlines within a Plug Nozzle at
Design

(a) Underexpanded (b) Overexpanded

Figure 8.15 Wave Patterns of a Plug Nozzle Operating in Under- and
Overexpanded Modes

a lower back pressure than that for the design case depicted in Figure 8.14, the flow con-
tinues to expand after the apex pressure, yielding a nonaxial jet velocity component,
just as with the underexpanded supersonic converging—diverging nozzle.

The major improvement to be derived from the plug nozzle occurs with the over-
expanded mode of operation. This is significant in that a rocket nozzle, for example, ac-
celerating from sea level up to design speed and altitude must pass through the
overexpanded regime. With the ambient pressure greater than the design back pres-
sure, the flow expands along the plug only up to the design back pressure. The final
wave of the expansion fan centered at the cowling intersects the plug at a point up-
stream of the apex. As shown in Figure 8.15(b), the outer boundaries of the exhaust jet
are directed inward. Further weak compression and expansion waves occur down-
stream of the point of impingement of the final wave from the fan; the strength and lo-
cation of these waves are dependent on the plug contour. Thus, the expansion along the
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Figure 8.16 Pressure Distribution within a Plug Nozzle

plug is controlled by the back pressure, whereas the converging—-diverging nozzle ex-
pansion is controlled by nozzle geometry.

A sketch of the pressure along the plug surface versus distance is given in
Figure 8.16. The pressure along the plug surface does not decrease below ambient
pressure, so there is not a negative thrust term due to pressure difference. As a result,
the plug nozzle provides improved thrust over the converging-diverging nozzle for the
overexpanded case. (See Figure 8.17.)

It would appear desirable to design the plug so as to provide for isentropic ex-
pansion flow along its curved pointed surface. However, this design leads to a rather
long plug and, in turn, to a heavy design. It has been shown [see Ref. (8.7)] that re-
placement of the curved shape with a simple cone results in only a small loss of thrust
for cone half-angles up to 30°. Thus, it was recognized that the plug nozzle has the fur-
ther advantage over the converging—diverging nozzle of being short and compact.

Thrust

Design

Plug Nozzle

C-D Nozzle

Back Pressure

Figure 8.17 Comparison of Thrust and Back Pressure for
Plug and C-D Nozzles
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Figure 8.18 Schematic Diagram of the Flow Field of a Truncated Annular
Plug Nozzle [see Ref. (8.8)]

Further studies have revealed that more than one half of the plug length pro-
duces almost no thrust and only added weight. Consequently, truncated plugs have
been considered. The flow field of these shortened plugs is rather complicated, involv-
ing lip shocks, regions of separated flow, and a variety of expansion and compression
waves. Figure 8.18 is a sketch of the flow downstream of the plug. There is considerable
research currently under way, largely using modern computational fluid dynamics, to
study these flow fields [e.g., see Refs. (8.7)—(8.9)].

One major problem with the plug nozzle is that of designing a plug to withstand
the high temperatures that exist, for example, in the exhaust gases of a rocket engine.
This factor requires consideration for the cooling of the plug.

Example 8.4. Performance computations comparing overexpanded plug and C-D nozzles

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient pres-
sure (p/p,) of 50. Compare the performance of a plug nozzle with that of a converging-
diverging nozzle for two cases where the nozzle is operating overexpanded: p/p, = 40
and p./p, = 20. Make the comparison on the basis of thrust coefficient Cy = T/(p.A,),
where T is the thrust and A, is the area of throat. Assume that v = 1.4, and in both cases
neglect the effect of nonaxial exit velocity components.

Solution

For the design case:

From p./p, = p/p. = 1/50 = 0.02, and since in the design case the flow is isentropic, we
can determine the Mach number at the exit [i.e., M, = 3.2077; see Eq. (3.15)], and there-
fore T,/T, = T,/T, = 0.3270. Now, from the definition of the thrust coefficient,

(V) _ (pAV)Ve ( ra ) W _ <p>< P )(To>(M,a,)<Meae>

DA, PcA, RT,/ p. RT, Pe

c
4 Pe T,
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Because the nozzle is choked, M, = 1, and therefore,

+ 1)\
L (y ) = 05283

Pe 2

T, 2

—_ = = (.8333
T. vy +1

Using these values and the values at the exit, we get

0.5283p, }[\/(1.4)(1%)(0.8333)2

Cr = [ RO 5 }(3.2077)\/(1.4)(R)(0.3270)TC = 1.4862

Note that R, p, and T, drop out of the preceding expression.
For the converging—diverging nozzle operating off design:

Ae(pe - pa) Ae<pe pa>
Cr=(C esign T = 14862 + —| — — —
7= (Cr ey Ape A\p.  pe

where at M, = 32077, AJA, = AJA" = 5.1584. So for pJp, = 40,

1 1
=1 + 5. ——-—)=1
Cr = 1.4862 51584(50 4()) 1.4604

For p./p, = 20,
Cr = 1.4862 + 5.1584(0.02 — 0.05) = 1.3314

For the plug nozzle:

Flow in the plug nozzle does not continue to expand below ambient pressure, so
there is no pressure term in the expression for thrust.

