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Preface to the Fourth Edition

The first as well as the second (SI/Metric) editions of this book, published in 1974 and 1978, respectively,

were prepared for use as a text for an undergraduate course in continuum mechanics. The third edition,

published in 1994, broadened the coverage of the earlier editions so that it could be used as a text for a

one- or two-semester graduate course in continuum mechanics. In this fourth edition, the coverage is further

broadened so that it may be used as a text for a one- or two-semester graduate course in either continuum

mechanics or theory of elasticity. In the following, we list the additions and changes to the third edition:

n Seven new appendices are included in this new edition: (1) derivation of the necessary and sufficient condi-

tions for strain compatibility, (2) on positive definite symmetric tensors, (3) on the positive definite roots of

½U�2 ¼ a positive definite diagonal matrix, (4) determination of maximum shearing stress and the planes on

which it acts, (5) representation of isotropic tensor-valued function, (6) on the solution of an integral equation,

related to the indentation problem in elasticity, and (7) derivation of the components of the gradient of a sec-

ond-order tensor in cylindrical and spherical coordinates. We expect that readers of this text are familiar with

matrices; therefore, the appendix on matrices, which was in the older editions, has been eliminated.

n The title of Chapter 4 has been changed to “Stresses and Integral Formulations of General Principles.” The

last section of this chapter, after the subject of stresses is concluded, is devoted to the integral formulation

of the field equations. The purpose of this additional section is twofold: (1) to provide an alternate approach

to the formulation of field equations, and (2) to put all field equations in one place for easy reference before

specific constitutive models are discussed. This approach is favored by several reviewers of the current

edition; the authors are indebted to their suggestions. The title of Chapter 7 has been changed to “The

Reynolds Theorem and Applications.”

n In the chapter on elasticity (Chapter 5), there are now 18 sections on plane strain and plane stress problems in

this edition, compared to five in the third edition. In addition, Prandtl’s formulation of the torsion problem is

now included in the text rather than in the problems. Furthermore, nine new sections on the potential function

approach to the solutions of three-dimensional elastostatic problems, such as the Kelvin problem, the Boussi-

nesq problem, and the indentation problems, have been added. Selected potential functions and the stress field

and strain field they generated are given in examples (rather than in tabulated form) from pedagogical consid-

erations. That is, most examples are designed to lead students to complete the derivations rather than simply go

to a table. This approach is consistent with our approach since the first edition—that one can cover advanced

topics in an elementary way using examples that go from simple to complex.

n Invariant definitions of the Laplacian of a scalar function and of a vector function have been added to Part

D of Chapter 2, including detail derivations of their components in cylindrical and spherical coordinates.

Components of the gradient of a second-order tensor, which is a third-order tensor, are derived in an appen-

dix in Chapter 8 for these two coordinate systems. With these additions, the text is self-sufficient insofar as

obtaining, in cylindrical coordinates and spherical coordinates, all the mathematical expressions and

equations used in this text (e.g., material derivatives, divergence of the stress tensor, Navier-Stokes

equations, scalar and vector potential functions, Rivlin-Ericksen tensors, and so on). Although all these

results can be obtained very elegantly using a generalized tensor approach, there are definite merits in

deriving them using basic vector operations, particularly when only cylindrical and spherical coordinates

are of interest.



n Some problems and examples in the previous editions have been revised or eliminated from this edition.

There are about 10% more problems and examples in this new edition.

n For instructors using this text in a university course, an instructor’s solutions manual is available by

registering at the publisher’s Website, www.textbooks.elsevier.com.

The authors would like to acknowledge, with thanks, our receipt of a grant from the Elsevier Publishing

Company, which has encouraged us to undertake this task resulting in this fourth edition. We also want to thank

Professor Gerard Artesian of Columbia University, Professor William C. Van Buskirk of the New

Jersey Institute of Technology, Professor Rebecca Dupaix of Ohio State University, Professor Mark Kachanov

of Tufts University, and Professor David Nicholson of the University of Central Florida for their valuable

suggestions for this edition.

W. Michael Lai

David Rubin

Erhard Krempl

January 2009
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CHAPTER

Introduction

1

1.1 INTRODUCTION
Matter is formed of molecules, which in turn consist of atoms and subatomic particles. Thus, matter is not

continuous. However, there are many aspects of everyday experience regarding the behaviors of materials,

such as the deflection of a structure under loads, the rate of discharge of water in a pipe under a pressure gra-

dient, or the drag force experienced by a body moving in the air, that can be described and predicted with

theories that pay no attention to the molecular structure of materials. The theory that aims to describe relation-

ships among gross phenomena, neglecting the structure of material on a smaller scale, is known as continuum
theory. The continuum theory regards matter as indefinitely divisible. Thus, within this theory, one accepts

the idea of an infinitesimal volume of materials, referred to as a particle in the continuum, and in every neigh-

borhood of a particle there are always neighboring particles.

Whether the continuum theory is justified or not depends on the given situation. For example, although the

continuum approach adequately describes the behaviors of real materials in many circumstances, it does not

yield results that are in accord with experimental observations in the propagation of waves of extremely small

wavelength. On the other hand, a rarefied gas may be adequately described by a continuum in certain circum-

stances. At any rate, it is misleading to justify the continuum approach on the basis of the number of mole-

cules in a given volume. After all, an infinitesimal volume in the limit contains no molecules at all. Neither is

it necessary to infer that quantities occurring in a continuum theory must be interpreted as certain particular

statistical averages. In fact, it has been known that the same continuum equations can be arrived at by differ-

ent hypotheses about the molecular structure and definitions of gross variables. Though molecular-statistical

theory, whenever available, does enhance understanding of the continuum theory, the point to be made is sim-

ply that whether the continuum theory is justified in a given situation is a matter of experimental test and of

philosophy. Suffice it to say that more than 200 years of experience have justified such a theory in a wide

variety of situations.

1.2 WHAT IS CONTINUUM MECHANICS?
Continuum mechanics studies the response of materials to different loading conditions. Its subject matter can

be divided into two main parts: (1) general principles common to all media and (2) constitutive equations

defining idealized materials. The general principles are axioms considered to be self-evident from our expe-

rience with the physical world, such as conservation of mass; the balance of linear momentum, moment of

Copyright © 2010, Elsevier Ltd. All rights reserved.



momentum, and energy; and the entropy inequality law. Mathematically, there are two equivalent forms of

the general principles: (1) the integral form, formulated for a finite volume of material in the continuum,

and (2) the field equations for differential volume of material (particles) at every point of the field of interest.

Field equations are often derived from the integral form. They can also be derived directly from the free body

of a differential volume. The latter approach seems to better suit beginners. In this text both approaches are

presented. Field equations are important wherever the variations of the variables in the field are either of

interest by themselves or are needed to get the desired information. On the other hand, the integral forms

of conservation laws lend themselves readily to certain approximate solutions.

The second major part of the theory of continuum mechanics concerns the “constitutive equations” that

are used to define idealized materials. Idealized materials represent certain aspects of the mechanical beha-

viors of natural materials. For example, for many materials, under restricted conditions, the deformation

caused by the application of loads disappears with the removal of the loads. This aspect of material behaviors

is represented by the constitutive equation of an elastic body. Under even more restricted conditions, the state

of stress at a point depends linearly on the change of lengths and angles suffered by elements at the point

measured from the state where the external and internal forces vanish. The previous expression defines the

linearly elastic solid. Another example is supplied by the classical definition of viscosity, which is based

on the assumption that the state of stress depends linearly on the instantaneous rates of change of lengths

and angles. Such a constitutive equation defines the linearly viscous fluid. The mechanical behaviors of real

materials vary not only from material to material but also with different loading conditions for a given mate-

rial. This leads to the formulation of many constitutive equations defining the many different aspects of mate-

rial behaviors.

In this text we present four idealized models and study the behaviors they represent by means of some

solutions of boundary-value problems. The idealized materials chosen are (1) the isotropic and anisotropic

linearly elastic solid, (2) the isotropic incompressible nonlinear elastic solid, (3) the linearly viscous fluid,

including the inviscid fluid, and (4) the non-Newtonian incompressible fluid.

One important requirement that must be satisfied by all quantities used in the formulation of a physical

law is that they be coordinate invariant. In the following chapter, we discuss such quantities.
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CHAPTER

Tensors

2
As mentioned in the introduction, all laws of continuum mechanics must be formulated in terms of quantities

that are independent of coordinates. It is the purpose of this chapter to introduce such mathematical entities.

We begin by introducing a shorthand notation—the indicial notation—in Part A of this chapter, which is fol-

lowed by the concept of tensors, introduced as a linear transformation in Part B. Tensor calculus is considered

in Part C, and expressions for the components in cylindrical and spherical coordinates for tensors resulting

from operations such as the gradient, the divergence, and the Laplacian of them are derived in Part D.

PART A: INDICIAL NOTATION

2.1 SUMMATION CONVENTION, DUMMY INDICES
Consider the sum

s ¼ a1x1 þ a2x2 þ . . .þ anxn: (2.1.1)

We can write the preceding equation in a compact form using a summation sign:

s ¼
Xn
i¼1

aixi: (2.1.2)

It is obvious that the following equations have exactly the same meaning as Eq. (2.1.2):

s ¼
Xn
j¼1

ajxj; s ¼
Xn
m¼1

amxm; s ¼
Xn
k¼1

akxk: (2.1.3)

The index i in Eq. (2.1.2), or j or m or k in Eq. (2.1.3), is a dummy index in the sense that the sum is inde-

pendent of the letter used for the index. We can further simplify the writing of Eq. (2.1.1) if we adopt the

following convention: Whenever an index is repeated once, it is a dummy index indicating a summation with

the index running through the integral numbers 1, 2, . . ., n.
This convention is known as Einstein’s summation convention. Using this convention, Eq. (2.1.1) can be

written simply as:

s ¼ aixi or s ¼ ajxj or s ¼ amxm; etc: (2.1.4)

Copyright © 2010, Elsevier Ltd. All rights reserved.



It is emphasized that expressions such as aibixi or ambmxm are not defined within this convention. That is,

an index should never be repeated more than once when the summation convention is used. Therefore, an

expression of the form Xn
i¼1

aibixi;

must retain its summation sign.

In the following, we shall always take the number of terms n in a summation to be 3, so that, for example:

aixi ¼ a1x1 þ a2x2 þ a3x3; aii ¼ a11 þ a22 þ a33:

The summation convention obviously can be used to express a double sum, a triple sum, and so on. For

example, we can write:

a ¼
X3
i¼1

X3
j¼1

aijxixj

concisely as

a ¼ aijxixj: (2.1.5)

Expanding in full, Eq. (2.1.5) gives a sum of nine terms in the right-hand side, i.e.,

a ¼ aijxixj ¼ a11x1x1 þ a12x1x2 þ a13x1x3 þ a21x2x1 þ a22x2x2 þ a23x2x3
þ a31x3x1 þ a32x3x2 þ a33x3x3:

For newcomers, it is probably better to perform the preceding expansion in two steps: first, sum over i,
and then sum over j (or vice versa), i.e.,

aijxixj ¼ a1jx1xj þ a2jx2xj þ a3jx3xj;

where

a1jx1xj ¼ a11x1x1 þ a12x1x2 þ a13x1x3;

and so on. Similarly, the indicial notation aijkxixjxk represents a triple sum of 27 terms, that is,

X3
i¼1

X3
j¼1

X3
k¼1

aijkxixjxk ¼ aijkxixjxk: (2.1.6)

2.2 FREE INDICES
Consider the following system of three equations:

x 0
1 ¼ a11x1 þ a12x2 þ a13x3;
x 0
2 ¼ a21x1 þ a22x2 þ a23x3;
x 0
3 ¼ a31x1 þ a32x2 þ a33x3:

(2.2.1)

Using the summation convention, Eqs. (2.2.1) can be written as:

x 0
1 ¼ a1mxm;
x 02 ¼ a2mxm;
x 03 ¼ a3mxm;

(2.2.2)
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which can be shortened into

x 0
i ¼ aim xm; i ¼ 1; 2; 3: (2.2.3)

An index that appears only once in each term of an equation such as the index i in Eq. (2.2.3) is

called a free index. Unless stated otherwise, we agree that a free index takes on the integral num-

ber 1, 2 or 3. Thus, x 0
i ¼ aimxm is shorthand for three equations, each having a sum of three terms on

its right-hand side. Another simple example of a free index is the following equation defining the com-

ponents of a vector a in terms of a dot product with each of the base vectors ei,

ai ¼ a � ei; (2.2.4)

and clearly the vector a can also be expressed in terms of its components as

a ¼ aiei: (2.2.5)

A further example is given by

e 0
i ¼ Qmiem; (2.2.6)

representing

e 0
1 ¼ Q11e1 þ Q21e2 þ Q31e3;
e 0
2 ¼ Q12e1 þ Q22e2 þ Q32e3;
e 0
3 ¼ Q13e1 þ Q23e2 þ Q33e3:

(2.2.7)

We note that x 0
j ¼ ajmxm is the same as Eq. (2.2.3) and e 0

j ¼ Qmjem is the same as Eq. (2.2.6). However,

ai ¼ bj is a meaningless equation. The free index appearing in every term of an equation must be the same.
Thus, the following equations are meaningful:

ai þ ki ¼ ci or ai þ bicjdj ¼ fi:

If there are two free indices appearing in an equation such as:

Tij ¼ AimAjm; (2.2.8)

then the equation is a shorthand for the nine equations, each with a sum of three terms on the right-hand side.

In fact,

T11 ¼ A1mA1m ¼ A11A11 þ A12A12 þ A13A13;
T12 ¼ A1mA2m ¼ A11A21 þ A12A22 þ A13A23;
T13 ¼ A1mA3m ¼ A11A31 þ A12A32 þ A13A33;
T21 ¼ A2mA1m ¼ A21A11 þ A22A12 þ A23A13;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T33 ¼ A3mA3m ¼ A31A31 þ A32A32 þ A33A33:

2.3 THE KRONECKER DELTA
The Kronecker delta, denoted by dij, is defined as:

dij ¼ 1 if i ¼ j;
0 if i 6¼ j:

�
(2.3.1)

2.3 The Kronecker Delta 5



That is,
d11 ¼ d22 ¼ d33 ¼ 1; d12 ¼ d13 ¼ d21 ¼ d23 ¼ d31 ¼ d32 ¼ 0: (2.3.2)

In other words, the matrix of the Kronecker delta is the identity matrix:

½dij� ¼
d11 d12 d13
d21 d22 d23
d31 d32 d33

2
4

3
5 ¼

1 0 0

0 1 0

0 0 1

2
4

3
5: (2.3.3)

We note the following:

(a) dii ¼ d11 þ d22 þ d33 ¼ 1þ 1þ 1,

that is,

dii ¼ 3: (2.3.4)

(b) d1mam ¼ d11a1 þ d12a2 þ d13a3 ¼ d11a1 ¼ a1;
d2mam ¼ d21a1 þ d22a2 þ d23a3 ¼ d22a2 ¼ a2;
d3mam ¼ d31a1 þ d32a2 þ d33a3 ¼ d33a3 ¼ a3;

that is,

dimam ¼ ai: (2.3.5)

(c) d1mTmj ¼ d11T1j þ d12T2j þ d13T3j ¼ T1j;
d2mTmj ¼ d21T1j þ d22T2j þ d23T3j ¼ T2j;
d3mTmj ¼ d31T1j þ d32T2j þ d33T3j ¼ T3j;

that is,

dimTmj ¼ Tij: (2.3.6)

In particular,

dimdmj ¼ dij; dimdmndnj ¼ dij; etc: (2.3.7)

(d) If e1, e2, e3 are unit vectors perpendicular to one another, then clearly,

ei � ej ¼ dij: (2.3.8)

2.4 THE PERMUTATION SYMBOL
The permutation symbol, denoted by eijk, is defined by:

eijk ¼
1

�1

0

8<
:

9=
; � according to whether i; j; k

form an even

form an odd

do not form

0
@

1
Apermutation of 1; 2; 3; (2.4.1)

i.e.,

e123 ¼ e231 ¼ e312 ¼ þ1;
e213 ¼ e321 ¼ e132 ¼ �1;
e111 ¼ e112 ¼ e222 ¼ . . . ¼ 0:

(2.4.2)
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We note that

eijk ¼ ejki ¼ ekij ¼ �ejik ¼ �ekji � eikj: (2.4.3)

If {e1, e2, e3} is a right-handed triad, then

e1 � e2 ¼ e3; e2 � e1 ¼ �e3; e2 � e3 ¼ e1; e3 � e2 ¼ �e1; etc., (2.4.4)

which can be written in a short form as

ei � ej ¼ eijkek ¼ ejkiek ¼ ekijek: (2.4.5)

Now, if a ¼ aiei and b ¼ biei, then, since the cross-product is distributive, we have

a� b ¼ ðaieiÞ � ðbjejÞ ¼ aibjðei � ejÞ ¼ aibjeijkek: (2.4.6)

The following useful identity can be proven (see Prob. 2.12):

eijmeklm ¼ dikdjl � dildjk: (2.4.7)

2.5 INDICIAL NOTATION MANIPULATIONS
(a) Substitution: If

ai ¼ Uim bm; (i)

and

bi ¼ Vim cm; (ii)

then, in order to substitute the bi in Eq. (ii) into the bm in Eq. (i), we must first change the free index in Eq. (ii)

from i to m and the dummy index m to some other letter—say, n—so that

bm ¼ Vmn cn: (iii)

Now Eqs. (i) and (iii) give

ai ¼ UimVmn cn: (iv)

Note that Eq. (iv) represents three equations, each having a sum of nine terms on its right-hand side.

(b) Multiplication: If

p ¼ ambm and q ¼ cmdm;

then

pq ¼ ambmcndn:

It is important to note that pq 6¼ ambmcmdm: In fact, the right-hand side of this expression, i.e., ambmcmdm,
is not even defined in the summation convention, and further, it is obvious that

pq 6¼
X3
m¼1

ambmcmdm:

2.5 Indicial Notation Manipulations 7



Since the dot product of vectors is distributive, therefore, if a ¼ aiei and b ¼ biei, then

a � b ¼ ðaieiÞ � ðbjejÞ ¼ aibjðei � ejÞ:
In particular, if e1, e2, e3 are unit vectors perpendicular to one another, then ei � ej ¼ dij so that

a � b ¼ aibjdij ¼ aibi ¼ a1b1 þ a2b2 þ a3b3;

which is the familiar expression for the evaluation of the dot product in terms of the vector components.

(c) Factoring: If

Tijnj � lni ¼ 0;

then, using the Kronecker delta, we can write ni ¼ dijnj, so that we have

Tijnj � ldijnj ¼ 0:

Thus,

ðTij � ldijÞnj ¼ 0:

(d) Contraction: The operation of identifying two indices is known as a contraction. Contraction indicates a

sum on the index. For example, Tii is the contraction of Tij with

Tii ¼ T11 þ T22 þ T33:

If

Tij ¼ lDdij þ 2mEij;

then

Tii ¼ lDdii þ 2mEii ¼ 3lDþ 2mEii:

PROBLEMS FOR PART A
2.1 Given

½Sij� ¼
1 0 2

0 1 2

3 0 3

2
4

3
5 and ½ai� ¼

1

2

3

2
4

3
5;

evaluate (a) Sii, (b) SijSij, (c) SjiSji, (d) SjkSkj, (e) amam, (f) Smnaman, and (g) Snmaman.

2.2 Determine which of these equations has an identical meaning with ai ¼ Qija
0
j .

(a) ap ¼ Qpma
0
m, (b) ap ¼ Qqpa

0
q, (c) am ¼ a 0

nQmn.

2.3 Given the following matrices

½ai� ¼
1

0

2

2
4

3
5; ½Bij� ¼

2 3 0

0 5 1

0 2 1

2
4

3
5;

demonstrate the equivalence of the subscripted equations and the corresponding matrix equations in the

following two problems:

(a) bi ¼ Bijaj and [b] ¼ [B][a] and (b) s ¼ Bijaiaj and s ¼ [a]T[B][a].

8 CHAPTER 2 Tensors



2.4 Write in indicial notation the matrix equation (a) [A]¼ [B][C], (b) [D]¼ [B]T[C] and (c) [E]¼ [B]T[C][F].

2.5 Write in indicial notation the equation (a) s ¼ A2
1 þ A2

2 þ A2
3 and (b)

@2f
@x21

þ @2f
@x22

þ @2f
@x23

¼ 0.

2.6 Given that Sij¼aiaj and S 0
ij ¼ a 0

i a
0
j , where a 0

i ¼ Qmiam and a 0
j ¼ Qnjan, and QikQjk¼dij, show that

S 0
ii ¼ Sii.

2.7 Write ai ¼ @vi
@t

þ vj
@vi
@xj

in long form.

2.8 Given that Tij ¼ 2mEij þ lEkkdij, show that

(a) TijEij ¼ 2mEijEij þ lðEkkÞ2 and (b) TijTij ¼ 4m2EijEij þ ðEkkÞ2ð4mlþ 3l2Þ.
2.9 Given that ai ¼ Tijbj, and a 0

i ¼ T 0
ijb

0
j , where ai ¼ Qima

0
m and Tij ¼ QimQjnT

0
mn,

(a) show that QimT
0
mnb

0
n ¼ QimQjnT

0
mnbj and (b) if QikQim ¼ dkm, then T 0

knðb 0
n � QjnbjÞ ¼ 0.

2.10 Given

½ai� ¼
1

2

0

2
4

3
5; ½bi� ¼

0

2

3

2
4

3
5;

evaluate [di], if dk ¼ eijkaibj, and show that this result is the same as dk ¼ a� bð Þ � ek.
2.11 (a) If eijkTij ¼ 0, show that Tij ¼ Tji, and (b) show that dijeijk ¼ 0.

2.12 Verify the following equation: eijmeklm ¼ dikdjl � dildjk. Hint: There are six cases to be considered:

(1) i ¼ j, (2) i ¼ k, (3) i ¼ l, (4) j ¼ k, (5) j ¼ l, and (6) k ¼ l.

2.13 Use the identity eijmeklm ¼ dikdjl � dildjk as a shortcut to obtain the following results: (a) eilmejlm ¼ 2dij
and (b) eijkeijk ¼ 6.

2.14 Use the identity eijmeklm ¼ dikdjl � dildjk to show that a� b� cð Þ ¼ a � cð Þb� a � bð Þc.
2.15 Show that (a) if Tij ¼ �Tji, then Tijaiaj ¼ 0, (b) if Tij ¼ �Tji, and Sij ¼ Sji, then TijSij ¼ 0.

2.16 Let Tij ¼ 1

2
ðSij þ SjiÞ and Rij ¼ 1

2
ðSij � SjiÞ, show that Tij ¼ Tji;Rij ¼ �Rji, and Sij ¼ Tij þ Rij.

2.17 Let f ðx1; x2; x3Þ be a function of x1, x2, and x3 and let viðx1; x2; x3Þ be three functions of x1, x2, and x3.
Express the total differential df and dvi in indicial notation.

2.18 Let jAijj denote the determinant of the matrix [Aij]. Show that jAijj ¼ eijkAi1Aj2Ak3.

PART B: TENSORS

2.6 TENSOR: A LINEAR TRANSFORMATION
Let T be a transformation that transforms any vector into another vector. If T transforms a into c and b into d,
we write Ta ¼ c and Tb ¼ d.

If T has the following linear properties:

Tðaþ bÞ ¼ Taþ Tb; (2.6.1)

TðaaÞ ¼ aTa; (2.6.2)

2.6 Tensor: A Linear Transformation 9



where a and b are two arbitrary vectors and a is an arbitrary scalar, then T is called a linear transformation. It
is also called a second-order tensor or simply a tensor.* An alternative and equivalent definition of a linear

transformation is given by the single linear property:

Tðaaþ bbÞ ¼ aTaþ bTb; (2.6.3)

where a and b are two arbitrary vectors and a and b are arbitrary scalars. If two tensors, T and S, transform
any arbitrary vector a identically, these two tensors are the same, that is, if Ta ¼ Sa for any a, then T ¼ S.
We note, however, that two different tensors may transform specific vectors identically.

Example 2.6.1
Let T be a nonzero transformation that transforms every vector into a fixed nonzero vector n. Is this transformation a

tensor?

Solution
Let a and b be any two vectors; then Ta ¼ n and Tb ¼ n. Since a þ b is also a vector, therefore T(a þ b) ¼ n.

Clearly T(a þ b) does not equal Ta þ Tb. Thus, this transformation is not a linear one. In other words, it is not a

tensor.

Example 2.6.2
Let T be a transformation that transforms every vector into a vector that is k times the original vector. Is this transfor-

mation a tensor?

Solution
Let a and b be arbitrary vectors and a and b be arbitrary scalars; then, by the definition of T,

Ta ¼ ka; Tb ¼ kb and Tðaaþ bbÞ ¼ kðaaþ bbÞ: (i)

Clearly,

Tðaaþ bbÞ ¼ akaþ bkb ¼ aTaþ bTb: (ii)

Therefore, T is a linear transformation. In other words, it is a tensor. If k ¼ 0, then the tensor transforms all vectors

into a zero vector (null vector). This tensor is the zero tensor or null tensor and is symbolized by the boldface 0.

Example 2.6.3
Consider a transformation T that transforms every vector into its mirror image with respect to a fixed plane. Is T a

tensor?

Solution
Consider a parallelogram in space with its sides representing vectors a and b and its diagonal the vector sum of

a and b. Since the parallelogram remains a parallelogram after the reflection, the diagonal (the resultant vector)

*Scalars and vectors are sometimes called the zeroth order tensor and the first-order tensor, respectively. Even though they can also

be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical concept of scalars and vectors,

with which we assume readers are familiar, is quite sufficient for our purpose.
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of the reflected parallelogram is clearly both T(a þ b) (the reflected a þ b) and Ta þ Tb (the sum of the reflected a

and the reflected b). That is, T(a þ b) ¼ Ta þ Tb. Also, for an arbitrary scalar a, the reflection of aa is obviously the

same as a times the reflection of a, that is, T(aa) ¼ a(Ta), because both vectors have the same magnitude given by a
times the magnitude of a and in the same direction. Thus, T is a tensor.

Example 2.6.4
When a rigid body undergoes a rotation about some axis n, vectors drawn in the rigid body in general change their

directions. That is, the rotation transforms vectors drawn in the rigid body into other vectors. Denote this transforma-

tion by R. Is R a tensor?

Solution
Consider a parallelogram embedded in the rigid body with its sides representing vectors a and b and its diagonal

representing the resultant (a þ b). Since the parallelogram remains a parallelogram after a rotation about any axis,

the diagonal (the resultant vector) of the rotated parallelogram is clearly both R(a þ b) (the rotated a þ b) and

Ra þ Rb (the sum of the rotated a and the rotated b). That is, R(a þ b) ¼ Ra þ Rb. A similar argument as that used

in the previous example leads to R(aa) ¼ a(Ra). Thus, R is a tensor.

Example 2.6.5
Let T be a tensor that transforms the specific vectors a and b as follows:

Ta ¼ aþ 2b;
Tb ¼ a� b:

Given a vector c ¼ 2a þ b, find Tc.

Solution
Using the linearity property of tensors, we have

Tc ¼ Tð2aþ bÞ ¼ 2Taþ Tb ¼ 2ðaþ 2bÞ þ ða� bÞ ¼ 3aþ 3b:

2.7 COMPONENTS OF A TENSOR
The components of a vector depend on the base vectors used to describe the components. This will also be

true for tensors.

Let e1, e2, e3 be unit vectors in the direction of the x1-, x2-, x3-, respectively, of a rectangular Cartesian

coordinate system. Under a transformation T, these vectors e1, e2, e3 become Te1;Te2;Te3. Each of these

Tei, being a vector, can be written as:

Te1 ¼ T11e1 þ T21e2 þ T31e3;
Te2 ¼ T12e1 þ T22e2 þ T32e3;
Te3 ¼ T13e1 þ T23e2 þ T33e3;

(2.7.1)

or

Tei ¼ Tjiej: (2.7.2)
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The components Tij in the preceding equations are defined as the components of the tensor T. These com-

ponents can be put in a matrix as follows:

½T� ¼
T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5: (2.7.3)

This matrix is called the matrix of the tensor T with respect to the set of base vectors {ei}. We note that, because

of the way we have chosen to denote the components of transformation of the base vectors, the elements of the

first column in the matrix are components of the vector Te1, those in the second column are the components of

the vector Te2, and those in the third column are the components of Te3.

Example 2.7.1
Obtain the matrix for the tensor T that transforms the base vectors as follows:

Te1 ¼ 4e1 þ e2;
Te2 ¼ 2e1 þ 3e3;
Te3 ¼ �e1 þ 3e2 þ e3:

(i)

Solution
By Eq. (2.7.1),

½T� ¼
4 2 �1
1 0 3
0 3 1

2
4

3
5: (ii)

Example 2.7.2
Let T transform every vector into its mirror image with respect to a fixed plane; if e1 is normal to the reflection plane

(e2 and e3 are parallel to this plane), find a matrix of T.

Solution
Since the normal to the reflection plane is transformed into its negative and vectors parallel to the plane are not

altered, we have

Te1 ¼ �e1; Te2 ¼ e2; Te3 ¼ e3

which corresponds to

½T� ¼
�1 0 0
0 1 0
0 0 1

2
4

3
5
ei

:

45�

Mirror

e1

e1
9

e2
e2
9

FIGURE 2.7-1
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We note that this is only one of the infinitely many matrices of the tensor T; each depends on a particular choice of

base vectors. In the preceding matrix, the choice of ei is indicated at the bottom-right corner of the matrix. If we

choose e 0
1 and e 0

2 to be on a plane perpendicular to the mirror, with each making 45� with the mirror, as shown in

Figure 2.7-1, and e 0
3 pointing straight out from the paper, then we have

Te 0
1 ¼ e 0

2; Te 0
2 ¼ e 0

1; Te 0
3 ¼ e 0

3:

Thus, with respect to fe 0
i g; the matrix of the tensor is

½T� 0 ¼
0 1 0

1 0 0

0 0 1

2
64

3
75
e 0
i

:

Throughout this book, we denote the matrix of a tensor T with respect to the basis {ei} by either [T] or [Tij]

and with respect to the basis fe 0
i g by either [T]0 or ½T 0

ij �. The last two matrices should not be confused with [T0],
which represents the matrix of the tensor T0 with respect to the basis {ei}, not the matrix of T with respect to the

primed basis fe 0
i g:

Example 2.7.3
Let R correspond to a right-hand rotation of a rigid body about the x3-axis by an angle y (Figure 2.7-2). Find a

matrix of R.

Solution
From Figure 2.7-2, it is clear that

Re1 ¼ cosye1 þ sinye2;

Re2 ¼ �sinye1 þ cosye2;

Re3 ¼ e3:

;

which corresponds to

½R� ¼
cosy �siny 0

siny cosy 0

0 0 1

2
64

3
75
ei

:

θ

θ

e2
Re2

Re1

e1

FIGURE 2.7-2
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Example 2.7.4
Obtain the matrix for the tensor T, which transforms the base vectors as follows:

Te1 ¼ e1 þ 2e2 þ 3e3;
Te2 ¼ 4e1 þ 5e2 þ 6e3;
Te3 ¼ 7e1 þ 8e2 þ 9e3:

Solution
By inspection,

½T� ¼
1 4 7
2 5 8
3 6 9

2
4

3
5:

This example emphasizes again the convention we use to write the matrix of a tensor: The components of Te1 fill

the first column, the components of Te2 fill the second column, and so on. The reason for this choice of convention

will become obvious in the next section.

Since e1 � e2 ¼ e2 � e3 ¼ e3 � e1 ¼ 0 (because they are mutually perpendicular), it can be easily verified

from Eq. (2.7.1) that

T11 ¼ e1 �Te1; T12 ¼ e1 �Te2; T13 ¼ e1 �Te3;
T21 ¼ e2 �Te1; T22 ¼ e2 �Te2; T23 ¼ e2 �Te3;
T31 ¼ e3 �Te1; T32 ¼ e3 �Te2; T33 ¼ e3 �Te3;

(2.7.4)

or

Tij ¼ ei �Tej: (2.7.5)

These equations are totally equivalent to Eq. (2.7.1) [or Eq. (2.7.2)] and can also be regarded as the defi-

nition of the components of a tensor T. They are often more convenient to use than Eq. (2.7.2).

We note again that the components of a tensor depend on the coordinate systems through the set of base

vectors. Thus,

T 0
ij ¼ e 0i �Te 0

j ; (2.7.6)

where T 0
ij are the components of the same tensor T with respect to the base vectors fe 0

i g: It is important to note

that vectors and tensors are independent of coordinate systems, but their components are dependent on the

coordinate systems.

2.8 COMPONENTS OF A TRANSFORMED VECTOR
Given the vector a and the tensor T, which transforms a into b (i.e., b ¼ Ta), we wish to compute the com-

ponents of b from the components of a and the components of T. Let the components of a with respect to

fe1; e2; e3g be ða1; a2; a3Þ; that is,
a ¼ a1e1 þ a2e2 þ a3e3; (2.8.1)
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then

b ¼ Ta ¼ Tða1e1 þ a2e2 þ a3e3Þ ¼ a1Te1 þ a2Te2 þ a3Te3;

thus,

b1 ¼ b � e1 ¼ e1 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe1 �Te1Þ þ a2ðe1 �Te2Þ þ a3ðe1 �Te3Þ;
b2 ¼ b � e2 ¼ e2 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe2 �Te1Þ þ a2ðe2 �Te2Þ þ a3ðe2 �Te3Þ;
b3 ¼ b � e3 ¼ e3 �Tða1e1 þ a2e2 þ a3e3Þ ¼ a1ðe3 �Te1Þ þ a2ðe3 �Te2Þ þ a3ðe3 �Te3Þ:

By Eqs. (2.7.4), we have

b1 ¼ T11a1 þ T12a2 þ T13a3;
b2 ¼ T21a1 þ T22a2 þ T23a3;
b3 ¼ T31a1 þ T32a2 þ T33a3:

(2.8.2)

We can write the preceding three equations in matrix form as:

b1
b2
b3

2
4

3
5 ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5 a1

a2
a3

2
4

3
5; (2.8.3)

or

½b� ¼ ½T�½a�: (2.8.4)

We can also derive Eq. (2.8.2) using indicial notations as follows: From a¼ aiei, we get Ta ¼ TðaieiÞ ¼ aiTei:
Since Tei ¼ Tjiej [Eq. (2.7.2)], b ¼ Ta ¼ aiTjiej so that

bm ¼ b � em ¼ aiTjiej � em ¼ aiTjidjm ¼ aiTmi;

that is,

bm ¼ aiTmi ¼ Tmiai: (2.8.5)

Eq. (2.8.5) is nothing but Eq. (2.8.2) in indicial notation.

We see that for the tensorial equationb¼Ta, there corresponds amatrix equation of exactly the same form, that

is, ½b� ¼ ½T�½a�: This is the reason we adopted the convention that Tei ¼ Tjiej (i.e., Te1 ¼ T11e1 þ T21e2 þ T31e3,
etc.). If we had adopted the convention that Tei ¼ Tijej (i.e., Te1 ¼ T11e1 þ T12e2 þ T13e3, etc.), then we would

have obtained ½b� ¼ ½T�T½a� for the tensorial equation b ¼ Ta, which would not be as natural.

Example 2.8.1
Given that a tensor T transforms the base vectors as follows:

Te1 ¼ 2e1 � 6e2 þ 4e3;
Te2 ¼ 3e1 þ 4e2 � 1e3;
Te3 ¼ �2e1 þ 1e2 þ 2e3:

how does this tensor transform the vector a ¼ e1 þ 2e2 þ 3e3?
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Solution
Use the matrix equation

b1
b2
b3

2
4

3
5 ¼

2 3 �2
�6 4 1
4 �1 2

2
4

3
5 1

2
3

2
4

3
5 ¼

2
5
8

2
4

3
5;

we obtain b ¼ 2e1 þ 5e2 þ 8e3.

2.9 SUM OF TENSORS
Let T and S be two tensors. The sum of T and S, denoted by T þ S, is defined by

ðTþ SÞa ¼ Ta þ Sa (2.9.1)

for any vector a. It is easily seen that T þ S, so defined, is indeed a tensor. To find the components of

T þ S, let

W ¼ Tþ S: (2.9.2)

The components of W are [see Eqs. (2.7.5)]

Wij ¼ ei � ðTþ SÞej ¼ ei �Tej þ ei � Sej;
that is,

Wij ¼ Tij þ Sij: (2.9.3)

In matrix notation, we have

½W� ¼ ½T� þ ½S�; (2.9.4)

and that the tensor sum is consistent with the matrix sum.

2.10 PRODUCT OF TWO TENSORS
Let T and S be two tensors and a be an arbitrary vector. Then TS and ST are defined to be the transformations

(easily seen to be tensors) such that

ðTSÞa ¼ TðSaÞ; (2.10.1)

and

ðSTÞa ¼ SðTaÞ: (2.10.2)

The components of TS are

ðTSÞij ¼ ei � ðTSÞej ¼ ei �TðSejÞ ¼ ei �TSmjem ¼ Smjei �Tem ¼ SmjTim; (2.10.3)

that is,

ðTSÞij ¼ TimSmj: (2.10.4)

Similarly,

ðSTÞij ¼ SimTmj: (2.10.5)
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Eq. (2.10.4) is equivalent to the matrix equation:

½TS� ¼ ½T�½S�; (2.10.6)

whereas Eq. (2.10.5) is equivalent to the matrix equation:

½ST� ¼ ½S�½T�: (2.10.7)

The two products are, in general, different. Thus, it is clear that in general TS 6¼ ST. That is, in general, the

tensor product is not commutative.

If T, S, and V are three tensors, then, by repeatedly using the definition (2.10.1), we have

ðTðSVÞÞa � TððSVÞaÞ � TðSðVaÞÞ and ðTSÞðVaÞ � TðSðVaÞÞ; (2.10.8)

that is,

TðSVÞ ¼ ðTSÞV ¼ TSV: (2.10.9)

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive powers of a ten-

sor by these simple products, so that

T2 ¼ TT; T3 ¼ TTT; . . . (2.10.10)

Example 2.10.1
(a) Let R correspond to a 90� right-hand rigid body rotation about the x3-axis. Find the matrix of R.

(b) Let S correspond to a 90� right-hand rigid body rotation about the x1-axis. Find the matrix of S.

(c) Find the matrix of the tensor that corresponds to the rotation R, followed by S.

(d) Find the matrix of the tensor that corresponds to the rotation S, followed by R.

(e) Consider a point P whose initial coordinates are (1,1,0). Find the new position of this point after the

rotations of part (c). Also find the new position of this point after the rotations of part (d).

Solution
(a) Let fe1; e2; e3g be a set of right-handed unit base vector with e3 along the axis of rotation of the rigid

body. Then,

Re1 ¼ e2; Re2 ¼ �e1; Re3 ¼ e3;

that is,

½R� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

(b) In a manner similar to (a), the transformation of the base vectors is given by:

Se1 ¼ e1; Se2 ¼ e3; Se3 ¼ �e2;

that is,

½S� ¼
1 0 0
0 0 �1
0 1 0

2
4

3
5:
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(c) Since S(Ra) ¼ (SR)a, the resultant rotation is given by the single transformation SR whose components are

given by the matrix:

½SR� ¼
1 0 0
0 0 �1
0 1 0

2
4

3
5 0 �1 0

1 0 0
0 0 1

2
4

3
5 ¼

0 �1 0
0 0 �1
1 0 0

2
4

3
5:

(d) In a manner similar to (c), the resultant rotation is given by the single transformation RS whose components

are given by the matrix:

½RS� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5 1 0 0

0 0 �1
0 1 0

2
4

3
5 ¼

0 0 1
1 0 0
0 1 0

2
4

3
5:

(e) Let r be the initial position of the material point P. Let r* and r** be the rotated position of P after the

rotations of part (c) and part (d), respectively. Then

½r�� ¼ ½SR�½r� ¼
0 �1 0
0 0 �1
1 0 0

2
4

3
5 1

1
0

2
4

3
5 ¼

�1
0
1

2
4

3
5;

that is,

r� ¼ �e1 þ e3;

and

½r��� ¼ ½RS�½r� ¼
0 0 1
1 0 0
0 1 0

2
4

3
5 1

1
0

2
4

3
5 ¼

0
1
1

2
4

3
5;

that is,

r�� ¼ e2 þ e3:

This example further illustrates that the order of rotations is significant.

2.11 TRANSPOSE OF A TENSOR
The transpose of a tensor T, denoted by TT, is defined to be the tensor that satisfies the following identity for

all vectors a and b:

a �Tb ¼ b �TTa: (2.11.1)

It can be easily seen that TT is a tensor (see Prob. 2.34). From the preceding definition, we have

ej �Tei ¼ ei �TTej: (2.11.2)

Thus,

Tji ¼ TT
ij ; (2.11.3)

or

½T�T ¼ ½TT�; (2.11.4)
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that is, the matrix of TT is the transpose of the matrix T. We also note that by Eq. (2.11.1),

we have

a �TTb ¼ b � ðTTÞTa: (2.11.5)

Thus, b �Ta ¼ b � ðTTÞTa for any a and b, so that

ðTTÞT ¼ T: (2.11.6)

It can be easily established that (see Prob. 2.34)

ðTSÞT ¼ STTT: (2.11.7)

That is, the transpose of a product of the tensors is equal to the product of transposed tensors in reverse order,

which is consistent with the equivalent matrix identity. More generally,

ðABC . . .DÞT ¼ DT . . .CTBTAT: (2.11.8)

2.12 DYADIC PRODUCT OF VECTORS
The dyadic product of vectors a and b, denoted* by ab, is defined to be the transformation that transforms any

vector c according to the rule:

ðabÞc ¼ aðb � cÞ: (2.12.1)

Now, for any vectors c, d, and any scalars a and b, we have, from the preceding rule,

ðabÞðacþ bdÞ ¼ aðb � ðacþ bdÞÞ ¼ aððab � cÞ þ ðbb � dÞÞ ¼ aaðb � cÞ þ baðb � dÞ
¼ aðabÞcþ bðabÞd: (2.12.2)

Thus, the dyadic product ab is a linear transformation.

Let W ¼ ab, then the components of W are:

Wij ¼ ei �Wej ¼ ei � ðabÞej ¼ ei � aðb � ejÞ ¼ aibj; (2.12.3)

that is,

Wij ¼ aibj; (2.12.4)

or

½W� ¼
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

2
4

3
5 ¼

a1
a2
a3

2
4

3
5½ b1 b2 b3 �: (2.12.5)

In particular, the dyadic products of the base vectors ei are:

½e1e1� ¼
1 0 0

0 0 0

0 0 0

2
4

3
5; ½e1e2� ¼

0 1 0

0 0 0

0 0 0

2
4

3
5 . . . : (2.12.6)

*Some authors write a 	 b for ab. Also, some authors write (ab)�c for (ab)c and c �(ab) for (ab)Tc.
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Thus, it is clear that any tensor T can be expressed as:

T ¼ T11e1e1 þ T12e1e2 þ T13e1e3 þ T21e2e1 þ . . . ¼ Tijeiej: (2.12.7)

2.13 TRACE OF A TENSOR
The trace of a tensor is a scalar that obeys the following rules: For any tensor T and S and any vectors a and b,

trðTþ SÞ ¼ trTþ tr S;
trðaTÞ ¼ atrT;
trðabÞ ¼ a � b:

(2.13.1)

In terms of tensor components, using Eq. (2.12.7),

trT ¼ trðTijeiejÞ ¼ TijtrðeiejÞ ¼ Tijei � ej ¼ Tijdij ¼ Tii: (2.13.2)

That is,

trT ¼ T11 þ T22 þ T33 ¼ sum of diagonal elements: (2.13.3)

It is, therefore, obvious that

trTT ¼ trT: (2.13.4)

Example 2.13.1
Show that for any second-order tensor A and B

trðABÞ ¼ trðBAÞ: (2.13.5)

Solution
Let C ¼ AB, then Cij ¼ AimBmj , so that trðABÞ ¼ trC ¼ Cii ¼ AimBmi .

Let D ¼ BA, then Dij ¼ BimAmj ; so that trðBAÞ ¼ tr D ¼ Dii ¼ BimAmi . But BimAmi ¼ BmiAim (change of dummy

indices); therefore, we have the desired result

trðABÞ ¼ trðBAÞ:

2.14 IDENTITY TENSOR AND TENSOR INVERSE
The linear transformation that transforms every vector into itself is called an identity tensor. Denoting this

special tensor by I, we have for any vector a,

Ia ¼ a: (2.14.1)

In particular,

Ie1 ¼ e1; Ie2 ¼ e2; Ie3 ¼ e3: (2.14.2)
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Thus the (Cartesian) components of the identity tensor are:

Iij ¼ ei � Iej ¼ ei � ej ¼ dij; (2.14.3)

that is,

½I� ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: (2.14.4)

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates and that

TI ¼ IT ¼ T for any tensor T. We also note that if Ta ¼ a for any arbitrary a, then T ¼ I.

Example 2.14.1
Write the tensor T, defined by the equation Ta ¼ aa, where a is a constant and a is arbitrary, in terms of the identity

tensor, and find its components.

Solution
Using Eq. (2.14.1), we can write aa as aIa, so that

Ta ¼ aa ¼ aIa:

Since a is arbitrary, therefore,

T ¼ aI:

The components of this tensor are clearly Tij ¼ adij .

Given a tensor T, if a tensor S exists such that

ST ¼ I; (2.14.5)

then we call S the inverse of T and write

S ¼ T�1: (2.14.6)

To find the components of the inverse of a tensor T is to find the inverse of the matrix of T. From the

study of matrices, we know that the inverse exists if and only if det T 6¼ 0 (that is, T is nonsingular) and in

this case,

½T��1½T� ¼ ½T�½T��1 ¼ ½I�: (2.14.7)

Thus, the inverse of a tensor satisfies the following relation:

T�1T ¼ TT�1 ¼ I: (2.14.8)

It can be shown (see Prob. 2.35) that for the tensor inverse, the following relations are satisfied:

ðTTÞ�1 ¼ ðT�1ÞT; (2.14.9)

and

ðTSÞ�1 ¼ S�1T�1: (2.14.10)

We note that if the inverse exists, we have the reciprocal relations that

Ta ¼ b and a ¼ T�1b: (2.14.11)
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This indicates that when a tensor is invertible, there is a one-to-one mapping of vectors a and b. On the other

hand, if a tensor T does not have an inverse, then, for a given b, there are in general more than one a that

transform into b. This fact is illustrated in the following example.

Example 2.14.2
Consider the tensor T ¼ cd (the dyadic product of c and d).

(a) Obtain the determinant of T.

(b) Show that if Ta ¼ b, then T(a þ h) ¼ b, where h is any vector perpendicular to the vector d.

Solution

(a) ½T� ¼
c1
c2
c3

2
4

3
5½ d1 d2 d3 � ¼

c1d1 c1d2 c1d3
c2d1 c2d2 c2d3
c3d1 c3d2 c3d3

2
4

3
5 and det ½T� ¼ c1c2c3d1d2d3

�����
1 1 1
1 1 1
1 1 1

����� ¼ 0.

That is, T is a singular tensor, for which an inverse does not exist.

(b) T(aþh) ¼ (cd)(aþ h) ¼ c(d � a) þ c(d � h). Now d � h ¼ 0 (h is perpendicular to d); therefore,

Tðaþ hÞ ¼ cðd � aÞ ¼ ðcdÞa ¼ Ta ¼ b:

That is, all vectors a þ h transform into the vector b, and it is not a one-to-one transformation.

2.15 ORTHOGONAL TENSORS
An orthogonal tensor is a linear transformation under which the transformed vectors preserve

their lengths and angles. Let Q denote an orthogonal tensor; then by definition, jQaj¼ jaj, jQbj¼ jbj, and
cos(a,b) ¼ cos(Qa, Qb). Therefore,

Qa �Qb ¼ a � b (2.15.1)

for any vectors a and b.
Since by the definition of transpose, Eq. (2.11.1), (Qa) � (Qb) ¼ b � QT(Qa), thus

b � a ¼ b � ðQTQÞa or b � Ia ¼ b �QTQa:

Since a and b are arbitrary, it follows that

QTQ ¼ I: (2.15.2)

This means that for an orthogonal tensor, the inverse is simply the transpose,

Q�1 ¼ QT: (2.15.3)

Thus [see Eq. (2.14.8)],

QTQ ¼ QQT ¼ I: (2.15.4)
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In matrix notation, Eq. (2.15.4) takes the form:

½Q�T½Q� ¼ ½Q�½Q�T ¼ ½I�; (2.15.5)

and in subscript notation, we have

QmiQmj ¼ QimQjm ¼ dij: (2.15.6)

Example 2.15.1
The tensor given in Example 2.7.2, being a reflection, is obviously an orthogonal tensor. Verify that ½T�½T�T ¼ ½I� for the
[T] in that example. Also, find the determinant of [T].

Solution
Evaluating the matrix product:

T½ � T½ �T ¼
�1 0 0
0 1 0
0 0 1

2
4

3
5 �1 0 0

0 1 0
0 0 1

2
4

3
5 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5:

The determinant of T is

jTj ¼
�����
�1 0 0
0 1 0
0 0 1

����� ¼ �1:

Example 2.15.2
The tensor given in Example 2.7.3, being a rigid body rotation, is obviously an orthogonal tensor. Verify that

½R�½R�T ¼ ½I� for the [R] in that example. Also find the determinant of [R].

Solution

½R�½R�T ¼
cos y �sin y 0
sin y cos y 0
0 0 1

2
4

3
5 cos y sin y 0

�sin y cos y 0
0 0 1

2
4

3
5 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5;

det½R� ¼ jRj ¼
�����
cos y �sin y 0
sin y cos y 0
0 0 1

����� ¼ 1:

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to either þ1 or �1.

In fact, since

½Q�½Q�T ¼ ½I�;
therefore,

j½Q�½Q�Tj ¼ jQjjQTj ¼ jIj:
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Now jQj ¼ jQTj and jIj ¼ 1, therefore, jQj2 ¼ 1, thus

jQj ¼ 
1: (2.15.7)

From the previous examples, we can see that for a rotation tensor the determinant is þ1, whereas for a

reflection tensor, it is �1.

2.16 TRANSFORMATION MATRIX BETWEEN TWO RECTANGULAR
CARTESIAN COORDINATE SYSTEMS
Suppose that e1; e2; e3f g and e 0

1; e
0
2; e

0
3

� �
are unit vectors corresponding to two rectangular Cartesian coordi-

nate systems (see Figure 2.16-1). It is clear that e1; e2; e3f g can be made to coincide with e 0
1; e

0
2; e

0
3

� �
through

either a rigid body rotation (if both bases are same-handed) or a rotation followed by a reflection (if different-

handed). That is, {ei} and e 0
i

� �
are related by an orthogonal tensor Q through the equations below.

e 0
i ¼ Qei ¼ Qmiem; (2.16.1)

that is,

e 0
1 ¼ Q11e1 þ Q21e2 þ Q31e3;
e 0
2 ¼ Q12e1 þ Q22e2 þ Q32e3;
e 0
3 ¼ Q13e1 þ Q23e2 þ Q33e3;

(2.16.2)

where

QimQjm ¼ QmiQmj ¼ dij; (2.16.3)

or

QQT ¼ QTQ ¼ I: (2.16.4)

We note that

Q11 ¼ e1 �Qe1 ¼ e1 � e 0
1 ¼ cosine of the angle between e1 and e

0
1;

Q12 ¼ e1 �Qe2 ¼ e1 � e 0
2 ¼ cosine of the angle between e1 and e

0
2; etc:

That is, in general, Qij ¼ cosine of the angle between ei and e 0
j , which may be written:

Qij ¼ cosðei; e 0j Þ: (2.16.5)

e2e2
9

e3
9

e1
9

e1

e3

FIGURE 2.16-1
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The matrix of these direction cosines, i.e., the matrix

Q½ � ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
4

3
5; (2.16.6)

is called the transformation matrix between e1; e2; e3f g and e 0
1; e

0
2; e

0
3

� �
. Using this matrix, we shall obtain in

the following sections the relationship between the two sets of components, with respect to these two sets of

base vectors, of a vector and a tensor.

Example 2.16.1
Let e 0

1; e
0
2; e

0
3

� �
be obtained by rotating the basis e1; e2; e3f g about the e3 axis through 30�, as shown in Figure 2.16-2.

In this figure, e3 and e 0
3 coincide.

Solution
We can obtain the transformation matrix in two ways:

1. Using Eq. (2.16.5), we have

Q11 ¼ cosðe1; e 0
1Þ ¼ cos 30� ¼

ffiffiffi
3

p
=2; Q12 ¼ cosðe1; e 0

2Þ ¼ cos 120� ¼ �1=2; Q13 ¼ cosðe1; e 0
3Þ ¼ cos 90� ¼ 0;

Q21 ¼ cosðe2; e 0
1Þ ¼ cos 60� ¼ 1=2; Q22 ¼ cosðe2; e 0

2Þ ¼ cos 30� ¼
ffiffiffi
3

p
=2; Q23 ¼ cosðe2; e 0

3Þ ¼ cos 90� ¼ 0;
Q31 ¼ cosðe3; e 0

1Þ ¼ cos 90� ¼ 0; Q32 ¼ cosðe3; e 0
2Þ ¼ cos 90� ¼ 0; Q23 ¼ cosðe3; e 0

3Þ ¼ cos 0� ¼ 1:

2. It is easier to simply look at Figure 2.16-2 and decompose each of the e 0
i into its components in the

e1; e2; e3f g directions, i.e.,

e 0
1 ¼ cos 30�e1 þ sin 30�e2 ¼

ffiffiffi
3

p

2
e1 þ 1

2
e2;

e 0
2 ¼ �sin 30�e1 þ cos 30�e3 ¼ � 1

2
e1 þ

ffiffiffi
3

p

2
e2;

e 0
3 ¼ e3:

Thus, by Eq. (2.16.2), we have

½Q� ¼
ffiffiffi
3

p
=2 �1=2 0

1=2
ffiffiffi
3

p
=2 0

0 0 1

2
4

3
5:

e2e2
9

e1
9

e1

30�

30�

FIGURE 2.16-2
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2.17 TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A VECTOR
Consider any vector a. The Cartesian components of the vector a with respect to e1; e2; e3f g are:

ai ¼ a � ei; (2.17.1)

and its components with respect to e 0
1; e

0
2; e

0
3

� �
are:

a 0
i ¼ a � e 0

i : (2.17.2)

Now e 0
i ¼ Qmiem [see Eq. (2.16.1)]; therefore,

a 0
i ¼ a �Qmiem ¼ Qmiða � emÞ; (2.17.3)

that is,

a 0
i ¼ Qmiam: (2.17.4)

In matrix notation, Eq. (2.17.4) is

a 0
1

a 0
2

a 0
3

2
64

3
75 ¼

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

2
64

3
75

a1

a2

a3

2
64

3
75; (2.17.5)

or

½a� 0 ¼ ½Q�T½a�: (2.17.6)

Equation (2.17.4), or Eq. (2.17.5), or Eq. (2.17.6) is the transformation law relating components of

the same vector with respect to different rectangular Cartesian unit bases. It is very important to note

that in Eq. (2.17.6), [a]0 denotes the matrix of the vector a with respect to the primed basis e 0
i g

�
, and [a]

denotes the same vector with respect to the unprimed basis {ei}. Eq. (2.17.6) is not the same as a 0 ¼ QTa.
The distinction is that [a]0 and [a] are matrices of the same vector, whereas a and a0 are two different vec-

tors—a0 being the transformed vector of a (through the transformation a 0 ¼ QTa).
If we premultiply Eq. (2.17.6) with [Q], we get

½a� ¼ ½Q�½a� 0: (2.17.7)

The indicial notation for this equation is:

ai ¼ Qima
0
m: (2.17.8)

Example 2.17.1
Given that the components of a vector a with respect to eif g are given to be [2,0,0]. That is, a ¼ 2e1, find its com-

ponents with respect to e 0
i

� �
, where the e 0

i

� �
axes are obtained by a 90� counter-clockwise rotation of the eif g axis

about its e3 axis.

Solution
The answer to the question is obvious from Figure 2.17-1, that is,

a ¼ 2e1 ¼ �2e 0
2:
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To show that we can get the same answer from Eq. (2.17.6), we first obtain the transformation matrix of Q. Since

e 0
1 ¼ e2; e

0
2 ¼ �e1 and e 0

3 ¼ e3, we have

½Q� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

Thus,

½a� 0 ¼ ½Q�T½a� ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5 2

0
0

2
4

3
5 ¼

0
�2
0

2
4

3
5;

that is,

a ¼ �2e 0
2:

2.18 TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A TENSOR
Consider any tensor T. The components of T with respect to the basis e1; e2; e3f g are:

Tij ¼ ei �Tej: (2.18.1)

Its components with respect to e 0
1; e

0
2; e

0
3

� �
are:

T 0
ij ¼ e 0i �Te 0

j : (2.18.2)

With e 0
i ¼ Qmiem, we have

T 0
ij ¼ Qmiem �TQnjen ¼ QmiQnjem �Ten;

that is,

T 0
ij ¼ QmiQnjTmn: (2.18.3)

In matrix notation, the preceding equation reads:

T 0
11 T 0

12 T 0
13

T 0
21 T 0

22 T 0
23

T 0
31 T 0

32 T 0
33

2
4

3
5 ¼

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

2
4

3
5 T11 T12 T13

T21 T22 T23
T31 T32 T33

2
4

3
5 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
4

3
5; (2.18.4)

or

½T� 0 ¼ ½Q�T ½T� ½Q�: (2.18.5)

e1e2
9

e1
9 e2

a
x1

x2

FIGURE 2.17-1

2.18 Transformation Law for Cartesian Components of a Tensor 27



We can also express the unprimed components in terms of the primed components. Indeed, if we premul-

tiply the preceding equation with [Q] and post-multiply it with [Q]T, we obtain, since

½Q� ½Q�T ¼ ½Q�T Q� ¼ ½I�;½ (2.18.6)

½T� ¼ ½Q� ½T� 0 ½Q�T: (2.18.7)

In indicial notation, Eq. (2.18.7) reads

Tij ¼ QimQjnT
0
mn: (2.18.8)

Equations (2.18.5) [or Eq. (2.18.3)] and Eq. (2.18.7) [or Eq. (2.18.8)] are the transformation laws relating

components of the same tensor with respect to different Cartesian unit bases. Again, it is important to note

that in Eqs. (2.18.5) and (2.18.7), [T] and [T]0 are different matrices of the same tensor T. We note that

the equation ½T� 0 ¼ ½Q�T½T�½Q� differs from T 0 ¼ QTTQ in that the former relates the components of the

same tensor T whereas the latter relates the two different tensors T and T0.

Example 2.18.1
Given that with respect to the basis e1; e2; e3f g; the matrix of a tensor T is given by

½T� ¼
0 1 0
1 2 0
0 0 1

2
4

3
5:

Find [T]0, that is, find the matrix of T with respect to the e 0
i basis, where e 0

1; e
0
2; e

0
3

� �
is obtained by rotating

e1; e2; e3f g about its e3-axis through 90� (see Figure 2.17-1).

Solution
Since e 0

1 ¼ e2; e
0
2 ¼ �e1 and e 0

3 ¼ e3; by Eq. (2.7.1) we have

½Q� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5:

Thus, Eq. (2.18.5) gives

½T� 0 ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5 0 1 0

1 2 0
0 0 1

2
4

3
5 0 �1 0

1 0 0
0 0 1

2
4

3
5 ¼

2 �1 0
�1 0 0
0 0 1

2
4

3
5;

that is,

T 0
11 ¼ 2; T 0

12 ¼ �1; T 0
13 ¼ 0; T 0

22 ¼ 0; T 0
23 ¼ 0; T 0

33 ¼ 1:

Example 2.18.2
Given a tensor T and its components Tij and T 0

ij with respect to two sets of bases eif g and e 0
i

� �
. Show that Tii is invari-

ant with respect to these bases, i.e., Tii ¼ T 0
ii .

Solution
The primed components are related to the unprimed components by Eq. (2.18.3):

T 0
ij ¼ QmiQnjTmn;
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thus,

T 0
ii ¼ QmiQniTmn:

But QmiQni ¼ dmn [Eq. (2.15.6)], therefore,

T 0
ii ¼ dmnTmn ¼ Tmm ¼ Tii ;

that is,

T11 þ T22 þ T33 ¼ T 0
11 þ T 0

22 þ T 0
33:

We see from Example 2.18.1 that we can calculate all nine components of a tensor T with respect to e 0
i

� �
from the matrix T½ � eif g by using Eq. (2.18.5). However, there are often times when we need only a few com-

ponents. Then it is more convenient to use Eq. (2.18.1). In matrix form, this equation is written:

T 0
ij ¼ ½e 0

i �T½T� ½e 0
j �; (2.18.9)

where ½e 0
i �T denote the row matrix whose elements are the components of e 0

i with respect to the basis {ei}.

Example 2.18.3
Obtain T 0

12 for the tensor T and the bases {ei} and e 0
i

� �
given in Example 2.18.1 by using Eq. (2.18.1).

Solution
Since e 0

1 ¼ e2 and e 0
2 ¼ �e1, therefore,

T 0
12 ¼ e 0

1 � Te 0
2 ¼ e2 � T �e1ð Þ ¼ �T21 ¼ �1:

Alternatively, using Eq. (2.18.9), we have

T 0
12 ¼ e 0

1

� �T
T½ � e 0

2

� � ¼ 0 1 0½ �
0 1 0
1 2 0
0 0 1

2
4

3
5 �1

0
0

2
4

3
5 ¼ 0 1 0½ �

0
�1
0

2
4

3
5 ¼ �1:

2.19 DEFINING TENSOR BY TRANSFORMATION LAWS
Equation (2.17.4) or (2.18.3) states that when the components of a vector or a tensor with respect to

e1; e2; e3f g are known, then its components with respect to any e 0
1; e

0
2; e

0
3

� �
are uniquely determined from

them. In other words, the components ai or Tij with respect to one set of {e1, e2, e3} completely characterize

a vector or a tensor. Thus, it is perfectly meaningful to use a statement such as “consider a tensor Tij,” mean-

ing consider the tensor T whose components with respect to some set of {e1, e2, e3} are Tij. In fact, an alter-

native way of defining a tensor is through the use of transformation laws relating components of a tensor with

respect to different bases. Confining ourselves to only rectangular Cartesian coordinate systems and using unit

vectors along positive coordinate directions as base vectors, we now define Cartesian components of tensors

of different orders in terms of their transformation laws in the following, where the primed quantities are
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referred to basis e 0
1; e

0
2; e

0
3

� �
and unprimed quantities to basis e1; e2; e3f g, where the e 0

i and ei are related by

e 0
i ¼ Qei, Q being an orthogonal transformation:

a 0 ¼ a zeroth-order tensor or scalarð Þ;
a 0
i ¼ Qmiam first-order tensor or vectorð Þ;
T 0
ij ¼ QmiQnjTmn second-order tensor or tensorð Þ;

S 0
ijk ¼ QmiQnjQrkSmnr third-order tensor;

C 0
ijkl ¼ QmiQnjQrkQslCmnrs fourth-order tensor;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :

(2.19.1)

Using the preceding transformation laws, we can easily establish the following three rules for tensor com-

ponents: (1) the addition rule, (2) the multiplication rule, and (3) the quotient rule.

1. The addition rule. If Tij and Sij are components of any two second-order tensors, then Tij þ Sij are com-

ponents of a second-order tensor. Similarly, if Tijk and Sijk are components of any two third-order ten-

sors, then Tijk þ Sijk are components of a third-order tensor.

To prove this rule, we note that since T 0
ijk ¼ QmiQnjQrkTmnr and S 0

ijk ¼ QmiQnjQrkSmnr, thus,

T 0
ijk þ S 0

ijk ¼ QmiQnjQrkTmnr þ QmiQnjQrkSmnr ¼ QmiQnjQrkðTmnr þ SmnrÞ:

Letting

W 0
ijk ¼ T 0

ijk þ S 0
ijk and Wmnr ¼ Tmnr þ Smnr;

we have

W 0
ijk ¼ QmiQnjQrkWmnr;

that is, Wijk are components of a third-order tensor.

2. The multiplication rule. Let ai be components of any vector and Tij be components of any tensor. We

can form many kinds of products from these components. Examples are (a) aiaj, (b) aiajak, (c) TijTkl,
(d) TijTjk, etc. It can be proved that these products are components of a tensor whose order is equal

to the number of free indices. For example, aiaj are components of a second-order tensor, aiajak are
components of a third-order tensor, TijTkl are components of a fourth-order tensor, and TijTjk are com-

ponents of a second-order tensor.

To prove that aiaj are components of a second-order tensor, we let Sij ¼ aiaj and S 0
ij ¼ a 0

i a
0
j , then,

since ai are components of the vector a, a 0
i ¼ Qmiam and a 0

j ¼ Qnjan, so that

S 0
ij ¼ QmiamQnjan ¼ QmiQnjaman ¼ QmiQnjSmn;

thus,

S 0
ij ¼ QmiQnjSmn;

which is the transformation law for a second-order tensor.

To prove that TijTkl are components of a fourth-order tensor, let Mijkl ¼ TijTkl; then we have

M 0
ijkl ¼ T 0

ijT
0
kl ¼ QmiQnjTmnQrkQslTrs ¼ QmiQnjQrkQslTmnTrs;

that is,

M 0
ijkl ¼ QmiQnjQrkQslMmnrs;

which is the transformation law for a fourth-order tensor. It is quite clear from the proofs given above that

the order of the tensor whose components are obtained from the multiplication of components of tensors
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is determined by the number of free indices; no free index corresponds to a scalar, one free index corre-

sponds to a vector, two free indices correspond to a second-order tensor, and so on.

3. Quotient rule. If ai are components of an arbitrary vector, Tij are components of an arbitrary tensor, and

ai ¼ Tijbj for all coordinates, then bi are components of a vector.

To prove this, we note that since ai are components of a vector and Tij are components of a second-

order tensor, therefore,

ai ¼ Qima
0
m; (i)

and

Tij ¼ QimQjnT
0
mn: (ii)

Now, substituting Eq. (i) and Eq. (ii) into the equation ai ¼ Tijbj, we have

Qima
0
m ¼ QimQjnT

0
mnbj: (iii)

But the equation ai ¼ Tijbj is true for all coordinates, thus we also have

a 0
i ¼ T 0

ijb
0
j and a 0

m ¼ T 0
mnb

0
n; (iv)

and thus Eq. (iii) becomes

QimT
0
mnb

0
n ¼ QimQjnT

0
mnbj: (v)

Multiplying the preceding equation with Qik and noting that QikQim ¼ dkm, we get

dkmT 0
mnb

0
n ¼ dkmQjnT

0
mnbj or T 0

knb
0
n ¼ QjnT

0
knbj;

thus,

T 0
knðb 0

n � QjnbjÞ ¼ 0: (vi)

Since this equation is to be true for any tensor T, therefore b 0
n � Qjnbj must be identically zero. Thus,

b 0
n ¼ Qjnbj: (vii)

This is the transformation law for the components of a vector. Thus, bi are components of a vector.

Another example that will be important later when we discuss the relationship between stress and

strain for an elastic body is the following: If Tij and Eij are components of arbitrary second-order ten-

sors T and E, and

Tij ¼ CijklEkl; (viii)

for all coordinates, then Cijkl are components of a fourth-order tensor. The proof for this example fol-

lows exactly the same steps as in the previous example.

2.20 SYMMETRIC AND ANTISYMMETRIC TENSORS
A tensor is said to be symmetric if T ¼ TT. Thus, the components of a symmetric tensor have the property

Tij ¼ Tji; (2.20.1)
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that is,

T12 ¼ T21; T13 ¼ T31; T23 ¼ T32: (2.20.2)

A tensor is said to be antisymmetric if T ¼ �TT. Thus the components of an antisymmetric tensor have

the property

Tij ¼ �Tji; (2.20.3)

that is,

T11 ¼ T22 ¼ T33 ¼ 0; T12 ¼ �T21; T13 ¼ �T31; T23 ¼ �T32: (2.20.4)

Any tensor T can always be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.

In fact,

T ¼ TS þ TA; (2.20.5)

where

TS ¼ Tþ TT

2
is symmetric and TA ¼ T� TT

2
is anti-symmetric: (2.20.6)

It is not difficult to prove that the decomposition is unique (see Prob. 2.47).

2.21 THE DUAL VECTOR OF AN ANTISYMMETRIC TENSOR
The diagonal elements of an antisymmetric tensor are always zero, and, of the six nondiagonal elements, only

three are independent, because T12 ¼ �T21; T23 ¼ �T32 and T31 ¼ �T13. Thus an antisymmetric tensor has

really only three components, just like a vector. Indeed, it does behave like a vector. More specifically, for

every antisymmetric tensor T there is a corresponding vector tA such that for every vector a, the transformed

vector of a under T, i.e., Ta, can be obtained from the cross-product of tA with the vector a. That is,

Ta ¼ tA � a: (2.21.1)

This vector tA is called the dual vector of the antisymmetric tensor. It is also known as the axial vector.
That such a vector indeed can be found is demonstrated here.

From Eq. (2.21.1), we have

T12 ¼ e1 �Te2 ¼ e1 � tA � e2 ¼ tA � e2 � e1 ¼ �tA � e3 ¼ �tA3 ;
T31 ¼ e3 �Te1 ¼ e3 � tA � e1 ¼ tA � e1 � e3 ¼ �tA � e2 ¼ �tA2 ;
T23 ¼ e2 �Te3 ¼ e2 � tA � e3 ¼ tA � e3 � e2 ¼ �tA � e1 ¼ �tA1 :

(2.21.2)

Similar derivations will give T21 ¼ tA3 ; T13 ¼ tA2 ; T32 ¼ tA1 and T11 ¼ T22 ¼ T33 ¼ 0. Thus, only an antisym-

metric tensor has a dual vector defined by Eq. (2.21.1). It is given by

tA ¼ �ðT23e1 þ T31e2 þ T12e3Þ ¼ T32e1 þ T13e2 þ T21e3 (2.21.3)

or, in indicial notation,

2tA ¼ �eijkTjkei: (2.21.4)

The calculations of dual vectors have several uses. For example, it allows us to easily obtain the axis of

rotation for a finite rotation tensor. In fact, the axis of rotation is parallel to the dual vector of the
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antisymmetric part of the rotation tensor (see Example 2.21.2). Also, in Chapter 3 it will be shown that the dual

vector can be used to obtain the infinitesimal angles of rotation of material elements under infinitesimal defor-

mation (Section 3.11) and to obtain the angular velocity of material elements in general motion (Section 3.14).

Example 2.21.1
Given

½T� ¼
1 2 3
4 2 1
1 1 1

2
4

3
5:

(a) Decompose the tensor into a symmetric and an antisymmetric part.

(b) Find the dual vector for the antisymmetric part.

(c) Verify TAa ¼ tA � a for a ¼ e1 þ e3:

Solution

(a) ½T� ¼ ½TS� þ ½TA�; where

½TS� ¼ ½T� þ ½T�T
2

¼
1 3 2
3 2 1
2 1 1

2
4

3
5; ½TA� ¼ ½T� � ½T�T

2
¼

0 �1 1
1 0 0
�1 0 0

2
4

3
5:

(b) The dual vector of TA is

tA ¼ �ðT A
23e1 þ T A

31e2 þ T A
12e3Þ ¼ �ð0e1 � e2 � e3Þ ¼ e2 þ e3:

(c) Let b ¼ TAa. Then

½b� ¼
0 �1 1
1 0 0
�1 0 0

2
4

3
5 1

0
1

2
4

3
5 ¼

1
1
�1

2
4

3
5;

that is,

b ¼ e1 þ e2 � e3:

We note that tA � a ¼ ðe2 þ e3Þ � ðe1 þ e3Þ ¼ �e3 þ e1 þ e2 ¼ b:

Example 2.21.2
Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of rotation, prove that the dual

vector q of RA is parallel to m.

Solution
Since m is parallel to the axis of rotation, therefore,

Rm ¼ m:

Multiplying the preceding equation by RT and noticing that RTR ¼ I, we then also have the equation RTm ¼ m. Thus,

ðR� RTÞm ¼ 0 or 2RAm ¼ 0;
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but RAm ¼ q�m, where q is the dual vector of RA. Therefore,

q�m ¼ 0; (2.21.5)

that is, q is parallel to m. We note that it can be shown [see Prob. 2.54(b)] that if y denotes the right-hand rotation

angle, then

q ¼ ðsinyÞm: (2.21.6)

2.22 EIGENVALUES AND EIGENVECTORS OF A TENSOR
Consider a tensor T. If a is a vector that transforms under T into a vector parallel to itself, that is,

Ta ¼ la; (2.22.1)

then a is an eigenvector and l is the corresponding eigenvalue.
If a is an eigenvector with corresponding eigenvalue l of the linear transformation T, any vector parallel

to a is also an eigenvector with the same eigenvalue l. In fact, for any scalar a

TðaaÞ ¼ aTa ¼ aðlaÞ ¼ lðaaÞ: (2.22.2)

Thus, an eigenvector, as defined by Eq. (2.22.1), has an arbitrary length. For definiteness, we shall agree that
all eigenvectors sought will be of unit length.

A tensor may have infinitely many eigenvectors. In fact, since Ia ¼ a, any vector is an eigenvector for the

identity tensor I, with eigenvalues all equal to unity. For the tensor bI, the same is true except that the eigen-

values are all equal to b.
Some tensors only have eigenvectors in one direction. For example, for any rotation tensor that effects a

rigid body rotation about an axis through an angle not equal to an integral multiple of p, only those vectors

that are parallel to the axis of rotation will remain parallel to themselves.

Let n be a unit eigenvector. Then

Tn ¼ ln ¼ lIn; (2.22.3)

thus,

ðT� lIÞn ¼ 0 with n � n ¼ 1: (2.22.4)

Let n ¼ aiei; then, in component form,

Tij � ldij
	 


aj ¼ 0 with ajaj ¼ 1: (2.22.5)

In long form, we have

T11 � lð Þa1 þ T12a2 þ T13a3 ¼ 0;
T21a1 þ T22 � lð Þa2 þ T23a3 ¼ 0;
T31a1 þ T32a2 þ T33 � lð Þa3 ¼ 0:

(2.22.6)

Equations (2.22.6) are a system of linear homogeneous equations in a1, a2 and a3. Obviously, a solution

for this system is a1 ¼ a2 ¼ a3 ¼ 0. This is known as the trivial solution. This solution simply states the
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obvious fact that a ¼ 0 satisfies the equation Ta ¼ la, independent of the value of l. To find the nontrivial

eigenvectors for T, we note that a system of homogeneous, linear equations admits a nontrivial solution only

if the determinant of its coefficients vanishes. That is,

jT� lIj ¼ 0; (2.22.7)

that is, �����
T11 � l T12 T13
T21 T22 � l T23
T31 T32 T33 � l

����� ¼ 0: (2.22.8)

Expanding the determinant results in a cubic equation in l. It is called the characteristic equation of T.
The roots of this characteristic equation are the eigenvalues of T.

Equations (2.22.6), together with the equation

a21 þ a22 þ a23 ¼ 1; (2.22.9)

allow us to obtain eigenvectors of unit length. The procedure for finding the eigenvalues and eigenvectors of a

tensor are best illustrated by example.

Example 2.22.1
Find the eigenvalues and eigenvectors for the tensor whose components are

½T� ¼
2 0 0
0 2 0
0 0 2

2
4

3
5:

Solution
We note that this tensor is 2I, so that Ta ¼ 2Ia ¼ 2a for any vector a. Therefore, by the definition of eigenvector [see

Eq. (2.22.1)], any direction is a direction for an eigenvector. The eigenvalue for every direction is the same, which is

2. However, we can also use Eq. (2.22.8) to find the eigenvalues and Eqs. (2.22.6) to find the eigenvectors. Indeed,

Eq. (2.22.8) gives, for this tensor, the following characteristic equation:

2� lð Þ3 ¼ 0;

so we have a triple root l ¼ 2. Substituting this value in Eqs. (2.22.6), we have

2� 2ð Þa1 ¼ 0; 2� 2ð Þa2 ¼ 0; 2� 2ð Þa3 ¼ 0:

Thus, all three equations are automatically satisfied for arbitrary values of a1, a2 and a3 so that every direction is a

direction for an eigenvector. We can choose any three noncoplanar directions as the three independent eigenvectors;

on them all other eigenvectors depend. In particular, we can choose {e1, e2, e3} as a set of independent eigenvectors.

Example 2.22.2
Show that if T21 ¼ T31 ¼ 0, then 
e1 are eigenvectors of T with eigenvalue T11.

Solution
From Te1 ¼ T11e1 þ T21e2 þ T31e3, we have

Te1 ¼ T11e1 and Tð�e1Þ ¼ T11ð�e1Þ:
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Thus, by definition, Eq. (2.22.1), 
e1 are eigenvectors with T11 as its eigenvalue. Similarly, if T12 ¼ T32 ¼ 0, then


e2 are eigenvectors with corresponding eigenvalue T22, and if T13 ¼ T23 ¼ 0, then 
e3 are eigenvectors with

corresponding eigenvalue T33.

Example 2.22.3
Given that

½T� ¼
2 0 0

0 2 0

0 0 3

2
64

3
75:

Find the eigenvalues and their corresponding eigenvectors.

Solution
The characteristic equation is

ð2� lÞ2ð3� lÞ ¼ 0:

Thus, l1 ¼ 3; l2 ¼ l3 ¼ 2 (obviously the ordering of the eigenvalues is arbitrary). These results are obvious in

view of Example 2.22.2. In fact, that example also tells us that the eigenvectors corresponding to l1 ¼ 3 are 
e3
and eigenvectors corresponding to l2 ¼ l3 ¼ 2 are 
e1 and 
e2. However, there are actually infinitely many eigen-

vectors corresponding to the double root. In fact, since

Te1 ¼ 2e1 and Te2 ¼ 2e2;

therefore, for any a and b,

Tðae1 þ be2Þ ¼ aTe1 þ bTe2 ¼ 2ae1 þ 2be2 ¼ 2ðae1 þ be2Þ;
that is, ae1 þ be2 is an eigenvector with eigenvalue 2. This fact can also be obtained from Eqs. (2.22.6). With l ¼ 2,

these equations give

0a1 ¼ 0; 0a2 ¼ 0; a3 ¼ 0:

Thus, a1 ¼ arbitrary, a2 ¼ arbitrary, and a3 ¼ 0, so that any vector perpendicular to e3, that is, any

n ¼ a1e1 þ a2e2; is an eigenvector.

Example 2.22.4
Find the eigenvalues and eigenvectors for the tensor

½T� ¼
2 0 0

0 3 4

0 4 �3

2
4

3
5:
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Solution
The characteristic equation gives

jT� lIj ¼

�����
2� l 0 0
0 3� l 4
0 4 �3� l

����� ¼ ð2� lÞðl2 � 25Þ ¼ 0:

Thus, there are three distinct eigenvalues, l1 ¼ 2, l2 ¼ 5 and l3 ¼ �5.

Corresponding to l1 ¼ 2, Eqs. (2.22.6) gives

0a1 ¼ 0; a2 þ 4a3 ¼ 0; 4a2 � 5a3 ¼ 0;

and we also have Eq. (2.22.9):

a21 þ a22 þ a23 ¼ 1:

Thus, a2 ¼ a3 ¼ 0 and a1 ¼ 
1 so that the eigenvector corresponding to l1 ¼ 2 is

n1 ¼ 
e1:

We note that from the Example 2.22.2, this eigenvalue 2 and the corresponding eigenvectors n1 ¼ 
e1 can be

written by inspection.

Corresponding to l2 ¼ 5, we have

�3a1 ¼ 0; �2a2 þ 4a3 ¼ 0; 4a2 � 8a3 ¼ 0;

thus (note the second and third equations are the same),

a1 ¼ 0; a2 ¼ 2a3;

and the unit eigenvectors corresponding to l2 ¼ 5 are

n2 ¼ 
 1ffiffiffi
5

p ð2e2 þ e3Þ:

Similarly for l3 ¼ �5, the unit eigenvectors are

n3 ¼ 
 1ffiffiffi
5

p ð�e2 þ 2e3Þ:

All the examples given here have three eigenvalues that are real. It can be shown that if a tensor is

real (i.e., with real components) and symmetric, then all its eigenvalues are real. If a tensor is real

but not symmetric, then two of the eigenvalues may be complex conjugates. The following is such an

example.
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Example 2.22.5
Find the eigenvalues and eigenvectors for the rotation tensor R corresponding to a 90� rotation about the e3 (see

Example 2.10.1).

Solution
With

½R� ¼
0 �1 0
1 0 0
0 0 1

2
4

3
5;

the characteristic equation is �����
0� l �1 0
1 0� l 0
0 0 1� l

����� ¼ 0;

that is,

l2ð1� lÞ þ ð1� lÞ ¼ ð1� lÞðl2 þ 1Þ ¼ 0:

Thus, only one eigenvalue is real, namely l1 ¼ 1; the other two, l2 ¼ þ
ffiffiffiffiffiffiffi
�1

p
and l3 ¼ �

ffiffiffiffiffiffiffi
�1

p
, are imaginary. Only

real eigenvalues are of interest to us. We shall therefore compute only the eigenvector corresponding to l1 ¼ 1. From

ð0� 1Þa1 � a2 ¼ 0; a1 � a2 ¼ 0; ð1� 1Þa3 ¼ 0;

and

a21 þ a22 þ a23 ¼ 1;

we obtain a1 ¼ 0; a2 ¼ 0; a3 ¼ 
1, that is,

n ¼ 
e3;

which, of course, are parallel to the axis of rotation.

2.23 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF REAL SYMMETRIC
TENSORS
In the following chapters, we shall encounter several real tensors (stress tensor, strain tensor, rate of deforma-

tion tensor, etc.) that are symmetric. The following significant theorem can be proven: The eigenvalues of any
real symmetric tensor are all real (we omit the proof). Thus, for a real symmetric tensor, there always exist at

least three real eigenvectors, which we shall also call the principal directions. The corresponding eigenvalues

are called the principal values.
We now prove that there always exist three principal directions that are mutually perpendicular. Let n1

and n2 be two eigenvectors corresponding to the eigenvalues l1 and l2, respectively, of a tensor T. Then

Tn1 ¼ l1n1; (2.23.1)

and

Tn2 ¼ l2n2: (2.23.2)

Thus,

n2 �Tn1 ¼ l1n2 � n1; (2.23.3)
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and

n1 �Tn2 ¼ l2n1 � n2: (2.23.4)

For a symmetric tensor, T ¼ TT, so that

n1 �Tn2 ¼ n2 �TTn1 ¼ n2 �Tn1: (2.23.5)

Thus, from Eqs. (2.23.3) and (2.23.4), we have

ðl1 � l2Þðn1 � n2Þ ¼ 0: (2.23.6)

It follows that if l1 is not equal to l2, then n1 � n2 ¼ 0, that is, n1 and n2 are perpendicular to each other.

We have thus proved that if the eigenvalues of a symmetric tensor are all distinct, then the three principal
directions are mutually perpendicular.

Next, let us suppose that n1 and n2 are two eigenvectors corresponding to the same eigenvalue l. Then, by
definition, Tn1 ¼ ln1 and Tn2 ¼ ln2 so that for any a and b,

Tðan1 þ bn2Þ ¼ aTn1 þ bTn2 ¼ aln1 þ bln2 ¼ lðan1 þ bn2Þ:
That is, ðan1 þ bn2Þ is also an eigenvector with the same eigenvalue l. In other words, if there are

two distinct eigenvectors with the same eigenvalue, then there are infinitely many eigenvectors (which form

a plane) with the same eigenvalue. This situation arises when the characteristic equation has a repeated root

(see Example 2.22.3). Suppose the characteristic equation has roots l1 ¼ l2 ¼ l and l3 (l3 distinct from l).
Let n3 be the eigenvector corresponding to l3; then n3 is perpendicular to any eigenvector of l. Therefore
there exist infinitely many sets of three mutually perpendicular principal directions, each containing n3 and

any two mutually perpendicular eigenvectors of the repeated root l.
In the case of a triple root, l1 ¼ l2 ¼ l3 ¼ l, any vector is an eigenvector (see Example 2.22.1) so that

there exist infinitely many sets of three mutually perpendicular principal directions.

From these discussions, we conclude that for every real symmetric tensor there exists at least one triad of

principal directions that are mutually perpendicular.

2.24 MATRIX OF A TENSOR WITH RESPECT TO PRINCIPAL DIRECTIONS
We have shown that for a real symmetric tensor, there always exist three principal directions that are mutually

perpendicular. Let n1, n2 and n3 be unit vectors in these directions. Then, using n1, n2 and n3 as base vectors,
the components of the tensor are

T11 ¼ n1 �Tn1 ¼ n1 � l1n1 ¼ l1n1 � n1 ¼ l1;
T22 ¼ n2 �Tn2 ¼ n2 � l2n2 ¼ l2n2 � n2 ¼ l2;
T33 ¼ n3 �Tn3 ¼ n3 � l3n3 ¼ l3n3 � n3 ¼ l3;
T12 ¼ n1 �Tn2 ¼ n1 � l2n2 ¼ l2n1 � n2 ¼ 0;
T13 ¼ n1 �Tn3 ¼ n1 � l3n3 ¼ l3n1 � n3 ¼ 0;
T23 ¼ n2 �Tn3 ¼ n2 � l3n3 ¼ l3n2 � n3 ¼ 0;

(2.24.1)

that is,

½T� ¼
l1 0 0

0 l2 0

0 0 l3

2
4

3
5
ni

: (2.24.2)

Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T.
We now show that the principal values of a tensor T include the maximum and the minimum values that

the diagonal elements of any matrix of T can have. First, for any unit vector e 0
1 ¼ an1 þ bn2 þ gn3,
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T 0
11 ¼ e 01 �Te 01 ¼ ½ a b g �

l1 0 0

0 l2 0

0 0 l3

2
4

3
5 a

b
g

2
4

3
5; (2.24.3)

that is,

T 0
11 ¼ l1a2 þ l2b

2 þ l3g2: (2.24.4)

Without loss of generality, let

l1 � l2 � l3: (2.24.5)

Then, noting that a2 þ b2 þ g2 ¼ 1, we have

l1 ¼ l1ða2 þ b2 þ g2Þ � l1a2 þ l2b
2 þ l3g2; (2.24.6)

that is,

l1 � T 0
11: (2.24.7)

We also have

l1a2 þ l2b2 þ l3g2 � l3ða2 þ b2 þ g2Þ ¼ l3; (2.24.8)

that is,

T 0
11 � l3: (2.24.9)

Thus, the maximum value of the principal values of T is the maximum value of the diagonal elements of

all matrices of T, and the minimum value of the principal values of T is the minimum value of the diagonal

elements of all matrices of T. It is important to remember that for a given T, there are infinitely many matri-

ces and therefore, infinitely many diagonal elements, of which the maximum principal value is the maximum

of all of them and the minimum principal value is the minimum of all of them.

2.25 PRINCIPAL SCALAR INVARIANTS OF A TENSOR
The characteristic equation of a tensor T, jTij � ldijj ¼ 0 can be written as:

l3 � I1l
2 þ I2l� I3 ¼ 0; (2.25.1)

where

I1 ¼ T11 þ T22 þ T33 ¼ Tii ¼ trT; (2.25.2)

I2 ¼
���� T11 T12
T21 T22

����þ
����T22 T23
T32 T33

����þ
����T11 T13
T31 T33

���� ¼ 1

2
TiiTjj � TijTji
	 
 ¼ 1

2
ðtrTÞ2 � trðT2Þ
h i

; (2.25.3)

I3 ¼
�����
T11 T12 T13
T21 T22 T23
T31 T32 T33

����� ¼ det ½T�: (2.25.4)

Since by definition, the eigenvalues of T do not depend on the choices of the base vectors, therefore the

coefficients of Eq. (2.25.1) will not depend on any particular choices of basis. They are called the principal
scalar invariants of T.
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We note that, in terms of the eigenvalues of T, which are the roots of Eq. (2.25.1), the scalar invariants

take the simple form

I1 ¼ l1 þ l2 þ l3;
I2 ¼ l1l2 þ l2l3 þ l3l1;
I3 ¼ l1l2l3:

(2.25.5)

Example 2.25.1
For the tensor of Example 2.22.4, first find the principal scalar invariants and then evaluate the eigenvalues using

Eq. (2.25.1).

Solution
The matrix of T is

½T� ¼
2 0 0
0 3 4
0 4 �3

2
4

3
5:

Thus,

I1 ¼ 2þ 3� 3 ¼ 2;

I2 ¼
�����
2 0

0 3

�����þ
�����
3 4

4 �3

�����þ
�����
2 0

0 �3

����� ¼ �25;

I3 ¼ jTj ¼ �50:

These values give the characteristic equation as

l3 � 2l2 � 25lþ 50 ¼ 0;

or

ðl� 2Þðl� 5Þðlþ 5Þ ¼ 0:

Thus the eigenvalues are l ¼ 2, l ¼ 5 and l ¼ �5, as previously determined.

PROBLEMS FOR PART B
2.19 A transformation T operates on any vector a to give Ta ¼ a/jaj, where jaj is the magnitude of a. Show

that T is not a linear transformation.

2.20 (a) A tensor T transforms every vector a into a vector Ta ¼ m � a, where m is a specified vector. Show

that T is a linear transformation. (b) If m ¼ e1 þ e2, find the matrix of the tensor T.

2.21 A tensor T transforms the base vectors e1 and e2 such that Te1 ¼ e1 þ e2, Te2 ¼ e1 � e2.
If a ¼ 2e1 þ 3e2 and b ¼ 3e1 þ 2e2, use the linear property of T to find (a) Ta, (b) Tb, and (c) T(aþb).

2.22 Obtain the matrix for the tensor T, that transforms the base vectors as follows: Te1 ¼ 2e1 þ e3;
Te2 ¼ e2 þ 3e3; Te3 ¼ �e1 þ 3e2.

2.23 Find the matrix of the tensor T that transforms any vector a into a vector b ¼ m(a � n) where

m ¼
ffiffiffi
2

p

2
ðe1 þ e2Þ and n ¼

ffiffiffi
2

p

2
ð�e1 þ e3Þ.
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2.24 (a) A tensor T transforms every vector into its mirror image with respect to the plane whose normal is

e2. Find the matrix of T. (b) Do part (a) if the plane has a normal in the e3 direction.

2.25 (a) Let R correspond to a right-hand rotation of angle y about the x1-axis. Find the matrix of R. (b) Do
part (a) if the rotation is about the x2-axis. The coordinates are right-handed.

2.26 Consider a plane of reflection that passes through the origin. Let n be a unit normal vector to the plane

and let r be the position vector for a point in space. (a) Show that the reflected vector for r is given by

Tr ¼ r� 2ðr � nÞn, where T is the transformation that corresponds to the reflection. (b) Let

n ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
; find the matrix of T. (c) Use this linear transformation to find the mirror image

of the vector a ¼ e1 þ 2e2 þ 3e3.

2.27 Knowing that the reflected vector for r is given by Tr ¼ r� 2ðr � nÞn (see the previous problem),

where T is the transformation that corresponds to the reflection and n is the normal to the mirror, show

that in dyadic notation the reflection tensor is given by T ¼ I� 2nn and find the matrix of T if the nor-

mal of the mirror is given by n ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
.

2.28 A rotation tensor R is defined by the relation Re1 ¼ e2; Re2 ¼ e3; Re3 ¼ e1. (a) Find the matrix of R
and verify that RTR ¼ I and det R ¼ 1 and (b) find a unit vector in the direction of the axis of rotation

that could have been used to effect this particular rotation.

2.29 A rigid body undergoes a right-hand rotation of angle y about an axis that is in the direction of

the unit vector m. Let the origin of the coordinates be on the axis of rotation and r be the position

vector for a typical point in the body. (a) Show that the rotated vector of r is given

by: Rr ¼ ð1� cosyÞðm � rÞmþ cosyrþ sinyðm� rÞ, where R is the rotation tensor. (b) Let

m ¼ ðe1 þ e2 þ e3Þ=
ffiffiffi
3

p
, find the matrix for R.

2.30 For the rotation about an arbitrary axis m by an angle y, (a) show that the rotation tensor is given

by R ¼ ð1� cosyÞðmmÞ þ cosyIþ sinyE, where mm denotes that dyadic product of m and m,

and E is the antisymmetric tensor whose dual vector (or axial vector) is m, (b) find RA, the antisym-

metric part of R and (c) show that the dual vector for RA is given by (sin y)m. Hint:
Rr ¼ ð1� cosyÞðm � rÞmþ cosyrþ sinyðm� rÞ (see previous problem).

2.31 (a) Given a mirror whose normal is in the direction of e2, find the matrix of the tensor S, which first trans-

forms every vector into its mirror image and then transforms them by a 45� right-hand rotation about the

e1-axis. (b) Find the matrix of the tensor T, which first transforms every vector by a 45� right-hand rotation

about the e1-axis and then transforms them by a reflection with respect to a mirror (with normal e2).
(c) Consider the vector a ¼ e1 þ 2e2 þ 3e3; find the transformed vector by using the transformation S.
(d) For the same vector a ¼ e1 þ 2e2 þ 3e3, find the transformed vector by using the transformation T.

2.32 Let R correspond to a right-hand rotation of angle y about the x3-axis; (a) find the matrix of R2.

(b) Show that R2 corresponds to a rotation of angle 2y about the same axis. (c) Find the matrix of

Rn for any integer n.

2.33 Rigid body rotations that are small can be described by an orthogonal transformation R ¼ Iþ eR�,
where e ! 0 as the rotation angle approaches zero. Consider two successive small rotations, R1 and

R2; show that the final result does not depend on the order of rotations.

2.34 Let T and S be any two tensors. Show that (a) TT is a tensor, (b) TT þ ST ¼ ðTþ SÞT, and

(c) ðTSÞT ¼ STTT.

2.35 For arbitrary tensors T and S, without relying on the component form, prove that (a) ðT�1ÞT ¼ ðTTÞ�1

and (b) ðTSÞ�1 ¼ S�1T�1.
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2.36 Let feig and fe 0
i g be two rectangular Cartesian base vectors. (a) Show that if e 0

i ¼ Qmiem, then

ei ¼ Qime
0
m. (b) Verify QmiQmj ¼ dij ¼ QimQjm.

2.37 The basis fe 0
i g is obtained by a 30� counterclockwise rotation of the feig basis about the e3 axis.

(a) Find the transformation matrix ½Q� relating the two sets of basis. (b) By using the vector transforma-

tion law, find the components of a ¼ ffiffiffi
3

p
e1 þ e2 in the primed basis, i.e., find a 0

i and (c) do part (b)

geometrically.

2.38 Do the previous problem with the fe 0
i g basis obtained by a 30� clockwise rotation of the feig basis

about the e3 axis.

2.39 The matrix of a tensor T with respect to the basis feig is

½T� ¼
1 5 �5

5 0 0

�5 0 1

2
4

3
5:

Find T 0
11; T

0
12 and T 0

31 with respect to a right-handed basis fe 0
i g where e 0

1 is in the direction of �e2 þ 2e3
and e 0

2 is in the direction of e1.

2.40 (a) For the tensor of the previous problem, find ½T 0
ij�, i.e., ½T�e 0i where fe 0

i g is obtained by a 90� right-

hand rotation about the e3 axis and (b) obtain T 0
ii and the determinant jT 0

ijj and compare them with Tii
and jTijj.

2.41 The dot product of two vectors a ¼ aiei and b ¼ biei is equal to aibi. Show that the dot product is a sca-

lar invariant with respect to orthogonal transformations of coordinates.

2.42 If Tij are the components of a tensor, (a) show that TijTij is a scalar invariant with respect to

orthogonal transformations of coordinates, (b) evaluate TijTij with respect to the basis feig for

½T� ¼
1 0 0

1 2 5

1 2 3

2
4

3
5
ei

, (c) find ½T� 0 if e 0
i ¼ Qei, where Q½ � ¼

0 0 1

1 0 0

0 1 0

2
4

3
5
ei

, and (d) verify for the above that

T 0
ijT

0
ij ¼ TijTij.

2.43 Let ½T� and [T]0 be two matrices of the same tensor T. Show that det½T� ¼ det½T� 0.
2.44 (a) If the components of a third-order tensor are Rijk, show that Riik are components of a vector. (b) If

the components of a fourth-order tensor are Rijkl, show that Riikl are components of a second-order ten-

sor. (c) What are components of Riik... if Rijk... are components of a tensor of nth order?

2.45 The components of an arbitrary vector a and an arbitrary second tensor T are related by a triply sub-

scripted quantity Rijk in the manner ai ¼ RijkTjk for any rectangular Cartesian basis {ei}. Prove that

Rijk are the components of a third-order tensor.