(o Te
Now,at 25 = 40, M, = 3.0570, = 03485, and

pa c

o - r'n,Ve_[ 0.5283p, J[A,\/l.4(R)O.8333TC
T

= = 3.0570V/1.4R(0.3485T,) = 1.4622
p.A, | R(0.8333T,) DA, ] ( )

T,
whereas for p/p, = 20, M, = 2.6015, T = 0.4249, and Cy = 1.3740

The plug nozzle is marginally superior to the C-D nozzle near the design point when op-
erating in the overexpanded regime; however, the gap widens as the chamber-to-ambient
pressure ratio decreases.
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8.5 SUPERSONIC AIRFOILS

The design of an airfoil should be such as to provide a lift force normal to the undis-
turbed flow, accompanied by low drag force in the direction of the undisturbed flow. The
shape of a wing section to be used in low-speed, incompressible flow is the well-known
teardrop, or streamlined, profile. This shape is predicated on incompressible aerodynam-
ics, where, for example, drag is composed of skin friction on the airfoil surface and pres-
sure or profile drag, due to the effects of flow separation at the rear of the airfoil. In
supersonic flow, however, the design must be completely modified, owing to the occur-
rence of shocks. For example, if a streamlined profile with a rounded blunt nose were
used in supersonic flow, either an attached shock of relatively high strength would occur
at the nose or, if 6 were great enough, a detached shock (Figure 8.19) would take occur in
front of the airfoil. In both cases, the high pressures after the shockwave produce exces-
sive drag forces on the airfoil. To minimize the drag due to the presence of shocks, the su-
personic airfoil must have a pointed nose and be as thin as possible. The ideal case is a
flat-plate airfoil possessing zero thickness.

Consider a two-dimensional flat plate at an angle of attack (AoA) to the ap-
proach flow as shown in Figure 8.20. Flow over the upper surface 1s turned through an
expansion fan centered at the nose; flow over the lower surface is compressed through
an oblique shock attached to the nose. The difference in pressure between the upper
and lower surfaces causes a net upward force, directed normal to the flow direction, the
lift, on the airfoil. A force opposing the motion of the airfoil, the drag, on the airfoil, ac-
companies this lift. The latter force is called wave drag, since it exists only because of
the supersonic wave pattern involved with this flow.

Expressions for the lift and drag for supersonic flow past a flat-plate airfoil oper-
ating at an angle of attack « to the flow direction are given by

L= _(pupperc)cos @ + (Prower€)€OS @ = ¢(Piower — pupper)coS o (8.2)

D = —(pupperC)Sin @ + (PiowerC)SIN @ = ¢(Plower — pupper)Sin a (8.3)

Figure 8.19 Detached Shock
in Front of a Streamlined
Airfoil

v
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Figure 8.20 Supersonic Flow Past a Flat Plate at an Angle of Attack

where c is chord length. Note the various group of terms within each of these expres-
sions. The lift force for this case is composed of two groups. Each is the product of pres-
sure on the surface and the area—in this case, the chord length; the cosine of the angle
of attack multiplied by each group provides the component in the direction normal to
the flow direction. The only difference for the wave drag force is that the groups are
multiplied by the sine of the angle of attack. Careful consideration of these groups and
their components will enable more challenging geometries to be considered.

Example 8.5. Computation of the lift and drag coefficients of a flat-plate airfoil at an angle of
attack in a supersonic stream

Compute the lift and drag coefficients

D

L
Cp = 1 and Cp = 1
EpV%Qc 5 PV ke
for a flat-plate airfoil of chord length ¢ = 1 m in supersonic flow through air (y = 1.4) at

My =2S5and a = 10°.