2.46 For any vector a and any tensor T, show that (a) a �TAa ¼ 0 and (b) a �Ta ¼ a �TSa, where TA and TS

are antisymmetric and symmetric part of T, respectively.

2.47 Any tensor can be decomposed into a symmetric part and an antisymmetric part, that is, T ¼ TS þ TA.

Prove that the decomposition is unique. (Hint: Assume that it is not true and show contradiction.)

2.48 Given that a tensor T has the matrix ½T� ¼
1 2 3

4 5 6

7 8 9

2
4

3
5, (a) find the symmetric part and the antisym-

metric part of T and (b) find the dual vector (or axial vector) of the antisymmetric part of T.

Problems for Part B 43



2.49 Prove that the only possible real eigenvalues of an orthogonal tensor Q are l ¼ 
1. Explain the direc-

tion of the eigenvectors corresponding to them for a proper orthogonal (rotation) tensor and for an

improper orthogonal (reflection) tensor.

2.50 Given the improper orthogonal tensor ½Q� ¼ 1

3

1 �2 �2
�2 1 �2
�2 �2 1

" #
. (a) Verify that det ½Q� ¼ �1.

(b) Verify that the eigenvalues are l ¼ 1 and �1. (c) Find the normal to the plane of reflection (i.e.,

eigenvectors corresponding to l ¼ �1) and (d) find the eigenvectors corresponding to l ¼ 1 (vectors

parallel to the plane of reflection).

2.51 Given that tensors R and S have the same eigenvector n and corresponding eigenvalues r1 and s1,
respectively, find an eigenvalue and the corresponding eigenvector for T ¼ RS.

2.52 Show that if n is a real eigenvector of an antisymmetric tensor T, then the corresponding eigenvalue

vanishes.

2.53 (a) Show that a is an eigenvector for the dyadic product ab of vectors a and b with eigenvalue a � b,
(b) find the first principal scalar invariant of the dyadic product ab and (c) show that the second and

the third principal scalar invariant of the dyadic product ab vanish, and that zero is a double eigenvalue

of ab.

2.54 For any rotation tensor, a set of basis fe 0
i g may be chosen with e 0

3 along the axis of rotation so that

Re 0
1 ¼ cosye 0

1 þ sinye 0
2; Re

0
2 ¼ �sinye 0

1 þ cosye 0
2; Re

0
3 ¼ e 0

3, where y is the angle of right-hand rota-

tion. (a) Find the antisymmetric part of R with respect to the basis fe 0
i g, i.e., find ½RA�e 0

i
. (b) Show that

the dual vector of RA is given by tA ¼ sinye 0
3 and (c) show that the first scalar invariant of R is given

by 1þ 2 cosy . That is, for any given rotation tensor R, its axis of rotation and the angle of rotation can

be obtained from the dual vector of RA and the first scalar invariant of R.

2.55 The rotation of a rigid body is described by Re1 ¼ e2; Re2 ¼ e3; Re3 ¼ e1. Find the axis of rotation

and the angle of rotation. Use the result of the previous problem.

2.56 Given the tensor ½Q� ¼
�1 0 0
0 �1 0
0 0 1

" #
. (a) Show that the given tensor is a rotation tensor. (b) Verify

that the eigenvalues are l ¼ 1 and �1. (c) Find the direction for the axis of rotation (i.e., eigenvectors

corresponding to l¼ 1). (d) Find the eigenvectors corresponding to l¼�1 and (e) obtain the angle of rotation

using the formula I1 ¼ 1þ 2 cos y (see Prob. 2.54), where I1 is the first scalar invariant of the rotation

tensor.

2.57 Let F be an arbitrary tensor. (a) Show that FTF and FFT are both symmetric tensors. (b) If

F ¼ QU ¼ VQ, where Q is orthogonal, show that U2 ¼ FTF and V2 ¼ FFT. (c) If l and n are eigen-

value and the corresponding eigenvector for U, find the eigenvalue and eigenvector for V.

2.58 Verify that the second principal scalar invariant of a tensor T can be written: I2 ¼ TiiTjj
2

� TijTji
2

.

2.59 A tensor T has a matrix [T] given below. (a) Write the characteristic equation and find the principal

values and their corresponding principal directions. (b) Find the principal scalar invariants. (c) If

n1; n2; n3 are the principal directions, write ½T�ni . (d) Could the following matrix [S] represent the same

tensor T with respect to some basis? ½T� ¼
5 4 0
4 �1 0
0 0 3

" #
, ½S� ¼

7 2 0
2 1 0
0 0 �1

" #
:
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2.60 Do the previous problem for the following matrix: ½T� ¼
3 0 0

0 0 4

0 4 0

2
4

3
5.

2.61 A tensor T has a matrix given below. Find the principal values and three mutually perpendicular prin-

cipal directions.

½T� ¼
1 1 0

1 1 0

0 0 2

2
4

3
5:

PART C: TENSOR CALCULUS

2.26 TENSOR-VALUED FUNCTIONS OF A SCALAR
Let T ¼ T(t) be a tensor-valued function of a scalar t (such as time). The derivative of T with respect to t is
defined to be a second-order tensor given by:

dT

dt
¼ lim

Dt!0

Tðtþ DtÞ � TðtÞ
Dt

: (2.26.1)

The following identities can be easily established:

d

dt
ðTþ SÞ ¼ dT

dt
þ dS

dt
; (2.26.2)

d

dt
ðaðtÞTÞ ¼ da

dt
Tþ a

dT

dt
; (2.26.3)

d

dt
ðTSÞ ¼ dT

dt
Sþ T

dS

dt
; (2.26.4)

d

dt
ðTaÞ ¼ dT

dt
aþ T

da

dt
; (2.26.5)

d

dt
ðTTÞ ¼ dT

dt

� �T

: (2.26.6)

We shall prove here only Eq. (2.26.5). The other identities can be proven in a similar way. Using the

definition given in Eq. (2.26.1), we have

d

dt
ðTaÞ ¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtÞ
Dt

¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtÞ � TðtÞaðtþ DtÞ þ TðtÞaðtþ DtÞ
Dt

¼ limDt!0

Tðtþ DtÞaðtþ DtÞ � TðtÞaðtþ DtÞ þ TðtÞaðtþ DtÞ � TðtÞaðtÞ
Dt

¼ limDt!0

Tðtþ DtÞ � TðtÞ
Dt

aðtþ DtÞ þ lim
Dt!0

TðtÞ aðtþ DtÞ � aðtÞ
Dt

:

Thus,
dðTaÞ
dt

¼ dT

dt
aþ T

da

dt
.
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Example 2.26.1
Show that in Cartesian coordinates, the components of d T=dt , i.e., d T=dtð Þij are given by the derivatives of the com-

ponents dTij=dt .

Solution
From

Tij ¼ ei � Tej ;
we have

dTij
dt

¼ dei
dt

� Tej þ ei � d T

dt
ej þ ei � Tdej

dt
:

Since the base vectors are fixed, their derivatives are zero; therefore,

dTij
dt

¼ ei � d T

dt
ej ¼ d T

dt

� �
ij

:

Example 2.26.2
Show that for an orthogonal tensor Q(t),

dQ

dt

� �
QT is an antisymmetric tensor.

Solution
Since QQT ¼ I, we have

d QQT

 �
dt

¼ Q
dQT

dt
þ dQ

dt
QT ¼ dI

dt
¼ 0:

Since [see Eq. (2.26.6)]
dQT

dt
¼ dQ

dt

� �T
, therefore, the above equation leads to

Q
dQ

dt

� �T
¼ � dQ

dt
QT:

Now Q
dQ

dt

� �T
¼ dQ

dt
QT

� �T
; therefore,

dQ

dt
QT

� �T
¼ � dQ

dt
QT;

that is,
dQ

dt

� �
QT is an antisymmetric tensor.

Example 2.26.3
A time-dependent rigid body rotation about a fixed point can be represented by a rotation tensor R(t), so that a posi-

tion vector ro is transformed through the rotation into rðtÞ ¼ RðtÞro. Derive the equation

dr

dt
¼ v� r; (2.26.7)

where v is the dual vector of the antisymmetric tensor
dR

dt
RT.
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Solution
From rðtÞ ¼ RðtÞro, we obtain

dr

dt
¼ dR

dt
ro ¼ dR

dt
R�1r ¼ dR

dt
RTr: (i)

But
dR

dt
RT is an antisymmetric tensor (see the previous example, Example 2.26.2) so that

dr

dt
¼ v� r; (ii)

where v is the dual vector of
dR

dt
RT: From the well-known equation in rigid body kinematics, we can identify v as the

angular velocity of the rigid body.

2.27 SCALAR FIELD AND GRADIENT OF A SCALAR FUNCTION
Let fðrÞ be a scalar-valued function of the position vector r. That is, for each position r, fðrÞ gives the value
of a scalar, such as density, temperature, or electric potential at the point. In other words, fðrÞ describes a
scalar field. Associated with a scalar field is a vector field, called the gradient of f. The gradient of f at a

point is defined to be a vector, denoted by grad f or by rf such that its dot product with dr gives the dif-

ference of the values of the scalar at r þ dr and r, i.e.,

df ¼ fðrþ drÞ � fðrÞ ¼ rf � dr: (2.27.1)

If dr denote the magnitude of dr, and e the unit vector in the direction of dr (Note: e ¼ dr/dr). Then the

above equation gives, for dr in the e direction,

df
dr

¼ rf � e: (2.27.2)

That is, the component of rf in the direction of e gives the rate of change of f in that direction (directional

derivative). In particular, the components of rf in the coordinate directions ei are given by

@f
@xi

¼ df
dr

� �
ei�dir

¼ rf � ei: (2.27.3)

Therefore, the Cartesian components of rf are @f=@xi, that is,

rf ¼ @f
@x1

e1 þ @f
@x2

e2 þ @f
@x3

e3 ¼ @f
@xi

ei: (2.27.4)

The gradient vector has a simple geometrical interpretation. For example, if f rð Þ describes a temper-

ature field, then, on a surface of constant temperature (i.e., isothermal surface), f ¼ a constant. Let r be a
point on an isothermal surface. Then, for any and all neighboring point rþdr on the same isothermal sur-

face, df ¼ 0. Thus,rf � dr ¼ 0. In other words, rf is a vector, perpendicular to the surface at the point

r. On the other hand, the dot product rf � dr is a maximum when dr is in the same direction as rf. In
other words, rf is greatest if dr is normal to the surface of constant f and in this case, df ¼ jrfjdr, or

df
dr

� �
max

¼ jrfj; (2.27.5)

for dr in the direction normal to the surface of constant temperature.
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Example 2.27.1
If f ¼ x1x2 þ 2x3, find a unit vector n normal to the surface of a constant f passing through the point (2,1,0).

Solution
By Eq. (2.27.4),

rf ¼ @f
@x1

e1 þ @f
@x2

e2 þ @f
@x3

e3 ¼ x2e1 þ x1e2 þ 2e3:

At the point (2,1,0), rf ¼ e1 þ 2e2 þ 2e3. Thus,

n ¼ 1

3
e1 þ 2e2 þ 2e3ð Þ:

Example 2.27.2
If q denotes the heat flux vector (rate of heat transfer/area), the Fourier heat conduction law states that

q ¼ �krY; (i)

where Y is the temperature field and k is thermal conductivity. If Y ¼ 2 x21 þ x22
	 


, find rY at the

location A (1,0) and B 1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
 �
. Sketch curves of constant Y (isotherms) and indicate the vectors q at the

two points.

Solution
By Eq. (2.27.4),

rY ¼ @Y
@x1

e1 þ @Y
@x2

e2 þ @Y
@x3

e3 ¼ 4x1e1 þ 4x2e2:

Thus,

q ¼ �4kðx1e1 þ x2e2Þ:

θ=
2

θ=
1

B

A
x1

x2

qA

qB

FIGURE 2.27-1
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At point A,

qA ¼ �4ke1;

and at point B,

qB ¼ �2
ffiffiffi
2

p
k e1 þ e2ð Þ:

Clearly, the isotherms, Figure 2.27-1, are circles and the heat flux is an inward radial vector (consistent with heat

flowing from higher to lower temperatures).

Example 2.27.3
A more general heat conduction law can be given in the following form:

q ¼ �KrY;

where K is a tensor known as thermal conductivity tensor. (a) What tensor K corresponds to the Fourier heat conduc-

tion law mentioned in the previous example? (b) Find q if Y ¼ 2x1 þ 3x2, and

½K� ¼
2 �1 0
�1 2 0
0 0 3

2
4

3
5:

Solution
(a) Clearly, K ¼ kI, so that q ¼ �kIrY ¼ �krY.

(b) rY ¼ 2e1 þ 3e2 and

½q� ¼ �
2 �1 0
�1 2 0
0 0 3

2
4

3
5 2

3
0

2
4

3
5 ¼

�1
�4
0

2
4

3
5

that is,

q ¼ �e1 � 4e2;

which is clearly not normal to the isotherm (see Figure 2.27-2).

θ=4θ=2

q

x1

x
2

FIGURE 2.27-2
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2.28 VECTOR FIELD AND GRADIENT OF A VECTOR FUNCTION
Let v(r) be a vector-valued function of position describing, for example, a displacement or a velocity field.

Associated with v(r), is a tensor field, called the gradient of v, which is of considerable importance. The gra-

dient of v (denoted by rv or grad v) is defined to be the second-order tensor, which, when operating on dr,
gives the difference of v at r þ dr and r. That is,

dv ¼ vðrþ drÞ � vðrÞ ¼ ðrvÞdr: (2.28.1)

Again, let dr denote jdrj and e denote dr/dr; we have

dv

dr

� �
in e�direction

¼ ðrvÞe: (2.28.2)

Therefore, the second-order tensor rv transforms a unit vector e into the vector describing the rate of

change of v in that direction. In Cartesian coordinates,

dv

dr

� �
in ej�direction

¼ @v

@xj
¼ ðrvÞej; (2.28.3)

therefore, the components of rv in indicial notation are given by

ðrvÞij ¼ ei � ðrvÞej ¼ ei � @v
@xj

¼ @ðv � eiÞ
@xj

¼ @vi
@xj

; (2.28.4)

and in matrix form

½rv� ¼

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

2
666666664

3
777777775
: (2.28.5)

Geometrical interpretation of rv will be given later in connection with the deformation of a continuum

(Chapter 3).

2.29 DIVERGENCE OF A VECTOR FIELD AND DIVERGENCE OF A TENSOR FIELD
Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the trace of the gra-

dient of v. That is,

div v � trðrvÞ: (2.29.1)

In Cartesian coordinates, this gives

div v ¼ @v1
@x1

þ @v2
@x2

þ @v3
@x3

¼ @vi
@xi

: (2.29.2)
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Let T(r) be a tensor field. The divergence of T(r) is defined to be a vector field, denoted by div T, such
that for any vector a

div Tð Þ � a � div TTa
	 
� tr TTra

	 

: (2.29.3)

To find the Cartesian components of the vector div T, let b ¼ div T, then (Note: rei ¼ 0 for Cartesian

coordinates), from (2.29.3), we have

bi ¼ b � ei ¼ div TTei
	 
� tr TTrei

	 
 ¼ div Tijej
	 
� 0 ¼ @Tij=@xj: (2.29.4)

In other words,

div T ¼ @Tij=@xj
	 


ei: (2.29.5)*

Example 2.29.1
Let a ¼ aðrÞ and a ¼ aðrÞ. Show that divðaaÞ ¼ adiv aþ rvð Þ � a.
Solution
Let b ¼ aa. Then bi ¼ aai, so

div b ¼ @bi
@xi

¼ a
@ai
@xi

þ @a
@xi

ai :

That is,

div ðaaÞ ¼ a div aþ ðraÞ � a: (2.29.6)

Example 2.29.2
Given a ¼ aðrÞ and T ¼ TðrÞ, show that

div ðaTÞ ¼ TðraÞ þ a div T: (2.29.7)

Solution
We have, from (2.29.5),

div ðaTÞ ¼ @ aTij
	 

@xj

ei ¼ @a
@xj

Tijei þ a
@Tij
@xj

ei ¼ TðraÞ þ a div T:

*We note that the Cartesian components of the third-order tensor M � rT ¼ r Tijeiej
	 


are @Tij=@xk: In terms of M ¼ Mijkeiejek; div
T is a vector given by Mijjei. More on the components of rT will be given in Chapter 8.
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2.30 CURL OF A VECTOR FIELD
Let v(r) be a vector field. The curl of v(r) is defined to be a vector field given by twice the dual vector of the

antisymmetric part of rv. That is

curl v � 2tA; (2.30.1)

where tA is the dual vector of ðrvÞA:
In rectangular Cartesian coordinates,

½rv�A ¼

0
1

2

@v1
@x2

� @v2
@x1

0
@

1
A 1

2

@v1
@x3

� @v3
@x1

0
@

1
A

� 1

2

@v1
@x2

� @v2
@x1

0
@

1
A 0

1

2

@v2
@x3

� @v3
@x2

0
@

1
A

� 1

2

@v1
@x3

� @v3
@x1

0
@

1
A � 1

2

@v2
@x3

� @v3
@x2

0
@

1
A 0

2
666666666666664

3
777777777777775

: (2.30.2)

Thus, the curl of v(r) is given by [see Eq. (2.21.3)]:

curl v ¼ 2tA ¼ @v3
@x2

� @v2
@x3

� �
e1 þ @v1

@x3
� @v3
@x1

� �
e2 þ @v2

@x1
� @v1
@x2

� �
e3: (2.30.3)

It can be easily verified that in indicial notation

curl v ¼ �eijk
@vj
@xk

ei: (2.30.4)

2.31 LAPLACIAN OF A SCALAR FIELD
Let f(r) be a scalar-valued function of the position vector r. The definition of the Laplacian of a scalar field is

given by

r2f ¼ div ðrf Þ ¼ trðrðrf ÞÞ: (2.31.1)

In rectangular coordinates the Laplacian becomes

r2f ¼ trðrðrf ÞÞ ¼ @2f

@xi@xi
¼ @2f

@x21
þ @2f

@x22
þ @2f

@x23
: (2.31.2)

2.32 LAPLACIAN OF A VECTOR FIELD
Let v(r) be a vector field. The Laplacian of v is defined by the following:

r2v ¼ r ðdiv vÞ � curl ðcurl vÞ: (2.32.1)
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In rectangular coordinates,

rðdiv vÞ ¼ @

@xi

@vk
@xk

� �
ei; curl v ¼ �eajk

@vj
@xk

� �
ea; (2.32.2)

and

curl ðcurl vÞ ¼ �eiab
@

@xb
�eajk

@vj
@xk

� �
ei ¼ eiabeajk

@

@xb

@vj
@xk

� �
ei: (2.32.3)

Now eiabeajk ¼ �eaibeajk ¼ � dijdbk � dikdbj
	 


[see Prob. 2.12], therefore,

curl ðcurl vÞ ¼ � dijdbk � dikdbj
	 
 @

@xb

@vj
@xk

� �
ei ¼ � @

@xb

@vi
@xb

� �
þ @

@xb

@vb
@xi

� �� �
ei: (2.32.4)

Thus,

r2v ¼ r ðdiv vÞ � curl ðcurl vÞ ¼ @

@xi

@vk
@xk

� �
ei � � @

@xb

@vi
@xb

� �
þ @

@xi

@vb
@xb

� �� �
ei: (2.32.5)

That is, in rectangular coordinates,

r2v ¼ @2vi
@xb@xb

ei ¼ r2viei: (2.32.6)

In long form,

r2v ¼ @2v1
@x21

þ @2v1
@x22

þ @2v1
@x23

� �
e1 þ @2v2

@x21
þ @2v2

@x22
þ @2v2

@x23

� �
e2 þ @2v3

@x21
þ @2v3

@x22
þ @2v3

@x23

� �
e3: (2.32.7)

Expressions for the polar, cylindrical, and spherical coordinate systems are given in Part D.

PROBLEMS FOR PART C
2.62 Prove the identity

d

dt
ðTþ SÞ ¼ dT

dt
þ dS

dt
using the definition of derivative of a tensor.

2.63 Prove the identity
d

dt
ðTSÞ ¼ T

dS

dt
þ dT

dt
S using the definition of derivative of a tensor.

2.64 Prove that
dTT

dt
¼ dT

dt

� �T

by differentiating the definition a �Tb ¼ b �TTa, where a and b are arbitrary

constant vectors.

2.65 Consider the scalar field f ¼ x21 þ 3x1x2 þ 2x3. (a) Find the unit vector normal to the surface of con-

stant f at the origin and at (1,0,1). (b) What is the maximum value of the directional derivative of f
at the origin? at (1,0,1)? (c) Evaluate df=dr at the origin if dr ¼ dsðe1 þ e3Þ.

2.66 Consider the ellipsoidal surface defined by the equation x2=a2 þ y2=b2 þ z2=b2 ¼ 1. Find the unit vec-

tor normal to the surface at a given point (x, y, z).
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2.67 Consider the temperature field given by Y ¼ 3x1x2. (a) If q ¼ �krY, find the heat flux at the point

A(1,1,1). (b) If q ¼ �KrY, find the heat flux at the same point, where

K½ � ¼
k 0 0

0 2k 0

0 0 3k

2
4

3
5:

2.68 Let fðx1; x2; x3Þ and cðx1; x2; x3Þ be scalar fields, and let v ðx1; x2; x3Þ and w ðx1; x2; x3Þ be vector fields.
By writing the subscripted components form, verify the following identities:

(a) rðfþ cÞ ¼ rfþrc, sample solution:

r fþ cð Þ½ �i ¼
@ fþ cð Þ

@xi
¼ @f

@xi
þ @c
@xi

¼ rfþrc;

(b) divðvþ wÞ ¼ div vþ div w, (c) div fvð Þ ¼ rfð Þvþ f div vÞð and (d) divðcurl vÞ ¼ 0.

2.69 Consider the vector field v ¼ x21e1 þ x23e2 þ x22e3. For the point (1,1,0), find (a) rv, (b) (rv)v, (c) div v
and curl v, and (d) the differential dv for dr ¼ dsðe1 þ e2 þ e3Þ=

ffiffiffi
3

p
.

PART D: CURVILINEAR COORDINATES
In Part C, the Cartesian components for various vector and tensor operations such as the gradient, the diver-

gence, and the Laplacian of a scalar field and tensor fields were derived. In this part, components in polar,

cylindrical, and spherical coordinates for these same operations will be derived.

2.33 POLAR COORDINATES
Consider polar coordinates (r,y), (see Figure 2.33-1) such that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
and y ¼ tan�1 x2

x1
: (2.33.1)

The unit base vectors er and ey can be expressed in terms of the Cartesian base vectors e1 and e2 as

er ¼ cosye1 þ sinye2; ey ¼ �sinye1 þ cosye2: (2.33.2)

r

x1

e2

er

e1

(x1,x2)

x2

θ

eθ
P

FIGURE 2.33-1
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These unit base vectors vary in direction as y changes. In fact, from Eqs. (2.33.2), we have

der ¼ �sinye1 þ cosye2ð Þdy ¼ dyey ; dey ¼ �cosye1 � sinye2ð Þdy ¼ �dyer: (2.33.3)

The geometrical representation of der and dey are shown in Figure 2.33-2, where one notes that erðPÞ has
rotated an infinitesimal angle dy to become erðQÞ ¼ erðPÞ þ der where der is perpendicular to erðPÞ with a

magnitude jderj ¼ ð1Þdy ¼ dy : Similarly, dey is perpendicular to ey (P) but pointing in the negative er direc-
tion, and its magnitude is also dy.

Now, from the position vector

r ¼ rer; (2.33.4)

we have

dr ¼ drer þ rder: (2.33.5)

Using Eq. (2.33.3), we get

dr ¼ drer þ rdyey : (2.33.6)

The geometrical representation of this equation is also easily seen if one notes that dr is the vector PQ in the

preceding figure.

The components of rf, rv, div v, div T, r2f and r2v in polar coordinates will now be obtained.

(i) Components of rf:
Let f(r,y) be a scalar field. By definition of the gradient of f, we have

df ¼ rf � dr ¼ arer þ ay eyð Þ � drer þ rdyeyð Þ ¼ ardr þ ay rdy ; (2.33.7)

where ar and ay are components of rf in the er and ey direction, respectively. But from calculus,

df ¼ @f

@r
dr þ @f

@y
dy : (2.33.8)

Since Eqs. (2.33.7) and (2.33.8) must yield the same result for all increments dr, dy, we have

ar ¼ @f

@r
; ay ¼ 1

r

@f

@y
; (2.33.9)
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thus,

rf ¼ @f

@r
er þ 1

r

@f

@y
ey : (2.33.10)

(ii) Components of rv: Let

v r; yð Þ ¼ vr r; yð Þer þ vy r; yð Þey : (2.33.11)

By definition of rv, we have

dv ¼ rvdr: (2.33.12)

Let T ¼ rv. Then

dv ¼ Tdr ¼ Tðdrer þ rdyey Þ ¼ drTer þ rdyTey : (2.33.13)

Now

Ter ¼ Trrer þ Ty rey and Tey ¼ Tr y er þ Tyy ey ; (2.33.14)

therefore,

dv ¼ ðTrrdr þ Tr y rdyÞer þ ðTy rdr þ Tyy rdyÞey : (2.33.15)

From Eq. (2.33.11), we also have

dv ¼ dvrer þ vrder þ dvy ey þ vy dey : (2.33.16)

Since [see Eq. (2.33.3)]

der ¼ dyey ; dey ¼ �dyer; (2.33.17)

therefore, Eq. (2.33.16) becomes

dv ¼ ðdvr � vy dyÞer þ ðvrdy þ dvy Þey : (2.33.18)

From calculus,

dvr ¼ @vr
@r

dr þ @vr
@ y

dy ; dvy ¼ @vy
@r

dr þ @vy
@y

dy : (2.33.19)

Substituting Eq. (2.33.19) into Eq. (2.33.18), we have

dv ¼ @vr
@r

dr þ @vr
@y

� vy

� �
dy

� �
er þ @vy

@r
dr þ @vy

@y
þ vr

� �
dy

� �
ey : (2.33.20)

Eq. (2.33.15) and Eq. (2.33.20), then, give

@vr
@r

dr þ @vr
@ y

� vy

� �
dy ¼ Trrdr þ Tr y rdy ;

@vy
@r

dr þ @vy
@y

þ vr

� �
dy ¼ Ty rdr þ Tyy rdy : (2.33.21)

Eq. (2.33.21) must hold for any values of dr and dy. Thus,

Trr ¼ @vr
@r

; Tr y ¼ 1

r

@vr
@y

� vy

� �
; Ty r ¼ @vy

@r
; Tyy ¼ 1

r

@vy
@y

þ vr

� �
: (2.33.22)
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In matrix form,

½rv� ¼

@vr
@r

1

r

@vr
@y

� vy

0
@

1
A

@vy
@r

1

r

@vy
@ y

þ vr

0
@

1
A

2
66666664

3
77777775
: (2.33.23)

(iii) div v:
Using the components of rv given in (ii), that is, Eq. (2.33.23), we have

div v ¼ trðrvÞ ¼ @vr
@r

þ 1

r

@vy
@y

þ vr

� �
: (2.33.24)

(iv) Components of curl v:
The antisymmetric part of rv is

½rv�A ¼ 1

2

0
1

r

@vr
@y

� vy

0
@

1
A� @vy

@r

� 1

r

@vr
@y

� vy

0
@

1
A� @vy

@r

8<
:

9=
; 0

2
6666664

3
7777775
: (2.33.25)

Therefore, from the definition that curl v ¼ twice the dual vector of (rv)A, we have

curl v ¼ @vy
@r

þ vy

r
� 1

r

@vr
@y

� �
e3: (2.33.26)

(v) Components of div T:
The invariant definition of the divergence of a second-order tensor is

ðdiv TÞ � a ¼ divðTTaÞ � trððraÞTTÞ for any a: (2.33.27)

Take a ¼ er; then the preceding equation gives

ðdiv TÞr ¼ divðTTerÞ � trððrerÞTTÞ: (2.33.28)

To evaluate the first term on the right-hand side, we note that

TTer ¼ Trrer þ Tr y ey ; (2.33.29)

so that according to Eq. (2.33.24),

divðTTerÞ ¼ divðTrrer þ Tr y ey Þ ¼ @Trr
@r

þ 1

r

@Tr y
@y

þ Trr

� �
: (2.33.30)

To evaluate the second term, we first use Eq. (2.33.23) to obtainrer. In fact, since er ¼ ð1Þer þ ð0Þe y ,
we have, with vr ¼ 1 and vy ¼ 0,
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½rer� ¼
0 0

0
1

r

2
664

3
775; ½rer�½TT� ¼

0 0

Tr y
r

Tyy

r

2
64

3
75; trð½rer�½TT�Þ ¼ T yy

r
: (2.33.31)

Thus, Eq. (2.33.28) gives

ðdiv TÞr ¼
@Trr
@r

þ 1

r

@Tr y
@ y

þ Trr � Tyy

r
: (2.33.32)

In a similar manner, one can derive

ðdivTÞy ¼ @Ty r

@r
þ 1

r

@Tyy

@y
þ Tr y þ Ty r

r
: (2.33.33)

(vi) Laplacian of f(x):
Given a scalar field f(x), the Laplacian of f(x) is given by r2f ¼ divðrf Þ ¼ trðrðrf ÞÞ. In polar

coordinates,

rf ¼ @f

@r
er þ 1

r

@f

@ y
ey : (2.33.34)

From, div v ¼ @vr
@r

þ 1

r

@v y
@ y

þ vr
r
, we have

r2f ¼ div rf ¼ @2f

@r2
þ 1

r2
@2f

@ y2
þ 1

r

@f

@r
: (2.33.35)

(vii) Laplacian of a vector field v(x):
Laplacian of v is given by: r2v ¼ rðdiv vÞ � curl curl v. Now, in polar coordinates:

rðdiv vÞ ¼ @

@r

@vr
@r

þ 1

r

@vy
@y

þ vr
r

0
@

1
Aer þ 1

r

@

@y
@vr
@r

þ 1

r

@vy
@y

þ vr
r

0
@

1
Aey

¼ @2vr
@r2

þ 1

r

@2vy
@r@ y

� 1

r2
@vy
@y

þ 1

r

@vr
@r

� vr
r2

0
@

1
Aer þ 1

r

@2vr
@y@r

þ 1

r2
@2vy

@ y2
þ 1

r2
@vr
@y

0
@

1
Aey ;

(2.33.36)

and

curl v ¼ @vy
@r

þ vy
r
� 1

r

@vr
@ y

� �
ez: (2.33.37)

Since [see Eq. (2.34.7)]

curl v ¼ 1

r

@vz
@y

� @vy
@z

� �
er þ @vr

@z
� @vz

@r

� �
ey þ @vy

@r
þ vy

r
� 1

r

@vr
@y

� �
ez;

therefore,

ðcurl curl vÞr ¼
1

r

@

@y
@vy
@r

þ vy
r
� 1

r

@vr
@ y

� �
¼ 1

r

@2vy
@y@r

þ 1

r2
@vy
@y

� 1

r2
@2vr

@y2

� �
; (2.33.38)
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ðcurl curl vÞy ¼ � @

@r

@vy
@r

þ vy
r
� 1

r

@vr
@ y

� �
¼ � @2vy

@r2
� 1

r

@vy
@r

þ vy
r2

þ 1

r

@2vr
@r@y

� 1

r2
@vr
@y

� �
: (2.33.39)

Thus,

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
þ 1

r

@vr
@r

� 2

r2
@vy
@y

� vr
r2
; (2.33.40)

and

ðr2vÞy ¼ @2vy
@r2

þ 1

r2
@2vy

@y2
þ 1

r

@vy
@r

þ 2

r2
@vr
@ y

� vy
r2

: (2.33.41)

2.34 CYLINDRICAL COORDINATES
In cylindrical coordinates, the position of a point P is determined by (r, y, z), where r and y determine the

position of the vertical projection of the point P on the xy plane (the point P0 in Figure 2.34-1) and the coor-

dinate z determines the height of the point P from the xy plane. In other words, the cylindrical coordinates is a

polar coordinate (r, y) in the xy plane plus a coordinate z perpendicular to the xy plane.

We shall denote the position vector of P by R, rather than r, to avoid confusion between the position vec-

tor R and the coordinate r (which is a radial distance in the xy plane). The unit vector er and ey are on the xy
plane and it is clear from Figure 2.34-1 that

R ¼ rer þ zez; (2.34.1)

and

dR ¼ drer þ rder þ dzez þ zdez: (2.34.2)

In the preceding equation, der is given by exactly the same equation given earlier for the polar coordinates

[Eq. (2.33.3)]. We note also that ez never changes its direction or magnitude regardless where the point P is,

thus dez ¼ 0. Therefore,

dR ¼ drer þ rdyey þ dzez: (2.34.3)
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By retracing all the steps used in the previous section on polar coordinates, we can easily obtain the fol-

lowing results:

(i) Components of rf:

rf ¼ @f

@r
er þ 1

r

@f

@y
ey þ @f

@z
ez: (2.34.4)

(ii) Components of rv:

½rv� ¼

@vr
@r

1

r

@vr
@y

� vy

0
@

1
A @vr

@z

@vy
@r

1

r

@vy
@y

þ vr

0
@

1
A @vy

@z

@vz
@r

1

r

@vz
@y

@vz
@z

2
66666666666664

3
77777777777775
: (2.34.5)

(iii) div v:

div v ¼ @vr
@r

þ 1

r

@vy
@ y

þ vr

� �
þ @vz

@z
: (2.34.6)

(iv) Components of curl v:
The vector curl v ¼ twice the dual vector of (rv)A, thus,

curl v ¼ 1

r

@vz
@y

� @vy
@z

� �
er þ @vr

@z
� @vz

@r

� �
ey þ @vy

@r
þ vy

r
� 1

r

@vr
@y

� �
ez: (2.34.7)

(v) Components of div T:

ðdivTÞr ¼
@Trr
@r

þ 1

r

@Tr y
@ y

þ Trr � Tyy

r
þ @Trz

@z
; (2.34.8)

ðdivTÞy ¼ @Ty r

@r
þ 1

r

@Tyy

@ y
þ Tr y þ T y r

r
þ @Ty z

@z
; (2.34.9)

ðdivTÞz ¼
@Tzr
@r

þ 1

r

@Tzy
@ y

þ @Tzz
@z

þ Tzr
r
: (2.34.10)

(vi) Laplacian of f:

r2f ¼ div rf ¼ @2f

@r2
þ 1

r2
@2f

@y2
þ 1

r

@f

@r
þ @2f

@z2
: (2.34.11)

(vii) Laplacian of v:

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
þ 1

r

@vr
@r

� vr
r2

� 2

r2
@vy
@y

; (2.34.12)
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ðr2vÞy ¼ @2vy
@r2

þ 1

r2
@2vy

@y2
þ @2vy

@z2
þ 1

r

@vy
@r

þ 2

r2
@vr
@y

� vy
r2

; (2.34.13)

ðr2vÞz ¼
@2vz
@r2

þ 1

r2
@2vz

@y2
þ 1

r

@vz
@r

þ @2vz
@z2

: (2.34.14)

2.35 SPHERICAL COORDINATES
In Figure 2.35-1, we show the spherical coordinates (r, y, f) of a general point P. In this figure, er, ey and

ef are unit vectors in the direction of increasing r, y and f, respectively.

The position vector for the point P can be written as

r ¼ rer; (2.35.1)

where r is the magnitude of the vector r. Thus,

dr ¼ drer þ rder: (2.35.2)

To evaluate der we note from Figure 2.35-1(b) that

er ¼ cosyez þ sinye 0r ; ey ¼ cosye 0
r � sinyez; (2.35.3)

where e 0
r is the unit vector in the OE (i.e., r0) direction (r0 is in the xy plane). Thus,

der ¼ �sinydyez þ cosydez þ cosydye 0
r þ sinyde 0

r ¼ �sinyez þ cosye 0r
	 


dy þ sinyde 0r ;

that is,

der ¼ dyey þ sinyde 0r : (2.35.4)

Now, just as in polar coordinates, due to df,

de 0
r ¼ dfef; (2.35.5)
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therefore,

der ¼ dyey þ sinydfef: (2.35.6)

Now, from the second equation of (2.35.3), we have,

dey ¼ �sinydye 0r þ cosyde 0r � cosydyez ¼ � sinye 0
r þ cosyez

	 

dy þ cosyde 0

r :

Using Eq. (2.35.3) and Eq. (2.35.5), the preceding equation becomes

dey ¼ �erdy þ cosydfef: (2.35.7)

From Figure 2.35-1(a) and similar to the polar coordinate, we have

def ¼ df �e 0
r

	 

: (2.35.8)

With e 0
r ¼ cosyey þ sinyer (see Figure 2.35-1(b)), the preceding equation becomes

def ¼ �sinydfer � cosydfey : (2.35.9)

Summarizing the preceding, we have

der ¼ dyey þ sinydfef; dey ¼ �erdy þ cosydfef; def ¼ �sinydfer � cosydfey ; (2.35.10)

and from Eq. (2.35.2), we have

dr ¼ drer þ rdyey þ r sinydfef: (2.35.11)

We can now obtain the components of rf, rv, div v, curl v, div T, r2f, and r2v for spherical

coordinates.

(i) Components of rf:
Let f(r,y,f) be a scalar field. By the definition of rf, we have

df ¼ rf � dr ¼ rfð Þrer þ rfð Þy ey þ rfð ÞfefÞ
h i

� drer þ rdyey þ r sinydfef
	 


; (2.35.12)

that is,

df ¼ rfð Þr dr þ rfð Þy rdy þ rfð Þfr sinydf: (2.35.13)

From calculus, the total derivative of df is

df ¼ @f

@r
dr þ @f

@y
dy þ @f

@f
df: (2.35.14)

Comparing Eq. (2.35.14) and Eq. (2.35.13), we have

ðrf Þr ¼
@f

@r
; ðrf Þy ¼ 1

r

@f

@y
; ðrf Þf ¼ 1

r siny
@f

@f
: (2.35.15)

(ii) Components of rv:
Let the vector field be represented by

vðr; y ;fÞ ¼ vr r; y ;fð Þer þ vy r; y ;fð Þey þ vf r; y ;fð Þef: (2.35.16)
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Letting T ¼ rv, we have

dv ¼ Tdr ¼ T drer þ rdyey þ r sinydfef
	 
 ¼ drTer þ rdyTey þ r sinydfTef: (2.35.17)

By the definition of components of a tensor T in spherical coordinates, we have

Ter ¼ Trrer þ Ty rey þ Tfref;
Tey ¼ Tr y er þ Tyy ey þ Tfy ef;
Tef ¼ Trfer þ Tyfey þ Tffef:

(2.35.18)

Substituting these into Eq. (2.35.17), we get

dv ¼ Trrdr þ Tr y rdy þ Trfr sinydf
	 


er þ Tyy rdy þ Ty rdr þ Tyfr sinydf
	 


ey
þ Tfrdr þ Tfy rdy þ Tffr sinydf
	 


ef:
(2.35.19)

We also have, from Eq. (2.35.16),

dv ¼ dvrer þ vrder þ dvy ey þ vy dey þ dvfef þ vfdef: (2.35.20)

Using the expression for the total derivatives:

dvr ¼ @vr
@r

dr þ @vr
@ y

dy þ @vr
@f

df;

dvy ¼ @vy
@r

dr þ @vy
@y

dy þ @vy
@f

df;

dvf ¼ @vf
@r

dr þ @vf
@y

dy þ @vf
@f

df;

(2.35.21)

Eq. (2.35.10) and Eq. (2.35.20) become

dv ¼ @vr
@r

dr þ @vr
@y

� vy

0
@

1
Ady þ @vr

@f
� vf siny

0
@

1
Adf

8<
:

9=
;er

þ @vy
@r

dr þ vr þ @vy
@y

0
@

1
Ady þ @vy

@f
� vf cosy

0
@

1
Adf

8<
:

9=
;ey

þ @vf
@r

dr þ @vf
@y

dy þ @vf
@f

þ vr siny þ vy cosy

0
@

1
Adf

8<
:

9=
;ef:

(2.35.22)

Now, comparing Eq. (2.35.22) with Eq. (2.35.19), we have

Trrdr þ Tr y rdy þ Trfr sinydf
	 
 ¼ @vr

@r
dr þ @vr

@ y
� vy

0
@

1
Ady þ @vr

@f
� vf siny

0
@

1
Adf

8<
:

9=
;;

Ty rdr þ Tyy rdy þ Tyfr sinydf
	 
 ¼ @vy

@r
dr þ vr þ @vy

@ y

0
@

1
Ady þ @vy

@f
� vf cosy

0
@

1
Adf

8<
:

9=
;;

Tfrdr þ Tfy rdy þ Tffr sinydf
	 
 ¼ @vf

@r
dr þ @vf

@y
dy þ @vf

@f
þ vr siny þ vy cosy

0
@

1
Adf

8<
:

9=
;:

(2.35.23)
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These equations must be valid for arbitrary values of dr, dy and df, therefore,

Trr ¼ @vr
@r

; Tr y r ¼ @vr
@y

� vy

0
@

1
A; Trfr siny ¼ @vr

@f
� vf siny

0
@

1
A;

Ty r ¼ @vy
@r

; Tyy r ¼ vr þ @vy
@y

0
@

1
A; Tyfr siny ¼ @vy

@f
� vfcosy

0
@

1
A;

Tfr ¼ @vf
@r

; Tfy r ¼ @vf
@y

; Tffr siny ¼ @vf
@f

þ vrsiny þ vy cosy

0
@

1
A:

(2.35.24)

In matrix form, we have

rv½ � ¼

@vr
@r

1

r

@vr
@y

� vy
r

1

r siny
@vr
@f

� vf
r

@vy
@r

1

r

@vy
@y

þ vr
r

1

r siny
@vy
@f

� vfcoty
r

@vf
@r

1

r

@vf
@ y

1

r siny
@vf
@f

þ vr
r
þ vy coty

r

2
6666666664

3
7777777775
: (2.35.25)

(iii) div v:
Using Eq. (2.35.25), we obtain

div v ¼ trðrvÞ ¼ @vr
@r

þ 1

r

@vy
@ y

þ 1

r siny
@vf
@f

þ 2vr
r

þ vy coty
r

¼ 1

r2
@ r2vrð Þ
@r

þ 1

r siny
@ vy sinyð Þ

@ y
þ 1

r siny
@vf
@f

:

(2.35.26)

(iv) Components of curl v:
The vector curl v ¼ twice the dual vector of (rv)A, therefore

curl v ¼ vfcoty
r

þ 1

r

@vf
@y

� 1

r siny
@vy
@f

8<
:

9=
;er þ 1

r siny
@vr
@f

� 1

r

@ rvf
	 

@r

8<
:

9=
;ey

þ 1

r

@ rvyð Þ
@r

� 1

r

@vr
@y

8<
:

9=
;ef:

(2.35.27)

(v) Components of div T:
Using the definition of div T given in Eq. (2.33.27) and take a ¼ er, we have

ðdiv TÞr ¼ divðTTerÞ � trððrerÞTTÞ: (2.35.28)

To evaluate the first term on the right-hand side, we note that

TTer ¼ Trrer þ Tr y ey þ Trfef; (2.35.29)
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so that by using Eq. (2.35.26) for the divergence of a vector in spherical coordinates, we obtain,

divðTTerÞ ¼ 1

r2
@ r2Trrð Þ

@r
þ 1

r siny
@ðTr y sinyÞ

@y
þ 1

r siny
@Trf
@f

: (2.35.30)

To evaluate the second term in Eq. (2.35.28), we first used Eq. (2.35.25) to evaluate rer, then calcu-

late rerð ÞTT:

½rer� ¼
0 0 0

0 1=r 0

0 0 1=r

2
4

3
5; ½ðrerÞTT� ¼

0 0 0

Tr y =r Tyy =r Tfy =r
Trf=r Tyf=r Tff=r

2
4

3
5 (2.35.31)

thus,

trððrerÞTTÞ ¼ Tyy

r
þ Tff

r
: (2.35.32)

Substituting Eq. (2.35.32) and Eq. (2.35.30) into Eq. (2.35.28), we obtain,

ðdiv TÞr ¼
1

r2
@ r2Trrð Þ

@r
þ 1

r siny
@ Tr y sinyð Þ

@y
þ 1

r siny
@Trf
@f

� T yy þ Tff
r

: (2.35.33)

In a similar manner, we can obtain (see Prob. 2.75)

ðdivTÞy ¼ 1

r3
@ r3T y rð Þ

@r
þ 1

r siny
@ðTyy sinyÞ

@ y
þ 1

r siny
@Tyf

@f
þ Tr y � Ty r � Tffcoty

r
(2.35.34)

ðdivTÞf ¼ 1

r3
@ r3Tfr
	 

@r

þ 1

r siny
@ðTfy sinyÞ

@y
þ 1

r siny
@Tff
@f

þ Trf � Tfr þ Tyfcoty
r

: (2.35.35)

(vi) Laplacian of f:
From

div v ¼ 1

r2
@ðr2vrÞ
@r

þ 1

r siny
@vy siny

@y
þ 1

r siny
@vf
@f

;

rf ¼ @f

@r
er þ 1

r

@f

@y
ey þ 1

r siny
@f

@f
ef;

(2.35.36)

we have

r2f ¼ divðrf Þ ¼ 1

r2
@

@r
r2
@f

@r

0
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1
Aþ 1

r siny
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@y
1

r

@f

@y
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0
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Aþ 1

r siny
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@f
1

r siny
@f
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0
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1
A

¼ @2f

@r2
þ 2

r

@f
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þ 1

r2
@2f

@y2

0
@

1
Aþ coty

r2
@f

@y
þ 1

r2 sin2 y
@2f

@f2

0
@

1
A:

(2.35.37)
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(vii) Laplacian of a vector function v:
It can be obtained (see Prob. 2.75)

rðdiv vÞ ¼ 1

r2
@2r2vr
@r2

� 2

r3
@r2vr
@r

þ 1

r siny
@2vy siny
@r@ y

þ @2vf
@r@f

� �
� 1

r2 siny
@vy siny

@y
þ @vf

@f

� �� �
er

þ 1
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@2r2vr
@y@r

þ 1

r2 siny
@2vy siny

@y2
þ @2vy siny

@y2

� �
� 1

r2
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sin2 y

� �
@vy siny

@ y
þ 1

r2
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@y
1
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@f

� �
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@ðr2vrÞ
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þ 1

r2 sin2 y
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r2 sin2 y
@2vf
@2f

� �
ef; (2.35.38)

and

curl curl v ¼ 1
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Thus, r2v ¼ rðdiv vÞ � curl curl v leads to:

ðr2vÞr ¼

1

r2
@2r2vr
@r2

� 2
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@r2vr
@r

þ 1

r2
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ðr2vÞy ¼

1
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ðr2vÞf ¼

1
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PROBLEMS FOR PART D
2.70 Calculate div u for the following vector field in cylindrical coordinates:

(a) ur ¼ uy ¼ 0; uz ¼ Aþ Br2.
(b) ur ¼ sin y=r; uy ¼ uz ¼ 0.

(c) ur ¼ r2 sin y=2; uy ¼ r2 cos y=2; uz ¼ 0.

2.71 Calculate ru for the following vector field in cylindrical coordinates:

ur ¼ A=r; uy ¼ Br; uz ¼ 0:

2.72 Calculate div u for the following vector field in spherical coordinates:

ur ¼ Ar þ B

r2
; uy ¼ uf ¼ 0:

2.73 Calculate ru for the following vector field in spherical coordinates:

ur ¼ Ar þ B=r2; uy ¼ uf ¼ 0:

2.74 From the definition of the Laplacian of a vector, r2v ¼ rðdiv vÞ � curl curl v, derive the following

results in cylindrical coordinates:

ðr2vÞr ¼
@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
� 2

r2
@vy
@ y

þ 1

r

@vr
@r

� vr
r2

� �
and

ðr2vÞy ¼ @2vy
@r2

þ 1

r2
@2vy

@ y2
þ @2vy

@z2
þ 1

r

@vy
@r

þ 2

r2
@vr
@y

� vy
r2

:

2.75 From the definition of the Laplacian of a vector, r2v ¼ rðdiv vÞ � curl curl v, derive the following

result in spherical coordinates:

ðr2vÞr ¼
1

r2
@2r2vr
@r2

� 2

r3
@r2vr
@r

þ 1

r2
@2vr

@y2
þ cot y

r2
@vr
@y

þ 1

r2 sin2y
@2vr

@f2
� 2

r2 siny
@vy siny

@y
� 2

r2 siny
@vf
@f

� �
:

2.76 From the equation ðdivTÞ � a ¼ divðTTaÞ � trðTTraÞ [see Eq. (2.29.3)], verify that in polar coordinates

the y-component of the vector ðdivTÞ is:

ðdivTÞy ¼ @T y r

@r
þ 1

r

@Tyy

@y
þ Tr y þ Ty r

r
:
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2.77 Calculate div T for the following tensor field in cylindrical coordinates:

Trr ¼ Aþ B

r2
; Tyy ¼ A� B

r2
; Tzz ¼ constant; Tr y ¼ Ty r ¼ Trz ¼ Tzr ¼ Ty z ¼ Tzy ¼ 0:

2.78 Calculate div T for the following tensor field in cylindrical coordinates:

Trr ¼ Az

R3
� 3Br2z

R5
; Tyy ¼ Az

R3
; Tzz ¼ � Az

R3
þ 3Bz3

R5

0
@

1
A; Trz ¼ Tzr ¼ � Ar

R3
þ 3Brz2

R5

0
@

1
A;

Tr y ¼ Ty r ¼ Ty z ¼ Tzy ¼ 0; R2 ¼ r2 þ z2:

2.79 Calculate div T for the following tensor field in spherical coordinates:

Trr ¼ A� 2B

r3
; T yy ¼ Tff ¼ Aþ B

r3
; Tr y ¼ Ty r ¼ T yf ¼ Tfy ¼ Trf ¼ Tfr ¼ 0:

2.80 From the equation ðdiv TÞ � a ¼ divðTTaÞ � trðTTraÞ [see Eq. (2.29.3)], verify that in spherical coordi-

nates the y-component of the vector (div T) is:

ðdiv TÞy ¼ 1

r3
@ r3Ty rð Þ

@r
þ 1

r siny
@ Tyy sinyð Þ

@ y
þ 1

r siny
@Tyf

@f
þ Tr y � Ty r � Tffcoty

r
:
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CHAPTER

Kinematics of a Continuum

3
The branch of mechanics in which materials are treated as continuous is known as continuum mechanics.
Thus, in this theory, one speaks of an infinitesimal volume of material, the totality of which forms a body.

One also speaks of a particle in a continuum, meaning, in fact, an infinitesimal volume of material. This chap-

ter is concerned with the kinematics of such particles.

3.1 DESCRIPTION OF MOTIONS OF A CONTINUUM
In particle kinematics, the path line of a particle is described by a vector function of time t,

r ¼ rðtÞ; (3.1.1)

where rðtÞ ¼ x1ðtÞe1 þ x2ðtÞe2 þ x3ðtÞe3 is the position vector. In component form, the previous equation reads:

x1 ¼ x1ðtÞ; x2 ¼ x2ðtÞ; x3 ¼ x3ðtÞ: (3.1.2)

If there are N particles, there are N path lines, each of which is described by one of the equations:

rn ¼ rnðtÞ; n ¼ 1; 2; 3 . . .N: (3.1.3)

That is, for the particle number 1, the path line is given by r1ðtÞ, for the particle number 2, it is given

by r2ðtÞ, etc.
For a continuum, there are infinitely many particles. Therefore, it is not possible to identify particles by

assigning each of them a number in the same way as in the kinematics of particles. However, it is possible

to identify them by the position they occupy at some reference time to.

0

P(t�)

P(t)

x

X

FIGURE 3.1-1
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For example, if a particle of a continuum was at the position (1, 2, 3) at time t ¼ 0, the set of coordinates

(1, 2, 3) can be used to identify this particle. In general, therefore, if a particle of a continuum was at the posi-

tion X1; X2; X3ð Þ at the reference time to, the set of coordinates X1; X2; X3ð Þ can be used to identity this par-

ticle. Thus, in general, the path lines of every particle in a continuum can be described by a vector equation of

the form

x ¼ xðX; tÞ with X ¼ x X; toð Þ; (3.1.4)

where x ¼ x1e1 þ x2e2 þ x3e3 is the position vector at time t for the particle P (see Figure 3.1-1), which was

at X ¼ X1e1 þ X2e2 þ X3e3 at time to. In component form, Eq. (3.1.4) takes the form:

x1 ¼ x1 X1; X2; X3; tð Þ; X1 ¼ x1 X1; X2; X3; toð Þ;
x2 ¼ x2 X1; X2; X3; tð Þ; X2 ¼ x2 X1; X2; X3; toð Þ;
x3 ¼ x3 X1; X2; X3; tð Þ; X3 ¼ x3 X1; X2; X3; toð Þ;

(3.1.5)

or

xi ¼ xi X1; X2; X3; tð Þ with Xi ¼ xi X1; X2; X3; toð Þ: (3.1.6)

In Eq. (3.1.5), the triple X1; X2; X3ð Þ serves to identify the different particles of the body and is known as

the material coordinates. Eq. (3.1.5) [or Eq. (3.1.6)] is said to define a motion for a continuum; these equa-

tions describe the path line for every particle in the continuum.

Example 3.1.1
Consider the motion

x ¼ Xþ ktX2e1; (i)

where x ¼ x1e1 þ x2e2 þ x3e3 is the position vector at time t for a particle P that was at X ¼ X1e1 þ X2e2
þ X3e3 at t ¼ 0: Sketch the configuration at time t for a body which, at t ¼ 0, has the shape of a cube of unit

sides as shown.

Solution
From Eq. (i), we have

x1 ¼ X1 þ ktX2; x2 ¼ X2; x3 ¼ X3: (ii)

C

0 A

B B �C �
kt

x1

x2

FIGURE 3.1-2
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At t ¼ 0, the particle O is located at (0, 0, 0). Thus, for this particle, the material coordinates are

X1 ¼ 0; X2 ¼ 0; X3 ¼ 0:

Substituting these values for Xi in Eq. (ii), we get, for all time t,

x1; x2; x3ð Þ ¼ ð0; 0; 0Þ:
In other words, this particle remains at (0, 0, 0) at all times. Similarly, the material coordinates for the particle A are

ðX1; X2; X3Þ ¼ ð1; 0; 0Þ;
and the position for A at time t is

ðx1; x2; x3Þ ¼ ð1; 0; 0Þ:
Thus, the particle A also does not move with time. In fact, since the material coordinates for the points on the

material line OA are

ðX1; X2; X3Þ ¼ ðX1; 0; 0Þ;
for them, the positions at time t are

ðx1; x2; x3Þ ¼ ðX1; 0; 0Þ:
That is, the wholematerial lineOA ismotionless. On the other hand, thematerial coordinates for thematerial lineCB are

ðX1; X2; X3Þ ¼ ðX1; 1; 0Þ;
so that according to Eq. (ii)

ðx1; x2; x3Þ ¼ ðX1 þ kt ; 1; 0Þ:
In other words, the material line has moved horizontally through a distance of kt (see Figure 3.1-2). The material

coordinates for the material line OC are

ðX1; X2; X3Þ ¼ ð0; X2; 0Þ;
so that for the particles on this line

ðx1; x2; x3Þ ¼ ðkt X2; X2; 0Þ:
The fact that x1 ¼ kt X2 means that the straight material line OC remains a straight line OC’ at time t, as shown in

Figure 3.1-2. The situation for the material line AB is similar. Thus, at time t, the side view of the cube changes from

that of a square to a parallelogram, as shown in Figure 3.1-2.

Since x3 ¼ X3 at all time for all particles, it is clear that all motions are parallel to the plane x3 ¼ 0. The motion

given in this example is known as the simple shearing motion.

Example 3.1.2
Let Y1 ¼ �X1; Y2 ¼ X2; and Y3 ¼ X3. Express the simple shearing motion given in Example 3.1.1 in terms of

Y1; Y2; Y3ð Þ.
Solution
Straightforward substitutions give

x1 ¼ �Y1 þ ktY2; x2 ¼ Y2; x3 ¼ Y3:
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These equations, i.e., xi ¼ xi Y1; Y2; Y3; tð Þ also describe the simple shearing motion just as the equations given

in the previous example. The triples Y1; Y2; Y3ð Þ are also material coordinates in that they also identify the particles in

the continuum, although they are not the coordinates of the particles at any time. This example demonstrates the fact

that though the positions of the particles at some reference time to can be used as the material coordinates, the mate-

rial coordinates need not be the positions of the particle at any particular time. However, within this book, all material

coordinates will be coordinates of the particles at some reference time.

3.2 MATERIAL DESCRIPTION AND SPATIAL DESCRIPTION
When a continuum is in motion, its temperature Y, its velocity v, and its stress tensor T (to be defined in the

next chapter) may change with time. We can describe these changes as follows.

1. Following the particles, i.e., we express Y; v; T as functions of the particles [identified by the material

coordinates X1; X2; X3ð Þ] and time t. In other words, we express

Y ¼ Ŷ X1; X2; X3; tð Þ;
v ¼ v̂ X1; X2; X3; tð Þ;
T ¼ T̂ X1; X2; X3; tð Þ:

(3.2.1)

Such a description is known as the material description. Other names for it are the Lagrangean
description and the reference description.

2. Observing the changes at fixed locations, i.e., we express Y; v; T as functions of fixed position and

time. Thus,

Y ¼ Y~ x1; x2; x3; tð Þ;
v ¼ ~v x1; x2; x3; tð Þ;
T ¼ ~T x1; x2; x3; tð Þ:

(3.2.2)

Such a description is known as a spatial description or Eulerian description. The triple x1; x2; x3ð Þ locates
the fixed position of points in the physical space and is known as the spatial coordinates. The spatial

coordinates xi of a particle at any time t are related to the material coordinates Xi of the particle by Eq.

(3.1.5). We note that in spatial description, what is described (or measured) is the change of quantities at

a fixed location as a function of time. Spatial positions are occupied by different particles at different

times. Therefore, the spatial description does not provide direct information regarding changes in particle

properties as they move about. The material and spatial descriptions are, of course, related by the motion,

Eq. (3.1.4). That is, if the motion is known, one description can be obtained from the other, as illustrated

by the following example.

Example 3.2.1
Given the motion of a continuum to be

x1 ¼ X1 þ kt X2; x2 ¼ 1þ ktð ÞX2; x3 ¼ X3: (i)

If the temperature field is given by the spatial description

Y ¼ a x1 þ x2ð Þ; (ii)
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(a) find the material description of temperature and (b) obtain the velocity and the rate of change of temperature for

particular material particles and express the answer in both a material and a spatial description.

Solution
(a) Substituting Eq. (i) into Eq. (ii), we obtain the material description for the temperature,

Y ¼ a x1 þ x2ð Þ ¼ aX1 þ a 1þ 2ktð ÞX2: (iii)

(b) Since a particular material particle is designated by a specific X, its velocity will be given by

ni ¼ @xi
@t

� �
Xi�fixed

; (iv)

so that from Eq. (i)

n1 ¼ kX2; n2 ¼ kX2; n3 ¼ 0: (v)

This is the material description of the velocity field. To obtain the spatial description, we make use of Eq. (i) again,

where we have

X2 ¼ x2
1þ ktð Þ : (vi)

Therefore, the spatial description for the velocity field is

n1 ¼ kx2
1þ ktð Þ ; n2 ¼ kx2

1þ ktð Þ ; n3 ¼ 0: (vii)

From Eq. (iii), in material description, the rate of change of temperature for particular material particles is given

by

@Y
@t

� �
Xi�fixed

¼ 2akX2: (viii)

To obtain the spatial description, we substitute Eq. (vi) in Eq. (viii):

@Y
@t

� �
Xi�fixed

¼ 2akx2
1þ ktð Þ :

We note that even though the given temperature field is independent of time, each particle experiences changes

of temperature since it flows from one spatial position to another.

Example 3.2.2
The position at time t of a particle initially at X1; X2; X3ð Þ is given by the equations

x1 ¼ X1 þ k X1 þ X2ð Þt ; x2 ¼ X2 þ k X1 þ X2ð Þt ; x3 ¼ X3: (i)

(a) Find the velocity at t ¼ 2 for the particle that was at 1; 1; 0ð Þ at the reference time.

(b) Find the velocity at t ¼ 2 for the particle that is at the position 1; 1; 0ð Þ at t ¼ 2.
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Solution
(a) n1 ¼ @x1

@t

� �
Xi�fixed

¼ k X1 þ X2ð Þ; n2 ¼ @x2
@t

� �
Xi�fixed

¼ k X1 þ X2ð Þ; n3 ¼ 0: (ii)

For the particle X1; X2; X3ð Þ ¼ 1; 1; 0ð Þ, the velocity at t ¼ 2 is

n1 ¼ k 1þ 1ð Þ ¼ 2k; n2 ¼ k 1þ 1ð Þ ¼ 2k; n3 ¼ 0;

that is,

n ¼ 2ke1 þ 2ke2:

(b) We need to calculate the reference position X1; X2; X3ð Þ that was occupied by the particle which, at t ¼ 2, is

at x1; x2; x3ð Þ ¼ 1; 1:0ð Þ. To do this, we substitute this condition into Eq. (i) and solve for X1; X2; X3ð Þ, that is,

1 ¼ 1þ 2kð ÞX1 þ 2kX2; 1 ¼ 1þ 2kð ÞX2 þ 2kX1;

thus,

X1 ¼ 1

1þ 4k
; X2 ¼ 1

1þ 4k
:

Substituting these values in Eq. (ii), we obtain

n1 ¼ 2k

1þ 4k
; n2 ¼ 2k

1þ 4k
; n3 ¼ 0:

3.3 MATERIAL DERIVATIVE
The time rate of change of a quantity (such as temperature or velocity or stress tensor) of a material particle is

known as a material derivative. We shall denote the material derivative by D=Dt:

1. When a material description of a scalar quantity is used, we have

Y ¼ Ŷ X1; X2; X3; tð Þ; (3.3.1)

then,

DY
Dt

¼ @Ŷ
@t

 !
Xi�fixed

: (3.3.2)

2. When a spatial description of the same quantity is used, we have

Y ¼ Y~ x1; x2; x3; tð Þ; (3.3.3)
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where xi, the coordinates of the present positions of material particles at time t are related to the material

coordinates by the known motion xi ¼ x̂i X1; X2; X3; tð Þ. Then,
DY
Dt

¼ @Ŷ
@t

 !
Xi�fixed

¼ @Y~

@x1

� �
@x̂1
@t

þ @Y~

@x2

� �
@x̂2
@t

þ @Y~

@x3

� �
@x̂3
@t

þ @Y~

@t

� �
xi�fixed

; (3.3.4)

where
@x̂1
@t

;
@x̂2
@t

; and
@x̂3
@t

are to be obtained with fixed values of the Xi’s. When rectangular Cartesian

coordinates are used, these are the velocity components ni of the particle Xi. Thus, the material derivative

in rectangular coordinates is

DY
Dt

¼ @Ŷ
@t

 !
Xi�fixed

¼ @Y~

@t
þ n1

@Y~

@x1

� �
þ n2

@Y~

@x2

� �
þ n3

@Y~

@x3

� �
; (3.3.5)

or, in indicial notation,

DY
Dt

¼ @Ŷ
@t

 !
Xi�fixed

¼ @Y~

@t
þ ni

@Y~

@xi

� �
; (3.3.6)

and in direct notation,

DY
Dt

¼ @Y~

@t
þ v � rY~ : (3.3.7)

It should be emphasized that these equations are for Y in a spatial description, that is,

Y ¼ Y~ x1; x2; x3; tð Þ. Note that if the temperature field is independent of time and if the velocity of a particle

is perpendicular to rY~ (i.e., the particle is moving along the path of constant Y), then, as expected,
DY
Dt

¼ 0.

In the following, for simplicity, whenever it is obvious which kind of function we are dealing with (material

and spatial), we shall omit the super-hat or super-tilde on the function.

Note again that Eq. (3.3.5) or Eq. (3.3.6) is valid only for rectangular Cartesian coordinates, whereas

Eq. (3.3.7) has the advantage that it is valid for all coordinate systems. For a specific coordinate system,

all that is needed is the appropriate expression for the gradient. For example, in cylindrical coordinates

r; y; zð Þ,
v ¼ nrer þ nyey þ nzez; (3.3.8)

and from Eq. (2.34.4)

rY ¼ @Y
@r

er þ 1

r

@Y
@y

ey þ @Y
@z

ez; (3.3.9)

thus,

DY
Dt

¼ @Y
@t

þ nr
@Y
@r

þ ny
r

@Y
@y

þ nz
@Y
@z

: (3.3.10)

In spherical coordinates,

v ¼ nrer þ nyey þ nfef; (3.3.11)
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and from Eq. (2.35.15)

rYð Þr ¼
@Y
@r

; rYð Þy ¼
1

r

@Y
@y

; rYð Þf ¼ 1

r sin y
@Y
@f

; (3.3.12)

thus,

DY
Dt

¼ @Y
@t

þ nr
@Y
@r

þ ny
r

@Y
@y

þ nf
r sin y

@Y
@f

: (3.3.13)

Example 3.3.1
Use Eq. (3.3.7) to obtain DY=Dt for the motion and temperature field given in Example 3.2.1.

Solution
From Example 3.2.1, we have

v ¼ kx2
1þ kt

ðe1 þ e2Þ and Y ¼ aðx1 þ x2Þ:

The gradient of Y is simply ae1 þ ae2, therefore,

DY
Dt

¼ 0þ kx2
1þ kt

ðe1 þ e2Þ � ðae1 þ ae2Þ ¼ 2akx2
1þ kt

:

3.4 ACCELERATION OF A PARTICLE
The acceleration of a particle is the rate of change of velocity of the particle. It is, therefore, the material

derivative of velocity. If the motion of a continuum is given by Eq. (3.1.4), i.e.,

x ¼ x X; tð Þ with X ¼ x X; toð Þ; (3.4.1)

then the velocity n at time t of a particle X is given by

v ¼ @x

@t

� �
Xi�fixed

� Dx

Dt
; (3.4.2)

and the acceleration a at time t of a particle X is given by

a ¼ @v

@t

� �
Xi�fixed

� Dv

Dt
: (3.4.3)

Thus, if the material description of velocity v X; tð Þ is known [or is obtained from Eq. (3.4.2)], then the

acceleration is very easily computed, simply taking the partial derivative with respect to time of the function.

On the other hand, if only the spatial description of velocity [i.e., v ¼ v x; tð Þ] is known, the computation of

acceleration is not as simple. We derive the formulas for its computation in the following:

1. Rectangular Cartesian coordinates x1; x2; x3ð Þ. With

v ¼ n1 x1; x2; x3; tð Þe1 þ n2 x1; x2; x3; tð Þe2 þ n3 x1; x2; x3; tð Þe3; (3.4.4)
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we have, since the base vectors e1; e2, and e3 are fixed vectors,

a ¼ Dn

Dt
¼ Dn1

Dt
e1 þ Dn2

Dt
e2 þ Dn3

Dt
e3: (3.4.5)

In component form, we have

ai ¼ Dni
Dt

¼ @ni
@t

þ n1
@ni
@x1

þ n2
@ni
@x2

þ n3
@ni
@x3

; (3.4.6)

or

ai ¼ @ni
@t

þ nj
@ni
@xj

: (3.4.7)

In a form valid for all coordinate systems, we have

a ¼ @n

@t
þ ðrnÞn: (3.4.8)*

2. Cylindrical coordinates r; y; zð Þ. With

n ¼ nr r; y; z; tð Þer þ ny r; y; z; tð Þey þ nz r; y; z; tð Þez (3.4.9)

and [see Eq. (2.34.5)]

rv½ � ¼

@nr
@r

1

r

@nr
@y

� vy

0
@

1
A @nr

@z

@ny
@r

1

r

@ny
@y

þ nr

0
@

1
A @ny

@z

@nz
@r

1

r

@nz
@y

@nz
@z

2
6666666666664

3
7777777777775
; (3.4.10)

we have

ar

ay

az

2
664

3
775 ¼

@nr
@t

@ny
@t

@nz
@t

2
666666666664

3
777777777775
þ

@nr
@r

1

r

@nr
@y

� vy

0
@

1
A @nr

@z

@ny
@r

1

r

@ny
@y

þ nr

0
@

1
A @ny

@z

@nz
@r

1

r

@nz
@y

@nz
@z

2
66666666666664

3
77777777777775

nr

ny

nz

2
664

3
775; (3.4.11)

*In dyadic notation, the preceding equation is written as a ¼ @n

@t
þ n � ð ~rnÞ, where ~r ¼ ðem@=@xmÞ.
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thus,

ar ¼ @nr
@t

þ nr
@nr
@r

þ ny
r

@nr
@y

� vy

0
@

1
Aþ nz

@nr
@z

;

ay ¼ @ny
@t

þ nr
@ny
@r

þ ny
r

@ny
@y

þ nr

0
@

1
Aþ nz

@ny
@z

;

az ¼ @nz
@t

þ nr
@nz
@r

þ ny
r

@nz
@y

þ nz
@nz
@z

:

(3.4.12)

3. Spherical coordinates r; y; fð Þ. With

v ¼ nrðr; y;f; tÞer þ nyðr; y;f; tÞey þ nfðr; y;f; tÞef (3.4.13)

and [see Eq. (2.35.25)],

rv½ � ¼

@nr
@r

1

r

@nr
@y

� ny
r

0
@

1
A 1

r sin y
@nr
@f

� nf
r

0
@

1
A

@ny
@r

1

r

@ny
@y

þ nr
r

0
@

1
A 1

r sin y
@ny
@f

� nf cot y
r

0
@

1
A

@nf
@r

1

r

@nf
@y

1

r sin y
@nf
@f

þ nr
r
þ ny cot y

r

0
@

1
A

2
66666666666664

3
77777777777775
; (3.4.14)

we have

ar

ay

az

2
64

3
75 ¼

@nr
@t

@ny
@t

@nz
@t

2
66666666664

3
77777777775
þ

@nr
@r

1

r

@nr
@y

� ny

0
@

1
A 1

r sin y
@nr
@f

� nf sin y

0
@

1
A

@ny
@r

1

r

@ny
@y

þ nr

0
@

1
A 1

r sin y
@ny
@f

� nf cos y

0
@

1
A

@nf
@r

1

r

@nf
@y

1

r sin y
@nf
@f

þ nr
r
þ ny cot y

r

0
@

1
A

2
66666666666664

3
77777777777775

nr
ny
nf

2
64

3
75; (3.4.15)

and thus,

ar ¼ @nr
@t

þ nr
@nr
@r

þ ny
r

@nr
@y

� ny

0
@

1
Aþ nf

r sin y
@nr
@f

� nf sin y

0
@

1
A;

ay ¼ @ny
@t

þ nr
@ny
@r

þ ny
r

@ny
@y

þ nr

0
@

1
Aþ nf

r sin y
@ny
@f

� nf cos y

0
@

1
A;

af ¼ @nf
@t

þ nr
@nf
@r

þ ny
r

@nf
@y

þ nf
r sin y

@nf
@f

þ nr sin yþ ny cos y

0
@

1
A:

(3.4.16)
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Example 3.4.1
(a) Find the velocity field associated with the motion of a rigid body rotating with angular velocity v ¼ oe3
in Cartesian and in polar coordinates. (b) Using the velocity field of part (a), evaluate the acceleration field.

Solution
(a) For rigid body rotation

v ¼ v� x: (i)

In Cartesian coordinates,

v ¼ oe3 � ðx1e1 þ x2e2 þ x3e3Þ ¼ ox1e2 � ox2e1; (ii)

that is,

n1 ¼ �ox2; n2 ¼ ox1; n3 ¼ 0: (iii)

In cylindrical coordinates,

v ¼ oez � ðrer Þ ¼ roey; (iv)

that is,

nr ¼ 0; ny ¼ or ; nz ¼ 0: (v)

(b) We can use either Eq. (iii) or Eq. (v) to find the acceleration. Using Eq. (iii) and Eq. (3.4.7), we obtain

a1 ¼ 0þ ð�ox2Þð0Þ þ ðox1Þð�oÞ þ ð0Þð0Þ ¼ �o2x1;

a2 ¼ 0þ ð�ox2ÞðoÞ þ ðox1Þð0Þ þ ð0Þð0Þ ¼ �o2x2;

a3 ¼ 0;

(vi)

that is,

a ¼ �o2 x1e1 þ x2e2ð Þ ¼ �o2r; (vii)

or, using Eq. (v) and Eq. (3.4.12), we obtain

ar ¼ 0þ 0þ ny
r

0� vyð Þ þ 0 ¼ � vyð Þ2
r

¼ �ro2;

ay ¼ 0þ 0þ ny
r

0þ 0ð Þ þ 0 ¼ 0;

az ¼ 0þ 0þ ny
r
0þ 0 ¼ 0;

(viii)

that is,

a ¼ �ro2 er ¼ �o2r: (ix)

We note that in this example, even though at every spatial position, the velocity does not change with time, but the

velocity of every particle does change with time so that it has a centripetal acceleration.
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Example 3.4.2
Given the velocity field

n1 ¼ kx1
1þ kt

; n2 ¼ kx2
1þ kt

; n3 ¼ kx3
1þ kt

:

(a) Find the acceleration field and (b) find the path line x ¼ x̂ X; tð Þ:
Solution

(a) With

ni ¼ kxi
1þ kt

;

we have

ai ¼ @ni
@t

þ nj
@ni
@xj

¼ � k2xi

1þ ktð Þ2
þ kxj
1þ kt

kdij
1þ kt

¼ � k2xi

1þ ktð Þ2
þ k2xi

1þ ktð Þ2
¼ 0;

or

a ¼ 0:

We note that in this example, even though at any spatial position (except the origin) the velocity is observed to

be changing with time, the actual velocity of a particular particle is a constant with a zero acceleration.

(b) Since

ni ¼ @xi
@t

� �
Xi�fixed

¼ kxi
1þ kt

;

therefore,

ðx1
X1

dx1
kx1

¼
ðt
0

dt

1þ kt
;

that is,

1

k
ln x1 � ln X1ð Þ ¼ 1

k
ln ð1þ ktÞ;

or

x1 ¼ ð1þ ktÞX1:
Similarly,

x2 ¼ ð1þ ktÞX2;
x3 ¼ ð1þ ktÞX3:

These path-line equations show that each particle’s displacement varies linearly with time so that its motion is

acceleration-less.
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3.5 DISPLACEMENT FIELD

The displacement vector of a particle in a continuum (identified by its material coordinate X), from

the reference position P toð Þ, to the current position PðtÞ, is given by the vector from P toð Þ to PðtÞ (see

Figure 3.5-1) and is denoted by u X; tð Þ. That is,
u X; tð Þ ¼ x X; tð Þ � X: (3.5.1)

From the preceding equation, it is clear that whenever the path lines of a continuum are known, its dis-

placement field is also known. Thus, the motion of a continuum can be described either by the path lines

as given in Eq. (3.1.4) or by its displacement vector field as given by Eq. (3.5.1).

Example 3.5.1
The position at time t of a particle initially at X1; X2; X3ð Þ is given by

x1 ¼ X1 þ ðX1 þ X2Þkt ; x2 ¼ X2 þ ðX1 þ X2Þkt ; x3 ¼ X3;

obtain the displacement field.

Solution

u1 ¼ x1 � X1 ¼ ðX1 þ X2Þkt ;
u2 ¼ x2 � X2 ¼ ðX1 þ X2Þkt ;
u3 ¼ x3 � X3 ¼ 0:

Example 3.5.2
The deformed configuration of a continuum is given by

x1 ¼ 1

2
X1; x2 ¼ X2; x3 ¼ X3;

obtain the displacement field.

0

X
x(X,t )

u(X,t)
P(t)

P(to)

FIGURE 3.5-1
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Solution

u1 ¼ x1 � X1 ¼ 1

2
X1 � X1 ¼ � 1

2
X1; u2 ¼ x2 � X2 ¼ X2 � X2 ¼ 0; u3 ¼ x3 � X3 ¼ X3 � X3 ¼ 0:

This motion represents a state of confined compression.

3.6 KINEMATIC EQUATION FOR RIGID BODY MOTION
(a) Rigid body translation. For this motion, the kinematic equation of motion is given by

x ¼ Xþ cðtÞ; (3.6.1)

where c 0ð Þ ¼ 0. We note that the displacement vector, u ¼ x� X ¼ cðtÞ, is independent of X. That is,
every material point is displaced in an identical manner, with the same magnitude and the same direc-

tion at time t.

(b) Rigid body rotation about a fixed point. For this motion, the kinematic equation of motion is

given by

x� b ¼ RðtÞðX� bÞ; (3.6.2)

where R(t) is a proper orthogonal tensor (i.e., a rotation tensor; see Section 2.15, with R 0ð Þ ¼ I), and
b is a constant vector. We note when X ¼ b; x ¼ b so that the material point X ¼ b is always at the

spatial point x ¼ b so that the rotation is about the fixed point x ¼ b: If the rotation is about the origin,

then b ¼ 0, and

x ¼ RðtÞX: (3.6.3)

(c) General rigid body motion. The equation describing a general rigid body motion is given by

x ¼ RðtÞðX� bÞ þ cðtÞ; (3.6.4)

where RðtÞ is a rotation tensor with R 0ð Þ ¼ I and cðtÞ is a vector with c 0ð Þ ¼ b: Equation (3.6.4)

states that the motion is described by a translation cðtÞ of an arbitrary chosen material base point

X ¼ b plus a rotation RðtÞ about the base point.

Example 3.6.1
Show that for the motion given by (3.6.2) there is no change in the distance between any pair of material points.

Solution
Consider two material points X 1ð Þ and X 2ð Þ in the body; we have, from Eq. (3.6.2),

xð1Þ � b ¼ RðtÞðXð1Þ � bÞ;
xð2Þ � b ¼ RðtÞðXð2Þ � bÞ;

so that

xð1Þ � xð2Þ ¼ RðtÞðXð1Þ � Xð2ÞÞ:

82 CHAPTER 3 Kinematics of a Continuum



That is, due to the motion, the material vector DX � X 1ð Þ � X 2ð Þ changes to Dx � x 1ð Þ � x 2ð Þ with

Dx ¼ RðtÞDX:
Let Dℓ and DL be the length of Dx and DX, respectively, we have

Dℓð Þ2 ¼ Dx �Dx ¼ RðtÞDXð Þ � RðtÞDXð Þ:
Using the definition of transpose and the fact that RTR ¼ I, the right side of the preceding equation becomes

RðtÞDXð Þ � RðtÞDXð Þ ¼ DX �RTRDX ¼ DX � IDX ¼ DX �DX:
Thus,

Dℓð Þ2 ¼ DLð Þ2;
that is, Dℓ ¼ DL.

Example 3.6.2
From Eq. (3.6.4), derive the relation between the velocity of a general material point in the rigid body with the angular

velocity of the body and the velocity of the arbitrary chosen material point.

Solution
Taking the material derivative of Eq. (3.6.4), we obtain

v ¼ _R X� bð Þ þ _cðtÞ:
Here we have used a super dot to denote a material derivative. Now, from Eq. (3.6.4) again, we have

X� bð Þ ¼ RT x� cð Þ:
Thus,

n ¼ _RRT x� cð Þ þ _cðtÞ:
Now, by taking the time derivative of the equation RRT ¼ I, we have

_RRT þ R _R
T ¼ 0:

As a consequence,

_RRT ¼ �R _R
T ¼ � _RRT

� �T
:

That is, _RRT is an antisymmetric tensor, which is equivalent to a dual vector o such that _RRT
� �

a ¼ v� a for any

vector a (see Section 2.21). Thus,

n ¼ v� x� cð Þ þ _cðtÞ:
If for a general material point, we measure its position vector r from the position at time t of the chosen material

base point, i.e., r ¼ x� c, then we obtain the well-known equation below:

n ¼ v� rþ _cðtÞ:
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3.7 INFINITESIMAL DEFORMATION
There are many important engineering problems that involve structural members or machine parts for which

the deformation is very small (mathematically treated as infinitesimal). In this section, we derive the tensor

that characterizes the deformation of such bodies.

Consider a body having a particular configuration at some reference time to, changes to another configu-

ration at time t. Referring to Figure 3.7-1, a typical material point P undergoes a displacement u so that it

arrives at the position

x ¼ Xþ u X; tð Þ: (3.7.1)

A neighboring point Q at Xþ dX arrives at xþ dx, which is related to Xþ dX by

xþ dx ¼ Xþ dXþ u Xþ dX; tð Þ: (3.7.2)

Subtracting Eq. (3.7.1) from Eq. (3.7.2), we obtain

dx ¼ dXþ u Xþ dX; tð Þ � u X; tð Þ: (3.7.3)

Using the definition of gradient of a vector function [see Eq. (2.28.1)], Eq. (3.7.3) becomes

dx ¼ dXþ ðruÞdX; (3.7.4)

where ru is a second-order tensor known as the displacement gradient. The matrix of ru with respect to

rectangular Cartesian coordinates (X ¼ Xiei and u ¼ uiei) is

ru½ � ¼

@u1
@X1

@u1
@X2

@u1
@X3

@u2
@X1

@u2
@X2

@u2
@X3

@u3
@X1

@u3
@X2

@u3
@X3

2
6666666666664

3
7777777777775
: (3.7.5)

X

0

x

P(t�)

Q(t�)

dX

u(X,t )

Q(t )

P(t )

dx

u(X + dX, t )

FIGURE 3.7-1
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Example 3.7.1
Given the following displacement components

u1 ¼ kX 2
2 ; u2 ¼ u3 ¼ 0: (i)

(a) Sketch the deformed shape of the unit square OABC shown in Figure 3.7-2.

(b) Find the deformed vectors (i.e., dx 1ð Þ and dx 2ð Þ) of the material elements dX 1ð Þ ¼ dX1e1 and dX 2ð Þ ¼ dX2e2,

which were at the point C.

(c) Determine the ratio of the deformed to the undeformed lengths of the differential elements (known as stretch)

of part (b) and the change in angle between these elements.

Solution
(a) For the material line OA; X2 ¼ 0, therefore, from Eq. (i), u1 ¼ u2 ¼ u3 ¼ 0. That is, the line is not displaced.

For the material line CB; X2 ¼ 1; u1 ¼ k; u2 ¼ u3 ¼ 0, the line is displaced by k units to the right. For the

material line OC and AB, u1 ¼ kX 2
2 ; u2 ¼ u3 ¼ 0, each line becomes parabolic in shape. Thus, the deformed

shape is given by OAB 0C 0 shown in Figure 3.7-2.

(b) For the material point C, the matrix of the displacement gradient is

ru½ � ¼
0 2kX2 0
0 0 0
0 0 0

2
4

3
5
X2¼1

¼
0 2k 0
0 0 0
0 0 0

2
4

3
5: (ii)

Therefore, for dX 1ð Þ ¼ dX1e1, from Eq. (3.7.4), we have

dxð1Þ ¼ dXð1Þ þ ðruÞdXð1Þ ¼ dX1e1 þ 0 ¼ dX1e1; (iii)

and for dX 2ð Þ ¼ dX2e2,

dx 2ð Þ ¼ dX 2ð Þ þ ruð ÞdX 2ð Þ ¼ dX2e2 þ 2kdX2e1 ¼ dX2 2ke1 þ e2ð Þ: (iv)

(c) From Eqs. (iii) and (iv), we have

��dxð1Þ�� ¼ dX1 and
��dxð2Þ�� ¼ dX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ 1

p
;

e2

e1

B
B�

A

k
C C�

dX(2) dx(2)

dX(1)
dx(1)

x1

x2

O

θ

FIGURE 3.7-2
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therefore, ��dxð1Þ����dXð1Þ�� ¼ 1 and

��dxð2Þ����dXð2Þ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ 1

p
; (v)

and

cos y ¼ dxð1Þ � dxð2Þ��dxð1Þ����dxð2Þ �� ¼ 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2

p : (vi)

If k is very small, we have the case of small deformations, and by the binomial theorem, we have, from Eq. (v),

keeping only the first power of k,��dx 1ð Þ����dX 1ð Þ�� ¼ 1 and

��dx 2ð Þ����dX 2ð Þ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ 1

p
� 1þ 2k2 � 1;

and from Eq. (vi),

cos y � 2k:

If g denotes the decrease in angle, then

cos y ¼ cos
p
2
� g

� �
¼ sin g ¼ 2k:

Now, for very small k, g is also small, so that sin g � g and we have

g � 2k:

We can write Eq. (3.7.4), i.e., dx ¼ dXþ ruð ÞdX as

dx ¼ FdX; (3.7.6)

where

F ¼ Iþru: (3.7.7)

Here F is known as the deformation gradient because it is the gradient of the function x̂ðX; tÞ describing
the motion, i.e., x ¼ x̂ X; tð Þ.

To find the relationship between ds (the length of dx) and dS (the length of dX), we take the dot product of
Eq. (3.7.6) with itself:

dx � dx ¼ FdX �FdX ¼ dX � ðFTFÞdX; (3.7.8)

that is,

ds2 ¼ dX �CdX; (3.7.9)

where

C ¼ FTF: (3.7.10)

The tensor C is known as the right Cauchy-Green deformation tensor. We note that if C ¼ I, then ds2 ¼ dS2.
Therefore, C ¼ I corresponds to a rigid body motion (translation and/or rotation). From Eq. (3.7.7), we have

C ¼ FTF ¼ Iþruð ÞT Iþruð Þ ¼ Iþruþ ruð ÞT þ ruð ÞT ruð Þ: (3.7.11)
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Let

E� ¼ 1

2
½ruþ ðruÞT þ ðruÞTðruÞ�; (3.7.12)

then Eq. (3.7.11) becomes

C ¼ Iþ 2E�: (3.7.13)

Since C ¼ I corresponds to a rigid body motion, Eq. (3.7.13) clearly shows that the tensor E� charac-

terizes the changes of lengths in the continuum due to displacements of the material points. This tensor E�

is known as the Lagrange strain tensor. It is a finite deformation tensor.

In this section, we consider only cases where the components of the displacement vector as well as their par-

tial derivatives are all very small (mathematically infinitesimal) so that the absolute value of every component

of ruð ÞT ruð Þ is a small quantity of higher order than those of the components of ruð Þ. For such cases

C � Iþ 2E; (3.7.14)

where

E ¼ 1

2
ruþ ruð ÞT
h i

¼ symmetric part of ruð Þ: (3.7.15)

This tensor E is known as the infinitesimal strain tensor. In Cartesian coordinates

Eij ¼ 1

2

@ui
@Xj

þ @uj
@Xi

� �
: (3.7.16)

Consider two material elements dX 1ð Þ and dX 2ð Þ. Due to motion, they become dx 1ð Þ and dx 2ð Þ at time t.
We have, for small deformation, from Eq. (3.7.6) and Eq. (3.7.14),

dx 1ð Þ � dx 2ð Þ ¼ FdX 1ð Þ �FdX 2ð Þ ¼ dX 1ð Þ �CdX 2ð Þ ¼ dX 1ð Þ � ðIþ 2EÞdX 2ð Þ; (3.7.17)

that is,

dx 1ð Þ � dx 2ð Þ ¼ dX 1ð Þ � dX 2ð Þ þ 2dX 1ð Þ �EdX 2ð Þ: (3.7.18)

This equation will be used in the next section to establish the meaning of the components of the infinitesimal

strain tensor E.
Using the expressions derived in Parts C and D of Chapter 2, we can obtain the matrices of infinitesimal

strain tensor E in terms of the components of the displacement gradients in rectangular coordinates, cylindri-

cal coordinates, and spherical coordinates.

(a) Rectangular coordinates:

E½ � ¼

@u1
@X1

1

2

@u1
@X2

þ @u2
@X1

0
@

1
A 1

2

@u1
@X3

þ @u3
@X1

0
@

1
A

1

2

@u1
@X2

þ @u2
@X1

0
@

1
A @u2

@X2

1

2

@u2
@X3

þ @u3
@X2

0
@

1
A

1

2

@u1
@X3

þ @u3
@X1

0
@

1
A 1

2

@u2
@X3

þ @u3
@X2

0
@

1
A @u3

@X3

2
666666666666664

3
777777777777775

: (3.7.19)
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(b) Cylindrical coordinates:

E½ � ¼

@ur
@r

1

2

1

r

@ur
@y

� uy
r
þ @uy

@r

0
@

1
A 1

2

@ur
@z

þ @uz
@r

0
@

1
A

1

2

1

r

@ur
@y

� uy
r
þ @uy

@r

0
@

1
A 1

r

@uy
@y

þ ur
r

1

2

@uy
@z

þ 1

r

@uz
@y

0
@

1
A

1

2

@ur
@z

þ @uz
@r

0
@

1
A 1

2

@uy
@z

þ 1

r

@uz
@y

0
@

1
A @uz

@z

2
666666666666664

3
777777777777775

: (3.7.20)

(c) Spherical coordinates:

E½ � ¼

@ur
@r

1

2

1

r

@ur
@y

� uy
r
þ @uy

@r

0
@

1
A 1

2

1

r sin y
@ur
@f

� uf
r
þ @uf

@r

0
@

1
A

E21 ¼ E12

1

r

@uy
@y

þ ur
r

1

2

1

r sin y
@uy
@f

� uf cot y
r

þ 1

r

@uf
@y

0
@

1
A

E31 ¼ E13 E32 ¼ E23

1

r sin y
@uf
@f

þ ur
r
þ uy cot y

r

2
66666666666664

3
77777777777775
: (3.7.21)

3.8 GEOMETRICAL MEANING OF THE COMPONENTS OF THE INFINITESIMAL
STRAIN TENSOR

(a) Diagonal elements of E. Consider the single material element dX 1ð Þ ¼ dX 2ð Þ ¼ dX ¼ dSn, where n is a

unit vector and dS is the length of dX. Due to motion, dX becomes dx with a length of ds. Eq. (3.7.18)
gives dx � dx ¼ dX � dXþ 2dSn �EdSn. That is,

ds2 ¼ dS2 þ 2dS2 n �Enð Þ: (3.8.1)

For small deformation, ds2 � dS2 ¼ ds� dSð Þ dsþ dSð Þ � 2dS ds� dSð Þ. Thus, Eq. (3.8.1) gives:
ds� dS

dS
¼ n �En ¼ Enn no sum on nð Þ: (3.8.2)

This equation states that the unit elongation (i.e., increase in length per unit original length) for the

element that was in the direction n, is given by n �En. In particular, if the element was in the e1
direction in the reference state, then n ¼ e1 and e1 �Ee1 ¼ E11, etc. Thus,

E11 is the unit elongation for an element originally in the x1 direction.

E22 is the unit elongation for an element originally in the x2 direction.

E33 is the unit elongation for an element originally in the x3 direction.

These components (the diagonal elements of E) are also known as the normal strains.
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(b) The off diagonal elements of E. Let dX 1ð Þ ¼ dS1m and dX 2ð Þ ¼ dS2n, where m and n are unit vectors

perpendicular to each other. Due to motion, dX 1ð Þ becomes dx 1ð Þ with length ds1 and dX 2ð Þ becomes

dx 2ð Þ with length ds2. Let the angle between the two deformed vectors dx 1ð Þ and dx 2ð Þ be denoted by y.
Then Eq. (3.7.18) gives

ds1ds2 cos y ¼ 2dS1dS2m �En: (3.8.3)

If we let

y ¼ p
2
� g; (3.8.4)

then g measures the small decrease in angle between dX 1ð Þ and dX 2ð Þ (known as the shear strain) due
to deformation. Since

cos
p
2
� g

� �
¼ sin g; (3.8.5)

and for small strain

sin g � g;
ds1
dS1

� 1;
ds2
dS2

� 1; (3.8.6)

therefore, Eq. (3.8.3) becomes

g ¼ 2 m �Enð Þ: (3.8.7)

In particular, if the elements were in the e1 and e2 directions before deformation, then

m �En ¼ e1 �Ee2 ¼ E12, etc., so that, according to Eq. (3.8.7):

2E12 gives the decrease in angle between two elements initially in the x1 and x2 directions.

2E13 gives the decrease in angle between two elements initially in the x1 and x3 directions.

2E23 gives the decrease in angle between two elements initially in the x2 and x3 directions.

Example 3.8.1
Given the displacement components

u1 ¼ kX 2
2 ; u2 ¼ u3 ¼ 0; k ¼ 10�4; (i)

(a) Obtain the infinitesimal strain tensor E.

(b) Using the strain tensor E, find the unit elongation for the material elements dX 1ð Þ ¼ dX1e1 and dX 2ð Þ ¼ dX2e2,

which were at the point C 0; 1; 0ð Þ of Figure 3.8-1. Also find the decrease in angle between these two

elements.

(c) Compare the results with those of Example 3.7.1.

Solution
(a) We have

ru½ � ¼
0 2kX2 0
0 0 0
0 0 0

2
4

3
5; (ii)
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therefore,

½E� ¼ ½ðruÞS� ¼
0 kX2 0

kX2 0 0

0 0 0

2
4

3
5: (iii)

(b) At point C; X2 ¼ 1, therefore,

E½ � ¼ ru½ �S ¼
0 k 0

k 0 0

0 0 0

2
4

3
5: (iv)

For the element dX 1ð Þ ¼ dX1e1, the unit elongation is E11, which is zero. For the element dX 2ð Þ ¼ dX2e2, the

unit elongation is E22, which is also zero. The decrease in angle between these elements is given by 2E12,

which is equal to 2k; i:e:; 2� 10�4 radians.

(c) In Example 3.7.1, we found that

��dxð1Þ��
jdXð1Þ�� ¼ 1;

��dxð2Þ����dXð2Þ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ 1

p
and sin g ¼ 2k; (v)

i.e., ��dx 1ð Þ��� ��dX 1ð Þ����dX 1ð Þ�� ¼ 0 and

��dx 2ð Þ��� ��dX 2ð Þ����dX 2ð Þ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ 1

p
� 1 � 1þ 2k2 � 1 ¼ 2k2 � 0;

and g � 2� 10�4.

Comparing the results of part (b) with part (c), we see that the result of part (b), where infinitesimal strain tensor

was used, is accurate up to the order of k.

Example 3.8.2
Given the displacement field

u1 ¼ k 2X1 þ X 2
2

� 	
; u2 ¼ k X 2

1 � X 2
2

� 	
; u3 ¼ 0; k ¼ 10�4: (i)

e2

e1

B
B�

A

k
C C�

dX(2) dx(2)

dX(1)
dx(1)

x1

x2

O

θ

FIGURE 3.8-1
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(a) Find the unit elongation and the change of angle for the two material elements dX 1ð Þ ¼ dX1e1 and

dX 2ð Þ ¼ dX2e2 that emanate from a particle designated by X ¼ e1 � e2.

(b) Find the deformed position of these two elements: dX 1ð Þ and dX 2ð Þ.

Solution

(a) We evaluate ru½ � and E½ � at X1; X2; X3ð Þ ¼ 1; �1; 0ð Þ as

ru½ � ¼ k

2 �2 0

2 2 0

0 0 0

2
64

3
75; E½ � ¼ ru½ �S ¼ k

2 0 0

0 2 0

0 0 0

2
64

3
75: (ii)

Since E11 ¼ E22 ¼ 2k, both elements have a unit elongation of 2� 10�4. Further, since E12 ¼ 0, these line

elements remain perpendicular to each other.

(b) From Eq. (3.7.4),

dx 1ð Þ
h i

¼ dX 1ð Þ
h i

þ ru½ � dX 1ð Þ
h i

¼
dX1

0

0

2
64

3
75þ k

2 �2 0

2 2 0

0 0 0

2
64

3
75

dX1

0

0

2
64

3
75 ¼ dX1

1þ 2k

2k

0

2
64

3
75; (iii)

and

dx 2ð Þ
h i

¼ dX 2ð Þ
h i

þ ru½ � dX 2ð Þ
h i

¼
0

dX2

0

2
64

3
75þ k

2 �2 0

2 2 0

0 0 0

2
64

3
75

0

dX2

0

2
64

3
75 ¼ dX2

�2k

1þ 2k

0

2
64

3
75: (iv)

The deformed positions of these elements are sketched in Figure 3.8-2. Note from the diagram that

a � tan a ¼ 2kdX1
dX1 1þ 2kð Þ ¼

2k

1þ 2kð Þ � 2k; (v)

R

Q

3k

R�

P�

Q�

P

α

b

dX2

dX1

2kdX2

2kdX2

2kdX1

2kdX1

dX2

dX1

FIGURE 3.8-2
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and

b � tanb ¼ 2kdX2
dX2 1þ 2kð Þ � 2k: (vi)

Thus, as previously obtained, there is no change of angle between dX 1ð Þ and dX 2ð Þ.

Example 3.8.3
A unit cube with edges parallel to the coordinate axes is given a displacement field

u1 ¼ kX1; u2 ¼ u3 ¼ 0; k ¼ 10�4: (i)

Find the increase in length of the diagonal AB (see Figure 3.8-3) (a) by using the infinitesimal strain tensor E and

(b) by geometry.

Solution
(a) We have

E½ � ¼
k 0 0

0 0 0

0 0 0

2
664

3
775: (ii)

Since the diagonal element was originally in the direction n ¼
ffiffiffi
2

p

2
e1 þ e2ð Þ, its unit elongation is given by

Enn ¼ n �En ¼ ffiffiffi
2

p
=2

ffiffiffi
2

p
=2 0


 � k 0 0

0 0 0

0 0 0

2
664

3
775

ffiffiffi
2

p
=2ffiffiffi

2
p

=2

0

2
664

3
775 ¼ k

2
no sum on nð Þ: (iii)

Since AB ¼
ffiffiffi
2

p
,

DAB ¼ k

2

ffiffiffi
2

p
: (iv)

1

k

B B�

A
1

x1

x2

FIGURE 3.8-3
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(b) Geometrically,

DAB ¼ AB 0 � AB ¼ 1þ 1þ kð Þ2
h i1=2

�
ffiffiffi
2

p
¼

ffiffiffi
2

p
1þ k þ k2=2

� 	
 �1=2 � ffiffiffi
2

p
: (v)

Now,

1þ k þ k2=2

 �1=2 ¼ 1þ 1

2
k þ k2

2

� �
þ . . . � 1þ 1

2
k: (vi)

Therefore, in agreement with part (a),

DAB ¼ k

2

ffiffiffi
2

p
: (vii)

3.9 PRINCIPAL STRAIN
Since the strain tensor E is symmetric, there exist at least three mutually perpendicular directions n1; n2; n3ð Þ
with respect to which the matrix of E is diagonal (see Section 2.23). That is,

E½ �ni ¼
E1 0 0

0 E2 0

0 0 E3

2
4

3
5: (3.9.1)

Geometrically, this means that infinitesimal line elements in the directions of n1; n2; n3ð Þ remain mutu-

ally perpendicular after deformation. These directions are known as principal directions. The unit elongations
along the principal directions (i.e., E1; E2; E3) are the eigenvalues of E, or principal strains. They include the

maximum and the minimum normal strains among all directions emanating from the particle. For a given E,
the principal strains are to be found from the characteristic equation of E, i.e.,

l3 � I1l
2 þ I2l� I3 ¼ 0; (3.9.2)

where

I1 ¼ E11 þ E22 þ E33; (3.9.3)

I2 ¼
����E11 E12

E21 E22

����þ
����E22 E23

E32 E33

����þ
����E11 E13

E31 E33

����; (3.9.4)

I3 ¼ jEijj: (3.9.5)

The coefficients I1; I2 and I3 are called the principal scalar invariants of the strain tensor.

3.10 DILATATION
The first scalar invariant of the infinitesimal strain tensor has a simple geometric meaning. For a specific

deformation, consider the three material lines that emanate from a single point P and are in the principal

directions. These lines define a rectangular parallelepiped whose sides have been elongated from the initial
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lengths dS1; dS2, and dS3 to dS1 1þ E1ð Þ, dS2 1þ E2ð Þ, and dS3 1þ E3ð Þ, where E1; E2, and E3 are the prin-

cipal strains. The change D dVð Þ in this material volume dV is

D dVð Þ ¼ dS1dS2dS3 1þ E1ð Þ 1þ E2ð Þ 1þ E3ð Þ � dS1dS2dS3
¼ dS1dS2dS3 E1 þ E2 þ E3ð Þ þ higher order terms in Ei:

(3.10.1)

For small deformation

e � D dVð Þ
dV

¼ E1 þ E2 þ E3 ¼ the first principal scalar invariant: (3.10.2)

Thus, in general,

e ¼ Eii ¼ @ui
@Xi

¼ div u: (3.10.3)

This unit volume change is known as dilatation. In terms of displacements, we have:

In rectangular Cartesian coordinates:

e ¼ @u1
@x1

þ @u2
@x2

þ @u3
@x3

: (3.10.4)

In cylindrical coordinates:

e ¼ @ur
@r

þ 1

r

@uy
@y

þ ur

� �
þ @uz

@z
: (3.10.5)

In spherical coordinates:

e ¼ @ur
@r

þ 1

r

@uy
@y

þ 2ur
r

þ 1

r sin y
@uf
@f

þ uy cot y
r

: (3.10.6)

3.11 THE INFINITESIMAL ROTATION TENSOR
Decomposing ru into a symmetric part E and an antisymmetric part O, Eq. (3.7.4) can be written as

dx ¼ dXþ ðruÞdX ¼ dXþ ðEþ OÞdX; (3.11.1)

where O ¼ ruð ÞA, the antisymmetric part of ru, is known as the infinitesimal rotation tensor. We see that

the change of direction of dX in general comes from two sources, the infinitesimal deformation tensor E and

the infinitesimal rotation tensor O. However, for any dX that is in the direction of an eigenvector of E, there is
no change in direction due to E, only that due to O. Therefore, the tensor O represents the infinitesimal rota-

tion of the triad of the eigenvectors of E. It can be described by a vector tA (dual vector of the antisymmetric

tensor O) in the sense that

tA � dX ¼ OdX; (3.11.2)

where (see Section 2.21)

tA ¼ O32e1 þ O13e2 þ O21e3: (3.11.3)

Thus, O32; O13; O21ð Þ gives the infinitesimal angle of rotation about the e1; e2 and e3 axes of the triad of the

material elements that are in the principal direction of E.
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3.12 TIME RATE OF CHANGE OF A MATERIAL ELEMENT
Let us consider a material element located at x at time t. We wish to compute D=Dtð Þdx, the rate of change of
length and direction of the material element dx. From x ¼ x X; tð Þ, we have

dx ¼ x Xþ dX; tð Þ � x X; tð Þ: (3.12.1)

Taking the material derivative of this equation, we obtain

D

Dt
dx ¼ D

Dt
x Xþ dX; tð Þ � D

Dt
x X; tð Þ: (3.12.2)

Now Dx=Dt is the velocity, which can be expressed in material description as v̂ X; tð Þ or, in spatial descrip-

tion, ~v x; tð Þ. (Note that v̂ and ~v are two different functions describing the same velocity.) That is,

D

Dt
dx ¼ v̂ X; tð Þ ¼ ~v x; tð Þ: (3.12.3)

Equation (3.12.2) becomes

D

Dt
dx ¼ v̂ Xþ dX; tð Þ � v̂ X; tð Þ ¼ ~v xþ dx; tð Þ � ~v x; tð Þ; (3.12.4)

or

D

Dt
dx ¼ rXv̂ð ÞdX ¼ rx~vð Þdx: (3.12.5)

The subscript X or x for the gradient r serves to emphasize whether it is taken with respect to the material

description or the spatial description of the velocity function.

In the following, the spatial description of the velocity function will be used exclusively so that the notation

rvð Þ will be understood to mean rx~vð Þ. Thus we write Eq. (3.12.5) simply as

D

Dt
dx ¼ rvð Þdx: (3.12.6)

With respect to rectangular Cartesian coordinates,

rv½ � ¼

@n1
@x1

@n1
@x2

@n1
@x3

@n2
@x1

@n2
@x2

@n2
@x3

@n3
@x1

@n3
@x2

@n3
@x3

2
6666666664

3
7777777775
: (3.12.7)

3.13 THE RATE OF DEFORMATION TENSOR
The velocity gradient rvð Þ can be decomposed into a symmetric part and an antisymmetric part as follows:

rvð Þ ¼ DþW; (3.13.1)
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where D is the symmetric part, i.e.,

D ¼ 1

2
rvð Þ þ rvð ÞT

h i
; (3.13.2)

and W is the antisymmetric part, i.e.,

W ¼ 1

2
rvð Þ � rvð ÞT

h i
: (3.13.3)

The symmetric part D is known as the rate of deformation tensor and the antisymmetric part W as the spin
tensor. The reason for these names will become apparent soon. With respect to rectangular Cartesian coordi-

nates, the components of D and W are given here:

½D� ¼

@n1
@x1

1

2

@n1
@x2

þ @n2
@x1

0
@

1
A 1

2

@n1
@x3

þ @n3
@x1

0
@

1
A

1

2

@n1
@x2

þ @n2
@x1

0
@

1
A @n2

@x2

1

2

@n2
@x3

þ @n3
@x2

0
@

1
A

1

2

@n1
@x3

þ @n3
@x1

0
@

1
A 1

2

@n2
@x3

þ @n3
@x2

0
@

1
A @n3

@x3

2
66666666666664

3
77777777777775
; (3.13.4)

and

½W� ¼

0
1

2

@n1
@x2

� @n2
@x1

0
@

1
A 1

2

@n1
@x3

� @n3
@x1

0
@

1
A

� 1

2

@n1
@x2

� @n2
@x1

0
@

1
A 0

1

2

@n2
@x3

� @n3
@x2

0
@

1
A

� 1

2

@n1
@x3

� @n3
@x1

0
@

1
A � 1

2

@n2
@x3

� @n3
@x2

0
@

1
A 0

2
66666666666664

3
77777777777775
: (3.13.5)

With respect to cylindrical and spherical coordinates, the matrices for D take the same form as those given

in Section 3.7 [Eqs. (3.7.20) and (3.7.21)] for the tensor E, and those for W can be obtained from the equa-

tions for the gradients given in Eq. (3.4.10) and Eq. (3.4.14) by taking their antisymmetric part.

We now show that the rate of change of length of dx is described by the tensor D. Let dx ¼ dsn, where n
is a unit vector, then

dx � dx ¼ dsð Þ2: (3.13.6)

Taking the material derivative of the above equation, we have

2dx � D
Dt

dx ¼ 2ds
D dsð Þ
Dt

: (3.13.7)

Now, from Eqs. (3.12.6) and (3.13.1),

dx � D
Dt

dx ¼ dx � ðrvÞdx ¼ dx � ðDþWÞdx ¼ dx �Ddxþ dx �Wdx: (3.13.8)
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But, using the definition of transpose and the antisymmetric property of W, we have

dx �Wdx ¼ dx �WTdx ¼ �dx �Wdx ¼ 0: (3.13.9)

Thus, Eq. (3.13.8) becomes

dx � D
Dt

dx ¼ dx �Ddx; (3.13.10)

and Eq. (3.13.7) leads to

ds
D dsð Þ
Dt

¼ dx �Ddx: (3.13.11)

With dx ¼ dsn, Eq. (3.13.11) can also be written:

1

ds

D dsð Þ
Dt

¼ n �Dn ¼ Dnn no sum on nð Þ: (3.13.12)

Equation (3.13.12) states that for amaterial element in the direction ofn, its rate of extension (i.e., its rate of change
of length per unit length) is given by Dnn (no sum on n). The rate of extension is known as stretching. In particular

D11 ¼ rate of extension for an element that is in the e1 direction,

D22 ¼ rate of extension for an element that is in the e2 direction,

D33 ¼ rate of extension for an element that is in the e3 direction.

We note that since vdt gives the infinitesimal displacement undergone by a particle during the time inter-

val dt, the interpretation just given can be inferred from those for the infinitesimal strain components. Thus

we obviously will have the following results (see also Prob. 3.46):

2D12 ¼ rate of decrease of angle (from p=2) of two elements in e1 and e2 directions,

2D13 ¼ rate of decrease of angle (from p=2) of two elements in e1 and e3 directions,

2D23 ¼ rate of decrease of angle (from p=2) of two elements in e2 and e3 directions.

These rates of decrease of angle are also known as the rates of shear, or shearing. Also, the first scalar invari-
ant of the rate of deformation tensor D gives the rate of change of volume per unit volume (see also

Prob. 3.47). That is,

D11 þ D22 þ D33 ¼ 1

dV

D

Dt
dV; (3.13.13)

or, in terms of velocity components, we have

1

dV

D

Dt
dV ¼ @ni

@xi
¼ div v: (3.13.14)

Since D is symmetric, we also have the result that there always exist three mutually perpendicular direc-

tions (eigenvectors of D) along which the stretchings (eigenvalues of D) include a maximum and a minimum

value among all different elements extending from a material point.

Example 3.13.1
Given the velocity field:

n1 ¼ kx2; n2 ¼ n3 ¼ 0: (i)
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(a) Find the rate of deformation tensor and spin tensor.

(b) Determine the rate of extension of the following material elements:

dxð1Þ ¼ ds1e1; dxð2Þ ¼ ds2e2 and dxð3Þ ¼ ðds=
ffiffiffi
5

p
Þðe1 þ 2e2Þ: (ii)

(c) Find the maximum and the minimum rate of extension.

Solution
(a) The matrix of the velocity gradient is

rv½ � ¼
0 k 0

0 0 0

0 0 0

2
64

3
75: (iii)

So the rate of deformation tensor and the spin tensor are

D½ � ¼
0 k=2 0

k=2 0 0

0 0 0

2
64

3
75 and W½ � ¼

0 k=2 0

�k=2 0 0

0 0 0

2
64

3
75: (iv)

(b) The material element dx 1ð Þ is currently in the e1 direction and therefore its rate of extension is D11 ¼ 0:

Similarly, the rate of extension of dx 2ð Þ is D22 ¼ 0: For the element dx 3ð Þ ¼ ds=
ffiffiffi
5

p� �
e1 þ 2e2ð Þ,

1

ds

D dsð Þ
Dt

¼ n �Dn ¼ 1

5
1 2 0½ �

0 k=2 0

k=2 0 0

0 0 0

2
64

3
75

1

2

0

2
64
3
75 ¼ 2

5
k: (v)

(c) From the characteristic equation

��D� lI
�� ¼ �l l2 � k2

4

� �
¼ 0; (vi)

we determine the eigenvalues of the tensor D as l1 ¼ 0; l2 ¼ k=2 and l3 ¼ �k=2. Thus, the maximum rate

of extension is k=2 and the minimum rate of extension is �k=2 (the minus sign indicates a maximum rate of

shortening). The eigenvectors n1 ¼
ffiffiffi
2

p
=2

� �
e1 þ e2ð Þ and n2 ¼

ffiffiffi
2

p
=2

� �
e1 � e2ð Þ give the directions of the

elements having the maximum and the minimum stretching, respectively.

3.14 THE SPIN TENSOR AND THE ANGULAR VELOCITY VECTOR
In Section 2.21 of Chapter 2, it was shown that an antisymmetric tensor W is equivalent to a vector v in the

sense that for any vector a

Wa ¼ v� a: (3.14.1)

The vector v is called the dual vector or axial vector of the tensor W and is related to the three nonzero

components of W by the relation:

v ¼ � W23e1 þW31e2 þW12e3ð Þ: (3.14.2)
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Thus, for the spin tensor W, we have

Wdx ¼ v� dx; (3.14.3)

and therefore,

D

Dt
dx ¼ ðrvÞdx ¼ ðDþWÞdx ¼ Ddxþv� dx: (3.14.4)

We have already seen in the previous section that W does not contribute to the rate of change of length of the

material vector dx. Thus, Eq. (3.14.3) shows that its effect on dx is simply to rotate it (without changing its

length) with an angular velocity v.

It should be noted, however, that the rate of deformation tensor D also contributes to the rate of change of

direction of dx as well, so that in general, most material vectors dx rotate with an angular velocity different

from v (while changing their lengths). Indeed, it can be proved that in general, only the three material vectors

that are in the principal directions of D do rotate with the angular velocity v (while changing their lengths;

see Prob. 3.48).

3.15 EQUATION OF CONSERVATION OF MASS
Having derived the expression for the rate of increase of volume for a particle in a continuum, we are in a

position to formulate an important principle in continuum mechanics: the principle of conservation of mass.
The principle states that if we follow an infinitesimal volume of material through its motion, its volume dV
and density r may change but its total mass rdV will remain unchanged. That is,

D

Dt
rdVð Þ ¼ 0; (3.15.1)

i.e.,

r
D

Dt
dVð Þ þ Dr

Dt
dV ¼ 0: (3.15.2)

Using Eq. (3.13.14), we obtain

r
@ni
@xi

þ Dr
Dt

¼ 0; (3.15.3)

or, in invariant form,

r div v þ Dr
Dt

¼ 0; (3.15.4)

where in the spatial description,

Dr
Dt

¼ @r
@t

þ v � rr: (3.15.5)

Equation (3.15.4) is the equation of conservation of mass, also known as the equation of continuity.
In Cartesian coordinates, Eq. (3.15.4) reads:

r
@n1
@x1

þ @n2
@x2

þ @n3
@x3

� �
þ @r

@t
þ n1

@r
@x1

þ n2
@r
@x2

þ n3
@r
@x3

¼ 0: (3.15.6)
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In cylindrical coordinates, it reads:

r
@nr
@r

þ 1

r

@ny
@y

þ nr
r
þ @nz

@z

� �
þ @r

@t
þ nr

@r
@r

þ ny
r

@r
@y

þ nz
@r
@z

¼ 0: (3.15.7)

In spherical coordinates, it reads:

r
@nr
@r

þ 1

r

@ny
@y

þ 2nr
r

þ 1

r sin y
@nf
@f

þ ny cot y
r

� �
þ @r

@t
þ nr

@r
@r

þ ny
r

@r
@y

þ nf
r sin y

@r
@f

¼ 0: (3.15.8)

For an incompressible material, the material derivative of the density is zero and the mass conservation

equation reduces to simply

div v ¼ 0: (3.15.9)

In rectangular Cartesian coordinates:

@n1
@x1

þ @n2
@x2

þ @n3
@x3

¼ 0: (3.15.10)

In cylindrical coordinates:

@nr
@r

þ 1

r

@ny
@y

þ nr
r
þ @nz

@z
¼ 0: (3.15.11)

In spherical coordinates:

@nr
@r

þ 1

r

@ny
@y

þ 2nr
r

þ 1

r sin y
@nf
@f

þ ny cot y
r

¼ 0: (3.15.12)

Example 3.15.1
For the velocity field of

ni ¼ kxi
1þ kt

;

find the density of a material particle as a function of time.

Solution
From the conservation of mass equation,

Dr
Dt

¼ �r
@ni
@xi

¼ �rk
dii

1þ kt
¼ � 3rk

1þ kt
;

thus, ðr
ro

dr
r

¼ �
ðt
o

3kdt

1þ kt
;

from which we obtain

r ¼ ro
1þ ktð Þ3

:
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3.16 COMPATIBILITY CONDITIONS FOR INFINITESIMAL STRAIN COMPONENTS
When any three displacement functions u1; u2 and u3 are given, one can always determine the six strain com-

ponents in any region where the partial derivatives
@ui
@Xj

exist. On the other hand, when the six strain compo-

nents E11; E22; E33; E12; E13; E23ð Þ are arbitrarily prescribed in some region, in general, there may not

exist three displacement functions u1; u2 and u3 satisfying the following six equations defining the strain-

displacement relationships.

@u1
@X1

¼ E11; (3.16.1)

@u2
@X2

¼ E22; (3.16.2)

@u3
@X3

¼ E33; (3.16.3)

1

2

@u1
@X2

þ @u2
@X1

� �
¼ E12; (3.16.4)

1

2

@u1
@X3

þ @u3
@X1

� �
¼ E13; (3.16.5)

1

2

@u2
@X3

þ @u3
@X2

� �
¼ E23: (3.16.6)

For example, if we let

E11 ¼ kX2
2; E22 ¼ E33 ¼ E12 ¼ E13 ¼ E23 ¼ 0; (i)

then, from Eq. (3.16.1),

@u1
@X1

¼ E11 ¼ kX2
2 and therefore; u1 ¼ kX1X

2
2 þ f X2; X3ð Þ; (ii)

and from Eq. (3.16.2),

@u2
@X2

¼ E22 ¼ 0 and therefore; u2 ¼ g X1; X3ð Þ; (iii)

where f and g are arbitrary integration functions. Now, since E12 ¼ 0, we must have, from Eq. (3.16.4),

@u1
@X2

þ @u2
@X1

¼ 0: (iv)

Using Eq. (ii) and Eq. (iii), we get from Eq. (iv)

2kX1X2 þ @f X2; X3ð Þ
@X2

þ @g X1; X3ð Þ
@X1

¼ 0: (v)

Since the second or third term of the preceding equation cannot have terms of the form X1X2, the preced-

ing equation can never be satisfied. In other words, there is no displacement field corresponding to this given

Eij. That is, the given six strain components are not compatible.
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We now state the following theorem: If Eij X1; X2; X3ð Þ are continuous functions having continuous

second partial derivatives in a simply connected region, then the necessary and sufficient conditions for the

existence of single-valued continuous functions u1; u2 and u3 satisfying the six equations Eq. (3.16.1) to

Eq. (3.16.6) are:

@2E11

@X2
2

þ @2E22

@X2
1

¼ 2
@2E12

@X1@X2

; (3.16.7)

@2E22

@X2
3

þ @2E33

@X2
2

¼ 2
@2E23

@X2@X3

; (3.16.8)

@2E33

@X2
1

þ @2E11

@X2
3

¼ 2
@2E31

@X3@X1

; (3.16.9)

@2E11

@X2@X3

¼ @

@X1

� @E23

@X1

þ @E31

@X2

þ @E12

@X3

� �
; (3.16.10)

@2E22

@X3@X1

¼ @

@X2

� @E31

@X2

þ @E12

@X3

þ @E23

@X1

� �
; (3.16.11)

@2E33

@X1@X2

¼ @

@X3

� @E12

@X3

þ @E23

@X1

þ @E31

@X2

� �
: (3.16.12)

The preceding six equations are known as the equations of compatibility (or integrability conditions). That
these conditions are necessary can be easily proved as follows: From

@u1
@X1

¼ E11 and
@u2
@X2

¼ E22;

we get

@2E11

@X2
2

¼ @3u1
@X2

2@X1

and
@2E22

@X2
1

¼ @3u2
@X2

1@X2

:

Now, since the left-hand side of each of the preceding two equations is, by postulate, continuous, the right-

hand side of each equation is continuous, and so the order of differentiation is immaterial, so that

@2E11

@X2
2

¼ @2

@X1@X2

@u1
@X2

� �
and

@2E22

@X2
1

¼ @2

@X1@X2

@u2
@X1

� �
:

Thus,

@2E11

@X2
2

þ @2E22

@X2
1

¼ @2

@X1@X2

@u1
@X2

� �
þ @2

@X1@X2

@u2
@X1

� �
¼ @2

@X1@X2

@u1
@X2

þ @u2
@X1

� �
¼ 2

@2E12

@X1@X2

:

The other five equations can be similarly established. The proof that the conditions are also sufficient

(under the conditions stated in the theorem) will be given in Appendix 3.1. In Example 3.16.1, we give an

instance where the conditions are not sufficient for a region which is not simply connected. A region of space

is said to be simply connected if every closed curve drawn in the region can be shrunk to a point, by continu-

ous deformation, without passing out of the boundaries of the region. For example, the solid prismatic bar

whose cross-section is shown in Figure 3.16-1(a) is simply connected whereas the prismatic tube represented

in Figure 3.16-1(b) is not simply connected.
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We note that since each term in all the compatibility conditions involves second partial derivatives with

respect to the coordinates, if the strain components are linear functions of coordinates, the compatibility con-
ditions will obviously be satisfied.

Example 3.16.1
Will the strain components obtained from the following displacement functions be compatible?

u1 ¼ X 3
1 ; u2 ¼ eX1 ; u3 ¼ sin X2:

Solution
The answer is yes. There is no need to check, because the displacement functions are given and therefore exist!

Example 3.16.2
Does the following strain field represent a compatible strain field?

E½ � ¼ k
2X1 X1 þ 2X2 0

X1 þ 2X2 2X1 0
0 0 2X3

2
4

3
5:

Solution
Since all strain components are linear functions of X1; X2; X3ð Þ, the compatibility equations are clearly satisfied. We

note that the given strain components are obviously continuous functions having continuous second derivatives (in

fact, continuous derivatives of all orders) in any bounded region. Thus, the existence of single-valued continuous dis-

placement field in any bounded simply connected region is ensured by the theorem stated previously. In fact, it can

be easily verified that

u1 ¼ k X 2
1 þ X 2

2

� 	
; u2 ¼ k 2X1X2 þ X 2

1

� 	
; u3 ¼ kX 2

3 :

Example 3.16.3
For the following strain field

E11 ¼ � X2

X 2
1 þ X 2

2

; E12 ¼ X1

2 X 2
1 þ X 2

2

� 	 ; E22 ¼ E33 ¼ E23 ¼ E13 ¼ 0; (i)

θ0
θ0

x1

x2

x1

x2

(b)(a)

FIGURE 3.16-1
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does there exist single-valued continuous displacement fields for the cylindrical body with the normal cross-section

shown in Figure 3.16-1(a)? Or for the body with the normal cross-section shown in Figure 3.16-1(b), where the origin

of the axes is inside the hole of the cross-section?

Solution
Of the six compatibility conditions, only the first one needs to be checked; the others are automatically satisfied.

Now,

@E11
@X2

¼ � X 2
1 þ X 2

2

� 	� X2 2X2ð Þ
X 2
1 þ X 2

2

� 	2 ¼ X 2
2 � X 2

1

X 2
1 þ X 2

2

� 	2 ; @E22
@X1

¼ 0; (ii)

and

2
@E12
@X1

¼ X 2
1 þ X 2

2

� 	� 2X 2
1

X 2
1 þ X 2

2

� 	2 ¼ X 2
2 � X 2

1

X 2
1 þ X 2

2

� 	2 ¼ @E11
@X2

: (iii)

Thus, the condition

@2E11

@X 2
2

þ @2E22

@X 2
1

¼ 2
@2E12
@X1@X2

; (iv)

is satisfied, and the existence of u1; u2; u3ð Þ is assured. In fact, it can be easily verified that for the given Eij ,

u1 ¼ arctan
X2
X1

; u2 ¼ 0; u3 ¼ 0 (v)

(to which, of course, any rigid body displacement field can be added). Now arctan X2=X1ð Þ is a multiple-valued

function, having infinitely many values corresponding to a point X1; X2; X3ð Þ. For example, for the point

X1; X2; X3ð Þ ¼ 1; 0; 0ð Þ, arctan X2=X1ð Þ ¼ 0; 2p; 4p, etc. It can be made a single-valued function by the restriction

yo 	 arctan
X2
X1

< yo þ 2p; (vi)

for any yo. For a simply connected region such as that shown in Figure 3.16-1(a), a yo can be chosen so that such a

restriction makes u1 ¼ arctan X2=X1ð Þ a single-valued continuous displacement for the region. But for the body

shown in Figure 3.16-1(b), the function u1 ¼ arctan X2=X1ð Þ, under the same restriction as in Eq. (vi), is discontinu-

ous along the line y ¼ yo in the body (in fact, u1 jumps by the value of 2p in crossing the line). Thus, for this so-called

doubly connected region, there does not exist a single-valued continuous u1 corresponding to the given Eij ; even

though the compatibility equations are satisfied.

3.17 COMPATIBILITY CONDITION FOR RATE OF DEFORMATION COMPONENTS
When any three velocity functions n1; n2 and v3 are given, one can always determine the six rates of defor-

mation components in any region where the partial derivatives @ni=@xj exist. On the other hand, when the

six components D11; D22; D33; D12; D13; D23ð Þ are arbitrarily prescribed in some region, in general, there

may not exist three velocity functions n1; n2 and n3, satisfying the following six equations defining the rate

of deformation-velocity relationships.
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@n1
@x1

¼ D11;
@n2
@x2

¼ D22;
@n3
@x3

¼ D33;

@n1
@x2

þ @n2
@x1

¼ 2D12;
@n2
@x3

þ @n3
@x2

¼ 2D23;
@n3
@x1

þ @n1
@x3

¼ 2D13:
(3.17.1)

The compatibility conditions for the rate of deformation components are similar to those of the infinitesi-

mal strain components, i.e.,

@2D11

@x22
þ @2D22

@x21
¼ 2

@2D12

@x1@x2
; etc:;

and

@2D11

@x2@x3
¼ @

@x1
� @D23

@x1
þ @D31

@x2
þ @D12

@x3

� �
; etc:

We note that if one deals directly with differentiable velocity functions ni x1; x2; x3; tð Þ, as is often the

case in fluid mechanics, the question of compatibility does not arise.

3.18 DEFORMATION GRADIENT
We recall that the general motion of a continuum is described by

x ¼ x X; tð Þ; (3.18.1)

where x is the spatial position at time t of a material particle with material coordinate X. A material element

dX at the reference configuration is transformed, through motion, into a material element dx at time t. The
relation between dX and dx is given by

dx ¼ xðXþ dX; tÞ � xðX; tÞ ¼ ðrxÞdX; (3.18.2)

i.e.,

dx ¼ FdX; (3.18.3)

where

F ¼ rx; (3.18.4)

denotes the gradient with respect to the material coordinate X of the function x X; tð Þ: It is a tensor known as

the deformation gradient tensor. In terms of the displacement vector u, where x ¼ Xþ u, we have

F ¼ Iþru: (3.18.5)

We note that physics requires that dx can be zero only if dX is zero. Thus, F�1 exists and

dX ¼ F�1dx: (3.18.6)

Also, physics does not allow for a reflection in deformation, so that Fe1 � Fe2 � Fe3 must have the same sign

as e1 � e2 � e3, which is positive.{ Since Fe1 � Fe2 � Fe3 ¼ det F (note: a � b� c ¼ determinant whose rows are

components of the vectors a; b and c), we have

det F > 0: (3.18.7)

{So long as e1; e2; e3f g is a right-handed basis.
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Example 3.18.1
Given the following motions in rectangular coordinates:

x1 ¼ X1 þ aX 2
1 t ; x2 ¼ X2 � k X2 þ X3ð Þt ; x3 ¼ X3 þ k X2 � X3ð Þt :

Obtain the deformation gradient at t ¼ 0 and at t ¼ 1=k.

Solution

½F� ¼ @xi
@Xj

� 

¼

1þ 2aX1t 0 0
0 1� kt �kt
0 kt 1� kt

2
4

3
5:

At t ¼ 0,

½F� ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 ¼ I½ �;

and at t ¼ 1=k,

F½ � ¼
1þ 2 a=kð ÞX1 0 0

0 0 �1
0 1 0

2
4

3
5:

3.19 LOCAL RIGID BODY MOTION
In Section 3.6, we discussed the case where the entire body undergoes rigid body displacements from the con-

figuration at a reference time to to that at a particular time t. For a body in general motion, however, it is pos-

sible that the body as a whole undergoes deformations while some (infinitesimally) small volumes of material

inside the body undergo rigid body motion. For example, for the motion given in the last example, at t ¼ 1=k
and X1 ¼ 0,

F½ � ¼
1 0 0

0 0 �1

0 1 0

2
4

3
5:

It is easy to verify that the preceding F is a rotation tensor R (i.e., FFT ¼ I and det F ¼ þ1). Thus, every

infinitesimal material volume with material coordinates 0; X2; X3ð Þ undergoes a rigid body displacement

from the reference position to the position at t ¼ 1=k.

3.20 FINITE DEFORMATION
Deformations at a material point X of a body are characterized by changes of distances between any pair of

material points within a small neighborhood of X. Since, through motion, a material element dX becomes

dx ¼ FdX, whatever deformation there may be at X is embodied in the deformation gradient. We have
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already seen that if F is a proper orthogonal tensor, there is no deformation at X. In the following, we first

consider the case where the deformation gradient F is a positive definite symmetric tensor before going to

the more general cases.

We shall use the notation U for a deformation gradient that is symmetric and positive definite (i.e., for any

real vector a, a �Ua 
 0, where a �Ua ¼ 0 if and only if a ¼ 0). Clearly the eigenvalues of such a tensor are

all positive. For such a deformation gradient, we write

dx ¼ UdX: (3.20.1)

In this case, the material within a small neighborhood of X is said to be in a state of pure stretch deformation

(from the reference configuration). Of course, Eq. (3.20.1) includes the special case where the motion is

homogeneous, i.e., x ¼ UX; U ¼ constant tensorð Þ, in which case, the entire body is in a state of pure

stretch.

Since U is real and symmetric, there always exist three mutually perpendicular directions with respect to

which the matrix of U is diagonal. Thus, if e1; e2; e3 are these principal directions, with l1; l2; l3 as their

eigenvalues, respectively, we have

U½ � ¼
l1 0 0

0 l2 0

0 0 l3

2
4

3
5

eif g

: (3.20.2)

Thus, for the element dX 1ð Þ ¼ dX1e1, Eq. (3.20.2) gives

dx 1ð Þ ¼ l1dX1e1 ¼ l1dX 1ð Þ: (3.20.3)

Similarly, for the elements dX 2ð Þ ¼ dX2e2 and dX 3ð Þ ¼ dX3e3, we have

dx 2ð Þ ¼ l2dX 2ð Þ; (3.20.4)

and

dx 3ð Þ ¼ l3dX 3ð Þ: (3.20.5)

We see that along each of these directions, the deformed element is in the same direction as the unde-

formed element. If the eigenvalues are distinct, these will be the only elements that do not change their direc-

tions. The ratio of the deformed length to the original length is called the stretch, i.e.,

Stretch ¼ jdxj
jdXj : (3.20.6)

Thus, the eigenvalues of U are the principal stretches; they therefore include the maximum and the mini-

mum stretches.

Example 3.20.1
Given that at time t

x1 ¼ 3X1; x2 ¼ 4X2; x3 ¼ X3: (i)

Referring to Figure 3.20-1, find the stretches for the following material lines: (a) OP, (b) OQ, and (c) OB.
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Solution
The matrix of the deformation gradient for the given motion is

F½ � ¼
3 0 0

0 4 0

0 0 1

2
664

3
775; (ii)

which is a symmetric and positive definite matrix and which is independent of Xi (i.e., the same for all material points).

Thus, the given deformation is a homogeneous pure stretch deformation. The eigenvectors are obviously e1; e2; e3
with corresponding eigenvalues 3, 4, and 1. Thus:

(a) At the deformed state, the line OP triples its original length and remains parallel to the x1� axis; stretch

¼ l1 ¼ 3.

(b) At the deformed state, the line OQ quadruples its original length and remains parallel to the x2� axis; stretch

¼ l2 ¼ 4. This is the maximum stretch for the given motion.

(c) For the material line OB,

dX ¼ dS
e1 þ e2ffiffiffi

2
p

� �
: (iii)

Its deformed vector is dx ¼ FdX:

dx½ � ¼ dSffiffiffi
2

p
3 0 0

0 4 0

0 0 1

2
664

3
775

1

1

0

2
664
3
775 ¼ dSffiffiffi

2
p

3

4

0

2
664
3
775; (iv)

i.e.,

dx ¼ dSffiffiffi
2

p 3e1 þ 4e2ð Þ: (v)

Q

Q �
B�

B

O P�

3

5

4

1

1

x1

x2

P

FIGURE 3.20-1
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Thus, for OB, the stretch is

jdxj
jdXj ¼

5dS=
ffiffiffi
2

p� �
dS

¼ 5

1:414
¼ 3:54: (vi)

Before deformation, the material line OB makes an angle of 45� with the x1� axis. In the deformed state, from

Eq. (v), we see that it makes an angle of tan�1 4=3ð Þ. The preceding results are easily confirmed by the geometry

shown in Figure 3.20-1.

Example 3.20.2
For a material sphere with center at X and described by jdXj ¼ e, under a symmetric deformation gradient U, what

does the sphere become after the deformation?

Solution
Let e1,e2,e3 be the principal directions for U. Then, with respect to e1; e2; e3f g; a material element dX can be written

dX ¼ dX1e1 þ dX2e2 þ dX3e3: (3.20.7)

In the deformed state, this material vector becomes

dx ¼ dx1e1 þ dx2e2 þ dx3e3: (3.20.8)

U is diagonal with diagonal elements l1; l2 and l3; therefore, dx ¼ UdX gives

dx1 ¼ l1dX1; dx2 ¼ l2dX2; dx3 ¼ l3dX3: (3.20.9)

Thus, the sphere

dX1ð Þ2 þ dX2ð Þ2 þ dX3ð Þ2 ¼ e2; (3.20.10)

becomes

dx1
l1

� �2

þ dx2
l2

� �2

þ dx3
l3

� �2

¼ e2: (3.20.11)

This is the equation of an ellipsoid with its axis parallel to the eigenvectors of U (see Figure 3.20-2).

B Q d X

X
x

P

B� Q�

P�
A�

A

dx

0

FIGURE 3.20-2
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3.21 POLAR DECOMPOSITION THEOREM
In the previous two sections, we considered two special deformation gradients F: a proper orthogonal F
(denoted by R), describing rigid body displacements, and a symmetric positive definite F (denoted by U),
describing pure stretch deformation tensor. It can be shown that for any real tensor F with a nonzero determi-

nant (i.e., F�1 exists), one can always decompose it into the product of a proper orthogonal tensor and a sym-

metric tensor. That is,

F ¼ RU; (3.21.1)

or

F ¼ VR: (3.21.2)

In the preceding two equations, U and V are positive definite symmetric tensors, known as the right
stretch tensor and left stretch tensor, respectively, and R (the same in both equations) is a proper orthogonal

tensor. Eqs. (3.21.1) and (3.21.2) are known as the polar decomposition theorem. The decomposition is

unique in that there is only one R, one U, and one V satisfying the preceding equations. The proof of this

theorem consists of two steps: (1) Establishing a procedure that always enables one to obtain a positive defi-

nite symmetric tensor U and a proper orthogonal tensor R (or a positive definite symmetric tensor V and a

proper orthogonal tensor R) that satisfy Eq. (3.21.1) [or Eq. (3.21.2)] and (2) proving that the U, V, and R
so obtained are unique.

The procedures for obtaining the tensors U, V, and R for a given F will be demonstrated in Example

3.22.1. The proof of the uniqueness of the decompositions will be given in Example 3.22.2. Before doing that,

we shall first discuss the geometric interpretations of the preceding two equations.

For any material element dX at X, the deformation gradient transforms it (i.e., dX) into a vector dx:

dx ¼ FdX ¼ RUdX: (3.21.3)

Now, UdX describes a pure stretch deformation (Section 3.20) in which there are three mutually perpen-

dicular directions (the eigenvectors of U) along each of which the material element dX stretches (i.e.,

becomes longer or shorter), but does not rotate. Figure 3.20-2 of Example 3.20.2 depicts the effect of U on

a spherical volume jdXj ¼ constant. Now, in Figure 3.21-1, under U, the spherical volume at X becomes

an ellipsoid at x, depicted in dashed lines. The effect of R in R UdXð Þ is then simply to rotate this (dashed

line) ellipsoid through a rigid body rotation to its final configuration, depicted as a (solid line) ellipsoid

RUd X

UdXA

QB

P

x
X

dX

B�

P�

Q� A�

a

b q

FIGURE 3.21-1
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in the same figure (Figure 3.21-1). Similarly, the effect of the same deformation gradient can be viewed as a

rigid body rotation (described by R) of the sphere followed by a pure stretch of the sphere resulting in the

same ellipsoid as described in the last paragraph.

From the polar decomposition, F ¼ RU ¼ VR, it follows immediately that

U ¼ RTVR: (3.21.4)

While geometrically speaking, it makes no difference whether we view the motion as being a rotation fol-

lowed by a pure stretch or as a pure stretch followed by a rotation, they do lead to two different stretch tensors

(U or V) whose components have different geometrical meanings (to be discussed in the following several

sections). Furthermore, based on these two stretch tensors, two commonly used deformation tensors are

defined (see Sections 3.23 and 3.25), the so-called right Cauchy-Green tensor Cð� U2Þ and the left

Cauchy-Green tensor Bð� V2Þ. In Chapter 5, we show that the tensor B is objective (independent of

observer), whereas the tensor C is nonobjective. This important difference is relevant to the formulation

of the constitutive equations for a continuum under large deformation (see Part C, Chapter 5).

3.22 CALCULATION OF STRETCH AND ROTATION TENSORS FROM THE
DEFORMATION GRADIENT
Using Eq. (3.21.1), we have

FTF ¼ RUð ÞT RUð Þ ¼ UTRTRU ¼ UTU ¼ UU; (3.22.1)

that is,

U2 ¼ FTF: (3.22.2)

For a given F, Eq. (3.22.2) allows us to calculate a unique U, which is positive definite (see example that

follows). Once U is obtained, R can be obtained from the equation

R ¼ FU�1: (3.22.3)

We now demonstrate that the R so obtained is indeed an orthogonal tensor. We have

RTR ¼ ðFU�1ÞTðFU�1Þ ¼ ðU�1ÞTFTFU�1 ¼ U�1UUU�1 ¼ I: (3.22.4)

The left stretch tensor V can be obtained from

V ¼ FRT ¼ RURT: (3.22.5)

Example 3.22.1
Given

x1 ¼ X1; x2 ¼ �3X3; x3 ¼ 2X2:

Find (a) the deformation gradient F, (b) the right stretch tensor U, (c) the rotation tensor R, and (d) the left stretch

tensor V.
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Solution

(a) F½ � ¼ @xi
@Xj

� 

¼

1 0 0

0 0 �3

0 2 0

2
64

3
75;

(b) ½U2� ¼ ½F�T½F� ¼
1 0 0

0 0 2

0 �3 0

2
64

3
75

1 0 0

0 0 �3

0 2 0

2
64

3
75 ¼

1 0 0

0 4 0

0 0 9

2
64

3
75:

There is only one positive definite root for the preceding equation, which is (see Appendix 3.3).

U½ � ¼
1 0 0

0 2 0

0 0 3

2
64

3
75:

(c) R½ � ¼ F½ � U�1
h i

¼
1 0 0

0 0 �3

0 2 0

2
64

3
75

1 0 0

0 1=2 0

0 0 1=3

2
64

3
75 ¼

1 0 0

0 0 �1

0 1 0

2
64

3
75:

(d) V½ � ¼ F½ � RT
h i

¼
1 0 0

0 0 �3

0 2 0

2
64

3
75

1 0 0

0 0 1

0 �1 0

2
64

3
75 ¼

1 0 0

0 3 0

0 0 2

2
64

3
75;

or, using Eq. (3.22.5),

V½ � ¼ R½ � U½ � RT
h i

¼
1 0 0

0 0 �1

0 1 0

2
64

3
75

1 0 0

0 2 0

0 0 3

2
64

3
75

1 0 0

0 0 1

0 �1 0

2
64

3
75 ¼

1 0 0

0 3 0

0 0 2

2
64

3
75:

In the preceding example, the calculation of [U] is simple because ½FTF� happens to be diagonal. If ½FTF�
is not diagonal, one can first diagonalize it and obtain the one positive definite diagonal matrix [U], with
respect to the principal axes of ½FTF�. After that, one can then use the transformation law discussed in Chapter

2 to obtain the matrix with respect to the original basis (see Example 3.23.1).

Example 3.22.2
Show that (a) if F ¼ R1U1 ¼ R2U2, then U1 ¼ U2 and R1 ¼ R2 and (b) if F ¼ RU ¼ VR 0, then R ¼ R 0. That is, the
decomposition of F is unique.
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Solution
(a) Assuming that there are two proper orthogonal tensors R1 and R2 and two positive definite symmetric tensors

U1 and U2 such that

F ¼ R1U1 ¼ R2U2: (i)

Then ðR1U1ÞT ¼ ðR2U2ÞT so that

U1ðR1ÞT ¼ U2ðR2ÞT: (ii)

From Eq. (i) and Eq. (ii), we have

U1 R1ð ÞTR1U1 ¼ U2 R2ð ÞTR2U2:

That is,

U2
1 ¼ U2

2: (iii)

Thus, U1 and U2 are the same positive definite tensors (see Appendix 3.3). That is,

U1 ¼ U2 ¼ U:

Now, from R1U ¼ R2U, we have ðR1 � R2ÞU ¼ 0, where U is positive definite (all eigenvalues li > 0),

therefore, R1 � R2 ¼ 0 (see Prob. 3.74). That is,

R1 ¼ R2 ¼ R:

(b) Since

F ¼ VR 0 ¼ R 0ðR 0Þ�1VR 0 ¼ R 0fðR 0Þ�1VR 0g ¼ RU;

therefore, from the results of (a)

R 0 ¼ R;

and

U ¼ R�1VR ¼ RTVR:

From the decomposition theorem, we see that what is responsible for the deformation of a volume of mate-

rial in a continuum in general motion is the stretch tensor, either the right stretch tensor U or the left stretch
tensor V. Obviously, U2ð� CÞ and V2ð� BÞ also characterize the deformation, as do many other tensors related

to them, such as the Lagrangean strain tensor E� (Section 3.24) and the Eulerian strain tensor e� (Section 3.26).

In the following we discuss these tensors in detail, including the geometrical meanings of their components. It is

useful to be familiar with all these tensors not only because they appear in many works on continuum mechanics

but also because one particular tensor may be more suitable to a particular problem than others. For example,

the tensor E� is more suitable for problems formulated in terms of the material coordinates, whereas e� is more

suitable in terms of the spatial coordinates. As another example, the equation T ¼ aB, where T is the Cauchy

stress tensor (to be defined in Chapter 4) and a is a constant, is an acceptable stress-deformation relationship,
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whereas T ¼ aC is not because the tensor B is independent of observers whereas the tensor C is not, and all

laws of mechanics must be independent of observers (see Part C, Chapter 5).

In the following sections, we discuss those tensors that have been commonly used to describe finite defor-

mations for a continuum.

3.23 RIGHT CAUCHY-GREEN DEFORMATION TENSOR
Let

C ¼ U2; (3.23.1)

where U is the right stretch tensor. The tensor C is known as the right Cauchy-Green deformation tensor (also
known as Green’s deformation tensor). We note that if there is no deformation, U ¼ C ¼ I. From Eq.

(3.22.2), we have

C ¼ FTF: (3.23.2)

The components of C have very simple geometric meanings, which we describe here.

Consider two material elements dX 1ð Þ and dX 2ð Þ, which deform into dx 1ð Þ ¼ FdX 1ð Þ and dx 2ð Þ ¼ FdX 2ð Þ.
We have

dx 1ð Þ � dx 2ð Þ ¼ FdX 1ð Þ �FdX 2ð Þ ¼ dX 1ð Þ �FTFdX 2ð Þ; (3.23.3)

i.e.,

dx 1ð Þ � dx 2ð Þ ¼ dX 1ð Þ �CdX 2ð Þ: (3.23.4)

Thus, if dx ¼ ds1n is the deformed vector of the material element dX ¼ dS1e1, then letting

dX 1ð Þ ¼ dX 2ð Þ ¼ dX ¼ dS1e1 in Eq. (3.23.4), we get

ds1ð Þ2 ¼ dS1ð Þ2e1 �Ce1 for dX 1ð Þ ¼ dS1e1: (3.23.5)

That is

C11 ¼ ds1
dS1

� �2

for a material element dX ¼ dS1e1: (3.23.6)

Similarly,

C22 ¼ ds2
dS2

� �2

for a material element dX ¼ dS2e2; (3.23.7)

and

C33 ¼ ds3
dS3

� �2

for a material element dX ¼ dS3e3: (3.23.8)

It is important to note that, in general, U11 6¼
ffiffiffiffiffiffiffi
C11

p
;U22 6¼

ffiffiffiffiffiffiffi
C22

p
;U33 6¼

ffiffiffiffiffiffiffi
C33

p
, etc., so that the stretches

are in general not given by the diagonal elements of U½ �, except when it is a diagonal matrix.

Next, consider two material elements dX 1ð Þ ¼ dS1e1 and dX 2ð Þ ¼ dS2e2, which deform into dx 1ð Þ ¼ ds1m
and dx 2ð Þ ¼ ds2n, where m and n are unit vectors having an angle of b between them. Then Eq. (3.23.4)

gives
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ds1ds2 cos b ¼ dS1dS2e1 �Ce2; (3.23.9)

that is,

C12 ¼ ds1ds2
dS1dS2

cos ðdx 1ð Þ; dx 2ð ÞÞ; for dX 1ð Þ ¼ dS1e1 and dX 2ð Þ ¼ dS2e2: (3.23.10)

Similarly,

C13 ¼ ds1ds3
dS1dS3

cos ðdx 1ð Þ; dx 3ð ÞÞ; for dX 1ð Þ ¼ dS1e1 and dX 3ð Þ ¼ dS3e3 (3.23.11)

and

C23 ¼ ds2ds3
dS2dS3

cos ðdx 2ð Þ; dx 3ð ÞÞ; for dX 2ð Þ ¼ dS2e2 and dX 3ð Þ ¼ dS3e3: (3.23.12)

Example 3.23.1
Given

x1 ¼ X1 þ 2X2; x2 ¼ X2; x3 ¼ X3: (i)

(a) Obtain the right Cauchy-Green deformation tensor C.

(b) Obtain the principal values of C and the corresponding principal directions.

(c) Obtain the matrices of U and U�1 with respect to the principal directions.

(d) Obtain the matrices U and U�1 with respect to the feig basis.

(e) Obtain the matrix of R with respect to the feig basis.

Solution
(a) From (i), we obtain

F½ � ¼
1 2 0

0 1 0

0 0 1

2
64

3
75: (ii)

C½ � ¼ F½ �T F½ � ¼
1 0 0

2 1 0

0 0 1

2
64

3
75

1 2 0

0 1 0

0 0 1

2
64

3
75 ¼

1 2 0

2 5 0

0 0 1

2
64

3
75: (iii)

The eigenvalues of C and their corresponding eigenvectors are easily found to be

l1 ¼ 5:828; n1 ¼ 1

2:613
ðe1 þ 2:414e2Þ ¼ 0:3827e1 þ 0:9238e2;

l2 ¼ 0:1716; n2 ¼ 1

1:0824
ðe1 � 0:4142e2Þ ¼ 0:9238e1 � 0:3827e2; (iv)

l3 ¼ 1; n3 ¼ e3:
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The matrix of C with respect to the principal axes of C is

C½ � ¼
5:828 0 0

0 0:1716 0

0 0 1

2
64

3
75: (v)

(c) The matrix of U and U�1 with respect to the principal axes of C is

U½ �ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
5:828

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1716

p
0

0 0 1

2
64

3
75 ¼

2:414 0 0

0 0:4142 0

0 0 1

2
64

3
75; (vi)

½U�1�ni ¼
1=2:414 0 0

0 1=0:4142 0

0 0 1

2
64

3
75 ¼

0:4142 0 0

0 2:4142 0

0 0 1

2
64

3
75: (vii)

(d) The matrices of U and U�1 with respect to the feig basis are given by:

U½ �ei ¼
0:3827 0:9238 0

0:9238 �0:3827 0

0 0 1

2
64

3
75

2:414 0 0

0 0:4142 0

0 0 1

2
64

3
75

0:3827 0:9238 0

0:9238 �0:3827 0

0 0 1

2
64

3
75

¼
0:7070 0:7070 0

0:7070 2:121 0

0 0 1

2
64

3
75;

(viii)

and

U�1
h i

ei
¼

0:3827 0:9238 0

0:9238 �0:3827 0

0 0 1

2
64

3
75

0:4142 0 0

0 2:414 0

0 0 1

2
64

3
75

0:3827 0:9238 0

0:9238 �0:3827 0

0 0 1

2
64

3
75 (ix)

¼
2:121 �0:7070 0

�0:7070 0:7070 0

0 0 1

2
4

3
5:

(e) R½ �ei ¼ ½F�½U�1� ¼
1 2 0

0 1 0

0 0 1

2
64

3
75

2:121 �0:7070 0

�0:7070 0:7070 0

0 0 1

2
64

3
75 ¼

0:707 0:707 0

�0:707 0:707 0

0 0 1

2
64

3
75: (x)

Example 3.23.2
Consider the simple shear deformation given by (see Figure 3.23-1)

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3:

(a) What is the stretch for an element that was in the direction of e1?

(b) What is the stretch for an element that was in the direction of e2?
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(c) What is the stretch for an element that was in the direction of e1 þ e2?

(d) In the deformed configuration, what is the angle between the two elements that were in the directions of e1 and e2?

Solution

F½ � ¼
1 k 0

0 1 0

0 0 1

2
64

3
75; C½ � ¼ F½ �T F½ � ¼

1 0 0

k 1 0

0 0 1

2
64

3
75

1 k 0

0 1 0

0 0 1

2
64

3
75 ¼

1 k 0

k 1þ k2 0

0 0 1

2
64

3
75

(a) For dX 1ð Þ ¼ dS1e1; ds1=dS1 ¼ 1.

(b) For dX 2ð Þ ¼ dS2e2; ds2=dS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
.

(c) For dX ¼ dS=
ffiffiffi
2

p� �
e1 þ e2ð Þ ¼ dSe 0

1.

ds

dS

� �2

¼ C 0
11 ¼ 1

2
½ 1; 1; 0 �

1 k 0
k 1þ k2 0
0 0 1

2
4

3
5 1

1
0

2
4
3
5 ¼ 1þ k þ k2

2
; thus;

ds

dS
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k þ k2

2

r

(d) For dX 1ð Þ ¼ dS1e1 and dX 2ð Þ ¼ dS2e2, from Eq. (3.23.10) and the results in (a) and (b),

cos dx 1ð Þ; dx 2ð Þ
� �

¼ dS1
ds1

dS2
ds2

C12 ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p :

Example 3.23.3
Show that (a) the eigenvectors of U and C are the same and (b) an element that was in the principal direction n of C

becomes, in the deformed state, an element in the direction of Rn.

Solution

(a) Un ¼ ln; therefore, U2n ¼ lUn ¼ l2n, i.e.,

Cn ¼ l2n:

Thus, n is also an eigenvector of C with l2 as its eigenvalue.

O

1

1

B C

x2

x1

kk

B� C�

A

FIGURE 3.23-1
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(b) If dX ¼ dSn, where n is a principal direction of U and C, then UdX ¼ dSUn ¼ dSln so that

dx ¼ FdX ¼ RUdX ¼ ldS Rn).ð
That is, the deformed vector is in the direction of Rn.

3.24 LAGRANGIAN STRAIN TENSOR
Let

E� ¼ 1

2
ðC� IÞ; (3.24.1)

where C is the right Cauchy-Green deformation tensor and I is the identity tensor. The tensor E� is known as

the Lagrangian finite strain tensor. We note that if there is no deformation, C ¼ I and E� ¼ 0.

From Eq. (3.23.4), we have

dx 1ð Þ � dx 2ð Þ � dX 1ð Þ � dX 2ð Þ ¼ dX 1ð Þ � C� Ið ÞdX 2ð Þ; (3.24.2)

i.e.,

dx 1ð Þ � dx 2ð Þ � dX 1ð Þ � dX 2ð Þ ¼ 2dX 1ð Þ �E�dX 2ð Þ: (3.24.3)

For a material element dX ¼ dS1e1 deforming into dx ¼ ds1n, where n is a unit vector, Eq. (3.24.3), with

dX 1ð Þ ¼ dX 2ð Þ ¼ dX ¼ dS1e1 and dx 1ð Þ ¼ dx 2ð Þ ¼ dx ¼ ds1n, gives

ds21 � dS21 ¼ 2dS21e1 �E�e1: (3.24.4)

Thus,

E�
11 ¼

ds21 � dS21
2dS21

for dX ¼ dS1e1 deforming into dx ¼ ds1n: (3.24.5)

Similarly,

E�
22 ¼

ds22 � dS22
2dS22

for dX ¼ dS2e2 deforming into dx ¼ ds2m; (3.24.6)

and

E�
33 ¼

ds23 � dS23
2dS23

for dX ¼ dS3e3 deforming into dx ¼ ds3q; (3.24.7)

where n;m and q are unit vectors, not mutually perpendicular in general. They are mutually perpendicular if

fe1; e2; e3g are eigenvectors of E�.
By considering two material elements dX 1ð Þ ¼ dS1e1 and dX 2ð Þ ¼ dS2e2, deforming into dx 1ð Þ ¼ ds1n and

dx 2ð Þ ¼ ds2m, then Eq. (3.24.3) gives

ds1ds2 cos ðdxð1Þ; dxð2ÞÞ ¼ 2dS1dS2e1 �E�e2: (3.24.8)
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That is,

2E�
12 ¼

ds1ds2
dS1dS2

cosðn;mÞ: (3.24.9)

The meanings for 2E�
13 and 2E�

23 can be established in a similar manner.

We can also express the components of E� in terms of the displacement components. From C ¼ FTF and

F ¼ Iþru, Eq. (3.24.1) leads to

E� ¼ 1

2
ðFTF� IÞ ¼ 1

2
ruþ ruð ÞT
h i

þ 1

2
ruð ÞTðruÞ: (3.24.10)

In indicial notation, we have

E�
ij ¼

1

2

@ui
@Xj

þ @uj
@Xi

� �
þ 1

2

@um
@Xi

@um
@Xj

; (3.24.11)

and in long form,

E�
11 ¼

@u1
@X1

þ 1

2

@u1
@X1

� �2

þ @u2
@X1

� �2

þ @u3
@X1

� �2
" #

; (3.24.12)

E�
12 ¼

1

2

@u1
@X2

þ @u2
@X1

� �
þ 1

2

@u1
@X1

� �
@u1
@X2

� �
þ @u2

@X1

� �
@u2
@X2

� �
þ @u3

@X1

� �
@u3
@X2

� �� 

; (3.24.13)

and so on. We note that for small values of displacement gradients, these equations reduce to those of the

infinitesimal strain tensor.

Example 3.24.1
For the simple shear deformation

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3

(a) Compute the Lagrangian strain tensor E�.
(b) Referring to Figure 3.24-1, by a simple geometric consideration, find the deformed length of the element OB.

(c) Compare the results of (b) with E �
22.

O

1

1

B C

x2

x1

kk

B� C�

A

FIGURE 3.24-1
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Solution
(a) Using the ½C� obtained in Example 3.23.2, we easily obtain from the equation 2E� ¼ C� I

E�½ � ¼ 1

2

1 k 0

k 1þ k2 0

0 0 1

2
664

3
775� ½I�

0
BB@

1
CCA ¼

0 k=2 0

k=2 k2=2 0

0 0 0

2
664

3
775:

(b) From Figure 3.24-1, we see from geometry that OB 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
.

(c) We have E �
22 ¼ k2=2; thus,

Dsð Þ2 � DSð Þ2
2 DSð Þ2

¼ k2

2
:

Thus, with DS ¼ OB ¼ 1 and Ds ¼ OB 0, we have

OB 0 ¼ Dsð Þ ¼ DSð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
:

This is the same result as in (b). We note that if k is very small, then OB 0 ¼ OB to the first order of k.

Example 3.24.2
Consider the displacement components corresponding to a uniaxial strain field:

u1 ¼ kX1; u2 ¼ u3 ¼ 0: (i)

(a) Calculate both the Lagrangian strain tensor E� and the infinitesimal strain tensor E.

(b) Use the finite strain component E �
11 and the infinitesimal strain component E11 to calculate Ds=DSð Þ for the

element DX ¼ DSe1.
(c) For an element DX ¼ DSðe1 þ e2Þ=

ffiffiffi
2

p
, calculate ðDs=DSÞ from both the finite strain tensor E� and the infin-

itesimal strain tensor E.

0

C

A

1

1

k

x2

x1
A�

B�B

FIGURE 3.24-2
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Solution

(a) ½E� ¼ ½ðruÞS � ¼
k 0 0

0 0 0

0 0 0

2
4

3
5; and ½E�� ¼ ½ðruÞS � þ 1

2
½ru�T½ru� ¼

k þ ðk2=2Þ 0 0

0 0 0

0 0 0

2
64

3
75: (ii)

(b) Based on E �
11 ¼ k þ k2

2
, we have

Dsð Þ2 � DSð Þ2
2 DSð Þ2

¼ k þ k2

2
; therefore, Dsð Þ2 ¼ DSð Þ2 1þ 2k þ k2

� 	
.

That is,

Ds ¼ DS 1þ kð Þ: (iii)

On the other hand, based on E11 ¼ k;
Ds � DS

DS
¼ k, therefore, in this case, the infinitesimal theory also gives

Ds ¼ DS 1þ kð Þ: (iv)

This is confirmed by the geometry shown in Figure 3.24-2.

(c) Let e 0
1 ¼ 1ffiffiffi

2
p e1 þ e2ð Þ; then

E 0�
11 ¼ 1

2
1; 1; 0

 � k þ k2=2 0 0

0 0 0

0 0 0

2
64

3
75 1

1

0

2
4
3
5 ¼ k

2
þ k2

4
¼ Dsð Þ2 � DSð Þ2

2 DSð Þ2
: (v)

Thus,

Ds ¼ DS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k þ k2=2

q
: (vi)

This result is easily confirmed by the geometry in Figure 3.24-2, where we see that the diagonal length

of OB changes from DS ¼
ffiffiffi
2

p
to Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kð Þ2 þ 1

q
¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k þ k2=2

p
(length of OB 0) so that Ds ¼

DS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k þ k2=2

p
, as in the previous equation.

On the other hand, using the infinitesimal tensor, we have E 0
11 ¼ e 0

1 �Ee 0
1 ¼ k=2, so that

Ds ¼ 1þ k=2ð Þ½ �DS: (vii)

We note that, for small k,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k þ k2=2

p
� 1þ ð1=2Þ k þ k2=2

� 	þ . . . � 1þ ðk=2Þ so that Eq. (vi) reduces to

Eq. (vii).

3.25 LEFT CAUCHY-GREEN DEFORMATION TENSOR
Let

B ¼ V2; (3.25.1)

where V is the left stretch tensor. The tensor B is known as the left Cauchy-Green deformation tensor (also
known as Finger deformation tensor). We note that if there is no deformation, V ¼ B ¼ U ¼ C ¼ I.

From F ¼ VR [Eq. (3.21.2)], it can be easily verified that

B ¼ FFT: (3.25.2)
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Substituting F ¼ RU in Eq. (3.25.2), we obtain the relations between B and C as follows:

B ¼ RCRT and C ¼ RTBR: (3.25.3)

We also note that if n is an eigenvector of C with eigenvalue l, then Rn is an eigenvector of B with the same

eigenvalue l.
The components of B have very simple geometric meanings, which we describe here.

Consider a material element dX ¼ dSn, where n ¼ RTe1, R being the rotation tensor, associated with

the deformation gradient F, which deforms dX ¼ dSn into dx ¼ dsm, where m is a unit vector. From

Eq. (3.23.4),

ds2 ¼ dS2n �Cn ¼ dS2RTe1 �CRTe1 ¼ dS2e1 �RCRTe1; (3.25.4)

that is,

ds2 ¼ dS2e1 �Be1 for dX ¼ dS RTe1
� 	

: (3.25.5)

Thus,

B11 ¼ ds1
dS1

� �2

for a material element dX ¼ dS1 RTe1
� 	

: (3.25.6)

Similarly,

B22 ¼ ds2
dS2

� �2

for a material element dX ¼ dS2 RTe2
� 	

; (3.25.7)

and

B33 ¼ ds3
dS3

� �2

for a material element dX ¼ dS3 RTe3
� 	

: (3.25.8)

Next, consider two material elements dX 1ð Þ ¼ dS1R
Te1 and dX 2ð Þ ¼ dS2R

Te2, which deform into

dx 1ð Þ ¼ ds1m and dx 2ð Þ ¼ ds2n, where m and n are unit vectors having an angle of b between them; then

Eq. (3.23.4) gives

ds1ds2 cos b ¼ dS1dS2R
Te1 �C RTe2

� 	 ¼ dS1dS2e1 �RCRTe2 ¼ dS1dS2e1 �Be2; (3.25.9)

that is,

B12 ¼ ds1ds2
dS1dS2

cos dx 1ð Þ; dx 2ð Þ
� �

for dX 1ð Þ ¼ dS1 RTe1
� 	

and dX 2ð Þ ¼ dS2 RTe2
� 	

: (3.25.10)

Similarly,

B13 ¼ ds1ds3
dS1dS3

cos dx 1ð Þ; dx 3ð Þ
� �

for dX 1ð Þ ¼ dS1 RTe1
� 	

and dX 3ð Þ ¼ dS3 RTe3
� 	

; (3.25.11)

and

B23 ¼ ds2ds3
dS2dS3

cos dx 2ð Þ; dx 3ð Þ
� �

for dX 2ð Þ ¼ dS2 RTe2
� 	

and dX 3ð Þ ¼ dS3 RTe3
� 	

: (3.25.12)
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We can also express the components of B in terms of the displacement components. Using Eq. (3.18.5),

we have

B ¼ FFT ¼ Iþruð Þ Iþruð ÞT ¼ Iþruþ ruð ÞT þ ruð Þ ruð ÞT: (3.25.13)

In indicial notation, we have

Bij ¼ dij þ @ui
@Xj

þ @uj
@Xi

� �
þ @ui

@Xm

� �
@uj
@Xm

� �
: (3.25.14)

We note that for small displacement gradients,
1

2
Bij � dij
� 	 ¼ Eij:

Example 3.25.1
For the simple shear deformation

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3: (3.25.15)

(a) Obtain the Cauchy-Green deformation tensor C and B.

(b) Use the relation B ¼ RCRT to verify that for this simple shear deformation:

½R� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p 1 k=2 0

�k=2 1 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75: (3.25.16)

(c) Verify that

½U� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p 1 k=2 0

k=2 1þ k2=2 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75:

(d) Calculate RTe1 and RTe2:

(e) Sketch both the undeformed and the deformed position for the element RTe1 and the element RTe2: Calculate

the stretches for these two elements from the geometry in the figure and compare it with B11 and B22:

Solution
(a) We have

F½ � ¼
1 k 0

0 1 0

0 0 1

2
4

3
5: (3.25.17)

Thus,

½C� ¼ FTF
h i

¼
1 0 0

k 1 0

0 0 1

2
4

3
5 1 k 0

0 1 0

0 0 1

2
4

3
5 ¼

1 k 0

k 1þ k2 0

0 0 1

2
4

3
5; (3.25.18)

½B� ¼ FFT
h i

¼
1 k 0

0 1 0

0 0 1

2
64

3
75

1 0 0

k 1 0

0 0 1

2
64

3
75 ¼

1þ k2 k 0

k 1 0

0 0 1

2
64

3
75: (3.25.19)
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(b) Using Eq. (3.25.16), we have

R½ � C½ � R½ �T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p

�
1 k=2 0

�k=2 1 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75

1 k 0

k 1þ k2 0

0 0 1

2
64

3
75

1 �k=2 0

k=2 1 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75

¼ 1

1þ k2=4ð Þ
1þ k2
� 	

1þ k2=4
� 	

k 1þ k2=4
� 	

0

k 1þ k2=4
� 	

1þ k2=4
� 	

0

0 0 1þ k2=4
� 	

2
64

3
75 ¼

1þ k2
� 	

k 0

k 1 0

0 0 1

2
4

3
5.

Thus, for the given R, we have ½R�½C�½R�T ¼ B½ �:

(c) For the given U½ �,

U½ �2 ¼ 1

1þ k2=4

1 k=2 0

k=2 1þ k2=2 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75

1 k=2 0

k=2 1þ k2=2 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
2
64

3
75

¼ 1

1þ k2=4

1þ k2=4 k 1þ k2=4
� 	

0

k 1þ k2=4
� 	

1þ k2
� 	

1þ k2=4
� 	

0

0 0 1þ k2=4
� 	

2
64

3
75 ¼

1 k 0

k 1þ k2 0

0 0 1

2
4

3
5 ¼ C½ �:

Thus, U½ � is the stretch tensor.

(d) RTe1 ¼ e1 þ k=2ð Þe2½ �d ; and RTe2 ¼ �k=2ð Þe1 þ e2½ �d;where d ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2=4

p
:

(e) Referring to Figure 3.25-1, RTe2 is depicted by OE . After deformation, it becomes OE 0; the distance between

E and E 0 is kd , which is 2 kd=2ð Þ so that OE 0 is the mirror image (with respect to the line OB) of OE and has

the same length as OE . Thus, from geometry, the stretch for this element is unity. This checks with the value

of B22, which is also unity. Also, in the same figure, OG is the vector RTe1: After deformation, it becomes OG 0.
The square of the length of OG 0 is

dsð Þ2 ¼ ðd þ k2d=2Þ2 þ ðkd=2Þ2 ¼ d2½ð1þ k2=2Þ2 þ k2=4�
¼ d2ð1þ k2 þ k4=4þ k2=4Þ ¼ d2ð1þ k2Þð1þ k2=4Þ ¼ ð1þ k2Þ;

and the length of RTe1 is dS ¼ 1; therefore, ds=dSð Þ2 ¼ 1þ k2, which is the same as B11:
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3.26 EULERIAN STRAIN TENSOR
Let

e� ¼ 1

2
I� B�1
� 	

; (3.26.1)

where B ¼ FFT is the left Cauchy-Green deformation tensor. The tensor e� is known as the Eulerian strain
tensor. We note that if there is no deformation, B�1 ¼ I and e� ¼ 0.

The geometric meaning of the component of e� and B�1 are described here.

From dx ¼ FdX, we have

dX ¼ F�1dx; (3.26.2)

where F�1 is the inverse of F. In rectangular Cartesian coordinates, Eq. (3.26.2) reads

dXi ¼ F�1
ij dxj: (3.26.3)

Thus,

F�1
ij ¼ @Xi

@xj
; (3.26.4)

where Xi ¼ Xi x1; x2; x3; tð Þ is the inverse of xi ¼ xi X1;X2;X3; tð Þ. In other words, when rectangular Cartesian

coordinates are used for both the reference and the current configuration,

F�1

 � ¼

@X1

@x1

@X1

@x2

@X1

@x3

@X2

@x1

@X2

@x2

@X2

@x3

@X3

@x1

@X3

@x2

@X3

@x3

2
6666666664

3
7777777775
: (3.26.5)

E

0

B
B�

E�

C�

G�G

C
k

A

RTe1

d

d

k

k / 2

k(k /2)d

(k / 2)d

k / 2

FIGURE 3.25-1
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Now,

dX 1ð Þ � dX 2ð Þ ¼ F�1dx 1ð Þ �F�1dx 2ð Þ ¼ dx 1ð Þ � F�1
� 	T

F�1dx 2ð Þ ¼ dx 1ð Þ � FFT
� 	�1

dx 2ð Þ;

i.e.,

dX 1ð Þ � dX 2ð Þ ¼ dx 1ð Þ �B�1dx 2ð Þ; (3.26.6)

and

dx 1ð Þ � dx 2ð Þ � dX 1ð Þ � dX 2ð Þ ¼ dx 1ð Þ � I� B�1
� 	

dx 2ð Þ; (3.26.7)

that is,

dx 1ð Þ � dx 2ð Þ � dX 1ð Þ � dX 2ð Þ ¼ 2dx 1ð Þ � e�dx 2ð Þ: (3.26.8)

Thus, if we consider a material element, which at time t is in the direction of e1, i.e., dx ¼ dse1, and which at

the reference time is dX ¼ dSn, where n is a unit vector, then Eqs. (3.26.6) and (3.26.8) give

dS2

ds2
¼ e1 �B�1e1 ¼ B�1

11 ; (3.26.9)

and

ds2 � dS2

2ds2
¼ e1 � e�e1 ¼ e�11; (3.26.10)

respectively. Similar meanings hold for the other diagonal elements of B�1 and e�.
By considering two material elements dx 1ð Þ ¼ ds1e1 and dx 2ð Þ ¼ ds2e2 at time t corresponding to

dX 1ð Þ ¼ dS1n and dX 2ð Þ ¼ dS1m at the reference time, where n andm are unit vectors, Eqs. (3.26.6) and

(3.26.8) give

dS1dS2
ds1ds2

cosðn;mÞ ¼ e1 �B�1e2 ¼ B�1
12 ; (3.26.11)

and

� dS1dS2
2ds1ds2

cosðn;mÞ ¼ e�12; (3.26.12)

respectively.

We can also express B�1 and e� in terms of the displacement components. From u ¼ x� X, we can write

X ¼ x� u x1; x2; x3; tð Þ or Xi ¼ xi � ui x1; x2; x3; tð Þ; (3.26.13)

where we have used the spatial description of the displacement field because we intend to differentiate this

equation with respect to the spatial coordinates xi. Thus, from Eq. (3.26.13), we have

@Xi

@xj
¼ dij � @ui

@xj
or F�1 ¼ I�rxu; (3.26.14)

therefore, from B�1 ¼ FFT
� 	�1 ¼ F�1

� 	T
F�1; and e� ¼ 1=2ð Þ I� B�1

� 	
; we get

B�1 ¼ I� rxuð ÞT
h i

I� rxuð Þ½ � ¼ I� rxuð ÞT þ rxuð Þ
h i

þ rxuð ÞT rxuð Þ; (3.26.15)
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and

e� ¼ rxuð Þ þ rxuð ÞT
2

� rxuð ÞT rxuð Þ
2

: (3.26.16)

In indicial notation, Eq. (3.26.16) reads

e�ij ¼
1

2

@ui
@xj

þ @uj
@xi

� �
� 1

2

@um
@xi

@um
@xj

; (3.26.17)

and in long form,

e�11 ¼
@u1
@x1

� 1

2

@u1
@x1

� �2

þ @u2
@x1

� �2

þ @u3
@x1

� �2
" #

; (3.26.18)

e�12 ¼
1

2

@u1
@x2

þ @u2
@x1

� �
� 1

2

@u1
@x1

@u1
@x2

þ @u2
@x1

@u2
@x2

þ @u3
@x1

@u3
@x2

� 

: (3.26.19)

The other components can be similarly written. We note that for infinitesimal deformation,
@ui
@xj

� @ui
@Xj

and

products of the gradients are negligible, Eq. (3.26.17) becomes the same as Eq. (3.7.16).

Example 3.26.1
For the simple shear deformation

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3: (i)

(a) Find B�1 and e�.
(b) Use the geometry in Figure 3.26-1 to discuss the meaning of e�11 and e�22.

Solution

(a) F½ � ¼
1 k 0

0 1 0

0 0 1

2
4

3
5 and F�1

h i
¼

1 �k 0

0 1 0

0 0 1

2
4

3
5; (ii)

B�1
h i

¼ F�1
h iT

F�1
h i

¼
1 0 0

�k 1 0

0 0 1

2
64

3
75

1 �k 0

0 1 0

0 0 1

2
64

3
75 ¼

1 �k 0

�k 1þ k2 0

0 0 1

2
64

3
75; (iii)

e� ¼ 1

2
I� B�1
� �

¼ 1

2

0 k 0

k �k2 0

0 0 0

2
64

3
75: (iv)

(b) Since e�11 ¼ 0, an element which is in the e1 direction in the deformed state (such as B 0C 0 in Figure 3.26-1)

has the same length in the undeformed state (BC in the same figure).
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Also, since e�22 ¼ �k2=2, an element which is in the e2 direction in the deformed state (such as AH 0)
had a length AH, which can be calculated from an equation similar to Eq. (3.26.10). That is, from

AH 0ð Þ2 � AHð Þ2 ¼ 2 AH 0ð Þ2e�22, we obtain

AH ¼ AH 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
: (v)

This result checks with the geometry of Figure 3.26-1, where AH 0 ¼ OB ¼ 1 and HH 0 ¼ k.

3.27 CHANGE OF AREA DUE TO DEFORMATION
Consider two material elements dX 1ð Þ ¼ dS1e1 and dX 2ð Þ ¼ dS2e2 emanating from X. The rectangular area

formed by dX 1ð Þ and dX 2ð Þ at the reference time to is given by

dAo ¼ dX 1ð Þ � dX 2ð Þ ¼ dS1dS2e3 ¼ dAoe3; (3.27.1)

where dAo is the magnitude of the undeformed area and e3 is normal to the area. At time t, dX 1ð Þ deforms into

dx 1ð Þ ¼ FdX 1ð Þ and dX 2ð Þ deforms into dx 2ð Þ ¼ FdX 2ð Þ, and the deformed area is given by

dA ¼ FdX 1ð Þ � FdX 2ð Þ ¼ dS1dS2Fe1 � Fe2 ¼ dAoFe1 � Fe2: (3.27.2)

Thus, the orientation of the deformed area is normal to Fe1 and Fe2: Let this normal direction be denoted by

the unit vector n, i.e.,

dA ¼ dAn; (3.27.3)

then we have

n ¼ dAo

dA

� �
Fe1 � Fe2ð Þ: (3.27.4)

Now, Fe1 � Fe1 � Fe2ð Þ ¼ Fe2 � Fe1 � Fe2ð Þ ¼ 0; therefore,

Fe1 � n ¼ Fe2 � n ¼ 0; (3.27.5)

thus,

e1 �FTn ¼ e2 �FTn ¼ 0: (3.27.6)

0

B

k

H B� H�

C�

C

k

A

1

FIGURE 3.26-1
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That is, FTn is normal to e1 and e2. Recalling that a � b� c ¼ determinant whose rows are components of the

vectors a; b and c, we have, from Eq. (3.27.4),

Fe3 � n ¼ dAo

dA

� �
Fe3 � Fe1 � Fe2ð Þ ¼ dAo

dA

� �
det F; (3.27.7)

or

e3 �FTn ¼ dAo

dA
det F: (3.27.8)

From Eq. (3.27.6) and Eq. (3.27.8), we have

FTn ¼ dAo

dA
det Fð Þ

� 

e3; (3.27.9)

so that

dAn ¼ dAoðdet FÞðF�1ÞTe3: (3.27.10)

Thus, the area in the deformed state is related to the area in the undeformed state by the relation

dA ¼ dAoðdet FÞ
���� F�1
� 	T

e3

����: (3.27.11)

In deriving Eq. (3.27.11), we have chosen the initial area to be the rectangular area whose sides are paral-

lel to the Cartesian base vectors e1 and e2 so that the undeformed area is normal to e3. In general, if the unde-

formed area is normal to no, then Eq. (3.27.10) and Eq. (3.27.11) become

dAn ¼ dAoJ F�1
� 	T

no and dA ¼ dAoJ

���� F�1
� 	T

no

����; (3.27.12)

where, to emphasize that in deformation det F is always positive,{ we write

J ¼ jdet Fj: (3.27.13)

3.28 CHANGE OF VOLUME DUE TO DEFORMATION
Consider three material elements dX 1ð Þ ¼ dS1e1, dX

2ð Þ ¼ dS2e2; and dX 3ð Þ ¼ dS3e3 emanating from X. The
volume formed by dX 1ð Þ; dX 2ð Þ, and dX 3ð Þ at the reference time to is given by

dVo ¼ dS1dS2dS3: (3.28.1)

At time t, dX 1ð Þ deforms into dx 1ð Þ ¼ FdX 1ð Þ, dX 2ð Þ deforms into dx 2ð Þ ¼ FdX 2ð Þ, and dX 3ð Þ deforms into

dx 3ð Þ ¼ FdX 3ð Þ, and the volume is

dV ¼ ��FdX 1ð Þ �FdX 2ð Þ � FdX 3ð Þ�� ¼ dS1dS2dS3
��Fe1 �Fe2 � Fe3

��: (3.28.2)

{Reflection is not allowed in deformation, and we shall not consider those reference configurations that the body could not continu-

ously get from without passing through a configuration for which det F ¼ 0.
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That is,

dV ¼ dVojdet Fj ¼ JdVo: (3.28.3)

Now, C ¼ FTF and B ¼ FFT; therefore,

det C ¼ det B ¼ det Fð Þ2; (3.28.4)

so that we have

dV ¼
ffiffiffiffiffiffiffiffiffiffiffi
det C

p
dVo ¼

ffiffiffiffiffiffiffiffiffiffiffi
det B

p
dVo: (3.28.5)

We note that for incompressible material dV ¼ dVo and

det F ¼ det C ¼ det B ¼ 1: (3.28.6)

We also note that the conservation of mass equation rdV ¼ rodVo can also be written as

r ¼ ro
det F

or r ¼ roffiffiffiffiffiffiffiffiffiffiffi
det C

p or r ¼ roffiffiffiffiffiffiffiffiffiffiffi
det B

p : (3.28.7)

Example 3.28.1
The deformation of a body is given by

x1 ¼ l1X1; x2 ¼ �l3X3; x3 ¼ l2X2: (i)

(a) Find the deformed volume of the unit cube shown in Figure 3.28-1.

(b) Find the deformed area OABC.

(c) Find the rotation tensor and the axial vector of the antisymmetric part of the rotation tensor.

Solution
(a) From (i),

F½ � ¼
l1 0 0
0 0 �l3
0 l2 0

2
4

3
5; det F ¼ l1l2l3:

A

BC

0

1

1

1

x2

x3

x1

FIGURE 3.28-1
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Thus, from dV ¼ det Fð Þ dVo, we have, since det F is independent of position and DVo ¼ 1,

DV ¼ l1l2l3ð ÞDVo ¼ l1l2l3:

(b) Using Eq. (3.27.12), with DAo ¼ 1; no ¼ �e3, and

F�1
h i

¼
1=l1 0 0
0 0 1=l2
0 �1=l3 0

2
4

3
5;

we have

DAn ¼ DAo det Fð Þ F�1
� �T

no ¼ 1ð Þ l1l2l3ð Þ
1=l1 0 0
0 0 �1=l3
0 1=l2 0

2
4

3
5 0

0
�1

2
4

3
5 ¼

0
l1l2
0

2
4

3
5;

i.e.,

DAn ¼ l1l2e2:

Thus, the area OABC, which was of unit area, having a normal in the direction of �e3, becomes an area

whose normal is in the direction of e2 and with a magnitude of l1l2.

(c) U½ �2 ¼ F½ �T F½ � ¼
l1 0 0
0 0 l2
0 �l3 0

2
4

3
5 l1 0 0

0 0 �l3
0 l2 0

2
4

3
5 ¼

l21 0 0

0 l22 0

0 0 l23

2
64

3
75; U½ � ¼

l1 0 0
0 l2 0
0 0 l3

2
4

3
5,

R½ � ¼ F½ � U½ ��1 ¼
l1 0 0
0 0 �l3
0 l2 0

2
4

3
5 1=l1 0 0

0 1=l2 0
0 0 1=l3

2
4

3
5 ¼

1 0 0
0 0 �1
0 1 0

2
4

3
5:

The dual vector of the antisymmetric part of this tensor R is e1. Thus, it represents a rotation about e1 axis.

The angle of rotation is given by sin y ¼ 1, i.e., 90o (see Chapter 2).

3.29 COMPONENTS OF DEFORMATION TENSORS IN OTHER COORDINATES
The components of the deformation gradient F, the left and right Cauchy-Green deformation tensors B and C
and their inverses B�1 and C�1, have been derived for the case where the same rectangular Cartesian coordi-

nates have been used for both the reference and the current configurations. In this section, we consider the

case where the base vectors at the reference configuration are different from those at the current configura-

tion. Such situations arise not only in the case where different coordinate systems are used for the two con-

figuration (for example, a rectangular coordinate system for the reference and a cylindrical coordinate for the

current configuration) but also in cases where the same curvilinear coordinates are used for the two config-

urations. The following are examples.

(A) Cylindrical Coordinates System for Both the Reference and the Current Configuration

(A.1) Two-point components of F. Let

r ¼ r ro; yo; zo; tð Þ; y ¼ y ro; yo; zo; tð Þ; z ¼ z ro; yo; zo; tð Þ (3.29.1)
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be the pathline equations. We first show that, with fer; ey; ezg and feor ; eoy; eozg denoting the basis in the current

and the reference configuration, respectively,

Feor ¼
@r

@ro
er þ r@y

@ro
ey þ @z

@ro
ez; (3.29.2)

Feoy ¼
@r

ro@yo
er þ r@y

ro@yo
ey þ @z

ro@yo
ez; (3.29.3)

Feoz ¼
@r

@zo
er þ r@y

@zo
ey þ @z

@zo
ez: (3.29.4)

To do that, we substitute

dx ¼ drer þ rdyey þ dzez and dX ¼ droe
o
r þ rodyoeoy þ dzoe

o
z ; (3.29.5)

into the equation dx ¼ FdX to obtain

dr ¼ droer �Feor þ rodyoer �Feoy þ dzoer �Feoz ; (3.29.6)

rdy ¼ droey �Feor þ rodyoey �Feoy þ dzoey �Feoz ; (3.29.7)

dz ¼ droez �Feor þ rodyoez �Feoy þ dzoez �Feoz : (3.29.8)

Since dr ¼ @r

@ro
dro þ @r

@yo
dyo þ @r

@zo
dzo, etc., therefore, we have

er �Feor ¼
@r

@ro
; er �Feoy ¼

@r

ro@yo
; er �Feoz ¼

@r

@zo
; (3.29.9)

ey �Feor ¼
r@y
@ro

; ey �Feoy ¼
r@y
ro@yo

; ey �Feoz ¼
r@y
@zo

; (3.29.10)

ez �Feor ¼
@z

@ro
; ez �Feoy ¼

@z

ro@yo
; ez �Feoz ¼

@z

@zo
: (3.29.11)

These equations are equivalent to Eqs. (3.29.2), (3.29.3), and (3.29.4). The matrix

F½ � ¼

@r

@ro

@r

ro@yo

@r

@zo

r@y
@ro

r@y
ro@yo

r@y
@zo

@z

@ro

@z

ro@yo

@z

@zo

2
6666666664

3
7777777775
feig eoj

n o
;

(3.29.12)

is based on two sets of bases, one at the reference configuration feor ; eoy; eozg and the other, the current config-

uration fer; ey; ezg. The components in this matrix are called the two-point components of the tensor F with

respect to fer; ey; ezg and feor ; eoy; eozg.
From Eq. (3.29.9), using the definition of transpose, we have

eor �FTer ¼ @r

@ro
; eoy �FTer ¼ @r

ro@yo
; eoz �FTer ¼ @r

@zo
; (3.29.13)
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thus

FTer ¼ @r

@ro
eor þ

@r

ro@yo
eoy þ

@r

@zo
eoz : (3.29.14)

Similarly, from Eqs. (3.29.10) and (3.29.11) we can obtain

FTey ¼ r@y
@ro

eor þ
r@y
ro@yo

eoy þ
r@y
@zo

eoz ; (3.29.15)

FTez ¼ @z

@ro
eor þ

@z

ro@yo
eoy þ

@z

@zo
eoz : (3.29.16)

(A.2) Components of the left Cauchy-Green tensor B, with respect to the basis at the current position x,
can be obtained as follows:

Brr ¼ er �Ber ¼ er �FFTer ¼ er �F @r

@ro
eor þ

@r

ro@yo
eoy þ

@r

@zo
eoz

� �
; (3.29.17)

Bry ¼ er �Bey ¼ er �FFTey ¼ er �F r@y
@ro

eor þ
r@y
ro@yo

eoy þ
r@y
@zo

eoz

� �
: (3.29.18)

Using Eq. (3.29.9), we have

Brr ¼ @r

@ro

� �2

þ @r

ro@yo

� �2

þ @r

@zo

� �2

; (3.29.19)

Bry ¼ r@y
@ro

� �
@r

@ro

� �
þ r@y

ro@yo

� �
@r

ro@yo

� �
þ r@y

@zo

� �
@r

@zo

� �
: (3.29.20)

The other components can be similarly derived:

Byy ¼ r@y
@ro

� �2

þ r@y
ro@yo

� �2

þ r@y
@zo

� �2

; (3.29.21)

Bzz ¼ @z

@ro

� �2

þ @z

ro@yo

� �2

þ @z

@zo

� �2

; (3.29.22)

Brz ¼ @r

@ro

� �
@z

@ro

� �
þ @r

ro@yo

� �
@z

ro@yo

� �
þ @r

@zo

� �
@z

@zo

� �
; (3.29.23)

Bzy ¼ @z

@ro

� �
r@y
@ro

� �
þ @z

ro@yo

� �
r@y
ro@yo

� �
þ @z

@zo

� �
r@y
@zo

� �
: (3.29.24)

We note that the same result can be obtained from ½F�½F�T, where [F] is given in Eq. (3.29.12).

(A.3) Components of B�1 with respect to the basis at x.
The components of B�1 can be obtained from inverting [B] above. But it is often more convenient to

express it in terms of the inverse of the pathline Eq. (3.29.1):

ro ¼ ro r; y; z; tð Þ; yo ¼ yo r; y; z; tð Þ; zo ¼ zo r; y; z; tð Þ: (3.29.25)

From dX ¼ F�1dx and Eq. (3.29.5), we have

droe
o
r þ rodyoeoy þ dzoe

o
z ¼ F�1ðdrer þ rdyey þ dzezÞ; (3.29.26)
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thus

dro ¼ drðeor �F�1erÞ þ rdyðeor �F�1eyÞ þ dzðeor �F�1ezÞ: (3.29.27)

Since dro ¼ @ro
@r

dr þ @ro
@y

dyþ @ro
@z

dz, etc.,

eor �F�1er ¼ @ro
@r

; eor �F�1ey ¼ @ro
r@y

; eor �F�1ez ¼ @ro
@z

: (3.29.28)

Similarly, one can obtain

eoy �F�1er ¼ ro@yo
@r

; eoy �F�1ey ¼ ro@yo
r@y

; eoy �F�1ez ¼ ro@yo
@z

; etc: (3.29.29)

Equivalently,

F�1er ¼ @ro
@r

eor þ
ro@yo
@r

eoy þ
@zo
@r

eoz ; (3.29.30)

F�1ey ¼ @ro
r@y

eor þ
ro@yo
r@y

eoy þ
@zo
r@y

eoz ; (3.29.31)

F�1ez ¼ @ro
@z

eor þ
ro@yo
@z

eoy þ
@zo
@z

eoz : (3.29.32)

Also, we have, by the definition of transpose,

er � F�1
� 	T

eor ¼ eor �F�1er ¼ @ro
@r

; ey � F�1
� 	T

eor ¼ eor �F�1ey ¼ @ro
r@y

; etc.,

therefore

ðF�1ÞTeor ¼
@ro
@r

er þ @ro
r@y

ey þ @ro
@z

ez; (3.29.33)

ðF�1ÞTeoy ¼
ro@yo
@r

er þ ro@yo
r@y

ey þ ro@yo
@z

ez; (3.29.34)

ðF�1ÞTeoz ¼
@zo
@r

er þ @zo
r@y

ey þ @zo
@z

ez: (3.29.35)

Now, with respect to the basis at x, we have

B�1
rr ¼ er �B�1er ¼ er � FFT

� 	�1
er ¼ er � F�1

� 	T
F�1er
� 	

(3.29.36)

¼ @ro
@r

er � F�1
� 	T

eor þ
ro@yo
@r

er � F�1
� 	T

eoy þ
@zo
@r

er � F�1
� 	T

eoz

� �

¼ @ro
@r

� �2

þ ro@yo
@r

� �2

þ @zo
@r

� �2

: (3.29.37)

The other components can be similarly derived (see Prob.3.77):

B�1
yy ¼ @ro

r@y

� �2

þ ro@yo
r@y

� �2

þ @zo
r@y

� �2

; (3.29.38)

B�1
zz ¼ @ro

@z

� �2

þ ro@yo
@z

� �2

þ @zo
@z

� �2

; (3.29.39)
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B�1
ry ¼ @ro

@r

� �
@ro
r@y

� �
þ ro@yo

@r

� �
ro@yo
r@y

� �
þ @zo

@r

� �
@zo
r@y

� �
; (3.29.40)

B�1
rz ¼ @ro

@r

� �
@ro
@z

� �
þ ro@yo

@r

� �
ro@yo
@z

� �
þ @zo

@r

� �
@zo
@z

� �
; (3.29.41)

B�1
zy ¼ @ro

@z

� �
@ro
r@y

� �
þ ro@yo

@z

� �
ro@yo
r@y

� �
þ @zo

@z

� �
@zo
r@y

� �
: (3.29.42)

(A.4) Components of the right Cauchy-Green tensor C, with respect to the basis at the reference position

X. Using Eq. (3.29.1), that is,

r ¼ r ro; yo; zo; tð Þ; y ¼ y ro; yo; zo; tð Þ; z ¼ z ro; yo; zo; tð Þ;
we can obtain [see Eqs. (3.29.2) to (3.29.4) and Eqs. (3.29.14) to (3.29.16)]

Croro ¼ eor �Ceor ¼ eor �FTFeor ¼
@r

@ro
eor �FTer þ r@y

@ro
eor �FTey þ @z

@ro
eor �FTez; (3.29.43)

Croyo ¼ eor �Ceoy ¼ eor �FTFeoy ¼
@r

ro@yo
eor �FTer þ r@y

ro@yo
eor �FTey þ @z

ro@yo
eor �FTez; (3.29.44)

i.e.,

Croro ¼
@r

@ro

� �2

þ r@y
@ro

� �2

þ @z

@ro

� �2

; (3.29.45)

Croyo ¼
@r

ro@yo

� �
@r

@ro

� �
þ r@y

ro@yo

� �
r@y
@ro

� �
þ @z

ro@yo

� �
@z

@ro

� �
: (3.29.46)

Other components can be similarly derived: They are [see Probs. 3.78 and 3.79]

Cyoyo ¼
@r

ro@yo

� �2

þ r@y
ro@yo

� �2

þ @z

ro@yo

� �2

; (3.29.47)

Czozo ¼
@r

@zo

� �2

þ r@y
@zo

� �2

þ @z

@zo

� �2

; (3.29.48)

Croyo ¼
@r

ro@yo

� �
@r

@ro

� �
þ r@y

ro@yo

� �
r@y
@ro

� �
þ @z

ro@yo

� �
@z

@ro

� �
; (3.29.49)

Crozo ¼
@r

@ro

� �
@r

@zo

� �
þ r@y

@ro

� �
r@y
@zo

� �
þ @z

@ro

� �
@z

@zo

� �
; (3.29.50)

Czoyo ¼
@r

@zo

� �
@r

ro@yo

� �
þ r@y

@zo

� �
r@y
ro@yo

� �
þ @z

@zo

� �
@z

ro@yo

� �
: (3.29.51)

(A.5) Components of C�1

The components of C�1 can be obtained from inverting [C] above. But it is often more convenient to

express it in terms of the inverse of the pathline Eq. (3.29.1):

ro ¼ ro r; y; z; tð Þ; yo ¼ yo r; y; z; tð Þ; zo ¼ zo r; y; z; t).ð
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We have (see Prob. 3.80)

C�1
roro

¼ eor � FTF
� 	�1

eor ¼ eor �F�1 F�1
� 	T

eor ¼
@ro
@r

eor �F�1er þ @ro
r@y

eor �F�1ey þ @ro
@z

eor �F�1ez

¼ @ro
@r

@ro
@r

þ @ro
r@y

@ro
r@y

þ @ro
@z

@ro
@z

;
(3.29.52)

C�1
royo ¼ eor � FTF

� 	�1
eoy ¼ eor �F�1 F�1

� 	T
eoy ¼

ro@yo
@r

eor �F�1er þ ro@yo
r@y

eor �F�1ey þ ro@yo
@z

eor �F�1ez

¼ ro@yo
@r

0
@

1
A @ro

@r

0
@

1
Aþ ro@yo

r@y

0
@

1
A @ro

r@y

0
@

1
Aþ ro@yo

@z

0
@

1
A @ro

@z

0
@

1
A:

(3.29.53)

The other components can be written down easily following the previous procedure.