Solution

First, find the static pressure on the lower surface behind the oblique shock. Using the
charts in Appendix D or an oblique shock solver from Chapter 6, for Mo = 2.5 and



272 Chapter 8 Applications Involving Shocks and Expansion Fans

6 = 10°, the shock angle 8 is found to be 31.8506°. With this and the oblique-shock rela-
tions, we can solve for the Mach number on the downstream side of the shock and the
static pressure ratio across the shock (i.e, Mjgwer = 2.0859 and pioye/poc = 1.8639). For
the expansion fan, using the Prandti-Meyer table in Appendix E or the solver described
in Chapter 7, at Mw = 2.5, we find that ve = 39.1236°. Accordingly, vypper =
39.1236° + 10° = 49.1236°. Reentering Table E.1 or the Prandtl-Meyer solver with this
value, we find that M,,p., = 2.9674. The flow through the expansion fan is isentropic;
that is, p, is constant. Hence, at the freestream and upper region Mach numbers, we ob-
tain from the isentropic flow expressions or an isentropic flow solver (see Appendix A)
that peo/p, = 0.0585 and pyppe,/p, = 0.0286. Consequently.

pupper <pupper)< Po ) ( 1 )
=— )] = (o ——— | = 0.4885
Do o, e (0.0286) 0.0585 0.488

C, = L _ L (plower - pupper)COS o
L — = =
_ (1.8639 — 0.4885)COS 10° — 0309
- 43750 =Y
D {(Plower — P )sin a
CD = ] _ lo erl upper = CL tan a = 0.0546
"')’PooMgcC —'YpooMgo

2 2

As a final set of computations for this example, we use the method described in Example 7.5
to determine the flow angle and the pressure ratio downstream of the airfoil. Basically, with
that approach, the pressure-deflection diagram is drawn for the shock on the upper sur-
face at the trailing edge of plate, as well as for the expansion fan on the lower surface of
the plate at the trailing edge. The intersection of these diagrams provides the angle and
pressure common to both sides of the dividing slip line. The result of this computation is

ay = a4 = 0.0398°
PP = pa/Peo = 0.9998
Thus, the flow downstream of the airfoil has a slight upward angle (called the upwash), and

the pressure is virtually equal to the free static pressure value. Explanation of the phe-
nomena may be found in Anderson [Ref. (8.10)].

It should be noted that the flat plate is an idealization; structurally, such an airfoil
is unsound. Again, for a supersonic airfoil, a thin airfoil with a pointed nose is required.
The curved, symmetrical airfoil represents one possibility. For small angles of attack,
oblique shocks are attached to the nose, with the stronger shock occurring on the lower
surface, since the flow turning angle must be greater on this surface. (See Figure 8.21.)
Due to the continuous curvature of the airfoil, flow over the airfoil continually changes
direction, and a gradual expansion occurs over the upper and lower surfaces. Expan-
sion waves are produced as shown in Figure 8.21. If the angle of attack becomes too
great, or if the nose half-angle A is too large, the oblique shocks may detach from the
nose, yielding excessive drag.

Another airfoil shape for supersonic flow is the diamond profile, shown in
Figure 8.22. Flow over the upper surface is first expanded through a fan centered at
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Figure 8.21 Supersonic Flow Past a Curved, Symmetrical Airfoil at an Angle of
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Figure 8.22 Wave Pattern on a Supersonic Airfoil of Diamond Profile at an
Angle of Attack

A and then is turned through another expansion fan at B. If the angle of attack is
small enough, or if the airfoil is thick enough, flow over the upper surface may first be
compressed through an oblique shock attached at A. (See Figure 8.23.) Flow over the
lower surface is turned through an oblique shock at A and then through an expansion
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Figure 8.23 Wave Pattern on a Supersonic Airfoil of
Diamond Profile at Zero Angle of Attack

fan at C. As shown by the pressure distribution, higher pressures over the lower sur-
faces yield a lift force; higher pressures at the front surfaces cause a drag force.

Example 8.6. Computation of the lift and drag coefficients of a supersonic airfoil with a
diamond profile at an angle of attack

For the two-dimensional symmetrical airfoil with a diamond profile A = 5°, shown in
Figure 8.22, compute the lift and drag coefficients in supersonic flow through air (y = 1.4)
at Mo, = 3.0, with an angle of attack (AoA) = 10°.

constant-pressure,
constant-flow-direction
regions

©®

Figure 8.24 Supersonic Flow Past an Airfoil with a Diamond Profile
(Example 8.6)
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Solution

On the upper surface, supersonic flow is first expanded through a Prandtl-Meyer fan. The
Prandtl-Meyer function for the freestream conditions is obtained as

Vo = 49.7573°

The Prandtl-Meyer function in region 2 is therefore

V; = Vo + A = 497573 + 5.0 = 54.7573°

and the value of the function in region 4 is
vy = v, + 2A = 547573 + 10.0 = 64.7573°

Using the Prandtl-Meyer tables in Appendix E or a solver developed from relations in
Chapter 7, we determine the respective Mach numbers for these functions to be