(B) Cylindrical Coordinates (r, u, z) for the Current Configuration and Rectangular
Cartesian Coordinates (X,Y,Z) for the Reference Configuration

Let

r ¼ r X; Y; Z; tð Þ; y ¼ y X; Y; Z; tð Þ; z ¼ z X; Y; Z; tð Þ (3.29.54)

be the pathline equations. Then, using the same procedure as described for the case where one single cylin-

drical coordinate is used for both references, it can be derived that (see Prob. 3.81)

FeX ¼ @r

@X
er þ r@y

@X
ey þ @z

@X
ez; (3.29.55)

FeY ¼ @r

@Y
er þ r@y

@Y
ey þ @z

@Y
ez; (3.29.56)

FeZ ¼ @r

@Z
er þ r@y

@Z
ey þ @z

@Z
ez: (3.29.57)

That is, the two point components of F with respect to fer; ey; ezg and feX; eY ; eZg are

F½ � ¼

@r

@X

@r

@Y

@r

@Z

r@y
@X

r@y
@Y

r@y
@Z

@z

@X

@z

@Y

@z

@Z

2
6666666664

3
7777777775

er ;ey ;ezf g; eX ;eY ;eZf g

: (3.29.58)

(B.1) Components of the left Cauchy-Green deformation tensor B with respect to the basis at the current

configuration x, i.e., fer; ey; ezg, are

Brr ¼ er �FFTer ¼ @r

@X

� �2

þ @r

@Y

� �2

þ @r

@Z

� �2

; (3.29.59)

136 CHAPTER 3 Kinematics of a Continuum



Byy ¼ ey �FFTey ¼ r@y
@X

� �2

þ r@y
@Y

� �2

þ r@y
@Z

� �2

; (3.29.60)

Bzz ¼ ez �FFTez ¼ @z

@X

� �2

þ @z

@Y

� �2

þ @z

@Z

� �2

; (3.29.61)

Bry ¼ er �FFTey ¼ @r

@X

� �
r@y
@X

� �
þ @r

@Y

� �
r@y
@Y

� �
þ @r

@Z

� �
r@y
@Z

� �
; (3.29.62)

Brz ¼ er �FFTez ¼ @r

@X

� �
@z

@X

� �
þ @r

@Y

� �
@z

@Y

� �
þ @r

@Z

� �
@z

@Z

� �
; (3.29.63)

Byz ¼ ey �FFTez ¼ r@y
@X

� �
@z

@X

� �
þ r@y

@Y

� �
@z

@Y

� �
þ r@y

@Z

� �
@z

@Z

� �
: (3.29.64)

(B.2) Components of B�1 with respect to the basis at the current configuration x.
Again, it is often more convenient to express the components in terms of the pathline equations in the

form of

X ¼ X r; y; z; tð Þ; Y ¼ Y r; y; z; tð Þ; Z ¼ Z r; y; z; tð Þ: (3.29.65)

Using the equation dX ¼ F�1dx, one can obtain

B�1
rr ¼ er � ðF�1ÞTF�1er ¼ @X

@r

� �2

þ @Y

@r

� �2

þ @Z

@r

� �2

; (3.29.66)

B�1
ry ¼ er � ðF�1ÞTF�1ey ¼ @X

@r

� �
@X

r@y

� �
þ @Y

@r

� �
@Y

r@y

� �
þ @Z

@r

� �
@Z

r@y

� �
: (3.29.67)

The other components can be written down following the patterns of the preceding equations.

(B.3) Components of the right-Cauchy Green Tensor C with respect to the basis at the reference configu-

ration, i.e., feX; eY ; eZg:

CXX ¼ @r

@X

� �2

þ r@y
@X

� �2

þ @z

@X

� �2

; (3.29.68)

CXY ¼ @r

@X

� �
@r

@Y

� �
þ r@y

@X

� �
r@y
@Y

� �
þ @z

@X

� �
@z

@Y

� �
: (3.29.69)

The other components can be easily written down following the preceding patterns.

(B.4) Components of C�1 with respect to the basis feX; eY ; eZg:

C�1
XX ¼ @X

@r

� �2

þ @X

r@y

� �2

þ @X

@z

� �2

; (3.29.70)

C�1
XY ¼ @X

@r

� �
@Y

@r

� �
þ @X

r@y

� �
@Y

r@y

� �
þ @X

@z

� �
@Y

@z

� �
: (3.29.71)

The other components can be easily written down following the preceding patterns.
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(C) Spherical Coordinate System for Both the Reference and the Current Configurations

Let

r ¼ r ro; yo;fo; tð Þ; y ¼ y ro; yo;fo; tð Þ; z ¼ z ro; yo;fo; tð Þ (3.29.72)

be the pathline equations. It can be derived that the two-point components for F with respect to the basis at

current configuration fer; ey; ezg and that at the reference configuration feor ; eoy; eozg are

F½ � ¼

@r

@ro

@r

ro@yo

@r

ro sin yo@fo

r@y
@ro

r@y
ro@yo

r@y
ro sin yo@fo

r sin y@f
@ro

r sin y@f
ro@yo

r sin y@f
ro sin yo@fo

2
6666666664

3
7777777775

eor ;e
o
y;e

o
f

� �
;fer ;ey;efg

: (3.29.73)

(C.1) Components of the left Cauchy-Green tensor B are

Brr ¼ @r

@ro

� �2

þ @r

ro@yo

� �2

þ @r

ro sin yo@fo

� �2

; (3.29.74)

Bry ¼ @r

@ro

� �
r@y
@ro

� �
þ @r

ro@yo

� �
r@y
ro@yo

� �
þ @r

ro sin yo@fo

� �
r@y

ro sin yo@fo

� �
: (3.29.75)

The other components can be written down following the preceding pattern.

(C.2) Components of B�1 are

B�1
rr ¼ @ro

@r

� �2

þ ro@yo
@r

� �2

þ ro sin yo@fo

@r

� �2

; (3.29.76)

B�1
ry ¼ @ro

@r

� �
@ro
r@y

� �
þ ro@yo

@r

� �
ro@yo
r@y

� �
þ ro sin yo@fo

@r

� �
ro sin yo@fo

r@y

� �
: (3.29.77)

The other components can be written down following the preceding pattern.

(C.3) Components of the right Cauchy-Green tensor C with respect to the basis at the reference configu-

ration, i.e., feor ; eoy; eozg:

Croro ¼
@r

@ro

� �2

þ r@y
@ro

� �2

þ r sin y@f
@ro

� �2

; (3.29.78)

Croyo ¼
@r

@ro

� �
@r

ro@yo

� �
þ r@y

@ro

� �
r@y
ro@yo

� �
þ r sin y@f

@ro

� �
r sin y@f
ro@yo

� �
: (3.29.79)

The other components can be written down following the preceding pattern.

(C.4) Components of C�1 with respect to feor ; eoy; eozg:

C�1
roro

¼ @ro
@r

� �2

þ @ro
r@y

� �2

þ @ro
r sin y@f

� �2

; (3.29.80)

C�1
royo ¼

@ro
@r

� �
ro@yo
@r

� �
þ @ro

r@y

� �
ro@yo
r@y

� �
þ @ro

r sin y@f

� �
ro@yo

r sin y@f

� �
: (3.29.81)

The other components can be written down following the preceding pattern.
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3.30 CURRENT CONFIGURATION AS THE REFERENCE CONFIGURATION
Let x be the position vector of a particle at current time t, and let x0 be the position vector of the same particle

at time t. Then the equation

x0 ¼ x 0
t ðx; tÞ with x ¼ x 0

t ðx; tÞ; (3.30.1)

defines the motion of a continuum using the current time t as the reference time. The subscript t in the func-

tion x 0
t ðx; tÞ indicates that the current time t is the reference time and as such, x 0

t ðx; tÞ is also a function of t.
For a given velocity field n ¼ nðx; tÞ, the velocity at the position x0 at time t is n ¼ ðx0; tÞ. On the other

hand, for a particular particle (i.e., for fixed x and t), the velocity at time t is given by
@x 0

t

@t

� �
x;t�fixed

. Thus,

nðx0; tÞ ¼ @x 0
t

@t
: (3.30.2)

Example 3.30.1
Given the velocity field

n1 ¼ kx2; n2 ¼ n3 ¼ 0: (i)

Find the pathline equations using the current configuration as the reference configuration.

Solution
In component form, Eq. (3.30.2) gives

@x 0
1

@t
¼ kx 0

2;
@x 0

2

@t
¼ @x 0

3

@t
¼ 0: (ii)

The initial conditions are

at t ¼ t ; x 0
1 ¼ x1; x 0

2 ¼ x2 and x 0
3 ¼ x3: (iii)

The second and the third equation of (ii) state that both x 0
2 and x 0

3 are independent of t so that

x 0
2 ¼ x2 and x 0

3 ¼ x3: (iv)

From the first equation of (ii), we have, since x 0
2 ¼ x2,

x 0
1 ¼ kx2tþ C: (v)

Applying the initial condition that at t ¼ t ; x 0
1 ¼ x1, we have

x 0
1 ¼ x1 þ kx2ðt� tÞ: (vi)

When the current configuration is used as the reference, it is customary also to denote tensors based on

such a reference with a subscript t, e.g.,

Ft � rx 0
t (relative deformation gradient)

Ct � FT
t Ft (relative right Cauchy-Green Tensor)

Bt � FtF
T
t (relative left Cauchy-Green Tensor)
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and so on. All the formulas derived earlier, based on a fixed reference configuration, can be easily rewritten

for the present case where the current configuration is used as the reference. Care should be taken in the dif-

ferent notations used in the previous section (Section 3.29) and in the present section. For example, let

ðr0; y0; z0Þ denote the cylindrical coordinates for the position x0 at time t for a material point that is at

ðr; y; zÞ at time t, i.e.,

r0 ¼ r0 r; y; z; tð Þ; y0 ¼ y0 r; y; z; tð Þ; z0 ¼ z0 r; y; z; tð Þ: (3.30.3)

These equations correspond to Eq. (3.29.1) in Section 3.29, where

r ¼ r ro; yo; zo; tð Þ; y ¼ y ro; yo; zo; tð Þ; z ¼ z ro; yo; zo; tð Þ
so that with respect to the current basis fer; ey; ezg, we have, from Eqs. (3.29.45) and (3.29.46) of Section 3.29,

Ctð Þrr ¼
@r0

@r

� �2

þ r0@y0

@r

� �2

þ @z0

@r

� �2

; (3.30.4)

Ctð Þry ¼
@r0

@r

� �
@r0

r@y

� �
þ r0@y 0

@r

� �
r0@y0

r@y

� �
þ @z0

@r

� �
@z0

r@y

� �
: (3.30.5)

and so on. We will have more to say about relative deformation tensors in Chapter 8, where we discuss the

constitutive equations for non-Newtonian fluids.

APPENDIX 3.1: NECESSARY AND SUFFICIENT CONDITIONS FOR STRAIN
COMPATIBILITY
For any given set of six functions for the six infinitesimal strain components Eij X1; X2; X3ð Þ; we have derived
the six necessary conditions, Eqs. (3.16.7) to (3.16.12), which the given strain functions must satisfy for the

existence of three displacement functions u1; u2; u3 whose strains are the given set functions. Here in this

appendix, we will show that those conditions are both necessary and sufficient. The establishment of the nec-

essary and sufficient conditions for strain components will be based on the well-known necessary and suffi-

cient conditions for a differential Pdxþ Qdyþ Rdz to be exact, where P; Q and R, are functions of x; y; zð Þ:
These conditions are given in any text in advance calculus. They are

@P

@y
¼ @Q

@x
;

@P

@z
¼ @R

@x
;

@Q

@z
¼ @R

@y
: (A3.1.1)

When these conditions are satisfied, the differential Pdxþ Qdyþ Rdz is said to be an exact differential

and a function W x; y; zð Þ exists such that

dW ¼ Pdxþ Qdyþ Rdz: (A3.1.2)

As a consequence, the line integral
Ð b
a Pdxþ Qdyþ Rdz depends only on the end points a and b; in fact, it is

equal toWðxb; yb; zbÞ �Wðxa; ya; zaÞ. That is, the integral is independent of path. In indicial notation, we write
P1ðx1; x2; x3Þdx1 þ P2ðx1; x2; x3Þdx2 þ P3ðx1; x2; x3Þdx3 ¼ Pkðx1; x2; x3Þdxk; (A3.1.3)

and the necessary and sufficient conditions for Pkðx1; x2; x3Þdxk to be an exact differential can be written as:

@Pk

@xj
¼ @Pj

@xk
: (A3.1.4)
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The following gives the derivation of compatibility conditions.

Let ui X1; X2; X3ð Þ be displacement components at a generic point X1; X2; X3ð Þ: Then, at

Po Xo
10 ; X

o
20 ; X

o
30

� 	
; the displacement components are uoi ¼ uoi Xo

10 ; X
o
20 ; X

o
30

� 	
; and at P0 X 0

1; X
0
2; X

0
3

� 	
, the dis-

placement components are u 0
i ¼ u 0

i X 0
1; X

0
2; X

0
3

� 	
.

We can obtain the displacement components u 0
i at P

0 from the components uoi at P
o by a line integral from

any chosen path. Thus,

u 0
i ¼ uoi þ

ðP0

Po

dui where dui ¼ @ui
@Xm

dXm: (A3.1.5)

In terms of the displacement function, the line integral is clearly independent of path so long as the func-

tions ui X1; X2; X3ð Þ are single valued. Indeed,

u 0
i ¼ uoi þ

ðP0

Po

dui ¼ uoi þ ðu 0
i � uoi Þ ¼ u 0

i : (A3.1.6)

On the other hand, if we evaluate the line integral in terms of the strain components, then certain condi-

tions must be satisfied by these components in order that the line integral is independent of path. Let us now

express dui in terms of the strain components and the rotation components: We have

dui ¼ @ui
@Xm

dXm ¼ 1

2

@ui
@Xm

þ @um
@Xi

� �
þ 1

2

@ui
@Xm

� @um
@Xi

� �� 

dXm ¼ Eim þWimð ÞdXm; (A3.1.7)

thus, ðP0

Po

dui ¼
ðP0

Po

EimdXm þ
ðP0

Po

WimdXm: (A3.1.8)

The last integral in Eq. (A3.1.8) can be evaluated as follows:

ðP0

Po

WimdXm ¼
ðP0

Po

WimdðXm � X 0
mÞ ¼ WimðXm � X 0

mÞ
����Xm¼X 0

m

Xm¼Xo
m

�
ðP0

Po

ðXm � X 0
mÞdWim

¼ �Wo
imðXo

m � X 0
mÞ �

ðP0

Po

ðXm � X 0
mÞdWim:

(A3.1.9)

Thus, using Eq. (A3.1.8) and Eq. (A3.1.9), Eq. (A3.1.5) becomes:

ðuiÞp0 ¼ ðuiÞPo �Wo
imðXo

m � X 0
mÞ þ

ðP
Po

Eik � ðXm � X 0
mÞ

@Wim

@Xk

� 

dXk: (A3.1.10)

Now, using the definition of Eim and Wim in Eq. (A3.1.7), it can be simply obtained (see Prob. 3.56) that

@Wim

@Xk
¼ @Eik

@Xm
� @Ekm

@Xi
; (A3.1.11)

so that

ðuiÞp0 ¼ ðuiÞPo �Wo
imðXo

m � X 0
mÞ þ

ðP0

Po

Rikdxk; (A3.1.12)

where

Rik ¼ Eik � ðXm � X 0
mÞ

@Eik

@Xm
� @Ekm

@Xi

� �
: (A3.1.13)
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We demand that ui must be single-value functions of the coordinates. Therefore, the integral

ðP0

Po

RikdXk ¼
ðP0

Po

½Ri1 X1; X2; X3ð ÞdX1 þ Ri2ðX1;X2; X3ÞdX2 þ Ri3ðX1; X2; X3ÞdX3�;

must be independent of path. That is, RikdXk must be an exact differential of a single-value function for each

i. The necessary and sufficient conditions for RikdXk to be an exact differential are [see Eq. (A3.1.4)]

@Rik

@Xj
¼ @Rij

@Xk
; (A3.1.14)

i.e.,

@Eik

@Xj
� @Xm

@Xj

@Eik

@Xm
� @Ekm

@Xi

0
@

1
A� ðXm � X 0

mÞ
@

@Xj

@Eik

@Xm
� @Ekm

@Xi

0
@

1
A

¼ @Eij

@Xk
� @Xm

@Xk

@Eij

@Xm
� @Ejm

@Xi

0
@

1
A� ðXm � X 0

mÞ
@

@Xk

@Eij

@Xm
� @Ejm

@Xi

0
@

1
A:

(A3.1.15)

Noting that @Xm=@Xj ¼ dmj and @Xm=@Xk ¼ dmk, so that

@Xm

@Xj

@Eik

@Xm
� @Ekm

@Xi

� �
¼ @Eik

@Xj
� @Ekj

@Xi
and

@Xm

@Xk

@Eij

@Xm
� @Ejm

@Xi

� �
¼ @Eij

@Xk
� @Ejk

@Xi
; (A3.1.16)

and we have

ðXm � X 0
mÞ

@

@Xj

@Eik

@Xm
� @Ekm

@Xi

� �
� @

@Xk

@Eij

@Xm
� @Ejm

@Xi

� �� �
¼ 0; (A3.1.17)

therefore

@

@Xk

@Eij

@Xm
� @Ejm

@Xi

� �
� @

@Xj

@Eik

@Xm
� @Ekm

@Xi

� �
¼ 0; (A3.1.18)

that is,

@2Eij

@Xk@Xm
þ @2Ekm

@Xj@Xi
� @2Eik

@Xj@Xm
� @2Ejm

@Xk@Xi
¼ 0: (A3.1.19)

There are four free indices in the preceding equation, so there are superficially 81 equations. However,

many different sets of indices lead to the same equation; for example, all the following sets of indices:

i ¼ j ¼ 1; k ¼ m ¼ 2f g; k ¼ m ¼ 1; i ¼ j ¼ 2f g; i ¼ k ¼ 1; j ¼ m ¼ 2f g; j ¼ m ¼ 1; i ¼ k ¼ 2f g
lead to the same equation:

@2E11

@X2
2

þ @2E22

@X2
1

¼ 2
@2E12

@X1@X2

: (A3.1.20)

Indeed, of the 81 equations, only six are distinct, and they are given in Section 3.16 as necessary condi-

tions. We have now shown that they are the necessary and sufficient conditions for the strains to be

compatible.
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APPENDIX 3.2: POSITIVE DEFINITE SYMMETRIC TENSORS
A real symmetric tensor T is positive definite if U ¼ a �Ta > 0 for any nonzero real vector a. In this appen-

dix, we show that for a positive definite real symmetric tensor with matrix ½T� ¼ ½Tij�
T11 > 0; T22 > 0; T33 > 0;

T11 T12

T21 T22
> 0;

T22 T23

T32 T33
> 0;

T11 T13

T31 T33

����
���� > 0;

����
����

����
���� (A3.2.1)

and |T| > 0.

To prove that T11 > 0, we choose a½ � ¼ a1; 0; 0½ �, then we get

U ¼ a �Ta ¼ T11a
2
1 > 0: (A3.2.2)

Thus, we have T11 > 0. Similarly, by choosing a½ � ¼ 0; a2; 0½ � and a½ � ¼ 0; 0; a3½ �, we obtain that T22 > 0

and T33 > 0. That is, the diagonal elements of a real positive definite tensor are all positive. Next, we choose

a½ � ¼ a1; a2; 0½ �, then

U ¼ ½ a1 a2 0 �
T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5 a1

a2
0

2
4

3
5 ¼ ½ a1 a2 � T11 T12

T21 T22

� 

a1
a2

� 

> 0: (A3.2.3)

Thus, the submatrix
T11 T12
T21 T22

� 

is positive definite. Similarly, if we choose

a½ � ¼ 0 a2 a3½ � or a½ � ¼ a1 0 a3½ �;
we can show that

T22 T23
T32 T33

� 

and

T11 T13
T31 T33

� 


are positive definite.

Now for a positive definite symmetric tensor, the determinant is equal to the product of the eigenvalues which

are all positive as they are the diagonal elements of the matrix using eigenvectors as a basis. Thus, we have

T11 T12
T21 T22

> 0;
T22 T23
T32 T33

> 0;
T11 T13
T31 T33

> 0;
T11 T12 T13
T21 T22 T23
T31 T32 T33

������
������ > 0:

������
������

������
������

������
������ (A3.2.4)

APPENDIX 3.3: THE POSITIVE DEFINITE ROOT OF U2 ¼ D
In this appendix, we show that if ½U2� ¼ ½D�, where [U] is a real positive definite matrix and [D] is a real posi-
tive definite diagonal matrix, then [U] must also be diagonal and there is only one positive definite root for

the equation. We first discuss the two-dimensional case, which is very simple and provides a good introduc-

tion to the three dimensional case.

(A) 2D Case: The equation ½U2� ¼ ½D� gives:
U11 U12

U21 U22

� 

U11 U12

U21 U22

� 

¼ a 0

0 b

� 

;

thus,

U11U12 þ U12U22 ¼ 0 and U21U11 þ U22U21 ¼ 0;
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so that

U12 U11 þ U22ð Þ ¼ 0 and U21 U11 þ U22ð Þ ¼ 0: (A3.3.1)

Since U is positive definite, U11 > 0 and U22 > 0; therefore,

U12 ¼ U21 ¼ 0: (A3.3.2)

Now, with a diagonal U, the equation U½ �2 ¼ U2
11 0

0 U2
22

� 

¼ a 0

0 b

� 

, has four roots for U½ �. They are

ffiffiffi
a

p
0

0
ffiffiffi
b

p
� 


;

ffiffiffi
a

p
0

0 � ffiffiffi
b

p
� 


;
� ffiffiffi

a
p

0

0
ffiffiffi
b

p
� 


and
� ffiffiffi

a
p

0

0 � ffiffiffi
b

p
� 


: (A3.3.3)

The only root that is positive definite is ffiffiffi
a

p
0

0
ffiffiffi
b

p
� 


: (A3.3.4)

(B) 3D Case: From ½U2� ¼ ½D�, we have

U11U12 þ U12U22 þ U13U32 ¼ D12 ¼ 0

U11U13 þ U12U23 þ U13U33 ¼ D13 ¼ 0

U21U13 þ U22U23 þ U23U33 ¼ D23 ¼ 0;

(A3.3.5)

From the first equation in Eq. (A3.3.5), we have U12 U11 þ U22ð Þ ¼ �U13U32.

Thus,

U12 ¼ � U13U32

U11 þ U22ð Þ (A3.3.6)

where U11 þ U22 > 0 because U½ � is positive definite. Substituting Eq. (A3.3.6) into the second equation in

Eq. (A3.3.5), we have

U13 U11 þ U33ð Þ � U13U32

U11 þ U22ð ÞU23 ¼ 0: (A3.3.7)

Thus,

U13 U11 U11 þ U33 þ U22ð Þ þ U22U33 � U32U23½ � ¼ 0: (A3.3.8)

Since U½ � is positive definite, U11 > 0;U22 > 0;U33 > 0 and U22U33 � U32U23 > 0,

thus,

U13 ¼ 0: (A3.3.9)

With U13 ¼ 0, the first equation and the third equation in Eq. (A3.3.5) become U12 U11 þ U22ð Þ ¼ 0 and

U23 U22 þ U33ð Þ ¼ 0 respectively. Thus, we have

U12 ¼ 0 and U23 ¼ 0: (A3.3.10)

Similarly, D21 ¼ D31 ¼ D32 ¼ 0 lead to U21 ¼ 0;U32 ¼ 0 and U31 ¼ 0. Thus U½ � ¼ diagonal½ �. The equa-

tion ½U2� ¼ ½D� has the following eight roots:
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ffiffiffi
a

p
0 0

0
ffiffiffi
b

p
0

0 0
ffiffiffi
c

p

2
64

3
75;

ffiffiffi
a

p
0 0

0 � ffiffiffi
b

p
0

0 0
ffiffiffi
c

p

2
64

3
75;

ffiffiffi
a

p
0 0

0
ffiffiffi
b

p
0

0 0 � ffiffiffi
c

p

2
64

3
75;

ffiffiffi
a

p
0 0

0 � ffiffiffi
b

p
0

0 0 � ffiffiffi
c

p

2
64

3
75;

� ffiffiffi
a

p
0 0

0
ffiffiffi
b

p
0

0 0
ffiffiffi
c

p

2
64

3
75;

� ffiffiffi
a

p
0 0

0
ffiffiffi
b

p
0

0 0 � ffiffiffi
c

p

2
64

3
75;

� ffiffiffi
a

p
0 0

0 � ffiffiffi
b

p
0

0 0
ffiffiffi
c

p

2
64

3
75;

� ffiffiffi
a

p
0 0

0 � ffiffiffi
b

p
0

0 0 � ffiffiffi
c

p

2
64

3
75:

All roots are real but only the first one is positive definite,

that is,

U½ � ¼
ffiffiffi
a

p
0 0

0
ffiffiffi
b

p
0

0 0
ffiffiffi
c

p

2
4

3
5: (A3.3.11)

We note also, that if ½U1� is a positive definite symmetric matrix, then with respect to a set of principal

axes, ½U1� and U1½ �2 are positive definite diagonal matrices. An equation such as U2½ �2 ¼ U1½ �2 where both

½U1� and ½U2� are positive definite symmetric matrices then leads to the result that ½U1� ¼ ½U2�:

PROBLEMS FOR CHAPTER 3

3.1 Consider the motion: x1 ¼ 1þ kt

1þ kto
X1; x2 ¼ X2; x3 ¼ X3.

(a) Show that the reference time is t ¼ to.
(b) Find the velocity field in spatial coordinates.

(c) Show that the velocity field is identical to that of the following motion: x1 ¼ ð1þ ktÞX1;
x2 ¼ X2; x3 ¼ X3.

3.2 Consider the motion: x1 ¼ atþ X1; x2 ¼ X2; x3 ¼ X3, where the material coordinates Xi designate the

position of a particle at t ¼ 0.

(a) Determine the velocity and acceleration of a particle in both a material and a spatial description.

(b) If the temperature field in spatial description is given by y ¼ Ax1, what is its material description?

Find the material derivative of y using both descriptions of the temperature.

(c) Do part (b) if the temperature field is y ¼ Bx2.

3.3 Consider the motion x1 ¼ X1; x2 ¼ bX2
1t
2 þ X2; x3 ¼ X3, where Xi are the material coordinates.

(a) At t ¼ 0, the corners of a unit square are at A 0; 0; 0ð Þ; B 0; 1; 0ð Þ; C 1; 1; 0ð Þ and D 1; 0; 0ð Þ.
Determine the position of ABCD at t ¼ 1 and sketch the new shape of the square.

(b) Find the velocity n and the acceleration in a material description.

(c) Find the spatial velocity field.

3.4 Consider the motion: x1 ¼ bX2
2t

2 þ X1; x2 ¼ kX2tþ X2; x3 ¼ X3.

(a) At t ¼ 0, the corners of a unit square are at A 0; 0; 0ð Þ; B 0; 1; 0ð Þ; C 1; 1; 0ð Þ and D 1; 0; 0ð Þ.
Sketch the deformed shape of the square at t ¼ 2.

(b) Obtain the spatial description of the velocity field.

(c) Obtain the spatial description of the acceleration field.
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3.5 Consider the motion x1 ¼ kðsþ X1Þtþ X1; x2 ¼ X2; x3 ¼ X3.

(a) For this motion, repeat part (a) of the previous problem.

(b) Find the velocity and acceleration as a function of time of a particle that is initially at the origin.

(c) Find the velocity and acceleration as a function of time of the particles that are passing through the origin.

3.6 The position at time t of a particle initially at ðX1; X2; X3Þ is given by x1 ¼ X1 � 2bX2
2t
2;

x2 ¼ X2 � kX3t; x3 ¼ X3, where b ¼ 1 and k ¼ 1.

(a) Sketch the deformed shape, at time t ¼ 1, of the material line OA, which was a straight line at t ¼ 0

with the point O at ð0; 0; 0Þ and the point A at ð0; 1; 0Þ.
(b) Find the velocity at t ¼ 2 of the particle that was at ð1; 3; 1Þ at t ¼ 0.

(c) Find the velocity of the particle that is at ð1; 3; 1Þ at t ¼ 2.

3.7 The position at time t of a particle initially at ðX1; X2; X3Þ is given by: x1 ¼ X1 þ kðX1 þ X2Þt;
x2 ¼ X2 þ kðX1 þ X2Þt; x3 ¼ X3.

(a) Find the velocity at t ¼ 2 of the particle that was at ð1; 1; 0Þ at the reference time t ¼ 0.

(b) Find the velocity of the particle that is at ð1; 1; 0Þ at t ¼ 2.

3.8 The position at time t of a particle initially at ðX1; X2; X3Þ is given by: x1 ¼ X1 þ bX2
2t

2; x2 ¼ X2 þ kX2t;
x3 ¼ X3 where b ¼ 1 and k ¼ 1.

(a) For the particle that was initially at (1, 1, 0), what are its positions in the following instant of time?

t ¼ 0; t ¼ 1; t ¼ 2:
(b) Find the initial position for a particle that is at (1, 3, 2) at t ¼ 2.

(c) Find the acceleration at t ¼ 2 of the particle that was initially at (1, 3, 2).

(d) Find the acceleration of a particle which is at (1, 3, 2) at t ¼ 2:

3.9 (a) Show that the velocity field ni ¼ kxi=ð1þ ktÞ corresponds to the motion xi ¼ Xið1þ ktÞ.
(b) Find the acceleration of this motion in material description.

3.10 Given the two-dimensional velocity field: nx ¼ �2y; ny ¼ 2x. (a) Obtain the acceleration field and

(b) obtain the pathline equations.

3.11 Given the two-dimensional velocity field: nx ¼ kx; ny ¼ �ky. (a) Obtain the acceleration field and

(b) obtain the pathline equations.

3.12 Given the two-dimensional velocity field: nx ¼ k x2 � y2ð Þ; ny ¼ �2kxy. Obtain the acceleration field.

3.13 In a spatial description, the equation Dn=Dt ¼ @n=@tþ rnð Þn for evaluating the acceleration is nonlin-

ear. That is, if we consider two velocity fields nA and nB, then aA þ aB 6¼ aAþB, where aA and aB

denote respectively the acceleration fields corresponding to the velocity fields nA and nB each existing

alone, aAþB denotes the acceleration field corresponding to the combined velocity field nA þ nB. Verify
this inequality for the velocity fields:

nA ¼ �2x2e1 þ 2x1e2; nB ¼ 2x2e1 � 2x1e2:

3.14 Consider the motion: x1 ¼ X1; x2 ¼ X2 þ sin ptð Þ sin pX1ð Þ; x3 ¼ X3.

(a) At t ¼ 0, a material filament coincides with the straight line that extends from 0; 0; 0ð Þ to

ð1; 0; 0Þ. Sketch the deformed shape of this filament at t ¼ 1=2; t ¼ 1 and t ¼ 3=2.
(b) Find the velocity and acceleration in a material and a spatial description.

3.15 Consider the following velocity and temperature fields:

n ¼ a x1e1 þ x2e2ð Þ
x21 þ x22

; Y ¼ k x21 þ x22
� 	

:
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(a) Write the preceding fields in polar coordinates and discuss the general nature of the given velocity

field and temperature field (e.g., what do the flow and the isotherms look like?).

(b) At the point A 1; 1; 0ð Þ, determine the acceleration and the material derivative of the temperature

field.

3.16 Do the previous problem for the following velocity and temperature fields: n ¼ a �x2e1 þ x1e2ð Þ
x21 þ x22

;

Y ¼ k x21 þ x22
� 	

.

3.17 Consider the motion given by:

x ¼ Xþ X1ke1:

Let dXð1Þ ¼ ðdS1=
ffiffiffi
2

p Þðe1 þ e2Þ and dXð2Þ ¼ dS2=
ffiffiffi
2

p� 	ð�e1 þ e2Þ be differential material elements in

the undeformed configuration.

(a) Find the deformed elements dx 1ð Þ and dx 2ð Þ.
(b) Evaluate the stretches of these elements ds1=dS1 and ds2=dS2 and the change in the angle between them.

(c) Do part (b) for k ¼ 1 and k ¼ 10�2.

(d) Compare the results of part (c) to that predicted by the small strain tensor E.

3.18 Consider the motion x ¼ Xþ AX, where A is a small constant tensor (i.e., whose components are small

in magnitude and independent of Xi). Show that the infinitesimal strain tensor is given by

E ¼ ðAþ ATÞ=2.
3.19 At time t, the position of a particle, initially at ðX1; X2; X3Þ, is defined by: x1 ¼ X1 þ kX3;

x2 ¼ X2 þ kX2; x3 ¼ X3; k ¼ 10�5.

(a) Find the components of the strain tensor.

(b) Find the unit elongation of an element initially in the direction of e1 þ e2.

3.20 Consider the displacement field:

u1 ¼ kð2X2
1 þ X1X2Þ; u2 ¼ kX2

2; u3 ¼ 0; k ¼ 10�4

(a) Find the unit elongations and the change of angles for two material elements dX 1ð Þ ¼ dX1e1 and

dX 2ð Þ ¼ dX2e2 that emanate from a particle designated by X ¼ e1 þ e2.
(b) Sketch the deformed positions of these two elements.

3.21 Given the displacement field u1 ¼ kX1; u2 ¼ u3 ¼ 0; k ¼ 10�4. Determine the increase in length for

the diagonal element (OA) of the unit cube (see Figure P3.1) in the direction of e1 þ e2 þ e3 (a) by using

the strain tensor and (b) by geometry.

A

0

1

1

1

x2

x1

x3

FIGURE P3.1
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3.22 With reference to a rectangular Cartesian coordinate system, the state of strain at a point is given by the

matrix ½E� ¼
5 3 0

3 4 �1

0 �1 2

2
4

3
5� 10�4.

(a) What is the unit elongation in the direction of 2e1 þ 2e2 þ e3?
(b) What is the change in angle between two perpendicular lines (in the undeformed state) emanating

from the point and in the directions of 2e1 þ 2e2 þ e3 and 3e1 � 6e3?

3.23 For the strain tensor given in the previous problem, (a) find the unit elongation in the direction of

3e1 � 4e2 and (b) find the change in angle between two elements in the direction of 3e1 � 4e3 and

4e1 þ 3e3.

3.24 (a) Determine the principal scalar invariants for the strain tensor given here at left and (b) show that the

matrix given at the right cannot represent the same state of strain.

½E� ¼
5 3 0

3 4 �1

0 �1 2

2
4

3
5� 10�4;

3 0 0

0 6 0

0 0 2

2
4

3
5� 10�4:

3.25 Calculate the principal scalar invariants for the following two tensors. What can you say about the

results?

T 1ð Þ
h i

¼
0 t 0

t 0 0

0 0 0

2
4

3
5 and T 2ð Þ

h i
¼

0 �t 0

�t 0 0

0 0 0

2
4

3
5:

3.26 For the displacement field u1 ¼ kX2
1; u2 ¼ kX2X3; u3 ¼ k 2X1X3 þ X2

1

� 	
; k ¼ 10�6, find the maximum

unit elongation for an element that is initially at ð1; 0; 0Þ.
3.27 Given the matrix of an infinitesimal strain tensor as:

½E� ¼
k1X2 0 0

0 �k2X2 0

0 0 �k2X2

2
4

3
5:

(a) Find the location of the particle that does not undergo any volume change.

(b) What should be the relation between k1 and k2 so that no element changes its volume?

3.28 The displacement components for a body are u1 ¼ k X2
1 þ X2

� 	
; u2 ¼ k 4X2

3 � X1

� 	
; u3 ¼ 0; k ¼ 10�4.

(a) Find the strain tensor.

(b) Find the change of length per unit length for an element which was at ð1; 2; 1Þ and in the direction

of e1 þ e2.
(c) What is the maximum unit elongation at the same point ð1; 2; 1Þ?
(d) What is the change of volume for the unit cube with a corner at the origin and with three of its

edges along the positive coordinate axes?

3.29 For any motion, the mass of a particle (material volume) remains a constant (conservation of mass prin-

ciple). Considering the mass to be the product of its volume and its mass density, show that (a) for infin-

itesimal deformation r 1þ Ekkð Þ ¼ ro, where ro denote the initial density and r the current density.

(b) Use the smallness of Ekk to show that the current density is given by r ¼ ro 1� Ekkð Þ.
3.30 True or false: At any point in a body there always exist two mutually perpendicular material elements that

do not suffer any change of angle in an arbitrary small deformation of the body. Give reason(s) for this.
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3.31 Given the following strain components at a point in a continuum: E11 ¼ E12 ¼ E22 ¼ k; E33 ¼ 3k;
E13 ¼ E23 ¼ 0; k ¼ 10�6:
Does there exist a material element at the point which decreases in length under the deformation?

Explain your answer.

3.32 The unit elongations at a certain point on the surface of a body are measured experimentally by means

of three strain gages that are arranged 45� apart (called the 45� strain rosette) in the direction of

e1; e
0
1 ¼ e1 þ e2ð Þ= ffiffiffi

2
p

and e2. If these unit elongations are designated by a; b; c, respectively, what
are the strain components E11; E22 and E12?

3.33 (a) Do the previous problem, if the measured strains are 200� 10�6, 50� 10�6, and 100� 10�6 in the

direction e1; e
0
1 and e2, respectively. (b) Find the principal directions, assuming E31 ¼ E32 ¼ E33 ¼ 0.

(c) How will the result of part (b) be altered if E33 6¼ 0?

3.34 Repeat the previous problem with E11 ¼ E 0
11 ¼ E22 ¼ 1000� 10�6.

3.35 The unit elongations at a certain point on the surface of a body are measured experimentally by means

of strain gages that are arranged 60� apart (called the 60� strain rosette) in the direction of

e1; e1 þ
ffiffiffi
3

p
e2

� 	
=2 and �e1 þ

ffiffiffi
3

p
e2

� 	
=2. If these unit elongations are designated by a; b; c, respec-

tively, what are the strain components E11; E22 and E12?

3.36 If the 60� strain rosette measurements give a ¼ 2� 10�6; b ¼ 1� 10�6; c ¼ 1:5� 10�6, obtain

E11; E12 and E22. (Use the formulas obtained in the previous problem.)

3.37 Repeat the previous problem for the case a ¼ b ¼ c ¼ 2000� 10�6.

3.38 For the velocity field n ¼ kx22e1, (a) find the rate of deformation and spin tensors. (b) Find the rate of

extension of a material element dx ¼ dsn, where n ¼ e1 þ e2ð Þ= ffiffiffi
2

p
at x ¼ 5e1 þ 3e2.

3.39 For the velocity field n ¼ a ðtþ kÞ= 1þ x1ð Þf ge1, find the rates of extension for the following material

elements: dx 1ð Þ ¼ ds1e1 and dx 2ð Þ ¼ ds2=
ffiffiffi
2

p� 	
e1 þ e2ð Þ at the origin at time t ¼ 1.

3.40 For the velocity field n ¼ ðcos tÞ sin px1ð Þe2, (a) find the rate of deformation and spin tensors, and

(b) find the rate of extension at t ¼ 0 for the following elements at the origin: dx 1ð Þ ¼ ds1e1;
dx 2ð Þ ¼ ds2e2 and dx 3ð Þ ¼ ds3=

ffiffiffi
2

p� 	
e1 þ e2ð Þ.

3.41 Show that the following velocity components correspond to a rigid body motion: n1 ¼ x2 � x3;
n2 ¼ �x1 þ x3; n3 ¼ x1 � x2.

3.42 Given the velocity field n ¼ ð1=rÞer, (a) find the rate of deformation tensor and the spin tensor and

(b) find the rate of extension of a radial material line element.

3.43 Given the two-dimensional velocity field in polar coordinates: nr ¼ 0; ny ¼ 2r þ 4

r
.

(a) Find the acceleration at r ¼ 2 and (b) find the rate of deformation tensor at r ¼ 2.

3.44 Given the velocity field in spherical coordinates: nr ¼ 0; ny ¼ 0; nf ¼ Ar þ B

r2

� �
sin y:

(a) Determine the acceleration field and (b) find the rate of deformation tensor.

3.45 A motion is said to be irrotational if the spin tensor vanishes. Show that the following velocity field is

irrotational:

n ¼ �x2e2 þ x1e2
r2

; r2 ¼ x21 þ x22:
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3.46 Let dx 1ð Þ ¼ ds1n and dx 2ð Þ ¼ ds2m be two material elements that emanate from a particle P which at

present has a rate of deformation D.
(a) Consider ðD=DtÞ dx 1ð Þ � dx 2ð Þ� 	

to show that

1

ds1

D ds1ð Þ
Dt

þ 1

ds2

D ds2ð Þ
Dt

� 

cos y� sin y

Dy
Dt

¼ 2m �Dn;

where y is the angle between m and n.
(b) Consider the case of dx 1ð Þ ¼ dx 2ð Þ. What does the above formula reduce to?

(c) Consider the case where y ¼ p=2, i.e., dx 1ð Þ and dx 2ð Þ are perpendicular to each other. What does

the above formula reduce to?

3.47 Let e1; e2; e3 and D1; D2; D3 be the principal directions and the corresponding principal values

of a rate of deformation tensor D. Further, let dx 1ð Þ ¼ ds1e1, dx
2ð Þ ¼ ds2e2, and dx 3ð Þ ¼ ds3e3 be three

material elements. From ðD=DtÞ dx 1ð Þ � dx 2ð Þ � dx 3ð Þ� �
; show that

1

dV

D dVð Þ
Dt

¼ D1 þ D2 þ D3, where

dV ¼ ds1ds2ds3.

3.48 Consider an element dx ¼ dsn.
(a) Show that D=Dtð Þn ¼ DnþWn� n �Dnð Þn, where D is the rate of deformation tensor and W is

the spin tensor.

(b) Show that if n is an eigenvector of D, then Dn=Dt ¼ Wn ¼ v� n.

3.49 Given the following velocity field: n1 ¼ k x2 � 2ð Þ2x3; n2 ¼ �x1x2; n3 ¼ kx1x3 for an incompressible

fluid, determine the value of k such that the equation of mass conservation is satisfied.

3.50 Given the velocity field in cylindrical coordinates nr ¼ f ðr; yÞ; ny ¼ nz ¼ 0. For an incompressible

material, from the conservation of mass principle, obtain the most general form of the function f r; yð Þ.
3.51 An incompressible fluid undergoes a two-dimensional motion with nr ¼ k cos y=

ffiffi
r

p
. From the con-

sideration of the principle of conservation of mass, find ny, subject to the condition that

ny ¼ 0 at y ¼ 0.

3.52 Are the following two velocity fields isochoric (i.e., no change of volume)?

n ¼ x1e1 þ x2e2
r2

; r2 ¼ x21 þ x22 (i)

and

n ¼ �x2e1 þ x1e2
r2

; r2 ¼ x21 þ x22 (ii)

3.53 Given that an incompressible and inhomogeneous fluid has a density field given by r ¼ kx2. From the

consideration of the principle of conservation of mass, find the permissible form of velocity field for a

two-dimensional flow ðn3 ¼ 0Þ.
3.54 Consider the velocity field: n ¼ ax1

1þ kt
e1. From the consideration of the principle of conservation of

mass, (a) find the density if it depends only on time t, i.e., r ¼ rðtÞ, with rð0Þ ¼ r0, and (b) find the

density if it depends only on x1, i.e., r ¼ r̂ðx1Þ, with r̂ x0ð Þ ¼ r�.

3.55 Given the velocity field n ¼ a x1te1 þ x2te2ð Þ. From the consideration of the principle of conservation

of mass, determine how the fluid density varies with time if in a spatial description it is a function of

time only.
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3.56 Show that
@Wim

@Xk
¼ @Eik

@Xm
� @Ekm

@Xi
, where Eim ¼ 1

2

@ui
@Xm

þ @um
@Xi

� �
is the strain tensor and

Wim ¼ 1

2

@ui
@Xm

� @um
@Xi

� �
is the rotation tensor.

3.57 Check whether or not the following distribution of the state of strain satisfies the compatibility condi-

tions:

½E� ¼ k
X1 þ X2 X1 X2

X1 X2 þ X3 X3

X2 X3 X1 þ X3

2
4

3
5; k ¼ 10�4

3.58 Check whether or not the following distribution of the state of strain satisfies the compatibility condi-

tions:

½E� ¼ k
X2
1 X2

2 þ X2
3 X1X3

X2
2 þ X2

3 0 X1

X1X3 X1 X2
2

2
4

3
5; k ¼ 10�4

3.59 Does the displacement field u1 ¼ sin X1; u2 ¼ X3
1X2; u3 ¼ cos X3 correspond to a compatible strain

field?

3.60 Given the strain field E12 ¼ E21 ¼ kX1X2; k ¼ 10�4 and all other Eij ¼ 0. (a) Check the equations of

compatibility for this strain field and (b) by attempting to integrate the strain field, show that there does

not exist a continuous displacement field for this strain field.

3.61 Given the following strain components: E11 ¼ 1

a
f X2; X3ð Þ; E22 ¼ E33 ¼ � n

a
f X2; X3ð Þ; E12 ¼ E13 ¼

E23 ¼ 0: Show that for the strains to be compatible, f X2; X3ð Þ must be linear in X2 and X3.

3.62 In cylindrical coordinates r; y; zð Þ, consider a differential volume bounded by the three pairs of faces:

r ¼ r and r ¼ r þ dr; y ¼ y and y ¼ yþ dy; z ¼ z and z ¼ zþ dz. The rate at which mass is flowing

into the volume across the face r ¼ r is given by rnr rdyð Þ dzð Þ and similar expressions for the other

faces. By demanding that the net rate of inflow of mass must be equal to the rate of increase of mass

inside the differential volume, obtain the equation of conservation of mass in cylindrical coordinates.

Check your answer with Eq. (3.15.7).

3.63 Given the following deformation in rectangular Cartesian coordinates: x1 ¼ 3X3; x2 ¼ �X1;
x3 ¼ �2X2. Determine (a) the deformation gradient F, (b) the right Cauchy-Green tensor C and the

right stretch tensor U, (c) the left Cauchy-Green tensor B, (d) the rotation tensor R, (e) the Lagrangean
strain tensor E�, (f) the Euler strain tensor e�, (g) the ratio of deformed volume to initial volume, and (h)

the deformed area (magnitude and its normal) for the area whose normal was in the direction of e2 and
whose magnitude was unity for the undeformed area.

3.64 Do the previous problem for the following deformation:

x1 ¼ 2X2; x2 ¼ 3X3; x3 ¼ X1:

3.65 Do Prob. 3.63 for the following deformation:

x1 ¼ X1; x2 ¼ 3X3; x3 ¼ �2X2:

Problems for Chapter 3 151



3.66 Do Prob. 3.63 for the following deformation:

x1 ¼ 2X2; x2 ¼ �X1; x3 ¼ 3X3:

3.67 Given x1 ¼ X1 þ 3X2; x2 ¼ X2; x3 ¼ X3. Obtain (a) the deformation gradient F and the right

Cauchy-Green tensor C, (b) the eigenvalues and eigenvector of C, (c) the matrix of the stretch

tensor U and U�1 with respect to the ei-basis, and (d) the rotation tensor R with respect to the

ei-basis.

3.68 Verify that with respect to rectangular Cartesian base vectors, the right stretch tensor U and the rotation

tensor R for the simple shear deformation:

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3;

are given by: with f ¼ 1þ k2=4ð Þ�1=2
,

½U� ¼
f kf=2 0

kf=2 1þ k2=2ð Þf 0

0 0 1

2
4

3
5; ½R� ¼ f kf=2 0

�kf=2 f 0

0 0 1

2
4

3
5:

3.69 Let dX 1ð Þ ¼ dS1N
1ð Þ; dX 2ð Þ ¼ dS2N

2ð Þ be two material elements at a point P. Show that if y denotes

the angle between their respective deformed elements dx 1ð Þ ¼ ds1m and dx 2ð Þ ¼ ds2n, then

cosy ¼ CabN
1ð Þ
a N

2ð Þ
b =l1l2, where N 1ð Þ ¼ N

1ð Þ
a ea; N

2ð Þ ¼ N
2ð Þ
a ea, l1 ¼ ds1=dS1 and l2 ¼ ds2=dS2.

3.70 Given the following right Cauchy-Green deformation tensor at a point

½C� ¼
9 0 0
0 4 0
0 0 0:36

" #
:

(a) Find the stretch for the material elements that were in the direction of e1; e2 and e3.
(b) Find the stretch for the material element that was in the direction of e1 þ e2.
(c) Find cos y, where y is the angle between dx 1ð Þ and dx 2ð Þ and where dX 1ð Þ ¼ dS1e1 and

dX 2ð Þ ¼ dS2e1 deform into dx 1ð Þ ¼ ds1m and dx 2ð Þ ¼ ds2n.

3.71 Given the following large shear deformation:

x1 ¼ X1 þ X2; x2 ¼ X2; x3 ¼ X3:

(a) Find the stretch tensor U (hint: use the formula given in Prob. 3.68) and verify that U2 ¼ C, the
right Cauchy-Green deformation tensor.

(b) What is the stretch for the element that was in the direction e2?
(c) Find the stretch for an element that was in the direction of e1 þ e2.
(d) What is the angle between the deformed elements of dS1e1 and dS2e2?

3.72 Given the following large shear deformation:

x1 ¼ X1 þ 2X2; x2 ¼ X2; x3 ¼ X3:

(a) Find the stretch tensor U (hint: use the formula given in Prob. 3.68) and verify that U2 ¼ C, the
right Cauchy-Green deformation tensor.

(b) What is the stretch for the element that was in the direction e2?
(c) Find the stretch for an element that was in the direction of e1 þ e2.
(d) What is the angle between the deformed elements of dS1e1 and dS2e2?

152 CHAPTER 3 Kinematics of a Continuum



3.73 Show that for any tensor A X1; X2; X3ð Þ; @

@Xm
det A ¼ det Að Þ A�1

� 	
nj

@Ajn

@Xm
.

3.74 Show that if TU ¼ 0, where the eigenvalues of the real and symmetric tensor U are all positive (non-

zero), then T ¼ 0.

3.75 Derive Eq. (3.29.21), that is, Byy ¼ r@y
@ro

� �2

þ r@y
ro@yo

� �2

þ r@y
@zo

� �2

.

3.76 Derive Eq. (3.29.23), i.e., Brz ¼ @r

@ro

� �
@z

@ro

� �
þ @r

ro@yo

� �
@z

ro@yo

� �
þ @r

@zo

� �
@z

@zo

� �
.

3.77 From ro ¼ ro r; y; z; tð Þ; yo ¼ yo r; y; z; tð Þ; zo ¼ zo r; y; z; tð Þ, derive the components of B�1 with

respect to the basis at x.

3.78 Derive Eq. (3.29.47), that is, Cyoyo ¼
@r

ro@yo

� �2

þ r@y
ro@yo

� �2

þ @z

ro@yo

� �2

.

3.79 Derive Eq. (3.29.49), Croyo ¼
@r

ro@yo

� �
@r

@ro

� �
þ r@y

ro@yo

� �
r@y
@ro

� �
þ @z

ro@yo

� �
@z

@ro

� �
.

3.80 Derive the components of C�1 with respect to the bases at the reference position X.

3.81 Derive components of B with respect to the basis er; ey; ezf g at x for the pathline equations given by

r ¼ r X; Y; Z; tð Þ; y ¼ y X; Y; Z; tð Þ; z ¼ z X; Y; Z; tð Þ.
3.82 Derive the components of B�1 with respect to the basis er; ey; ezf g at x for the pathline equations given

by X ¼ X r; y; z; tð Þ; Y ¼ Y r; y; z; tð Þ; Z ¼ Z r; y; z; tð Þ.
3.83 Verify that (a) the components of B with respect to er; ey; ezf g can be obtained from FFT


 �
and (b) the

component of C, with respect to eor ; e
o
y; e

o
z

� �
can be obtained from FTF


 �
, where F½ � is the matrix of the

two-point deformation gradient tensor given in Eq. (3.29.12).

3.84 Given r ¼ ro; y ¼ yo þ kzo; z ¼ zo. (a) Obtain the components of the left Cauchy-Green tensor B, with
respect to the basis at the current configuration r; y; zð Þ. (b) Obtain the components of the right

Cauchy-Green tensor C with respect to the basis at the reference configuration.

3.85 Given r ¼ 2aX þ bð Þ1=2; y ¼ Y=a; z ¼ Z, where r; y; zð Þ are cylindrical coordinates for the current

configuration and X; Y; Zð Þ are rectangular coordinates for the reference configuration. (a) Obtain

the components of B½ � with respect to the basis at the current configuration and (b) calculate the change

of volume.

3.86 Given r ¼ r Xð Þ; y ¼ g Yð Þ; z ¼ h Zð Þ, where r; y; zð Þ and X; Y; Zð Þ are cylindrical and rectangular

Cartesian coordinates with respect to the current and the reference configuration respectively. Obtain

the components of the right Cauchy-Green tensor C with respect to the basis at the reference

configuration.
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CHAPTER

Stress and Integral Formulations
of General Principles 4
In the previous chapter, we considered the purely kinematic description of the motion of a continuum without

any consideration of the forces that cause the motion and deformation. In this chapter, we consider a means of

describing the forces in the interior of a body idealized as a continuum. It is generally accepted that matter is

formed of molecules, which in turn consist of atoms and subatomic particles. Therefore, the internal forces in

real matter are those between these particles. In the classical continuum theory where matter is assumed to be

continuously distributed, the forces acting at every point inside a body are introduced through the concept of

body forces and surface forces. Body forces are those that act throughout a volume (e.g., gravity, electrostatic

force) by a long-range interaction with matter or charges at a distance. Surface forces are those that act on a

surface (real or imagined), separating parts of the body. We assume that it is adequate to describe the surface

forces at a point on a surface through the definition of a stress vector, discussed in Section 4.1, which pays

no attention to the curvature of the surface at the point. Such an assumption is known as Cauchy’s stress
principle and is one of the basic axioms of classical continuum mechanics.

4.1 STRESS VECTOR

Let us consider a body depicted in Figure 4.1-1. Imagine a plane such as S, which passes through an arbitrary

internal point P and which has a unit normal vector n. The plane cuts the body into two portions. One portion

I
I

P
P

nn

S

S

II

F4

F1 F1

F2
F2

F3
ΔA ΔF

FIGURE 4.1-1
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lies on the side of the arrow of n (designated by II in the figure) and the other portion on the tail of n (desig-

nated by I). Considering portion I as a free body, there will be on plane S a resultant force DF acting on a

small area DA containing P. We define the stress vector (acting from II to I) at the point P on the plane S
as the limit of the ratio DF/DA as DA ! 0. That is, with tn denoting the stress vector,

tn ¼ lim
DA!0

DF
DA

: (4.1.1)

If portion II is considered as a free body, then by Newton’s law of action and reaction, we shall have a

stress vector (acting from I to II) t�n at the same point on the same plane equal and opposite to that given

by Eq. (4.1.1). That is,

tn ¼ �t�n: (4.1.2)

The subscript �n for t (i.e., t�n) indicates that outward normal for the portion II is in the negative

direction of n.
Next, let S be a surface (instead of a plane) passing the point P. Let DF be the resultant force on a small

area DS on the surface S. The Cauchy stress vector at P on S is defined as

t ¼ lim
DS! 0

DF

D S
: (4.1.3)

We now state the following principle, known as the Cauchy’s stress principle: The stress vector at any

given place and time has a common value on all parts of material having a common tangent plane at P
and lying on the same side of it. In other words, if n is the unit outward normal (i.e., a vector of unit length

pointing outward, away from the material) to the tangent plane, then

t ¼ t x; t; nð Þ; (4.1.4)

where the scalar t denotes time.

In the following section, we show from Newton’s second law that this dependence of the Cauchy’s stress

vector on the outward normal vector n can be expressed as

t ¼ T x; tð Þn; (4.1.5)

where T is a linear transformation.

4.2 STRESS TENSOR
According to Eq. (4.1.4), the stress vector on a plane passing through a given spatial point x at a given time

t depends only on the unit normal vector n to the plane. Thus, let T be the transformation such that

tn ¼ Tn: (4.2.1)

We wish to show that this transformation is linear. Let a small tetrahedron be isolated from the body with

the point P as one of its vertices (see Figure 4.2-1). The size of the tetrahedron will ultimately be made to

approach zero volume so that, in the limit, the inclined plane will pass through the point P. The outward normal

to the face PAB is �e1. Thus, the stress vector on this face is denoted by t�e1 and the force on the face is t�e1DA1,

where DA1 is the area of PAB. Similarly, the force acting on PBC, PAC and the inclined face ABC are

t�e2DA2; t�e3DA3, and tnDAn, respectively. Thus, fromNewton’s second law written for the tetrahedron, we haveX
F ¼ t�e1 DA1ð Þ þ t�e2 DA2ð Þ þ t�e3 DA3ð Þ þ tnDAn ¼ ma: (4.2.2)
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Since the mass m = (density)(volume) and the volume of the tetrahedron is proportional to the product

of three infinitesimal lengths (in fact, the volume equals 1=6ð ÞDx1Dx2Dx3), when the size of the tetrahe-

dron approaches zero, the right-hand side of Eq. (4.2.2) will approach zero faster than the terms on the

left, where the stress vectors are multiplied by areas, the product of two infinitesimal lengths. Thus, in

the limit, the acceleration term drops out exactly from Eq. (4.2.2). (We note that any body force, e.g.,

weight, that is acting will be of the same order of magnitude as that of the acceleration term and will also

drop out.) Thus, X
F ¼ t�e1 DA1ð Þ þ t�e2 DA2ð Þ þ t�e3 DA3ð Þ þ tnDAn ¼ 0: (4.2.3)

Let the unit normal vector of the inclined plane ABC be

n ¼ n1e1 þ n2e2 þ n3e3: (4.2.4)

The areas DA1, DA2 and DA3, being the projections of DAn on the coordinate planes, are related to

DAn by

DA1 ¼ n1DAn; DA2 ¼ n2DAn; DA3 ¼ n3DAn: (4.2.5)

Using Eq. (4.2.5), Eq. (4.2.3) becomes

t�e1n1 þ t�e2n2 þ t�e3n3 þ tn ¼ 0: (4.2.6)

But from the law of the action and reaction,

t�e1 ¼ �te1 ; t�e2 ¼ �te2 ; t�e3 ¼ �te3 ; (4.2.7)

therefore, Eq. (4.2.6) becomes

tn ¼ n1te1 þ n2te2 þ n3te3 : (4.2.8)

Now, using Eq. (4.2.4) and Eq. (4.2.8), Eq. (4.2.1) becomes

T n1e1 þ n2e2 þ n3e3ð Þ ¼ n1Te1 þ n2Te2 þ n3Te3: (4.2.9)

That is, the transformation T, defined by

tn ¼ Tn; (4.2.10)

is a linear transformation. It is called the stress tensor or the Cauchy stress tensor.

A

B C
P

x2

x3
x1

t−e2

t−e3

t−e1

nt

Δx3 Δx
1

Δx
2

FIGURE 4.2-1
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4.3 COMPONENTS OF STRESS TENSOR
According to Eq. (4.2.10) of the previous section, the stress vectors tei on the three coordinate planes (the

ei-planes) are related to the stress tensor T by

te1 ¼ Te1; te2 ¼ Te2; te3 ¼ Te3: (4.3.1)

By the definition of the components of a tensor [see Eq. (2.7.2)], we have

Tei ¼ Tmiem: (4.3.2)

Thus,

te1 ¼ T11e1 þ T21e2 þ T31e3;
te2 ¼ T12e1 þ T22e2 þ T32e3;
te3 ¼ T13e1 þ T23e2 þ T33e3:

(4.3.3)

Since te1 is the stress vector acting on the plane whose outward normal is e1, it is clear from the first equation

of Eq. (4.3.3) that T11 is its normal component and T21 and T31 are its tangential components. Similarly, T22 is
the normal component on the e2-plane and T12 and T32 are the tangential components on the same plane, and

so on.

We note that for each stress component Tij, the second index j indicates the plane on which the stress com-

ponent acts and the first index indicates the direction of the component; e.g., T12 is the stress component in the

direction of e1 acting on the plane whose outward normal is in the direction of e2. We also note that

the positive normal stresses are also known as tensile stresses, and negative normal stresses are known as

compressive stresses. Tangential stresses are also known as shearing stresses. Both T21 and T31 are shearing

stress components acting on the same plane (the e1-plane). Thus, the resultant shearing stress on this plane

is given by

t1 ¼ T21e2 þ T31e3: (4.3.4)

The magnitude of this shearing stress is given by

jt1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
21 þ T2

31

q
: (4.3.5)

Similarly, on e2-plane,

t2 ¼ T12e1 þ T32e3; (4.3.6)

and on e3-plane,

t3 ¼ T13e1 þ T23e2: (4.3.7)

From t ¼ Tn, the components of t are related to those of T and n by the equation

ti ¼ Tijnj; (4.3.8)

or, in a form more convenient for computation,

t½ � ¼ T½ � n½ �: (4.3.9)

Thus, it is clear that if the matrix ofT is known, the stress vector t on any inclined plane is uniquely determined

from Eq. (4.3.9). In other words, the state of stress at a point is completely characterized by the stress tensor T.
Also, since T is a second-order tensor, any one matrix of T determines the other matrices of T (see Section 2.18).

158 CHAPTER 4 Stress and Integral Formulations of General Principles



We should also note that some authors use the convention t ¼ TTn so that tei ¼ Tijej. Under that conven-
tion, for example, T21 and T23 are tangential components of the stress vector on the plane whose normal is e2,
and so on. These differences in meaning regarding the nondiagonal elements of T disappear if the stress

tensor is symmetric.

4.4 SYMMETRY OF STRESS TENSOR: PRINCIPLE OF MOMENT OF MOMENTUM
By the use of the moment of momentum equation for a differential element, we shall now show that the stress

tensor is generally a symmetric tensor.* Consider the free body diagram of a differential parallelepiped

isolated from a body, as shown in Figure 4.4-1. Let us find the moment of all the forces about an axis passing

through the center point A and parallel to the x3-axis:P
MAð Þ3 ¼ T21 Dx2ð Þ Dx3ð Þ Dx1=2ð Þ þ T21 þ DT21ð Þ Dx2ð Þ Dx3ð Þ Dx1=2ð Þ

� T12 Dx1ð Þ Dx3ð Þ Dx2=2ð Þ þ T12 þ DT12ð Þ Dx1ð Þ Dx3ð Þ Dx2=2ð Þ:
(4.4.1)

In writing Eq. (4.4.1), we have assumed the absence of body moments. Dropping the terms containing

small quantities of higher order, we obtainX
MAð Þ3 ¼ T21 � T12ð Þ Dx1ð Þ Dx2ð Þ Dx3ð Þ: (4.4.2)

Now, whether the element is in static equilibrium or not,X
MAð Þ3 ¼ I33a ¼ 0: (4.4.3)

This is because the angular acceleration term, I33a, is proportional to the moment of inertia I33, which is given

by ð1=12ÞðdensityÞDx1Dx2Dx3½ðDx1Þ2 þ ðDx2Þ2� and is therefore a small quantity of higher order compared

with the term (T21�T12)(Dx1)(Dx2)(Dx3). Thus,X
ðMAÞ3 ¼ ðT21 � T12ÞðDx1ÞðDx2ÞðDx3Þ ¼ 0: (4.4.4)
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x2
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T12

T22
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T12 + ΔT12

T11 + ΔT11

T21 + ΔT21
T21

Δx2

Δx1

FIGURE 4.4-1

*See Prob. 4.29 for a case in which the stress tensor is not symmetric.
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With similar derivations for the moments about the other two axes, we have

T12 ¼ T21; T13 ¼ T31; T23 ¼ T32: (4.4.5)

These equations state that the stress tensor is symmetric, i.e., T ¼ TT. Therefore, there are only six

independent stress components.

Example 4.4.1
The state of stress at a certain point is T ¼ �pI, where p is a scalar. Show that there is no shearing stress on any plane

containing this point.

Solution
The stress vector on any plane passing through the point with normal n is

tn ¼ Tn ¼ �pIn ¼ �pn:

Therefore, it is normal to the plane. This simple stress state is called a hydrostatic state of stress.

Example 4.4.2
With reference to a rectangular Cartesian coordinate system, the matrix of a state of stress at a certain point in a body

is given by

½T� ¼
2 4 3
4 0 0
3 0 �1

2
4

3
5MPa:

(a) Find the stress vector and the magnitude of the normal stress on a plane that passes through the point and is

parallel to the plane x1 þ 2x2 þ 2x3 � 6 ¼ 0.

(b) If e 0
1 ¼ 1

3
ð2e1 þ 2e2 þ e3Þ and e 0

2 ¼ 1ffiffiffi
2

p ðe1 � e2Þ; find T 0
12.

Solution
(a) The plane x1þ 2x2þ 2x3� 6¼ 0 has a unit normal given by

n ¼ 1

3
e1 þ 2e2 þ 2e3ð Þ:

The stress vector is obtained from Eq. (4.3.9) as

½t� ¼ ½T�½n� ¼ 1

3

2 4 3
4 0 0
3 0 �1

2
4

3
5 1

2
2

2
4
3
5 ¼ 1

3

16
4
1

2
4

3
5;

or

t ¼ 1

3
16e1 þ 4e2 þ e3ð ÞMPa:

The magnitude of the normal stress is, with Tn � T nð Þ nð Þ,

Tn ¼ t �n ¼ 1

9
16þ 8þ 2ð Þ ¼ 2:89MPa:
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(b) To find the primed components of the stress tensor, we have

T 0
12 ¼ e 0

1 �Te 0
2 ¼ 1

3
ffiffiffi
2

p ½ 2 2 1 �
2 4 3
4 0 0
3 0 �1

2
4

3
5 1

�1
0

2
4

3
5 ¼ 7

3
ffiffiffi
2

p ¼ 1:65MPa:

Example 4.4.3
The distribution of stress inside a body is given by the matrix

T½ � ¼
�p þ rgy 0 0

0 �p þ rgy 0
0 0 �p þ rgy

2
4

3
5;

where p, r, and g are constants. Figure 4.4-2(a) shows a rectangular block inside the body.

(a) What is the distribution of the stress vector on the six faces of the block?

(b) Find the total resultant force acting on the face y ¼ 0 and x ¼ 0.

Solution
(a) From t ¼ Tn, we have

On x ¼ 0; ½n� ¼ ½�1 0 0 �; ½t� ¼ ½ p � rgy 0 0 �;
On x ¼ a; ½n� ¼ ½þ1 0 0 �; ½t� ¼ ½�p þ rgy 0 0 �;
On y ¼ 0; ½n� ¼ ½ 0 �1 0 �; ½t� ¼ ½ 0 p 0 �;
On y ¼ b; ½n� ¼ ½ 0 þ1 0 �; ½t� ¼ ½ 0 � p þ rgb 0 �;
On z ¼ 0; ½n� ¼ ½ 0 0 �1 �; ½t� ¼ ½ 0 0 p � rgy �;
On z ¼ c; ½n� ¼ ½ 0 0 þ1 �; ½t� ¼ ½ 0 0 � p þ rgy �:

The distribution of the stress vector on four faces of the cube is shown in Figure 4.4-2(b).

c

a

b b

pO
x

y

z
(a) (b)

p-ρgy p-ρgy

p-ρgb

x

y

a

FIGURE 4.4-2
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(b) On the face y ¼ 0, the resultant force is

F1 ¼
ð
tdA ¼ p

ð
dA

� �
e2 ¼ pace2:

On the face x ¼ 0, the resultant force is

F2 ¼
ð

p � rgyð ÞdA
� �

e1 ¼
ð
pdA� rg

ð
ydA

� �
e1:

The second integral can be evaluated directly by replacing dA by cdy and integrating from y ¼ 0 to y ¼ b. Or,

since
Ð
ydA is the first moment of the face area about the z-axis, it is therefore equal to the product of the centroidal

distance and the total area. Thus,

F2 ¼ pbc � rgb2c

2

� �
e1:

4.5 PRINCIPAL STRESSES
From Section 2.23, we know that for any real symmetric stress tensor, there exist at least three mutually per-

pendicular principal directions (the eigenvectors of T). The planes having these directions as their normals are

known as the principal planes. On these planes, the stress vector is normal to the plane (i.e., no shearing

stresses) and the normal stresses are known as the principal stresses. Thus, the principal stresses (eigen-

values of T) include the maximum and the minimum values of normal stresses among all planes passing

through a given point.

The principal stresses are to be obtained from the characteristic equation of T, which may be written:

l3 � I1l
2 þ I2l� I3 ¼ 0; (4.5.1)

where

I1 ¼ T11 þ T22 þ T33;

I2 ¼ T11 T12

T21 T22

����
����þ T11 T13

T31 T33

����
����þ T22 T23

T32 T33

����
����;

I3 ¼ det T;

(4.5.2)

are the three principal scalar invariants of the stress tensor. For the computations of these principal directions,

refer to Section 2.22.

4.6 MAXIMUM SHEARING STRESSES
In this section, we show that the maximum shearing stress is equal to one-half the difference between the

maximum and the minimum principal stresses and acts on the plane that bisects the right angle between

the plane of maximum principal stress and the plane of minimum principal stress.
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Let e1, e2 and e3 be the principal directions of T and let T1, T2 and T3 be the principal stresses.

If n ¼ n1e1 þ n2e2 þ n3e3 is the unit normal to a plane, the components of the stress vector on the plane is

given by

t1
t2
t3

2
4

3
5 ¼

T1 0 0

0 T2 0

0 0 T3

2
4

3
5 n1

n2
n3

2
4

3
5 ¼

T1n1
T2n2
T3n3

2
4

3
5; (4.6.1)

i.e.,

t ¼ n1T1e1 þ n2T2e2 þ n3T3e3; (4.6.2)

and the normal stress on the same plane is given by

Tn ¼ n � t ¼ n21T1 þ n22T2 þ n23T3: (4.6.3)

Thus, if Ts denotes the magnitude of the total shearing stress on the plane, we have (see Figure 4.6-1)

T2
s ¼ jtj2 � T2

n ; (4.6.4)

i.e.,

T2
s ¼ T2

1n
2
1 þ T2

2n
2
2 þ T2

3n
2
3 � T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	2
: (4.6.5)

For a given set of values of T1; T2; T3ð Þ, we would like to find the maximum value of shearing stress Ts
and the plane(s), described by n1; n2; n3ð Þ, on which it acts. Looking at Eq. (4.6.5), it is clear that working

with T2
s is easier than working with Ts. For known values of T1; T2; T3ð Þ, Eq. (4.6.5) states that T2

s is a

function of n1, n2 and n3, i.e.,

T2
s ¼ f ðn1; n2; n3Þ: (4.6.6)

We wish to find the triples n1; n2; n3ð Þ for which the value of the function f is a maximum, subject to the

constraint that

n21 þ n22 þ n23 ¼ 1: (4.6.7)

Once the maximum value of T2
s is obtained, the maximum value of Ts is also obtained. We also note that

when n1; n2; n3ð Þ ¼ �1; 0; 0ð Þ, or 0;�1; 0ð Þ, or 0; 0;�1ð Þ, Eq. (4.6.5) gives Ts ¼ 0. This is simply because

t
Tn

T
s

n

FIGURE 4.6-1
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these are principal planes on which the shearing stress is zero. Clearly, Ts ¼ 0 is the minimum value for the

function in Eq. (4.6.5).

Taking the total derivative of the function in Eq. (4.6.6), we obtain, for stationary values of T2
s ,

dT2
s ¼ @T2

s

@n1
dn1 þ @T2

s

@n2
dn2 þ @T2

s

@n3
dn3 ¼ 0: (4.6.8)

If dn1; dn2 and dn3 can vary independently of one another, then Eq. (4.6.8) gives the familiar condition for

the determination of the triple n1; n2; n3ð Þ for the stationary value of T2
s ,

@T2
s

@n1
¼ 0;

@T2
s

@n2
¼ 0;

@T2
s

@n3
¼ 0: (4.6.9)

But dn1; dn2 and dn3 cannot vary independently. Indeed, taking the total derivative of Eq. (4.6.7), i.e.,

n21 þ n22 þ n23 ¼ 1, we obtain

n1dn1 þ n2dn2 þ n3dn3 ¼ 0: (4.6.10)

Comparing Eq. (4.6.10) with Eq. (4.6.8), we arrive at the following equations:

@T2
s

@n1
¼ ln1;

@T2
s

@n2
¼ ln2;

@T2
s

@n3
¼ ln3: (4.6.11)

The three equations in Eq. (4.6.11), together with the equation n21 þ n22 þ n23 ¼ 1 [i.e., Eq. (4.6.7)], are four

equations for the determination of the four unknowns n1, n2, n3 and l. The multiplier l is known as the

Lagrange multiplier, and this method of determining the stationary value of a function subject to a constraint

is known as the Lagrange multiplier method.
Using Eq. (4.6.5), we have, from Eqs. (4.6.11),

2n1 T2
1 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T1


 � ¼ n1l; (4.6.12)

2n2 T2
2 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T2


 � ¼ n2l; (4.6.13)

2n3 T2
3 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T3


 � ¼ n3l: (4.6.14)

The four nonlinear algebraic equations, Eqs. (4.6.12), (4.6.13), (4.6.14), and (4.6.7), for the four unknowns

n1; n2; n3; lð Þ{ have many sets of solution for a given set of values of T1; T2; T3ð Þ. Corresponding to each

set of solution, the stationary value T2
s , on the plane whose normal is given by n1; n2; n3ð Þ, can be obtained

from Eq. (4.6.5), i.e.,

T2
s ¼ T2

1n
2
1 þ T2

2n
2
2 þ T2

3n
2
3 � T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	2
:

Among the stationary values will be the maximum and the minimum values of T2
s . Table 4.1 summarizes

the solutions. (See Appendix 4.1 for details.)

We note that n1; n2; 0ð Þ and �n1;�n2; 0ð Þ represent the same plane. On the other hand, n1; n2; 0ð Þ and
n1;�n2; 0ð Þ are two distinct planes that are perpendicular to each other. Thus, although there are mathemati-

cally 18 sets of roots, there are only nine distinct planes.

{The value of the Lagrangean multiplier l does not have any significance and can be simply ignored once the solutions to the system

of equations are obtained.
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Three of the planes are the principal planes, on each of which the shearing stress is zero (as it should be),

which is the minimum value of the magnitude of shearing stress. The other six planes in general have nonzero

shearing stresses. We also note from the third column of the table that those two planes that are perpendicular

to each other have the same magnitude of shearing stresses. This is because the stress tensor is symmetric.

The values of T2
s given in the third column are the stationary values T2

s , of which zero is the minimum.

The maximum value of T2
s is the maximum of the values in the third column. Thus, the maximum magnitude

of shearing stress is given by the maximum of the following three values:

jT1 � T2j
2

;
jT1 � T3j

2
;

jT2 � T3j
2

: (4.6.15)

In other words,

ðTsÞmax ¼
ðTnÞmax � ðTnÞmin

2
; (4.6.16)

where ðTnÞmax and ðTnÞmin are the largest and the smallest normal stresses, respectively. The two mutually

perpendicular planes, on which this maximum shearing stress acts, bisect the planes of the largest and the

smallest normal stress.

It can also be shown that on the plane of maximum shearing stress, the normal stress is

Tn ¼ ðTnÞmax þ ðTnÞmin

2
: (4.6.17)

Table 4.1 Stationary Values of T 2
s and the Corresponding Planes

ðn1; n2; n3Þ, n ¼ n1e1 þ n2e2 þ n3e3,
ðe1; e2; e3Þ Are Principal Directions The Plane

Stationary
Value of T 2

s

ð1;0; 0Þ and ð�1; 0; 0Þ, i.e., n ¼ �e1 e1-plane 0

ð0;1; 0Þ and ð0;�1; 0Þ i.e., n ¼ �e2 e2-plane 0

ð0;0; 1Þ and ð0; 0;�1Þ i.e., n ¼ �e3 e3-plane 0

ð1=
ffiffiffiffi
2

p
Þð1; 1;0Þ and ð1=

ffiffiffi
2

p
Þð�1;�1;0Þ

i.e., n ¼ �ð1=
ffiffiffi
2

p
Þðe1 þ e2Þ

The plane bisects e1-plane and e2-plane in the

first and third quadrant

T1 � T2
2

� �2

ð1=
ffiffiffiffi
2

p
Þð1;�1; 0Þ and ð1=

ffiffiffiffi
2

p
Þð�1; 1;0Þ

i.e., n ¼ �ð1=
ffiffiffi
2

p
Þðe1 � e2Þ

The plane bisects e1-plane and e2-plane in the

second and fourth quadrant

T1 � T2
2

� �2

ð1=
ffiffiffi
2

p
Þð1; 0;1Þ and ð1=

ffiffiffi
2

p
Þð�1;0;�1Þ

i.e., n ¼ �ð1= ffiffiffi
2

p Þðe1 þ e3Þ
The plane bisects e1-plane and e3-plane in the

first and third quadrant

T1 � T3
2

� �2

ð1=
ffiffiffi
2

p
Þð1; 0;�1Þ and ð1=

ffiffiffi
2

p
Þð�1;0;1Þ

i.e., n ¼ �ð1= ffiffiffi
2

p Þðe1 � e3Þ
The plane bisects e1-plane and e3-plane in the

second and fourth quadrant

T1 � T3
2

� �2

ð1=2Þð0; 1; 1Þ and ð1=2Þð0 ;�1 ;�1Þ
i.e., n ¼ �ð1= ffiffiffi

2
p Þðe2 þ e3Þ

The plane bisects e2-plane and e3-plane in the

first and third quadrant

T2 � T3
2

� �2

ð1=
ffiffiffiffi
2

p
Þð0; 1;�1Þ and ð1=

ffiffiffiffi
2

p
Þð0 ;�1 ; 1Þ

i.e., n ¼ �ð1= ffiffiffi
2

p Þðe2 � e3Þ
The plane bisects e2-plane and e3-plane in the

second and fourth quadrant

T2 � T3
2

� �2
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If two of the principal stresses are equal, say, T1 ¼ T2 6¼ T3, then, in addition to the solutions listed in the

table, infinitely many other solutions can be obtained by rotating e1 and e2 axes about the e3 axis. Their

stationary values of Ts, however, remain the same as those before the rotation. Finally, if T1 ¼ T2 ¼ T3, then
there is zero shearing stress on all the planes.

Example 4.6.1
If the state of stress is such that the components T13, T23 and T33 are equal to zero, it is called a state of plane stress.

(a) For this state of plane stress, find the principal values and the corresponding principal directions. (b) Determine

the maximum shearing stress.

Solution

(a) For the stress matrix

T½ � ¼
T11 T12 0

T21 T22 0

0 0 0

2
64

3
75; (4.6.18)

the characteristic equation is

l½l2 � ðT11 þ T22Þlþ ðT11T22 � T 2
12Þ� ¼ 0: (4.6.19)

Therefore, l ¼ 0 is an eigenvalue and its corresponding eigenvector is obviously n ¼ e3. The remaining

eigenvalues are

T1
T2

¼
T11 þ T22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T11 � T22ð Þ2 þ 4T 2

12

q
2

:

8<
: (4.6.20)

To find the corresponding eigenvectors, we set Tij � ldij
� 	

nj ¼ 0 and obtain, for either l ¼ T1 or T2,

T11 � lð Þn1 þ T12n2 ¼ 0

T12n1 þ T22 � lð Þn2 ¼ 0

0� lð Þn3 ¼ 0

(4.6.21)

The last equation gives n3¼ 0. Let n ¼ cos y e1 þ sin y e2 (see Figure 4.6-2); then, from the first of Eq. (4.6.21),

we have

tan y ¼ n2
n1

¼ � T11 � l
T12

(4.6.22)

θ

x2

x1

n

FIGURE 4.6-2
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(b) Since the third eigenvalue T3 is zero, the maximum shearing stress will be the greatest of the following three

values:

jT1j
2

;
jT2j
2

; and
T1 � T2

2

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T11 � T22ð Þ2 þ 4T 2

12

q
2

(4.6.23)

Example 4.6.2
Do the previous example for the following state of stress:T12 ¼ T21 ¼ 1000 MPa. All other Tij are zero.

Solution
From Eq. (4.6.20), we have

T1
T2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1000ð Þ2

q
2

¼ �1000 MPa

8<
:

Corresponding to the maximum normal stress T1 ¼ 1000MPa, Eq. (4.6.22) gives

tan y1 ¼ � 0� 1000

1000
¼ þ1; i:e:; y1 ¼ 45�;

and corresponding to the minimum normal stress T2 ¼ �1000 MPa (i.e., maximum compressive stress),

tan y2 ¼ � 0� �1000ð Þ
1000

¼ �1; i:e:; y1 ¼ �45�:

The maximum shearing stress is given by

Tsð Þmax ¼ 1000� �1000ð Þ
2

¼ 1000MPa;

which acts on the plane bisecting the planes of maximum and minimum normal stress, i.e., it acts on the e1-plane

and the e2-plane.

Example 4.6.3

Given ½T� ¼
100 0 0
0 100 0
0 0 500

2
4

3
5MPa, Determine the maximum shearing stress and the planes on which it acts.

Solution
Here we have T1 ¼ T2 ¼ 100 MPa; T3 ¼ 500MPa. Thus, the maximum shearing stress is

Ts ¼ 500� 100

2
¼ 200MPa:

The planes on which it acts include not only the four planes e1 � e3ð Þ=
ffiffiffi
2

p
and e2 � e3ð Þ=

ffiffiffi
2

p
but also any plane

n1e1 þ n2e2 � 1ffiffiffi
2

p e3

� �
, where n2

1 þ n2
2 þ

1

2
¼ 1. In other words, these planes are tangent to the conical surface of

the right circular cone, with e3 as its axis and with an angle of 45� between the generatrix and the axis.

4.6 Maximum Shearing Stresses 167



4.7 EQUATIONS OF MOTION: PRINCIPLE OF LINEAR MOMENTUM
In this section, we derive the differential equations of motion for any continuum in motion. The basic

postulate is that each particle of the continuum must satisfy Newton’s law of motion.

Figure 4.7-1 shows the stress vectors that act on the six faces of a small rectangular element isolated from

the continuum in the neighborhood of the position designated by xi.
Let B ¼ Biei be the body force (such as weight) per unit mass, r be the mass density at xi, and a be

the acceleration of a particle currently at the position xi; then Newton’s law of motion takes the form, valid

in rectangular Cartesian coordinate systems,

te1ðx1 þ Dx1; x2; x3Þ þ t�e1ðx1; x2; x3Þf gðDx2Dx3Þ þ te2ðx1; x2 þ Dx2; x3Þ þ t�e2ðx1; x2; x3Þf gðDx1Dx3Þ
þ te3ðx1; x2; x3 þ Dx3Þ þ t�e3ðx1; x2; x3Þf gðDx1Dx2Þ þ rBDx1Dx2Dx3 ¼ ðrDx1Dx2Dx3Þa:

(i)

Since t�e1 ¼ �te1 ,

te1ðx1 þ Dx1; x2; x3Þ þ t�e1 ðx1; x2; x3Þ ¼
te1 ðx1 þ Dx1; x2; x3Þ � te1ðx1; x2; x3Þ

Dx1

� 

Dx1: (ii)

Similarly,

te2ðx1; x2 þ Dx2; x3Þ þ t�e2ðx1; x2; x3Þf g ¼ te2ðx1; x2 þ Dx2; x3Þ � te2ðx1; x2; x3Þ
Dx2

� 

Dx2; etc: (iii)

Thus, Eq. (i) becomes

te1ðx1 þ Dx1; x2; x3Þ � te1ðx1; x2; x3Þ
Dx1

8<
:

9=
;þ te2ðx1; x2 þ Dx2; x3Þ � te2ðx1; x2; x3Þ

Dx2

8<
:

9=
;

þ te3ðx1; x2; x3 þ Dx3Þ � te3ðx1; x2; x3Þ
Dx3

8<
:

9=
;þ rB ¼ ra:

(4.7.1)

Letting Dxi ! 0, we obtain from the preceding equation,

@te1
@x1

þ @te2
@x2

þ @te3
@x3

þ rB ¼ ra or
@tej
@xj

þ rBjej ¼ rajej: (4.7.2)

Δx 3 Δx1

te2
 (x1, x2 + Δx2, x3)

te3
 (x1, x2, x3 + Δx3)

te1
 (x1 + Δx1, x2, x3)

t-e3
 (x1, x2, x3)

t-e2
 (x1, x2, x3)

t-e1
 (x1, x2, x3)

x2

x1
x3

Δx
2

FIGURE 4.7-1
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Since tej ¼ Tej ¼ Tijei, we have (noting that all ei are of fixed directions in Cartesian coordinates)

@Tij
@xj

ei þ rBiei ¼ raiei: (4.7.3)

In invariant form, the preceding equation is

divTþ rB ¼ ra; (4.7.4)

and in Cartesian component form

@Tij
@xj

þ rBi ¼ rai: (4.7.5)

These are the equations that must be satisfied for any continuum in motion, whether it is a solid or a fluid.

They are called Cauchy’s equations of motion. If the acceleration vanishes, then Eq. (4.7.5) reduces to the

static equilibrium equation:

@Tij
@xj

þ rBi ¼ 0: (4.7.6)

Example 4.7.1
In the absence of body forces, does the following stress distribution satisfy the equations of equilibrium? In these

equations n is a constant.

T11 ¼ x22 þ nðx21 � x22 Þ; T12 ¼ �2nx1x2; T22 ¼ x21 þ nðx22 � x21 Þ;
T23 ¼ T13 ¼ 0; T33 ¼ nðx21 þ x22 Þ:

Solution
We have

@T1j
@xj

¼ @T11
@x1

þ @T12
@x2

þ @T13
@x3

¼ 2nx1 � 2nx1 þ 0 ¼ 0;

@T2j
@xj

¼ @T21
@x1

þ @T22
@x2

þ @T23
@x3

¼ �2nx2 þ 2nx2 þ 0 ¼ 0;

and

@T3j
@xj

¼ @T31
@x1

þ @T32
@x2

þ @T33
@x3

¼ 0þ 0þ 0 ¼ 0:

Therefore, the given stress distribution does satisfy the equilibrium equations.

Example 4.7.2
Write the equations of motion for the case where the stress components have the form Tij ¼ �pdij , where

p ¼ p x1; x2; x3; tð Þ.
Solution
For the given Tij,

@Tij
@xj

¼ � @p

@xj
dij ¼ � @p

@xi
:
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Therefore, from Eq. (4.7.6), we have

� @p

@xi
þ rBi ¼ rai ; (4.7.7)

or

�rp þ rB ¼ ra: (4.7.8)

4.8 EQUATIONS OF MOTION IN CYLINDRICAL AND SPHERICAL COORDINATES
In Chapter 2, we presented the components of div T in cylindrical and in spherical coordinates. Using those

formulas [Eqs. (2.34.8) to (2.34.10) and Eqs. (2.35.33) to (2.35.35)], we have the following equations of

motion (see also Prob. 4.36).

Cylindrical coordinates:

@Trr
@r

þ 1

r

@Try
@y

þ Trr � Tyy
r

þ @Trz
@z

þ rBr ¼ rar; (4.8.1)

@Tyr
@r

þ 1

r

@Tyy
@y

þ Try þ Tyr
r

þ @Tyz
@z

þ rBy ¼ ray; (4.8.2)

@Tzr
@r

þ 1

r

@Tzy
@y

þ @Tzz
@z

þ Tzr
r

þ rBz ¼ raz: (4.8.3)

For symmetric stress tensors, Try þ Tyr ¼ 2Try in Eq. (4.8.2).

Spherical coordinates:

1

r2
@ r2Trrð Þ

@r
þ 1

r sin y
@ Try sin yð Þ

@y
þ 1

r sin y
@Trf
@f

� Tyy þ Tff
r

þ rBr ¼ rar; (4.8.4)

1

r3
@ r3Tyrð Þ

@r
þ 1

r sin y
@ Tyy sin yð Þ

@y
þ 1

r sin y
@Tyf
@f

þ Try � Tyr � Tff cot y
r

þ rBy ¼ ray; (4.8.5)

1

r3
@ r3Tfr
� 	
@r

þ 1

r sin y
@ Tfy sin y
� 	

@y
þ 1

r sin y
@Tff
@f

þ Trf � Tfr þ Tyf cot y
r

þ rBf ¼ raf: (4.8.6)

For symmetric stress tensors, Try � Tyr ¼ 0 and Trf � Tfr ¼ 0 in the preceding equations.

Example 4.8.1
The stress field for the problem of an infinite elastic space loaded by a concentrated force at the origin (the Kelvin

problem) is given by the following stress distribution in cylindrical coordinates:

Trr ¼ A
z

R3
� 3r2z

R5

0
@

1
A; Tyy ¼ Az

R3
; Tzz ¼ �A

z

R3
þ 3z3

R5

0
@

1
A;

Trz ¼ �A
r

R3
þ 3rz2

R5

0
@

1
A; Try ¼ Tzy ¼ 0;
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where R2 ¼ r2 þ z2 and A is a constant related to the load. Verify that the given distribution of stress is in equilibrium

in the absence of body forces.

Solution
From R2 ¼ r2 þ z2, we obtain

@R

@r
¼ r

R
;
@R

@z
¼ z

R
.

Thus,

@Trr
@r

¼ A � 3z

R4

@R

@r
� 6rz

R5
þ 15r2z

R6

@R

@r

� �
¼ A �3zr

R5
� 6rz

R5
þ 15r3z

R7

� �
;

Trr � Tyy
r

¼ �A
3rz

R5

� �

@Trz
@z

¼ �A � 3r

R4

@R

@z
þ 6rz

R5
� 15rz2

R6

@R

@z

� �
¼ A

3zr

R5
� 6rz

R5
þ 15rz3

R7

� �
:

The left-hand side of Eq. (4.8.1) becomes

A � 3zr

R5
� 6rz

R5
þ 15r3z

R7
� 3rz

R5
þ 3zr

R5
� 6rz

R5
þ 15rz3

R7

0
@

1
A ¼ A � 15rz

R5
þ 15rz

R7
fr2 þ z2g

0
@

1
A

¼ A � 15rz

R5
þ 15rz

R5

0
@

1
A ¼ 0:

In other words, the r-equation of equilibrium is satisfied. Since Try ¼ Tyz ¼ 0 and Tyy is independent of y, the
second equation of equilibrium is also satisfied. The third equation of equilibrium can be similarly verified

(see Prob. 4.37).

4.9 BOUNDARY CONDITION FOR THE STRESS TENSOR
If on the boundary of some body there are applied distributive forces, we call them surface tractions. We wish

to find the relation between the surface tractions and the stress field that is defined within the body.

t

n

FIGURE 4.9-1
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If we consider an infinitesimal tetrahedron cut from the boundary of a body with its inclined face

coinciding with the plane tangent to the boundary face (Figure 4.9-1), then, as in Section 4.1, we obtain

t ¼ Tn; (4.9.1)

where n is the unit outward normal vector to the boundary, T is the stress tensor evaluated at the boundary,

and t is the force vector per unit area on the boundary. Equation (4.9.1) is called the stress boundary condi-
tion. The special case of t ¼ 0 is known as the traction-free condition.

Example 4.9.1
Given the following stress field in a thick-wall elastic cylinder:

Trr ¼ Aþ B

r2
; Tyy ¼ A� B

r2
; Try ¼ Trz ¼ Tyz ¼ Tzz ¼ 0;

where A and B are constants. (a) Verify that the given state of stress satisfies the equations of equilibrium in the

absence of body forces. (b) Find the stress vector on a cylindrical surface r ¼ a, and (c) if the surface traction on

the inner surface r ¼ ri is a uniform pressure pi and the outer surface r ¼ ro is free of surface traction, find the

constant A and B.

Solution
(a) With Try ¼ Trz ¼ Tyz ¼ Tzz ¼ 0 and Tyy depending only on r, we only need to check the r-equation of equi-

librium. We have

@Trr
@r

þ 1

r

@Try
@y

þ Trr � Tyy
r

þ @Trz
@z

¼ � 2B

r3
þ 0þ 2B

r3
þ 0 ¼ 0:

Thus, all equations of equilibrium are satisfied.

(b) The unit outward normal vector to a cylindrical surface at r ¼ a is n ¼ er. Thus, the stress vector on this

surface is given by

tr

ty

tz

2
64

3
75 ¼

Trr 0 0

0 Tyy 0

0 0 0

2
64

3
75

1

0

0

2
64
3
75 ¼

Trr

0

0

2
64

3
75;

i.e.,

t ¼ Trrer þ 0ey þ 0ez ¼ Aþ B

a2

� �
er :

(c) The boundary conditions are:

At r ¼ ro ; Trr ¼ 0 and at r ¼ ri ; Trr ¼ �pi :

Thus,

Aþ B

r2i
¼ �pi and Aþ B

r2o
¼ 0:
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The preceding two equations give

A ¼ pi r
2
i

r2o � r2i
; B ¼ � pi r

2
i r

2
o

r2o � r2i
;

and the state of stress is given by

Trr ¼ pi r
2
i

r2o � r2i
1� r2o

r2

� �
; Tyy ¼ pi r

2
i

r2o � r2i
1þ r2o

r2

� �
:

Example 4.9.2
It is known that the equilibrium stress field in an elastic spherical shell under the action of external and internal

pressure in the absence of body forces is of the form

Trr ¼ A� 2B

r3
; Tyy ¼ Tff ¼ Aþ B

r3
; Try ¼ Trf ¼ Tyf ¼ 0:

(a) Verify that the stress field satisfies the equations of equilibrium in the absence of body forces.

(b) Find the stress vector on a spherical surface r ¼ a.

(c) Determine the constants A and B if the inner surface of the shell is subject to a uniform pressure pi and the

outer surface is free of surface traction.

Solution
(a) With

r2Trr ¼ Ar2 � 2B

r
;

1

r2
@

@r
r2Trr
� 	 ¼ 2A

r
þ 2B

r4
; Try ¼ Trf ¼ 0 and

Tyy þ Tff
r

¼ 2A

r
þ 2B

r4
;

the left-hand side of the r-equation of equilibrium [see Eq. (4.8.4)] is

1

r2
@ r2Trr
� 	
@r

þ 1

r sin y
@ Try sin yð Þ

@y
þ 1

r sin y
@Trf
@f

� Tyy þ Tff
r

¼ 2A

r
þ 2B

r4

0
@

1
Aþ 0þ 0� 2A

r
þ 2B

r4

0
@

1
A ¼ 0;

i.e., the r-equation of equilibrium is satisfied. The other two equations can be similarly verified (see

Prob. 4.40).

(b) The unit outward normal vector to the spherical surface r ¼ a is n ¼ er. Thus, the stress vector on this surface

is given by

tr
ty
tf

2
4

3
5 ¼

Trr 0 0
0 Tyy 0
0 0 Tff

2
4

3
5 1

0
0

2
4
3
5 ¼

Trr
0
0

2
4

3
5;

i.e.,

t ¼ Trrer þ 0ey þ 0ef ¼ A� 2B

a3

� �
er :
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(c) The boundary conditions are

At r ¼ ro ; Trr ¼ 0 and at r ¼ ri ; Trr ¼ �pi :

Thus,

A� 2B

r3o
¼ 0 and A� 2B

r3i
¼ �pi :

The preceding two equations give

A ¼ pi r
3
i

r3o � r3i
� 	 and B ¼ pi r

3
i r

3
o

2 r3o � r3i
� 	 :

The state of stress is

Trr ¼ pi r
3
i

r3o � r3i
� 	 1� r3o

r3

� �
; Tyy ¼ Tff ¼ pi r

3
i

r3o � r3i
� 	 1þ r3o

2r3

� �
:

4.10 PIOLA KIRCHHOFF STRESS TENSORS
Cauchy stress tensor is defined in Section 4.2 based on the differential area at the current position. Stress

tensors based on the undeformed area can also be defined. They are known as the first and second Piola-
Kirchhoff stress tensors. It is useful to be familiar with them not only because they appear in many works

on continuum mechanics but also because one particular tensor may be more suitable in a particular problem.

For example, there may be situations in which it is more convenient to formulate equations of motion (or

equilibrium) with respect to the reference configuration instead of the current configuration. In this case, the

use of the first Piola-Kirchhoff stress tensor results in the equations that are of the same form as the familiar

Cauchy equations of motion (see Section 4.11). As another example, in finite deformations, depending on

whether D (the rate of deformation) or DF/Dt (F being the deformation gradient) or DE*/Dt (E* being

Lagrangian deformation tensor) are used, the calculation of stress power (the rate at which work is done to

change the volume and shape of a particle of unit volume) is most conveniently obtained using the Cauchy

stress tensor, the first Piola-Kirchhoff stress tensor, or the second Piola-Kirchhoff stress tensor, respectively

(see Section 4.13).

Also, in Example 5.57.3 of Chapter 5, we will see that T ¼ f(C), where T is Cauchy’s stress tensor and C
is the right Cauchy-Green deformation tensor, is not an acceptable form of constitutive equation. On the other

hand, ~T ¼ f Cð Þ is acceptable, where ~T is the second Piola-Kirchhoff stress tensor.

Let dAo and dA be the same differential material area at the reference time to and the current time t,
respectively. We may refer to dAo as the undeformed area and dA as the deformed area. These two areas

in general have different orientations. We let the unit normal to the undeformed area be no and to the

deformed area be n. We may consider each area as a vector having a magnitude and a direction. For example,

dAo ¼ dAono and dA ¼ dAn. Let df be the force acting on the deformed area dA ¼ dAn. In Section 4.1, we

defined the Cauchy stress vector t and the associated Cauchy stress tensor T based on the deformed area

dA ¼ dAn, that is,

df ¼ tdA; (4.10.1)
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and

t ¼ Tn: (4.10.2)

In this section, we define two other pairs of (pseudo) stress vectors and tensors, based on the undeformed

area dAo ¼ dAono.
(A) The first Piola-Kirchhoff stress tensor. Let

df � todAo: (4.10.3)

The stress vector to, defined by the preceding equation, is a pseudo-stress vector in that, being based on the

undeformed area, it does not describe the actual intensity of the force df, which acts on the deformed area

dA ¼ dAn. We note that to has the same direction as the Cauchy stress vector t.
The first Piola-Kirchhoff stress tensor (also known as the Lagrangian stress tensor) is a linear transforma-

tion To such that

to ¼ Tono: (4.10.4)

The relation between the first Piola-Kirchhoff stress tensor and the Cauchy stress tensor can be obtained as

follows: From

df ¼ tdA ¼ todAo; (4.10.5)

we have

to ¼ dA

dAo

� �
t: (4.10.6)

Using Eq. (4.10.2) and Eq. (4.10.4), Eq. (4.10.6) becomes

Tono ¼ dA

dAo

� �
Tn ¼ T dAnð Þ

dAo

: (4.10.7)

In Section 3.27, we obtained the relation between dAo ¼ dAono and dA ¼ dAn as

dAn ¼ dAoJðF�1ÞTno: (4.10.8)

where J ¼ jdetFj. Thus,
Tono ¼ JTðF�1ÞTno: (4.10.9)

The preceding equation is to be true for all no; therefore,

To ¼ JTðF�1ÞT; (4.10.10)

and

T ¼ 1

J
ToF

T: (4.10.11)

These are the desired relationships. In Cartesian component form, we have

Toð Þij ¼ JTimF
�1
jm ; (4.10.12)
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and

Tij ¼ 1

J
Toð ÞimFjm: (4.10.13)

When Cartesian coordinates are used for both the reference and the current configuration,

Fim ¼ @xi
@Xm

and F�1
im ¼ @Xi

@xm
:

We note that the first Piola-Kirchhoff stress tensor is in general not symmetric.

(B) The second Piola-Kirchhoff stress tensor. Let

d~f ¼ ~tdAo; (4.10.14)

where

df ¼ Fd~f: (4.10.15)

In Eq. (4.10.15), d~f is the (pseudo) differential force that transforms, under the deformation gradient F,
into the (actual) differential force df at the deformed position; thus, the pseudo-vector ~t is in general in a dif-

ferent direction than that of the Cauchy stress vector t.
The second Piola-Kirchhoff stress tensor is a linear transformation ~T such that

~t ¼ ~Tno; (4.10.16)

where we recall that no is the unit normal to the undeformed area. From Eqs. (4.10.14), (4.10.15), and

(4.10.16), we have

df ¼ F~TnodAo: (4.10.17)

We also have [see Eqs. (4.10.3) and (4.10.4)]

df � todAo ¼ TonodAo: (4.10.18)

Comparing Eq. (4.10.17) with Eq. (4.10.18), we have

~Tno ¼ F�1Tono: (4.10.19)

Again, this is to be valid for all no; therefore,

~T ¼ F�1To: (4.10.20)

Equation (4.10.20) gives the relationship between the first Piola-Kirchhoff stress tensor To and the second

Piola-Kirchhoff stress tensor ~T. The relationship between the second Piola-Kirchhoff stress tensor and the

Cauchy stress tensor can be obtained from Eqs. (4.10.10) and (4.10.20). We have

~T ¼ JF�1TðF�1ÞT where J ¼ jdet Fj: (4.10.21)

We note that the second Piola-Kirchhoff stress tensor is a symmetric tensor if the Cauchy stress tensor is a

symmetric one.
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Example 4.10.1
The deformed configuration of a body is described by

x1 ¼ 4X1; x2 ¼ � 1

2
X2; x3 ¼ � 1

2
X3: (i)

If the Cauchy stress tensor for this body is

T½ � ¼
100 0 0
0 0 0
0 0 0

2
4

3
5MPa: (ii)

(a) What is the corresponding first Piola-Kirchhoff stress tensor?

(b) What is the corresponding second Piola-Kirchhoff stress tensor?

Solution
(a) From Eq. (i), we have

F½ � ¼
4 0 0
0 �1=2 0
0 0 �1=2

2
4

3
5; ½F�1� ¼

1=4 0 0
0 �2 0
0 0 �2

2
4

3
5; det F ¼ 1: (iii)

Thus, the first Piola-Kirchhoff stress tensor is, from Eqs. (4.10.10), (ii), and (iii)

½To� ¼ ð1Þ½T� ½ðF�1ÞT� ¼
100 0 0
0 0 0
0 0 0

2
4

3
5 1=4 0 0

0 �2 0
0 0 �2

2
4

3
5 ¼

25 0 0
0 0 0
0 0 0

2
4

3
5MPa: (iv)

(b) From Eqs. (4.10.20) and (iv),

½~T� ¼ ½F�1� ½To� ¼
1=4 0 0
0 �2 0
0 0 �2

2
4

3
5 25 0 0

0 0 0
0 0 0

2
4

3
5 ¼

25=4 0 0
0 0 0
0 0 0

2
4

3
5MPa: (v)

Example 4.10.2
The equilibrium configuration of a body is described by

x1 ¼ 1

2
X1; x2 ¼ � 1

2
X3; x3 ¼ 4X2: (i)

If the Cauchy stress tensor for this body is

½T� ¼
0 0 0
0 0 0
0 0 100

2
4

3
5MPa: (ii)

(a) What is the corresponding first Piola-Kirchhoff stress tensor?

(b) What is the corresponding second Piola-Kirchhoff stress tensor?

4.10 Piola Kirchhoff Stress Tensors 177



(c) Calculate the pseudo-stress vector associated with the first Piola-Kirchhoff stress tensor on the e3-plane in the

deformed state.

(d) Calculate the pseudo-stress vector associated with the second Piola-Kirchhoff stress tensor on the e3-plane in

the deformed state.

Solution
From Eq. (i), we have

½F� ¼
1=2 0 0
0 0 �1=2
0 4 0

" #
and ½F�1� ¼

2 0 0
0 0 1=4
0 �2 0

" #
; det F ¼ 1: (iii)

(a) The first Piola-Kirchhoff stress tensor is, from Eqs. (4.10.10), (ii), and (iii)

½To� ¼ ð1Þ½T� ½ðF�1ÞT� ¼
0 0 0
0 0 0
0 0 100

" #
2 0 0
0 0 �2
0 1=4 0

" #
¼

0 0 0
0 0 0
0 25 0

" #
MPa: (iv)

(b) The second Piola-Kirchhoff stress tensor is, from Eqs. (4.10.20) and (iv),

½~T� ¼ ½F�1� ½To� ¼
2 0 0
0 0 1=4
0 �2 0

" #
0 0 0
0 0 0
0 25 0

" #
¼

0 0 0
0 25=4 0
0 0 0

" #
MPa: (v)

(c) For a unit area in the deformed state in the e3 direction, its undeformed area dAono is given by

[see Eq. (3.27.12)]:

dAono ¼ 1

jdet Fj F
Tn: (vi)

Using Eq. (iii) in Eq. (vi), we have, with n ¼ e3,

dAono½ � ¼
1=2 0 0
0 0 4
0 �1=2 0

" #
0
0
1

" #
¼

0
4
0

" #
: (vii)

That is,

no ¼ e2 and dAo ¼ 4: (viii)

Thus, the stress vector associated with the first Piola-Kirchhoff stress tensor is

to½ � ¼ To½ � no½ � ¼
0 0 0
0 0 0
0 25 0

" #
0
1
0

" #
¼

0
0
25

" #
MPa: (ix)

That is, to ¼ 25e3 MPa: We note that this vector is in the same direction as the Cauchy stress vector; its mag-

nitude is one fourth of that of the Cauchy stress vector because the undeformed area is four times that of the

deformed area.

(d) The stress vector associated with the second Piola-Kirchhoff stress tensor is

~t

 � ¼ ~T

h i
no½ � ¼

0 0 0
0 25=4 0
0 0 0

" #
0
1
0

" #
¼

0
25=4
0

" #
MPa: (x)

That is, ~t ¼ 25=4ð Þe2 MPa. We see that this pseudo-stress vector is in a different direction from that of the

Cauchy stress vector.
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Example 4.10.3
Given the following identity for any tensor function A X1; X2; X3ð Þ (see Prob. 3.73):

@

@Xm
det A ¼ det Að ÞðA�1Þnj

@Ajn

@Xm
: (4.10.22)

Show that for the deformation gradient tensor F

@

@xj

Fjm
J

� �
¼ 0; (4.10.23)

where Fjm ¼ @xj
@Xm

; xj ¼ x̂ jðX1; X2; X3; tÞ; J ¼ det F > 0.

Solution

@

@xj

Fjm
J

0
@

1
A ¼ 1

J

@Fjm
@xj

� Fjm
J2

@J

@xj
¼ 1

J

@Fjm
@Xn

@Xn
@xj

� 1

J2
@xj
@Xm

0
@

1
A @J

@Xn

@Xn
@xj

¼ 1

J

@Fjm
@Xn

@Xn
@xj

� 1

J2
dnm

@J

@Xn
¼ 1

J

@2xj
@Xn@Xm

0
@

1
A @Xn

@xj
� 1

J2
@J

@Xm
:

(i)

Now, from the given identity Eq. (4.10.22), with A � F; ðA�1Þnj ¼ ðF�1Þnj ¼
@Xn
@xi

, we have

@J

@Xm
¼ J

@Xn
@xj

@Fjn
@Xm

¼ J
@Xn
@xj

@2xj
@Xm@Xn

: (ii)

Thus,

@

@xj

Fjm
J

� �
¼ 1

J

@2xj
@Xn@Xm

 !
@Xn
@xj

� 1

J

@Xn
@xj

@2xj
@Xm@Xn

 !
¼ 0: (iii)

4.11 EQUATIONS OF MOTION WRITTEN WITH RESPECT TO THE REFERENCE
CONFIGURATION
In Section 4.7, we derive the equations of motion in terms of the Cauchy stress tensor as follows:

divTþ rB ¼ ra or
@Tij
@xj

þ rBi ¼ rai; (4.11.1)

where T is the Cauchy stress tensor, B is the body force per unit mass, a is the acceleration, and r is the

density in the deformed state. Here the partial derivative @Tij=@xj is with respect to the spatial coordinates xi.
In this section we show that the equations of motion written in terms of the first Piola-Kirchhoff stress

tensor have the same form as those written in terms of Cauchy stress tensor. That is,

DivTo þ roB ¼ roa or
@ Toð Þim
@Xm

þ roBi ¼ roai: (4.11.2)

We note, however, here Xi are the material coordinates and ro is the density at the reference state.
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To derive Eq. (4.11.2), we use Eq. (4.10.13), i.e.,

Tij ¼ 1

J
Toð ÞimFjm where J ¼ det F; (i)

to obtain

@Tij
@xj

¼ @

@xj

Toð ÞimFjm

J
¼ Fjm

J

@ Toð Þim
@xj

þ Toð Þim
@

@xj

Fjm

J
¼ Fjm

J

@ Toð Þim
@xj

; (ii)

where we have used the result of the previous example (Example 4.10.3) that
@

@xj

Fjm

J
¼ 0. Now,

@Tij
@xj

¼ Fjm

J

@ Toð Þim
@xj

¼ 1

J

@xj
@Xm

@ Toð Þim
@Xn

@Xn

@xj
¼ 1

J
dmn

@ Toð Þim
@Xn

: (iii)

Thus,

@Tij
@xj

¼ 1

J

@ Toð Þij
@Xj

: (iv)

Using the preceding equation in the Cauchy equations of motion, i.e.,
@Tij
@xj

þ rBi ¼ rai, we obtain

@ Toð Þij
@Xj

þ Jrð ÞBi ¼ Jrð Þai: (v)

Now, dV ¼ det Fð ÞdVo [see Eq. (3.28.3)]; therefore,

ro ¼ det Fð Þr ¼ Jr; (vi)

and Eq. (v) becomes

@ Toð Þij
@Xj

þ roBi ¼ roai: (vii)

4.12 STRESS POWER
Referring to the infinitesimal rectangular parallelepiped of Figure 4.12-1 (which is the same as Figure 4.7-1,

repeated here for convenience), the rate at which work is done by the stress vectors t�e1 and te1 on the pair of

faces having �e1 and e1 as their respective normal is

te1 � vð Þx1þdx1; x2 ; x3
þ t�e1 �vð Þx1; x2; x3

h i
dx2dx3 ¼ te1 � vð Þx1þdx1; x2; x3

� te1 � vð Þx1 ; x2; x3
h i

dx2dx3

¼ @

@x1
te1 � vð Þdx1

2
4

3
5dx2dx3 ¼ @ Tj1nj

� 	
@x1

dV;
(i)

where we have used the result that te1 � v ¼ Te1� v ¼ e1�TTv ¼ e1�Tjivjei ¼ Tjivjðe1� eiÞ ¼ Tj1vj and

dx1dx2dx3 ¼ dV. Similarly, the rate at which work is done by the stress vectors on the other two pairs

of faces are
@ Tj2vjð Þ

@x2
dV and

@ Tj3vjð Þ
@x3

dV. Including the rate of work done by the body forces, which is

rBdVð Þ � v ¼ rBividV, the total rate of work done on the particle is

P ¼ @

@xj
viTij
� 	þ rBivi

� �
dV ¼ vi

@Tij
@xj

þ rBi

� �
þ Tij

@vi
@xj

� �
dV ¼ rvi

Dvi
Dt

þ Tij
@vi
@xj

� �
dV: (ii)
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Now,
D

Dt
rdVð Þ ¼ 0 (conservation of mass principle); therefore,

rvi
Dvi
Dt

dV ¼ rdV
D

Dt

vivi
2

� �
¼ D

Dt

vivi
2

rdV
� �

¼ D

Dt
dm

v2

2

� �
¼ D

Dt
KEð Þ: (iii)

where (KE) is the kinetic energy. We can now write

P ¼ D

Dt
KEð Þ þ PsdV; (4.12.1)

where

Ps ¼ Tij
@vi
@xj

¼ trðTTrvÞ: (4.12.2)

Since

Tij
@vi
@xj

¼ 1

2
Tij

@vi
@xj

þ Tij
@vi
@xj

� �
¼ 1

2
Tij

@vi
@xj

þ Tji
@vj
@xi

� �
¼ 1

2
Tij

@vi
@xj

þ @vj
@xi

� �
¼ TijDij; (4.12.3)

in terms of the symmetric stress tensor T and the rate of deformation tensor D, the stress power is

Ps ¼ TijDij ¼ trðTDÞ: (4.12.4)

The stress power Ps represents the rate at which work is done to change the volume and shape of a particle

of unit volume.

4.13 STRESS POWER IN TERMS OF THE PIOLA-KIRCHHOFF STRESS TENSORS
In the previous section, we obtained the stress power in terms of the Cauchy stress tensor T and the rate

of deformation tensor D [Eq. (4.12.4)]. In this section we obtain the stress power (a) in terms of the

first Piola-Kirchhoff stress tensor To and the deformation gradient F and (b) in terms of the second Piola-

Kirchhoff stress tensor ~T and the Lagrangian deformation tensor E*. The pairs (T, D), (To, F) and ~T;E�� 	
are sometimes known as the conjugate pairs.

Δx 3 Δx1

te2
 (x1, x2 + Δx2, x3)

te3
 (x1, x2, x3 + Δx3)

te1
 (x1 + Δx1, x2, x3)

t-e3
 (x1, x2, x3)

t-e2
 (x1, x2, x3)

t-e1
 (x1, x2, x3)

x2

x1
x3

Δx
2

FIGURE 4.12-1
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(a) In Section 3.12 we obtained [see Eq. (3.12.6)]

D

Dt
dx ¼ rxvð Þdx: (4.13.1)

Since dx ¼ FdX [see Eq. (3.18.3)], Eq. (4.13.1) becomes

D

Dt
FdX ¼ DF

Dt
dX ¼ rxvFdX: (4.13.2)

This equation is to be true for all dX, thus

DF

Dt
¼ rxvð ÞF; (4.13.3)

or

rxvð Þ ¼ DF

Dt
F�1: (4.13.4)

Now, from Eqs. (4.12.2) and (4.13.4), we have

Ps ¼ tr TT DF

Dt
F�1

� �
: (4.13.5)

Since the Cauchy stress tensor T is related to the first Piola-Kirchhoff stress tensor To by the equation

T ¼ 1

det F
ToF

T, [Eq. (4.10.11)], therefore,

Ps ¼ 1

det F
tr FTT

o

DF

Dt
F�1

� �
: (4.13.6)

Using the identity tr ABCDð Þ ¼ tr BCDAð Þ ¼ tr CDABð Þ and the relation det F ¼ ro=r, we have

Ps ¼ r
ro

tr TT
o

DF

Dt

� �
¼ r

ro
tr Toð Þij

DFij

Dt

� �
: (4.13.7)

(b) The Cauchy stress tensor T is related to the second Piola-Kirchhoff stress tensor ~T by the equation

T ¼ 1

det F
F~TFT [see Eq. (4.10.21)], therefore,

Ps ¼ tr TDð Þ ¼ 1

det F
tr F~TFTD
� 	 ¼ 1

det F
tr ~TFTDF
� 	

: (4.13.8)

We now show that

DE�

Dt

� �
¼ FTDF: (4.13.9)

We had [see Eq. (3.24.3)]

ds2 ¼ dS2 þ 2dX �E�dX; (4.13.10)

therefore,

D

Dt
ds2 ¼ 2dX � DE�

Dt

� �
dX: (4.13.11)
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But we also had [see Eq. (3.13.11)]

D

Dt
ds2 ¼ 2dx �Ddx ¼ 2FdX �DFdX ¼ 2dX �FTDFdX: (4.13.12)

Comparing Eq. (4.13.11) with Eq. (4.13.12), we obtain

DE�

Dt

� �
¼ FTDF: (4.13.13)

Using Eq. (4.13.13), Eq. (4.13.8) becomes

Ps ¼ 1

det F
tr ~T

DE�

Dt

� �
¼ r

ro
tr ~T

DE�

Dt

� �
: (4.13.14)

4.14 RATE OF HEAT FLOW INTO A DIFFERENTIAL ELEMENT BY CONDUCTION
Let q be a vector whose magnitude gives the rate of heat flow across a unit area by conduction and whose

direction gives the direction of the heat flow; then the net heat flow by conduction Qc into a differential

element can be computed as follows:

Referring to the infinitesimal rectangular parallelepiped of Figure 4.12-1, the net rate at which heat

flows into the element across the pair of faces with e1 and �e1 as their outward normal vectors is

� q � e1ð Þx1þdx1; x2; x3
þ q � e1ð Þx1; x2; x3

h i
dx2dx3 ¼ � @

@x1
q � e1ð Þdx1

� �
dx2dx3 ¼ � @q1

@x1
dx1

� �
dx2dx3: (i)

Including the contributions from the other two pairs of faces, the total net rate of heat inflow by conduc-

tion into the element is

� @q1
@x1

dx1

� �
dx2dx3 � @q2

@x2
dx2

� �
dx1dx3 � @q3

@x3
dx3

� �
dx1dx2 ¼ � @q1

@x1
þ @q2

@x2
þ @q3

@x3

� �
dx1dx2dx3: (ii)

That is,

Qc ¼ � @q1
@x1

þ @q2
@x2

þ @q3
@x3

� �
dV ¼ � div qð ÞdV; (4.14.1)

where dV is the differential volume of the element.

Example 4.14.1
Using the Fourier heat conduction law

q ¼ �krY; (4.14.2)

where Y is the temperature and k is the coefficient of thermal conductivity, find the equation governing the steady-

state temperature distribution in a heat-conducting body.
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Solution
Using Eq. (4.14.1), we obtain, the net rate of heat inflow per unit volume at a point in the body as

� @

@x1
k
@Y
@x1

� �
þ @

@x2
k
@Y
@x2

� �
þ @

@x3
k
@Y
@x3

� �� �

For a steady-state temperature distribution in the body, there should be no net rate of heat flow (either in

or out) at every point in the body. Therefore, the governing equation is

@

@x1
k
@Y
@x1

� �
þ @

@x2
k
@Y
@x2

� �
þ @

@x3
k
@Y
@x3

� �
¼ 0: (4.14.3)

For constant k, the preceding equation reduces to the Laplace equation:

r2Y ¼ @2Y
@x21

þ @2Y
@x22

þ @2Y
@x23

¼ 0: (4.14.4)

4.15 ENERGY EQUATION
Consider a particle with a differential volume dV at position x at time t. Let U denote its internal energy,

KE its kinetic energy, Qc the net rate of heat inflow by conduction from its surroundings, Qs the heat supply

(rate of heat input due, e.g., to radiation), and P the rate of work done on the particle by body forces and sur-

face forces. Then, in the absence of other forms of energy input, the fundamental postulate of conservation of

energy states that the rate of increase of internal and kinetic energy for a particle equals the work done on the
material plus heat input through conduction across its boundary surface and heat supply throughout its vol-
ume. That is,

D

Dt
ðU þ KEÞ ¼ Pþ Qc þ Qs; (4.15.1)

where (D/Dt) is material derivative, P ¼ D

Dt
KEð Þ þ Tij

@vi
@xj

dV and Qc ¼ � @qi
@xi

dV. [See Eqs. (4.12.1), (4.12.2),
and (4.14.1)]. Thus,

DU

Dt
¼ Tij

@vi
@xj

dV � @qi
@xi

dV þ Qs: (4.15.2)

If we let u be the internal energy per unit mass, then

DU

Dt
¼ D

Dt
urdVð Þ ¼ rdV

Du

Dt
; (4.15.3)

where we have used the conservation of mass equation
D

Dt
ðrdVÞ ¼ 0. The energy equation then becomes

r
Du

Dt
¼ Tij

@vi
@xj

� @qi
@xi

þ rqs; (4.15.4)

where qs is heat supply per unit mass. In direct notation, the preceding equation reads

r
Du

Dt
¼ trðTDÞ � div qþ rqs: (4.15.5)
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4.16 ENTROPY INEQUALITY
Let �(x,t) denote the entropy per unit mass for the continuum. Then the entropy in a particle of volume dV is

r�dV, where r is density. The rate of increase of entropy following the particle as it is moving is

D

Dt
r�dVð Þ ¼ rdV

D�

Dt
þ �

D

Dt
rdVð Þ ¼ rdV

D�

Dt
; (4.16.1)

where we have used the equation D=Dtð Þ rdVð Þ ¼ 0 in accordance with the conservation of mass principle.

Thus, per unit volume, the rate of increase of entropy is given by r(D�/Dt). The entropy inequality law states

that the rate of increase of entropy in a particle is always greater than or equal to the entropy inflow across
its boundary surface plus entropy supply throughout the volume. That is,

r
D�

Dt
	 �div

q

Y

� �
þ rqs

Y
; (4.16.2)

where Y is absolute temperature, q is heat flux vector, and qs is heat supply.

Example 4.16.1
The temperature at x1 ¼ 0 of a body is kept at a constant Y1 and that at x1 ¼ L is kept at a constant Y2. (a) Using the

Fourier heat conduction law q ¼ �krY, where k is a constant, find the temperature distribution. (b) Show that k
must be positive in order to satisfy the entropy inequality law.

Solution
(a) This is a one-dimensional steady-state temperature problem. The equation governing the temperature distri-

bution is given by [see Eq. (4.14.4)]:

d2Y
dx21

¼ 0: (4.16.3)

Thus,

Y ¼ Y2 �Y1

L
x1 þY1: (4.16.4)

(b) With
D�

Dt
¼ 0 and qs= 0, the inequality [Eq. (4.16.2)] becomes

0 	 � d

dx1

1

Y
�k

dY
dx1

� �� �
¼ k

d

dx1

1

Y
dY
dx1

� �� �
: (4.16.5)

Now,

k
d

dx1

1

Y
dY
dx1

� �� �
¼ k

1

Y
d2Y
dx21

 !
� 1

Y2

dY
dx1

� �2
" #

¼ �k
1

Y2

@Y
@x1

� �2

:

Therefore, we have

k
1

Y2

@Y
@x1

� �2

	 0: (4.16.6)

Thus,

k 	 0; (4.16.7)

and heat flows from high temperature to low temperature.
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4.17 ENTROPY INEQUALITY IN TERMS OF THE HELMHOLTZ ENERGY FUNCTION
The Helmholtz energy per unit mass A is defined by the equation

A ¼ u�Y�; (4.17.1)

where u and � are internal energy per unit mass and entropy per unit mass, respectively, and Y is ab-

solute temperature. From Eq. (4.17.1), u ¼ AþY�, so that the energy equation, [Eq. (4.15.4)], i.e.,

r
Du

Dt
¼ Tij

@vi
@xj

� @qi
@xi

þ rqs, can be written as

rY
D�

Dt
¼ � r

DA

Dt
þ r�

DY
Dt

� �
þ Tij

@vi
@xj

� @qi
@xi

þ rqs; (4.17.2)

and the entropy inequality, [Eq. (4.16.2)], i.e., r
D�

Dt
	 �div

q

Y

� �
þ rqs

Y
, can be written as

rY
D�

Dt
	 �Y

@

@xi

qi
Y

� �
þ rqs: (4.17.3)

Using Eq. (4.17.2), the inequality Eq. (4.17.3) becomes

� r
DA

Dt
þ r�

DY
Dt

� �
þ Tij

@vi
@xj

� @qi
@xi

þ rqs 	 � @qi
@xi

þ qi
Y
@Y
@xi

þ rqs:

That is,

� r
DA

Dt
þ r�

DY
Dt

� �
þ TijDij � qi

Y
@Y
@xi

	 0; (4.17.4)

where Dij are components of the rate of deformation tensor and we have used the equation Tij
@vi
@xj

¼ TijDij for

symmetric tensor Tij. Equation (4.17.4) is the entropy law in terms of the Helmholtz energy function.

Example 4.17.1
In linear thermo-elasticity, one assumes that the Helmholtz function depends on the infinitesimal strain Eij and

absolute temperature Y. That is,

A ¼ AðEij ;YÞ: (4.17.5)

Derive the relationship between the stress tensor and the Helmholtz energy function.

Solution
From Eq. (4.17.5), we have

DA

Dt
¼ @A

@Eij

DEij
Dt

þ @A

@Y
DY
Dt

: (4.17.6)

For small strain,
DEij
Dt

¼ 1

2

D

Dt

@ui
@Xj

þ @uj
@Xi

� �
¼ 1

2

@vi
@Xj

þ @vj
@Xi

� �

 1

2

@vi
@xj

þ @vj
@xi

� �
¼ Dij .
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Thus,
DA

Dt
¼ Dij

@A

@Eij
þ @A

@Y
DY
Dt

, and the inequality (4.17.4) becomes

�r
@A

@Eij
þ Tij

� �
Dij � r

@A

@Y
þ r�

� �
DY
Dt

� qi
Y
@Y
@xi

	 0: (4.17.7)

This inequality must be satisfied for whatever values of Dij and
DY
Dt

. It follows that

�r
@A

@Eij
þ Tij

� �
¼ 0; r

@A

@Y
þ r�

� �
¼ 0 and � qi

Y
@Y
@xi

	 0: (4.17.8)

That is,

Tij ¼ r
@A

@Eij
; (4.17.9)

� ¼ � @A

@Y
; (4.17.10)

and

� qi
Y
@Y
@xi

	 0: (4.17.11)

The first equation states that the stress is derivable from a potential function; the last inequality states that heat

must flow from high temperature to low temperature.

4.18 INTEGRAL FORMULATIONS OF THE GENERAL PRINCIPLES OF MECHANICS
In Section 3.15 of Chapter 3 and in Sections 4.4, 4.7, 4.15, and 4.16 of the current chapter, the field equations

expressing the principles of conservation of mass, moment of momentum, linear momentum, energy, and

the entropy inequality were derived using a differential element approach, and each of them was derived

whenever the relevant tensors (e.g., the rate of deformation tensor, the Cauchy stress tensors, and so on)

had been defined. In this section, all these principles are presented together and derived using the integral

formulation by considering an arbitrary fixed part of the material. In the form of differential equations, the

principles are sometimes referred to as local principles. In the form of integrals, they are known as global
principles. Under the assumption of smoothness of functions involved, the two forms are completely equiva-

lent, and in fact the requirement that the global theorem is to be valid for each and every part of the contin-

uum results in the same differential form of the principles, as shown in this section. The purpose of this

section is simply to provide an alternate approach to the formulation of the field equations and to group all

the field equations for a continuum in one section for easy reference. We begin by deriving the conservation

of mass equation by following a fixed part of the material.

(I) The conservation of mass principle states that the rate of increase of mass in a fixed part of a material is

always zero. That is, the material derivative of the mass in any fixed part of the material is zero:

D

Dt

ð
Vm

rdV ¼ 0: (4.18.1)
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In the preceding equation, r denotes density and Vm denotes the material volume that moves with the

material. Now,

D

Dt

ð
Vm

rdV ¼
ð
Vm¼Vc

D

Dt
rdVð Þ

� �
¼
ð
Vc

Dr
Dt

dV þ r
DdV

Dt

� �
¼ 0: (4.18.2)

In the preceding equation, Vc denotes the so-called control volume, which instantaneously coincides with

the material volume Vm. In Section 3.13, we had [see Eq. (3.13.14)]

1

dV

D

Dt
dV ¼ @vi

@xi
¼ div v: (4.18.3)

Thus, Eq. (4.18.2) becomesð
Vc

Dr
Dt

þ rdiv v
� �

dV ¼ 0 or

ð
Vc

@r
@t

þ divðrvÞ
� �

dV ¼ 0: (4.18.4)

Equation (4.18.4) must be valid for all Vc, therefore, the integrand must be zero. That is,

Dr
Dt

þ rdiv v ¼ 0 or
@r
@t

þ divðrvÞ ¼ 0: (4.18.5)

This is the same as Eq. (3.15.4).

To derive the other four principles by considering a fixed part of a material, we will need the divergence

theorem, which we state as follows without proof:ð
Vc

div vdV ¼
ð
Sc

v �ndS or

ð
Vc

@vj
@xj

dV ¼
ð
Sc

vjnjdS; (4.18.6)

ð
Vc

div TdV ¼
ð
Sc

TndS or

ð
Vc

@Tij
@xj

dV ¼
ð
Sc

TijnjdV: (4.18.7)

For a discussion of this theorem, refer to the first two sections of Chapter 7.

In the preceding equations, v and T are vector and tensor, respectively; n is a unit outward normal vector,

and Vc and Sc denote control volume and the corresponding control surface. We note that using the divergence

theorem, the second equation in Eq. (4.18.4) becomes

@

@t

ð
Vc

rdV ¼ �
ð
Sc

rv �nð ÞdS; (4.18.8)

which states that the rate of increase of mass inside a control volume must be equal the rate at which the mass

enters the control volume. Eq. (4.18.8) is often used as the starting point to derive Eq. (4.18.5) by using the

divergence theorem.

(II) The principle of linear momentum states that the forces acting on a fixed part of a material must equal

the rate of change of linear momentum of the part:

D

Dt

ð
Vm

rvdV ¼
ð
Sc

tdSþ
ð
Vc

rBdV ¼
ð
Sc

TndSþ
ð
Vc

rBdV; (4.18.9)

where t, T, B and v are stress vector, stress tensor, body force per unit mass and velocity, respectively. Now

D

Dt

ð
Vm

rvdV ¼
ð
Vm

D

Dt
rvdVð Þ

� �
¼
ð
Vm¼Vc

v
D

Dt
rdVð Þ þ Dv

Dt
rdV

� �
¼
ð
Vc

Dv

Dt
rdV; (4.18.10)

where D=Dtð Þ rdVð Þ ¼ 0 in accordance with the principle of conservation of mass.
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Using the divergence theorem, the right side of Eq. (4.18.9) becomesð
Vc

divTdV þ
ð
Vc

rBdV;

so that Eq. (4.18.9) becomes ð
Vc

r
Dv

Dt
� divT� rB

� �
dV ¼ 0: (4.18.11)

This equation is to be valid for all Vc, therefore,

r
Dv

Dt
¼ divTþ rB: (4.18.12)

This is the same as Eq. (4.7.4).

(III) The principle of moment of momentum states that the moments about a fixed point of all the forces

acting on a fixed part of a material must equal the rate of change of moment of momentum of the part about

the same point:

D

Dt

ð
Vm

x� rvdV ¼
ð
Sc

x� tdSþ
ð
Vc

x� rBdV ¼
ð
Sc

x� Tnð ÞdSþ
ð
Vc

x� rBdV; (4.18.13)

where x is the position vector. Again, since D=Dtð Þ rdVð Þ ¼ 0, the left side of Eq. (4.18.13) becomes

D

Dt

ð
Vm

x� rvdV ¼
ð
Vm¼Vc

D

Dt
x� rvdVð Þ

2
4

3
5 ¼

ð
Vc

v� rvdV þ x� D

Dt
rvdVð Þ

2
4

3
5

¼
ð
Vc

x� v
D

Dt
rdVð Þ þ x� Dv

Dt
rdV

2
4

3
5 ¼

ð
Vc

x� Dv

Dt
rdV:

(4.18.14)

Since x� Tn ¼ eieijkxj Tnð Þk ¼ eieijkxjTkmnm, by using the divergence theorem we obtain

ð
Sc

x� TndS ¼ ei

ð
Sc

eijkxjTkm
� 	

nmdS ¼ ei

ð
Vc

@eijkxjTkm
@xm

dV: (4.18.15)

Now, @xi=@xm ¼ dim; therefore,ð
Sc

x� TndS ¼ ei

ð
Vc

@eijkxjTkm
@xm

dV ¼
ð
Vc

eieijkxj
@Tkm
@xm

dV þ
ð
Vc

eieijkTkjdV

¼ ÐVc
x� divTdV þ ÐVc

eieijkTkjdV:

(4.18.16)

Thus, Eq. (4.18.13) becomes

ð
Vc

x� Dv

Dt
rdV ¼

ð
Vc

x� divTþ rBð ÞdV þ
ð
Vc

eieijkTkjdV; (4.18.17)

or ð
Vc

x� r
Dv

Dt
� divT� rB

� �
dV þ

ð
Vc

eieijkTkjdV ¼ 0: (4.18.18)

4.18 Integral Formulations of the General Principles of Mechanics 189



But the linear momentum equation gives r
Dv

Dt
� divT� rB ¼ 0. Thus, Eq. (4.18.18) becomesÐ

Vc
eieijkTkjdV ¼ 0, so that

eijkTkj ¼ 0: (4.18.19)

From which we arrive at the symmetry of stress tensor. That is,

T12 � T21 ¼ 0; T23 � T32 ¼ 0; T31 � T13 ¼ 0: (4.18.20)

This same result was obtained in Section 4.4.

(IV) The conservation of energy principle states that the rate of increase of kinetic energy and internal

energy in a fixed part of a material must equal the sum of the rate of work by surface and body forces, rate

of heat inflow across the boundary, and heat supply within:

D

Dt

ð
Vm

rv2

2
þ ru

� �
dV ¼

ð
Sc

t �vð ÞdSþ
ð
Vc

rB �vdV �
ð
Sc

q �nð ÞdSþ
ð
Vc

rqsdV; (4.18.21)

where u is the internal energy per unit mass, q the heat flux vector, and qs the heat supply per unit mass. We

note that with n being an outward unit normal vector, (�q � n) represents rate of heat inflow. Again,

D=Dtð Þ rdVð Þ ¼ 0; therefore, the left side becomes

D

Dt

ð
Vm

r
v2

2
þ u

� �
dV ¼

ð
Vm¼Vc

D

Dt

v2

2
þ u

� �� �
rdV: (4.18.22)

Now, ð
Sc

t �vdS ¼
ð
Sc

Tn �vdS ¼
ð
Sc

n �TTvdS ¼
ð
Vc

div TTv
� 	

dV; (4.18.23)

div TTv
� 	 ¼ @Tjivj

@xi
¼ @Tji

@xi
vj þ Tji

@vj
@xi

¼ div Tð Þ �vþ trðTTrvÞ; (4.18.24)

and
Ð
Sc
q �ndS ¼ ÐVc

div qð ÞdV, therefore, Eq. (4.18.21) becomes

ð
Vc

r
D

Dt

v2

2
þ u

� �
dV ¼

ð
Vc

div Tþ rBð Þ � vþ trðTTrvÞ � div qþ rqs

 �

dV: (4.18.25)

But div Tþ rBð Þ � v ¼ rðDv=DtÞ � v ¼ ð1=2ÞrðDv2=DtÞ, therefore, Eq. (4.18.25) becomesð
Vc

r
Du

Dt
dV ¼

ð
Vc

trðTTrvÞ � div qþ rqs

 �

dV: (4.18.26)

For this equation to be valid for all Vc, we must have

r
Du

Dt
¼ trðTTrvÞ � div qþ rqs: (4.18.27)

This is the same as Eq. (4.15.4).

(V) The entropy inequality states that the rate of increase of entropy in a fixed part of a material is not less

than the influx of entropy, q/Y, across the surface of the part plus the entropy supply within the volume:

D

Dt

ð
Vm

r�dV 	 �
ð
Sc

q

Y
�ndSþ

ð
Vc

rqs
Y

dV; (4.18.28)
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where � is the entropy per unit mass, and other symbols have the same meanings as before. Now, again,

D=Dtð Þ rdVð Þ ¼ 0, therefore,

D

Dt

ð
Vm

r�dV ¼
ð
Vc

D�

Dt
rdV: (4.18.29)

Using the divergence theorem, we have
Ð
Sc

q=Yð Þ �ndS ¼ ÐVc
div q=Yð ÞdV; thus, the inequality (4.18.29)

becomes ð
Vc

r
D�

Dt
dV 	 �

ð
Vc

div
q

Y

� �
dV þ

ð
Vc

rqs
Y

dV; (4.18.30)

so that

r
D�

Dt
	 �div

q

Y

� �
þ rqs

Y
: (4.18.31)

This is the same as Eq. (4.16.2).

We remark that later, in Chapter 7, we revisit the derivations of the integral form of the principles with

emphasis on Reynold’s transport theorem and its applications to obtain the approximate solutions of engineer-

ing problems using the concept of moving as well as fixed control volumes.

APPENDIX 4.1: DETERMINATION OF MAXIMUM SHEARING STRESS AND THE
PLANES ON WHICH IT ACTS
This appendix gives the details of solving the following system of four nonlinear algebraic equations in

n1; n2; n3 and l:

2n1 T2
1 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T1


 � ¼ n1l; (i)

2n2 T2
2 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T2


 � ¼ n2l; (ii)

2n3 T2
3 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T3


 � ¼ n3l; (iii)

n21 þ n22 þ n23 ¼ 1: (iv)

These are Eqs. (4.6.12), (4.6.13), (4.6.14), and (4.6.7) in Section 4.6 for the determination of the maximum

shearing stress and the plane(s) on which it acts. This system of equations determines all stationary values

of T2
s from Eq. (4.6.5), which is repeated here:

T2
s ¼ T2

1n
2
1 þ T2

2n
2
2 þ T2

3n
2
3 � T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	2
: (v)

From the stationary values of T2
s , the maximum and the minimum values of Ts are obtained. The following are

the details:

1. Case I: T1 ¼ T2 ¼ T3 ¼ T. In this case, Eqs. (i), (ii), and (iii) reduce to the following three equations:

�2n1T
2 ¼ n1l; � 2n2T

2 ¼ n2l; � 2n3T
2 ¼ n3l:

These equations show that (i), (ii), and (iii) are satisfied for arbitrary values of n1; n2; n3ð Þ with

l ¼ �2T2 and n21 þ n22 þ n23 ¼ 1. Eq. (v) gives T2
s ¼ 0 for this case. This is to be expected because with
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T1 ¼ T2 ¼ T3, every plane is a principal plane having zero shearing stress on it. In this case, T2
s ¼ 0

is both the maximum and the minimum value of T2
s and of Ts. We note that although we get a

value for the Lagrangian multiplier l ¼ �2T2, it does not have any significance and can be simply

ignored.

2. Case II: Only two of the Tis are the same.

(a) If T1 ¼ T2 6¼ T3,

Equation ðiÞ becomes 2n1 �T2
1 þ 2 T1 � T3ð ÞT1n23


 � ¼ n1l: (vi)

Equation ðiiÞ becomes 2n2 �T2
1 þ 2 T1 � T3ð ÞT1n23


 � ¼ n2l: (vii)

Equation ðiiiÞ becomes 2n3 T2
3 � 2T1T3 þ 2T1T3 � 2T2

3

� 	
n23


 � ¼ n3l: (viii)

From the preceding three equations, we see that if n3 ¼ 0, any n1; n2; 0ð Þ with n21 þ n22 ¼ 1 is a

solution with l ¼ �2T2
1 and T2

s ¼ 0 [from Eq. (v)]. We note that all these planes are principal

planes, including (1, 0, 0) and (0, 1, 0).

If n3 6¼ 0, in addition to the obvious solution 0; 0;�1ð Þ, there are also solutions from the fol-

lowing [see Eqs. (vi) and (viii)]:

2 �T2
1 þ 2 T1 � T3ð ÞT1n23


 � ¼ 2 T2
3 � 2T1T3 þ 2T1T3 � 2T2

3

� 	
n23


 � ¼ l:

Rearranging the preceding equation, we have

2 T1 � T3ð ÞT1n23

 � ¼ T1 � T3ð Þ2 þ 2 T1 � T3ð ÞT3n23

h i
;

which leads to

2n23 ¼ 1;

and

T2
s ¼ T2

1 1� n23
� 	þ T2

3n
2
3 � T1 1� n23

� 	þ T3n
2
3

� 	2 ¼ T1 � T3ð Þ2
4

¼ T2 � T3ð Þ2
4

:

Thus, if T1 ¼ T2 6¼ T3, the solutions are

n1; n2; 0ð Þ; any n1; n2 satisfying n21 þ n22 ¼ 1; T2
s ¼ 0; (ix)

and

n1; n2;�
ffiffiffiffiffiffiffiffi
1=2

p� �
; any n1; n2 satisfying n

2
1 þ n22 þ 1=2 ¼ 1; T2

s ¼ T1 � T3ð Þ2
4

¼ T2 � T3ð Þ2
4

: (x)

(b) If T2 ¼ T3 6¼ T1, the solutions are

0; n2; n3ð Þ; for any n2; n3 satisfying n22 þ n23 ¼ 1 and T2
s ¼ 0 on those planes: (xi)

� ffiffiffiffiffiffiffiffi
1=2

p
; n2; n3

� �
; for any n2; n3 satisfying 1=2þ n22 þ n23 ¼ 1 and

T2
s ¼ T2 � T1ð Þ2

4
¼ T3 � T1ð Þ2

4
on those planes:

(xii)
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(c) If T3 ¼ T1 6¼ T2, the solutions are

n1; 0; n3ð Þ; for any n1; n3 satisfying n21 þ n23 ¼ 1 and T2
s ¼ 0 on those planes ; (xiii)

n1;�
ffiffiffiffiffiffiffiffi
1=2

p
; n3

� �
; for any n1; n3 satisfying n21 þ 1=2þ n23 ¼ 1 and

T2
s ¼ T3 � T2ð Þ2

4
¼ T1 � T2ð Þ2

4
on those planes:

(xiv)

3. Case III: All three Ti are distinct. In this case, at least one of the three n1; n2; n3 must be zero. To show

this, we first assume that neither n1 nor n2 are zero; then Eqs. (i) and (ii) give

2 T2
1 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T1


 � ¼ 2 T2
2 � 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
T2


 � ¼ l;

thus,

T2
1 � T2

2 ¼ 2 T1n
2
1 þ T2n

2
2 þ T3n

2
3

� 	
T1 � T2ð Þ:

Since T1 6¼ T2,

T1 þ T2 ¼ 2 T1n
2
1 þ T2n

2
2 þ T3n

2
3

� 	
:

If n3 is also not zero, then we also have

T1 þ T3 ¼ 2 T1n
2
1 þ T2n

2
2 þ T3n

2
3

� 	
and T2 þ T3 ¼ 2 T1n

2
1 þ T2n

2
2 þ T3n

2
3

� 	
:

In other words,

T1 þ T2 ¼ T1 þ T3 ¼ T2 þ T3:

from which we see that T1 ¼ T2 ¼ T3, which contradicts the assumption that all three Ti are distinct.

Therefore, if all three Tis are distinct, at least one of the three nis must be zero. If two of the nis are zero,
we obviously have the following three cases:

(a) ðn1; n2; n3Þ ¼ ð�1; 0; 0Þ; l ¼ �2T2
1 ; Ts ¼ 0: (xv)

(b) ðn1; n2; n3Þ ¼ ð0;�1; 0Þ; l ¼ �2T2
2 ; Ts ¼ 0: (xvi)

(c) ðn1; n2; n3Þ ¼ ð0; 0;�1Þ; l ¼ �2T2
3 ; Ts ¼ 0: (xvii)

If only n3 is zero, then Eqs. (i) and (ii) give

2 T2
1 � 2 T1n

2
1 þ T2n

2
2

� 	
T1


 � ¼ 2 T2
2 � 2 T1n

2
1 þ Tn22

� 	
T2


 � ¼ l;

or

T2
1 � T2

2 ¼ 2 T1n
2
1 þ T2n

2
2

� 	
T1 � T2ð Þ:

Since T1 6¼ T2 and n21 þ n22 ¼ 1, the preceding equation becomes

T1 þ T2 ¼ 2 T1n
2
1 þ T2n

2
2

� 	 ¼ 2 T1n
2
1 þ T2 1� n21

� 	
 �
:

Thus,

T1 � T2 ¼ 2n21 T1 � T2ð Þ or 1 ¼ 2n21:
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Therefore, n1 ¼ � ffiffiffiffiffiffiffiffi
1=2

p
and n2 ¼ � ffiffiffiffiffiffiffiffi

1=2
p

, i.e.,

(d) ðn1; n2; n3Þ ¼ �ð1=
ffiffiffi
2

p
;�1=

ffiffiffi
2

p
; 0Þ; T2

s ¼ T1 � T2ð Þ2
4

: (xviii)

Similarly, we also have

(e) n1; n2; n3ð Þ ¼ �ð1=
ffiffiffi
2

p
; 0;�1=

ffiffiffi
2

p
Þ; T2

s ¼ T1 � T3ð Þ2
4

: (xix)

(f) ðn1; n2; n3Þ ¼ �ð0; 1=
ffiffiffi
2

p
;�1=

ffiffiffi
2

p
Þ; T2

s ¼ T2 � T3ð Þ2
4

: (xx)

PROBLEMS FOR CHAPTER 4
4.1 The state of stress at a certain point in a body is given by

½T� ¼
1 2 3

2 4 5

3 5 0

2
4

3
5
ei

MPa:

On each of the coordinate planes (with normal in e1, e2, e3 directions), (a) what is the normal stress?

(b) What is the total shearing stress?

4.2 The state of stress at a certain point in a body is given by

½T� ¼
2 �1 3

�1 4 0

3 0 �1

2
4

3
5
ei

MPa:

(a) Find the stress vector at a point on the plane whose normal is in the direction of 2e1 þ 2e2 þ e3.
(b) Determine the magnitude of the normal and shearing stresses on this plane.

4.3 Do the previous problem for a plane passing through the point and parallel to the plane

x1 � 2x2 þ 3x3 ¼ 4.

4.4 The stress distribution in a certain body is given by

½T� ¼
0 100x1 �100x2

100x1 0 0

�100x2 0 0

2
64

3
75 MPa:

Find the stress vector acting on a plane that passes through the point 1=2;
ffiffiffi
3

p
=2; 3

� 	
and is tangent to the

circular cylindrical surface x21 þ x22 ¼ 1 at that point.

4.5 Given T11 ¼ 1 MPa; T22 ¼ �1 MPa, and all other Tij ¼ 0 at a point in a continuum.

(a) Show that the only plane on which the stress vector is zero is the plane with normal stress in the e3
direction.

(b) Give three planes on which no normal stress is acting.
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4.6 For the following state of stress:

½T� ¼
10 50 �50

50 0 0

�50 0 0

2
4

3
5 MPa:

Find T 0
11 and T 0

13, where e 0
1 is in the direction of e1 þ 2e2 þ 3e3 and e 0

2 is in the direction of

e1 þ e2 � e3.

4.7 Consider the following stress distribution:

½T� ¼
ax2 b 0

b 0 0

0 0 0

2
4

3
5;

where a and b are constants.

(a) Determine and sketch the distribution of the stress vector acting on the square in the x1 ¼ 0 plane

with vertices located at 0; 1; 1ð Þ, 0;�1; 1ð Þ, 0; 1;�1ð Þ, and 0;�1;�1ð Þ.
(b) Find the total resultant force and moment about the origin of the stress vectors acting on the square

of part (a).

4.8 Do the previous problem if the stress distribution is given by T11 ¼ ax22 and all other Tij ¼ 0.

4.9 Do Prob. 4.7 for the stress distribution T11 ¼ a; T12 ¼ T21 ¼ aX3 and all other Tij ¼ 0.

4.10 Consider the following stress distribution for a circular cylindrical bar:

½T� ¼
0 �ax3 ax2

�ax3 0 0

ax2 0 0

2
64

3
75:

(a) What is the distribution of the stress vector on the surfaces defined by (i) the lateral surface

x22 þ x23 ¼ 4, (ii) the end face x1 ¼ 0, and (iii) the end face x1 ¼ l?
(b) Find the total resultant force and moment on the end face x1 ¼ l.

4.11 An elliptical bar with lateral surface defined by x22 þ 2x23 ¼ 1 has the following stress distribution:

½T� ¼
0 �2x3 x2

�2x3 0 0

x2 0 0

2
64

3
75:

(a) Show that the stress vector at any point x1; x2; x3ð Þ on the lateral surface is zero.

(b) Find the resultant force, and resultant moment, about the origin O of the stress vector on the left end

face x1 ¼ 0.

Note: ð
x22dA ¼ p

4
ffiffiffi
2

p and

ð
x23dA ¼ p

8
ffiffiffi
2

p :

4.12 For any stress state T we define the deviatoric stress S to be S ¼ T� Tkk=3ð ÞI, where Tkk is the first

invariant of the stress tensor T.
(a) Show that the first invariant of the deviatoric stress vanishes.
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(b) Evaluate S for the stress tensor:

½T� ¼ 100

6 5 �2

5 3 4

�2 4 9

2
4

3
5kPa:

(c) Show that the principal directions of the stress tensor coincide with those of the deviatoric stress tensor.

4.13 An octahedral stress plane is one whose normal makes equal angles with each of the principal axes of stress.

(a) How many independent octahedral planes are there at each point?

(b) Show that the normal stress on an octahedral plane is given by one-third the first stress invariant.

(c) Show that the shearing stress on the octahedral plane is given by

Ts ¼ 1

3
T1 � T2ð Þ2 þ T2 � T3ð Þ2 þ T3 � T1ð Þ2

h i1=2
;

where T1, T2, T3 are principal values of the stress tensor.

4.14 (a) Let m and n be two unit vectors that define two planes M and N that pass through a point P. For an
arbitrary state of stress defined at the point P, show that the component of the stress vector tm in the

n direction is equal to the component of the stress vector tn in the m direction.

(b) If m ¼ e1 and n ¼ e2, what do the results of (a) reduce to?

4.15 Let m be a unit vector that defines a plane M passing through a point P. Show that the stress vector on

any plane that contains the stress traction tm lies in the M plane.

4.16 Let tm and tn be stress vectors on planes defined by the unit vector m and n, respectively, and pass

through the point P. Show that if k is a unit vector that determines a plane that contains tm and tn, then
tk is perpendicular to m and n.

4.17 Given the function f ðx; yÞ ¼ 4� x2 � y2, find the maximum value of f subjected to the constraint that

x þ y ¼ 2.

4.18 True or false:

(i) Symmetry of stress tensor is not valid if the body has an angular acceleration.

(ii) On the plane of maximum normal stress, the shearing stress is always zero.

4.19 True or false:

(i) On the plane of maximum shearing stress, the normal stress is always zero.

(ii) A plane with its normal in the direction of e1 þ 2e2 � 2e3 has a stress vector t ¼ 50e1þ
100e2 � 100e3 MPa. It is a principal plane.

4.20 Why can the following two matrices not represent the same stress tensor?

100 200 40

200 0 0

40 0 �50

2
4

3
5MPa

40 100 60

100 100 0

60 0 20

2
4

3
5MPa:

4.21 Given:

½T� ¼
0 100 0

100 0 0

0 0 0

2
4

3
5MPa:
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(a) Find the magnitude of shearing stress on the plane whose normal is in the direction of e1 þ e2.
(b) Find the maximum and minimum normal stresses and the planes on which they act.

(c) Find the maximum shearing stress and the plane on which it acts.

4.22 Show that the equation for the normal stress on the plane of maximum shearing stress is

Tn ¼
Tnð Þmax þ Tnð Þmin

2

4.23 The stress components at a point are given by T11 ¼ 100 MPa; T22 ¼ 300 MPa; T33 ¼ 400 MPa;
T12 ¼ T13 ¼ T23 ¼ 0:
(a) Find the maximum shearing stress and the planes on which they act.

(b) Find the normal stress on these planes.

(c) Are there any plane(s) on which the normal stress is 500 MPa?

4.24 The principal values of a stress tensor T are T1 ¼ 10 MPa; T2 ¼ �10 MPa, and T3 ¼ 30 MPa. If the
matrix of the stress is given by

½T� ¼
T11 0 0

0 1 2

0 2 T33

2
4

3
5� 10 MPa;

find the values of T11 and T33.

4.25 If the state of stress at a point is

½T� ¼
300 0 0

0 �200 0

0 0 400

2
4

3
5kPa;

find (a) the magnitude of the shearing stress on the plane whose normal is in the direction of

2e1 þ 2e2 þ e3ð Þ and (b) the maximum shearing stress.

4.26 Given:

½T� ¼
1 4 0

4 1 0

0 0 1

2
4

3
5MPa:

(a) Find the stress vector on the plane whose normal is in the direction of e1 þ e2.
(b) Find the normal stress on the same plane.

(c) Find the magnitude of the shearing stress on the same plane.

(d) Find the maximum shearing stress and the planes on which this maximum shearing stress acts.

4.27 The stress state in which the only nonvanishing stress components are a single pair of shearing stresses

is called simple shear. Take T12 ¼ T21 ¼ t and all other Tij ¼ 0.

(a) Find the principal values and principal directions of this stress state.

(b) Find the maximum shearing stress and the planes on which it acts.

4.28 The stress state in which only the three normal stress components do not vanish is called a triaxial state
of stress. Take T11 ¼ s1; T22 ¼ s2; T33 ¼ s3 with s1 > s2 > s3 and all other Tij ¼ 0. Find the maxi-

mum shearing stress and the plane on which it acts.
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4.29 Show that the symmetry of the stress tensor is not valid if there are body moments per unit volume, as in

the case of a polarized anisotropic dielectric solid.

4.30 Given the following stress distribution:

½T� ¼
x1 þ x2 T12 x1; x2ð Þ 0

T12 x1; x2ð Þ x1 � 2x2 0

0 0 x2

2
4

3
5;

find T12 so that the stress distribution is in equilibrium with zero body force and so that the stress vector

on the plane x1 ¼ 1 is given by t ¼ 1þ x2ð Þe1 þ 5� x2ð Þe2.
4.31 Consider the following stress tensor:

½T� ¼ a
x2 �x3 0

�x3 0 �x2
0 �x2 T33

2
4

3
5:

Find an expression for T33 such that the stress tensor satisfies the equations of equilibrium in the pres-

ence of the body force B ¼ �ge3, where g is a constant.

4.32 In the absence of body forces, the equilibrium stress distribution for a certain body is

T11 ¼ Ax2; T12 ¼ T21 ¼ x1; T22 ¼ Bx1 þ Cx2; T33 ¼ T11 þ T22ð Þ=2; all other Tij ¼ 0:

Also, the boundary plane x1 � x2 ¼ 0 for the body is free of stress. (a) Find the value of C and (b) deter-

mine the value of A and B.

4.33 In the absence of body forces, do the following stress components satisfy the equations of equilibrium?

T11 ¼ a x22 þ n x21 � x22
� 	
 �

; T22 ¼ a x21 þ n x22 � x21
� 	
 �

; T33 ¼ an x21 þ x22
� 	

;
T12 ¼ T21 ¼ �2anx1x2; T13 ¼ T31 ¼ 0; T23 ¼ T32 ¼ 0:

4.34 Repeat the previous problem for the stress distribution:

½T� ¼ a
x1 þ x2 2x1 � x2 0

2x1 � x2 x1 � 3x2 0

0 0 x1

2
4

3
5:

4.35 Suppose that the stress distribution has the form (called a plane stress state)

½T� ¼
T11 x1; x2ð Þ T12 x1; x2ð Þ 0

T12 x1; x2ð Þ T22 x1; x2ð Þ 0

0 0 0

2
4

3
5:

(a) If the state of stress is in equilibrium, can the body forces be dependent on x3?
(b) Demonstrate that if we introduce a function ’ x1; x2ð Þ such that T11 ¼ @2’=@x22; T22 ¼ @2’=

@x21 and T12 ¼ �@2’=@x1@x2, then the equations of equilibrium are satisfied in the absence of body

forces for any ’ x1; x2ð Þ that is continuous up to the third derivatives.

4.36 In cylindrical coordinates (r, y, z), consider a differential volume of material bounded by the three pairs of

faces: r ¼ r and r ¼ r þ dr; y ¼ y and y ¼ yþ dy; and z ¼ z and z ¼ zþ dz. Derive the r and y equa-

tions of motion in cylindrical coordinates and compare the equations with those given in Section 4.8.
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4.37 Verify that the following stress field satisfies the z-equation of equilibrium in the absence of body forces:

Trr ¼ A
z

R3
� 3r2z

R5

� �
; Tyy ¼ Az

R3
; Tzz ¼ �A

z

R3
þ 3z3

R5

� �
; Trz ¼ �A

r

R3
þ 3rz2

R5

� �
; Try ¼ Tzy ¼ 0:

where R2 ¼ r2 þ z2.

4.38 Given the following stress field in cylindrical coordinates:

Trr ¼ � 3Pzr2

2pR5
; Tzz ¼ � 3Pz3

2pR5
; Trz ¼ � 3Pz2r

2pR5
; Tyy ¼ Try ¼ Tzy ¼ 0; R2 ¼ r2 þ z2:

Verify that the state of stress satisfies the equations of equilibrium in the absence of body forces.

4.39 For the stress field given in Example 4.9.1, determine the constants A and B if the inner cylindrical wall

is subjected to a uniform pressure pi and the outer cylindrical wall is subjected to a uniform pressure po.

4.40 Verify that Eqs. (4.8.4) to (4.8.6) are satisfied by the equilibrium stress field given in Example 4.9.2 in

the absence of body forces.

4.41 In Example 4.9.2, if the spherical shell is subjected to an inner pressure pi and an outer pressure po,
determine the constant A and B.

4.42 The equilibrium configuration of a body is described by

x1 ¼ 16X1; x2 ¼ � 1

4
X2; x3 ¼ � 1

4
X3

and the Cauchy stress tensor is given by T11 ¼ 1000 MPa:, and all other Tij ¼ 0.

(a) Calculate the first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the

plane whose undeformed plane is the e1-plane.
(b) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the

same plane.

4.43 Can the following equations represent a physically acceptable deformation of a body? Give reason(s).

x1 ¼ � 1

2
X1; x2 ¼ 1

2
X3; x3 ¼ �4X2:

4.44 The deformation of a body is described by

x1 ¼ 4X1; x2 ¼ � 1=4ð ÞX2; x3 ¼ � 1=4ð ÞX3:

(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the

deformed area of the e1-face of the cube?

(b) If the Cauchy stress tensor is given by T11 ¼ 100 MPa; and all other Tij ¼ 0, calculate the first

Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the plane whose unde-

formed plane is the e1-plane.
(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the

plane whose undeformed plane is the e1-plane. Also calculate the pseudo-differential force for the

same plane.

4.45 The deformation of a body is described by

x1 ¼ X1 þ kX2; x2 ¼ X2; x3 ¼ X3:

Problems for Chapter 4 199



(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the

deformed area of the e1 face of the cube?

(b) If the Cauchy stress tensor is given by T12 ¼ T21 ¼ 100 MPa; and all other Tij ¼ 0, calculate the

first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the plane whose

undeformed plane is the e1-plane and compare it with the Cauchy stress vector in the deformed state.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the

plane whose undeformed plane is the e1-plane. Also calculate the pseudo-differential force for the

same plane.

4.46 The deformation of a body is described by

x1 ¼ 2X1; x2 ¼ 2X2; x3 ¼ 2X3:

(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the

deformed area of the e1 face of the cube?

(b) If the Cauchy stress tensor is given by

100 0 0

0 100 0

0 0 100

2
4

3
5Mpa;

calculate the first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the

plane whose undeformed plane is the e1-plane and compare it with the Cauchy stress vector on

its deformed plane.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the

plane whose undeformed plane is the e1-plane. Also calculate the pseudo-differential force for the

same plane.
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CHAPTER

The Elastic Solid

5
So far we have studied the kinematics of deformation, the description of the state of stress, and five basic

principles of continuum physics (see Section 4.18): the principle of conservation of mass, the principle of

linear momentum, the principle of moment of momentum, the principle of conservation of energy and the

entropy inequality. All these relations are valid for every continuum; indeed, no mention was made of any

material in the derivations.

However, these equations are not sufficient to describe the response of a specific material due to a given

loading. We know from experience that under the same loading conditions, the response of steel is different

from that of water. Furthermore, for a given material, it varies with different loading conditions. For example,

for moderate loadings the deformation in steel caused by the application of loads disappears with the removal

of the loads. This aspect of the material behavior is known as elasticity. Beyond a certain level of loading,

there will be permanent deformations or even fracture exhibiting behavior quite different from that of

elasticity.

In this chapter, we shall study idealized materials that model the elastic behavior of real solids. The con-

stitutive equations for an isotropic linearly elastic model and some selected methods of solutions to boundary

value problems in elasticity, including plane stress and plane strain solutions, as well as solutions by potential

functions, are presented in Part A, followed by the formulations of the constitutive equations for anisotropic

linearly elastic models in Part B and some examples of the incompressible isotropic nonlinearly elastic model

in Part C.

5.1 MECHANICAL PROPERTIES
We want to establish some appreciation of the mechanical behavior of solid materials. To do this, we perform

some thought experiments modeled after real laboratory experiments.

Suppose that from a block of material we cut out a slender cylindrical test specimen of cross-sectional

area A. The bar is now statically tensed by an axially applied load P, and the elongation Dℓ, over
some axial gage length ℓ, is measured. A typical plot of tensile force against elongation is shown in

Figure 5.1-1. Within the linear portion OA (called the proportional range), if the load is reduced to zero

(i.e., unloading), then the line OA is retraced back to O and the specimen has exhibited an elasticity.
Applying a load that is greater than A and then unloading, we typically traverse OABC and find that

there is a “permanent elongation” OC. Reapplication of the load from C indicates elastic behavior

with the same slope as OA but with an increased proportional limit. The material is said to have

work-hardened.

Copyright © 2010, Elsevier Ltd. All rights reserved.



The load-elongation diagram in Figure 5.1-1 depends on the cross-section of the specimen and the axial

gage length ℓ. To have a representation of material behavior that is independent of specimen size and vari-

ables introduced by the experimental setup, we may plot the stress s ¼ P=Ao, where Ao is the undeformed

area of the cross-section versus the axial strain ea ¼ Dℓ=ℓ, as shown in Figure 5.1-2. In this way, the test

results appear in a form that is not dependent on the specimen dimensions. The slope of the line OA will

therefore be a material coefficient that is called the Young’s modulus (or modulus of elasticity). We denote

this modulus by EY, that is,

EY ¼ s
ea
: (5.1.1)

The numerical value of EY for steel is around 207 GPa (30 � 106 psi). This means that for a steel bar of

cross-sectional area 32.3 cm2 (5 in.2) that carries a load of 667,000 N (150,000 lbs), the axial strain is

B

0

P

A

P

d

σ = P/Ao

ea = Δ /

FIGURE 5.1-2

B

0

P

C

P

A

P

Δ

FIGURE 5.1-1
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ea ¼ 667000=ð32:3� 10�4Þ
207� 109

� 10�3:

As expected, the strains in the linear elastic range of metals are quite small, and we can, therefore, use the

infinitesimal strain theory to describe the deformation of metals.

In the tension test, we can also measure change in the lateral dimension. If the bar is of circular cross-

section with an initial diameter d, it will remain, for certain idealized metal, circular, decreasing in diameter

as the tensile load is increased. Letting ed be the lateral strain (equal to Dd/d), we find that the ratio �ed /ea is a
constant if the strains are small. We call this constant Poisson’s ratio and denote it by n. A typical value of n
for steel is 0.3.

So far we have only been considering a single specimen out of the block of material. It is conceivable that

the modulus of elasticity EY as well as Poisson’s ratio n may depend on the orientation of the specimen rela-

tive to the block. In this case, the material is said to be anisotropic with respect to its elastic properties. Aniso-

tropic properties are usually exhibited by materials with a definite internal structure, such as wood or a rolled

steel plate, or composite materials and many biological tissues. If the specimens, cut at different orientations

at a sufficiently small neighborhood, show the same stress-strain diagram, we can conclude that the material

is isotropic with respect to its elastic properties in that neighborhood.

In addition to a possible dependence on orientation of the elastic properties, we may also find that they

may vary from one neighborhood to the other. In this case, we call the material inhomogeneous. If there is

no change in the test results for specimens at different neighborhoods, we say the material is

homogeneous.
Previously we stated that the circular cross-section of a bar can remain circular in the tension test. This is

true when the material is homogeneous and isotropic with respect to its elastic properties.

Other characteristic tests with an elastic material are also possible. In one case, we may be interested in

the change of volume of a block of material under hydrostatic stress s for which the stress state is

Tij ¼ sdij: (5.1.2)

In a suitable experiment, we measure the relation between s, the applied stress, and e, the change in vol-

ume per initial volume [also known as dilatation; see Eq. (3.10.2)]. For an elastic material, a linear relation

exists for small e, and we define the bulk modulus k as

k ¼ s
e
: (5.1.3)

A typical value of k for steel is 138 GPa (20 � 106 psi).
A torsion experiment yields another elastic constant. For example, we may subject a cylindrical steel bar

of circular cross-section of radius r to a twisting moment Mt along the cylinder axis. The bar has a length ℓ
and will twist by an angle y upon the application of the moment Mt. A linear relation between the angle of

twist y and the applied moment Mt will be obtained for small y. We define a shear modulus m as

m ¼ Mtℓ

Ipy
; (5.1.4)

where Ip ¼ pr4=2 (the polar area second moment). A typical value of m for steel is 76 GPa (11 � 106 psi).
For an anisotropic elastic solid, the values of these material coefficients (or material constants) depend on

the orientation of the specimen prepared from the block of material. Inasmuch as there are infinitely many

orientations possible, an important and interesting question is how many coefficients are required to define

completely the mechanical behavior of a particular elastic solid. We answer this question in the following sec-

tion for a linearly elastic solid.
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5.2 LINEARLY ELASTIC SOLID
Within certain limits, the experiments cited in Section 5.1 have the following features in common:

1. The relation between the applied loading and a quantity measuring the deformation is linear.

2. The rate of load application does not have an effect.

3. Upon removal of the loading, the deformations disappear completely.

4. The deformations are very small.

Characteristics 1–4 are now used to formulate the constitutive equation of an ideal material, the linearly elas-
tic or Hookean elastic solid. The constitutive equation relates the stress to relevant quantities of deformation.

In this case, deformations are small and the rate of load application has no effect. We therefore can write

T ¼ T EÞ;ð (5.2.1)

where T is the Cauchy stress tensor and E is the infinitesimal strain tensor, with T(0) ¼ 0. If, in addition, the

function is to be linear, then we have, in component form,

T11 ¼ C1111E11 þ C1112E12 þ . . . . . . . . . :þ C1133E33;
T12 ¼ C1211E11 þ C1212E12 þ . . . . . . . . . :þ C1233E33;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :
T33 ¼ C3311E11 þ C3312E12 þ . . . . . . . . . :þ C3333E33:

(5.2.2)

The preceding nine equations can be written compactly as

Tij ¼ CijklEkl: (5.2.3)

Since Tij and Eij are components of second-order tensors, from the quotient rule discussed in Section 2.19, we

know that Cijkl are components of a fourth-order tensor, here known as the elasticity tensor. The values of

these components with respect to the primed basis e 0
i and the unprimed basis ei are related by the transforma-

tion law (see Section 2.19)

C 0
ijkl ¼ QmiQnjQrkQslCmnrs: (5.2.4)

If the body is homogeneous, that is, the mechanical properties are the same for every particle in the body,

then Cijkl are independent of position. We shall be concerned only with homogeneous bodies. There are 81

coefficients in Eq. (5.2.2). However, since Eij ¼ Eji, we can always combine the sum of the two terms, such

as C1112E12 þ C1121E21, into one term, C1112 þ C1121ð ÞE12, so that C1112 þ C1121ð Þ becomes one independent

coefficient. Equivalently, we can simply take C1112 ¼ C1121. Thus, due to the symmetry of the strain tensor,

we have

Cijkl ¼ Cijlk: (5.2.5)

The preceding equations reduce the number of independent Cijkl from 81 to 54. We shall consider only the

case where the stress tensor is symmetric, i.e.,

Tij ¼ Tji: (5.2.6)

As a consequence,

Cijkl ¼ Cjikl: (5.2.7)
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The preceding equations further reduce the number of independent coefficients by 18. Thus, we have, for

the general case of a linearly elastic body, a maximum of 36 material coefficients.

Furthermore, we assume that the concept of “elasticity” is associated with the existence of a stored energy

function U(Eij), also known as the strain energy function, which is a positive definite function of the strain

components such that

Tij ¼ @U

@Eij
: (5.2.8)

With such an assumption [the motivation for Eq. (5.2.8) is given in Example 5.2.1], it can be shown (see

Example 5.2.2) that

Cijkl ¼ Cklij: (5.2.9)

Equations (5.2.9) reduce the number of elastic coefficients from 36 to 21.

Example 5.2.1
(a) In the infinitesimal theory of elasticity, both the displacement components and the components of displace-

ment gradient are assumed to be very small. Show that under these assumptions, the rate of deformation ten-

sor D can be approximated by DE /Dt, where E is the infinitesimal strain tensor.

(b) Show that if Tij is given the Tij ¼ CijklEkl [Eq. (5.2.3)], then the rate of work done by the stress components to

change the volume and shape of a material volume is given by

Ps ¼ DU

Dt
; (5.2.10)

where U is the strain energy function defined by Eq. (5.2.8).

Solution
(a) From 2Eij ¼ ð@ui=@Xj þ @uj=@XiÞ, we have

2
DEij
Dt

¼ @

@Xj

Dui
Dt

þ @

@Xi

Duj
Dt

¼ @vi
@Xj

þ @vj
@Xi

: (5.2.11)

Since xi ¼ xi X1; X2; X3; tð Þ, we can obtain

@vi
@Xj

þ @vj
@Xi

¼ @vi
@xm

@xm
@Xj

þ @vj
@xm

@xm
@Xi

: (5.2.12)

Now, from xm ¼ Xm þ um, where um is the infinitesimal displacement components, we have

@xm
@Xi

¼ dmi þ @um
@Xi

and
@xm
@Xj

¼ dmj þ @um
@Xj

: (5.2.13)

Thus, neglecting small quantities of higher order, we have

2
DEij
Dt

¼ @vi
@Xj

þ @vj
@Xi

¼ @vi
@xm

dmj þ @vj
@xm

dmi ¼ @vi
@xj

þ @vj
@xi

� 2Dij : (5.2.14)

That is,

DEij
Dt

¼ Dij : (5.2.15)
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(b) In Section 4.12, we derived the formula for computing the stress power, that is, the rate of work done by the

stress components to change the volume and shape of a material volume as [see Eq. (4.12.4)]

Ps ¼ TijDij : (5.2.16)

Using Eq. (5.2.15), we have

Ps ¼ Tij
DEij
Dt

: (5.2.17)

Now, if Tij ¼ @U=@Eij [Eq. (5.2.8)], then

Ps ¼ @U

@Eij

DEij
Dt

¼ @U

@Eij

@Eij
@t

� �
Xi¼fixed

¼ @U

@t

� �
Xi¼fixed

¼ DU

Dt
: (5.2.18)

That is, with the assumption given by Eq. (5.2.8), the rate at which the strain energy increases is

completely determined by Ps, the rate at which the stress components are doing work to change the

volume and shape. Thus, if Ps is zero, then the strain energy remains a constant (i.e., stored). This result

provides the motivation for assuming the existence of a positive definite energy function* through

Eq. (5.2.8).

Example 5.2.2
Show that if Tij ¼ @U=@Eij for a linearly elastic solid, (a) the components of the elastic tensor satisfies the condition

Cijkl ¼ Cklij ; (5.2.19)

and (b) the strain energy function U is given by

U ¼ 1

2
TijEij ¼ 1

2
CijklEij Ekl : (5.2.20)

Solution

(a) For a linearly elastic solid, Tij ¼ CijklEkl , therefore,

@Tij
@Ers

¼ Cijrs : (5.2.21)

Thus, from Eq. (5.2.8), i.e.,Tij ¼ @U=@Eij , we have

Cijrs ¼ @2U

@Ers@Eij
¼ @2U

@Eij@Ers
¼ Crsij ; (5.2.22)

therefore,

Cijkl ¼ Cklij : (5.2.23)

*In this chapter we define the concept of elasticity without considering any thermodynamic effects. In thermo-elastic theory, the

strain energy function is identified with the internal energy function in isothermal motions and with the Helmholtz free energy func-

tion in isentropic motions.
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(b) From Tij ¼ @U=@Eij , we have

TijdEij ¼ @U

@Eij
dEij ¼ dU; (5.2.24)

i.e.,

dU ¼ CijklEkldEij : (5.2.25)

Changing the dummy indices, we obtain

dU ¼ Cklij Eij dEkl : (5.2.26)

But Cklij ¼ Cijkl ; therefore,

dU ¼ CijklEij dEkl : (5.2.27)

Adding Eqs. (5.2.25) and (5.2.27), we obtain

2dU ¼ Cijkl EkldEij þ EijdEkl
� � ¼ Cijkld EijEkl

� �
;

from which we obtain

U ¼ 1

2
CijklEijEkl : (5.2.28)

In the following, we first show that if the material is isotropic, then the number of independent coefficients

reduces to only 2. Later, in Part B, the constitutive equations for anisotropic elastic solid involving 13 coeffi-

cients (monoclinic elastic solid), nine coefficients (orthotropic elastic solid), and five coefficients (trans-

versely isotropic solid) will be discussed.

PART A: ISOTROPIC LINEARLY ELASTIC SOLID

5.3 ISOTROPIC LINEARLY ELASTIC SOLID
A material is said to be isotropic if its mechanical properties can be described without reference to directions.

When this is not true, the material is said to be anisotropic. Many structural metals such as steel and alumi-

num can be regarded as isotropic without appreciable error.

We had, for a linearly elastic solid, with respect to the ei basis,

Tij ¼ CijklEkl; (5.3.1)

and with respect to the e 0
i basis,

T 0
ij ¼ C 0

ijklE
0
kl: (5.3.2)

If the material is isotropic, then the components of the elasticity tensor must remain the same, regardless

of how the rectangular basis is rotated and reflected. That is,

C 0
ijkl ¼ Cijkl; (5.3.3)
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under all orthogonal transformations of basis. A tensor having the same components with respect to every

orthonormal basis is known as an isotropic tensor. For example, the identity tensor I is obviously an isotropic

tensor since its components dij are the same for any Cartesian basis. Indeed, it can be proved (see Prob. 5.2)

that except for a scalar multiple, the identity tensor dij is the only isotropic second-order tensor. From this iso-

tropic second-order tensor dij we can form the following three isotropic fourth-order tensors (see product rules

in Section 2.19):

Aijkl ¼ dijdkl; Bijkl ¼ dikdjl and Hijkl ¼ dildjk: (5.3.4)

In Part B of this chapter, we shall give the detail reductions of the general Cijkl to the isotropic Cijkl. Here,

as a shortcut to the isotropic case, we shall express the elasticity tensor Cijkl in terms of Aijkl, Bijkl, and Hijkl.

That is,

Cijkl ¼ lAijkl þ aBijkl þ bHijkl; (5.3.5)

where l, a and b are constants. Using Eqs. (5.3.4) and (5.3.5), Eq. (5.3.1) becomes

Tij ¼ CijklEkl ¼ ldijdklEkl þ adikdjlEkl þ bdildjkEkl: (5.3.6)

Thus,

Tij ¼ lEkkdij þ ðaþ bÞEij; (5.3.7)

or, denoting (a þ b) by 2m, we have

Tij ¼ ledij þ 2mEij; (5.3.8)

where

e � Ekk; (5.3.9)

denotes the dilatation. In direct notation, Eq. (5.3.8) reads

T ¼ leIþ 2mE: (5.3.10)

In long form, Eq. (5.3.8) or (5.3.10) reads

T11 ¼ l E11 þ E22 þ E33ð Þ þ 2mE11; (5.3.11)

T22 ¼ l E11 þ E22 þ E33ð Þ þ 2mE22; (5.3.12)

T33 ¼ l E11 þ E22 þ E33ð Þ þ 2mE33; (5.3.13)

T12 ¼ 2mE12; (5.3.14)

T13 ¼ 2mE13; (5.3.15)

T23 ¼ 2mE23: (5.3.16)

Equation (5.3.8) or (5.3.10) are the constitutive equations for an isotropic linearly elastic solid. The two

material constants l and m are known as Lamé’s coefficients or Lamé’s constants. Since Eij are dimensionless,

l and m are of the same dimension as the stress tensor, force per unit area. For a given real material, the values

of Lamé’s constants are to be determined from suitable experiments. We shall have more to say about this

later.

208 CHAPTER 5 The Elastic Solid



Example 5.3.1
(a) For an isotropic Hookean material, show that the principal directions of stress and strain coincide and (b) find a

relation between the principal values of stress and strain.

Solution
(a) Let n1 be an eigenvector of the strain tensor E (i.e., En1 ¼ E1n1). Then, by Hooke’s law, Eq. (5.3.10), we have

Tn1 ¼ 2mEn1 þ leIn1 ¼ 2mE1 þ leð Þn1:
Therefore, n1 is also an eigenvector of the tensor T.

(b) Let E1, E2, E3 be the eigenvalues of E; then e ¼ E1 þ E2 þ E3 and Eqs. (5.3.11), (5.3.12), and (5.3.13) give

T1 ¼ 2mE1 þ l E1 þ E2 þ E3ð Þ;
T2 ¼ 2mE2 þ l E1 þ E2 þ E3ð Þ;
T3 ¼ 2mE3 þ l E1 þ E2 þ E3ð Þ:

Example 5.3.2
For an isotropic material, (a) find a relation between the first invariants of stress and strain, and (b) use the result of

part (a) to invert Hooke’s law so that strain is a function of stress.

Solution
(a) By contracting the indices in Eq. (5.3.8), [i.e., adding Eqs. (5.3.11), (5.3.12), and (5.3.13)], we obtain

Tkk ¼ 2mþ 3lð ÞEkk ¼ 2mþ 3lð Þe: (5.3.17)

(b) With

e ¼ Tkk
2mþ 3lð Þ ; (5.3.18)

Eq. (5.3.10) can be inverted to be

E ¼ 1

2m
T� lTkk

2m 2mþ 3lð Þ I: (5.3.19)

5.4 YOUNG’S MODULUS, POISSON’S RATIO, SHEAR MODULUS, AND
BULK MODULUS
Equation (5.3.8) expresses the stress components in terms of the strain components. This equation can be

inverted, as was done in Example 5.3.2, to give

Eij ¼ 1

2m
Tij � l

3lþ 2m
Tkkdij

� �
: (5.4.1)
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We also have, from Eq. (5.3.18),

e ¼ 1

3lþ 2m

� �
Tkk: (5.4.2)

If the state of stress is such that only one normal stress component is not zero, we call it a uniaxial stress state.
The uniaxial stress state is a good approximation of the actual state of stress in the cylindrical bar used in the

tensile test described in Section 5.1. If we take the axial direction to be in the e1 direction, the only nonzero

stress component is T11; then Eq. (5.4.1) gives

E11 ¼ 1

2m
T11 � l

3lþ 2m
T11

� �
¼ lþ m

m 3lþ 2mð ÞT11; (5.4.3)

E33 ¼ E22 ¼ 1

2m
0� l

3lþ 2m
T11

� �
¼ � l

2m 3lþ 2mð Þ T11 ¼ � l
2 lþ mð ÞE11; (5.4.4)

and

E12 ¼ E13 ¼ E23 ¼ 0: (5.4.5)

The ratio T11/E11, corresponding to the ratio s/ea of the tensile test described in Section 5.1, is Young’s
modulus or the modulus of elasticity EY. Thus, from Eq. (5.4.3),

EY ¼ m 3lþ 2mð Þ
lþ m

: (5.4.6)

The ratio �E22/E11 and �E33/E11 corresponding to the ratio �ed/ea of the same tensile test is Poisson’s
ratio, denoted by n. Thus, from Eq. (5.4.4),

n ¼ l
2 lþ mð Þ : (5.4.7)

Using Eqs. (5.4.6) and (5.4.7), we can write Eq. (5.4.1) in the conventional engineering form

E11 ¼ 1

EY
½T11 � nðT22 þ T33Þ�; (5.4.8)

E22 ¼ 1

EY
½T22 � nðT33 þ T11Þ�; (5.4.9)

E33 ¼ 1

EY
½T33 � nðT11 þ T22Þ�; (5.4.10)

E12 ¼ 1

2m
T12; (5.4.11)

E13 ¼ 1

2m
T13; (5.4.12)

E23 ¼ 1

2m
T23: (5.4.13)

Even though there are three material constants in Eqs. (5.4.8) to (5.4.13), it is important to remember that

only two of them are independent for an isotropic material. In fact, by eliminating l from Eqs. (5.4.6) and

(5.4.7), we have the important relation:
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m ¼ EY

2 1þ nð Þ : (5.4.14)

Using this relation, we can also write Eq. (5.4.1) as

Eij ¼ 1

EY
ð1þ nÞTij � nTkkdij
� 	

: (5.4.15)

If the state of stress is such that only one pair of shear stresses is not zero, it is called a simple shear stress
state. The state of stress may be described by T12 ¼ T21 ¼ t, and Eq. (5.4.11) gives

E12 ¼ E21 ¼ t
2m

: (5.4.16)

Defining the shear modulus G as the ratio of the shearing stress t in simple shear to the small decrease in

angle between elements that are initially in the e1 and e2 directions, we have

t
2E12

¼ G: (5.4.17)

Comparing Eq. (5.4.17) with Eq. (5.4.16), we see that the Lamé’s constant m is also the shear modulus G.
A third stress state, called the hydrostatic state of stress, is defined by the stress tensor T ¼ sI. In this

case, Eq. (5.4.2) gives

e ¼ 3s
2mþ 3l

: (5.4.18)

As mentioned in Section 5.1, the bulk modulus k is defined as the ratio of the hydrostatic normal stress s
to the unit volume change. We have

k ¼ s
e
¼ 2mþ 3l

3
¼ lþ 2

3
m: (5.4.19)

From Eqs. (5.4.6), (5.4.7), (5.4.14), and (5.4.19), we see that the Lamé’s constants, Young’s modulus, the

shear modulus, Poisson’s ratio, and the bulk modulus are all interrelated. Only two of them are independent

for an isotropic, linearly elastic material. Table 5.1 expresses the various elastic constants in terms of two

basic pairs. Table 5.2 gives some typical values for some common materials.

Example 5.4.1
A material is called incompressible if there is no change of volume under any and all states of stresses. Show that for

an incompressible isotropic linearly elastic solid with finite Young’s modulus EY, (a) Poisson’s ratio n¼ 1/2, (b) the

shear modulus m¼ EY /3, and (c) k !1, l! 1 and k � l ¼ 2m=3.

Solution
(a) From Eq. (5.4.15),

Eii ¼ 1

EY
½ð1þ nÞTii � 3nTkk � ¼ 1

EY
ð1� 2nÞTii : (5.4.20)

Now, Eii is the change of volume per unit volume (the dilatation) and Tii is the sum of the normal stresses.

Thus, if the material is incompressible, then n ¼ 1/2.
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(b) n ¼ EY
2m

� 1, therefore,
EY
2m

¼ 1þ 1

2
¼ 3

2
, from which m ¼ EY

3
.

(c) For the hydrostatic state of stress Tij ¼ sdij , Tii ¼ 3s, Eq. (5.4.20) becomes

EY
3 1� 2nð Þ ¼

s
e
� k: (5.4.21)

For an incompressible solid, n ! 1/2; thus, k !1. Now, k ¼ lþ 2m
3
; therefore, l ! 1. But k � l ¼ 2m

3
,

which is a finite quantity.

Table 5.1 Conversion of Constants for an Isotropic Elastic Solid

l m EY n k

l, m l m m 3lþ 2mð Þ
lþ m

l
2 lþ mð Þ lþ 2

3
m

l, n l
l 1� 2nð Þ

2n
l 1þ nð Þ 1� 2nð Þ

n
n

l 1þ nð Þ
3n

l, k l
3 k � lð Þ

2

9k k � lð Þ
3k � lð Þ

l
3k � lð Þ k

m, EY
m EY � 2mð Þ
3m� EY

m EY
EY
2m

� 1
mEY

3 3m� EYð Þ

m, n
2mn

1� 2nð Þ m 2m 1þ nð Þ n
2m 1þ nð Þ
3 1� 2nð Þ

m, k k � 2

3
m m

9km
3k þ mð Þ

3k � 2m
6k þ 2m

k

EY, n
nEY

1þ nð Þ 1� 2nð Þ
EY

2 1þ nð Þ EY n
EY

3 1� 2nð Þ

EY, k
3 kEY � 3k2
� �
EY � 9kð Þ

3kEY
9k � EYð Þ EY n ¼ 3k � EYð Þ

6k
k

k, n
3kn
1þ nð Þ

3k 1� 2nð Þ
2 1þ nð Þ 3k 1� 2nð Þ n k

l, EY l m l;EYð Þ* EY
EY

2m l;EYð Þ � 1
m l;EYð ÞEY

3 3m l; EYð Þ � EY½ �

*mðl:EY Þ ¼ � 3l� EYð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l� EYð Þ2 þ 8EY l

q� �
=4.

Note: (1) As n ! 1=2; k ! 1; l!1;m ! EY=3, (2) it is generally accepted that compressive hydrostatic stress state will not lead to an

increase in volume, therefore, n<1/2, (3) for isotropic materials whose transverse strain is negative when subjected to the action of

simple extension, the Poisson’s ratio is: 0 � n < 1/2 and (4) for the so-called auxetic materials, the transverse strain is positive while

under simple extension, the Poisson’s ratio is negative. Thus, for an isotropic material, in general, �1 < n < 1/2. For a discussion of the

lower limit of �1, see Section 5.52 in Part B of this Chapter.
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5.5 EQUATIONS OF THE INFINITESIMAL THEORY OF ELASTICITY
In Section 4.7, we derived the Cauchy’s equation of motion [see Eq. (4.7.5)], to be satisfied by the stress field

in any continuum:

rai ¼ rBi þ @Tij
@xj

; (5.5.1)

where r is the density, ai the acceleration component, rBi the component of body force per unit volume, and

Tij the Cauchy stress components. All terms in the equation are quantities associated with a particle that is

currently at the position (x1, x2, x3).

Table 5.2 Elastic Constants for Isotropic Solids at Room Temperature{

Material Composition

Modulus of
Elasticity,
EY GPa
(106 psi)

Poisson’s
ratio, n

Shear
Modulus,
m GPa
(106 psi)

Lamè ’s
constant,
l GPa
(106 psi)

Bulk Modulus
k GPa
(106 psi)

Aluminum Pure and

alloy

68.2–78.5

(9.9–11.4)

0.32–0.34 25.5–26.53

(3.7–3.85)

46.2–62.7

(6.7–9.1)

63.4–80.6

(9.2–11.7)

Brass 60–70% Cu,

40–30% Zn

99.9–109.6

(14.5–15.9)

0.33–0.36 36.5–41.3

(5.3–6.0)

73.0–103.4

(10.6–15.0)

97.1–130.9

(14.1–19.0)

Copper 117–124

(17–18)

0.33–0.36 40.0–46.2

(5.8–6.7)

85.4–130.9

(12.4–19.0)

112.3–148.1

(16.3–21.5)

Cast iron 2.7–3.6% C 90–145

(13–21)

0.21–0.30 35.8–56.5

(5.2–8.2)

26.9–83.4

(3.9–12.1)

51.0–121.3

(7.4–17.6)

Steel Carbon and

low alloy

193–220

(28–32)

0.26–0.29 75.8–82.0

(11.0–11.9)

82.7–117.8

(12.0–17.1)

133.0–172.3

(19.3–25.0)

Stainless

Steel

18% Cr,

8% Ni

193–207

(28–30)

0.3 73.0 (10.6) 111.6–119.2

(16.2–17.3)

160.5–168.1

(23.2–24.4)

Titanium Pure and

alloy

106.1–114.4

(15.4–16.6)

0.34 41.3 (6.0) 84.1–90.9

(12.2–13.2)

111.6–118.5

(16.2–17.2)

Glass Various 49.6–79.2

(7.2–11.5)

0.21–0.27 26.2–32.4

(3.8–4.7)

15.2–36.5

(2.2–5.3)

32.4–57.9

(4.7–8.4)

Rubber 0.00076–

0.00413

(0.00011–

0.00060)

0.50 0.00028–

0.00138

(0.00004–

0.00020)

1* 1*

*As n approaches 0.5, the ratio k /EY and l /m ! 1. The actual value of k and l for some rubbers may be close to the values of steel.
{Partly from “an Introduction to the Mechanics of Solids,” S.H. Crandall and N.C Dahl (Eds.), McGraw-Hill, 1959.

5.5 Equations of the Infinitesimal Theory of Elasticity 213



We shall consider only the case of small motions, that is, motions such that every particle is always in a

small neighborhood of the natural state. More specifically, if Xi denotes the position in the natural state of a

typical particle, we assume that

xi � Xi; (5.5.2)

and that the magnitude of the components of the displacement gradient @ui=@xj is also very small. From

x1 ¼ X1 þ u1; x2 ¼ X2 þ u2; x3 ¼ X3 þ u3; (5.5.3)

we have the velocity components related to the displacement components by

vi ¼ Dxi
Dt

¼ @ui
@t

� �
xi�fixed

þ v1
@ui
@x1

þ v2
@ui
@x2

þ v3
@ui
@x3

; (5.5.4)

where vi are the small velocity components associated with the small displacement components. Neglecting

the small quantities of higher order, we obtain the velocity components as

vi ¼ @ui
@t

� �
xi�fixed

; (5.5.5)

and the acceleration component as

ai ¼ @2ui
@t2

� �
xi�fixed

: (5.5.6)

Furthermore, the differential volume dV is related to the initial volume dVo by the equation (see Section

3.10)

dV ¼ ð1þ EkkÞdVo; (5.5.7)

therefore, the densities are related by

r ¼ ð1þ EkkÞ�1ro � ð1� EkkÞro; (5.5.8)

where we have used the binomial theorem. Again, neglecting small quantities of higher order, we have

rai ¼ ro
@2u1
@t2

� �
xi�fixed

: (5.5.9)

Thus, Eq. (5.5.1) becomes

ro
@2ui
@t2

¼ roBi þ @Tij
@xj

: (5.5.10)

In Eq. (5.5.10), all displacement components are regarded as functions of the spatial coordinates xi,
and the equations simply state that for infinitesimal motions, there is no need to make the distinction

between the spatial coordinates xi and the material coordinates Xi. In the following sections in Parts A
and B of this chapter, all displacement components will be expressed as functions of the spatial
coordinates.

A displacement field ui (x1, x2, x3, t) is said to describe a possible motion in an elastic medium with small

deformation if it satisfies Eq. (5.5.10). When a displacement field ui (x1, x2, x3, t) is given, to make sure that it

is a possible motion, we can first compute the strain field Eij from Eq. (3.7.16), i.e.,

214 CHAPTER 5 The Elastic Solid



Eij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
; (5.5.11)

and then the corresponding elastic stress field Tij from Eq. (5.3.8), i.e.,

Tij ¼ ledij þ 2mEij: (5.5.12)

Then the substitution of ui and Tij into Eq. (5.5.10) will verify whether or not the given motion is possible. Alterna-

tively, one can substitute directly the displacement field into the Navier’s equations, to be derived in the next section

for the same purpose. If the motion is found to be possible, the surface tractions (i.e., stress vectors on the surface of

the body) on the boundary of the body needed to maintain the motion are given by Eq. (4.9.1), i.e.,

ti ¼ Tijnj: (5.5.13)

On the other hand, if the boundary conditions are prescribed, then, in order that ui be the solution to the

problem, it must meet the prescribed conditions on the boundary, whether they are displacement conditions or

surface traction conditions.

5.6 NAVIER EQUATIONS OF MOTION FOR ELASTIC MEDIUM
In this section, we combine Eqs. (5.5.10), (5.5.11), and (5.5.12) to obtain the equations of motion in terms of

the displacement components only. These equations are known as Navier’s equations of motion. First, from

Eqs. (5.5.11) and (5.5.12), we have

Tij ¼ ledij þ 2mEij ¼ ledij þ m
@ui
@xj

þ @uj
@xi

� �
: (5.6.1)

Thus,

@Tij
@xj

¼ l
@e

@xj
dij þ m

@2ui
@xj@xj

þ @uj
@xj@xi

� �
: (5.6.2)

Now,

@e

@xj
dij ¼ @e

@xi
and

@uj
@xj@xi

¼ @

@xi

@uj
@xj

� �
¼ @e

@xi
; (5.6.3)

therefore, the equation of motion, Eq. (5.5.10), becomes

ro
@2ui
@t2

¼ roBi þ ðlþ mÞ @e
@xi

þ m
@2ui
@xj@xj

: (5.6.4)

In long form, Eq. (5.6.4) reads

ro
@2u1
@t2

¼ roB1 þ ðlþ mÞ @e

@x1
þ m

@2

@x21
þ @2

@x22
þ @2

@x23

� �
u1; (5.6.5)

ro
@2u2
@t2

¼ roB2 þ ðlþ mÞ @e

@x2
þ m

@2

@x21
þ @2

@x22
þ @2

@x23

� �
u2; (5.6.6)

ro
@2u3
@t2

¼ roB3 þ ðlþ mÞ @e

@x3
þ m

@2

@x21
þ @2

@x22
þ @2

@x23

� �
u3; (5.6.7)
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where

e ¼ @ui
@xi

¼ @u1
@x1

þ @u2
@x2

þ @u3
@x3

: (5.6.8)

In invariant form, the Navier equations of motion take the form

ro
@2u

@t2
¼ roBþ ðlþ mÞreþ mr2u; (5.6.9)

where

e ¼ div u: (5.6.10)

Example 5.6.1
Given the displacement field u1 ¼ u1ðx1; tÞ; u2 ¼ u3 ¼ 0, obtain the equation that must be satisfied by u1 so that it is

a possible motion for an isotropic linearly elastic solid in the absence of body forces.

Solution
From the Navier equation (5.6.5), we have

ro
@2u1
@t2

¼ ðlþ mÞ @e
@x1

þ m
@2u1

@x21
¼ ðlþ mÞ @

@x1

@u1
@x1

� �
þ m

@2u1

@x21
¼ ðlþ 2mÞ @

2u1

@x21
: (5.6.11)

Thus,

@2u1
@t2

¼ c2L
@2u1

@x21
; (5.6.12)

where

cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m
ro

s
: (5.6.13)

Equation (5.6.12) is known as the simple wave equation.