M, = 32731 and M, = 3.9233

The static-to-total-pressure ratios at these two Mach numbers, as well as the freestream
ratio, can be readily determined, and since the flow between the freestream and regions 2
and 4 is isentropic, we may write that

P2 P2 Poz2 \[ Pox 1
=== N==)=00 ——— ) = 0.667
Poo <p02)<Pooo><Poo) (00182)(])<00272> 0.6676

- (D) - omo) - o

Flow on the lower surface is first compressed through an oblique shock, which turns the
flow by an angle of 15°. For My = 3.0 and 6 = 15°, 8 = 32.2404°, so that M, = 2.2549,
Dot Pooo = 0.8950, and py/p = 2.8216. Flow on the lower surface then expands through
an expansion fan for which

v, = 33.1433°
vy =y + 2A = 43.1433°

The Mach number M5 for this value of the Prandtl-Meyer function is determined to be
2.6780.The static-to-total-pressure ratio at M5 is found to be 0.0444. Thus, we may write

£ (ﬁxf"i)(—’i‘)(&’f) — (0.0444)(1)(0.8950 ( ! ) = 14607
Peo Po3 Pol Poxo P ( ’ )( )( - ) 0.0272 ’

c/2 cl2
= -+ J—
L (pl o A)cos(oz + A) <p3 )cos(a A)

c2 /2
- (pzcos A)cos(a —4)- (p4cos A

Note that each group in parentheses in the expression represents a pressure times the cor-
responding area and that the flow direction in region 1 isa + A, inregion2isa — A, in
region 3 is @ — A, and in region 4 is a + A. Now, multiplying and dividing by the

cos A

)cos(a + A)
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freestream static pressure, using the pressure ratios just determined, and employing the
fact thata = 10° and A = 5°, we find that

2.8216 1.4603
L = pocy |57 [0.9659 + | o 10.9962
p C{[(z)(os%z)] {(2)(0.9962)]
0.6676 0.2681
N 109962 — | ————--0.9659
{(2)(0.9962)} 62 [(2)(0.9962)] }
L = 1.6345(pxc)
Thus,
c, = L 1.6345 0.2594
1 5 6.300
5 YPoo Mooc

c/2 c/2
= in(a + A) + in(a —
D (pl COSA>sm(a A) (p3COSA)sm(a A)
c/2 \ . c2 .
- - A) - +
(pZCOSA)sm(a A) <p4COSA>sm(a A)

2.821 4
D = pooc{[——&}o.ZSSS + [——LL(B—}O.OSH

(2)(0.9962) (2)(0.9962)
0.6676 0.2681
- =———————10.0872 — | ———————10.2588
[(2)(0.9962)]008 2 {(2)(0.9962)}0 258 }
D = 0.3664( peoc)
Cp = D _ 0.3664 — 0.0582
1 . 6300
EwooM €

As in the previous example, the angle of the slip line, and therefore the angle of the flow
downstream of the airfoil, can be determined using the method described in Example 7.5.
The results for the current problem are as follows:

as = ag = 0.2853°

Ps/Poc = P/ Poc = 0.9914

Thus, the flow downstream of the airfoil, as in the flat-plate case, has a slight upward angle,
and the pressure is nearly equal to the free-static pressure. For smaller upstream Mach
numbers, the flow can be pitched downwards.

It can be seen, then, that subsonic airfoil design cannot be applied to supersonic
airfoils. The shape of a supersonic wing is determined mainly by the effect of shock-
waves and thus requires a thin, pointed profile. The conventional teardrop shape
used for subsonic flow would have extremely poor lift and drag characteristics in su-
personic flow.
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8.6 CHAPTER CAPSTONE APPLICATION: SURFACE PRESSURE DISTRIBUTION ON A BODY
IN A HIGH-MACH-NUMBER FLOW

As noted previously, when a blunt body is immersed in a high-Mach-number (super-
sonic or hypersonic) stream, a bow shock surrounds the front portion of the body. The
solution of supersonic blunt-body problems generally requires powerful computational
fluid dynamics techniques. In this application, however, we will make use of a very sim-
ple technique that is widely used in conceptual hypersonic designs [e.g., see Refs.
(8.11)—(8.13)]. The method that will be discussed was, curiously enough, originated by
Newton long before compressible flow concepts such as shockwaves were even imag-
ined. Thus, the modeling is known as Newtonian theory.

Newton considered a uniform stream of particles that collides inelastically with a
surface. He hypothesized that when a particle hits a surface, it loses all of its momen-
tum in a direction normal to the surface, but retains all of its momentum in the direc-
tion along the surface. He attempted, without success, to use this concept to determine
the hydrodynamic forces on ship hulls.