5.7 NAVIER EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES
Using the expressions for E and r2u derived for cylindrical and spherical coordinates in Section 3.7 and in

Part D of Chapter 2, we can obtain Hooke’s law and Navier’s equations in these two coordinates as

follows:

Cylindrical coordinates. With (ur, uy, uz) denoting the displacements in (r, y, z) directions, Hooke’s laws
are

Trr ¼ leþ 2m
@ur
@r

; Tyy ¼ leþ 2m
1

r

@uy
@y

þ ur
r

� �
; Tzz ¼ leþ 2m

@uz
@z

; (5.7.1)

Try ¼ m
1

r

@ur
@y

þ @uy
@r

� uy
r

� �
; Tyz ¼ m

@uy
@z

þ 1

r

@uz
@y

� �
; Tzr ¼ m

@ur
@z

þ @uz
@r

� �
; (5.7.2)
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where

e ¼ @ur
@r

þ ur
r
þ 1

r

@uy
@y

þ @uz
@z

; (5.7.3)

and Navier’s equations of motion are

ro
@2ur
@t2

¼ roBr þ lþ mð Þ @e
@r

þ m
@2ur
@r2

þ 1

r2
@2ur

@y2
þ @2ur

@z2
þ 1

r

@ur
@r

� 2

r2
@uy
@y

� ur
r2

� �
; (5.7.4)

ro
@2uy
@t2

¼ roBy þ lþ mð Þ
r

@e

@y
þ m

@2uy
@r2

þ 1

r2
@2uy

@y2
þ @2uy

@z2
þ 1

r

@uy
@r

þ 2

r2
@ur
@y

� uy
r2

� �
; (5.7.5)

ro
@2uz
@t2

¼ roBz þ lþ mð Þ @e
@z

þ m
@2uz
@r2

þ 1

r2
@2uz

@y2
þ @2uz

@z2
þ 1

r

@uz
@r

� �
: (5.7.6)

Spherical coordinates. With (ur, uy, uf) denoting the displacement components in (r, y, f) directions,
Hooke’s laws are

Trr ¼ leþ 2m
@ur
@r

; (5.7.7)

Tyy ¼ leþ 2m
1

r

@uy
@y

þ ur
r

� �
; (5.7.8)

Tff ¼ leþ 2m
1

r sin y
@uf
@f

þ ur
r
þ uy cot y

r

� �
; (5.7.9)

Try ¼ m
1

r

@ur
@y

þ @uy
@r

� uy
r

� �
; (5.7.10)

Tyf ¼ m
1

r sin y
@uy
@f

� uf cot y
r

þ 1

r

@uf
@y

� �
; (5.7.11)

Tfr ¼ m
1

r sin y
@ur
@f

þ @uf
@r

� uf
r

� �
; (5.7.12)

where

e ¼ @ur
@r

þ 2ur
r

þ 1

r

@uy
@y

þ 1

r sin y
@uf
@f

þ uy cot y
r

; (5.7.13)

and Navier’s equations of motion are

ro
@2ur
@t2

¼ roBr þ ðlþ mÞ @e
@r

þ m

(
@

@r

 
1

r2
@

@r
ðr2urÞ

!

þ 1

r2 sin y
@

@y

 
sin y

@ur
@y

!
þ 1

r2 sin y
@2ur

@f2
� 2

r2 sin y
@

@y
ðuy sin yÞ � 2

r2 sin y
@uf
@f

)
;

(5.7.14)
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ro
@2uy
@t2

¼ roBy þ lþ mð Þ
r

@e

@y

þ m
1

r2
@

@r
r2
@uy
@r

0
@

1
A

0
@

1
Aþ 1

r2
@

@y
1

sin y
@

@y
ðuy sin yÞ

0
@

1
Aþ 1

r2 sin 2y
@2uy

@f2
þ 2

r2
@ur
@y

� 2 cot y
r2 sin y

@uf
@f

8<
:

9=
;: (5.7.15)

ro
@2uf
@t2

¼ roBf þ lþ mð Þ
r sin y

@e

@f

þ m
1

r2
@

@r
r2
@uf
@r

0
@

1
Aþ 1

r2
@

@y
1

sin y
@

@y
ðuf sin yÞ

0
@

1
Aþ 1

r2 sin 2y
@2uf

@f2
þ 2

r2 sin y
@ur
@f

þ 2 cot y
r2 sin y

@uy
@f

8<
:

9=
;: (5.7.16)

5.8 PRINCIPLE OF SUPERPOSITION
Let u

1ð Þ
i and u

2ð Þ
i be two possible displacement fields corresponding to two body force fields B

1ð Þ
i and B

2ð Þ
i . Let

T
1ð Þ
ij and T

2ð Þ
ij be the corresponding stress fields. Then

ro
@2u

1ð Þ
i

@t2
¼ roB

1ð Þ
i þ @T

1ð Þ
ij

@xj
; (5.8.1)

ro
@2u

2ð Þ
i

@t2
¼ roB

2ð Þ
i þ @T

2ð Þ
ij

@xj
: (5.8.2)

Adding the preceding two equations, we get

ro
@2

@t2
u

1ð Þ
i þ u

2ð Þ
i


 �
¼ ro B

1ð Þ
i þ B

2ð Þ
i


 �
þ @

@xj
T

1ð Þ
ij þ T

2ð Þ
ij


 �
: (5.8.3)

It is clear from the linearity of the strain-displacement relationship, Eq. (5.5.11) and the Hooke’s law

Eq. (5.5.12), that T
1ð Þ
ij þ T

2ð Þ
ij is the stress field corresponding to the displacement field u

1ð Þ
i þ u

2ð Þ
i . Thus

u
1ð Þ
i þ u

2ð Þ
i is also a possible motion under the body force field B

1ð Þ
i þ B

2ð Þ
i . The corresponding stress field is given

by T
1ð Þ
ij þ T

2ð Þ
ij and the surface traction needed to maintain the total motion is given by t

1ð Þ
i þ t

2ð Þ
i ¼ T

1ð Þ
ij nj þ T

2ð Þ
ij nj.

This is the principle of superposition. One application of this principle is that in a given problem, we often assume

that the body force is absent, having in mind that its effect, if not negligible, can always be obtained separately and

then superimposed onto the solution for the case of vanishing body forces.

A.1 PLANE ELASTIC WAVES

5.9 PLANE IRROTATIONAL WAVES
In this section and the following three sections, we present some simple but important elastodynamic

problems using the model of isotropic linearly elastic material.

Consider the motion

u1 ¼ e sin
2p
ℓ
ðx1 � cLtÞ; u2 ¼ 0; u3 ¼ 0; (5.9.1)
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representing an infinite train of sinusoidal plane waves. In this motion, every particle executes simple har-

monic oscillations of small amplitude e around its natural state, the motion being always parallel to the e1
direction. All particles on a plane perpendicular to e1 are at the same phase of the harmonic motion at any

one time [i.e., the same value of 2p=ℓð Þ x1 � cLtð Þ]. A particle that at time t is at x1 þ dx1 acquires at t þ dt
the same phase of motion of the particle that is at x1 at time t, if x1 þ dx1ð Þ � cL tþ dtð Þ ¼ x1 � cLt, i.e.,
dx1=dt ¼ cL. Thus, cL is known as the phase velocity (the velocity with which the sinusoidal disturbance of

wavelength ℓ is moving in the e1 direction). Since the motion of every particle is parallel to the direction

of the propagation of wave, it is a longitudinal wave.
We shall now obtain the phase velocity of this wave by demanding that the displacement field satisfy the

equations of motion, in the form of either ro @2ui=@t
2ð Þ ¼ @Tij=@xj [see Eq. (5.5.10)] or the Navier equations

(5.6.4). To use Eq. (5.5.10), we first obtain the strain components, which are

E11 ¼ e
2p
ℓ

� �
cos

2p
ℓ

x1 � cLtð Þ; E22 ¼ E23 ¼ E12 ¼ E13 ¼ E33 ¼ 0: (5.9.2)

The dilatation e¼Ekk is given by

e ¼ E11 þ 0þ 0 ¼ E11 ¼ e
2p
ℓ

� �
cos

2p
ℓ

x1 � cLtð Þ; (5.9.3)

and the nonzero stress components are

T11 ¼ ðlþ 2mÞE11 ¼ ðlþ 2mÞe 2p
ℓ

0
@

1
A cos

2p
ℓ
ðx1 � cLtÞ;

T22 ¼ T33 ¼ lE11:

(5.9.4)

Substituting Tij and ui into Eq. (5.5.10) [Eqs. (5.5.11) and (5.5.12) are trivially satisfied], we have

�roe
2p
ℓ

� �2

c2L sin
2p
ℓ
ðx1 � cLtÞ ¼ �ðlþ 2mÞe 2p

ℓ

� �2

sin
2p
ℓ
ðx1 � cLtÞ; (5.9.5)

from which we obtain the phase velocity cL as

cL ¼ lþ 2m
ro

� �1=2

: (5.9.6)

As a particle oscillates, its volume changes harmonically [see Eq. (5.9.3)]. Thus, the wave is known as a

dilatational wave. On the other hand, the spin tensor W¼ (ru)A is clearly zero (ru is symmetric); therefore,

the wave is also known as an irrotational wave.
From Eq. (5.9.6), we see that for the plane wave discussed, the phase velocity cL depends only on the

material properties and not on the wave length ℓ. Thus, any disturbance represented by the superposition

of any number of one-dimensional plane irrotational wave trains of different wavelengths propagates

without changing the form of the disturbance, with the velocity equal to the phase velocity cL. In fact,

we have seen in Example 5.6.1 that any irrotational disturbance given by u1 ¼ uðx1; tÞ; u2 ¼ u3 ¼ 0, is a

possible motion in the absence of body forces, provided that u(x1, t) is a solution of the simple wave

equation

@2u

@t2
¼ c2L

@2u

@x2
: (5.9.7)
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It can be easily verified (see Prob. 5.20) that for any function f, the displacement u¼ f(s), where

s ¼ x1 � cLt satisfies the above wave equation. Thus, disturbances of any form given by f (s) propagate with-
out changing their forms with wave speed cL. In other words, the phase velocity is also the rate of propagation

of a finite train of waves or of any arbitrary disturbance into an undisturbed region.

Example 5.9.1
For a material half-space that lies to the right of the plane x1¼ 0, consider the displacement field:

u1 ¼ a sin
2p
ℓ
ðx1 � cLtÞ þ b cos

2p
ℓ
ðx1 � cLtÞ: (i)

(a) Determine the constants a, b, the wave length ℓ, and the surface tractions on the plane x1¼ 0 if the applied

displacement on the plane x1¼ 0 is given by u ¼ b sinotð Þe1.
(b) Determine the constants a and b, the wave length ℓ, and the displacements on the plane x1¼ 0 if the applied

surface traction on the plane x1¼ 0 is given by t ¼ f sinote1.

Solution
The given displacement field is the superposition of two longitudinal elastic waves having the same velocity of propa-

gation cL in the positive x1 direction and is therefore a possible elastic solution.

(a) To satisfy the displacement boundary condition, one sets

u1ð0; tÞ ¼ b sinot ; (ii)

thus,

�a sin
2pcLt
ℓ

� �
þ b cos

2pcLt
ℓ

� �
¼ b sinot : (iii)

Since this relation must be satisfied for all time t, we have

b ¼ 0; a ¼ �b; ℓ ¼ 2pcL
o

; (iv)

and the elastic wave has the form

u1 ¼ �b sin
o
cL

ðx1 � cLtÞ: (v)

Note that the wavelength ℓ is inversely proportional to the forcing frequency o. That is, the higher the forcing

frequency, the smaller the wavelength of the elastic wave.

Since t ¼ Tð�e1Þ ¼ �ðT11e1 þ T21e2 þ T31e3Þ ¼ �T11e1; we have, on x1¼ 0

t ¼ �ðlþ 2mÞ @u1=@x1ð Þx1¼0 e1 ¼ ðlþ 2mÞ bo=cLð Þ cosot e1: (vi)

(b) To satisfy the traction boundary condition on x1¼ 0, one requires that

t ¼ Tð�e1Þ ¼ �T11e1 ¼ ðf sinotÞe1: (vii)

That is, at x1¼ 0, T11 ¼ �f sinot ; T12 ¼ T13 ¼ 0. For the assumed displacement field, we have

�f sinot ¼ ðlþ 2mÞ 2p
ℓ

a cos
2p
ℓ
cLt þ b sin

2p
ℓ
cLt

� �
: (viii)
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To satisfy this relation for all time t, we have

a ¼ 0; b ¼ �f

lþ 2mð Þ
ℓ

2p

� �
; o ¼ 2pcL

ℓ
; (ix)

and the resulting wave has the form

u1 ¼ �fcL
ðlþ 2mÞo cos

o
cL

ðx1 � cLtÞ: (x)

We note that not only the wavelength but the amplitude of the resulting wave is inversely proportional to the forcing

frequency.

The corresponding displacement component u1 on the surface x1¼ 0 is given by

u1 ¼ �fcL
ðlþ 2mÞo cosot : (xi)

5.10 PLANE EQUIVOLUMINAL WAVES
Consider the motion

u1 ¼ 0; u2 ¼ e sin
2p
ℓ
ðx1 � cTtÞ; u3 ¼ 0: (5.10.1)

This infinite train of plane harmonic wave differs from that discussed in Section 5.9 in that it is a transverse

wave. The particle motion is parallel to the e2 direction, whereas the disturbance is propagating in the e1
direction. For this motion, the only nonzero strain components are

E12 ¼ E21 ¼ e
2

2p
ℓ

� �
cos

2p
ℓ

� �
ðx1 � cTtÞ; (5.10.2)

and the only nonzero stress components are

T12 ¼ T21 ¼ me
2p
ℓ

� �
cos

2p
ℓ

� �
ðx1 � cTtÞ: (5.10.3)

Substituting T12 and u2 in the equation of motion,

@T21
@x1

¼ ro
@2u2
@t2

; (5.10.4)

we obtain the phase velocity cT as

cT ¼
ffiffiffiffiffi
m
ro

r
: (5.10.5)

Since the dilatation e is zero at all times, the motion is known as an equivoluminal wave. It is also called a

shear wave. Here again, the phase velocity cT is independent of the wavelength ℓ, so it again has the addi-

tional significance of being the wave velocity of a finite train of equivoluminal waves or of any arbitrary equi-

voluminal disturbance into an undisturbed region.
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The ratio of the two phase velocities cL and cT is

cL
cT

¼ lþ 2m
m

� �1=2

: (5.10.6)

Since l ¼ 2mn=ð1� 2nÞ, the ratio is found to depend only on n, in fact

cL
cT

¼ 2ð1� nÞ
1� 2n

� �1=2
¼ 1þ 1

1� 2n

� �1=2

: (5.10.7)

For steel, with n ¼ 0:3; cL=cT ¼ ffiffiffiffiffiffiffiffi
7=2

p ¼ 1:87. We note that since n < 1/2, cL is always greater than cT.

Example 5.10.1
Consider a displacement field:

u2 ¼ a sin
2p
ℓ
ðx1 � cT tÞ þ b cos

2p
ℓ
ðx1 � cT tÞ; u1 ¼ u3 ¼ 0 (i)

for a material half-space that lies to the right of the plane x1¼ 0.

(a) Determine a, b, ℓ, and u(0, t) if the applied surface traction on x1¼ 0 is t ¼ ðf sinotÞe2.
(b) Determine a, b and ℓ, and t(0, t) if the applied displacement on x1¼ 0 is u ¼ ðb sinotÞe2.

Solution
(a) The only nonzero stress components are

T12 ¼ T21 ¼ 2mE12 ¼ m
@u2
@x1

¼ am
2p
ℓ

� �
cos

2p
ℓ
ðx1 � cT tÞ � bm

2p
ℓ

� �
sin

2p
ℓ
ðx1 � cT tÞ: (ii)

On the boundary x1¼ 0, outward normal, n¼�e1, t ¼ Tð�e1Þ ¼ �T21e2; thus,

�T21ð0; tÞe2 ¼ ðf sinotÞe2; (iii)

so that

�am
2p
ℓ

� �
cos

2p
ℓ
ðcT tÞ � bm

2p
ℓ

� �
sin

2p
ℓ
ðcT tÞ ¼ f sinot : (iv)

Thus,

a ¼ 0; b ¼ � f ℓ

2pm
; ℓ ¼ 2pcT

o
; (v)

and

uð0; tÞ ¼ � ℓf

2pm
cosot e2: (vi)

(b) The boundary condition u2ð0; tÞ ¼ b sinot gives

b ¼ 0; a ¼ �b; ℓ ¼ 2pcT
o

; u2 ¼ �b sin
o
cT

ðx1 � cT tÞ: (vii)
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The only nonzero stress components are

T12 ¼ T21 ¼ 2mE12 ¼ m
@u2
@x1

¼ �bm
o
cT

� �
cos

2p
ℓ

� �
ðx1 � cT tÞ; (viii)

thus,

tð0; tÞ ¼ �T21e2 ¼ bm
o
cT

� �
cosote2: (ix)

Example 5.10.2
Consider the displacement field:

u3 ¼ a cospx2 cos
2p
ℓ
ðx1 � ctÞ; u1 ¼ u2 ¼ 0: (i)

(a) Show that this is an equivoluminal motion.

(b) From the equation of motion, determine the phase velocity c in terms of p, ℓ, ro, and m (assuming no body

forces).

(c) This displacement field is used to describe a type of wave guide that is bounded by the plane x2¼�h. Find

the phase velocity c if these planes are traction free.

Solution
(a) Since

div u ¼ @u1
@x1

þ @u2
@x2

þ @u3
@x3

¼ 0þ 0þ 0 ¼ 0; (ii)

thus there is no change of volume at any time.

(b) For convenience, let k ¼ 2p=ℓ and o ¼ kc ¼ 2pc=ℓ; then

u3 ¼ a cospx2 cosðkx1 � otÞ; (iii)

where k is known as the wave number and o is the circular frequency. The only nonzero stresses are given by

(note: u1 ¼ u2 ¼ 0)

T13 ¼ T31 ¼ m
@u3
@x1

¼ amk � cospx2 sin kx1 � otð Þ½ �; (iv)

and

T23 ¼ T32 ¼ m
@u3
@x2

¼ amp � sin px2 cos kx1 � otð Þ½ �: (v)

The substitution of the stress components into the third equation of motion yields (the first two equations are

trivially satisfied)

@T31
@x1

þ @T32
@x2

¼ mk2 þ mp2
� �ð�u3Þ ¼ ro

@2u3
@t2

¼ roo
2ð�u3Þ: (vi)
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Therefore, with c2T ¼ m=ro ;

k2 þ p2 ¼ ðo=cT Þ2: (vii)

Since k ¼ 2p=ℓ, and o ¼ 2pc=ℓ, therefore

c ¼ cT
ℓp

2p

� �2

þ 1

" #1=2
; (viii)

(c) To satisfy the traction free boundary condition at x2¼�h, we require that

t ¼ �Te2 ¼ �ðT12e1 þ T22e2 þ T32e3Þ ¼ �T32e3 ¼ 0 at x2 ¼ �h; (ix)

therefore,

ðT32Þx2¼�h ¼ �m pa sin ph cos ðkx1 � otÞ ¼ 0: (x)

For this relation to be satisfied for all x1 and t, we must have sin ph ¼ 0. Thus,

p ¼ np
h

; n ¼ 0; 1; 2 . . . : (xi)

Each value of n determines a possible displacement field. The phase velocity c corresponding to each of these

displacement field (called a mode) is given by

c ¼ cT
nℓ

2h

� �2

þ 1

" #1=2
: (xii)

This result indicates that these equivoluminal waves inside the traction-free boundaries, x2¼�h. propagate

with speeds c greater than the speed cT of a plane equivoluminal wave of infinite extent. Note that when

p ¼ 0; c ¼ cT as expected.

Example 5.10.3
An infinite train of plane harmonic waves propagates in the direction of the unit vector en. Express the displacement

field in vector form for (a) a longitudinal wave and (b) a transverse wave.

Solution
Let x be the position vector of any point on a plane whose normal is en and whose distance from the origin is d

(Figure 5.10-1). Then x 	 en ¼ d . Thus, so that the particles on the plane will be at the same phase of the harmonic

oscillation at any one time, the argument of sine (or cosine) must be of the form ð2p=ℓÞðx 	 en � ct � �Þ, where � is an

arbitrary constant.

(a) For longitudinal waves, u is parallel to en; thus

u ¼ e sin
2p
ℓ
ðx 	 en � cLt � �Þ

� �
en: (5.10.8)

In particular, if en¼ e1,

u1 ¼ e sin
2p
ℓ
ðx1 � cLt � �Þ

� �
; u2 ¼ u3 ¼ 0: (5.10.9)
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(b) For transverse waves, u is perpendicular to en. Let et be a unit vector perpendicular to en. Then

u ¼ e sin
2p
ℓ
ðx 	 en � cT t � �Þ

� �
et : (5.10.10)

The plane of et and en is known as the plane of polarization. In particular, if en ¼ e1, and et ¼ e2, then

u1 ¼ 0; u2 ¼ e sin
2p
ℓ
ðx1 � cT t � �Þ; u3 ¼ 0: (5.10.11)

Example 5.10.4
In Figure 5.10-2, all three unit vectors, en1

,en2
and en3

lie in the x1x2 plane. Express the displacement components,

with respect to the xi coordinates, of plane harmonic waves for:

(a) A transverse wave of amplitude e1, wave length ℓ1 polarized in the x1x2 plane and propagating in the direction

of en1

(b) A transverse wave of amplitude e2, wave length ℓ2 polarized in the x1x2 plane and propagating in the direction

of en2

(c) A longitudinal wave of amplitude e3, wave length ℓ3 propagating in the direction of en3

d

0
x

en

FIGURE 5.10-1

α1 α2

α3

x2

x1

en1

en2

en3

FIGURE 5.10-2
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Solution

(a) Referring to Figure 5.10-2, we have

en1 ¼ sin a1e1 � cos a1e2; x 	 en1 ¼ x1 sin a1 � x2 cos a1; et1 ¼ �ð cos a1e1 þ sin a1e2Þ: (i)

Thus, using the results of Example 5.10.3, we have

u1 ¼ ð cos a1Þe1 sin ½ð2p=ℓ1Þðx1 sin a1 � x2 cos a1 � cT t � �1Þ�;
u2 ¼ ð sin a1Þe1 sin ½ð2p=ℓ1Þðx1 sin a1 � x2 cos a1 � cT t � �1Þ�;
u3 ¼ 0;

(ii)

where we have chosen the plus sign in the expression for et.

(b) We have

en2 ¼ sin a2e1 þ cos a2e2; x 	 en2 ¼ x1 sin a2 þ x2 cos a2; et2 ¼ cos a2e1 � sin a2e2ð Þ: (iii)

Therefore,

u1 ¼ ð cos a2Þe2 sin ½ð2p=ℓ2Þðx1 sin a2 þ x2 cos a2 � cT t � �2Þ�;
u2 ¼ �ð sin a2Þe2 sin ½ð2p=ℓ2Þðx1 sin a2 þ x2 cos a2 � cT t � �2Þ�;
u3 ¼ 0:

(iv)

(c) We have

en3 ¼ sin a3e1 þ cos a3e2; x 	 en3 ¼ x1 sin a3 þ x2 cos a3: (v)

Therefore,

u1 ¼ ð sin a3Þe3 sin ½ð2p=ℓ3Þðx1 sin a3 þ x2 cos a3 � cLt � �3Þ�;
u2 ¼ ð cos a3Þe3 sin ½ð2p=ℓ3Þðx1 sin a3 þ x2 cos a3 � cLt � �3Þ�;
u3 ¼ 0:

(vi)

5.11 REFLECTION OF PLANE ELASTIC WAVES
In Figure 5.11-1, the plane x2 ¼ 0 is the free boundary of an elastic medium, occupying the lower half-space

x2 
 0. We wish to study how an incident plane wave is reflected by the boundary. Consider an incident trans-

verse wave of wavelength ℓ1, polarized in the plane of incident with an incident angle a1 (see Figure 5.11-1).

α1 α2

α3

Reflected
Transverse

Reflected
Longitudinal

Incident
Transverse

x1

x2

en1

en2

en3

FIGURE 5.11-1
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Since x2 ¼ 0 is a free boundary, the surface traction on the plane is zero at all times. Thus, the boundary will

generate reflection waves in such a way that when they are superposed on the incident wave, the stress vector

on the boundary vanishes at all times.

Let us superpose on the incident transverse wave two reflection waves (see Figure 5.11-1), one transverse,

the other longitudinal, both oscillating in the plane of incidence. The reason for superposing not only a

reflected transverse wave but also a longitudinal one is that if only one is superposed, the stress-free condition

on the boundary in general cannot be met, as will become obvious in the following derivation.

Let ui denote the displacement components of the superposition of the three waves; then, from the results

of Example 5.10.4, we have

u1 ¼ ð cos a1Þe1 sin’1 þ ð cos a2Þe2 sin’2 þ ð sin a3Þe3 sin’3;

u2 ¼ ð sin a1Þe1 sin’1 � ð sin a2Þe2 sin’2 þ ð cos a3Þe3 sin’3;

u3 ¼ 0;

(5.11.1)

where

’1 ¼
2p
ℓ1

ðx1 sin a1 � x2 cos a1 � cTt� �1Þ; ’2 ¼
2p
ℓ2

ðx1 sin a2 þ x2 cos a2 � cTt� �2Þ;

’3 ¼
2p
ℓ3

ðx1 sin a3 þ x2 cos a3 � cLt� �3Þ:
(5.11.2)

On the free boundary (x2¼ 0), where n¼�e2, the condition t¼ 0 leads to Te2¼ 0, i.e.,

T12 ¼ T22 ¼ T32 ¼ 0: (5.11.3)

Using Hooke’s law and noting that u3¼ 0 and u2 does not depend on x3, we easily see that the condition

T32¼ 0 is automatically satisfied. The other two conditions, in terms of displacement components, are

T12=m ¼ @u1=@x2 þ @u2=@x1 ¼ 0 on x2 ¼ 0; (5.11.4)

T22 ¼ ðlþ 2mÞð@u2=@x2Þ þ l@u1=@x1 ¼ 0 on x2 ¼ 0: (5.11.5)

From Eq. (5.11.1) and Eq. (5.11.2), we can obtain

T12
2pm

¼ e1
ℓ1

cos’1ð sin 2a1 � cos 2a1Þ þ e2
ℓ2

cos’2ð cos 2a2 � sin 2a2Þ þ e3
ℓ3

cos’3 sin 2a3 ¼ 0; (5.11.6)

T22
2p

¼ � e1
ℓ1

m sin 2a1 cos’1 �
e2
ℓ2

m sin 2a2 cos’2 þ
e3
ℓ3

ðlþ 2m cos 2a3Þ cos’3 ¼ 0: (5.11.7)

The preceding two equations, i.e., Eq. (5.11.6) and Eq. (5.11.7), are to be valid at x2¼ 0 for whatever

values of x1 and t; therefore, we must have

cos’1 ¼ cos’2 ¼ cos’3 at x2 ¼ 0: (5.11.8)

That is, at x2¼ 0,

’1 ¼ ’2 � 2pp ¼ ’3 � 2qp; p and q are integers: (5.11.9)
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Thus, from Eq. (5.11.2), we have

2p
ℓ1

ðx1 sin a1 � cTt� �1Þ ¼
2p
ℓ2

ðx1 sin a2 � cTt� � 0
2Þ ¼

2p
ℓ3

ðx1 sin a3 � cLt� � 0
3Þ; (5.11.10)

where � 0
2 ¼ �2 � ð�pℓ2Þ and � 0

3 ¼ �3 � ð�qℓ3Þ.
Equation (5.11.10) can be satisfied for whatever values of x1 and t only if

sin a1
ℓ1

¼ sin a2
ℓ2

¼ sin a3
ℓ3

;
cT
ℓ1

¼ cT
ℓ2

¼ cL
ℓ3

;
�1
ℓ1

¼ � 0
2

ℓ2
¼ � 0

3

ℓ3
: (5.11.11)

Thus, with

1

n
� cL

cT
¼ lþ 2m

m

� �1=2

; (5.11.12)

we have

ℓ2 ¼ ℓ1; nℓ3 ¼ ℓ1; a1 ¼ a2; n sin a3 ¼ sin a1; � 0
2 ¼ �1; n� 0

3 ¼ �1: (5.11.13)

That is, the reflected transverse wave has the same wavelength as that of the incident transverse wave and the

angle of reflection is the same as the incident angle, the longitudinal wave has a different wave length and a

different reflection angle depending on the so-called refraction index n given by Eq. (5.11.12). It can be easily

shown that

1

n
� cL

cT
¼ lþ 2m

m

� �1=2

¼ 2 1� nð Þ
1� 2n

� �1=2
: (5.11.14)

With cos ’i dropped out, the boundary conditions Eqs. (5.11.6) and (5.11.7) now become, in view of

Eqs. (5.11.13),

e1ð� cos 2a1Þ þ e2ð cos 2a1Þ þ e3nð sin 2a3Þ ¼ 0; (5.11.15)

e1 sin 2a1 þ e2 sin 2a1 � e3
1

n
cos 2a1 ¼ 0: (5.11.16)

These two equations uniquely determine the amplitudes of the reflected waves in terms of the incident ampli-

tude. In fact,

e2 ¼ cos 2 2a1 � n2 sin 2a1 sin 2a3
cos 2 2a1 þ n2 sin 2a1 sin 2a3

e1; e3 ¼ n sin 4a1
cos 2 2a1 þ n2 sin 2a1 sin 2a3

e1: (5.11.17)

Thus, the problem of the reflection of a transverse wave polarized in the plane of incidence is solved. We

mention that if the incident transverse wave is polarized normal to the plane of incidence, no longitudinal

component occurs (see Prob. 5.33). Also, when an incident longitudinal wave is reflected, in addition to

the regularly reflected longitudinal wave, there is a transverse wave polarized in the plane of incidence.

The equation n sin a3 ¼ sin a1 in Eq. (5.11.13) is analogous to Snell’s law in optics, except here we have

reflection instead of refraction. If sin a1 > n, then sin a3 > 1 and there is no longitudinal reflected wave, but

rather, waves of a more complicated nature will be generated. The angle a1 ¼ sin�1n is called the critical
angle.
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5.12 VIBRATION OF AN INFINITE PLATE
Consider an infinite plate bounded by the planes x1¼ 0 and x1 ¼ ℓ. The faces of these planes may have either

a prescribed motion or a prescribed surface traction.

The presence of these two boundaries indicates the possibility of a vibration (a standing wave). We begin

by assuming the vibration to be of the form

u1 ¼ u1ðx1; tÞ; u2 ¼ u3 ¼ 0: (5.12.1)

In the absence of body forces, the Navier equation in x1 direction requires that

c2L
@2u1
@x21

¼ @2u1
@t2

; cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m
ro

s
: (5.12.2)

A steady-state vibration solution to this equation is of the form

u1 ¼ ðA cos kx1 þ B sin kx1ÞðC cos cLktþ D sin cLktÞ; (5.12.3)

where the constant A, B, C, D and k are determined by the boundary conditions (see Example 5.12.1). This

vibration mode is sometimes termed a thickness stretch vibration because the plate is being stretched through-

out its thickness. It is analogous to acoustic vibration of organ pipes and to the longitudinal vibration of slen-

der rods.

Another vibration mode can be obtained by assuming the displacement field

u2 ¼ u2ðx1; tÞ; u1 ¼ u3 ¼ 0: (5.12.4)

In this case, in the absence of body forces, the Navier equation in the x2 direction requires that

c2T
@2u2
@x21

¼ @2u2
@t2

; cT ¼
ffiffiffiffiffi
m
ro

r
; (5.12.5)

and the solution is of the same form as in the previous case. Again, the constants A, B, C, D, and k are deter-
mined by the boundary conditions (see Example 5.12.2). This vibration is termed thickness shear and it is

analogous to a vibrating string.

Example 5.12.1
(a) Find the thickness-stretch vibration of a plate, where the left face (x1¼ 0) is subjected to a forced displacement

u ¼ ða cos otÞe1 and the right face x1¼ ℓ is fixed. (b) Determine the values of o that give resonance.

Solution
(a) Using Eq. (5.12.3) and the boundary condition uð0; tÞ ¼ ða cos otÞe1, we have

a cosot ¼ u1ð0; tÞ ¼ AC cos cLkt þ AD sin cLkt : (i)

Therefore,

AC ¼ a; k ¼ o
cL

; D ¼ 0: (ii)
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The second boundary condition uðℓ; tÞ ¼ 0 gives

0 ¼ u1ðℓ; tÞ ¼ a cos
oℓ
cL

þ BC sin
oℓ
cL

� �
cosot : (iii)

Therefore,

BC ¼ �a cos
oℓ
cL

; (iv)

and the vibration is given by

u1ðx1; tÞ ¼ a cos
ox1
cL

� 1

tan oℓ=cLð Þ sin
ox1
cl

� �
cosot : (v)

(b) Resonance is indicated by unbounded displacements. This occurs for forcing frequencies corresponding to

tanðoℓ=cLÞ ¼ 0; that is, when

o ¼ npcL
ℓ

; n ¼ 1; 2; 3 . . . : (vi)

Example 5.12.2
(a) Find the thickness-shear vibration of an infinite plate that has an applied surface traction t ¼ �ðb cos otÞe2 on the

plane x1¼ 0 and is fixed at the plane x1¼ ℓ. (b) Determine the resonance frequencies.

Solution
(a) On the plane x1¼ 0, n¼�e1, thus,

t ¼ �Te1 ¼ �ðT11e1 þ T21e2 þ T31e3Þ ¼ �ðb cos otÞe2: (i)

Therefore, on x1¼ 0,

T12jx1¼0 ¼ b cosot : (ii)

This shearing stress forces a vibration of the form

u2 ¼ ðA cos kx1 þ B sin kx1ÞðC cos cT kt þ D sin cT ktÞ; u1 ¼ u3 ¼ 0: (iii)

Using Hooke’s law, we have

T12jx1¼0 ¼ m
@u2
@x1

����
x1¼0

¼ b cosot : (iv)

That is,

b
m
cosot ¼ kBC cos cT kt þ kBD sin cT kt : (v)

Thus,

k ¼ o
cT

; D ¼ 0; BC ¼ bcT
om

: (vi)
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The boundary condition u2ðℓ; tÞ ¼ 0 gives

0 ¼ AC cos
oℓ
cT

þ bcT
om

sin
oℓ
cT

� �
cosot : (vii)

Thus,

AC ¼ �bcT
om

tan
oℓ
cT

; (viii)

and

u2ðx1; tÞ ¼ bcT
om

sin
ox1
cT

� tan
oℓ
cT

cos
ox1
cT

� �
cosot : (ix)

(b) Resonance occurs for tan
oℓ
cT

¼ 1, that is,

o ¼ npcT
2ℓ

; n ¼ 1; 3; 5 . . . : (x)

We remark that these values of o correspond to free vibration natural frequencies with one face traction-free and

one face fixed.

A.2 SIMPLE EXTENSION, TORSION, AND PURE BENDING
In the following few sections, we present some examples of simple three-dimensional elastostatic problems.

We begin by considering the problem of simple extension. Again, in all these problems, we assume small

deformations so that there is no need to make a distinction between the spatial and the material coordinates

in the equations of equilibrium and in the boundary conditions.

5.13 SIMPLE EXTENSION
A cylindrical bar of arbitrary cross-section (Figure 5.13-1) is under the action of equal and opposite normal

traction s distributed uniformly at its two end faces. Its lateral surface is free from any surface traction and

body forces are assumed to be absent.

σ σ

x1C x3

x2 x2

FIGURE 5.13-1
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Intuitively, one expects that the state of stress at any point will depend neither on the length of the bar nor

on its lateral dimension. In other words, the state of stress in the bar is expected to be the same everywhere.

Guided by the boundary conditions that on the plane x1¼ 0 and x1¼ ℓ, T11¼ s, T21¼ T31¼ 0 and on any

x2 ¼ constant plane tangent to the lateral surface, T21 ¼ T22 ¼ T23 ¼ 0, it seems reasonable to assume that

for the whole bar

T11 ¼ s; T22 ¼ T23 ¼ T12 ¼ T13 ¼ T23 ¼ 0: (5.13.1)

We now proceed to verify that this state of stress is indeed the solution to our problem. We need to verify

that (i) all the equations of equilibrium are satisfied, (ii) all the boundary conditions are satisfied, and

(iii) there exists a displacement field that corresponds to the assumed stress field.

Regarding (i), since all stress components are either constant or zero, the equations of equilibrium

are clearly satisfied in the absence of body forces. Regarding (ii), there are three boundary surfaces. On the

two end faces, the boundary conditions are clearly satisfied: T11 ¼ s, T12 ¼ 0 and T13 ¼ 0. On the lateral

surface, the unit outward normal does not have an e1 component, that is, n ¼ 0e1 þ n2e2 þ n3e3, so that

t ¼ Tn ¼ n2ðTe2Þ þ n3ðTe3Þ ¼ n2ð0Þ þ n3ð0Þ ¼ 0: (5.13.2)

That is, the traction-free condition on the lateral surface is also satisfied. Regarding (iii), from Hooke’s law,

we have

E11 ¼ 1

EY
½T11 � nðT22 þ T33Þ� ¼ s

EY
; E22 ¼ 1

EY
½T22 � nðT33 þ T11Þ� ¼ � ns

EY
¼ E33;

E12 ¼ E13 ¼ E23 ¼ 0:

(5.13.3)

That is, all strain components are constants; therefore the equations of compatibility are automatically satis-

fied. In fact, it is easily verified that the following single-valued continuous displacement field corresponds to

the preceding strain field:

u1 ¼ s
EY

� �
x1; u2 ¼ �n

s
EY

� �
x2; u3 ¼ �n

s
EY

� �
x3: (5.13.4)

Of course, any rigid body displacement field can be added to the preceding without affecting the strain and

stress field of the problem. (Also see the following example.)

Example 5.13.1
Obtain the displacement functions by integrating the strain-displacement relations for the strain components given in

Eqs. (5.13.3).

Solution
@u1=@x1 ¼ s=EY ; @u2=@x2 ¼ �ns=EY ; @u3=@x3 ¼ �ns=EY gives:

u1 ¼ s=EYð Þx1 þ f1 x2; x3ð Þ; u2 ¼ � ns=EYð Þx2 þ f2 x1; x3ð Þ; u3 ¼ � ns=EYð Þx3 þ f3 x1; x2ð Þ; (i)

where f1 x2; x3ð Þ; f2 x1; x3ð Þ and f3 x1; x2ð Þ are integration functions. Substituting (i) into the equations:

@u1=@x2 þ @u2=@x1 ¼ 0; @u1=@x3 þ @u3=@x1 ¼ 0 and @u2=@x3 þ @u3=@x2 ¼ 0;
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we obtain

@f1 x2; x3ð Þ=@x2 ¼ �@f2 x1; x3ð Þ=@x1 ¼ g1 x3ð Þ;
@f1 x2; x3ð Þ=@x3 ¼ �@f3 x1; x2ð Þ=@x1 ¼ g2 x2ð Þ;
@f2 x1; x3ð Þ=@x3 ¼ �@f3 x1; x2ð Þ=@x2 ¼ g3 x1ð Þ;

(ii)

where g x1ð Þ; g x2ð Þ; g x3ð Þ are integration functions. Integrations of (ii) give

f1 ¼ g1 x3ð Þx2 þ g4 x3ð Þ and f1 ¼ g2 x2ð Þx3 þ g6 x2ð Þ; (iii)

� f2 ¼ g1 x3ð Þx1 þ g5 x3ð Þ; and f2 ¼ g3 x1ð Þx3 þ g8 x1ð Þ; (iv)

� f3 ¼ g2 x2ð Þx1 þ g7 x2ð Þ and �f3 ¼ g3 x1ð Þx2 þ g9 x1ð Þ: (v)

From (iii),

g1 x3ð Þ ¼ a1x3 þ b1; g2 x2ð Þ ¼ a1x2 þ b2; g4 x3ð Þ ¼ b2x3 þ c2; g6 x2ð Þ ¼ b1x2 þ c2: (vi)

From (iv) and (vi),

g3 x1ð Þ ¼ �a1x1 þ b3; g8 x1ð Þ ¼ �b1x1 þ c3; � g5 x3ð Þ ¼ b3x3 þ c3: (vii)

From (v), (vi), and (vii),

a1 ¼ 0; g9 x1ð Þ ¼ b2x1 þ c4; g7 x2ð Þ ¼ b3x2 þ c4: (viii)

Thus,

f1 ¼ b1x2 þ b2x3 þ c2; f2 ¼ b3x3 � b1x1 þ c3; f3 ¼ �b2x1 � b3x2 � c4: (ix)

So that

u1 ¼ s=EYð Þx1 þ b1x2 þ b2x3 þ c2;

u2 ¼ � ns=EYð Þx2 þ b3x3 � b1x1 þ c3;

u3 ¼ � ns=EYð Þx3 � b2x1 � b3x2 � c4:

(x)

It can be easily verified that

u1 ¼ b1x2 þ b2x3 þ c2; u2 ¼ b3x3 � b1x1 þ c3; u3 ¼ �b2x1 � b3x2 � c4

describes a rigid body motion (its ru is antisymmetric).

If the constant cross-sectional area of the prismatic bar is A, the surface traction s on either end face gives

rise to a resultant force of magnitude

P ¼ sA; (5.13.5)

passing through the centroid of the area A. In terms of P and A, the stress components in the bar are given by

T½ � ¼
P=A 0 0

0 0 0

0 0 0

2
4

3
5: (5.13.6)

Since the matrix is diagonal, we know from Chapter 2 that the principal stresses are (P/A, 0, 0). Thus, the
maximum normal stress is

Tnð Þmax ¼ P=A; (5.13.7)
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acting on normal cross-sectional planes, and the maximum shearing stress is

Tsð Þmax ¼ 1=2ð Þ P=Að Þ; (5.13.8)

acting on planes making 45� with the normal cross-sectional plane.

Let the undeformed length of the bar be ℓ, and let Dℓ be its elongation. Then E11 ¼ Dℓ=ℓ. From

E11 ¼ s=EY ¼ P=AEY , we have

Dℓ ¼ Pℓ

AEY
: (5.13.9)

Also, if d is the undeformed length of a line in the transverse direction, its elongation Dd is given by:

Dd ¼ � nPd
AEY

: (5.13.10)

The minus sign indicates the expected contraction of the lateral dimension for a bar under tension.

In reality, when a bar is pulled by equal and opposite resultant forces through the centroids of the end

faces, the exact nature of the distribution of the normal stresses on either end face is, more often than not,

either unknown or not uniformly distributed. The question naturally arises: Under what conditions can an

elastic solution such as the one we just obtained for simple extension be applicable to real problems?

The answer to the question is given by the so-called Saint-Venant’s principle, which can be stated as

follows:

If some distribution of forces acting on a portion of the surface of a body is replaced by a different distri-

bution of forces acting on the same portion of the body, then the effects of the two different distributions

on the parts of the body sufficiently far removed from the region of application of the forces are essentially

the same, provided that the two distribution of forces have the same resultant force and the same resultant

couple.

By invoking St. Venant’s principle, we may regard the solution we just obtained for “simple extension”

gives a valid description of the state of stress in a slender bar except on regions close to the end faces,

provided the resultant force on either end passes through the centroid of the cross-sectional area. We further

remark that inasmuch as the deviation from the solution is limited to the region near the end faces, the elon-

gation formula for the bar is considered reliable for slender bars. The elongation formula has important appli-

cation in the so-called statically indeterminate problems involving slender bars.

5.14 TORSION OF A CIRCULAR CYLINDER
Let us consider the elastic deformation of a cylindrical bar of circular cross-section (of radius a and length ℓ ),
twisted by equal and opposite end moments Mt (Figure 5.14-1). We choose the x1-axis to coincide with the

axis of the cylinder and the left and right faces to correspond to the plane x1¼ 0 and x1 ¼ ℓ, respectively.
By the rotational symmetry of the problem, it is reasonable to assume that the motion of each cross-sec-

tional plane, caused by the end moments, is a rigid body rotation about the x1-axis. This kind of motion is

similar to that of a stack of coins in which each coin is rotated by a slightly different angle than that of the

previous coin. It is the purpose of this section to demonstrate that this assumption of the deformation field

leads to an exact solution for torsion of a circular bar, within the linear theory of elasticity.
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Denoting the small rotation angle at section x1 by the function a(x1), we evaluate the corresponding

displacement field as

u ¼ ae1ð Þ � r ¼ ae1ð Þ � x1e1 þ x2e2 þ x3e3ð Þ ¼ a x2e3 � x3e2ð Þ: (5.14.1)

That is,

u1 ¼ 0; u2 ¼ �ax3; u3 ¼ ax2: (5.14.2)

The nonzero strain components are

E12 ¼ E21 ¼ � 1

2
x3

da
dx1

; E13 ¼ E31 ¼ 1

2
x2

da
dx1

; (5.14.3)

and the nonzero stress components are

T12 ¼ T21 ¼ �mx3
da
dx1

; T13 ¼ T31 ¼ mx2
da
dx1

: (5.14.4)

To determine whether this is a possible state of stress in the absence of body forces, we check the equi-

librium equation @Tij=@xj ¼ 0. The i ¼ 1 equation is identically satisfied (0 ¼ 0). From the second and third

equation, we have

�mx3
d2a
dx21

¼ 0; mx2
d2a
dx21

¼ 0: (5.14.5)

Thus,

da
dx1

� a 0 ¼ constant: (5.14.6)

That is, the equations of equilibrium demand that the increment in angular rotation, da/dx1, be a constant.

This constant, here denoted by a0, is known as the twist per unit length or simply as unit twist.

a

x1

x2

x3

Mt

Mt

FIGURE 5.14-1
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Next, we check the boundary conditions. On the lateral surface (see Figure 5.14-2), the unit normal vector

is given by n ¼ ð1=aÞ x2e2 þ x3e3ð Þ; therefore, the surface traction on the lateral surface is

½t� ¼ ½T�½n� ¼ 1

a

0 T12 T13
T21 0 0

T31 0 0

2
4

3
5 0

x2
x3

2
4

3
5 ¼ 1

a

x2T12 þ x3T13
0

0

2
4

3
5: (5.14.7)

But x2T12 þ x3T13 ¼ m �x2x3a 0 þ x2x3a 0ð Þ ¼ 0. Thus, on the lateral surface

t ¼ 0: (5.14.8)

On the right end face x1 ¼ ℓ, n ¼ e1; t ¼ Te1 ¼ T21e2 þ T31e3. That is,

t ¼ ma 0 �x3e2 þ x2e3ð Þ; (5.14.9)

and on the left end face x1 ¼ 0,

t ¼ �ma 0 �x3e2 þ x2e3ð Þ: (5.14.10)

Thus, the stress field given by Eq. (5.14.4) is that inside a circular bar, which is subjected to surface trac-

tions on the left and right end faces in accordance with Eqs. (5.14.9) and (5.14.10), and with its lateral surface

free from any surface traction.

We now demonstrate that the surface tractions on the end faces are equivalent to equal and opposite twist-

ing moments on these faces. Indeed, on the faces x1 ¼ ℓ, the components of the resultant force are given (see

Figure 5.14-3) by

R1 ¼
ð
T11dA ¼ 0; R2 ¼

ð
T21dA ¼ �ma 0

ð
x3dA ¼ 0; R3 ¼

ð
T31dA ¼ ma 0

ð
x2dA ¼ 0; (5.14.11)

and the components of the resultant moment are given by

M1 ¼
ð

x2T31 � x3T21ð ÞdA ¼ ma 0
ð

x22 þ x23
� �

dA ¼ ma 0Ip; M2 ¼ M3 ¼ 0: (5.14.12)

That is, the resulting moment is

M ¼ ma 0Ipe1 where Ip ¼
ð

x22 þ x23
� �

dA: (5.14.13)

a

n

x2

Ox3

FIGURE 5.14-2
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Since the direction of M is in the direction of the axis of the bar, the moment is a twisting couple. We shall

denote its magnitude by

Mt ¼ mIpa 0 or a 0 ¼ Mt

mIp
: (5.14.14)

The resultant moment on the left end face x1¼ 0 is clearly M ¼ �ma 0Ipe1, a moment equal in magnitude and

opposite in direction to that on the right end face so that indeed, the bar is in equilibrium, under a twisting

action. We recall that

Ip ¼
ð

x22 þ x23
� �

dA ¼ pa4=2 (5.14.15)

is the polar second moment of the circular cross-section.

In terms of the twisting couple Mt, the stress tensor is

T½ � ¼

0 �Mtx3
Ip

Mtx2
Ip

�Mtx3
Ip

0 0

Mtx2
Ip

0 0

2
666666664

3
777777775
: (5.14.16)

In reality, when a bar is twisted, the twisting moments are known, but the exact distribution of the applied forces

giving rise to the moments is rarely, if ever, known. However, for a slender circular bar, the stress distribution inside

the bar is given by Eq. (5.14.16) except in regions near the ends of the bar in accordance with St. Venant’s principle,

and the formula for calculating the twisting angle per unit length is considered reliable for a slender bar. The twist-

ing angle formula is important for statically indeterminate problems involving slender bars.

Example 5.14.1
For a circular bar of radius a in torsion, (a) find the magnitude and location of the greatest normal and shearing

stresses throughout the bar, and (b) find the principal direction at a point on the surface of the bar.

x3 O

x2

dA

T21

T31 a

FIGURE 5.14-3
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Solution
(a) We first evaluate the principal stresses as a function of position by solving the characteristic equation

l3 � l
Mt

Ip

� �2

x22 þ x23
� � ¼ 0:

Thus, the principal values at any point are

l ¼ 0; and l ¼ �Mt

Ip
x22 þ x23
� �1=2 ¼ �Mt r

Ip
;

where r is the distance from the axis of the bar. Therefore, the maximum and the minimum normal stress are

Mt r=Ip and �Mtr=Ip , respectively. The magnitude of the maximum shearing stress is then also given by

Mt r=Ip . Clearly, for the whole bar, the greatest normal and shearing stresses occur on the boundary where

r ¼ a. That is,

Tnð Þmax ¼ Tsð Þmax ¼
Mta

Ip
: (5.14.17)

(b) For the principal value l ¼ Mta=Ip at a representative point on the boundary (x1, 0, a), the equations for

determining eigenvectors are

�Mta

Ip
n1 �Mta

Ip
n2 ¼ 0; �Mta

Ip
n3 ¼ 0:

Thus, n1¼�n2, n3¼ 0, and the eigenvector is given by

n ¼
ffiffiffi
2

p
=2


 �
e1 � e2ð Þ: (5.14.18)

This normal vector determines a plane perpendicular to the lateral surface at (x1, 0, a) and making a 45� angle

with the x1-axis. Frequently, a crack along a helix inclined at 45� to the axis of a circular cylinder under torsion is

observed. This is especially true for brittle materials such as cast iron or bone.

Example 5.14.2
Consider the angle of twist for a circular cylinder under torsion to be a function x1 and t, i.e., a ¼ a(x1, t). (a) Obtain
the differential equation that a must satisfy for it to be a possible motion in the absence of body force. (b) What are the

boundary conditions if the plane x1¼ 0 is fixed and the plane x1¼ ℓ is free of surface tractions.

Solution

(a) From the displacements:

u1 ¼ 0; u2 ¼ �a x1; tð Þx3; u3 ¼ a x1; tð Þx2;
we find the nonzero stress components to be

T12 ¼ T21 ¼ 2mE12 ¼ �mx3
@a
@x1

; T13 ¼ T31 ¼ 2mE13 ¼ mx2
@a
@x1

:

238 CHAPTER 5 The Elastic Solid



Both the x2- and the x3-equations of motion lead to

c2T
@2a
@x21

¼ @2a
@t2

; c2T ¼ m
ro

:

(b) The boundary conditions are

að0; tÞ ¼ 0;
@a
@x1

ðℓ; tÞ ¼ 0:

5.15 TORSION OF A NONCIRCULAR CYLINDER: ST. VENANT’S PROBLEM
For cross-sections other than circular, the simple displacement field of Section 5.14 will not satisfy the trac-

tion-free lateral surface boundary condition. We will show that in order to satisfy this boundary condition,

the cross-sections will not remain plane. We begin by assuming a displacement field that still corresponds

to small rotations of cross-sections described by a function a(x1), but in addition, allows for axial displace-

ments u1 ¼ ’ x2; x3ð Þ, describing warping of the cross-sectional plane. Our displacement field now has the

form

u1 ¼ ’ x2; x3ð Þ; u2 ¼ �a x1ð Þx3; u3 ¼ a x1ð Þx2: (5.15.1)

The corresponding nonzero stresses are given by

T12 ¼ T21 ¼ 2mE12 ¼ �mx3
da
dx1

þ m
@’

@x2
;

T13 ¼ T31 ¼ 2mE13 ¼ mx2
da
dx1

þ m
@’

@x3
:

(5.15.2)

Both the x2- and the x3-equation of equilibrium, i.e., @T21=@x1 ¼ 0 and @T31=@x1 ¼ 0, lead to the same

result as in the circular cross-section case, that the angle of twist per unit length of the bar is a constant.

That is,

da
dx1

¼ constant � a 0: (5.15.3)

The x1-equation of equilibrium @T11=@x1 þ @T12=@x2 þ @T13=@x3 ¼ 0 requires that the warping function
satisfies the Laplace equation

r2’ ¼ @2’

@x22
þ @2’

@x23
¼ 0: (5.15.4)

We now compute the surface traction on the lateral surface. Since the bar is of constant cross-section, the

unit normal does not have an x1 component. That is, n ¼ n2e2 þ n3e3 so that

t½ � ¼ T½ � n½ � ¼
0 T12 T13

T12 0 0

T13 0 0

2
64

3
75

0

n2

n3

2
64

3
75 ¼

T12n2 þ T13n3

0

0

2
64

3
75: (5.15.5)
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That is,

t ¼ ma 0 �n2x3 þ n3x2ð Þ þ m
@’

@x2
n2 þ @’

@x3
n3

0
@

1
A

2
4

3
5e1

¼ m a 0 �n2x3 þ n3x2ð Þ þ r’ð Þ 	 n½ �e1:
(5.15.6)

We require that the lateral surface be traction free, i.e., t ¼ 0, so that on the boundary, the warping func-

tion ’ must satisfy the condition a 0 �n2x3 þ n3x2ð Þ þ r’ð Þ 	 n ¼ 0; that is,

ðr’Þ 	 n ¼ a 0 n2x3 � n3x2ð Þ or
d’

@n
¼ a 0 n2x3 � n3x2ð Þ: (5.15.7)

Eqs. (5.15.4) and (5.15.7) define the so-called St-Venant’s torsion problem.

5.16 TORSION OF ELLIPTICAL BAR
Let the boundary of an elliptical cylinder be defined by

f x2; x3ð Þ ¼ x22
a2

þ x23
b2

¼ 1: (5.16.1)

The unit normal vector is given by

n ¼ rf

jrf j ¼
2

jrf j
x2
a2

e2 þ x3
b2

e3

h i
¼ 2

a2b2jrf j b2x2e2 þ a2x3e3
� 	

: (5.16.2)

From Eqs. (5.15.7) and (5.16.2), we obtain

@’

@x2

� �
b2x2 þ @’

@x3

� �
a2x3 ¼ a 0x2x3 b2 � a2

� �
: (5.16.3)

Now consider the following warping function:

’ ¼ Ax2x3: (5.16.4)

This warping function clearly satisfies the Laplace equation, Eq. (5.15.4). Substituting this function in

Eq. (5.16.3), we obtain

A ¼ a 0 b2 � a2

a2 þ b2

� �
: (5.16.5)

Thus, the warping function ’ ¼ a 0 b2 � a2

a2 þ b2

� �
x2x3 solves the problem of torsion of an elliptical bar. The non-

zero stress components are given by

T21 ¼ T12 ¼ � 2ma2

a2 þ b2

� �
a 0x3; T31 ¼ T13 ¼ 2mb2

a2 þ b2

� �
a 0x2: (5.16.6)

This distribution of stresses gives rise to a surface traction on the end face x1 ¼ ℓ as

t ¼ T21e2 þ T31e3 ¼ 2ma 0

a2 þ b2

� �
�a2x3e2 þ b2x2e3
� 	

: (5.16.7)
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The components of the resultant force and resultant moment on this end face can be easily found to be

R1 ¼ R2 ¼ R3 ¼ M2 ¼ M3 ¼ 0; (5.16.8)

M1 ¼
ð

x2T31 � x3T21ð ÞdA ¼ 2ma 0

a2 þ b2
a2
ð
x23dAþ b2

ð
x22dA

� �
¼ 2ma 0

a2 þ b2
a2I22 þ b2I33
� �

: (5.16.9)

We see that there is no resultant force; there is only a couple with the couple vector along x1-axis, the axis of the
bar. Clearly, an equal and opposite couple acts on the left end face x1¼ 0 so that the bar is under torsion.

For the elliptical cross-section, I22 ¼ pb3a=4 and I33 ¼ pa3b=4. Thus, from Eq. (5.16.9), the angle of twist

per unit length is given by

a 0 ¼ Mt a
2 þ b2ð Þ

mpa3b3
; (5.16.10)

where we have denoted M1 by Mt. In terms of Mt, the nonzero stress components are

T12 ¼ T21 ¼ � 2Mtx3
pab3

; T13 ¼ T31 ¼ 2Mtx2
pa3b

: (5.16.11)

The magnitude of shear stress on the cross-sectional plane is given by

Ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Mtx3
pab3

� �2

þ 2Mtx2
pa3b

� �2
s

¼ 2Mt

pab

� �
x23
b4

þ x22
a4

� �1=2

: (5.16.12)

Example 5.16.1
For an elliptical bar in torsion, (a) find the magnitude of the maximum normal and shearing stress at any point of the

bar. (b) Find the variation of shear stress on a cross-sectional plane along a radial line x2 ¼ kx3. (c) Find the shear

stress at the boundary on the cross-sectional plane and show that the largest shear stress occurs at the end of the

minor axis of the ellipse.

Solution
(a) For the stress tensor:

T½ � ¼
0 T12 T13

T12 0 0

T13 0 0

2
64

3
75

where T12 and T13 are given by Eq. (5.16.11), the characteristic equation is

l3 � l
2Mt

pab

� �2 x22
a4

þ x23
b4

� �
¼ 0: (5.16.13)

The roots are l ¼ 0; and l ¼ �2Mt

pab
x22
a4

þ x23
b4

� �1=2

. Thus,

Tnð Þmax ¼ Tsð Þmax¼
2Mt

pab
x22
a4

þ x23
b4

� �1=2

: (5.16.14)

Comparing this equation with Eq. (5.16.12), we see that the shearing stress at every point on a cross-section

is the local maximum shear stress.
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(b) Along a radial line x2 ¼ kx3, where k is the slope of the radial line

Ts ¼ 2Mt

pab
k2x23
a4

þ x23
b4

� �1=2

¼ 2Mt jx3j
pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a4
þ 1

b4

r
: (5.16.15)

That is, the shear stress on a cross-section varies linearly along the radial distance. The largest shear stress for

every radial line occurs at the boundary.

(c) Along the boundary, x22=a
2 þ x23=b

2 ¼ 1 so that x22 ¼ a2 1� x23=b
2

� �
, thus

Ts ¼ 2Mt

pa2b3
b4 � b2 � a2

� �
x23

� 	1=2
: (5.16.16)

Let b > a, then the largest shear stress occurs at x3 ¼ 0 and x2 ¼ a, the end point of the minor axis with

Tsð Þmax ¼
2Mt

pa2b
: (5.16.17)

At x2 ¼ 0 and x3 ¼ b, the end point of the major axis,

Ts ¼ 2Mt

pab2
: (5.16.18)

The ratio of the shear stress at the end point of the minor axis to that at the end point of the major axis is b/a.

Of course, for a circle, the shear stress is constant on the boundary.

5.17 PRANDTL’S FORMULATION OF THE TORSION PROBLEM
Let

T12 ¼ @c
@x3

; T13 ¼ � @c
@x2

all other Tij ¼ 0: (5.17.1)

The function c(x2, x3) is known as Prandtl’s stress function. The only equation of equilibrium that needs to be

checked is the x1-equation: @T12=@x2 þ @T13=@x3 ¼ 0. Substituting the above stress components into it, we

obtain

@

@x2

@c
@x3

� @

@x3

@c
@x2

¼ 0: (5.17.2)

Thus, the equations of equilibrium are satisfied for any arbitrary function of c(x2, x3), so long as it is contin-

uous to the second derivative. However, not every c(x2, x3) gives rise to compatible strain components. To

derive the condition for compatible strain field, we can either use the compatibility equations derived in

Chapter 3 (see Prob. 5.55) or make use of the relation between the stress function c(x2, x3) and the warping

function ’(x2, x3) defined for the displacement field in the last section. Prandtl’s stress function is related to

the warping function by

T12 ¼ @c
@x3

¼ �mx3
da
dx1

þ m
@’

@x2
; T13 ¼ � @c

@x2
¼ mx2

da
dx1

þ m
@’

@x3
; (5.17.3)
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from which we have

@2c
@x23

¼ �m
da
dx1

þ m
@2’

@x3@x2
and

@2c
@x22

¼ �m
da
dx1

� m
@2’

@x2@x3
: (5.17.4)

Thus,

r2c ¼ @2c
@x23

þ @2c
@x22

¼ �2ma 0: (5.17.5)

Equation (5.17.5) not only ensures that the compatibility conditions are satisfied, it also provides a rela-

tionship between the stress function and the angle of twist per unit length a 0 � da=dx1. Eq. (5.17.5) is known
as the Poisson Equation.

To derive the boundary condition for c, we let the lateral surface be described by

f ðx2; x3Þ ¼ constant; (5.17.6)

then, the normal to the lateral surface is

n ¼ rf

jrf j ¼
1

jrf j
@f

@x2
e2 þ @f

@x3
e3

� �
: (5.17.7)

The boundary condition T12n2 þ T13n3 ¼ 0 [see Eq. (5.15.5)] becomes

@c
@x3

@f

@x2
� @c

@x2

@f

@x3
¼ 0 or

@c=@x2ð Þ
@c=@x3ð Þ ¼

@f=@x2ð Þ
@f=@x3ð Þ : (5.17.8)

That is, rc is parallel to rf. Since rf is perpendicular to the surface f ðx2; x3Þ ¼ constant, so is rc, which is

also perpendicular to cðx2; x3Þ ¼ constant. Thus,

c ¼ C on the boundary: (5.17.9)

Without loss of generality, we can choose the constant C to be zero. Thus, in summary, in Prandtl’s formula-

tion, the torsion problem is reduced to

@2c
@x23

þ @2c
@x22

¼ �2ma 0 with boundary condition c ¼ 0: (5.17.10)

The twisting moment is given by:

Mt ¼
ð

x2T31 � x3T21ð ÞdA ¼ �
ð

x2
@c
@x2

þ x3
@c
@x3

� �
dA ¼ �

ð
@ cx2ð Þ
@x2

þ @ cx3ð Þ
@x3

� 2c
� �

dA: (5.17.11)

a

c

d

b

O

dA

x2

x3

FIGURE 5.17-1
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Now,

ð
@ cx2ð Þ
@x2

dA ¼
ðd
c

ðb
a

@ cx2ð Þ
@x2

dx2

2
4

3
5dx3;

where x2 ¼ a x3ð Þ and x2 ¼ b x3ð Þ are the two end points (on the boundary) along a constant x3 line, and x3¼ c
and x3¼ d are the two extreme boundary points for the region of integration (see Figure 5.17-1). Thus, since

c¼ 0 on the boundary, we have

ðb
a

@ cx2ð Þ
@x2

dx2 ¼ cx2

���x2 ¼ b
x2 ¼ a ¼ cðbÞb� cðaÞa ¼ 0;

so that ð
@ cx2ð Þ
@x2

dA ¼ 0 and similarly

ð
@ cx3ð Þ
@x3

dA ¼ 0: (5.17.12)

Thus,

Mt ¼
ð
2cdA: (5.17.13)

Example 5.17.1
Consider the stress function c ¼ B x22 þ x23 � a2

� �
. Show that it solves the torsion problem for a circular cylinder of

radius a.

Solution
On the boundary, r2 ¼ x22 þ x23 ¼ a2, thus, c¼ 0. To satisfy the Poisson equation (5.17.10), we substitute

c ¼ B x22 þ x23 � a2
� �

in Eq. (5.17.10) and obtain

B ¼ � ma 0

2
; c ¼ � ma 0

2
x22 þ x23 � a2
� �

:

Now, using Eq. (5.17.13), we obtain

Mt ¼
ð
2cdA ¼ �ma 0

ða
0

r2 � a2
� �

2prdr ¼ ma 0 pa4

2

� �
¼ ma 0Ip :

Example 5.17.2
Show that the shearing stress at any point on a cross-section is tangent to the c ¼ constant curve passing through

that point and that the magnitude of the shearing stress is equal to the magnitude of jrcj.
Solution
From c x2; x3ð Þ ¼ C, we have

dc ¼ @c
@x2

dx2 þ @c
@x3

dx3 ¼ 0 or � @c
@x2

�
@c
@x3

¼ dx3
dx2

� �
c¼C

:
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Now, using the definition of stress function, Eq. (5.17.1), T12 ¼ @c
@x3

; T13 ¼ � @c
@x2

, we obtain

T13
T12

¼ dx3
dx2

� �
c¼C

:

Thus, the vector Ts ¼ T12e2 þ T13e3 is tangent to the curve c x2; x3ð Þ ¼ C. Furthermore,

jrc j2 ¼ @c
@x2

� �2

þ @c
@x3

� �2

¼ T 2
13 þ T 2

12 ¼ T 2
s :

We also note that jrc j ¼ j@c=@nj where n is in the normal direction to c x2; x3ð Þ ¼ C.

Example 5.17.3
Show that the boundary value problem for determining the membrane elevation h(x2, x3) in the x1 direction (see

Figure 5.17-2), relative to that of the fixed boundary of the membrane, due to a uniform pressure p exerted on the

lower side of the membrane is

@2h

@x23
þ @2h

@x22
¼ � p

S

with h ¼ 0 on the boundary, where S is the uniform tensile force per unit length exerted by the boundary on the

membrane. The weight of the membrane is neglected.

Solution
Due to the pressure acting on the membrane, a differential rectangular element of the membrane with sides dx2 and

dx3 is subjected to three net forces in the x1 (upward) direction.

(i) The resultant force due to pressure: pdx2dx3, (ii) the net force due to the membrane tensile force S on the pair

of the rectangular membrane sides dx3, given by (assume small slopes for the membrane curve):

� Sdx3ð Þ @h
@x2

þ Sdx3ð Þ @h

@x2
þ @

@x2

@h

@x2
dx2

� �
¼ S

@2h

@x22
dx3dx2;

and (iii) the net force on the pair of sides of length dx2, given by S
@2h

@x23
dx2dx3.

S

S

dx2

x2

h

dh

x1

FIGURE 5.17-2
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Equilibrium of this element requires that the sum of these forces must be zero. That is

@3h

@x22
þ @3h

@x23
¼ � p

S
with h ¼ 0 on the boundary: (5.17.14)

We see that the boundary value problem for the membrane elevation h(x2, x3) is the same as that for the stress

function c(x2, x3) if p /S is replaced with 2ma0.
The analogy between h(x2, x3) and c(x2, x3) provides a convenient way to visualize the distribution of the stress

function. For example, the curves of constant elevation h in a membrane are analogous to the curves of constant

stress function c and the location of the largest slope in a membrane provides information on the location of the max-

imum shearing stress. The constant elevation curves and the location of the maximum slope for a membrane can

often be visualized without actually solving the boundary value problem. The analogy has also been used to experi-

mentally determine the stresses in cylindrical bars of various cross-sectional shape under torsion.

5.18 TORSION OF A RECTANGULAR BAR
Let the cross-section be defined by �a � x2 � a and �b � x3 � b. We seek a solution of the stress function

c(x2, x3) satisfying the boundary value problem defined by Eq. (5.17.10). That is,

@2c
@x23

þ @2c
@x22

¼ �2ma 0; (5.18.1)

with boundary conditions

c ¼ 0 at x2 ¼ �a and x3 ¼ �b: (5.18.2)

Due to symmetry of the problem, the stress function c(x2, x3) will clearly be an even function of x2 and x3.
Thus, we let

c ¼
X1

n¼1;3;5

Fn x3ð Þ cos npx2=2að Þ½ �: (5.18.3)

This choice of c clearly satisfies the boundary condition c ¼ 0 at x2 ¼ �a. Substituting the preceding equa-

tion in Eq. (5.18.1), we obtain

�1=2ma 0ð Þ
X1

n¼1;3;5

cos npx2=2að Þ½ � d2Fn x3ð Þ=dx23 � np=2að Þ2Fn x3ð Þ
h i

¼ 1: (5.18.4)

It can be obtained from Fourier analysis that

1 ¼
X1

n¼1;3;5

4=npð Þð�1Þ n�1ð Þ=2
cos npx2=2að Þ½ �; � a < x2 < a: (5.18.5)

Comparing the preceding two equations, we have

d2Fn=dx
2
3 � ðnp=2aÞ2Fn ¼ ð�2ma 0Þð4=npÞð�1Þðn�1Þ=2; (5.18.6)

from which

Fn ¼ A sinh npx3=2að Þ þ B cosh npx3=2að Þ þ 2ma 0ð Þ 16a2=p3n3
� �ð�1Þðn�1Þ=2: (5.18.7)
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For Fn to be an even function of x3, the constant A must be zero. The boundary condition that c¼ 0 at

x3¼� b then gives:

B cosh npb=2að Þ þ 32ma 0a2=p3n3
� �ð�1Þðn�1Þ=2 ¼ 0: (5.18.8)

With B determined from the preceding equation, we have

Fn ¼ 32ma 0a2=p3n3
� �ð�1Þðn�1Þ=2

1� cosh npx3=2að Þ=cosh ðnpb=2aÞf g: (5.18.9)

Thus,

c ¼ 32ma 0a2

p3

� � X1
n¼1;3;5

1

n3
ð�1Þðn�1Þ=2

1� cosh npx3=2að Þ
cosh npb=2að Þ

� �
cos

npx2
2a

: (5.18.10)

The stress components are given by Eq. (5.17.1). We leave it as an exercise (Prob. 5.56) to show that the max-

imum shearing stress occurs at the midpoint of the longer sides, given by (assuming b > a):

Tsð Þmax ¼ 2ma 0a� 16ma 0a
p2

� � X1
n¼1;3;5

1

n2 cosh npb=2að Þ
� �

; b > a; (5.18.11)

and the relation between the twisting moment Mt and the twisting angle per unit length a0 is given by (see

Prob. 5.57):

Mt ¼ 1

3
ma 0 2að Þ3 2bð Þ 1� 192

p5

� �
a

b

X1
n¼1;3;5

1

n5
tanh

npb
2a

� �" #
: (5.18.12)

For a very narrow rectangle (b=a ! 1; cosh npb=2að Þ ! 1; tanh npb=2að Þ ! 1), we have

Tsð Þmax ! 2ma 0a; Mt ! 1

3
ma 0ð2aÞ3ð2bÞ 1� 0:630

a

b


 �
: (5.18.13)

5.19 PURE BENDING OF A BEAM
A beam is a bar acted on by forces in an axial plane, which chiefly causes bending of the bar. When a beam or

portion of a beam is acted on by end couples only, it is said to be in pure bending or simple bending. We shall

consider the case of a cylindrical bar of arbitrary cross-section that is in pure bending.

Figure 5.19-1 shows a bar of uniform cross-section. We choose the x1 axis to pass through the cross-sec-

tional centroids and let x1¼ 0 and x1¼ ℓ correspond to the left and the right faces of the bar, respectively.

x3
x3

x1

ML MR

x2

FIGURE 5.19-1
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For the pure bending problem, we seek the state of stress that corresponds to a traction-free

lateral surface and a distribution of normal surface tractions on the end faces that is equivalent to a bend-

ing couple MR ¼ M2e2 þM3e3 on the right face and a bending couple ML ¼ �MR on the left end face.

(We note that the M1 is absent because it corresponds to a twisting couple.) Guided by the state of stress

associated with simple extension, we tentatively assume that T11 is the only nonzero stress com-

ponents.

To satisfy equilibrium in the absence of body forces, we must have

@T11
@x1

¼ 0: (5.19.1)

That is, T11 ¼ T11(x2, x3). The corresponding strains are

E11 ¼ T11
EY

; E22 ¼ E33 ¼ �n
T11
EY

; E12 ¼ E13 ¼ E23 ¼ 0: (5.19.2)

Since we have begun with an assumption on the state of stress, we much check whether these strains are com-

patible. Substituting the strains into the compatibility equations [Eqs. (3.16.7) to (3.16.12)], we obtain

@2T11
@x22

¼ 0;
@2T11
@x23

¼ 0;
@2T11
@x2@x3

¼ 0; (5.19.3)

which can be satisfied only if T11 is a linear function of the form

T11 ¼ aþ bx2 þ gx3: (5.19.4)

We shall take a ¼ 0 because it corresponds to the state of stress in simple extension, which we already

considered earlier. With a ¼ 0, let us evaluate the surface traction on the boundaries of the bar.

On the lateral surface, the normal vector does not have a component in the e1 direction, i.e.,

n ¼ n2e2 þ n3e3. As a consequence,

½t� ¼ ½T� ½n� ¼
T11 0 0

0 0 0

0 0 0

2
64

3
75

0

n2

n3

2
64

3
75 ¼ ½0�:

This is what it should be for pure bending.

On the right end face, x1 ¼ ℓ, n ¼ e1, so that

t ¼ Te1 ¼ T11e1: (5.19.5)

This distribution of surface tractions gives rise to zero resultant force, as shown here:

R1 ¼
ð
T11dA ¼ b

ð
x2dAþ g

ð
x3dA ¼ 0; R2 ¼ R3 ¼ 0;

where the integrals in the equation for R1 are the first moments about a centroidal axis, which, by the defini-

tion of centroidal axis, are zero. With the resultant force being zero, the resultant is a couple

MR ¼ M2e2 þM3e3 at x1 ¼ ℓ (the right face) with

M2 ¼
ð
x3T11dA ¼ b

ð
x2x3dAþ g

ð
x23dA ¼ bI23 þ gI22; (5.19.6)
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M3 ¼ �
ð
x2T11dA ¼ �b

ð
x22dA� g

ð
x2x3dA ¼ �bI33 � gI23 (5.19.7)

where

I23 ¼
ð
x2x3dA; I22 ¼

ð
x23dA; I33 ¼

ð
x22dA (5.19.8)

are the second moments of the area. There is an equal and opposite couple on the left face.

We now assume, without any loss of generality, that we have chosen the x2 and x3 axes to coincide with

the principal axes of the cross-sectional area. Then the product of second moment I23 ¼ 0. In this case, from

Eqs. (5.19.6) and (5.19.7), we have

b ¼ �M3

I33
; g ¼ M2

I22
; (5.19.9)

so the only nonzero stress component is given by [see Eq. (5.19.4)]

T11 ¼ M2x3
I22

�M3x2
I33

: (5.19.10)

The stress component T11 is known as the flexural stress.
To investigate the nature of deformation due to bending moments, for simplicity we letM3 ¼ 0. The strain

components are then

E11 ¼ M2x3
I22EY

; E22 ¼ E33 ¼ � nM2x3
I22EY

; E12 ¼ E13 ¼ E23 ¼ 0: (5.19.11)

Using strain-displacement relations, 2Eij ¼ @ui=@xj þ @uj=@xi, Eqs. (5.19.11) can be integrated (we are

assured that this is possible since the strains are compatible) to give the following displacement field:

u1 ¼ M2

EYI22
x1x3 � a3x2 þ a2x3 þ a4;

u2 ¼ � nM2

EYI22
x2x3 þ a3x1 � a1x3 þ a5;

u3 ¼ � M2

2EYI22
x21 � n x22 � x23

� �� 	� a2x1 þ a1x2 þ a6;

(5.19.12)

where ai are constants. The terms that involve ai, i.e.,

u1 ¼ �a3x2 þ a2x3 þ a4; u2 ¼ a3x1 � a1x3 þ a5; u3 ¼ �a2x1 þ a1x2 þ a6 (5.19.13)

describe a rigid body displacement field (ru is antisymmetric).

Example 5.19.1
A beam is bent by end couplesMR ¼ Me2 at x1 ¼ ℓ andML ¼ �MR at x1¼ 0. The e2 axis is perpendicular to the paper

and pointing outward. The origin of the coordinate axes is at the centroid of the left end section with x1 axis passing

through the centroids of all the cross-sections to the right; x2 and x3 axes are the principal axes, with positive x3
axis pointing downward. The beam is subjected to the following constraints: (i) The origin is fixed, (ii) @u3=@x2ð Þ ¼ 0

at the origin and (iii) the centroid at the right end section can only move horizontally in x1 � direction. (a) Obtain

the displacement field and show that every plane cross-section remains a plane after bending and (b) obtain the

deformed shape of the centroidal line of the beam, regarded as the deflection of the beam.
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Solution
(a) From Eqs. (5.19.12), we have:

(i) At (0, 0, 0), u1 ¼ u2 ¼ u3 ¼ 0. Thus, a4 ¼ a5 ¼ a6 ¼ 0.

(ii) At (0, 0, 0), @u3=@x2 ¼ 0. Thus, a1 ¼ 0.

(iii) At (ℓ, 0, 0), u2 ¼ u3 ¼ 0. Thus, a3 ¼ 0; a2 ¼ �Mℓ= 2EY I22ð Þ.
The displacement field is

u1 ¼ Mx3
EY I22

x1 � ℓ

2

0
@

1
A;

u2 ¼ � nM
EY I22

x2x3;

u3 ¼ Mx1
2EY I22

ℓ � x1ð Þ þ M

2EY I22
n x22 � x23
� �

:

(5.19.14)

For a cross-section x1 ¼ c,

u1 ¼ M

EY I22
c � ℓ

2

� �
x3: (5.19.15)

Thus, every plane cross-section remains a plane after bending. It simply rotates an angle given by

y � tan y ¼ du1
dx3

¼ M

EY I22
c � ℓ

2

� �
: (5.19.16)

In particular, the cross-section at the midspan (c ¼ ℓ/2) remains vertical, whereas the section at x1¼ 0

rotates an angle of �Mℓ= EY I22ð Þ (clockwise) and the section at x1 ¼ ℓ, of Mℓ= EY I22ð Þ (counter-clockwise).
(b) For the centroidal axis x2 ¼ x3 ¼ 0, from the third equation in Eq. (5.19.14), we have

u3 ¼ Mx1
2EY I22

ℓ � x1ð Þ: (5.19.17)

This is conventionally taken as the deflection curve for the beam.

A.3 PLANE STRESS AND PLANE STRAIN SOLUTIONS

5.20 PLANE STRAIN SOLUTIONS
Consider a cylindrical body or a prismatic bar that has a uniform cross-section with its normal in the axial

direction, which we take to be the x3 axis. The cross-sections are perpendicular to the lateral surface and par-

allel to the x1x2 plane. On its lateral surfaces, the surface tractions are also uniform with respect to the axial

direction and have no axial (i.e., x3) components. Its two end faces (e.g., x3¼ �b) are prevented from axial

displacements but are free to move in other directions (e.g., constrained by frictionless planes). Under these

conditions, the body is in a state of plane strain. That is,

E13 ¼ E23 ¼ E33 ¼ 0; E11 ¼ E11 x1; x2ð Þ; E22 ¼ E22 x1; x2ð Þ; E12 ¼ E12 x1; x2ð Þ: (5.20.1)
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For this state of strain, the nonzero stress components are

T11 ¼ T11 x1; x2ð Þ; T22 ¼ T22 x1; x2ð Þ; T12 ¼ T12 x1; x2ð Þ ¼ T21; (5.20.2)

and from Hooke’s law, 0 ¼ 1=EYð Þ T33 � nðT11 þ T22Þ½ �, we have

T33 ¼ nðT11 þ T22Þ: (5.20.3)

We see that although the strain components exist only with reference to the x1x2 plane, the state of stress

in general includes a nonzero T33(x1, x2). In fact, this component of stress is needed to maintain zero axial

strain, and in general, removal of this axial stress from the end faces will not only result in axial deformation

but also alter the stress and strain field in the bar, except when T33 is a linear function of x1 and x2, in which

case it can be removed entirely from the bar without affecting the other stress components, although the strain

field will be affected (see Example 5.20.1). However, if the cylinder is long (in x3-direction), then by

St. Venant’s principle, the stress field in regions far from the end faces, due to T33 acting alone on the end

faces, can be obtained by replacing the surface traction with an equivalent force system, which allows for

easy calculations of the stress field. For example, if the resultant of T33(x1, x2) on the end face is a force

P passing through the centroid of the cross-section, then the effect of the axial traction T33 is simply that

of a uniform axial stress P/A in regions far from the end faces. In this case the axial traction on the end faces

can be simply removed from the end faces without affecting the in-plane stress components T11, T22 and T12;
only T33(x1, x2) in the bar needs to be modified. This is true in general. Thus, as far as in-plane stress com-

ponents are concerned (i.e., T11, T22 and T12), the plane strain solution is good for two kinds of problems: (a) a

cylinder whose end faces are constrained from axial displacements, in this case, T33 ¼ nðT11 þ T22Þ through-
out the bar, and in this case, the solution is exact, and (b) a long cylinder whose end faces are free from sur-

face traction; in this case, the axial stress T33 6¼ nðT11 þ T22Þ, but its approximate values can be obtained

using St. Venant’s principle and the principle of superposition.* The two problems have the same in-plane

stress components in reference to the x1x2 plane. These in-plane stresses are what we are concerned with in

this so-called plane strain solutions.

We should note that plane strain problems can also be defined as those whose displacement field is

u1 ¼ u1 x1; x2ð Þ; u2 ¼ u2 x1; x2ð Þ; u3 ¼ 0 or a constantð Þ: (5.20.4)

We now consider a static stress field associated with a plane strain problem. In the absence of body forces,

the equilibrium equations reduce to

@T11
@x1

þ @T12
@x2

¼ 0;
@T21
@x1

þ @T22
@x2

¼ 0;
@T33
@x3

¼ 0: (5.20.5)

Because T33 depends only on (x1, x2), the last equation in Eq. (5.20.5) is trivially satisfied. It can be

easily verified that the other two equations of equilibrium in Eq. (5.20.5) are satisfied for the stress com-

ponents calculated from the following equations for any scalar function ’(x1, x2), known as the Airy
stress function:

T11 ¼ @2’

@x22
; T12 ¼ � @2’

@x1@x2
; T22 ¼ @2’

@x21
: (5.20.6)

*Superposing nðT11 þ T22Þ with the stress, obtained via the St. Venant principle, due to normal surface traction of �nðT11 þ T22Þ on
the end faces.

5.20 Plane Strain Solutions 251



However, not all stress components obtained this way are acceptable as possible elastic solutions, because

the strain components derived from them may not be compatible; that is, there may not exist displacement

components that correspond to the strain components. To ensure the compatibility of the strain components,

we first obtain the strain components in terms of f as follows:

E11 ¼ 1

EY
T11 � n T22 þ n T11 þ T22ð Þf g½ � ¼ 1

EY
1� n2
� � @2’

@x22
� n 1þ nð Þ @

2’

@x21

2
4

3
5;

E22 ¼ 1

EY
T22 � n n T11 þ T22ð Þ þ T11f g½ � ¼ 1

EY
1� n2
� � @2’

@x21
� n 1þ nð Þ @

2’

@x22

2
4

3
5;

E12 ¼ 1

EY
ð1þ nÞT12 ¼ � 1

EY
ð1þ nÞ @2’

@x1@x2
; E13 ¼ E23 ¼ E33 ¼ 0:

(5.20.7)

For plane strain problems, the only compatibility equation that is not automatically satisfied is

@2E11

@x22
þ @2E22

@x21
¼ 2

@2E12

@x1@x2
: (5.20.8)

Substitution of Eqs. (5.20.7) into Eq. (5.20.8) results in (see Prob. 5.61)

r4’ ¼ @4’

@x41
þ 2

@4’

@x21@x
2
2

þ @4’

@x42
¼ 0: (5.20.9)

Any function ’(x1, x2) that satisfies this biharmonic equation, Eq. (5.20.9), generates a possible elasto-

static solution. It can also be easily obtained that

@2

@x21
þ @2

@x22

� �
T11 þ T22ð Þ ¼ @4’

@x41
þ @4’

@x42
þ 2

@4’

@x21@x
2
2

¼ 0; (5.20.10)

which may be written as

r2ðT11 þ T22Þ ¼ 0 where r2 � @2

@x21
þ @2

@x22

� �
: (5.20.11)

Example 5.20.1
Consider the following state of stress in a cylindrical body with x3 axis normal to its cross-sections:

½T� ¼
0 0 0

0 0 0

0 0 T33ðx1; x2Þ

2
64

3
75: (5.20.12)

Show that the most general form of T33(x1,x2), which gives rise to a possible state of stress in the body in the

absence of body force, is

T33ðx1; x2Þ ¼ ax1 þ bx2 þ g: (5.20.13)

Solution
The strain components are

E11 ¼ � nT33ðx1; x2Þ
EY

¼ E22; E33 ¼ T33ðx1; x2Þ
EY

; E12 ¼ E13 ¼ E23 ¼ 0: (5.20.14)
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Substituting the preceding into the compatibility equations (Section 3.16), we obtain

@2T33

@x21
¼ 0;

@2T33

@x22
¼ 0;

@2T33
@x1@x2

¼ 0: (5.20.15)

Thus, for the given stress tensor to be a possible elastic state of stress, T33(x1, x2) must be a linear function of

x1 and x2. That is,

T33 ¼ ax1 þ bx2 þ g: (5.20.16)

From this result, we see that if a cylindrical body is loaded on its end faces by equal and opposite

normal traction distribution T33, which is a linear function of x1 and x2, then the stress field inside

the body is given by the same T33 throughout the whole body, with no other stress components

(this includes the case of simple extension where T33 ¼ s, considered in Section 5.13 and the case of pure

bending considered in Section 5.19). On the other hand, if the normal traction on the end faces is not a linear

function of x1 and x2, then the stress distribution inside the body is not given by Eq. (5.20.12).

5.21 RECTANGULAR BEAM BENT BY END COUPLES
Consider a rectangular beam whose length is defined by x1 ¼ 0 and x1 ¼ ℓ, whose height by x2 ¼ �h=2, and
whose width by x3 ¼ �b=2. Let us try the following Airy stress function ’ for this beam:

’ ¼ ax32 (5.21.1)

Clearly, this function satisfies the biharmonic equation, Eq. (5.20.9), so that it will generate a possible

elastic solution. Substituting Eq. (5.21.1) into Eqs. (5.20.6), we obtain

T11 ¼ @2’

@x22
¼ 6ax2; T12 ¼ � @2’

@x1@x2
¼ 0; T22 ¼ @2’

@x21
¼ 0: (5.21.2)

(a) If the beam is constrained by frictionless walls at x3 ¼ �b=2, then

T33 ¼ n T11 þ T22ð Þ ¼ 6nax2; (5.21.3)

and the stresses in the beam are given by

T½ � ¼
6ax2 0 0

0 0 0

0 0 6nax2

2
64

3
75: (5.21.4)

On the end faces x1 ¼ 0 and x1 ¼ ℓ, the surface tractions are given by t ¼ �6ax2e1 and t ¼ 6ax2e1,
respectively. These surface tractions are clearly equivalent to equal and opposite bending couples at

x1 ¼ 0 and x1 ¼ ℓ. In fact, the magnitude of the bending moment is given by

M ¼ 6a
ðh=2
�h=2

x2 x2bdx2ð Þ ¼ abh3=2; (5.21.5)
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so that in terms of M, the nonzero stress components are

T11 ¼ 6ax2 ¼ 12M

bh3
x2; T33 ¼ n

12M

bh3
x2: (5.21.6)

(b) If the beam is unconstrained at x3 ¼ �b=2, we need to remove the surface traction T33 at x3 ¼ �b=2
from the beam. This is done by applying on the end faces x3 ¼ �b=2 in the problem of part (a), a sur-

face traction T33 ¼ �n 12M=bh3ð Þx2. Being linear in x2, the effect of this surface traction is simply a

stress field, where T33 ¼ �n 12M=bh3ð Þx2 is the only nonzero stress component (see Example 5.20.1).

Thus, we have, for the beam that is free to move in the width x3 – direction,

T11 ¼ 12M

bh3

� �
x2 ¼ Mx2

I33
; all other Tij ¼ 0: (5.21.7)

This is the same result that we obtained earlier in Section 5.19. We note that the x2 axis here

corresponds to the x3 axis in that section.

5.22 PLANE STRESS PROBLEM
Consider a very thin disc or plate, circular or otherwise, its faces perpendicular to the x3-axis, its lateral sur-
face (often referred to as the edge of the disc) subjected to tractions that are (or may be considered to be, since

the disc is thin) independent of x3 (i.e., uniform in the thin axial direction) and its two end faces are free from

any surface traction. Then the disc is approximately in a state of plane stress. That is,

½T� ¼
T11 x1; x2ð Þ T12 x1; x2ð Þ 0

T12 x1; x2ð Þ T22 x1; x2ð Þ 0

0 0 0

2
64

3
75: (5.22.1)

This assumption is based on the fact that, on the two end faces T13 ¼ T23 ¼ T33 ¼ 0, so that within the

disc, it being very thin, these components of stress will also be very close to zero. That the plane stress assump-

tion, in general, does not lead to a possible elastic solution (except in special cases) will be shown here by estab-

lishing that Eq. (5.22.1) in general does not satisfy all the compatibility equations. However, it can be shown

that the errors committed in the stress components in Eq. (5.22.1) are of the order of e2, where e is some dimen-

sionless thickness of the plate, such as the ratio of the thickness to the radius, so that it is a good approximation

for thin plates (see Timoshenko and Goodier, Theory of Elasticity, third edition, McGraw-Hill, pp. 274–276).

The equations of equilibrium can be assured if we again introduce the Airy stress function, which is

repeated here:

T11 ¼ @2’

@x22
; T12 ¼ � @2’

@x1@x2
; T22 ¼ @2’

@x21
: (5.22.2)

Corresponding to this state of plane stress, the strain components are

E11 ¼ 1

EY
T11 � nT22ð Þ ¼ 1

EY

@2’

@x22
� n

@2’

@x21

0
@

1
A; E22 ¼ 1

EY
T22 � nT11ð Þ ¼ 1

EY

@2’

@x21
� n

@2’

@x22

0
@

1
A

E33 ¼ � n
EY

T11 þ T22ð Þ ¼ � n
EY

@2’

@x22
þ @2’

@x21

0
@

1
A; E12 ¼ 1

EY
ð1þ nÞT12 ¼ � 1

EY
ð1þ nÞ @2’

@x1@x2
:

E13 ¼ E23 ¼ 0:

(5.22.3)

254 CHAPTER 5 The Elastic Solid



In order that these strains are compatible, they must satisfy the six compatibility equations derived in Section

3.16. The consequences are:

1. Equation (3.16.7) leads to

@4’

@x41
þ 2

@4’

@x21@x
2
2

þ @4’

@x42
¼ 0 (5.22.4)

(see Prob. 5.62).

2. Equations (3.16.8), (3.16.9), and (3.16.12) lead to

@2E33

@x21
¼ 0;

@2E33

@x22
and

@2E33

@x1@x2
¼ 0: (5.22.5)

Thus, E33 must be a linear function of x1 and x2. Since E33 ¼ �ðn=EYÞ T11 þ T22ð Þ; T11 þ T22 must be a

linear function of x1 and x2.

3. The other two equations are identically satisfied.

Thus, a plane stress solution, in reference to (x1, x2), is in general not a possible state of stress in a cylin-

drical/prismatic body (with cross-sections perpendicular to the x3-axis). However, (a) if (T11 þ T22) is a linear
function of x1 and x2, then the plane stress is a possible state of stress for a body of any width (in x3 direction)
and (b) if (T11 þ T22) is not a linear function of x1 and x2, then the state of plane stress can be regarded as a

good approximate solution if the body is very thin (in x3 direction), the errors are of the order of e
2, where e is

some dimensionless thickness of the disc/plate.

5.23 CANTILEVER BEAM WITH END LOAD
Consider a rectangular beam, whose cross-section is defined by �h=2 � x2 � h=2 and �b=2 � x3 � b=2 and

whose length, by 0 � x1 � ℓ, with the origin of the coordinates located at the center of the left cross-section

x1 ¼ 0 (Figure 5.23-1). Let us try the following Airy stress function ’ for this beam.

’ ¼ ax1x32 þ bx1x2: (5.23.1)

Clearly, this satisfies the biharmonic equation Eq. (5.20.9). The in-plane stresses are

T11 ¼ @2’

@x22
¼ 6ax1x2; T22 ¼ @2’

@x21
¼ 0; T12 ¼ � @2’

@x1@x2
¼ �b� 3ax22: (5.23.2)

P

h/2

h/2

h/2

h/2

b/2b/2

x1

x2
x2

x3

FIGURE 5.23-1
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On the boundary planes x2 ¼ �h=2, we demand that they are traction-free. Thus,

t ¼ T �e2ð Þ ¼ � T12e1 þ T22e2ð Þjx2¼�h=2 ¼ �ð�b� 3ah2

4
Þe1 ¼ 0; (5.23.3)

from which we have

b ¼ � 3h2

4
a: (5.23.4)

On the boundary plane x1 ¼ 0, the surface traction is given by

t ¼ �Te1 ¼ � T11e1 þ T21e2ð Þx1¼0 ¼ ðbþ 3ax22Þe2 ¼
3a
4
ð�h2 þ 4x22Þe2: (5.23.5)

That is, there is a parabolic distribution of shear stress on the end face x1 ¼ 0. Let the resultant of this dis-

tribution be denoted by �Pe2 (the minus sign indicates downward force, as shown in Figure 5.23-1); then

�P ¼ � 3ah2

4

� �ð
dAþ 3a

ðh=2
�h=2

x22 bdx2ð Þ ¼ � 3ah2

4

� �
bhð Þ þ 3a

bh3

12
: (5.23.6)

Thus,

P ¼ bh3

2

� �
a; a ¼ 2P

bh3
; and b ¼ � 3P

2bh
: (5.23.7)

In terms of P, the in-plane stress components are

T11 ¼ 12P

bh3
x1x2 ¼ P

I
x1x2; T22 ¼ 0; T12 ¼ P

2I

� �
h2

4
� x22

� �
; (5.23.8)

where I ¼ bh3=12 is the second moment of the cross-section. If the beam is in a plane strain condition, there

will be normal compressive stresses on the boundary x3 ¼ �b=2 whose magnitude is given by

T33 ¼ n T11 þ T22ð Þ ¼ n
12P

bh3
x1x2: (5.23.9)

That is,

½T� ¼
T12 T12 0

T12 T22 0

0 0 T33

2
4

3
5; ½E� ¼

E11 E12 0

E12 E22 0

0 0 0

2
4

3
5; (5.23.10)

where the nonzero stress components are given by Eqs. (5.23.8) and (5.23.9). The nonzero strain compo-

nents are

E11 ¼ 1

EY
T11 1� n2
� �� n 1þ nð ÞT22

� 	
;

E22 ¼ 1

EY
T22 1� n2
� �� n 1þ nð ÞT11

� 	
;

E12 ¼ 1

EY
ð1þ nÞT12:

(5.23.11)

This plane strain solution, Eq. (5.23.10), is valid for the beam with any width b.
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Since T33 in Eq. (5.23.9) is not a linear function of x1 and x2, it cannot be simply removed from Eq.

(5.23.10) to give a plane stress solution without affecting the other stress components (see Example

5.20.1). However, if the beam is very thin (i.e., very small b compared with the other dimensions), then a

good approximate solution for the beam is

½T� ¼
T12 T12 0

T12 T22 0

0 0 0

2
4

3
5; ½E� ¼

E11 E12 0

E12 E22 0

0 0 E33

2
4

3
5; (5.23.12)

where the nonzero stress components are given by Eq. (5.23.8) and the nonzero strain components are

E11 ¼ 1

EY
T11 � nT22ð Þ; E22 ¼ 1

EY
T22 � nT11ð Þ; E12 ¼ 1

EY
ð1þ nÞT12; (5.23.13)

and E33 ¼ �ðn=EYÞ T11 þ T22ð Þ. The strain E33 is of no interest since the plate is very thin and the compati-

bility conditions involving E33 are not satisfied.

In the following example, we discuss the displacement field for this beam and prescribe the following dis-

placement boundary condition for the right end of the beam:

u1 ¼ u2 ¼ @u2
@x1

¼ 0; at x1; x2ð Þ ¼ ℓ; 0ð Þ:

These displacement boundary conditions demand that, at the right end of the beam, the centroidal plane

x2 ¼ 0 is perpendicular to the wall while fixed at the wall. These conditions correspond partially to the con-

dition of a complete fixed wall.

Example 5.23.1
(a) For the cantilever beam discussed in this section, verify that the in-plane displacement field for the beam in

plane stress condition is given by the following:

u1 ¼ Px21 x2
2EY I

þ nPx32
6EY I

� Px32
6mI

þ Px2
2mI

h

2

0
@
1
A

2

þ b1x2 þ c2;

u2 ¼ � nPx1x22
2EY I

� Px31
6EY I

� b1x1 þ c3:

(i)

(b) If we demand that, at the point x1; x2ð Þ ¼ ℓ; 0ð Þ; u1 ¼ u2 ¼ @u2=@x1 ¼ 0, obtain the deflection curve for the

beam, i.e., obtain u2 x1; 0ð Þ.