The method was not widely used until the 1950s, when it was realized that a gas
traveling at extremely high speeds behaves in a manner not unlike that proposed by
Newton. It was found that at high Mach numbers, the bow shock surrounding a blunt
body lies very close to the body. Accordingly, in a very high-speed flow, the gas particles
are almost able to reach the body without any change in their velocity. After passing
through the shock, the gas is forced to rapidly turn and form a thin region between the
shock and the body, which is called the skock layer.

It is easy to demonstrate from oblique-shock theory that for a fixed wedge angle
A = §, as the freestream Mach number increases, the shock angle 8 approaches the de-
flection angle 8. For M, = 00 and y = 1, it can be shown that 8 = &. Further justifica-
tion of this theory comes from the fact that because of the high temperatures and
pressures of very hypersonic flows, real-gas effects drive the value of y towards unity.

Consider a portion of the bow shock and shock layer surrounding the body, as
shown in Figure 8.25. From a momentum balance in direction normal to the shock, we
have, from Eq. (6.2),

Pr — P = szﬁz - p1Vr211 (8.4)

/ Shock layer

A small portion
of the surface of
the blunt body

Figure 8.25 Portion of Blunt Body in Supersonic Flow Used to Develop
Newtonian Theory
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Because the flow upstream is the freestream and because the gas downstream of
the shock loses all of its normal momentum, we have in this case that

Pi Poo P2 Psurface
Viil=1Veosind | and |V, | = 0
P Poo P2 P2

Note that the angle 6 is the local inclination of the surface (i.e., the angle between
the surface and the freestream velocity). Consequently, this method is also referred to
as a local surface inclination method. Several other methods are also members of this
family: the shock-expansion theory that we have already considered, as well as the tan-
gent wedge and tangent cone theories. [See Ref. (8.13).] Inserting the foregoing condi-
tions into the momentum equation, Eq. (8.4), produces

— 2 iRl
Dsurface = Poo T pooV o0 SIN” 6

It is not difficult to obtain this expression by directly applying control-volume meth-
ods. The expression may be rewritten as a pressure coefficient

Psurface — Poo .2
C,=————=2sin"6 8.5
» VL (8.5)

2

This expression is often referred to as Newton’s sine-squared law. Note that the pres-
sure coefficient is dependent solely on the geometry of the body and not on the
freestream Mach number. Since the dynamic pressure pV3,/2 = ypseM%/2, Eq.(8.5)
may be expressed as

Pourface _ 4 4 M2 in? 5 (8.6)

Px

At the stagnation point, 6 = 90° and pyyrface = Po» SO

Po 1+ yM2 (8.7)

Therefore, Newton’s theory produces the following:

. . 1+ yM% sin® 8
Psurface _ P + <1 _ p—)sin2 5 = Y S1 (8.8)

Po - Po 1 +’)’M<%o

o

To improve the accuracy of the method, Lees [Ref. (8.14)] proposed that Eq. (8.8)
be replaced with Rayleigh’s formula [see Eq. (16.7)}]; that is, replace p, with p,,. Hence,
the pressure coefficient expression, Eq. (8.8), is written as

Cp = (Cp)max sin® & (8.9)

Note that the 2 in Eq. {8.5) has been replaced with a coefficient that varies with M
and y. In this form, the theory is generally known as Newton’s modified theory. For
My = 4andy = 1.4, (Cp)max = 1.79179;for Mo = 00 andy = 1.4, (Cp)pmax = 1.83937;
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and for M = 00 and y = 1, (Cp)max = 2. Thus, the uncorrected Newtonian theory is ap-
plicable at extreme conditions such as those encountered by reentry vehicles.

The predicted results of this model for a circular cylindrical body shape at a Mach
number of 4 and y = 1.4 are compared with measured values in Ref. (8.15). The predicted
pressure ratio pg,race/ Po 1s shown to be in excellent agreement with the experimental
data for 6 up to about 65°. It should also be mentioned that the Newtonian and modified
Newtonian theory have been refined to predict lift and drag of bodies in hypersonic flow.

8.7 SUMMARY

Oblique shockwaves and expansion fans facilitate the turning of supersonic flows. Thus,
there are numerous applications in which one or both of these appear. This chapter has
sought to combine the fundamental concepts of Chapters 6 and 7 to solve a variety of
flows in which the supersonic flow was required to change direction. Supersonic inlets
and nozzles, as well as supersonic airfoils, are excellent examples to which the tools that
were developed in earlier chapters can be applied. It was found that drag could occur on
airfoils in supersonic flow even though the flow is assumed to be inviscid. This drag form
(called wave drag) occurs because of an imbalance of forces acting on the surface of the
airfoils caused by the wave pattern.
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8.9 PROBLEMS

8.1

8.2

8.3

8.4

8.5

A supersonic inlet (see Figure P8.1) is to be designed to handle air (y = 14,R =
287 J/kg - K) at Mach 1.75 with static pressure and temperature of 50 kPa and 250 K, respec-
tively. Determine the diffuser inlet area A; if the device is to handle 10 kg/s of air.

Figure P8.1

The diffuser in Problem 8.1 is to further decelerate flow after the normal shock so that the
velocity entering the compressor is not to exceed 25 m/s. Assuming isentropic flow after
the shock, determine the area A, required. For this condition, find the static pressure p,.

Compare the loss in total pressure incurred by a one-shock spike diffuser with that incurred
by a two-shock diffuser operating at Mach 2.0. Repeat at Mach 4.0. (See Figure 8.5.) As-
sume that each oblique shock turns the flow through an angle of 10°. Let y = 1.3.

A converging nozzle is supplied from a large air (y = 1.4, R = 287 J/kg - K) reservoir
maintained at 600 K and 2 MPa. If the nozzle back pressure is 101 kPa, determine the pressure
and Mach number that exist at the nozzle exit plane. Since the nozzle is operating in the un-
derexpanded regime, expansion waves occur at the nozzle exit. Determine the flow direction
after the initial expansion fans and the flow Mach number. Also determine the fan angles.

An oblique shockwave occurs in a supersonic flow in which M; = 3. The shock turns the
supersonic stream through 10°. The shock impinges on a free surface along which the pres-
sure is constant and equal to p; (i.e., the pressure upstream of the shock). The shock is re-
flected from the free surface as an expansion fan. Determine the Mach number and the
angle of the flow just downstream on the leading wave of the fan. Assume that y = 1.4.
See Figure P8.5.

free surface p; = ps3

Figure P8.5
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A converging-diverging nozzle is designed to provide exit flow at Mach 2.2. With the nozzle
exhausting to a back pressure of 101 kPa, however, and a reservoir pressure of 350 kPa, the
nozzle is overexpanded, with oblique shocks appearing at the exit. Determine the flow direc-
tion, static pressure, and Mach number in regions 1,2, and 3 of Figure P8.6.

Figure P8.6

Determine the flow directions in regions 1 and 3 of Figure P8.6 if the reservoir pressure
were increased to 2 MPa.

A plug nozzle is designed to produce Mach 2.5 flow in the axial direction at the plug apex.
Flow at the throat cowling must therefore be directed toward the axis. Determine the flow
direction at the throat cowling to produce axial flow at the apex. Assume that y = 1.4.

A rocket nozzle is designed to operate with a ratio of chamber pressure to ambient pres-
sure (p/p,) of 50. Compare the performance of a plug nozzle with that of a converging—
diverging nozzle for two cases in which the nozzle is operating overexpanded: p./p, = 40
and pJ/p, = 20. Compare the cases on the basis of thrust coefficient Cr = T/(p.Ay).
where T is the thrust and Ay, is the area of the throat. Assume that ¥y = 1.3, and in both
cases neglect the effect of nonaxial exit velocity components.

8.10 Compute the lift and drag coefficients for a flat-plate airfoil of chord length ¢ = 1m in

supersonic flow through air (y = 1.4) at Mox = 3 and @ = 8°.

8.11 Compute the drag coefficient for a symmetric, diamond-shaped airfoil (see Figure P8.11)

with a thickness-to-chord ratio ¢/c equal to 0.10, flying at Mach 3.5 in air (y = 1.4} at zero
angle of attack.

Figure P8.11

8.12 Compute the lift and drag coefficients for the airfoil described in Problem 8.11 for an

angle of attack of 5°.

8.13 Compare the lift-to-drag ratio of the diamond airfoil in Problem 8.11 with that of a flat-

plate airfoil for the same freestream Mach number of 3.5 and angle of attack of 5°. Assume
thaty = 1.4.
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8.14 Consider a flat-plate supersonic airfoil with a flap, as shown in Figure P8.14. For a flap
angle of 5°, an angle of attack of 10°, and a flight Mach number of 2.2, find the lift and drag
coefficients of the airfoil. Assume that y = 1.4.

c/3

50
Figure P8.14

8.15 Compute the lift and drag coefficients for the supersonic airfoil shown in Figure P8.15
flying in air (y = 1.4) at Mach 2.5 at an angle of attack of 5°.