Solution
(a) For plane stress condition, we have

E11 ¼ 1

EY
T11 � nT22ð Þ ¼ Px1x2

EY I
; E22 ¼ 1

EY
T22 � nT11ð Þ ¼ � nPx1x2

EY I
;

E12 ¼ ð1þ nÞ
EY

T12 ¼ P

4Im

0
@

1
A h2

4
� x22

0
@

1
A:

(ii)
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From the given displacement field, i.e., Eq. (i), we obtain

E11 ¼ @u1
@x1

¼ Px1x2
EY I

; E22 ¼ @u2
@x2

¼ � nPx1x2
EY I

;

E12 ¼ 1

2

@u1
@x2

þ @u2
@x1

0
@

1
A ¼ 1

2

Px21
2EY I

þ nPx22
2EY I

� Px22
2mI

þ P

2mI
h

2

0
@
1
A

2

þ b1

8<
:

9=
;

þ 1

2
� nPx22
2EY I

� Px21
2EY I

� b1

8<
:

9=
; ¼ �Px22

4mI
þ P

4mI
h

2

0
@
1
A

2

¼ P

4mI

0
@

1
A h2

4
� x22

0
@

1
A:

(iii)

Comparing Eqs. (iii) with Eqs. (ii), we see that the given displacement field is indeed the in-plane displace-

ment field for the beam.

We remark that the displacement u1 is not a linear function of x2 for any cross-section (x1 ¼ constant);

therefore, a cross-sectional plane does not remain a plane after bending. Also, we note that u3 cannot be

found (does not exist), because under the plane stress assumption, the compatibility conditions involving

E33 are not satisfied.

(b) From u2 ℓ; 0ð Þ ¼ 0 and
@u2
@x1

ℓ; 0ð Þ ¼ 0, we have

� Pℓ3

6EY I
� b1ℓ þ c3 ¼ 0 and � Pℓ2

2EY I
� b1 ¼ 0;

thus, b1 ¼ �Pℓ2=ð2EY IÞ; c3 ¼ �Pℓ3=ð3EY IÞ, and the deflection curve is

u2 x1; 0ð Þ ¼ � Px31
6EY I

þ Pℓ2x1
2EY I

� Pℓ3

3EY I
: (iv)

At the free end, the deflection is u2 0; 0ð Þ ¼ � Pℓ3

3EY I
, a very well-known result in elementary strength of

materials.

5.24 SIMPLY SUPPORTED BEAM UNDER UNIFORM LOAD
Consider a rectangular beam, its length defined by �ℓ � x1 � ℓ, its height by �d � x2 � d, and its width by

�b � x3 � b. The origin of the coordinates is at the center of the beam. Let us try the following Airy stress

function ’ for this beam,

’ ¼ Box
2
1 þ B1x

2
1x2 þ B2x

3
2 þ B3x

2
1x

3
2 þ B4x

5
2: (5.24.1)

Substituting the preceding equation in the biharmonic equation, we get

@4’

@x41
þ 2

@4’

@x21@x
2
2

þ @4’

@x42
¼ 0þ 24B3x2 þ 120B4x2 ¼ 0; so that B4 ¼ �B3=5:
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Thus,

’ ¼ Box
2
1 þ B1x

2
1x2 þ B2x

3
2 þ B3 x21x

3
2 � x52=5

� �
: (5.24.2)

The stress components are

T11 ¼ @2’=@x22 ¼ 6B2x2 þ B3 6x21x2 � 4x32
� �

;

T22 ¼ @2’=@x21 ¼ 2Bo þ 2B1x2 þ 2B3x
3
2;

T12 ¼ �@2’=@x1@x2 ¼ �2B1x1 � 6B3x1x
2
2:

(5.24.3)

Let the bottom of the beam be free of any traction. That is, at x2 ¼ �d; T12 ¼ T22 ¼ 0. Then

2Bo � 2B1d � 2B3d
3 ¼ 0 and � 2B1x1 � 6B3x1d

2 ¼ 0 , so that B1 ¼ �3d2B3; Bo ¼ �2B3d
3: (5.24.4)

Let the top face of the beam be under a uniform compressive load �p. That is, at x2 ¼ þd, T12 ¼ 0,

T22 ¼ �p, then, 2Bo þ 2B1d þ 2B3d
3 ¼ �p.

Thus,

B3 ¼ p

8d3
; B1 ¼ � 3p

8d
; Bo ¼ � p

4
: (5.24.5)

On the left and right end faces, we will impose the conditions that the surface tractions on each face are

equivalent to a vertical resultant force only, with no resultant force in the direction normal to the faces, i.e.,

the x1-direction and no resultant couple. These are known as the weak conditions for the beam, which is free

from normal stresses at x1 ¼ �ℓ [i.e., T11ð Þx1¼�ℓ ¼ 0]. For a beam with large ℓ=d (a long beam), the stresses

obtained under the weak conditions are the same as those under the conditions T11ð Þx1¼�ℓ ¼ 0, except near the

end faces in accordance with the St. Venant’s principle.

Equation (5.24.3) shows that T11 is an odd function of x2; therefore,
Ð d
�d T11 2bð Þdx2 ¼ 0. That is, the

resultant force is zero on both ends. We now impose the condition that there are no resultant couples, either.

That is, we require that
Ð d
�d T11x2dx2 ¼ 0. Now,ðd

�d

T11x2dx2 ¼
ðd
�d

6B2x
2
2 þ B3 6x21x

2
2 � 4x42

� �� 	
x1¼�ℓ

dx2

¼ 4B2d
3 þ B3 4ℓ2d3 � 8d5

5

0
@

1
A ¼ 0:

Thus,

B2 ¼ �B3

5
5ℓ2 � 2d2
� � ¼ � p

40d3
5ℓ2 � 2d2
� �

: (5.24.6)

Using Eq. (5.24.5) and (5.24.6), we have

T11 ¼ � 3p

20d3
5ℓ2 � 2d2
� �

x2 þ p

8d3
6x21x2 � 4x32
� �

;

T12 ¼ 3p

4d
x1 � 3p

4d3
x1x

2
2;

T22 ¼ � p

2
� 3p

4d
x2 þ p

4d3
x32:

(5.24.7)
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5.25 SLENDER BAR UNDER CONCENTRATED FORCES AND ST. VENANT’S
PRINCIPLE
Consider a thin bar defined by �ℓ � x1 � ℓ; �c � x2 � c; �b � x3 � b (Figure 5.25-1) where c=ℓ and b=ℓ
are very small. The bar is acted on by equal and opposite compressive concentrated load P at the long ends

x1 ¼ �ℓ. We wish to determine the stress distribution inside the bar and to demonstrate the validity of

St. Venant’s principle.

A concentrated line compressive force P (per unit length in x3 direction) at x2 ¼ 0 on the planes

x1 ¼ �ℓ can be described as T11ð�ℓ; 0Þ ¼ �Pdð0Þ, where T11 ¼ T11ðx1; x2Þ and d(x2) is the Dirac

function, having the dimension of reciprocal length. Now, d(x2) can be expressed as a Fourier Cosine

series as

dðx2Þ ¼ 1

2c
þ 1

c

X1
m¼1

cos lmx2

" #
; lm ¼ mp=c; (5.25.1)

so that

�Pdðx2Þ ¼ � P

2c
þ P

c

X1
m¼1

cos lmx2

" #
: (5.25.2)

Thus, we look for solutions of the Airy stress function ’ðx1; x2Þ in the form of

’ ¼ � P

4c
x22 þ

X1
m¼1

’m x1ð Þ cos lmx2; lm ¼ mp=c; (5.25.3)

so that

T11 ¼ @2’

@x22
¼ � P

2c
�
X1
m¼1

l2m’mðx1Þ cos lmx2: (5.25.4)

The function ’mðx2Þ will now be determined so that the biharmonic equation is satisfied. Substituting

Eqs. (5.25.3) into the biharmonic equation, we get

r4’ ¼
X1
m¼1

l4m’m � 2l2m
d2’m

dx21
þ d4’m

dx41

� �
cos lmx2 ¼ 0:

P Pc

c
x1

x2

FIGURE 5.25-1
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Thus, l4m’m � 2l2m
d2’m

dx21
þ d4’m

dx41
¼ 0. The solution of this ordinary differential equation that is an even

function of x1, is easily obtained to be

’m x1ð Þ ¼ B1 cosh lmx1 þ B2x1 sinh lmx1: (5.25.5)

Thus,

’ ¼ � p

4c
x22 þ

X1
m¼1

B1 cosh lmx1 þ B2x1 sinh lmx1ð Þ cos lmx2; lm ¼ mp=c: (5.25.6)

The stress components generated by this Airy stress function are

T11 ¼ @2’

@x22
¼ � P

2c
�
X1
m¼1

l2m B1 cosh lmx1 þ B2x1 sinh lmx1ð Þ cos lmx2; (5.25.7)

T22 ¼ @2’

@x21
¼
X1
m¼1

B1l
2
m cosh lmx1 þ B2lm 2 cosh lmx1 þ lmx1 sinh lmx1ð Þ� �

cos lmx2; (5.25.8)

T12 ¼ � @2’

@x1@x2
¼
X1
m¼1

lmð Þ B1lm sinh lmx1 þ B2 sinh lmx1 þ lmx1 cosh lmx1ð Þf g sin lmx2: (5.25.9)

On the boundaries x1 ¼ �ℓ, there are compressive line concentrated forces P applied at x2 ¼ 0 but oth-

erwise free from any other surface tractions. Thus, we demand

T12ð Þx1¼�ℓ ¼ 0 ¼ B1lm sinh lmℓ þ B2 sinh lmℓ þ lmℓ cosh lmℓð Þ; (5.25.10)

and

T11ð Þx1¼�ℓ ¼ �Pd x2ð Þ ¼ � P

2c
�
X1
m¼1

l2m B1 cosh lmℓ þ B2ℓ sinh lmℓð Þ cos lmx2: (5.25.11)

Now [see Eq. (5.25.2)],

�Pdðx2Þ ¼ � P

2c
� P

c

X1
m¼1

cos lmx2:

Thus,

B1 cosh l mℓ þ B2ℓ sinh lmℓ ¼ P

cl2m
: (5.25.12)

Equations (5.25.10) and (5.25.12) give, with lm ¼ mp=c,

B1 ¼ 2P

c

� �
sinh lmℓ þ lmℓ cosh lmℓð Þ
l2m sinh 2lmℓ þ 2lmℓf g ; B2 ¼ � 2P

c

� �
sinh lmℓ

lm sinh 2lmℓ þ 2lmℓð Þ : (5.25.13)

The surface tractions on the boundaries x2 ¼ �c (top and bottom surfaces in the preceding figure) can be

obtained from Eq. (5.25.9) as

T12ð Þx2¼�c ¼ 0; (5.25.14)
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and

ðT22Þx2¼�c ¼
X1
m¼1

B1l
2
m cosh lmx1 þ B2lm 2 cosh lmx1 þ lmx1 sinh lmx1ð Þ� � �1ð Þm: (5.25.15)

We see from Eq. (5.25.15) that there are equal and opposite normal tractions T22 acting on the faces

x2 ¼ c and x2 ¼ �c. However, if c=ℓ ! 0 (that is, the bar is very thin in the x2 direction), then these

surface tractions (i.e., T22) can be simply removed from the bar to give the state of stress inside the thin

bar that is free from surface traction on these two faces and with T22 ¼ 0 throughout the whole bar. We

have also assumed that b=ℓ ! 0 (that is, the bar is also very thin in the x3 direction) so that we also have

T33 ¼ 0 throughout the whole bar for the case where there is no surface traction on x3 ¼ �b. Thus, for a
slender bar (thin in both x2 and x3 directions) with only equal and opposite compressive forces P acting

on its long end faces, there is only one stress component T11 inside the bar given by Eq. (5.25.7) and

(5.25.13). That is:

T11 ¼ � P

2c
� 2P

c

X1
m¼1

sinh lmℓ þ lmℓ cosh lmℓð Þ cosh lmx1 � lmx1 sinh lmℓ sinh lmx1
sinh 2lmℓ þ 2lmℓ

� �
cos lmx2: (5.25.16)

The first term P=2c is the uniform compressive stress describing the compressive force P divided by

the cross-section area (recall that P is per unit length in the x3 direction); the second term modified this

uniform distribution. We see that for x1¼ 0 (the midsection of the slender bar), this second term

becomes

� 2P

c

X1
m¼1

sinh lmℓ þ lmℓ cosh lmℓð Þ
sinh 2lmℓ þ 2lmℓ

� �
cos lmx2: (5.25.17)

As lmℓ � mp ℓ=cð Þ ! 1;
sinh lmℓ þ lmℓ cosh lmℓð Þ

sinh 2lmℓ þ 2lmℓf g ! lmℓ
2 sinh lmℓ

! 0, that is, at x1 ¼ 0 (the midsection of

the bar), the distribution of T11 is uniform for a very slender bar. Numerical calculations will show that for

small value of x1=ℓ (i.e., for sections that are far from the loaded ends), the contribution from the second term

will be small and the distribution of T11 will be essentially uniform, in agreement with St. Venant’s

principle.

5.26 CONVERSION FOR STRAINS BETWEEN PLANE STRAIN AND PLANE
STRESS SOLUTIONS
In terms of shear modulus and Poisson ratio, the strain components are, for the plane strain solution,

E11 ¼ 1

2m

�
1� nð ÞT11 � nT22

�
; E22 ¼ 1

2m

�
1� nð ÞT22 � nT11

�
; E12 ¼ T12

2m
; (5.26.1)

and for the plane stress solution:

E11 ¼ 1

2m 1þ �nð Þ T11 � �nT22½ �; E22 ¼ 1

2m 1þ �nð Þ T22 � �nT11½ �; E12 ¼ T12
2m

: (5.26.2)
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In the preceding equations, m is the shear modulus and to facilitate the conversion, we have used n and �n
for the same Poisson ratio in the two sets of equations (n for plane strain and �n for plane stress).

If we let n ¼ �n
1þ �n

, then 1� n ¼ 1� �n
1þ �n

¼ 1

1þ �n
and Eqs. (5.26.1) are converted to Eqs. (5.26.2). That

is, by replacing the Poisson ratio n in plane strain solution with n= 1þ nð Þ, the strains are converted to those in

the plane stress solution.

On the other hand, if we let �n ¼ n
1� n

, then 1þ �n ¼ 1þ n
1� n

¼ 1

1� n
and Eqs. (5.26.2) are converted to

Eqs. (5.26.1). That is, by replacing the Poisson ratio n in the plane stress solution with n= 1� nð Þ, the strains

are converted to those in the plane strain solution.

Example 5.26.1
Given that the displacement components in a plane strain solution are given by

ur ¼ 1

EY
�ð1þ nÞA

r
� Bð1þ nÞr þ 2Bð1� n� 2n2Þr ln r þ 2Cð1� n� 2n2Þr

2
4

3
5;

uy ¼ 4Bry
EY

1� n2
� �

:

(i)

Find (ur, uy) in the plane stress solution in terms of m and n and in terms of EY and n.

Solution
EY ¼ 2mð1þ nÞ; therefore,

ur ¼ 1

2mð1þ nÞ � ð1þ nÞA
r

� Bð1þ nÞr þ 2Bð1� n� 2n2Þr ln r þ 2Cð1� n� 2n2Þr
2
4

3
5

¼ 1

2m
�A

r
� Br þ 2Bð1� 2nÞr ln r þ 2Cð1� 2nÞr

2
4

3
5;

uy ¼ 4Bry
2mð1þ nÞ 1� n2

� � ¼ 2Bry
m

1� nð Þ:

(ii)

Replacing n with
n

1þ n
, 1�2n becomes 1� 2n

1þ n
¼ 1� n

1þ n
and 1�n becomes 1� n

1þ n
¼ 1

1þ n
; therefore, the

components in plane stress solution should be

ur ¼ 1

2m
�A

r
� Br þ 2B

1� n
1þ n

r ln r þ 2C
1� n
1þ n

r

2
4

3
5

¼ 1

EY
�A 1þ nð Þ

r
� B 1þ nð Þr þ 2B 1� nð Þr ln r þ 2C 1� nð Þr

2
4

3
5:

(iii)

uy ¼ 2Bry
m

1

1þ nð Þ ¼
4Bry
EY

: (iv)
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5.27 TWO-DIMENSIONAL PROBLEMS IN POLAR COORDINATES
The equations of equilibrium in polar coordinates are (see Section 4.8)

1

r

@ðrTrrÞ
@r

þ 1

r

@Try
@y

� Tyy
r

¼ 0: (5.27.1)

1

r2
@ðr2TyrÞ

@r
þ 1

r

@Tyy
@y

¼ 0: (5.27.2)

It can be easily verified (see Prob. 5.70) that the preceding equations of equilibrium are identically satis-

fied if

Trr ¼ 1

r

@’

@r
þ 1

r2
@2’

@y2
; Tyy ¼ @2’

@r2
; Try ¼ � @

@r

1

r

@’

@y

� �
; (5.27.3)

where ’ r; yð Þ is the Airy stress function in polar coordinates. Of course, Eqs. (5.27.3) can be obtained

from the Airy stress function defined in Cartesian coordinates via coordinate transformations

(see Prob. 5.71).

We have shown in Sections 5.20 and 5.22 that for the in-plane strain components to be compatible, the

Airy stress function must satisfy the biharmonic equation

r2r2’ ¼ @2

@x21
þ @2

@x22

� �
@2’

@x21
þ @2’

@x22

� �
¼ 0: (5.27.4)

In polar coordinates,

r2 ¼ @2

@x21
þ @2

@x22

� �
¼ 1

r

@

@r
þ 1

r2
@2

@y2
þ @2

@r2

� �
: (5.27.5)

Thus, we have the biharmonic equation in polar coordinates:

1

r

@

@r
þ 1

r2
@2

@y2
þ @2

@r2

� �
1

r

@’

@r
þ 1

r2
@2’

@y2
þ @2’

@r2

� �
¼ 0: (5.27.6)

The in-plane strain components are as follows:

(A) For the plane strain solution,

Err ¼ 1

EY
ð1� n2ÞTrr � nð1þ nÞTyy
� 	

; Eyy ¼ 1

EY
ð1� n2ÞTyy � nð1þ nÞTrr
� 	

;

Ery ¼ ð1þ nÞ
EY

Try:

(5.27.7)

(B) For the plane stress solution,

Err ¼ 1

EY
Trr � nTyy½ �; Eyy ¼ 1

EY
Tyy � nTrr½ �; Ery ¼ ð1þ nÞ

EY
Try: (5.27.8)
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5.28 STRESS DISTRIBUTION SYMMETRICAL ABOUT AN AXIS
Let the axis of symmetry be the z-axis. We consider the case where the stress components are symmetrical

about the z-axis so that they depend only on r and Try ¼ 0. That is,

Trr ¼ Trr rð Þ; Tyy ¼ Tyy rð Þ; Try ¼ 0: (5.28.1)

In terms of the Airy stress function, we have

Trr ¼ 1

r

d’

dr
; Tyy ¼ d2’

dr2
; Try ¼ 0; (5.28.2)

and the biharmonic equation becomes

r4’ ¼ d2

dr2
þ 1

r

d

dr

� �
d2’

dr2
þ 1

r

d’

dr

� �
¼ 0: (5.28.3)

The general solution for this ordinary differential equation (the Euler equation) can easily be found to be

’ ¼ A ln r þ Br2 ln r þ Cr2 þ D; (5.28.4)

from which, we have

Trr ¼ 1

r

d’

dr
¼ A

r2
þ Bð1þ 2 ln rÞ þ 2C;

Tyy ¼ d2’

dr2
¼ � A

r2
þ Bð3þ 2 ln rÞ þ 2C;

Try ¼ 0:

(5.28.5)

5.29 DISPLACEMENTS FOR SYMMETRICAL STRESS DISTRIBUTION IN PLANE
STRESS SOLUTION
From the strain-displacement relations, we have

Err ¼ @ur
@r

¼ 1

EY
Trr � nTyyð Þ

¼ 1

EY

A

r2
1þ nð Þ þ B 1� 3nð Þ þ 2Bð1� nÞ ln r þ 2C 1� nð Þ

2
4

3
5;

(5.29.1)

Eyy ¼ 1

r

@uy
@y

þ ur
r
¼ 1

EY
ðTyy � nTrrÞ

¼ 1

EY
� 1þ nð Þ A

r2
þ 3� nð ÞBþ 2Bð1� nÞ ln r þ 2 1� nð ÞC

2
4

3
5;

(5.29.2)

Ery ¼ 1

2

1

r

@ur
@y

þ @uy
@r

� uy
r

� �
¼ Try

2m
¼ 0: (5.29.3)
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Integration of Eq. (5.29.1) gives

ur ¼ 1

EY
�A

r
1þ nð Þ þ 2B 1� nð Þr ln r � ð1þ nÞBr þ 2C 1� nð Þr

� �
þ f yð Þ: (5.29.4)

Equations (5.29.2) and (5.29.4) then give

@uy
@y

¼ 4Br

EY
� f yð Þ: (5.29.5)

Integration of the preceding equation gives

uy ¼ 4Bry
EY

�
ð
f yð Þdyþ g rð Þ; (5.29.6)

where g(r) is the integration function. Using Eqs. (5.29.4), (5.29.6), and (5.29.3), we have

1

r

@ur
@y

þ @uy
@r

� uy
r
¼ 1

r

df

dy
þ dg

dr
þ 1

r

ð
f yð Þdy� g rð Þ

r
¼ 0: (5.29.7)

Thus,

df

dy
þ
ð
f yð Þdy ¼ g rð Þ � r

dg

dr
¼ D; (5.29.8)

from which we have

d2f

dy2
þ f yð Þ ¼ 0 and

d2g

dr2
¼ 0: (5.29.9)

The solution of the first equation in Eq. (5.29.9) is

f yð Þ ¼ H sin yþ G cos y; (5.29.10)

from which ð
f yð Þdy ¼ �H cos yþ G sin yþ N; (5.29.11)

and

df=dyþ
ð
f yð Þdy ¼ H cos y� G sin y� H cos yþ G sin yþ N ¼ N: (5.29.12)

Comparing this with Eq. (5.29.8), we get D¼N. The solution of the second equation in

Eq. (5.29.9) is

gðrÞ ¼ Fr þ K; (5.29.13)

from which we have g rð Þ � rdg=dr ¼ K. Thus, from Eq. (5.29.8), K ¼ D ¼ N. That is,

gðrÞ ¼ Fr þ N and

ð
f yð Þdy ¼ �H cos yþ G sin yþ N: (5.29.14)
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Finally, using Eq. (5.29.10) in Eq. (5.29.4) and Eq. (5.29.14) in Eq. (5.29.6), we have

ur ¼ 1

EY
�A

r
1þ nð Þ þ 2B 1� nð Þr ln r � ð1þ nÞBr þ 2C 1� nð Þr

2
4

3
5

þH sin yþ G cos y:

(5.29.15)

uy ¼ 4Bry
EY

þ H cos y� G sin yþ Fr; (5.29.16)

where H, G and F are constants. We note that the terms involving H, G and F represent rigid body

displacements as can be easily verified by calculating their ru. Excluding the rigid body displacements,

we have

ur ¼ 1

EY
�A

r
1þ nð Þ þ 2B 1� nð Þr ln r � ð1þ nÞBr þ 2C 1� nð Þr

� �
; (5.29.17)

uy ¼ 4Bry
EY

: (5.29.18)

5.30 THICK-WALLED CIRCULAR CYLINDER UNDER INTERNAL AND EXTERNAL
PRESSURE
Consider a circular cylinder subjected to the action of an internal pressure pi and an external pressure po. The
boundary conditions for the two-dimensional problem (plane strain or plane stress) are

Trr ¼ �pi at r ¼ a;
Trr ¼ �po at r ¼ b:

(5.30.1)

The stress field will clearly be symmetrical with respect to the z axis; therefore, we expect the stress compo-

nents to be given by Eq. (5.28.5) and the displacement field to be given by Eqs. (5.29.17) and (5.29.18). Equa-

tion (5.29.18) states that uy ¼ 4Bry=EY , which is a multivalued function within the domain of the problem,

taking on different values at the same point (e.g., y ¼ 0 and y ¼ 2p for the same point). Therefore, the con-

stant B in Eqs. (5.28.5) must be zero. Thus,

Trr ¼ A

r2
þ 2C; Tyy ¼ � A

r2
þ 2C; Try ¼ 0: (5.30.2)

Applying the boundary conditions Eqs. (5.30.1), we easily obtain

A ¼ �pi þ poð Þa2b2
b2 � a2ð Þ ; C ¼ �pia

2 þ pob
2

2 a2 � b2ð Þ ; (5.30.3)

so that

Trr ¼ �pi
ðb2=r2Þ � 1

ðb2=a2Þ � 1
� po

1� ða2=r2Þ
1� ða2=b2Þ ;

Tyy ¼ pi
ðb2=r2Þ þ 1

ðb2=a2Þ � 1
� po

1þ ða2=r2Þ
1� ða2=b2Þ :

(5.30.4)
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We note that if only the internal pressure pi is acting, Trr is always a compressive stress and Tyy is always a
tensile stress.

For the plane stress solution, the displacement field is given by Eq. (5.29.17) with the constant A and C
given by Eqs. (5.30.3) and B¼ 0. For the plane strain solution, the displacements are given by Eq.

(5.29.17), with the Poisson ratio n replaced by n= 1� nð Þ (see Section 5.26).

Example 5.30.1
Consider a thick-walled cylinder subjected to the action of external pressure po only. If the outer radius is much, much

larger than the inner radius, what is the stress field?

Solution
From Eq. (5.30.4) with pi ¼ 0, we have

Trr ¼ �po
1� ða2=r2Þ
1� ða2=b2Þ ; Tyy ¼ �po

1þ ða2=r2Þ
1� ða2=b2Þ ; Try ¼ 0: (5.30.5)

If a=b ! 0, then we have

Trr ¼ �po 1� a2

r2

� �
; Tyy ¼ �po 1þ a2

r2

� �
; Try ¼ 0: (5.30.6)

5.31 PURE BENDING OF A CURVED BEAM
Figure 5.31-1 shows a curved beam whose boundary surfaces are given by r ¼ a, r ¼ b, y � a and

z ¼ �h=2. The boundary surfaces r ¼ a, r ¼ b and z ¼ �h=2 are traction-free. Assuming the dimension

h to be very small compared with the other dimensions, we wish to obtain a plane stress solution for this

curved beam under the action of equal and opposite bending couples on the faces y ¼ � a.

ab

α α
MM

FIGURE 5.31-1
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The state of stress is expected to be axisymmetric about the z-axis. Thus, from Section 5.28, we have

Trr ¼ A

r2
þ Bð1þ 2 ln rÞ þ 2C; Tyy ¼ � A

r2
þ Bð3þ 2 ln rÞ þ 2C; Try ¼ 0: (5.31.1)

Applying the boundary conditions TrrðaÞ ¼ TrrðbÞ ¼ 0, we have

0 ¼ A

a2
þ Bð1þ 2 ln aÞ þ 2C; 0 ¼ A

b2
þ Bð1þ 2 ln bÞ þ 2C: (5.31.2)

On the face y ¼ a, there is a distribution of normal stress Tyy given in Eqs. (5.31.1). The resultant of this

distribution of stress is given by

R ¼
ðb
a

Tyyhdr ¼ h
A

r
þ Bðr þ 2r ln rÞ þ 2Cr

� �b
a

¼ h r
A

r2
þ Bð1þ 2 ln rÞ þ 2C

� �� �b
a

: (5.31.3)

In view of Eq. (5.31.2), we have

R ¼ 0: (5.31.4)

Thus, the resultant of the distribution of the normal stress can at most be a couple. Let the moment of this

couple per unit width be M, as shown in Figure 5.31-1; then

�M ¼
ðb
a

Tyyrdr ¼ �
ðb
a

A

r
dr þ B

ðb
a

2r þ r þ 2r ln rð Þ½ �dr þ 2C

ðb
a

rdr: (5.31.5)

Integrating, we have [Note: d r2 ln rð Þ ¼ 2r ln r þ r]

M ¼ A ln ðb=aÞ � Bðb2 � a2Þ � Bðb2 ln b� a2 ln aÞ � Cðb2 � a2Þ: (5.31.6)

From Eqs. (5.31.2), we can obtain

Bðb2 � a2Þ ¼ �2Bðb2 ln b� a2 ln aÞ � 2Cðb2 � a2Þ: (5.31.7)

Thus, Eq. (5.31.6) can be written

M ¼ A ln
b

a
þ B b2 ln b� a2 ln a

� �þ C b2 � a2
� �

: (5.31.8)

Solving Eqs. (5.31.2) and (5.31.8) for A, B and C, we obtain

A ¼ � 4M

N
a2b2 ln

b

a
, B ¼ � 2M

N
ðb2 � a2Þ , C ¼ M

N
b2 � a2 þ 2ðb2 ln b� a2 ln aÞ� 	

; (5.31.9)

where

N ¼ ðb2 � a2Þ2 � 4a2b2½ ln ðb=aÞ�2: (5.31.10)

Finally,

Trr ¼ � 4M

N

a2b2

r2
ln

b

a
þ b2 ln

r

b
þ a2 ln

a

r

0
@

1
A;

Tyy ¼ � 4M

N

�a2b2

r2
ln

b

a
þ b2 ln

r

b
þ a2 ln

a

r
þ b2 � a2

0
@

1
A;

Try ¼ 0:

(5.31.11)

5.31 Pure Bending of a Curved Beam 269



5.32 INITIAL STRESS IN A WELDED RING
A ring (inner radius a and outer radius b), initially stress free, is cut and a very small wedge of material was

removed. A bending moment is then applied to the ring to bring the two cut sections together and welded.

The stress generated in the ring can be obtained as follows: Let y¼ 0 and y¼ 2p�a be the two cut

sections, where a is a very small angle. Without loss of generality, we can assume that the section at y¼ 0 is

fixed. When the two sections are brought together, the displacement uy of the particles in the section at

y¼ 2p�a is given by uy¼ ra, where r is the radial distance from the center of the ring. Using

Eq. (5.29.18), we obtain

uyð Þy¼2p�a �
4Br 2pð Þ

EY
¼ ra: (5.32.1)

Thus,

B ¼ aEY

8p
: (5.32.2)

The bending moment at every section can be obtained from the second equation in Eq. (5.31.9), i.e.,

B ¼ � 2M

N
ðb2 � a2Þ. Thus,

M ¼ � NaEY

16ðb2 � a2Þp ; (5.32.3)

where N is given by Eq. (5.31.10). With M so obtained, the stresses are given by Eqs. (5.31.11). We remark

that at each section of the welded ring, due to axisymmetry, the shear force must be zero and as a conse-

quence, the axial force is also zero so that the ring is in the state of pure bending.

5.33 AIRY STRESS FUNCTION w ¼ f ðrÞ cos nu AND w ¼ f ðrÞ sin nu
Substituting the function ’ ¼ f ðrÞ cos ny (or ’ ¼ f ðrÞ sin ny) into the biharmonic equation, we obtain (see

Prob. 5.73)

d2

dr2
þ 1

r

d

dr
� n2

r2

� �
d2f

dr2
þ 1

r

df

dr
� n2

r2
f

� �
¼ 0: (5.33.1)

For n 6¼ 0 and n 6¼ 1, the preceding ordinary differential equation has four independent solutions for f (see
Prob. 5.74):

rnþ2; r�nþ2; rn; r�n; (5.33.2)

so that for each n there are eight independent solutions for ’ in the form of: ’ ¼ f ðrÞ cos ny and

’ ¼ f ðrÞ sin ny
rnþ2 cos ny; r�nþ2 cos ny; rn cos ny; r�n cos ny;
rnþ2 sin ny; r�nþ2 sin ny; rn sin ny; r�n sin ny:

(5.33.3)

Therefore, we may write, in general

’ ¼ C1r
nþ2 þ C2r

�nþ2 þ C3r
n þ C4r

�nð Þ cos ny
þ �C1r

nþ2 þ �C2r
�nþ2 þ �C3r

n þ �C4r
�nð Þ sin ny:

(5.33.4)
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However, for n ¼ 0, the preceding equation reduces to C1r
2 þ C3r

0. Additional independent solutions can

be obtained from
d’

dn

� �
n!0

. For example,

d

dn
rnþ2 cos ny
� �� �

n¼0

¼ rnþ2 ln r
� �

cos ny� rnþ2y sin ny
� 	

n¼0
¼ r2 ln r; (5.33.5)

and

d

dn
rnþ2 sin ny
� �� �

n¼0

¼ rnþ2 ln r
� �

sin nyþ rnþ2y cos ny
� 	

n¼0
¼ r2y: (5.33.6)

Similarly,

d

dn
rn cos nyð Þ

� �
n¼0

¼ ln r; (5.33.7)

d

dn
rn sin nyð Þ

� �
n¼0

¼ y: (5.33.8)

Thus, we can write, in general, for n ¼ 0 (omitting the constant term which does not lead to any

stresses),

’ ¼ A1r
2 þ A2r

2 ln r þ A3 ln r þ A4yþ A5r
2y: (5.33.9)

For n ¼ 1, r�nþ2 ¼ rn ¼ r and the list in Eq. (5.33.3) reduce

r3 cos y; r cos y; r�1 cos y; r3 sin y; r sin y; r�1 sin y: (5.33.10)

Again, additional independent solutions can be obtained from
d’

dn

� �
n!1

:

d

dn
r�nþ2 cos ny
� �2

4
3
5
n¼1

¼ �r ln r cos y� ry sin y;

d

dn
rn cos nyð Þ

2
4

3
5
n¼1

¼ r ln r cos y� ry sin y:

(5.33.11)

d

dn
r�nþ2 sin ny
� �2

4
3
5
n¼1

¼ �r ln r sin yþ ry cos ny;

d

dn
rn sin nyð Þ

2
4

3
5
n¼1

¼ r ln r sin yþ ry cos y:

(5.33.12)

Thus, we have four additional independent solutions for ’. That is,

r ln r cos y; ry sin y; r ln r sin y; ry cos y: (5.33.13)

Therefore, for n ¼ 1, we can write, in general,

’ ¼ ðB1r
3 þ B2r ln r þ B3r þ B4r

�1Þ cos yþ B5ry sin y

þ ð �B1r
3 þ �B2r ln r þ �B3r þ �B4r

�1Þ sin y� �B5ry cos y:
(5.33.14)
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The stresses are for ’ ¼ A1r
2 þ A2r

2 ln r þ A3 ln r þ A4yþ A5r
2y;

Tyy ¼ @2’

@r2
¼ 2A1 þ A2 2 ln r þ 3ð Þ � A3r

�2 þ 2A5y;

Try ¼ � @

@r

 
1

r

@’

@y

!
¼ A4r

�2 � A5;

Trr ¼ 1

r

@’

@r
þ 1

r2
@2’

@y2
¼ 2A1 þ A2ð Þ þ 2A2 ln r þ A3r

�2 þ 2A5y:

(5.33.15)

For ’ ¼ B1r
3 þ B2r ln r þ B3r þ B4r

�1ð Þ cos yþ B5ry sin y,

Trr ¼ 1

r2
@2’

@y2
þ 1

r

@’

@r
¼ 2B1r þ B2

r
� 2

B4

r3

0
@

1
A cos yþ 2

r
B5 cos y;

Tyy ¼ @2’

@r2
¼ 6B1r þ B2

r
þ 2

B4

r3

0
@

1
A cos y;

Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ 2B1r þ B2

r
� 2

B4

r3

0
@

1
A sin y:

(5.33.16)

For ’ ¼ �B1r
3 þ �B2r ln r þ �B3r þ �B4r

�1ð Þ sin y� �B5ry cos y,

Trr ¼ 1

r

@’

@r
þ 1

r2
@2’

@y2
¼ 2 �B1r þ

�B2

r
� 2 �B4r

�3

0
@

1
A sin yþ 2

r
�B5 sin y;

Tyy ¼ @2’

@r2
¼ 6 �B1r þ �B2

1

r
þ 2 �B4r

�3

0
@

1
A sin y;

Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ � 2 �B1r þ �B2

1

r
� 2 �B4r

�3

0
@

1
A cos y:

(5.33.17)

For ’ ¼ C1r
nþ2 þ C2r

�nþ2 þ C3r
n þ C4r

�nð Þ cos ny; n 
 2;

Trr ¼ 1

r2
@2’

@y2
þ 1

r

@’

@r
¼ C1r

n nþ 2ð Þ � n2
� �þ C2r

�n �nþ 2ð Þ � n2
� �

þC3r
n�2 n� n2
� �� C4r

�n�2 nþ n2
� �

" #
cos ny;

Tyy ¼ @2’

@r2
¼ C1 nþ 2ð Þ nþ 1ð Þrn þ �nþ 2ð Þ �nþ 1ð ÞC2r

�n

þC3n n� 1ð Þrn�2 � C4n �n� 1ð Þr�n�2

" #
cos ny; (5.33.18)

Try ¼ � @

@r

1

r

@’

@y

� �
¼ n

C1 nþ 1ð Þrn þ C2 �nþ 1ð Þr�n þ C3 n� 1ð Þrn�2

þC4 �n� 1ð Þr�n�2

� �
sin ny:

For ’ ¼ �C1r
nþ2 þ �C2r

�nþ2 þ �C3r
n þ �C4r

�nð Þ sin ny; n 
 2, replace Ci with �Ci, cos ny with sin ny, and
sin ny with �cos ny in the preceding equations.
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Example 5.33.1
Given the boundary conditions for a circular cylinder with an inner radius a and an outer radius b as follows:

Trr ¼ s
2
cos 2y; Try ¼ � s

2
sin 2y; at r ¼ b; (5.33.19)

Trr ¼ 0; Try ¼ 0; at r ¼ a: (5.33.20)

Find the in-plane stress field for (i) any a and b and (ii) the case where b=a ! 1.

Solution
Consider ’ ¼ f rð Þ cos 2y. From Eq. (5.33.18). With n ¼ 2, we have

Tyy ¼ @2’

@r2
¼ 12C1r

2 þ 2C3 þ 6C4r
�4

� �
cos 2y;

Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ 6C1r

2 � 2C2r
�2 þ 2C3 � 6C4r

�4
� �

sin 2y;

Trr ¼ 1

r2
@2’

@y2
þ 1

r

@’

@r
¼ � 4C2r

�2 þ 2C3 þ 6C4r
�4

� �
cos 2y:

(5.33.21)

Applying boundary conditions Eq. (5.33.19) and (5.33.20), we have

4C2b
�2 þ 2C3 þ 6C4b

�4 ¼ �s=2;

6C1b
2 � 2C2b

�2 þ 2C3 � 6C4b
�4 ¼ �s=2;

2C2a
�2 þ C3 þ 3C4a

�4 ¼ 0;

3C1a
2 � C2a

�2 þ C3 � 3C4a
�4 ¼ 0:

(i) The solutions for the constants from the preceding four equations are

C1 ¼ s
12

0
@

1
A 36b�2a2 � 36b�4a4
� �

b�2

N
; C2 ¼ s

4

0
@
1
A �12b�6a6 þ 12
� �

a2

N
;

C3 ¼ � s
2

0
@
1
A 9a4b�4 � 12b�6a6 þ 3
� �

N
; C4 ¼ � s

2

0
@
1
A �3a4b�4 þ 3
� �

a4

N
;

(5.33.22)

where

N ¼ �24b�6a6 � 24b�2a2 þ 6b�8a8 þ 36b�4a4 þ 6
� �

: (5.33.23)

(ii) As b=a ! 1,

C1 ! 0; C2 ! s
2


 �
a2; C3 ! � s

4


 �
; C4 ! � s

4


 �
a4; (5.33.24)

Trr ¼ s
2

0
@
1
A 1� 4a2

r2
þ 3a4

r4

0
@

1
A cos 2y; Tyy ¼ � s

2

0
@
1
A 1þ 3a4

r4

0
@

1
A cos 2y;

Try ¼ � s
2

0
@
1
A 1� 3a4

r4
þ 2a2

r2

0
@

1
A sin 2y:

(5.33.25)
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Example 5.33.2
For ’ ¼ �C1r

nþ2 þ �C2r
�nþ2 þ �C3r

n þ �C4r
�n

� �
sin ny, find the stresses for n ¼ 2.

Solution

Tyy ¼ @2’

@r2
¼ 12 �C1r

2 þ 2 �C3 þ 6 �C4r
�4

� 	
sin 2y;

Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ � 6 �C1r

2 � 2 �C2r
�2 � 2 �C3 � 6 �C4r

�4
� 	

cos 2y;

Trr ¼ 1

r2
@2’

@y2
þ 1

r

@’

@r
¼ �4 �C2r

�2 � 2 �C3 � 6 �C4r
�4

� 	
sin ny:

The preceding equations are obtained from Eq. (5.33.18) by replacing Ci with �Ci , cosny with sin ny, and sin ny
with �cos ny in the equations.

5.34 STRESS CONCENTRATION DUE TO A SMALL CIRCULAR HOLE IN A PLATE
UNDER TENSION
Figure 5.34-1 shows a plate with a small circular hole of radius a subjected to the actions of uniform tensile

stress s on the edge faces perpendicular to the x1 direction. Let us consider the region between two concentric

circles: r¼ a and r¼ b. The surface r¼ a is traction free, i.e.,

Trr ¼ 0 and Try ¼ 0 at r ¼ a: (5.34.1)

If b is much larger than a, then the effect of the small hole will be negligible on points lying on the surface

r¼ b so that the state of stress at r¼ b for a=b ! 0 will be that due to the uniaxial tensile stress s in the

absence of the hole. In Cartesian coordinates, the state of stress is simply T11¼ s with all other sij¼ 0. In

polar coordinates, this same state of stress has the following nonzero stress components:

Trr ¼ s
2
þ s

2
cos 2y; Tyy ¼ s

2
� s

2
cos 2y; Try ¼ � s

2
sin 2y: (5.34.2)

Equations (5.34.2) can be obtained from the equation T½ � er ; eyf g ¼ Q½ �T T½ � e1; e2f g Q½ � where the tensor Q rotates

e1; e2f g into er; eyf g and by using the identities cos 2 y ¼ ð1þ cos 2yÞ=2, sin 2 y ¼ ð1� cos 2yÞ=2, and
sin 2y ¼ 2 sin y cos y. Thus, we have

Trr ¼ s
2
þ s

2
cos 2y; Try ¼ � s

2
sin 2y; at r ¼ b: (5.34.3)

The solution we are looking for must satisfy both the boundary conditions given in Eqs. (5.34.1) and

(5.34.3). We shall obtain the solution by superposing the following two solutions:

1. The solution that satisfies the following boundary conditions:

Trr ¼ 0; Try ¼ 0 at r ¼ a and Trr ¼ s
2
; Try ¼ 0 at r ¼ b; and (5.34.4)

2. The solution that satisfies the following boundary conditions:

Trr ¼ 0; Try ¼ 0 at r ¼ a and Trr ¼ s
2
cos 2y; Try ¼ � s

2
sin 2y at r ¼ b: (5.34.5)
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The solution that satisfies Eq. (5.34.4) is given by Eq. (5.30.6) for the thick-walled cylinder with

po ¼ �s=2 and a=b ! 0:

Trr ¼ s
2

1� a2

r2

� �
; Tyy ¼ s

2
1þ a2

r2

� �
; Try ¼ 0: (5.34.6)

The solution that satisfies Eq. (5.34.5) is given by Eq. (5.33.25) in Example 5.33.1:

Trr ¼ s
2

0
@
1
A 1� 4a2

r2
þ 3a4

r4

0
@

1
A cos 2y; Tyy ¼ � s

2

0
@
1
A 1þ 3a4

r4

0
@

1
A cos 2y;

Try ¼ � s
2

0
@
1
A 1� 3a4

r4
þ 2a2

r2

0
@

1
A sin 2y:

(5.34.7)

Combining Eqs. (5.34.6) and (5.34.7), we obtain

Trr ¼ s
2

1� a2

r2

0
@

1
Aþ s

2
1þ 3a4

r4
� 4a2

r2

0
@

1
A cos 2y;

Try ¼ � s
2

1� 3a4

r4
þ 2a2

r2

0
@

1
A sin 2y;

Tyy ¼ s
2

1þ a2

r2

0
@

1
A� s

2
1þ 3a4

r4

0
@

1
A cos 2y:

(5.34.8)

Putting r¼ a in the preceding equations, we obtain the stresses on the inner circle:

Trr ¼ 0; Try ¼ 0; Tyy ¼ s� 2s cos 2y: (5.34.9)

We see, therefore, at y ¼ p=2 (point m in Figure 5.34-1) and at y ¼ 3p=2 (point n in the same figure),

Tyy¼ 3s. This tensile stress is three times the uniform stress s in the absence of the hole. This is referred

to as the stress concentration due to the presence of the small hole.

m

n

σ σ

θb

2a

x1

x2

FIGURE 5.34-1
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5.35 STRESS CONCENTRATION DUE TO A SMALL CIRCULAR HOLE IN A PLATE
UNDER PURE SHEAR
Figure 5.35-1 shows a plate with a small circular hole of radius a subjected to the actions of pure shear t. Let
us consider the region between two concentric circles: r¼ a and r¼ b. The surface r¼ a is traction free, i.e.,

Trr ¼ Try ¼ 0 at r ¼ a: (5.35.1)

If b is much larger than a, then the effect of the small hole will be negligible on points lying on the surface

r¼ b so that the state of stress at r¼ b for a=b ! 0 will be that due to the pure shear t in the absence of the

hole. In Cartesian coordinates, the state of stress is simply given by T12 ¼ T21 ¼ t, with all other Tij¼ 0.

Using the equation T½ � er ; eyf g ¼ Q½ �T T½ � e1; e2f g Q½ � where the tensor Q rotates e1; e2f g into er; eyf g, we can

obtain, for this same state of stress, the components in polar coordinates. They are

Trr ¼ t sin 2y; Tyy ¼ �t sin 2y; Try ¼ t cos 2y: (5.35.2)

Thus, the boundary conditions for our problem are

Trr ¼ 0 and Try ¼ 0 at r ¼ a;

Trr ¼ t sin 2y; Try ¼ t cos 2y at r ¼ b ! 1:
(5.35.3)

In view of the form of the boundary condition at r ¼ b ! 1, we look for possible states of stress in the

form of f ðrÞ sin 2y and f ðrÞ cos 2y. In Example 5.33.2, we used the Airy stress function,

’ ¼ �C1r
4 þ �C2 þ �C3r

2 þ �C4r
�2

� �
sin 2y; (5.35.4)

to generate the following stress components:

Tyy ¼ @2’

@r2
¼ 12 �C1r

2 þ 2 �C3 þ 6 �C4

r4

2
4

3
5 sin 2y;

Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ � 6 �C1r

2 � 2
�C2

r2
þ 2 �C3 � 6 �C4

r4

2
4

3
5 cos 2y;

Trr ¼ 1

r2
@2’

@y2
þ 1

r

@’

@r
¼ � 4 �C2

r2
� 2 �C3 � 6 �C4

r4

2
4

3
5 sin 2y:

(5.35.5)
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To satisfy the boundary conditions at r ¼ b ! 1 [see Eqs. (5.35.3)], we must have

�C1 ¼ 0 and 2 �C3 ¼ �t: (5.35.6)

Thus,

Tyy ¼ tþ 6 �C4

r4

0
@

1
A sin 2y;

Try ¼ 2 �C2

r2
þ tþ 6 �C4

r4

0
@

1
A cos 2y;

Trr ¼ � 4 �C2

r2
þ t� 6 �C4

r4

0
@

1
A sin 2y:

(5.35.7)

The boundary conditions at r¼ a require that

2 �C2

a2
þ tþ 6 �C4

a4
¼ 0; � 4 �C2

a2
þ t� 6 �C4

a4
¼ 0; (5.35.8)

from which we have

�C2 ¼ a2t; �C4 ¼ � a4t
2

: (5.35.9)

Finally,

Tyy ¼ t 1� 3a4

r4

0
@

1
A sin 2y;

Try ¼ t 1þ 2a2

r2
� 3a4

r4

0
@

1
A cos 2y;

Trr ¼ t 1� 4a2

r2
þ 3a4

r4

0
@

1
A sin 2y:

(5.35.10)

5.36 SIMPLE RADIAL DISTRIBUTION OF STRESSES IN A WEDGE LOADED
AT THE APEX
Consider a wedge (Figure 5.36-1), defined by y ¼ �a; 0 � r � 1, where the two faces of the wedge y ¼ �a
are traction free except at the apex r¼ 0, where there is a concentrated load F ¼ Pe1, where e1 is pointing to

the right. Then the boundary conditions for the problem are

Tyy ¼ Try ¼ 0 at y ¼ �a; r 6¼ 0; (5.36.1)

and ða
�a

Trr cos y� Try sin yð Þrdy ¼ �P;

ða
�a

Trr sin yþ Try cos yð Þrdy ¼ 0: (5.36.2)
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Consider the following Airy stress function [see Eqs. (5.33.16) and (5.33.17) in Section 5.33]:

’ ¼ B5ry sin yþ �B5ry cos y: (5.36.3)

The stress components are

Trr ¼ 1

r

@’

@r
þ 1

r2
@2’

@y2
¼ 1

r
2B5 cos y� 2 �B5 sin yð Þ;

Tyy ¼ @2’

@r2
¼ 0; Try ¼ � @

@r

1

r

@’

@y

0
@

1
A ¼ 0:

(5.36.4)

The stress distribution is purely radial, so the four boundary conditions in Eqs. (5.36.1) are automatically

satisfied. The second condition in Eqs. (5.36.2) becomes simplyða
�a

Trr sin yð Þrdy ¼
ða
�a

B5 sin 2yð Þdy� 2 �B5

ða
�a

sin 2y
� �

dy

¼ �2 �B5

ða
�a

sin 2y
� �

dy ¼ 0:

(5.36.5)

Thus, �B5 ¼ 0. The first condition in Eq. (5.36.2) then gives

2B5

ða
�a

cos 2ydy ¼ �P; (5.36.6)

from which B5 ¼ �P=ð2aþ sin 2aÞ and the stress distribution is given by

Trr ¼ � 2P

2aþ sin 2a
cos y
r

; Tyy ¼ Try ¼ 0: (5.36.7)

5.37 CONCENTRATED LINE LOAD ON A 2-D HALF-SPACE: THE FLAMONT
PROBLEM
In the wedge problem of the previous section, if we take a to be p=2, then we have a two-dimensional

half-space, loaded with a concentrated line compressive load P at the origin on the surface, and the stress

distribution is given by [see Eqs. (5.36.7)]

Trr ¼ � 2P

p

� �
cos y
r

; Tyy ¼ Try ¼ 0: (5.37.1)
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Trr
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r

θ = +α
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It can be easily verified (see Prob. 5.77) that the displacement field is

ur ¼ � P

pEY
1� nð Þy sin yþ 2 ln r cos yf g;

uy ¼ P

pEY
1þ nð Þ sin yþ 2 ln r sin y� 1� nð Þy cos yf g:

(5.37.2)

A.4 ELASTOSTATIC PROBLEMS SOLVED WITH POTENTIAL
FUNCTIONS

5.38 FUNDAMENTAL POTENTIAL FUNCTIONS FOR ELASTOSTATIC PROBLEMS
Consider the following displacement function for an elastic medium:

ui ¼ Ci � 1

4ð1� nÞ
@

@xi
xnCn þ Fð Þ; (5.38.1)

where Ci ¼ Ciðx1; x2; x3Þ are components of a vector function, F ¼ Fðx1; x2; x3Þ is a scalar function, and n is
the Poisson’s ratio of the elastic medium. Substituting the preceding equation into the Navier equation that

follows (where Bi denotes body force per unit volume),

m
1� 2n

@e

@xi
þ m

@2ui
@xj@xj

þ Bi ¼ 0; (5.38.2)

we obtain (see Prob. 5.79)

� m
2 1� 2nð Þ xn

@r2Cn

@xi
� 1� 4nð Þr2Ci þ @r2F

@xi

� �
þ Bi ¼ 0: (5.38.3)

It can be easily shown (see Example 5.38.1) that Eq. (5.38.3) is identically satisfied by the equations

r2Ci ¼ �Bi

m
; r2F ¼ xiBi

m
: (5.38.4)

In the absence of body forces, Eqs. (5.38.4) become

r2Ci ¼ 0; r2F ¼ 0: (5.38.5)

Thus, any functions F ¼ Fðx1; x2; x3Þ and Ci ¼ Ciðx1; x2; x3Þ that satisfy Eqs. (5.38.4) [or Eqs. (5.38.5)] pro-

vide a solution for an elastostatic problem through the displacement field given by Eq. (5.38.1).

In direct notations, Eqs. (5.38.1) and (5.38.4) read, respectively,

u ¼ C� 1

4ð1� nÞr x 	 Cþ Fð Þ; (5.38.6)

and

r2C ¼ �B

m
; r2F ¼ x 	 B

m
: (5.38.7)

These functions F and Ci in the representation of the displacement field are known as the fundamental
potentials for elastostatic problems. The advantage of casting the elastostatic problem in terms of these

potential functions is that the solutions of Eqs. (5.38.5) [or (5.38.4)] are simpler to obtain than those of
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the three displacement functions in Eq. (5.38.2). Special cases of the representation such as C¼ 0 or F ¼ 0 have

been well known and some of them are included in the examples that follow. We note that the representation

given by Eq. (5.38.6) is complete in the sense that all elastostatic problems can be represented by it.

An alternate form of the preceding equation is (see Prob. 5.78):

2mu ¼ �4ð1� nÞc þrðx 	 c þ fÞ; (5.38.8)

where

c ¼ � m
2ð1� nÞC; f ¼ � m

2ð1� nÞF: (5.38.9)

In the absence of body forces,

r2c ¼ 0; r2f ¼ 0: (5.38.10)

Example 5.38.1
Show that Eq. (5.38.3) is identically satisfied by

r2Ci ¼ �Bi=m and r2F ¼ xiBi=m:

Solution
We have

@

@xi
r2Cn ¼ @

@xi
�Bn

m

� �
¼ 0 and

@

@xi
r2F ¼ @

@xi

xnBn

m

� �
¼ Bn

m
@xn
@xi

� �
¼ Bi

m
:

Therefore,

� m
2 1� 2nð Þ xn

@r2Cn

@xi
� 1� 4nð Þr2Ci þ @r2F

@xi

0
@

1
Aþ Bi ¼ � m

2 1� 2nð Þ 0� ð1� 4nÞ �Bi

m

0
@

1
Aþ Bi

m

8<
:

9=
;

þ Bi ¼ � m
2 1� 2nð Þ ð1� 4nÞ þ 1f gBi

m
þ Bi ¼ �Bi þ Bi ¼ 0:

Thus, r2Ci ¼ �Bi=m and r2F ¼ xiBi=m provide a sufficient condition for Eq. (5.38.3) to be satisfied.

In what follows, we use Eq. (5.38.8), i.e.,

2mu ¼ �4 1� nð Þc þr x 	 c þ fð Þ;
for the representation and shall always assume that there are no body forces, so that both the vector function c
and the scalar function f satisfy the Laplace equations.

r2c ¼ 0; r2f ¼ 0

Example 5.38.2
Consider the following potential functions in Cartesian rectangular coordinates:

c ¼ 0; f ¼ f x1; x2; x3ð Þ; where r2f ¼ 0:

Obtain the displacements, dilatation, strains, and stresses in terms of f.
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Solution
With 2mu ¼ �4 1� nð Þc þr x 	 c þ fð Þ ¼ rf,

Displacement : 2mui ¼ @f
@xi

: (5.38.11)

Strains : 2mEij ¼ m
@ui
@xj

þ @uj
@xi

� �
¼ @2f

@xi@xj
: (5.38.12)

Dilatation: 2me ¼ 2mEii ¼ @2f
@xi@xi

� �
¼ r2f ¼ 0: (5.38.13)

Stresses: Tij ¼ 2mEij ¼ @2f
@xi@xj

: (5.38.14)

Example 5.38.3
Consider the following potential functions in cylindrical coordinates:

c ¼ cðr ; zÞez ; f ¼ 0; where r2c ¼ 0: (5.38.15)

Show that these functions generate the following displacements, dilatation, and stresses:

(a) Displacement:

2mur ¼ z
@c
@r

; 2muz ¼ �3þ 4nð Þc þ z
@c
@z

; uy ¼ 0: (5.38.16)

(b) Dilatation:

2me ¼ �2 1� 2nð Þ @c
@z

: (5.38.17)

(c) Stress:

Trr ¼ z
@2c
@r2

� 2n
@c
@z

; Tyy ¼ z

r

@c
@r

� 2n
@c
@z

; Tzz ¼ z
@2c
@z2

� 2ð1� nÞ @c
@z

; (5.38.18)

Trz ¼ z
@2c
@r@z

� 1� 2nð Þ @c
@r

; Try ¼ Tyz ¼ 0: (5.38.19)

Solution
(a) With x ¼ rer þ zez ;c ¼ cez ; x 	 c ¼ zc ,

rzc ¼ @zc
@r

er þ @zc
@z

ez ¼ z
@c
@r

er þ z
@c
@z

þ c
� �

ez :

See Eq. (2.34.4).

Thus, Eq. (5.38.8) gives

2mu ¼ �4ð1� nÞc þrðx 	 cÞ ¼ z
@c
@r

er þ z
@c
@z

þ �3þ 4nð Þc
� �

ez :
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(b) The strain components are [see Eq. (3.37.20)]

2mErr ¼ 2m
@ur
@r

¼ z
@2c
@r2

; 2mEyy ¼ 2m
ur
r
¼ z

r

@c
@r

; (5.38.20)

2mEzz ¼ 2m
@uz
@z

¼ �3þ 4nð Þ @c
@z

þ z
@2c
@z2

þ @c
@z

� �
¼ �2 1� 2nð Þ @c

@z
þ z

@2c
@z2

� �
; (5.38.21)

2mErz ¼ m
@uz
@r

þ @ur
@z

� �
¼ � 1� 2nð Þ @c

@r
þ z

@2c
@r@z

; (5.38.22)

Ery ¼ 0 ¼ Ezy: (5.38.23)

The dilatation is given by

e ¼ Err þ Eyy þ Ezz ¼ 1

2m
z
@2c
@r2

þ z

r

@c
@r

� 2 1� 2nð Þ @c
@z

þ z
@2c
@z2

� �
: (5.38.24)

A simpler form for e can be obtained if we make use of the fact that c satisfies the Laplace equation, i.e.,

@2c
@r2

þ 1

r

@c
@r

þ @2c
@z2

¼ 0; (5.38.25)

so that

e ¼ � 1� 2nð Þ
m

@c
@z

: (5.38.26)

(c) To calculate the stress components, we first obtain

2mn
1� 2n

e ¼ �2n
@c
@z

:

Then, using the strains obtained in (b), we obtain

Trr ¼ 2mn
1� 2n

e þ 2mErr ¼ �2n
@c
@z

þ z
@2c
@r2

; Tyy ¼ 2mn
1� 2n

e þ 2mEyy ¼ �2n
@c
@z

þ z

r

@c
@r

;

Tzz ¼ 2mn
1� 2n

e þ 2mEzz ¼ �2n
@c
@z

þ �2 1� 2nð Þ @c
@z

þ z
@2c
@z2

2
4

3
5 ¼ �2 1� nð Þ @c

@z
þ z

@2c
@z2

;

Trz ¼ 2mErz ¼ � 1� 2nð Þ @c
@r

þ z
@2c
@r@z

2
4

3
5; Try ¼ Tzy ¼ 0:

Example 5.38.4
Consider the following potential functions in cylindrical coordinates:

c ¼ @’

@z
ez; f ¼ ð1� 2nÞ’; where r2’ r ; zð Þ ¼ 0: (5.38.27)

Show that these functions generate the following displacements ui, dilatation e, and stresses Tij:

(a) Displacements:

2mu ¼ z
@2’

@r@z
þ ð1� 2nÞ @’

@r

� �
er þ z

@2’

@z2
þ ð�2þ 2nÞ @’

@z

� �
ez: (5.38.28)
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(b) Dilatation:

e ¼ � 1� 2nð Þ
m

@2’

@z2
: (5.38.29)

(c) Stresses:

Trr ¼ �2n
@2’

@z2
þ z

@3’

@r2@z
þ ð1� 2nÞ @

2’

@r2
; Tyy ¼ z

r

@2’

@r@z
þ 2n

@2’

@r2

� �
þ 1

r

@’

@r
; (5.38.30)

Tzz ¼ z
@3’

@z3
� @2’

@z2
; Trz ¼ z

@3’

@r@z2
; Try ¼ Tyz ¼ 0: (5.38.31)

Solution
(a) The displacement vector is given by [see Eq. (2.34.4)]

2mu ¼ �4 1� nð Þc þr x 	 c þ fð Þ ¼ �4 1� nð Þ @’
@z

ez þr z
@’

@z
þ ð1� 2nÞ’

0
@

1
A

¼ �4 1� nð Þ @’
@z

ez þ z
@2’

@r@z
þ ð1� 2nÞ @’

@r

0
@

1
Aer þ z

@2’

@z@ 2 z

n¼� 4 1 1
A e

r þz

n¼� 2 •

@ zz 1@



so that

e ¼ 1

2m
�z

@3’

@z3

� �
þ z

@3’

@z3
� ð1� 2nÞ @

2’

@z2
� 1� 2nð Þ @

2’

@z2

� �
¼ � 1� 2nð Þ

m
@2’

@z2
:

(c) To obtain the stresses, we first obtain
2mn

1� 2n
e ¼ �2n

@2’

@z2
. Then we have

Trr ¼ 2mn
1� 2n

e þ 2mErr ¼ �2n
@2’

@z2
þ z

@3’

@r2@z
þ ð1� 2nÞ @

2’

@r2
¼ z

@3’

@r2@z
þ @2’

@r2
þ 2n

r

@’

@r
;

Tzz ¼ 2mn
1� 2n

e þ 2mEzz ¼ �2n
@2’

@z2
þ z

@3’

@z3
� 1� 2nð Þ @

2’

@z2

0
@

1
A ¼ z

@3’

@z3
� @2’

@z2
;

Tyy ¼ 2mn
1� 2n

e þ 2mEyy ¼ �2n
@2’

@z2
þ z

r

@2’

@r@z
þ ð1� 2nÞ 1

r

@’

@r

0
@

1
A ¼ z

r

@2’

@r@z
þ 2n

@2’

@r2
þ 1

r

@’

@r
;

Trz ¼ 2mErz ¼ z
@3’

@r@z2
; Try ¼ Tyz ¼ 0:

Example 5.38.5
Consider the following potential functions in spherical coordinates (R, b, y) for spherical symmetry problems:

c ¼ cðRÞeR; f ¼ fðRÞ; (5.38.32)

where

r2f ¼ 0 and r2c ¼ 0: (5.38.33)

That is, [see Eqs. (2.35.37) and (2.35.40)]

d2f
dR2

þ 2

R

df
dR

¼ 0 and
@2c
@R2

þ 2

R

@c
@R

� 2c
R2

� �
¼ 0: (5.38.34)

Obtain displacements, dilatation, and stresses, in spherical coordinates, generated by the given potential functions. We

note that the spherical coordinates (R, b, y) here corresponds to the spherical coordinates (r, y, f) in Section 2.35.

Solution
It can be obtained (see Prob. 5.80):

(a) Displacements:

2muR ¼ R
dc
dR

þ ð�3þ 4nÞc þ df
dR

� �
; uy ¼ ub ¼ 0: (5.38.35)

(b) Dilatation:

e ¼ � 1� 2nð Þ
m

dc
dR

þ 2c
R

� �
: (5.38.36)
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(c) Stresses:

TRR ¼ 2n� 4ð Þdc
dR

þ 2� 4nð Þ c
R

þ d2f
dR2

;

Tbb ¼ Tyy ¼ � 2n� 1ð Þ dc
dR

þ 3c
R

� 1

R

df
dR

8<
:

9=
;;

(5.38.37)

Tby ¼ TRy ¼ TRb ¼ 0: (5.38.38)

Example 5.38.6
Consider the following potential functions for axisymmetric problems:

c ¼ 0; f ¼ fðr ; zÞ ¼ f̂ðR; bÞ; r2f ¼ r2f̂ ¼ 0; (5.38.39)

where (r, y, z) and (R, b, y) are cylindrical and spherical coordinates, respectively, with z as the axis of symmetry. As

in the previous example, the spherical coordinates (R, b, y) here correspond to the spherical coordinates (r, y, f) in
Section 2.35. Obtain displacements, dilatation, and stresses generated by the given potential functions in cylindrical

and spherical coordinates.

Solution
It can be obtained (see Prob. 5.81):

In cylindrical coordinates:

(a) Displacements:

2mur ¼ @f
@r

; uy ¼ 0; 2muz ¼ @f
@z

: (5.38.40)

(b) Dilatation:
e ¼ 0: (5.38.41)

(c) Stresses:

Trr ¼ @2f
@r2

; Tyy ¼ 1

r

@f
@r

; Tzz ¼ @2f
@z2

; Trz ¼ @2f
@z@r

; Try ¼ Trz ¼ 0: (5.38.42)

In spherical coordinates:

(a) Displacements:
2muR ¼ @f̂

@R
; uy ¼ 0; 2mub ¼ 1

R

@f̂
@b

: (5.38.43)

(b) Dilatation:
e ¼ 0: (5.38.44)

(c) Stresses:

TRR ¼ @2f̂
@R2

; Tbb ¼ 1

R

1

R

@2f̂

@b2
þ @f̂
@R

0
@

1
A; Tyy ¼ 1

R

@f̂
@R

þ cot b
R

@f̂
@b

0
@

1
A;

TRb ¼ 1

R

@2f̂
@b@R

� 1

R

@f̂
@b

0
@

1
A; TRy ¼ Tyb ¼ 0:

(5.38.45)
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Example 5.38.7
Consider the following potential functions in spherical coordinates (R, b, y), for axisymmetric problems:

c ¼ cðR; bÞez; f ¼ 0; where r2c ¼ 0: (5.38.46)

Obtain displacements, dilatation, and stresses in spherical coordinates, generated by the given potential

functions.

Solution
It can be obtained (see Prob. 5.82):

(a) Displacements:

2muR ¼ R
@c
@R

� ð3� 4nÞc
� �

cosb; 2mub ¼ ð3� 4nÞc sin bþ cosb
@c
@b

� �
: (5.38.47)

(b) Dilatation:

e ¼ � 1� 2nð Þ
m

cos b
@c
@R

� sin b
R

@c
@b

� �
: (5.38.48)

(c) Stresses

TRR ¼ �2ð1� nÞ cosb @c
@R

þ R cosb
@2c
@R2

þ 2n sin b
R

@c
@b

;

Tbb ¼ 1� 2nð Þ cosb @c
@R

þ ð2� 2nÞ sin b
R

@c
@b

þ cosb
R

@2c

@b2
;

Tyy ¼ 1� 2nð Þ @c
@R

cos bþ 2n� 1ð Þ sin bþ 1

sin b

2
4

3
5 @c
R@b

;

(5.38.49)

TRb ¼ � 2ð1� nÞ
R

cosb
@c
@b

þ cosb
@2c
@b@R

þ sin bð1� 2nÞ @c
@R

; (5.38.50)

TRy ¼ Tyb ¼ 0:

Example 5.38.8
Determine the constants A and B in the following potential functions so that they describe a uniform tensile field of

intensity S where the only nonzero stress is Tzz¼ S:

c ¼ cðr ; zÞez ¼ Bzez ; fðr ; zÞ ¼ A z2 � r2

2

� �
: (5.38.51)

Solution
Combining the results of Example 5.38.3 and Example 5.38.6, we have

Trr ¼ �2n
@c
@z

þ z
@2c
@r2

� �
þ @2f

@r2

� �
¼ �2nB � A; (5.38.52)

Tyy ¼ �2n
@c
@z

þ z

r

@c
@r

� �
þ 1

r

@f
@r

¼ �ð2nB þ AÞ; (5.38.53)
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Tzz ¼ �2 1� nð Þ @c
@z

þ z
@2c
@z2

þ @2f
@z2

¼ �2 1� nð ÞB þ 2A; (5.38.54)

Trz ¼ � 1� 2nð Þ @c
@r

þ z
@2c
@r@z

� �
þ @2f
@z@r

¼ 0; Try ¼ Tzy ¼ 0: (5.38.55)

Let the uniform tension be parallel to the z direction with an intensity of S; then

Tzz ¼ S ¼ �2 1� nð ÞBþ 2A; Trr ¼ Tyy ¼ 2nBþ A ¼ 0: (5.38.56)

Solving the preceding equations, we have

A ¼ nS
1þ n

; B ¼ � S

2ð1þ nÞ : (5.38.57)

Thus,

f r; zð Þ ¼ A z2 � r2

2

� �
¼ nS

1þ nð Þ z2 � r2

2

� �
; c zð Þ ¼ Bz ¼ � S

2 1þ nð Þ z: (5.38.58)

In spherical coordinates (R, b, y), where y is the longitude angle and b is the angle between ez and eR, the
functions in Eq. (5.38.58) become (note: z ¼ R cos b; r ¼ R sin b):

f̂ðR; bÞ ¼ AR2

2
ð3 cos 2b� 1Þ ¼ nS

2ð1þ nÞR
2ð3 cos 2b� 1Þ; (5.38.59)

ĉ R; bð Þ ¼ BR cos b ¼ � SR cos b
2ð1þ nÞ : (5.38.60)

The stresses in spherical coordinates can be obtained by using the results of Examples 5.38.6 and 5.38.7

and Eq. (5.38.56),

TRR ¼ �2ð1� nÞ cos b @ ĉ
@R

þ R cos b
@2 ĉ
@R2

þ 2n sin b
R

@ ĉ
@b

þ @2f̂
@R2

¼ �2Bð1� 2nÞ cos 2bþ 3A cos 2b� ð2Bnþ AÞ ¼ �2Bð1� 2nÞ cos 2bþ 3A cos 2b;

(5.38.61)

TRb ¼ � 2ð1� nÞ
R

cos b
@ ĉ
@b

þ cos b
@2 ĉ
@b@R

þ sin bð1� 2nÞ @ ĉ
@R

þ 1

R

@2f̂
@b@R

� 1

R

@f̂
@b

0
@

1
A

¼ 2BRð1� nÞ
R

� Bþ ð1� 2nÞBþ 1

R
�6ARþ 3ARð Þ

8<
:

9=
; cos b sin b

¼ �3Aþ 2Bð1� 2nÞf g cos b sin b:

(5.38.62)

Example 5.38.9

(a) Given f1 ¼ ½2z2 � ðx2 þ y2Þ� and f2 ¼ R�5f1 in rectangular Cartesian coordinates, show that r2f1 ¼ 0 and

r2f2 ¼ 0:

(b) Express the f’s in spherical coordinates f(R, b, y).
(c) For f̂ ¼ f2, what are the stresses in spherical coordinates?
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Solution

(a) r2f1 ¼ @2f1

@x2
þ @2f1

@y2
þ @2f1

@z2
¼ �2� 2þ 4 ¼ 0:

@2f2

@x2
¼ R�5 @

2f1

@x2
� 10x

@f1

@x
R�7 � 5f1R

�7 þ 35f1x
2R�9;

@2f2

@y2
¼ R�5 @

2f1

@y2
� 10y

@f1

@y
R�7 � 5f1R

�7 þ 35f1y
2R�9;

@2f2

@z2
¼ R�5 @

2f1

@z2
� 10z

@f1

@z
R�7 � 5f1R

�7 þ 35f1z
2R�9:

Thus,

r2f2 ¼ �10 x
@f1

@x
þ y

@f1

@y
þ z

@f1

@z

0
@

1
AR�7 þ 20f1R

�7

¼ ½�10ð�2x2 � 2y2 þ 4z2Þ þ 20ð2z2 � x2 � y2Þ�R�7 ¼ 0:

(b) Since r ¼ R sin b; z ¼ R cosb, therefore,

f1 ¼ ð2z2 � r2Þ ¼ R2ð2 cos 2b� sin 2bÞ ¼ R2ð3 cos 2b� 1Þ;
f2 ¼ R�3ð3 cos 2b� 1Þ:

(5.38.63)

(c) Using the results of Example 5.38.6, for f̂ ¼ f2 ¼ R�3 3 cos 2b� 1
� �

, we have

TRR ¼ @2f̂
@R2

¼ 12R�5ð3 cos 2b� 1Þ; (5.38.64)

TRb ¼ 1

R

@2f̂
@b@R

� 1

R

@f̂
@b

 !
¼ 24R�5 cosb sin b; (5.38.65)

Tyy ¼ 1

R

@f̂
@R

þ cot b
R

@f̂
@b

 !
¼ �3R�5 5 cos 2b� 1

� �
; (5.38.66)

Tbb ¼ 1

R

1

R

@2f̂

@b2
þ @f̂
@R

 !
¼ �3

2
ð1þ 7 cos 2bÞR�4

� �
: (5.38.67)

Example 5.38.10
In cylindrical coordinates (r, y, z), let z� ¼ z þ it be a complex variable with i ¼

ffiffiffiffiffiffiffi
�1

p
. Consider the potential function:

’ ¼ z�logðR� þ z�Þ � R�; R�2 ¼ r2 þ z�2: (5.38.68)

(a) Show that

r2’ ¼ 0: (5.38.69)
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(b)

Im
@’

@z

0
@

1
A

z¼0

¼
�����p=2 for r � t ;

sin �1 t=rð Þ for r 
 t :

Im
@2’

@z2

0
@

1
A

z¼0

¼

������
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p for r < t ;

0 for r > t :

(5.38.70)

Solution
(a) From R�2 ¼ r2 þ z�2, we have

@R�

@z�
¼ z�

R� ;
@R�

@r
¼ r

R� ;
@

@z�
logðR� þ z�Þ ¼ 1

R� þ z�
z�=R�ð Þ þ 1½ � ¼ 1=R�

Thus,

@’

@z�
¼ logðR� þ z�Þ þ z�

R�

0
@

1
A� z�

R� ¼ logðR� þ z�Þ; @2’

@z�2
¼ 1

R� ;

@’

@r
¼ z�

R� þ z�
� 1

8<
:

9=
; r

R�

0
@

1
A ¼ � r

R� þ z�
;

@2’

@r2
¼ � 1

R� þ z�
� � r2

R� R� þ z�ð Þ2

0
@

1
A ¼ � 1

R� þ z�
R� R� þ z�ð Þ � r2

R� R� þ z�ð Þ

8<
:

9=
;

¼ � 1

R� þ z�
z�

2 þ R�z�

R� R� þ z�ð Þ :

That is,

@2’

@r2
¼ � 1

R� þ z�
z�

R� :

Thus,

r2’ ¼ @2’

@r2
þ 1

r

@’

@r
þ @2’

@z2
¼ � z�

R� R� þ z�ð Þ �
1

R� þ z�
þ 1

R� ¼ � 1

R� þ z�
z�

R� þ 1

� �
þ 1

R� ¼ 0:

(b) At

z ¼ 0; z� ¼ it ; R�2 ¼ r2 þ z�2 ¼ r2 � t2;
@’

@z
¼ @’

@z�
¼ logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p
þ itÞ:

Now,

for r 
 t ; log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p
þ it


 �
¼ log r þ ia; a ¼ tan�1 t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p
 �
¼ sin �1ðt=rÞ;

and for r � t ; log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p
þ it


 �
¼ log i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
þ it


 �
¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
þ t


 �
þ iðp=2Þ:
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Thus, at z¼ 0, Im
@’

@z

� �
¼
����p=2 for r � t ;

sin �1 t=rð Þ for r 
 t :

(c) At

z ¼ 0;
@2’

@z2
¼ @2’

@z�2
¼ 1

R� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðitÞ2
q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � t2
p :

Thus, for

r > t ; Im
@2’

@z2
¼ Im

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p ¼ 0;

and for

r < t ; Im
@2’

@z2
¼ Im � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p i

� �
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � r2
p :

That is,

Im
@2’

@z2

� �
¼
������

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p for r < t ;

0 for r > t :

5.39 KELVIN PROBLEM: CONCENTRATED FORCE AT THE INTERIOR OF AN
INFINITE ELASTIC SPACE
Consider the following potential functions in cylindrical coordinates (r, y, z):

c ¼ c r; zð Þez ¼ ðA=RÞez; f ¼ 0; R2 ¼ r2 þ z2: (5.39.1)

Using the results obtained in Example 5.38.3, we easily obtain the displacements and the stresses as (see

Prob. 5.84)

2mur ¼ z
@c
@r

¼ �A
rz

R3
; uy ¼ 0; 2muz ¼ A

�3þ 4nð Þ
R

� z2

R3

� �
; (5.39.2)

Trr ¼ z
@2c
@r2

� 2n
@c
@z

¼ A 2n� 1ð Þ z

R3
þ 3r2z

R5

� �
; (5.39.3)

Tyy ¼ z

r

@c
@r

� 2n
@c
@z

¼ A 2n� 1ð Þ z

R3


 �
; (5.39.4)

Tzz ¼ z
@2c
@z2

� 2ð1� nÞ @c
@z

¼ A
3z3

R5
þ ð1� 2nÞ z

R3


 �� �
; (5.39.5)

Trz ¼ � 1� 2nð Þ @c
@r

þ z
@2c
@r@z

¼ A 1� 2nð Þ r

R3


 �
þ 3rz2

R5

� �� �
; Try ¼ Tyz ¼ 0: (5.39.6)
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We now show that the stress field given above is that in an elastic infinite space under the action of a con-

centrated force F¼Fzez at the origin if the constant A in the preceding equations is chosen to be

A ¼ � Fz

8p 1� nð Þ : (5.39.7)

Consider a spherical volume of the medium with the origin at its center (Figure 5.39-1). Let the radius of

the sphere be Ro. The stress vector acting on the spherical surface of the volume is given by t¼Tn, where n
is the outward normal to the surface. The sphere is symmetrical about the z-axis; therefore, the normal

vector depends only on a, the angle with which the normal make with the z-axis on every rz plane. That is
(see Figure 5.39-1),

n ¼ sin aer þ cos aez ¼ ro
Ro

er þ zo
Ro

ez; R2
o ¼ r2o þ z2o: (5.39.8)

Thus,

tr

ty

tz

2
664

3
775 ¼

Trr 0 Trz

0 Tyy 0

Tzr 0 Tzz

2
664

3
775

ro=Ro

0

zo=Ro

2
664

3
775 ¼

Trr ro=Roð Þ þ Trz zo=Roð Þ
0

Tzr ro=Roð Þ þ Tzz zo=Roð Þ

2
664

3
775: (5.39.9)

Substituting the stresses, we obtain

tr ¼ �A
1� 2nð Þzo

R3
o

� 3r2ozo
R5
o

� �
ro
Ro

� �
� 1� 2nð Þro

R3
o

þ 3roz
2
o

R5
o

� �
zo
Ro

� �� �
¼ A

3rozo
R4
o

� �
: (5.39.10)

O

α
Fz

r

z

R°

n

FIGURE 5.39-1
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tz ¼ A
1� 2nð Þro

R3
o

þ 3roz
2
o

R5
o

� �
ro
Ro

þ A
3z3o
R5
o

þ ð1� 2nÞzo
R3
o

� �
zo
Ro

¼ A
1� 2nð Þ
R2
o

þ 3z2o
R4
o

� �
: (5.39.11)

Let us now calculate the resultant of these stress vector distributions on the spherical surface. We first note

that due to axisymmetry of tr, the resultant force in the r direction is clearly zero. The resultant force in the z
direction is given by

F 0
z ¼

ð
tzdS ¼

ðp
a¼0

tz 2proð ÞRoda ¼ A 2pð Þ
ðp
a¼0

1� 2nð Þ
R2
o

þ 3z2o
R4
o

8<
:

9=
;roRoda

¼ 2Ap
ðp
a¼0

1� 2nð Þro
Ro

þ 3
z2o
R2
o

ro
Ro

8<
:

9=
;da

¼ 2Ap
ðp
a¼0

1� 2nð Þ sin aþ 3 cos 2a sin a
� �

da

¼ 2Ap � cos 3a� 1� 2nð Þ cos a� 	p
0
¼ 2Ap 2 2� 2nð Þ½ � ¼ 8Ap 1� nð Þ: (5.39.12)

That is,

F 0
z ¼ 8Ap 1� nð Þ: (5.39.13)

It is important to note that this resultant force, arising from the stress vector on the spherical surface, is

independent of the radius of the sphere chosen. Thus, this resultant force remains exactly the same even when

the sphere is infinitesimally small. In other words, this resultant force, acting on a sphere of any diameter, is

balanced by a concentrated force Fz at the origin. That is,

Fz þ F 0
z ¼ 0 or Fz ¼ �F 0

z ¼ �8Ap 1� nð Þ; (5.39.14)

from which we have

A ¼ � Fz

8p 1� nð Þ : (5.39.15)

In summary, the stress field for an elastic infinite space, subjected to a concentrated force of F¼Fzez at
the origin, is given by

Trr ¼ Fz

8p 1� nð Þ 1� 2nð Þ z

R3
� 3r2z

R5

� �
; Tyy ¼ Fz

8p 1� nð Þ
1� 2nð Þz

R3
; (5.39.16)

Tzz ¼ � Fz

8p 1� nð Þ
1� 2nð Þz

R3
þ 3z3

R5

� �
; Trz ¼ � Fz

8p 1� nð Þ
3rz2

R5
þ 1� 2nð Þr

R3

� �
; (5.39.17)

Try ¼ Tyz ¼ 0: (5.39.18)

and the displacement field is

ur ¼ Fz

16mp 1� nð Þ
rz

R3


 �
; uy ¼ 0; uz ¼ Fz

16mp 1� nð Þ
ð3� 4nÞ

R
þ z2

R3

� �
: (5.39.19)
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5.40 BOUSSINESQ PROBLEM: NORMAL CONCENTRATED LOAD ON AN ELASTIC
HALF-SPACE
First, let us consider the function

’ ¼ C ln ðRþ zÞ; R2 ¼ r2 þ z2: (5.40.1)

The following can be easily obtained:

@’

@r
¼ C

ðRþ zÞ
r

R
;

1

r

@’

@r
¼ C

RðRþ zÞ ;
@2’

@r2
¼ C

z

R3
� 1

RðRþ zÞ
� �

; (i)

@’

@z
¼ C

ðRþ zÞ
z

R
þ 1


 �
¼ C

R
;

@2’

@z2
¼ �Cz

R3
;

@2’

@r@z
¼ �Cr

R3
; (ii)

@3’

@r2@z
¼ C

3r2

R5
� 1

R3

� �
;

@3’

@r@z2
¼ C

3rz

R5

� �
;

@3’

@z3
¼ �C

1

R3
� 3z2

R5

� �
: (iii)

Clearly, r2’ r; zð Þ ¼ r2 ln ðRþ zÞ ¼ 0:

Now, let us consider the following potential functions:

c ¼ @’

@z
ez; f ¼ ð1� 2nÞ’; where

’ ¼ C ln ðRþ zÞ; R2 ¼ r2 þ z2:

(5.40.2)

From the results of Example 5.38.4 and Eqs. (i), (ii) and (iii), we can obtain (see Prob. 5.86)

2mur ¼ C � rz

R3
þ ð1� 2nÞ

ðRþ zÞ
r

R

� �
; 2muz ¼ �C

z2

R3
þ 2ð1� nÞ

R

� �
; (5.40.3)

Trr ¼ C
3zr2

R5
� ð1� 2nÞ
RðRþ zÞ

� �
; Tyy ¼ C 1� 2nð Þ � z

R3
þ 1

RðRþ zÞ
� �

; Tzz ¼ C
3z3

R5
; (5.40.4)

Trz ¼ C
3rz2

R5
; Try ¼ Tyz ¼ 0: (5.40.5)

We see that at z¼ 0, Tzz¼ Trz¼ 0, except at the origin. Thus, for a half-space z 
 0, there is no surface

traction on the surface z¼ 0 except at the origin. We shall show that at the origin there is a concentrated force

F in the z-direction. Let us denote this force by

F ¼ Fzez: (5.40.6)

We can obtain Fz by considering the equilibrium of a very large circular disk (r ! 1) of thickness h with

origin at the top center of the disk. If this Fz turns out to be independent of h, then the stress field is that for

a half-space under the action of a concentration force at the origin of the half-space. This is the so-called

Boussinesq problem.

Since Trz ! 0 at r ! 1 [see Eq. (5.40.5)], there is no contribution from Trz at the circular ring at large r
(see Figure 5.40-1); therefore,

Fz þ
ð1
r¼o

Tzzð Þz¼h 2prð Þdr ¼ 0: (5.40.7)
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Thus,

Fz ¼ �
ð1
r¼o

Tzzð Þz¼h 2prð Þdr ¼ �6Cph3
ð1
r¼o

r

ðr2 þ h2Þ5=2
dr ¼ �6Cph3 � 1

3
r2 þ h2
� ��3=2

� �1
r¼o

:

That is,

Fz ¼ �6Cph3
1

3h3

� �
¼ �2Cp: (5.40.8)

From which,

C ¼ � Fz

2p
: (5.40.9)

Equation (5.40.9) shows that indeed Fz is independent of h. We also note that due to axisymmetry of the

stresses, the force at the origin has only the axial component Fz. In summary, the stress field in the Boussinesq

problem is

Trr ¼ � Fz

2p
3r2z

R5
� 1� 2nð Þ
RðRþ zÞ

8<
:

9=
;; Tyy ¼ �Fz 1� 2nð Þ

2p
� z

R3
þ 1

RðRþ zÞ

8<
:

9=
;;

Tzz ¼ � Fz

2p
3z3

R5
;

(5.40.10)

Trz ¼ � Fz

2p
3rz2

R5
; Try ¼ Tyz ¼ 0; (5.40.11)

and the displacement field is

ur ¼ Fz

4mp
rz

R3
� ð1� 2nÞ

ðRþ zÞ
r

R

� �
; uz ¼ Fz

4mp
z2

R3
þ 2ð1� nÞ

R

� �
: (5.40.12)

hh

z

0

r oo

Fz

FIGURE 5.40-1
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Example 5.40.1
For the Boussinesq problem, (a) obtain the displacement components in rectangular Cartesian components and

(b) obtain the stress components in rectangular Cartesian components.

Solution
(a) With uy ¼ 0,

ux ¼ ur cos y ¼ Fz
4mp

r cos yz
R3

� ð1� 2nÞ
ðR þ zÞ

r cos y
R

0
@

1
A ¼ Fz

4mp
xz

R3
� ð1� 2nÞ

ðR þ zÞ
x

R

0
@

1
A;

uy ¼ ur sin y ¼ Fz
4mp

r sin yz
R3

� ð1� 2nÞ
ðR þ zÞ

r sin y
R

0
@

1
A ¼ Fz

4mp
yz

R3
� ð1� 2nÞ

ðR þ zÞ
y

R

0
@

1
A;

uz ¼ Fz
4mp

z2

R3
þ 2ð1� nÞ

R

0
@

1
A:

R2 ¼ x2 þ y2 þ z2:

(b) From

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

2
4

3
5 ¼

cos y � sin y 0
sin y cos y 0
0 0 1

2
4

3
5 Trr 0 Trz

0 Tyy 0
Tzr 0 Tzz

2
4

3
5 cos y sin y 0

� sin y cos y 0
0 0 1

2
4

3
5;

we have (see Prob. 5.87 for details)

Txx ¼ Trr cos
2yþ Tyy sin

2y

¼ �3Fz
2p

x2z

R5
þ Fz 1� 2nð Þz

2pR3
� 1� 2nð ÞFz
2pRðR þ zÞ 1� x2

R2
� x2

RðR þ zÞ

8<
:

9=
;;

Tyy ¼ Trr sin
2 yþ Tyy cos

2 y

¼ � 3Fz
2p

y2z

R5
þ Fz 1� 2nð Þz

2pR3
� 1� 2nð ÞFz
2pRðR þ zÞ 1� y2

R2
� y2

RðR þ zÞ

8<
:

9=
;;

Txz ¼ Trz cos y ¼ � Fz
2p

3rz2

R5
cos y ¼ � Fz

2p
3xz2

R5
;

Tyz ¼ Trz sin y ¼ � Fz
2p

3yz2

R5
;

Txy ¼ Trr � Tyyð Þ sin y cos y ¼ � Fz
2p

3xyz

R5
þ Fz 1� 2nð Þ

2p
2

RðR þ zÞ �
z

R3

0
@

1
A xy

R2 � z2ð Þ

¼ � Fz
2p

3xyz

R5
þ Fz 1� 2nð Þ

2p
1

R2ðR þ zÞ þ
1

R3

0
@

1
A xy

ðR þ zÞ ;

Tzz ¼ � Fz
2p

3z3

R5
:
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5.41 DISTRIBUTIVE NORMAL LOAD ON THE SURFACE OF AN ELASTIC
HALF-SPACE
From the solution of the Boussinesq problem in Cartesian coordinates (Example 5.40.1), the solution to the

problem of a distributive normal load acting on the surface of an elastic half-space can be obtained by the

method of superposition. Let q(x, y) denote the normal load per unit area on the surface. The contribution

from the differential load qðx 0; y 0Þdx 0dy 0 at x 0; y 0; 0ð Þ, to the vertical displacement uz (see Figure 5.41-1), is

duz ¼ q x 0; y 0ð Þ
4mpR 0 2ð1� nÞ þ z� 0ð Þ2

R 02

( )
dx 0dy 0; R 0 2 ¼ ðx� x 0Þ2 þ ðy� y 0Þ2 þ ðz� 0Þ2: (5.41.1)

Thus,

uz ¼ 1

4mp
2ð1� nÞ

ð
q x 0; y 0ð Þ

R 0 dx 0dy 0 þ z2
ð
q x 0; y 0ð Þ
R 03 dx 0dy 0

� �
: (5.41.2)

Similarly,

Tzz ¼ � 3z3

2p

ð
q x 0; y 0ð Þ
R 05 dx 0dy 0: (5.41.3)

Example 5.41.1
Obtain the variation of uz along the z -axis for the case where the normal load on the surface is uniform with intensity

qo and the loaded area is a circle of radius ro with its center at the origin (see Figure 5.41-2).

Solution
Using Eq. (5.41.2), we have

uz ¼ qoð1� nÞ
2mp

ð
1

R 0 2pr
0dr 0 þ qo

4mp
z2
ð

1

R 03 2pr
0dr 0 ¼ qoð1� nÞ

m

ð
r 0dr 0

R 0 þ qoz
2

2m

ð
r 0dr 0

R 03 ; (i)

z

q(x,y)

x

y

FIGURE 5.41-1
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where R 02 ¼ r 02 þ z2 and R 0dR 0 ¼ r 0dr 0. Thus,

uz ¼ qoð1� nÞ
m

ðRo

z

dR 0 þ qoz
2

2m

ðRo

z

dR 0

R 02 ; R2
o ¼ r2o þ z2: (ii)

That is,

uz ¼ qoð1� nÞ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ z2

q
� z

� �
� qoz

2

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ z2

p þ qoz

2m
: (5.41.4)

In particular, at the center of the loaded area, z¼ 0,

uz ¼ qoð1� nÞro
m

: (5.41.5)

5.42 HOLLOW SPHERE SUBJECTED TO UNIFORM INTERNAL AND EXTERNAL
PRESSURE
In spherical coordinates (R, b, y), where b is the angle between ez and eR and y is the longitude angle, con-

sider the following potential functions for spherical symmetric problems:

c ¼ BReR; f ¼ A

R
; A and B are constants: (5.42.1)

From Example 5.38.5, we have the following nonzero stress components:

TRR ¼ �2 2� nð Þ dc
dR

þ 2n� 1ð Þ c
R
� d2f
2dR2

� �
¼ �2 1þ nð ÞBþ 2

A

R3
; (5.42.2)

Tbb ¼ Tyy ¼ � 2n� 1ð Þ dc
dR

þ 3c
R

� 1

R

df
dR

� �
¼ �2 1þ nð ÞB� A

R3
; (5.42.3)

x

z

y

r �

R�

o

R
�

q(x,y) = q
�r

�

P(0,0,z)

FIGURE 5.41-2
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and the following displacement components:

2muR ¼ R
dc
dR

þ ð�3þ 4nÞc þ df
dR

¼ 2ð2n� 1Þ BR� A

R2
; ub ¼ uy ¼ 0: (5.42.4)

Let the internal and external uniform pressure be denoted by pi and po, respectively, then the boundary

conditions are

TRR ¼ �pi at internal radius R ¼ Ri; (5.42.5)

and

TRR ¼ �po at external radius R ¼ Ro: (5.42.6)

Thus,

�2 1þ nð ÞBþ 2A

R3
i

¼ �pi; � 2 1þ nð ÞBþ 2A

R3
o

¼ �po; (5.42.7)

from which we have

2A ¼ �pi þ poð Þ R3
i R

3
o

R3
o � R3

i

; 2 1þ nð ÞB ¼ poR
3
o � R3

i pi
R3
o � R3

i

: (5.42.8)

If pi¼ 0, then

TRR ¼ poR
3
o

R3
i � R3

o

� poR
3
i R

3
o

R3
i � R3

o

� �
1

R3
; (5.42.9)

Tyy ¼ Tbb ¼ poR
3
o

R3
i � R3

o

þ poR
3
i R

3
o

R3
i � R3

o

� �
1

2R3
: (5.42.10)

5.43 SPHERICAL HOLE IN A TENSILE FIELD
We want to obtain the stress field in an elastic medium with a spherical hole of radius R¼ a at the origin with

Tzz¼ Sez far away from the hole (see Figure 5.43-1).

In spherical coordinates, a uniform tensile field with Tzz¼ Sez is given by the potentials [see Eqs. (5.38.59)

and (5.38.60) in Example 5.38.8]:

β

SS

ez

er

r

z

FIGURE 5.43-1

298 CHAPTER 5 The Elastic Solid



c ¼ � SR cos b
2ð1þ nÞ ez;

f ¼ nSR2

2ð1þ nÞ ð3 cos
2b� 1Þ: (5.43.1)

Corresponding to which, the stresses are [see Eqs. (5.38.61) and (5.38.62)]:

T 0
RR ¼ �2Bð1� 2nÞ cos 2bþ 3A cos 2b; T 0

Rb ¼ �3Aþ 2Bð1� 2nÞf g cos b sin b;
T 0

Ry ¼ 0;
(5.43.2)

where

A ¼ nS
1þ n

; B ¼ � S

2ð1þ nÞ : (5.43.3)

We look for a disturbed field that vanishes at large distance but that eliminates the stress vector due

to Eq. (5.43.2) on the surface of the spherical hole. The following potentials generate stresses that vanish

at R ! 1:

~f ¼ ~fðR; bÞ ¼ C1R
�3ð3 cos 2b� 1Þ=2þ C2R

�1; ~c ¼ D1R
�2cos bez: (5.43.4)

It is easy to verify that the three functions R�1; R�2 cos b and R�3ð3 cos 2b� 1Þ all satisfy the Laplace

equation. The stresses generated by them are (see Probs. 5.89 and 5.90)

~TRR ¼ 6C1R
�5ð3 cos 2b� 1Þ þ 2C2R

�3 þ 2ð5� nÞD1R
�3 cos 2b� 2D1nR�3; (5.43.5)

~TbR ¼ 12C1R
�5 cos b sin bþ 2D1R

�3ð1þ nÞ cos b sin b; (5.43.6)

~TRy ¼ 0: (5.43.7)

Combining the uniform field Eq. (5.43.2) with the preceding disturbed field, we have

TRR ¼ ½�2Bð1� 2nÞ þ 3Aþ 18C1R
�5 þ 2D1R

�3ð5� nÞ� cos 2b
� 6C1R

�5 þ 2C2R
�3 � 2nD1R

�3;
(5.43.8)

TRb ¼ �3Aþ 2Bð1� 2nÞ þ 12C1R
�5 þ 2D1R

�3ð1þ nÞ� 	
cos b sin b; (5.43.9)

TRy ¼ 0: (5.43.10)

We now apply the boundary condition that, on the surface of the spherical cavity, the stress vector is zero.