50

Figure P8.15

8.16 A supersonic jet plane is flying horizontally at 150 m above ground level at a Mach num-
ber of 2.5. (See Figure P8.16.) The airfoil is symmetric and diamond shaped, with2A = 10°
and a chord length of 4 m. As the plane passes over, an observer on the ground hears the
“sonic boom” caused by the shockwaves. Find the time between the two booms, one from
the shock at the leading edge and one from the shock at the trailing edge. Ambient pres-
sure and temperature are 100 kPa and 20°C, respectively. Assume that y = 1.4.

e

Figure P8.16



Chapter 9

Flow with Friction

9.1 INTRODUCTION

In previous chapters, compressible flow in ducts was analyzed for the case in which
changes in flow properties were brought about solely by area change. In a real flow
situation, however, frictional forces are present and may have a decisive effect on the
resultant flow characteristics. Naturally, the inclusion of friction terms in the equa-
tions of motion makes the resultant analysis far more complex. For this reason, to
study the effect of friction on compressible flow in ducts, certain restrictions will be
placed on the flow.

The first portion of this chapter is concerned with compressible flow with friction
in constant-area, insulated ducts, which eliminate the effects of area change and heat
addition. In a practical sense, these restrictions limit the applicability of the resultant
analysis; however, this approach enables certain problems, such as flow in short ducts,
to be handled, and furthermore, it provides insight into the general effects of friction
on a compressible flow.

The second section of this chapter investigates gas flow in a constant-area duct
that is supplied by a nozzle. It is assumed that the nozzle flow is isentropic and that the
flow in the duct is adiabatic. When a converging—diverging nozzle is connected to the
duct, a wide range of possible flows emerge, including flows with normal shockwaves.
A noniterative method to locate these shocks will be presented.

The third portion of the chapter relaxes the assumption that the flow in a variable-
area channel is isentropic. Such flows occur in rocket or turbine nozzles. Numerical
procedures for simultaneously handling friction and area change are presented. These
procedures require the numerical solution of ordinary differential equations. Several
different methods for doing so are introduced.

The analyses presented in this chapter will again be simplified by assuming one-
dimensional, steady flow of a perfect gas with constant specific heats. Considerable use
will be made of numerical methods facilitated through spreadsheet programs.

283
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9.2 FANNO LINE FLOW

Consider one-dimensional, steady flow of a perfect gas with constant specific heats
through a constant-area channel. (See Figure 9.1.) For the case of adiabatic flow with
no external work, termed Fanno line flow, the energy equation [see, for example, Eq.
(3.11)] can be written as

V2
h + > " constant = h, (9.1)
The continuity equation for constant-area steady flow is given by
pV = constant (9.2)

It is instructive to develop a T-s or h—s diagram for this flow. From Eq. (1.44), we
have

d
Tds:dh——ez 1u—£2dp
P P
so that, for a perfect gas,

ds =-— — R— 9.3)

Assuming constant specific heats, with state 1 a reference state in the flow, Eq.
(9.3) may be integrated to produce
p

T
s—s=c¢,In— - RIn—
1 v Tl P

Using the continuity equation (i.e., p/p; = V;/V), we obtain

T Vv
5= 85 = ¢ lnFl + Rlnvl 9.4)
From the energy equation, we have
V= V2h, — h) = V2, (T, - T) (9.5)
so that
s = 8 T y—1 (TO—T>
=In| =) + 1 9.6
¢ “(Tl) 2 \1,-1 ©0

Figure 9.1 Gas Flowina
Constant-Area, Insulated Duct
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P(dAs/dT = 0)

As

Figure 9.2 Fanno Line

Since ¢, = yc,, Eq. (9.6) may be written as

s—s5 1 (T) vy —1 (TO—T) 1 v —1
—— =—Inl — ) + In =—InT + In{T, — T) + constant
¢, y \T 2y T,-T Y 2y To=1)

(9.7)

Figure 9.2, a sketch of Eq. (9.7), depicts the Fanno line on T-s coordinates. Note
that for a perfect gas with constant specific heats, Ah = ¢, AT, so the T-s and h-s dia-
grams differ only by a scale factor.

The curve shown in Figure 9.2 represents the locus of states that can be obtained
under the assumptions of Fanno flow for a fixed mass flow and total enthaipy. Con-
sider the point of tangency P, where dAs/dT = 0. To determine the characteristics of
this point, differentiate Eq. (9.6):

1dAs 1 y—1

=~ - "~ _0 atpointP
Gdl T 2(T,-T) atpom

However,
ent, -1y =%
Combining these expressions gives
VZ=c(y - 1T
Since ¢, = yR/(y — 1),
V% = yRT

or
VZ=¢g* for ds=0 (9.8)

so that M = 1 at point P in Figure 9.2.
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According to the energy equation, Eq. (9.1), higher velocities are associated with
lower enthalpies or temperatures, so the section of the Fanno line on T-s coordinates
that lies above point P corresponds to subsonic flow, and the section below P to super-
sonic flow. The Fanno line becomes a most useful tool in describing the variations in
properties for this frictional compressible flow. Consider subsonic adiabatic flow in a
constant-area tube. The flow is irreversible because of friction, so for this adiabatic
case, ds > 0. In other words, the entropy increases in the flow direction. Returning to
the T—s diagram (see Figure 9.3), we see that for a given mass flow, the state of the fluid
continually moves to the right, corresponding to an entropy rise. Thus, for subsonic
flow with friction, the Mach number increases to unity. For supersonic flow, the entropy
must again increase, so the flow Mach number here decreases to unity.

To understand how friction can accelerate a subsonic flow or decelerate a super-
sonic flow in a constant-area duct, it is helpful to examine the influence that the wall
shear stress (which, as we shall soon see, is related to the friction), has on a real flow.
Now, the flowfield of a real flow within a duct may be divided into two parts: an inner,
very thin wall region where viscous effects are important and the fluid velocity varies
with the distance from the wall, and an outer inviscid core region where the fluid ve-
locity may be taken to be uniform. (See Figure 1.2.) The fluid velocity within the wall
layer is zero at the pipe wall (this is called the no-slip condition) and increases to the
value of the outer flow. (See Figure 1.1.) The wall layer is called a boundary layer,
which grows thicker in the downstream direction. Accordingly, accounting for the wall
layer results in a diminishment of the effective area to pass a given amount of flow.
Hence, the cross-sectional area A of the inviscid region becomes smaller in the down-
stream direction (i.e., d A/dx < 0). Recall that in Chapter 3, we found that for isen-
tropic flows in geometries whose areas diminished in the flow direction (converging
nozzles), subsonic flows were accelerated, while supersonic flows were decelerated.
Thus, the effect of friction on subsonic and supersonic flows is attributable to the di-
minishment of the effective flow area.

Subsonic flow

T —

A:personic flow

As

Figure 9.3 Effect of Mach Number
on Fanno Flow
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Example 9.1. Construction of the Fanno line for flow from a given reference state
Draw the T-s diagram for the adiabatic flow of a gas with y = 1.3 in a constant-diameter
pipe with friction. The reference Mach number M, for the flow is 3.0.

Solution

The reference Mach number is related to the stagnation-to-static-temperature ratio by the
following relation:

T. -1
LA R
T 2

13-1
2

Mi=1+ < )(3)2 = 2.3500

Equation (9.7) may now be written as
As _ 1, (1) LYol (To - T) . {(TO/TI>1/7[<TO/T,>(TO/T = 1)}(7—1)@}
p YnT1 2y nTO—T] - T)T T,T J\TJT, — 1
03126

T,
= n (2_3_5) (2_3_;) 7! _]n{,_z;@g_(ﬂ_l)o.nm}
ke 1T 235 — 1 (T,/)T)088%6\ T

In this expression, there are two values of T/T that will cause As/c, to vanish. Clearly, both
will cause the argument of the natural log function to be exactly equal to unity. One value
occurs at T/T; (i.e.,, when T = T;). Because of the nonlinearity of the function involving
T,JT, the other value must be found numerically. This task is readily accomplished using a
spreadsheet program to implement the Newton-Raphson method. The results are

T,

13-1
<—) = 1.001959 = 1 + 3 2
T As=0

MAx=O

or

M=o = 0.1143

The coordinates for the Fanno line at this reference state are shown in Table 9.1. Figure 9.4
is a plot of these data.

TABLE 9.1 Coordinates of the Fanno Line of Example 9.1

M As/c, T M As/c, /T,
0.1143 0.0000 2.3454 1.65 0.3144 1.6666
0.31 0.2171 2.3173 1.85 0.2786 1.5553
0.50 0.3095 2.2654 2.04 0.2382 1.4479
0.69 0.3559 2.1928 223 0.1943 1.3457
0.88 0.3758 2.1035 2.42 0.1478 1.2496
1.08 0.3775 2.0022 2.62 0.0996 1.1600
1.27 0.3659 1.8930 2.81 0.0502 1.0768

1.46 0.3441 1.7801 3.00 0.0000 1.0000
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Figure 9.4 Fanno Line for a Given Reference State

Suppose now that the duct is long enough for a flow initially subsonic to reach
Mach 1 and that an additional length is added, as shown in Figure 9.5. Thus,
As = (As)—sonic T (AS)exira- The flow Mach number for the given mass flow cannot
exceed uni