That is, at R¼ a, we demand that

TRRð ÞR¼a ¼ TRb
� �

R¼a
¼ TRyð ÞR¼a ¼ 0: (5.43.11)

These conditions lead to

3A� 2Bð1� 2nÞ þ 18C1a
�5 þ 2D1a

�3 5� nð Þ ¼ 0;

�6C1a
�5 þ 2C2a

�3 � 2nD1a
�3 ¼ 0;

�3Aþ 2Bð1� 2nÞ þ 12C1a
�5 þ 2D1a

�3ð1þ nÞ ¼ 0;

(5.43.12)
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where A and B are given in Eq. (5.43.3). Solving the preceding three equations for the unknowns C1, C2 and

D1, we have

C1 ¼ Sa5

7� 5n
; C2 ¼ Sa3ð6� 5nÞ

2ð7� 5nÞ ; D1 ¼ � 5Sa3

2ð7� 5nÞ : (5.43.13)

From the preceding results, one can obtain the maximum tensile stress

Tbb
� �

max ¼ 3Sð9� 5nÞ
2ð7� 5nÞ at b ¼ p=2 and R ¼ a: (5.43.14)

5.44 INDENTATION BY A RIGID FLAT-ENDED SMOOTH INDENTER ON AN ELASTIC
HALF-SPACE
Let the half-space be defined by z 
 0 and let a be the radius of the indenter. The boundary conditions for this

problem are as follows (see Figure 5.44-1):

At z¼ 0, the vertical displacement is a constant within the indenter end, i.e.,

uz ¼ wo for r � a; (5.44.1)

and there is zero stress vector outside the indenter, i.e.,

Tzz ¼ Trz ¼ Tyz ¼ 0 for r > a: (5.44.2)

In the following we show that the potential functions lead to a displacement field and a stress field that

satisfy the preceding conditions:

c ¼ @F

@z

� �
ez; f ¼ ð1� 2nÞF; (5.44.3)

where

F ¼ Im ’ðr; zÞ; ’ðr; zÞ ¼ A z*logðR* þ z*Þ � R*
� 	

;

R*2 ¼ r2 þ z*2; z* ¼ zþ it
(5.44.4)

From Example 5.38.4, we have, for the potential functions given in Eq. (5.44.3),

2muz ¼ z
@2F

@z2
þ ð�2þ 2nÞ @F

@z
; Tzz ¼ z

@3F

@z3
� @2F

@z2
; Trz ¼ z

@3F

@r@z2
; Tyz ¼ 0: (5.44.5)

wo

P

r

z

2a

FIGURE 5.44-1
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Thus, on z¼ 0

2muz ¼ �2ð1� nÞ @F

@z

� �
; Tzz ¼ � @2F

@z2

� �
; Trz ¼ Tyz ¼ 0: (5.44.6)

Now, from F ¼ Im ’ðr; zÞ, we have

@F

@z
¼ @

@z
Im ’ðr; zÞ ¼ Im

@’ðr; zÞ
@z

;
@2F

@z2
¼ Im

@2’ðr; zÞ
@z2

: (5.44.7)

Thus, for the ’(r, z) given in Eq. (5.44.4), we have (see Example 5.38.10), on z¼ 0,

2muzjz¼0 ¼ �2ð1� nÞIm @’

@z

� �
z¼0

¼ �2Að1� nÞ
����p=2 for r � t;
sin �1 t=rð Þ for r 
 t:

(5.44.8)

and

Tzzjz¼0 ¼ �Im
@2’

@z2

� �
z¼0

¼
�����

Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p for r < t;

0 for r > t:

(5.44.9)

Now, if we identify the parameter t as the radius a, then we have

uz ¼ �Að1� nÞp
2m

; Tzz ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; for r < a: (5.44.10)

With wo denoting the depth of penetration, i.e., uz¼wo for r � a, [see Eq. (5.44.1)], we have

A ¼ � 2mwo

ð1� nÞp : (5.44.11)

Therefore, the normal stress distribution under the flat-ended indenter is

Tzz ¼ � 2mwo

ð1� nÞp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p ; for r < a: (5.44.12)

The total load exerted by the indenter on the half-space is given by

P ¼ �
ða
o

Tzz 2prð Þdr ¼ 4mwo

ð1� nÞ
ða
o

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ¼ 4mwoa

ð1� nÞ : (5.44.13)

Thus, in terms of the total load P, the depth of penetration is given by

wo ¼ Pð1� nÞ
4ma

; (5.44.14)

the normal stress under the flat-ended indenter is given by

Tzz ¼ � P

2pa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p ; for r < a; (5.44.15)

and the vertical displacement of the surface outside the indenter is given by [see Eq. (5.44.8)]

uz ¼ 2wo

p
sin �1 a=rð Þ ¼ Pð1� nÞ

2pma
sin �1 a=rð Þ; for r > a: (5.44.16)
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5.45 INDENTATION BY A SMOOTH RIGID SPHERE ON AN
ELASTIC HALF-SPACE
We begin by first discussing the general case of an axisymmetric indenter. Let the half-space be defined by

z 
 0 and let the profile of the rigid indenter be defined by wo þ w(r). Due to axisymmetry, the area of

contact between the elastic space and the rigid indenter is a circle of radius a, whose magnitude depends

on the indenter load P. The boundary conditions for this problem are as follows:

At z¼ 0, the vertical displacement is given by

uz ¼ wo þ wðrÞ for r � a; (5.45.1)

and there is zero stress vector outside the indenter, i.e.,

Tzz ¼ Trz ¼ Tyz ¼ 0 for r 
 a: (5.45.2)

In the following we show that the potential functions lead to a displacement field and a stress field that

satisfy the preceding conditions:

c ¼ @F

@z

� �
ez; f ¼ ð1� 2nÞF; (5.45.3)

where

F ¼ Im ’ðr; zÞ; ’ ¼
ða
o

f tð Þ z*logðR* þ z*Þ � R*
� 	

dt;

R*2 ¼ r2 þ z*2; z* ¼ zþ it:
(5.45.4)

In Example 5.38.10, we obtained that if ’ðr; zÞ ¼ A½z*logðR* þ z*Þ � R*�, then

lm
@’

@z

� �
z¼0

¼
�����
p=2 for r � t

sin �1ðt=rÞ for r 
 t
and lm

@2’

@z2

� �
z¼0

¼
������

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p for r < t;

0 for r > t:

Thus, for ’ ¼
ða
o

f ðtÞ z*logðR* þ z*Þ � R*
� 	

dt, we have

For r 
 a,

Im
@’

@z

� �
z¼0

¼
ða
t¼0

f ðtÞ sin �1 t=rð Þdt: (5.45.5)

For r � a,

Im
@’

@z

� �
z¼0

¼
ðr
t¼0

f ðtÞ sin �1 t=rð Þdtþ
ða
t¼r

p=2ð Þf ðtÞdt; (5.45.6)

or, since

sin �1 t=rð Þ ¼ p=2ð Þ � cos �1 t=rð Þ; (5.45.7)

Eq. (5.45.6) can also be written as

For r � a,

Im
@’

@z

� �
z¼0

¼ p=2ð Þ
ða
t¼0

f ðtÞdt�
ðr
t¼0

f ðtÞ cos �1 t=rð Þdt: (5.45.8)
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We also have:

For r 
 a,

Im
@2’

@z2

� �
z¼0

¼
ða
t¼0

ð0Þf ðtÞdt ¼ 0: (5.45.9)

For r � a,

Im
@2’

@z2

� �
z¼0

¼
ðr
t¼0

ð0Þf ðtÞdtþ
ða
t¼r

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

f ðtÞdt ¼ �
ða
t¼r

f ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dt: (5.45.10)

Thus, similar to the case for a flat indenter:

For r 
 a,

2muzjz¼0 ¼ �2ð1� vÞlm @’

@z

� �
z¼0

¼ �2ð1� vÞ
ða
t¼0

f ðtÞ sin �1ðt=rÞdt; (5.45.11)

For r � a,

2muzjz¼0 ¼ �2ð1� vÞlm
�
@’

@z

�
z¼0

¼ �2ð1� vÞ p
2

ða
t¼0

f ðtÞdt�
ðr
t¼0

f ðtÞ cos �1ðt=rÞdt
2
4

3
5:

(5.45.12)

From this equation, we have, with the profile of the indenter given by w¼wo þ w(r), the following integral

equation for the determination of the function f(t):

wo þ wðrÞ ¼ � ð1� nÞ
m

p
2

ða
t¼0

f ðtÞdt�
ðr
t¼0

f ðtÞ cos �1 t=rð Þdt
� �

: (5.45.13)

The normal stress inside the contact region is given by

Tzz ¼ �Im
@2’

@z2

� �
z¼0

¼
ða
t¼r

f ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dt for r < a; (5.45.14)

so that the total load exerted by the indenter on the elastic half-space is given by

P ¼
ða
o

�Tzzð Þz¼0 2prdr ¼ �2p
ða
o

r

ða
t¼r

f ðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dr: (5.45.15)

Interchanging the order of differentiation, we have

P ¼ �2p
ða
t¼o

f ðtÞ
ðt
r¼0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dt ¼ �2p
ða
t¼o

tf ðtÞdt: (5.45.16)

It can be verified (see Appendix 5A.1) that for a given wo þ w(r), the solution to the unknown f(t) in the inte-

gral equation Eq. (5.45.13) is given by

f ðtÞ ¼ Bdða� tÞ þ 2m
ð1� nÞp

1

t

d

dt

ðt
r¼0

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ; (5.45.17)

where the Dirac function d(a � t) is zero except at t¼ a, when it becomes unbounded in such a way that the

integral
Ð a
t¼0

dða� tÞdt ¼ 1.
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Example 5.45.1
Use the equation derived in this section to solve the flat-ended indenter problem of the previous section.

Solution
For a flat-ended indenter, dw=dr ¼ 0, so that from Eq. (5.45.17), we have

f ðtÞ ¼ Bdða � tÞ; (5.45.18)

where a, the contact radius, is the radius of the flat-ended indenter. With f(t) given by the preceding equation,

Eq. (5.45.13) becomes

wo ¼ �ð1� nÞB
m

p
2

ða
t¼0

dða � tÞdt �
ðr
t¼0

dða � tÞ cos �1 t=rð Þdt
� �

: (5.45.19)

The first integral within the bracket is unity. The second integral is zero because dða � tÞ ¼ 0 for

r < a; cos �1ða=aÞ ¼ cos �1ð1Þ ¼ 0, so that
Ð r
t¼0 dða � tÞ cos �1 t=rð Þdt ¼ 0 for all r � a. Thus, Eq. (5.45.19) gives

wo ¼ �ð1� nÞBp=2m, so that

B ¼ � 2mwo

ð1� nÞp : (5.45.20)

Now, from Eq. (5.45.16),

P ¼ �2pB
ða
t¼o

tdða � tÞdt ¼ 4mwo

ð1� nÞ
ða
t¼o

tdða � tÞdt ¼ 4ma
ð1� nÞwo ; (5.45.21)

from which we obtain the same penetration depth as given in Eq. (5.44.14) of the previous section.

wo ¼ Pð1� nÞ
4ma

: (5.45.22)

Also, from Eqs. (5.45.14), (5.45.18), (5.45.20) and (5.45.22), the normal stress within the contact region r < a is

given by:

Tzz ¼ B

ða
t¼r

dða � tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dt ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ¼ � P

2pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p : (5.45.23)

The same result was obtained in the last section.

We now discuss the case of a smooth rigid spherical indenter. Referring to Figure 5.45-1, the vertical surface

displacement within the contact region is given by:

uzðrÞ ¼ wo � ½R� ðR2 � r2Þ1=2� ¼ wo � Rþ Rð1� r2=R2Þ1=2; (5.45.24)

where R is the radius of the sphere and r is the cylindrical coordinate. We shall assume that the contact region

is small so that r=R 
 1; then

1� r2

R2

� �1=2

� 1� r2

2R2
; (5.45.25)
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so that

uzðrÞ ¼ wo � r2

2R
: (5.45.26)

Thus [see Eq. (5.45.1)], we have

wðrÞ ¼ � r2

2R
and

dw

dr
¼ � r

R
: (5.45.27)

Equation (5.45.17) then gives:

f ðtÞ ¼ Bdða� tÞ � 2m
Rð1� nÞp

1

t

d

dt

ðt
r¼0

r3drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p : (5.45.28)

By letting r¼ t cos y, we can easily obtainðt
r¼0

r3drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ �t3
ð0
y¼p=2

cos 3ydy ¼ 2t3

3
: (5.45.29)

Thus,

f ðtÞ ¼ Bdða� tÞ � 4m
Rð1� nÞp t: (5.45.30)

The contact normal stress is then given by [see Eq. (5.45.14)]

Tzz ¼
ða
t¼r

f ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dt ¼ B

ða
t¼r

dða� tÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p � 4m
Rð1� nÞp

ða
t¼r

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p : (5.45.31)

The first integral in the right-hand side gives

B

ða
t¼r

dða� tÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; (5.45.32)

where the parameter a is the contact radius between the spherical indenter and the elastic half-space, which is

still to be determined as a function of the load P. At r¼ a, the indenter separates smoothly from the half-space

in such a way that the normal stress at this point is zero. (This is different from the case of a flat-ended

indenter, where the surface has a sharp curvature at the separation point.) Thus, B¼ 0 and we have

f ðtÞ ¼ � 4m
Rð1� nÞp t; (5.45.33)

wowo

P

r

z

R auz

FIGURE 5.45-1

5.45 Indentation by a Smooth Rigid Sphere on an Elastic Half-Space 305



so that Eq. (5.45.31) becomes

Tzz ¼ � 4m
Rð1� nÞp

ða
t¼r

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ � 4m
Rð1� nÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

ph ia
t¼r

¼ � 4m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p

Rð1� nÞp : (5.45.34)

To find the radius of contact in terms of the indenter load P, we use Eq. (5.45.16) to obtain

P ¼ �2p
ða
t¼0

tf ðtÞdt ¼ 8m
Rð1� nÞ

ða
t¼0

t2dt ¼ 8ma3

3Rð1� nÞ ; (5.45.35)

so that

a3 ¼ 3ð1� nÞPR
8m

: (5.45.36)

To find the vertical displacement outside the contact region, we have, for r 
 a, [see Eq. (4.45.11)]

uz ¼ � 2ð1� nÞ
2m

ða
t¼0

f ðtÞ sin �1 t=rð Þdt ¼ 4

Rp

ða
t¼0

t sin �1 t=rð Þdt: (5.45.37)

By letting sin y ¼ t=r, we can obtain

uz ¼ 4

Rp
r2

2

� �
y sin 2y� y

2
þ sin 2y

2

� � sin �1 a=rð Þ

o

for r 
 a: (5.45.38)

In particular, at the separation point, r¼ a, we have

uz ¼ 2a2

Rp
p
2
� p

4


 �
¼ 2a2

Rp
p
4
¼ a2

2R
at r ¼ a: (5.45.39)

Now, from uzðrÞ ¼ wo � r2

2R
, we obtain the total penetration to be

wo ¼ uzðaÞ þ a2

2R
¼ a2

2R
þ a2

2R
¼ a2

R
: (5.45.40)

In summary, in terms of the indenter load P and the radius of the rigid smooth sphere R, we have

Radius of contact: a ¼ 3ð1� nÞPR
8m

� �1=3
: (5.45.41)

Contact normal stress: Tzz ¼ � 4m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p

Rð1� nÞp : (5.45.42)

APPENDIX 5A.1: SOLUTION OF THE INTEGRAL EQUATION IN SECTION 5.45
In this appendix we will verify that for a given function wo þ w(r), the solution to the integral equation

wo þ wðrÞ ¼ � 1� nð Þ
m

p
2

ða
o

f ðtÞdt�
ðr
o

f ðtÞ cos �1ðt=rÞdt
� �

(i)
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is

f ðtÞ ¼ Bdða� tÞ þ mgðtÞ
1� nð Þ ; (ii)

where

gðtÞ ¼ 2

pt
d

dt

ðt
o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p : (iii)

To begin, we first note that
Ð t
o dða� tÞdt ¼ 1 and

Ð r
o dða� tÞdt ¼ 0. Thus, using Eq. (ii), the terms inside

the bracket of Eq. (i) become

p
2
Bþ p

2

m
ð1� nÞ

ða
o

gðtÞdt
� �

� m
ð1� nÞ

ðr
o

gðtÞ cos �1ðt=rÞdt: (iv)

Now, from Eq. (iii), we can show that

wðrÞ ¼
ðr
o

gðtÞ cos �1ðt=rÞdt: (v)

Indeed, from this equation, i.e., Eq. (v), we have

dwðrÞ
dr

¼
ðr
o

gðtÞ d
dr

cos �1 t

r

0
@

1
Adtþ gðrÞ cos �1 r

r

0
@
1
A ¼

ðr
o

gðtÞ d
dr

cos �1 t

r

0
@

1
Adt

¼
ðr
o

gðtÞ t
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p dt:

(vi)

Thus, ðt
r¼o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼
ðt
r¼o

ðr
o

gðtÞ t
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p dt

� �
r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p : (vii)

Interchanging the order of integration, we have (see Figure 5A.1)

ðt
r¼o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼
ðt 0¼t

t 0¼0

t 0gðt 0Þ
ðr¼t

r¼t 0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t 02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
� �

dt 0: (viii)

r

t�

r = t�

t

t

FIGURE 5A.1
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Now,

ðr¼t

r¼t 0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t 02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ 1

2

ðx¼t2

x¼t 02

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� t 02

p ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x

p ¼ � 1

2
sin �1 �2xþ t 02 þ t2

t2 � t 02

0
@

1
A

2
4

3
5
x¼t2

x¼t 02

¼ p
2
: (ix)

Therefore, from Eq. (viii), we have

ðt
r¼o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ p
2

ðt
0

t 0gðt 0Þdt 0; (x)

so that

d

dt

ðt
r¼o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ¼ p
2
tgðtÞ½ � ¼ pt

2
gðtÞ: (xi)

Thus,

gðtÞ ¼ 2

pt
d

dt

ðt
o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p ;

which is Eq. (iii).

We now return to the terms inside the bracket of Eq. (i) [i.e., Eq. (iv)]. In view of the equation

wðrÞ ¼ Ð ro gðtÞ cos �1ðt=rÞdt, those terms become

p
2
Bþ p

2

m
ð1� nÞ

ða
o

gðtÞdt
� �

� m
ð1� nÞwðrÞ; (xii)

so that Eq. (i) becomes

wo þ wðrÞ ¼ � 1� nð Þp
2m

B� p
2

ða
o

gðtÞdtþ wðrÞ; (xiii)

from which we get

B ¼ � 2m
1� nð Þp wo þ p

2

ða
o

gðtÞdt
� �

: (xiv)

In other words, with B given by the preceding equation, the function

f ðtÞ ¼ Bdða� tÞ þ m
ð1� nÞ gðtÞ where gðtÞ ¼ 2

pt
d

dt

ðt
o

dw

dr

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p

satisfies the integral equation

wo þ wðrÞ ¼ � 1� nð Þ
m

p
2

ða
0

f ðtÞdt�
ðr
o

f ðtÞ cos �1 t

r


 �
dt

� �
:
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We note that in certain applications, the constant B must be zero, in which case, wo cannot be arbitrarily

prescribed but must be given by the following equation [see Eq. (xiv)]:

wo ¼ � p
2

ða
o

gðtÞdt: (xv)

For example, for a spherical indenter, we had gðtÞ ¼ � 4

Rp
t [see Eq. (5.45.30) and Eq. (ii)]; thus,

wo ¼ � p
2

ða
o

gðtÞdt ¼ 2

R

ða
o

tdt ¼ a2

R
; (xvi)

which is Eq. (5.45.40).

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.1–5.8
5.1 Show that the null vector is the only isotropic vector. (Hint: Assume that a is an isotropic vector and use

a simple change of basis to equate the primed and the unprimed components.)

5.2 Show that the most general isotropic second-order tensor is of the form of aI, where a is a scalar and I is
the identity tensor.

5.3 For an isotropic linearly elastic body, (a) verify the m ¼ mðl;EYÞ as given in Table 5.1 and (b) obtain the

value of m as EY=l ! 0.

5.4 From l ¼ nEY=½ð1þ nÞð1� 2vÞ�; l ¼ 2mv=ð1� 2vÞ, and k ¼ lð1þ vÞ=3v, obtain m ¼ mðEY ; nÞ and

k ¼ kðm; nÞ.
5.5 Show that for an incompressible material (n ! 1=2), that

(a) m ¼ EY=3, l ! 1; k ! 1, but k � l ¼ ð2=3Þm.
(b) T ¼ 2mEþ ðTkk=3ÞI, where Tkk is constitutively indeterminate.

5.6 Given Aijkl ¼ dijdkl and Bijkl ¼ dikdjl,
(a) Obtain A11jk and B11jk.

(b) Identify those A11jk that are different from B11jk.

5.7 Show that for an anisotropic linearly elastic material, the principal directions of stress and strain are in

general not coincident.

5.8 The Lamé constants are l ¼ 119:2 GPað17:3� 106 psiÞ; m ¼ 79:2 GPað11:5� 106 psiÞ.
Find Young’s modulus, Poisson’s ratio, and the bulk modulus.

5.9 Given Young’s modulus EY ¼ 103 GPa, Poisson’s ratio n ¼ 0.34. Find the Lamé constants l and m.
Also find the bulk modulus.

5.10 Given Young’s modulus EY ¼ 193 GPa, shear modulus m ¼ 76 GPa. Find Poisson’s ratio n, Lamé’s

constant l, and the bulk modulus k.

5.11 If the components of strain at a point of structural steel are

E11 ¼ 36� 10�6; E22 ¼ 40� 10�6; E33 ¼ 25� 10�6;
E12 ¼ 12� 10�6; E23 ¼ 0; E13 ¼ 30� 10�6:

find the stress components.

l ¼ 119:2 GPað17:3� 106 psiÞ; m ¼ 79:2 GPað11:5� 106 psiÞ:
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5.12 Do the previous problem if the strain components are

E11 ¼ 100� 10�6; E22 ¼ �200� 10�6; E33 ¼ 100� 10�6; E12 ¼ �100� 10�6; E23 ¼ 0; E13 ¼ 0:

5.13 An isotropic elastic body ðEY ¼ 207 GPa; m ¼ 79:2 GPaÞ has a uniform state of stress given by

T½ � ¼
100 40 60
40 �200 0
60 0 200

" #
MPa:

(a) What are the strain components?

(b) What is the total change of volume for a five-centimeter cube of the material?

5.14 An isotropic elastic sphere ðEY ¼ 207 GPa; m ¼ 79:2 GPaÞ of 5 cm radius is under the uniform stress

field: T½ � ¼
6 2 0

2 �3 0

0 0 0

2
4

3
5MPa. Find the change of volume for the sphere.

5.15 Given a motion x1 ¼ X1 þ k X1 þ X2ð Þ; x2 ¼ X2 þ k X1 � X2ð Þ, show that for a function f ða; bÞ ¼ ab,

(a) f ðx1; x2Þ ¼ f ðX1;X2Þ þ OðkÞ, @f x1; x2ð Þ
@x1

¼ @f X1;X2ð Þ
@X1

þ OðkÞ, where OðkÞ ! 0 as k ! 0.

5.16 Do the previous problem for f ða; bÞ ¼ a2 þ b2.

5.17 Given the following displacement field in an isotropic linearly elastic solid:

u1 ¼ kX3X2; u2 ¼ kX3X1; u3 ¼ kðX2
1 � X2

2Þ; k ¼ 10�4:

(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible

equilibrium stress field?

5.18 Given the following displacement field in an isotropic linearly elastic solid:

u1 ¼ kX2X3; u2 ¼ kX1X3; u3 ¼ kX1X2; k ¼ 10�4:

(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible

equilibrium stress field?

5.19 Given the following displacement field in an isotropic linearly elastic solid:

u1 ¼ kX2X3; u2 ¼ kX1X3; u3 ¼ kðX1X2 þ X2
3Þ; k ¼ 10�4

(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible

equilibrium stress field?

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.9–5.12 (A.1)
5.20 Show that for any function f (s), the displacement u1 ¼ f ðsÞ where s ¼ x1 � cLt satisfies the wave equa-

tion @2u1=@t
2 ¼ c2Lð@2u1=@x

2
1Þ.

5.21 Calculate the ratio of the phase velocities cL=cT for the following Poisson’s ratios: 1/3, 0.49, and 0.499.

5.22 Assume a displacement field that depends only on x2 and t, i.e., ui¼ ui(x2, t). Obtain the differential

equations that ui(x2, t) must satisfy to be a possible motion in the absence of body forces.
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5.23 Consider a linearly elastic medium. Assume the following form for the displacement field:

u1 ¼ e½ sin bðx3 � ctÞ þ a sin bðx3 þ ctÞ�; u2 ¼ u3 ¼ 0:

(a) What is the nature of this elastic wave (longitudinal, transverse, direction of propagation)?

(b) Find the strains and stresses, and determine under what condition(s) the equations of motion are

satisfied in the absence of body forces.

(c) Suppose that there is a boundary at x3¼ 0 that is traction free. Under what condition(s) will the

above motion satisfy this boundary condition for all time?

(d) Suppose that there is a boundary at x3¼ ℓ that is also traction free. What further conditions will be

imposed on the above motion to satisfy this boundary condition for all time?

5.24 Do the previous problem (Prob. 5.23) if the boundary x3¼ 0 is fixed (no motion) and x3¼ ℓ is traction
free.

5.25 Do Prob. 5.23 if the boundaries x3¼ 0 and x3¼ ℓ are both rigidly fixed (no motion).

5.26 Do Prob. 5.23 if the assumed displacement field is of the form:

u3 ¼ e sin bðx3 � ctÞ þ a sin bðx3 þ ctÞ½ �; u1 ¼ u2 ¼ 0:

5.27 Do the previous problem, Prob. 5.26, if the boundary x3¼ 0 is fixed (no motion) and x3¼ ℓ is traction
free (t¼ 0).

5.28 Do Prob. 5.26 if the boundaries x3¼ 0 and x3¼ ℓ are both rigidly fixed.

5.29 Consider the displacement field: ui ¼ uiðx1; x2; x3; tÞ. In the absence of body forces,

(a) obtain the governing equation for ui for the case where the motion is equivoluminal.

(b) obtain the governing equation for the dilatation e for the case where the motion is irrotational:

@ui=@xj ¼ @uj=@xi.

5.30 (a) Write a displacement field for an infinite train of longitudinal waves propagating in the direction of

3e1 þ 4e2. (b) Write a displacement field for an infinite train of transverse waves propagating in the

direction of 3e1 þ 4e2 and polarized in the x1x2 plane.

5.31 Solve for e2 and e3 in terms of e1 from the following two algebra equations:

e2ð cos 2a1Þ þ e3nð sin 2a3Þ ¼ e1 cos 2a1 (i)

e2 sin 2a1 � ðe3=nÞð cos 2a1Þ ¼ �e1 sin 2a1 (ii)

5.32 A transverse elastic wave of amplitude e1 incidents on a traction-free plane boundary. If the Poisson’s

ratio n ¼ 1=3, determine the amplitudes and angles of reflection of the reflected waves for the following

two incident angles: (a) a1¼ 0 and (b) a1¼ 15�.

5.33 Referring to Figure 5.11.1, consider a transverse elastic wave incident on a traction-free plane surface

(x2¼ 0) with an angle of incident a1 with the x2-axis and polarized normal to x1x2, the plane of inci-

dence. Show that the boundary condition at x2¼ 0 can be satisfied with only a reflected transverse wave

that is similarly polarized. What is the relation of the amplitudes, wavelengths, and direction of propa-

gation of the incident and reflected wave?

5.34 Do the problem of Section 5.11 (Reflection of Plane Elastic Waves, Figure 5.11-1) for the case where

the boundary x2¼ 0 is fixed.
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5.35 A longitudinal elastic wave is incident on a fixed boundary x2¼ 0 with an incident angle of a1 with the

x2 axis (similar to Figure 5.11-1). Show that in general there are two reflected waves, one longitudinal

and the other transverse (also polarized in the incident plane x1x2). Also, find the amplitude ratio of

reflected to incident elastic waves.

5.36 Do the previous problem (Prob. 5.35) for the case where x2¼ 0 is a traction-free boundary.

5.37 Verify that the thickness stretch vibration given by Eq. (5.12.3), i.e., u1 ¼ ðA cos kx1 þ B sin kx1Þ
ðC cos cLktþ D sin cLktÞ, does satisfy the longitudinal wave equation @2u1=@t

2 ¼ c2Lð@2u1=@x
2
1Þ.

5.38 (a) Find the thickness-stretch vibration of a plate, where the left face (x1¼ 0) is subjected to a forced

displacement u ¼ ða cos otÞe1 and the right face x1 ¼ ℓ is free to move. (b) Determine the values

of o that give resonance.

5.39 (a) Find the thickness stretch vibration if the x1¼ 0 face is being forced by a traction t ¼ b cosotð Þe1
and the right-hand face x1 ¼ ℓ is fixed. (b) Find the resonance frequencies.

5.40 (a) Find the thickness-shear vibration if the left-hand face x1¼ 0 has a forced displacement

u ¼ ða cosotÞe3 and the right-hand face x1 ¼ ℓ is fixed. (b) Find the resonance frequencies.

5.41 (a) Find the thickness-shear vibration if the left-hand face x1¼ 0 has a forced displacement

u ¼ aðcosot e2 þ sinot e3Þ and the right-hand face x1 ¼ ℓ is fixed, and (b) find the resonance

frequencies.

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.13–5.19 (A.2)
5.42 A cast-iron bar, 200 cm long and 4 cm in diameter, is pulled by equal and opposite axial force P at its

ends. (a) Find the maximum normal and shearing stresses if P ¼ 90; 000 N. (b) Find the total elongation

and lateral contraction ðEY ¼ 103 GPa; n ¼ 0:3Þ.
5.43 A composite bar, formed by welding two slender bars of equal length and equal cross-sectional area, is

loaded by an axial load P as shown in Figure P5.1. If Young’s moduli of the two portions are

E
ð1Þ
Y and E

ð2Þ
Y , find how the applied force is distributed between the two halves.

5.44 A bar of cross-sectional area A is stretched by a tensile force P at each end. (a) Determine the normal

and shearing stresses on a plane with a normal vector that makes an angle a with the axis of the bar.

(b) For what value of a are the normal and shearing stresses equal? (c) If the load carrying capacity

of the bar is based on the shearing stress on the plane defined by a¼ ao to be less than to, what is
the maximum allowable load P?

P

FIGURE P5.1
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5.45 A cylindrical bar that has its lateral surface constrained so that there can be no lateral expansion is

then loaded with an axial compressive stress T11 ¼ �s. (a) Find T22 and T33 in terms of s and the

Poisson’s ratio n, and (b) show that the effective Young’s modulus EYð Þeff � T11=E11 is given by

EYð Þeff ¼ ð1� nÞ=ð1� 2n� 2n2Þ.
5.46 Let the state of stress in a tension specimen be T11 ¼ s, with all other Tij¼ 0. (a) Find the components

of the deviatoric stress defined by To ¼ T� 1=3ð ÞTkkI. (b) Find the principal scalar invariants of To.

5.47 A circular cylindrical bar of length ℓ hangs vertically under gravity force from the ceiling. Let the x1
axis coincide with the axis of the bar and point downward, and let the point x1; x2; x3ð Þ ¼ 0; 0; 0ð Þ be
fixed at the ceiling. (a) Verify that the following stress field satisfies the equations of equilibrium in

the presence of the gravity force: T11 ¼ rg ℓ � x1ð Þ, all other Tij¼ 0, and (b) verify that the boundary

conditions of zero surface traction on the lateral surface and the lower end face are satisfied, and

(c) obtained the resultant force of the surface traction at the upper end face.

5.48 A circular steel shaft is subjected to twisting couples of 2700 Nm. The allowable tensile stress is

0.124 GPa. If the allowable shearing stress is 0.6 times the allowable tensile stress, what is the mini-

mum allowable diameter?

5.49 In Figure P5.2, a twisting torque Mt is applied to the rigid disc A. Find the twisting moments transmitted

to the circular shafts on either side of the disc.

5.50 What needs to be changed in the solution for torsion of a solid circular bar, obtained in Section 5.14, to

be valid for torsion of a hollow circular bar with inner radius a and outer radius b?

5.51 A circular bar of radius ro is under the action of axial tensile load P and twisting couples of magnitude

Mt. (a) Determine the stress throughout the bar. (b) Find the maximum normal and shearing stress.

5.52 Compare the twisting torque that can be transmitted by a shaft with an elliptical cross-section having

a major diameter equal to twice the minor diameter with a shaft of circular cross-section having a

diameter equal to the major diameter of the elliptical shaft. Both shafts are of the same material. Also

compare the unit twist (i.e., twist angle per unit length) under the same twisting moment. Assume that

the maximum twisting moment that can be transmitted is controlled by the maximum shearing

stress.

5.53 Repeat the previous problem except that the circular shaft has a diameter equal to the minor diameter of

the elliptical shaft.

A

Mt

1 2

FIGURE P5.2
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5.54 Consider torsion of a cylindrical bar with an equilateral triangular cross-section as shown in

Figure P5.3. (a) Show that a warping function ’ ¼ Cð3x22 x3 � x33Þ generates an equilibrium stress field.

(b) Determine the constant C so as to satisfy the traction-free boundary condition on the lateral surface

x2¼ a. With C so obtained, verify that the other two lateral surfaces are also traction free. (c) Evaluate

the shear stress at the corners and along the line x3¼ 0. (d) Along the line x3¼ 0, where does the great-

est shear stress occur?

5.55 Show from the compatibility equations that the Prandtl stress function c x2; x3ð Þ for torsion problem

must satisfy the equation
@2c
@x33

þ @2c
@x22

¼ constant.

5.56 Given that the Prandtl stress function for a rectangular bar in torsion is given by

c ¼ 32ma 0a2

p3

� � X1
n¼1;3;5

1

n3
�1ð Þ n�1ð Þ=2

1� cosh npx3=2að Þ
cosh npb=2að Þ

� �
cos

npx2
2a

The cross-section is defined by �a � x2 � a and� b � x3 � b. Assume b > a, (a) find the maximum

shearing stress, and (b) find the maximum normal stress and the plane on which it acts. To derive

Eq. (5.18.11) for the maximum shearing stress, use
X1
1;3;5

1

n2
¼ p2

8
.

5.57 Obtain the relationship between the twisting moment Mt and the twist angle per unit length a 0 for a rec-

tangular bar under torsion. Note: 1þ 1

34
þ 1

54
þ . . . ¼ p4

96
.

5.58 In pure bending of a bar, let ML ¼ M2e2 þM3e3 ¼ �MR, where e2 and e3 are not along the principal

axes, show that the flexural stress T11 is given by

T11 ¼ �M2I23 þM3I22
I33I22 � I23ð Þ x2 þM2I33 þM3I23

I33I22 � I23ð Þ x3:

5.59 From the strain components for pure bending, E11 ¼ M2x3
I22EY

; E22 ¼ E33 ¼ � nM2x3
I22EY

; E12 ¼ E13 ¼
E23 ¼ 0, obtain the displacement field.

5.60 In pure bending of a bar, let ML ¼ M2e2 þM3e3 ¼ �MR, where e2 and e3 are along the principal axes;

show that the neutral axis (that is, the axis on the cross-section where the flexural stress T11 is zero) is,
in general, not parallel to the couple vectors.

x2

x3

(−2a,0) (a,0)

FIGURE P5.3
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PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.20–5.37 (A.3)
5.61 For the plane strain problem, derive the biharmonic equation for the Airy stress function.

5.62 For the plane stress problem, derive the biharmonic equation for the Airy stress function.

5.63 Consider the Airy stress function ’ ¼ a1x21 þ a2x1x2 þ a3x22. (a) Verify that it satisfies the biharmonic

equation. (b) Determine the in-plane stresses T11, T12 and T22. (c) Determine and sketch the tractions

on the four rectangular boundaries x1 ¼ 0; x1 ¼ b; x2 ¼ 0; x2 ¼ c. (d) As a plane strain solution, deter-

mine T13, T23, T33 and all the strain components. (e) As a plane stress solution, determine T13, T23, T33
and all the strain components.

5.64 Consider the Airy stress function ’ ¼ ax21x2. (a) Verify that it satisfies the biharmonic equation.

(b) Determine the in-plane stresses T11, T12 and T22. (c) Determine and sketch the tractions on the four

rectangular boundaries x1 ¼ 0; x1 ¼ b; x2 ¼ 0; x2 ¼ c. (d) As a plane strain solution, determine T13,
T23, T33 and all the strain components. (e) As a plane stress solution, determine T13, T23, T33 and all

the strain components.

5.65 Consider the Airy stress function ’ ¼ aðx41 � x42Þ. (a) Verify that it satisfies the biharmonic equation.

(b) Determine the in-plane stresses T11, T12 and T22. (c) Determine and sketch the tractions on the four

rectangular boundaries x1 ¼ 0; x1 ¼ b; x2 ¼ 0; x2 ¼ c. (d) As a plane strain solution, determine T13,
T23, T33 and all the strain components. (e) As a plane stress solution, determine T13, T23, T33 and all

the strain components.

5.66 Consider the Airy stress function ’ ¼ ax1x22 þ x1x
3
2. (a) Verify that it satisfies the biharmonic equation.

(b) Determine the in-plane stresses T11, T12 and T22. (c) Determine the condition necessary for the trac-

tion at x2¼ c to vanish, and (d) determine the tractions on the remaining boundaries x1¼ 0, x1¼ b and

x2¼ 0.

5.67 Obtain the in-plane displacement components for the plane stress solution for the cantilever beam from

the following strain-displacement relations:

E11 ¼ @u1
@x1

¼ Px1x2
EYI

; E22 ¼ @u2
@x2

¼ � nPx1x2
EYI

; E12 ¼ P

4mI

� �
h2

4
� x22

� �
:

5.68 (a) Let the Airy stress function be of the form ’ ¼ f ðx2Þ cos mpx1
ℓ

. Show that the most general form of

f(x2) is:

f x2ð Þ ¼ C1 cos h lmx2 þ C2 sin h lmx2 þ C3x2 cos h lmx2 þ C4x2 sin h lmx2:

(b) Is the answer the same if ’ ¼ f ðx2Þ sin mpx1
ℓ

?

5.69 Consider a rectangular bar defined by �ℓ � x1 � ℓ;�c � x2 � c;�b � x3 � b, where b=ℓ is very

small. At the boundaries x2 ¼ �c, the bar is acted on by equal and opposite cosine normal stress

Am cos lmx1; where lm ¼ mp=ℓ (per unit length in x3 direction). (a) Obtain the in-plane stresses inside

the bar. (b) Find the surface tractions at x1 ¼ �ℓ. Under what conditions can these surface tractions be

removed without affecting T22 and T12 (except near x1 ¼ �ℓ)? How would T11 be affected by the

removal. Hint: Assume ’ ¼ f x2ð Þ cos lmx1; where lm ¼ mp=ℓ and use the results of the previous

problem.
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5.70 Verify that the equations of equilibrium in polar coordinates are satisfied by

Trr ¼ 1

r

@’

@r
þ 1

r2
@2’

@y2
; Tyy ¼ @2’

@r2
; Try ¼ � @

@r

1

r

@’

@y

� �
:

5.71 Obtain Trr ¼ 1

r

@’

@r
þ 1

r2

� �
@2’

@y2
from the transformation law

Trr Try
Tyr Tyy

� �
¼ cos y sin y

� sin y cos y

� �
T11 T12
T21 T22

� �
cos y � sin y
sin y cos y

� �

and T11 ¼ @2’

@x22
; T22 ¼ @2’

@x21
and T12 ¼ � @2’

@x1@x2
.

5.72 Obtain the displacement field for the plane strain solution of the axisymmetric stress distribution from

that for the plane stress solution obtained in Section 5.28.

5.73 Let the Airy stress function be ’ ¼ f ðrÞ sin ny; find the differential equation for f(r). Is this the same

ODE for f(r) if ’ ¼ f ðrÞ cos ny?
5.74 Obtain the four independent solutions for the following equation:

d2

dr2
þ 1

r

d

dr
� n2

r

� �
d2f

dr2
þ 1

r

df

dr
� n2

r
f

� �
¼ 0:

5.75 Evaluate
d

dn
rn cos nyð Þ

� �
n¼0

;
d

dn
rn sin nyð Þ

� �
n¼0

d

dn
r�nþ2 cos ny
� �� �

n¼1

and
d

dn
rn cos nyð Þ

� �
n¼1

:

5.76 In the Flamont problem (Section 5.37), if the concentrated line load F, acting at the origin on the surface

of a 2-D half-space (defined by �p=2 � y � p=2), is tangent to the surface ðy ¼ p=2Þ, show that

Trr ¼ � 2F

p

� �
sin y
r

; Tyy ¼ Try ¼ 0.

5.77 Verify that the displacement field for the Flamont problem under a normal force P is given by

ur ¼ � P

pEY
1� nð Þy sin yþ 2 ln r cos yf g; uy ¼ P

pEY
1þ nð Þ sin yþ 2 ln r sin y� 1� nð Þy cos yf g;

The 2-D half-space is defined by �p=2 � y � p=2.

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.38–5.46 (A.4)
5.78 Show that Eq. (5.38.6), i.e., u ¼ C� 1=½4ð1� nÞ�f grðx 	 Cþ FÞ can also be written as:

2mu ¼ �4ð1� vÞc þrðx 	 c þ fÞ where C ¼ �2ð1� nÞc=m;F ¼ �2ð1� nÞf=m.

5.79 Show that with ui ¼ Ci � 1

4ð1� nÞ
@

@xi
xnCn þ Fð Þ, the Navier equations become
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� m
2ð1� 2nÞ xn

@r2Cn

@xi
� 1� 4nð Þr2Ci þ @r2F

@xi

� �
þ Bi ¼ 0:

5.80 Consider the potential functions given in Eq. (5.38.32) (see Example 5.38.5), i.e.,

c ¼ cðRÞeR; f ¼ fðRÞ; where r2f ¼ d2f
dR2

þ 2

R

df
dR

¼ 0 and r2c ¼ d2c
dR2

þ 2

R

dc
dR

� 2c
R2

� �
eR ¼ 0:

Show that these functions generate the following displacements, dilatation and stresses as given in

Eqs. (5.38.35) to (5.38.38):

(a) Displacements: 2muR ¼ Rdc=dRþ ð�3þ 4nÞc þ df=dR; uy ¼ ub ¼ 0:
(b) Dilatation: e ¼ �½ 1� 2nð Þ=m�½dc=dRþ 2c=R�:
(c) Stresses: TRR ¼ 2n� 4ð Þdc=dRþ 2� 4nð Þc=Rþ d2f=dR2.

Tbb ¼ Tyy ¼ � ð2n� 1Þdc=dRþ 3c=R� ð1=RÞdf=dRf g:

5.81 Consider the potential functions given in Eq. (5.38.39) (see Example 5.38.6), i.e.,

c ¼ 0; f ¼ fðr; zÞ ¼ f̂ðR; bÞ; r2f ¼ r2f̂ ¼ 0; where ðr; y; zÞ and ðR; y; bÞ

are cylindrical and spherical coordinates, respectively, with z as the axis of symmetry, y the longitudinal

angle, and b the angle between z-axis and eR. Show that these functions generate the following dis-

placements, dilatation, and stresses as given in Eqs. (5.38.40) to (5.38.45):

In cylindrical coordinates:

(a) Displacements: 2mur ¼ @f=@r; uy ¼ 0; 2muz ¼ @f=@z:
(b) Dilatation: e¼ 0.

(c) Trr ¼ @2f=@r2; Tyy ¼ ð1=rÞ@f=@r; Tzz ¼ @2f=@z2; Ery ¼ Eyz ¼ 0; Trz ¼ @2f=@r@z.

In spherical coordinates:

(d) Displacements: 2muR ¼ @f̂=@R; uy ¼ 0; 2mub ¼ ð1=RÞ@f̂=@b.
(e) Dilatation: e¼ 0.

(f) Stresses:

TRR ¼ @2f̂=@R2; Tbb ¼ ð1=R2Þ@2f̂=@b2 þ ð1=RÞ@f̂=@R;
TRy ¼ Tyb ¼ 0; Tyy ¼ ð1=RÞ@f̂=@Rþ ð cot b=R2Þ@f̂=@b;

TRb ¼ ð1=RÞ@2f=@b@R� ð1/R2Þ@f̂=@b:
5.82 For the potential functions given in Eq. (5.38.46) (see Example 5.38.7), i.e.,

c ¼ cðR; bÞez; f ¼ 0;

where r2c ¼ 0, show that these functions generate the following displacements ui, dilatation e, and the

stresses Tij (in spherical coordinates) as given in Eqs. (5.38.47) to (5.38.50):

(a) Displacements:

2muR ¼ � ð3� 4nÞc � R@c=@Rf g cos b; 2mub ¼ ð3� 4nÞc sin bþ cos b@c=@bf g; uy ¼ 0:

(b) Dilatation:

2me ¼ �ð2� 4nÞ½ cos b@c=@R� ð sin b=RÞ@c=@b].
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(c) Stresses:

TRR ¼ �½2ð1� nÞ cos b@c=@R� R cos b@2c=@R2 � ð2n sin b=RÞ@c=@b�:

Tbb ¼ �½ 2n� 1ð Þ cos b@c=@R� ð2� 2nÞð sin b=RÞ@c=@b� ð cos b=RÞ@2c=@b2�:
Tyy ¼ � 2n� 1ð Þ cos b@c=@R� ½ 2n� 1ð Þ sinbþ 1= sin b�@c=R@bf g

TRb ¼ �½2ð1� nÞ cos b@c=R@b� cos b@2c=@b@R� sin bð1� 2nÞ@c=@R�
TRy ¼ Tyb ¼ 0:

5.83 Show that ð1=RÞ is a harmonic function (i.e., it satisfies the Laplace equation r2ð1=RÞ ¼ 0), where R is

the radial distance from the origin.

5.84 In Kelvin’s problem, we used the potential function c ¼ cez, where in cylindrical coordinates,

c ¼ A=R; R2 ¼ r2 þ z2. Using the results in Example 5.38.6, obtain the stresses.

5.85 Show that for ’ ¼ C ln ðRþ zÞ, where R2 ¼ r2 þ z2,

@2’=@r2 ¼ C z=R3 � 1= RðRþ zÞ½ �� �
:

5.86 Given the following potential functions:

c ¼ ð@’=@zÞez; f ¼ ð1� 2vÞ’ where ’¼ C ln Rþ z), R2¼ r2þz2:
�

From the results of Example 3.38.4 and Eqs. (i), (ii), and (iii) of Section 5.40, obtain

Trr ¼ C ð3r2z=R5Þ � ð1� 2nÞ=½RðRþ zÞ�� �
;

Tyy ¼ Cð1� 2nÞ �z=R3 þ 1=½RðRþ zÞ�� �
;

Tzz ¼ 3Cz3=R5; Trz ¼ 3Crz2=R5:

5.87 The stresses in the Boussinesq problem in cylindrical coordinates are given by

Trr ¼ � Fz

2p
3r2z

R5
� 1� 2nð Þ
RðRþ zÞ

8<
:

9=
;; Tyy ¼ �Fz 1� 2nð Þ

2p
� z

R3
þ 1

RðRþ zÞ

8<
:

9=
;;

Tzz ¼ � Fz

2p
3z3

R5
; Trz ¼ � Fz

2p
3rz2

R5
; Try ¼ Tyz ¼ 0:

Obtain the stresses in rectangular Cartesian coordinates.

5.88 Obtain the variation of Tzz along the z-axis for the case where the normal load on the surface is uniform

with intensity qo, and the loaded area is a circle of radius ro with its center at the origin.

5.89 For the potential function c ¼ D1R
�2 cos b ez, where (R, b, y) are the spherical coordinates with b as

the angle between ez and eR, obtain the following stresses.

~TRR ¼ 2 5� nð ÞD1R
�3 cos 2b� 2D1nR�3; ~TbR ¼ 2D1R

�3ð1þ nÞ cos b sinb:
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5.90 For the potential function
~f ¼ ~fðR; bÞ ¼ C1½R�3ð3 cos 2b� 1Þ=2� þ C2R

�1;

where (R, b, y) are the spherical coordinates with b as the azimuthal angle, obtain the following

stresses:

~TRR ¼ 6C1R
�5ð3 cos 2b� 1Þ þ 2C2R

�3; ~TbR ¼ 12C1R
�5 cos b sin b:

PART B: ANISOTROPIC LINEARLY ELASTIC SOLID

5.46 CONSTITUTIVE EQUATIONS FOR AN ANISOTROPIC LINEARLY ELASTIC SOLID
In Section 5.2, we concluded that due to the symmetry of the strain and the stress tensors Eij and Tij, respec-
tively, and the assumption that there exists a strain energy function U given by T ¼ ð1=2ÞCijklEijEkl, the

most general anisotropic linearly elastic solid requires 21 elastic constants for its description. We can

write the stress-strain relation for this general case in the following matrix notation (where

Cijkl ¼ Cijlk; Cijkl ¼ Cjikl, Cijkl ¼ Cklij):

T11

T22

T33

T23

T31

T12

2
6666666664

3
7777777775
¼

C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C1322 C1222

C1133 C2233 C3333 C2333 C1333 C1233

C1123 C2223 C2333 C2323 C1323 C1223

C1113 C1322 C1333 C1323 C1313 C1213

C1112 C1222 C1233 C1223 C1213 C1212

2
6666666664

3
7777777775

E11

E22

E33

2E23

2E31

2E12

2
6666666664

3
7777777775
: (5.46.1)

The indices in Eq. (5.46.1) are quite cumbersome, but they emphasize the tensorial character of the tensors T,
E and C. Eq. (5.46.1) is often written in the following “contracted form,” in which the indices are simplified,

or “contracted.”

T1

T2

T3

T4

T5

T6

2
6666666664

3
7777777775
¼

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

2
6666666664

3
7777777775

E1

E2

E3

E4

E5

E6

2
6666666664

3
7777777775
: (5.46.2)

We note that Eq. (5.46.2) can also be written in indicial notation as

Ti ¼ CijEj i ¼ 1; 2 . . . 6: (5.46.3)

However, it must be emphasized that the Cij’s are not components of a second-order tensor and Ti’s are not

those of a vector.

The symmetric matrix [C] is known as the stiffness matrix for the elastic solid. In the notation of

Eq. (5.46.2), the strain energy U is given by
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U ¼ 1

2
E1 E2 E3 E4 E5 E6½ �

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

2
6666664

3
7777775

E1

E2

E3

E4

E5

E6

2
6666664

3
7777775
: (5.46.4)

We require that the strain energy U be a positive definite function of the strain components. That is, it is zero

if and only if all strain components are zero; otherwise, it is positive. Thus, the stiffness matrix is said to be a

positive definite matrix that has among its properties (see the following example): (1) All diagonal elements

are positive, i.e., Cii > 0 (no sum on i for i¼ 1,2, . . . 6); (2) the determinant of [C] is positive, i.e., det C>0;

and (3) its inverse ½S� ¼ ½C��1
exists and is also symmetric and positive definite (see Example 5.46.1.) The

matrix [S] is known as the compliance matrix.
As mentioned at the beginning of this chapter, the assumption of the existence of a strain energy function

is motivated by the concept of elasticity, which implies that all strain states of an elastic body requires posi-

tive work to be done on it and the work is completely used to increase the strain energy of the body.

Example 5.46.1
Show that for the matrix [C] defined in Eq. (5.46.2), (a) all the diagonal elements are positive, i.e., Cii > 0 (no sum on i

for i ¼ 1,2, . . . 6), (b) not only the matrix [C] is positive definite, but all the submatrices

C11 C12

C12 C22

� �
;

C22 C23

C23 C33

� �
;

C11 C12 C13

C12 C22 C23

C13 C23 C33

2
4

3
5; etc:

are positive definite, (c) the determinant of a positive definite matrix is positive, and (d) the inverses of all positive defi-

nite matrices are also positive definite.

Solution
(a) Consider first the case where only E1 is nonzero, all other Ei¼ 0; then the strain energy is U ¼ C11E

2
1 =2. Now

U > 0; therefore C11 > 0. Similarly, if we consider the case where only E2 is nonzero, then U ¼ C22E
2
2 =2 so

that C22 > 0, etc. Thus, all diagonal elements are positive, i.e., Cii > 0 (no sum on i for i ¼ 1,2,. . .6) with

respect to any basis.

(b) Consider the case where only E1 and E2 are nonzero, then

2U ¼ E1 E2½ � C11 C12

C12 C22

� �
E1
E2

� �
> 0:

That is, the submatrix of [C] shown in the preceding equation is positive definite. Next, consider the case

where only E2 and E3 are nonzero; then

2U ¼ E2 E3½ � C22 C23

C23 C33

� �
E2
E3

� �
> 0:

That is, the submatrix of [C] shown in the preceding equation is positive definite. All such submatrices can be

shown to be positive definite in a similar manner.

(c) If a positive definite matrix [C] is not invertible, then there must be a nonzero column matrix [x] such that

[C][x]¼ [0]; therefore, ½x�T½C�½x� ¼ 0, which contradicts the assumption that [C] is positive definite. Thus, the

determinant of a positive definite matrix is nonzero, its inverse exists. Since the eigenvalues of the real sym-

metric matrix [C] are the positive diagonal elements of a diagonal matrix, the determinant of [C] is positive.
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(d) Consider [b]¼ [C] [a], where [a] is arbitrary. Let [S] denote the inverse of [C], then

½b�T ½S� ½b� ¼ ½b�T ½C�1� ½b� ¼ ½a�T ½C� ½C��1 ½C� ½a� ¼ ½a�T ½C� ½a� > 0:

That is, [b]T[S][b] > 0 so that [S] is also positive definite.

5.47 PLANE OF MATERIAL SYMMETRY
Let S1 be a plane whose normal is in the direction of e1. The transformation

e 0
1 ¼ �e1; e 0

2 ¼ e2; e 0
3 ¼ e3; (5.47.1)

describes a reflection with respect to the plane S1. This transformation can be more conveniently represented

by the tensor Q in the equation

e 0
i ¼ Qei; (5.47.2)

where

½Q� � Q1½ � ¼
�1 0 0

0 1 0

0 0 1

2
4

3
5: (5.47.3)

If the constitutive relations for a material, written with respect to the {ei} basis, remain the same under the

transformation [Q1], then we say that the plane S1 is a plane of material symmetry for that material. For a lin-

early elastic material, material symmetry with respect to the S1 plane requires that the components of Cijkl in

the equation

Tij ¼ CijklEkl; (5.47.4)

be exactly the same as C 0
ijkl in the equation

T 0
ij ¼ C 0

ijklE
0
kl; (5.47.5)

under the transformation Eqs. (5.47.2) and (5.47.3). That is,

C 0
ijkl ¼ Cijkl: (5.47.6)

When this is the case, restrictions are imposed on the components of the elasticity tensor, thereby reducing the

number of independent components. Let us first demonstrate this kind of reduction using a simpler example,

relating the thermal strain with the rise in temperature in the following.

Example 5.47.1
Consider a homogeneous continuum undergoing a uniform temperature change given by Dy ¼ y� yo. Let the relation

between the thermal strain eij and Dy be given by

eij ¼ aijðDyÞ;
where aij is the thermal expansion coefficient tensor. (a) If the plane S1 defined in Eq. (5.47.1) is a plane of symmetry

for the thermal expansion property of the material, what restriction must be placed on the components of aij? (b) If the
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plane S2 and S3, whose normal vectors are in the direction of e2 and e3, respectively, are also planes of symmetry,

what are the additional restrictions? In this case, the material is said to be orthotropic with respect to thermal expan-

sion. (c) If every plane perpendicular to the S3 plane is a plane of symmetry, what are the additional restrictions? In

this case, the material is said to be thermally transversely isotropic with e3 as its axis of symmetry. (d) If both e1 and e3
are axes of transverse isotropy, how many constants are needed to describe the thermal expansion behavior of the

material?

Solution
(a) Using the transformation law [see Eq. (2.18.5), Section 2.18, Chapter 2],

½a� 0 ¼ ½Q�T ½a� ½Q�; (i)

we obtain, with [Q1] given by Eq. (5.47.3),

a½ � 0 ¼
�1 0 0

0 1 0

0 0 1

2
64

3
75

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
64

3
75

�1 0 0

0 1 0

0 0 1

2
64

3
75 ¼

a11 �a12 �a13
�a21 a22 a23
�a31 a32 a33

2
64

3
75: (ii)

The requirement that a½ � ¼ a½ � 0 under [Q1] results in the following restrictions:

a12 ¼ �a12 ¼ 0; a21 ¼ �a21 ¼ 0; a13 ¼ �a13 ¼ 0; a31 ¼ �a31 ¼ 0: (iii)

Thus, only five coefficients are needed to describe the thermo-expansion behavior if there is one plane of

symmetry:

½a� ¼
a11 0 0

0 a22 a23
0 a32 a33

2
64

3
75: (iv)

(b) Corresponding to the S2 plane,

Q2½ � ¼
1 0 0

0 �1 0

0 0 1

2
64

3
75; so that a½ � 0 ¼

a11 0 0

0 a22 �a23
0 �a32 a33

2
64

3
75: (v)

The requirement that a½ � ¼ a½ � 0 under Q2, results in the following additional restrictions:

a23 ¼ a32 ¼ 0: (vi)

Thus, only three coefficients are needed to describe the thermo-expansion behavior if there are two mutually

orthogonal planes of symmetry. That is, for orthotropic thermal material,

½a� ¼
a11 0 0

0 a22 0

0 0 a33

2
64

3
75: (vii)

If the S3 is also a plane of symmetry, then

½Q3� ¼
1 0 0

0 1 0

0 0 �1

2
64

3
75 and a½ � ¼

a11 0 0

0 a22 0

0 0 a33

2
64

3
75: (viii)
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Thus, no further reduction takes place. That is, the symmetry with respect to S1 and S2 planes automatically

ensures the symmetry with respect to the S3 plane.

(c) All planes that are perpendicular to the S3 plane have their normal vectors parallel to the planes formed by e1
and e2. Let

e 0
1 ¼ cosbe1 þ sin be2; e 0

2 ¼ � sin be1 þ cos be2; e 0
3 ¼ e3: (ix)

First we note that the e1-plane corresponds to b¼ 0 and the e2-plane corresponds to b¼ 90o so that symme-

try with respect to the transformation given in Eq. (ix) includes orthotropic symmetry. Thus,

a½ � 0 ¼
cos b sin b 0

� sin b cos b 0

0 0 1

2
64

3
75

a11 0 0

0 a22 0

0 0 a33

2
64

3
75

cosb � sin b 0

sin b cosb 0

0 0 1

2
64

3
75; (x)

so that we have

a 0
11 ¼ a11 cos 2bþ a22 sin 2b; a 0

22 ¼ a11 sin 2bþ a22 cos 2b; a 0
33 ¼ a33;

a 0
12 ¼ a 0

21 ¼ �a11 sin b cosbþ a22 sin b cosb; a 0
13 ¼ 0; a 0

23 ¼ 0; a 0
31 ¼ 0; a 0

32 ¼ 0:
(xi)

Now, in addition, any Sb plane is a plane symmetry; therefore [see part (a)], a 0
12 ¼ 0 so that

a11 ¼ a22: (xii)

Thus, only two coefficients are needed to describe the thermal behavior of a transversely isotropic thermal

material.

(d) Finally, if the material is also transversely isotropic, with e1 as its axis of symmetry; then

a22 ¼ a33; (xiii)

so that

a11 ¼ a22 ¼ a33; (xiv)

and the material is isotropic with respect to thermal expansion, with only one coefficient needed for its descrip-

tion. This is the common case in elementary physics.

5.48 CONSTITUTIVE EQUATION FOR A MONOCLINIC LINEARLY ELASTIC SOLID
If a linearly elastic solid has one plane of material symmetry, it is called a monoclinic material. We shall

demonstrate that for such a material, there are 13 independent elasticity coefficients.

Let e1 be normal to the plane of material symmetry S1. Then by definition, under the change of basis

e 0
1 ¼ �e1; e 0

2 ¼ e2; e 0
3 ¼ e3; (5.48.1)

the components of the fourth-order elasticity tensor remain unchanged, i.e.,

C 0
ijkl ¼ Cijkl: (5.48.2)
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Now C 0
ijkl ¼ QmiQnjQrkQslCmnrs [see Section 2.19]; therefore, under Eq. (5.48.1),

Cijkl ¼ QmiQnjQrkQslCmnrs; (5.48.3)

where

Q11 ¼ �1; Q22 ¼ Q33 ¼ 1; and all other Qij ¼ 0: (5.48.4)

From Eqs. (5.48.3) and (5.48.4), we have

C1112 ¼ Qm1Qn1Qr1Qs2Cmnrs ¼ Q11Q11Q11Q22C1112 þ 0þ 0þ . . .þ 0 ¼ �1ð Þ3 þ1ð ÞC1112 ¼ �C1112: (5.48.5)

Thus

C1112 ¼ 0: (5.48.6)

Indeed, one can easily see that all Cijkl with an odd number of the subscript 1 are zero. That is, among the 21

independent coefficients, the following eight are zero:

C1112 ¼ C1113 ¼ C1222 ¼ C1223 ¼ C1233 ¼ C1322 ¼ C1323 ¼ C1333 ¼ 0; (5.48.7)

so that the constitutive equations have only 13 nonzero independent coefficients. Thus, the stress strain laws

for a monoclinic elastic solid having the x2x3 plane as the plane of symmetry are

T11
T22

T33
T23

T31

T12

2
66666664

3
77777775
¼

C1111 C1122 C1133 C1123 0 0

C1122 C2222 C2233 C2223 0 0

C1133 C2233 C3333 C2333 0 0

C1123 C2223 C2333 C2323 0 0

0 0 0 0 C1313 C1213

0 0 0 0 C1213 C1212

2
66666664

3
77777775

E11

E22

E33

2E23

2E31

2E12

2
66666664

3
77777775
: (5.48.8)

In contracted notation, the stiffness matrix is given by

½C� ¼

C11 C12 C13 C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 C34 0 0

C14 C24 C34 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C56 C66

2
66666664

3
77777775
: (5.48.9)

The coefficients in the stiffness matrix C must satisfy the conditions that each diagonal element

Cii > 0 no sum on i; for i ¼ 1; 2 . . . 6ð Þ and the determinant of every submatrix whose diagonal elements

are diagonal elements of the matrix C is positive definite (see Section 5.46).

5.49 CONSTITUTIVE EQUATION FOR AN ORTHOTROPIC LINEARLY ELASTIC SOLID
If a linearly elastic solid has two mutually perpendicular planes of material symmetry, say, S1 plane with unit

normal e1 and S2 plane with unit normal e2, then automatically the S3 plane with unit normal e3 is also a plane

of material symmetry. The material is called an orthotropic elastic material. We shall demonstrate that

for such a material, there are only nine independent elastic coefficients. For this solid, the coefficients
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Cijkl now must be invariant with respect to the transformation given by Eq. (5.48.1) of Section 5.48 as well as

the following transformation:

e 0
1 ¼ e1; e 0

2 ¼ �e2; e 0
3 ¼ e3: (5.49.1)

Thus, among the 13 Cijkl that appear in Eq. (5.48.9), those which have an odd number of the subscript 2 must

also be zero. For example,

C1123 ¼ Qm1Qn1Qr2Qs3Cmnrs ¼ Q11Q11Q22Q33C1123 þ 0þ 0þ . . . 0 ¼ ð1Þ2ð�1Þð1ÞC1123;
¼ �C1123 ¼ 0:

(i)

C2223 ¼ Qm2Qn2Qr2Qs3Cmnrs ¼ Q22Q22Q22Q33C2223 þ 0þ 0þ . . .þ 0 ¼ �1ð Þ3 1ð ÞC2223;

¼ �C2223 ¼ 0:
(ii)

Thus,

C1123 ¼ C2223 ¼ C2333 ¼ C1213 ¼ 0: (5.49.2)

Therefore, there are now only nine independent coefficients and the constitutive equations become

T11
T22
T33
T23
T31
T12

2
6666664

3
7777775
¼

C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C1313 0

0 0 0 0 0 C1212

2
6666664

3
7777775

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775
: (5.49.3)

Or, in contracted notation, the stiffness matrix is given by

½C� ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775
; (5.49.4)

where again, each diagonal element Cii > 0 no sum on ið Þ for i ¼ 1; 2; . . . 6 and the determinant

of every submatrix whose diagonal elements are diagonal elements of the matrix C is positive definite.

That is,

det
C11 C12

C21 C22

� �
> 0; det

C11 C13

C31 C33

� �
> 0; det

C22 C23

C32 C33

� �
> 0 and det C½ � > 0 (5.49.5)

5.50 CONSTITUTIVE EQUATION FOR A TRANSVERSELY ISOTROPIC LINEARLY
ELASTIC MATERIAL
If there exists a plane, say, S3-plane, such that every plane perpendicular to it is a plane of symmetry, then the

material is called a transversely isotropic material. The S3-plane is called the plane of isotropy and its normal

direction e3 is the axis of transverse isotropy.
Let e1; e2f g and e 0

1; e
0
2

� �
be two sets of orthonormal bases lying on the S3 plane where e

0
1 makes an angle

of b with the e1-axis. We have

e 0
1 ¼ cos be1 þ sin be2; e 0

2 ¼ � sin be1 þ cos be2; e 03 ¼ e3: (5.50.1)
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That is,

Q11 ¼ cos b; Q21 ¼ sin b; Q12 ¼ � sin b; Q22 ¼ cos b; Q31 ¼ Q32 ¼ 0; Q33 ¼ 1: (5.50.2)

Now, every b in Eq. (5.50.2) defines an orthonormal basis e 01; e
0
2; e

0
3

� �
with respect to which the material is

orthotropic. Thus for every b, we have, from the results of the previous section,

C 0
1112 ¼ C 0

1113 ¼ C 0
1222 ¼ C 0

1223 ¼ C 0
1233 ¼ C 0

1322 ¼ C 0
1323 ¼ C 0

1333;

¼ C 0
1123 ¼ C 0

2223 ¼ C 0
2333 ¼ C 0

1213 ¼ 0
(5.50.3)

including at b¼ 0,

C1112 ¼ C1113 ¼ C1222 ¼ C1223 ¼ C1233 ¼ C1322 ¼ C1323 ¼ C1333;

¼ C1123 ¼ C2223 ¼ C2333 ¼ C1213 ¼ 0:
(5.50.4)

Next, from Eq. (5.50.2), we have

C 0
1323 ¼ Qm1Qn3Qr2Qs3Cmnrs ¼ Qm1Q33Qr2Q33Cm3r3 ¼ Qm1Qr2Cm3r3

¼ Q11Q12C1313 þ Q11Q22C1323 þ Q21Q12C2313 þ Q21Q22C2323

¼ Q11Q12C1313 þ Q21Q22C2323:

(5.50.5)

That is,

C 0
1323 ¼ cos b sin b �C1313 þ C2323ð Þ: (5.50.6)

But, from Eq. (5.50.3), C 0
1323 ¼ 0; therefore,

C1313 ¼ C2323: (5.50.7)

Similar, C 0
1233 ¼ 0 leads to (see Prob. 5.96)

C1133 ¼ C2233: (5.50.8)

Furthermore, since Q21 ¼ �Q12 ¼ sin b; Q11 ¼ Q22 ¼ cos b; Q31 ¼ Q32 ¼ 0; Q33 ¼ 1 and C1122 ¼ C2211;
C1212 ¼ C2121 ¼ C1221 ¼ C2112; C1112 ¼ C1222 ¼ 0, we have

C 0
1112 ¼ Qm1Qn1Qr1Qs2Cmnrs ¼ Q11Q12

½Q11Q11C1111 � Q11Q22 � Q21Q21ð ÞC1122 � 2 Q11Q22 � Q21Q21ð ÞC1212 � Q21Q21C2222�
(5.50.9)

Thus, C 0
1112 ¼ 0 gives

cos 2bC1111 � cos 2b� sin 2b
� �

C1122 � 2 cos 2b� sin 2b
� �

C1212 � sin 2bC2222 ¼ 0: (5.50.10)

Similarly, we can obtain from the equation C 0
1222 ¼ 0 (see Prob. 5.97) that

sin 2bC1111 þ cos 2b� sin 2b
� �

C1122 þ 2 cos 2b� sin 2b
� �

C1212 � cos 2bC2222 ¼ 0: (5.50.11)

Adding Eqs. (5.50.10) and (5.50.11), or by taking b¼ p/4 in either equation, we obtain

C1111 ¼ C2222: (5.50.12)
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We note that the results expressed in Eqs. (5.50.7), (5.50.8), and (5.50.12) are quite self-evident in that,

with e3 as the axis of transverse symmetry, there is no distinction between the e1 basis and the e2 basis.

Finally, subtracting Eq. (5.50.10) from (5.50.11), we have

C1111 � 2C1122 � 4C1212 þ C2222ð Þ ¼ 0: (5.50.13)

Thus,

C1212 ¼ 1

2
C1111 � C1122ð Þ: (5.50.14)

Equations (5.50.12) and (5.50.14) can also be obtained from Eqs. (5.50.10) and (5.50.11) by taking b¼ p/
2 in these equations.

Thus, the number of independent coefficients reduces to five and we have, for a transversely isotropic

elastic solid with the axis of symmetry in the e3 direction, the following stress strain law:

T11
T22
T33
T23
T31
T12

2
6666664

3
7777775
¼

C1111 C1122 C1133 0 0 0

C1122 C1111 C1133 0 0 0

C1133 C1133 C3333 0 0 0

0 0 0 C1313 0 0

0 0 0 0 C1313 0

0 0 0 0 0 1=2ð Þ C1111 � C1122ð Þ

2
6666664

3
7777775

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775
; (5.50.15)

and in contracted notation, the stiffness matrix is

½C� ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1=2ð Þ C11 � C12ð Þ

2
6666664

3
7777775
: (5.50.16)

The elements of the stiffness matrix satisfy the condition

C11 > 0; C33 > 0; C44 > 0; C11 � C12 > 0;

det
C11 C12

C12 C11

" #
¼ C2

11 � C2
12 > 0; det

C11 C13

C13 C33

" #
¼ C11C33 � C2

13 > 0;

det

C11 C12 C13

C12 C11 C13

C13 C13 C33

2
664

3
775 ¼ C2

11C33 þ 2C12C
2
13 � 2C11C

2
13 � C33C

2
12 > 0:

(5.50.17)

5.51 CONSTITUTIVE EQUATION FOR AN ISOTROPIC LINEARLY ELASTIC SOLID
The stress-strain equations given in the last section are for a transversely isotropic elastic solid whose axis of

transverse isotropy is in the e3 direction. If, in addition, e1 is also an axis of transverse isotropy, then clearly,

we have

C2222 ¼ C3333 ¼ C1111; C1122 ¼ C1133; C1313 ¼ C1212 ¼ C1111 � C1122ð Þ=2: (5.51.1)
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Or, in contracted notation

C22 ¼ C33 ¼ C11; C12 ¼ C13; C44 ¼ C11 � C12ð Þ=2: (5.51.2)

There are now only two independent coefficients and the stress strain law is

T11
T22
T33
T23
T31
T12

2
6666664

3
7777775
¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C11 � C12ð Þ=2 0 0

0 0 0 0 C11 � C12ð Þ=2 0

0 0 0 0 0 C11 � C12ð Þ=2

2
6666664

3
7777775

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775
; (5.51.3)

where

C11 > 0; C11 � C12 > 0; C2
11 � C2

12 > 0; C3
11 þ 2C3

12 � 3C11C
2
12 > 0: (5.51.4)

The elements Cij are related to the Lamé’s constants l and m as follows:

C11 ¼ lþ 2m; C12 ¼ l; C11 � C12ð Þ ¼ 2m: (5.51.5)

5.52 ENGINEERING CONSTANTS FOR AN ISOTROPIC LINEARLY ELASTIC SOLID
Since the stiffness matrix is positive definite, the stress-strain law can be inverted to give the strain compo-

nents in terms of the stress components. They can be written in the following form:

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775
¼

1=EY �n=EY �n=EY 0 0 0

�n=EY 1=EY �n=EY 0 0 0

�n=EY �n=EY 1=EY 0 0 0

0 0 0 1=G 0 0

0 0 0 0 1=G 0

0 0 0 0 0 1=G

2
6666664

3
7777775

T11
T22
T33
T23
T31
T12

2
6666664

3
7777775
; (5.52.1)

whereas we already know from Section 5.4, EY is Young’s modulus, n is Poisson’s ratio, and G is the shear

modulus, and

G ¼ E

2 1þ nð Þ : (5.52.2)

The compliance matrix is positive definite. Therefore, the diagonal elements and the submatrices are all posi-

tive; that is,

EY > 0; G > 0; (5.52.3)

det
1=EY �n=EY

�n=EY 1=EY

� �
¼ 1=EYð Þ2 1� n2

� �
> 0; (5.52.4)

det

1=EY �n=EY �n=EY

�n=EY 1=EY �n=EY

�n=EY �n=EY 1=EY

2
4

3
5¼ 1=EYð Þ3 1� 2n3 � 3n2ð Þ
¼ 1=EYð Þ3 1� 2nð Þ 1þ nð Þ2 > 0:

(5.52.5)

Eqs. (5.52.4) and (5.52.5) state that

�1 < n < 1=2: (5.52.6)
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5.53 ENGINEERING CONSTANTS FOR A TRANSVERSELY ISOTROPIC LINEARLY
ELASTIC SOLID
For a transversely isotropic elastic solid, the symmetric stiffness matrix with five independent coefficients

can be inverted to give a symmetric compliance matrix, also with five independent constants. The strain-

stress equations can be written in the following form for the case where e3 is the axis of transverse

isotropy:

E11

E22

E33

2E23

2E31

2E12

2
66666664

3
77777775
¼

1=E1 �n21=E1 �n31=E3 0 0 0

�n21=E1 1=E1 �n31=E3 0 0 0

�n13=E1 �n13=E1 1=E3 0 0 0

0 0 0 1=G13 0 0

0 0 0 0 1=G13 0

0 0 0 0 0 1=G12

2
66666664

3
77777775

T11
T22

T33

T23

T31

T12

2
66666664

3
77777775
: (5.53.1)

The relations between Cij and the engineering constants can be obtained to be (see Prob. 5.99)

C11 ¼ E1

1þ n21ð Þ
1� n231 E1=E3ð Þ� 	

D
; C22 ¼ C11; C33 ¼ E1

1þ n21ð Þ
1� n221 E3=E1ð Þ� 	

D
; (5.53.2)

C12 ¼
E1 n21 þ n231E1=E3

� �
1þ n21ð ÞD ; C13 ¼ n31E1

D
¼ C23: (5.53.3)

where

D ¼ 1� n21 � 2n231 E1=E3ð Þ; (5.53.4)

and

C44 ¼ G13; C11 � C12ð Þ=2 ¼ G12: (5.53.5)

From Eq. (5.53.2), it can be obtained (see Prob. 5.100) that

G12 ¼ E1

2 1þ n21ð Þ : (5.53.6)

The compliance matrix is symmetric, so we have

n31=E3 ¼ n13=E1: (5.53.7)

We note that, with Eqs. (5.53.6) and (5.53.7), there are only five independent constants in the compliance

matrix. They are E1, E3, G12, G13, and n13. The meaning of these constants will be clear from the following

consideration:

(a) If T33 is the only nonzero stress component, then

E33 ¼ T33=E3; n31 ¼ �E11=E33 ¼ �E22=E33: (i)

Thus, E3 is the Young’s modulus in the e3 direction (the direction of the axis of transverse isotropy),

and n31 is the Poisson’s ratio for the transverse strain in the x1 or x2 direction when stressed in the x3
direction.
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(b) If T11 is the only nonzero stress component, then

E11 ¼ T11=E1; n21 ¼ �E22=E11 and n13 ¼ �E33=E11; (ii)

and if T22 is the only nonzero stress component, then

E22 ¼ T22=E1; n21 ¼ �E11=E22 and n13 ¼ �E33=E22: (iii)

Thus, E1 is the Young’s modulus in the e1 and e2 directions (indeed, any direction perpendicular to the

axis of transverse isotropy); n21 is the Poisson’s ratio for the transverse strain in the x2 direction when

stressed in the x1 direction, which is also the Poisson’s ratio for the transverse strain in the x1 direction
when stressed in the x2 direction; and n13 is the Poisson’s ratio for the strain in the e3 direction when

stressed in a direction in the plane of isotropy.

(c) From T12 ¼ 2G12E12; T23 ¼ 2G13E23; T31 ¼ 2G13E31, we see that G12 is the shear modulus in the

x1x2 plane (the plane of transverse isotropy) and G13 is the shear modulus in planes perpendicular

to the plane of transverse isotropy.

From the meaning of E1, n21, and G12, we see clearly why Eq. (5.53.6) is of the same form as that of the

relation among Young’s modulus, shear modulus, and Poisson’s ratio for an isotropic solid.

Since the compliance matrix is positive definite,

E1 > 0; E3 > 0; G12 > 0; G13 > 0; (5.53.8)

det
1=E1 �n21=E1

�n21=E1 1=E1

� �
¼ 1

E2
1

1� n221
� �

> 0; i:e:; � 1 < n21 < 1; (5.53.9)

det
1=E1 �n31=E3

�n31=E3 1=E3

� �
¼ 1

E1E3

1� n231
E1

E3

� �
> 0; i:e:; n231 <

E3

E1

or n13n31 < 1: (5.53.10)

The last inequality is obtained by using Eq. (5.53.7), i.e., n31=E3 ¼ n13=E1. We also have

det

1=E1 �n21=E1 �n31=E3

�n21=E1 1=E1 �n31=E3

�n31=E3 �n31=E3 1=E3

2
64

3
75 ¼ 1

E2
1E3

1� 2n21n231
E1

E3

0
@

1
A� 2n231

E1

E3

0
@

1
A� n221

2
4

3
5

¼ 1

E2
1E3

1� 2n231
E1

E3

0
@

1
A� n21

2
4

3
5 1þ n21ð Þ > 0:

(5.53.11)

Since 1þ n21ð Þ > 0, we have

1� 2n231
E1

E3

� �
> n21 or 1� 2n31n13 > n21: (5.53.12)

5.54 ENGINEERING CONSTANTS FOR AN ORTHOTROPIC LINEARLY
ELASTIC SOLID
For an orthotropic elastic solid, the symmetric stiffness matrix with nine independent coefficients can be

inverted to give a symmetric compliance matrix, also with nine independent constants. The strain-stress equa-

tions can be written
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E11

E22

E33

2E23

2E31

2E12

2
666666666664

3
777777777775
¼

1=E1 �n21=E2 �n31=E3 0 0 0

�n12=E1 1=E2 �n32=E3 0 0 0

�n13=E1 �n23=E2 1=E3 0 0 0

0 0 0 1=G23 0 0

0 0 0 0 1=G31 0

0 0 0 0 0 1=G12

2
666666666664

3
777777777775

T11

T22

T33

T23

T31

T12

2
666666666664

3
777777777775
; (5.54.1)

where

n21=E2 ¼ n12=E1; n31=E3 ¼ n13=E1; n32=E3 ¼ n23=E2: (5.54.2)

The meaning of the constants in the compliance matrix can be obtained in the same way as in the

previous section for the transversely isotropic solid. Thus, E1, E2 and E3 are the Young’s modulus in

the e1, e2 and e3 directions, respectively; G23, G31 and G12 are shear modulus in the x2x3, x1x3 and x1x2
planes, respectively, and nij is Poisson’s ratio for transverse strain in the j-direction when stressed in

the i-direction.
The relationship between Cij and the engineering constants are given by (see Prob. 5.101):

C11 ¼ 1� n23n32
E2E3D

; C22 ¼ 1� n31n13
E3E1D

; C33 ¼ 1� n12n21
E1E2D

; (5.54.3)

C12 ¼ 1

E2E3D
n21 þ n31n23ð Þ; C13 ¼ 1

E2E3D
n31 þ n21n32ð Þ;

C23 ¼ 1

E1E3D
n32 þ n31n12ð Þ;

(5.54.4)

where

D ¼ 1� 2n13n21n32 � n13n31 � n23n32 � n21n12½ �
E1E2E3

(5.54.5)

and

C44 ¼ G23; C55 ¼ G31; C66 ¼ G12: (5.54.6)

For the compliance matrix, being positive definite, its diagonal elements and the submatrices are all posi-

tive; therefore, we have the following restrictions (see Prob. 5.102):

E1 > 0; E2 > 0; E3 > 0; G23 > 0; G31 > 0; G12 > 0: (5.54.7)

n221 <
E2

E1

; n212 <
E1

E2

; n232 <
E3

E2

; n223 <
E2

E3

; n213 <
E1

E3

; n231 <
E3

E1

; (5.54.8)

and

1� 2n13n21n32 � n13n31 � n23n32 � n21n12 > 0: (5.54.9)
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5.55 ENGINEERING CONSTANTS FOR A MONOCLINIC LINEARLY ELASTIC SOLID
For a monoclinic elastic solid, the symmetric stiffness matrix with 13 independent coefficients can be inverted

to give a symmetric compliance matrix, also with 13 independent constants. The compliance matrix for the

case where the e1 plane is the plane of symmetric can be written as follows:

E11

E22

E33

2E23

2E31

2E12

2
6666664

3
7777775
¼

1=E1 �n21=E2 �n31=E3 �41=G4 0 0

�n12=E1 1=E2 �n32=E3 �42=G4 0 0

�n13=E1 �n23=E2 1=E3 �43=G4 0 0

�14=E1 �24=E2 �34=E3 1=G4 0 0

0 0 0 0 1=G5 m65=G6

0 0 0 0 m56=G5 1=G6

2
6666664

3
7777775

T11
T22
T33
T23
T31
T12

2
6666664

3
7777775
: (5.55.1)

The symmetry of the compliance matrix requires that

n21=E2 ¼ n12=E1; n31=E3 ¼ n13=E1; n32=E3 ¼ n23=E2;
�14=E1 ¼ �41=G4; �24=E2 ¼ �42=G4; �34=E3 ¼ �43=G4; m56=G5 ¼ m65=G6:

(5.55.2)

With Eqs. (5.55.2), there are only 13 independent constants in Eq. (5.55.1):

E1; E2; E3; G4; G5; G6; n12; n13; n23; �14; �24; �34 and m56:

If only T11 is nonzero, then the strain-stress law gives

E11 ¼ T11
E1

; n12 ¼ �E22

E11

; n13 ¼ �E33

E11

; 2E23 ¼ �14E11; (5.53.3)

and if only T22 is nonzero, then the strain-stress law gives

E22 ¼ T22
E2

; n21 ¼ �E11

E22

; n23 ¼ �E33

E22

; 2E23 ¼ �24E22; etc: (5.54.4)

Thus, E1, E2 and E3 are Young’s modulus in the x1, x2 and x3 directions, respectively, and again, nij is Pois-
son’s ratio for transverse strain in the j-direction when stressed in the i direction. We note also that for a

monoclinic elastic solid with the e1-plane as its plane of symmetry, a uniaxial stress in the x1-direction or

x2-direction produces a shear strain in the x2x3 plane also, with �ij as the coupling coefficients.

If only T12¼ T21 are nonzero, then

T12 ¼ 2G6E12 and 2E31 ¼ m65
T12
G6

; (5.55.5)

and if only T13¼ T31 are nonzero, then

T13 ¼ 2G5E13 and 2E12 ¼ m56
T13
G5

: (5.55.6)

Thus, G6 is the shear modulus in the x1x2 plane and G5 is the shear modulus in the x1x3 plane. Note also that

the shear stresses in the x1x2 plane produce, in addition to shear strain in the x1x2 plane but also shear strain in

the x1x3 plane, and vice versa, with mij as the coupling coefficients.

Finally, if only T23¼ T32 are nonzero, then

E11 ¼ �41
T23
G4

; E22 ¼ �42
T23
G4

; E33 ¼ �43
T23
G4

; T23 ¼ 2G4E23: (5.55.7)

We see that G4 is the shear modulus in the x2x3 plane, and the shear stress in this plane produces normal

strains in the three coordinate directions, with �ij as the normal stress-shear stress coupling coefficients.
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Obviously, due to the positive definiteness of the compliance matrix, all the Young’s moduli and the shear

moduli are positive. Other restrictions regarding the engineering constants can be obtained in the same way as

in the previous sections.

PROBLEMS FOR PART B
5.91 Demonstrate that if only E2 and E3 are nonzero, then Eq. (5.46.4) becomes

2U ¼ E2 E3½ � C22 C23

C32 C33

� �
E2

E3

� �
:

5.92 Demonstrate that if only E1 and E3 are nonzero, then Eq. (5.46.4) becomes

2U ¼ E1 E3½ � C11 C13

C31 C33

� �
E1

E3

� �
:

5.93 Write stress strain laws for a monoclinic elastic solid in contracted notation whose plane of symmetry

is the x1x2 plane.

5.94 Write stress strain laws for a monoclinic elastic solid in contracted notation whose plane of symmetry

is the x1x3 plane.

5.95 For transversely isotropic solid with e3 as the axis of transversely isotropy, show from the transforma-

tion law C 0
ijkl ¼ QmiQnjQrkQslCmnrs that C

0
1113 ¼ 0 (see Section 5.50).

5.96 Show that for a transversely isotropic elastic material with e3 as the axis of transverse isotropy,

C1133¼C2233, by demanding that each Sb plane is a plane of material symmetry (see Section 5.50).

5.97 Show that for a transversely isotropic elastic material with e3 as the axis of transverse isotropy (see

Section 5.50).

sinbð Þ2C1111 þ cos bð Þ2 � sin bð Þ2
h i

C1122 þ 2 cos bð Þ2 � sin bð Þ2
h i

C1212 � cos bð Þ2C2222 ¼ 0:

5.98 In Section 5.50, we obtained the reduction in the elastic coefficients for a transversely isotropic

elastic solid by demanding that each Sb plane is a plane of material symmetry. We can also obtain

the same reduction by demanding the C 0
ijkl be the same for all b. Use this procedure to obtain the result:

C1133¼C2233.

5.99 Invert the compliance matrix for a transversely isotropic elastic solid to obtain the relationship

between Cij and the engineering constants. That is, verify Eqs. (5.53.2) and (5.53.3) by inverting the

following matrix:

A½ � ¼
1=E1 �n21=E1 �n31=E3

�n21=E1 1=E1 �n31=E3

�n13=E1 �n13=E1 1=E3

2
4

3
5:

5.100 Obtain Eq. (5.53.6) from Eqs. (5.53.2) and (5.53.3).

5.101 Invert the compliance matrix for an orthotropic elastic solid to obtain the relationship between Cij and

the engineering constants.
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5.102 Obtain the restriction given in Eq. (5.54.8) for engineering constants for an orthotropic elastic solid.

5.103 Write down all the restrictions for the engineering constants for a monoclinic solid in determinant form

(no need to expand the determinants).

PART C: ISOTROPIC ELASTIC SOLID UNDER LARGE DEFORMATION

5.56 CHANGE OF FRAME
In classical mechanics, an observer is defined as a rigid body with a clock. In the theory of continuum mechan-

ics, an observer is often referred to as a frame. One then speaks of “a change of frame” to mean the transforma-

tion between the pair x; tf g in one frame to the pair {x*, t*} of a different frame, where x is the position vector

of a material point as observed by the unstarred frame, x* is that observed by the starred frame, and t is time,

which, in classical mechanics, may be taken to be the same (or differ by a constant) for the two frames. Since

the two frames are rigid bodies, the most general change of frame is given by [see Eq. (3.6.4)]

x* ¼ cðtÞ þQðtÞ x� xoð Þ; (5.56.1)

where c(t) represents the relative displacement of the base point xo, Q(t) is a time-dependent orthogonal

tensor, representing a rotation and possibly a reflection. The reflection is included to allow for the

observers to use different-handed coordinate systems. If one assumes that all observers use the same handed

system, the general orthogonal tensor Q(t) in the preceding equation can be replaced by a proper orthogonal

tensor.

It is important to note that a change of frame is different from a change of coordinate system. Each frame

can perform any number of coordinate transformations within itself, whereas a transformation between two

frames is given by Eq. (5.56.1).

The distance between two material points is called a frame-indifference scalar (or objective scalar)
because it is the same for any two observers. On the other hand, the speed of a material point obviously

depends on the observers as the observers in general move relative to each other. The speed is therefore

not frame-independent (nonobjective). We see, therefore, that though a scalar is by definition coordinate-

invariant, it is not necessarily frame-independent (or frame-invariant).
The position vector and the velocity vector of a material point are obviously dependent on the observers.

They are examples of vectors that are not frame indifferent. On the other hand, the vector connecting two

material points and the relative velocity of two material points are examples of frame-indifferent

vectors.

Let the position vector of two material points be x1, x2 in the unstarred frame and x*1; x
*
2 in the starred

frame; then we have, from Eq. (5.56.1),

x*1 ¼ cðtÞ þQðtÞ x1 � xoð Þ; x*2 ¼ cðtÞ þQðtÞ x2 � xoð Þ: (5.56.2)

Thus,

x*1 � x*2 ¼ QðtÞ x1 � x2ð Þ; (5.56.3)

or

b* ¼ QðtÞb; (5.56.4)

where b* and b denote the same vector connecting the two material points. Vectors obeying Eq. (5.56.4) in a

change of frame given by Eq. (5.56.1) are called objective (or indifferent) vectors.
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Let T be a tensor that transforms a frame-indifferent vector b into a frame-indifferent vector c, i.e.,

c ¼ Tb (5.56.5)

and let T* be the same tensor as observed by the starred frame, then

c* ¼ T*b*: (5.56.6)

Since b and c are objective vectors, c*¼Qc and b*¼Qb, so that

c* ¼ Qc ¼ QTb ¼ QTQTb*: (5.56.7)

That is, T*b* ¼ QTQTb*. Since this is to be true for all b*, we have

T* ¼ QTQT: (5.56.8)

Tensors obeying Eq. (5.56.8) in a change of frame [described by Eq. (5.56.1)] are called objective tensors.
In summary, objective (or frame-indifferent) scalars, vectors, and tensors are those that obey the following

transformation law in a change of frame x* ¼ cðtÞ þQðtÞ x� xoð Þ:
Objective scalar: a* ¼ a
Objective vector: b* ¼ QðtÞb
Objective tensor: T* ¼ QðtÞTQTðtÞ

Example 5.56.1
Show that (a) dx is an objective vector and (b) ds � jdxj is an objective scalar.

Solution
(a) From Eq. (5.56.1), x� ¼ cðtÞ þ QðtÞ x� xoð Þ, we have

x� þ dx� ¼ cðtÞ þ QðtÞ xþ dx� xoð Þ; (5.56.9)

therefore,

dx� ¼ QðtÞdx; (5.56.10)

so that dx is an objective vector.

(b) From Eq. (5.56.10)

ds�ð Þ2 ¼ dx� 	 dx� ¼ QðtÞdx 	 QðtÞdx ¼ dx 	 QTQdx ¼ dx 	 dx ¼ dsð Þ2: (5.56.11)

That is, ds*¼ ds so that ds is an objective scalar.

Example 5.56.2
Show that in a change of frame, (a) the velocity vector v transforms in accordance with the following equation and is

therefore nonobjective:

v� ¼ QðtÞvþ _QðtÞ x� xoð Þ þ _cðtÞ; (5.56.12)
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and (b) the velocity gradient transforms in accordance with the following equation and is also nonobjective:

r�v� ¼ QðtÞ rvð ÞQTðtÞ þ _QQT: (5.56.13)

Solution
(a) From Eq. (5.56.1)

dx�

dt
¼ _cðtÞ þ _QðtÞ x� xoð Þ þ QðtÞv: (5.56.14)

That is,

v� ¼ QðtÞvþ _cðtÞ þ _QðtÞ x� xoð Þ: (5.56.15)

This is not the transformation law for an objective vector; therefore, the velocity vector is nonobjective.

(b) From Eq. (5.56.15), we have

v� x� þ dx�; tð Þ ¼ QðtÞv xþ dx; tð Þ þ _cðtÞ þ _QðtÞ xþ dx� xoð Þ; (5.56.16)

and

v� x�; tð Þ ¼ QðtÞv x; tð Þ þ _cðtÞ þ _QðtÞ x� xoð Þ: (5.56.17)

Subtraction of the preceding two equations gives

r�v�ð Þdx� ¼ QðtÞ rvð Þdxþ _QðtÞdx: (5.56.18)

But dx� ¼ QðtÞdx; therefore,

r�v�ð ÞQðtÞ � QðtÞ rvð Þ � _QðtÞ
h i

dx ¼ 0: (5.56.19)

Thus,

r�v� ¼ QðrvÞQT þ _QQT: (5.56.20)

Example 5.56.3
Show that in a change of frame, the deformation gradient F transforms according to the equation

F� ¼ QðtÞF: (5.56.21)

Solution
We have, for the starred frame,

dx� ¼ F�dX�; (5.56.22)

and for the unstarred frame,

dx ¼ FdX: (5.56.23)

In a change of frame, dx and dx* are related by Eq. (5.56.10), that is, dx� ¼ QðtÞdx, thus,
QðtÞdx ¼ F�dX� (5.56.24)
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Using Eq. (5.56.23), we have

QðtÞFdX ¼ F*dX*: (5.56.25)

Now, both dX and dX* denote the same material element at the fixed reference time to; therefore, without
loss of generality, we can take Q toð Þ ¼ I, so that dX¼ dX*, and we arrive at Eq. (5.56.21).

Example 5.56.4
Derive the transformation law for (a) the right Cauchy-Green deformation tensor and (b) the left Cauchy-Green

deformation tensor.

Solution
(a) The right Cauchy-Green tensor C is related to the deformation gradient F by

C ¼ FTF: (5.56.26)

Thus, from the results of the last example,

C� ¼ F�ð ÞTF� ¼ QFð ÞTQF ¼ FTQTQF ¼ FTF: (5.56.27)

That is,

C� ¼ C: (5.56.28)

Equation (5.56.28) states that the right Cauchy-Green tensor C is nonobjective.

(b) The left Cauchy-Green tensor B is related to the deformation gradient F by

B ¼ FFT: (5.56.29)

Thus,

B� ¼ F�F�T ¼ QF QFð ÞT ¼ QFFTQT: (5.56.30)

That is,

B� ¼ QðtÞBQðtÞT: (5.56.31)

Equation (5.56.31) states that the left Cauchy-Green tensor is objective (frame-independent).

We note that it can be easily proved that the inverse of an objective tensor is also objective (see Prob. 5.104) and

that the identity tensor is obviously objective. Thus, both the left Cauchy-Green deformation tensor B and the Eulerian

strain tensor e ¼ ðI� B�1Þ=2 are objective, whereas the right Cauchy-Green deformation tensor C and the Lagrangian

strain tensor E ¼ C� Ið Þ=2 are nonobjective.

It can be shown (see Prob. 5.107) that in a change of frame, the material derivative of an objective tensor T trans-

forms in accordance with the equation

_T
� ¼ _QTQTðtÞ þ QðtÞ _TQTðtÞ þ QðtÞT _QT

: (5.56.32)

Thus, the material time derivative of an objective tensor is, in general, nonobjective.
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5.57 CONSTITUTIVE EQUATION FOR AN ELASTIC MEDIUM UNDER LARGE
DEFORMATION
As in the case of the infinitesimal theory of an elastic body, the constitutive equation relates the state of stress

to the state of deformation. However, in the case of finite deformation, there are different finite deformation

tensors (left Cauchy-Green tensor B, right Cauchy-Green tensor C, Lagrangian strain tensor E, etc.) and dif-

ferent stress tensors (Cauchy stress tensors and the two Piola-Kirchhoff stress tensors) defined in Chapters 3

and 4, respectively. It is not immediately clear what stress tensor is to be related to what deformation tensor.

For example, if one assumes that T¼T(C), where T is Cauchy stress tensor and C is the right Cauchy-Green

tensor, then it can be shown (see Example 5.57.2) that this is not an acceptable form of constitutive equation,

because the law will not be frame-indifferent. On the other hand, if one assumes T¼T(B), then this law is

acceptable in that it is independent of observers, but it is limited to isotropic material only (see Example

5.57.4).

The requirement that a constitutive equation must be invariant under the transformation Eq. (5.56.1)

(i.e., in a change of frame), is known as the principle of material indifference. In applying this principle,

we shall insist that force and, therefore, the Cauchy stress tensor be frame-indifferent. That is, in a change

of frame,

T* ¼ QTQT: (5.57.1)

Example 5.57.1
Show that (a) in a change of frame, the first Piola-Kirchhoff stress tensor, defined by To � JT F�1


 �T
; J ¼ jdetFj,

transforms in accordance with the equation

T�o � QðtÞTo: (5.57.2)

(b) In a change of frame, the second Piola-Kirchhoff stress tensor, defined by ~T ¼ JF�1T F�1

 �T

, transforms in accor-

dance with the equation

~T
� ¼ ~T: (5.57.3)

Solution
(a) From Eq. (5.56.21), we have, in a change of frame, F� ¼ QðtÞF. Thus,

J� ¼ jdetF�j ¼ jdet QðtÞF½ �j ¼ j detQðtÞ½ � detF½ �j ¼ J: (5.57.4)

Also, T� ¼ QTQT; thus,

T�o � J�T�ðF��1ÞT ¼ JQTQT½ðQFÞ�1�T ¼ JQTQTðF�1QTÞT

¼ JQTQTQðF�1ÞT ¼ JQTðF�1ÞT ¼ QJTðF�1ÞT ¼ QTo:

(b) The derivation is similar to (a) (see Prob. 5.110).
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Example 5.57.2
Assume that for some elastic medium, the Cauchy stress T is proportional to the right Cauchy-Green tensor C.

Show that this assumption does not result in a frame-indifferent constitutive equation and is therefore not

acceptable.

Solution
The assumption states that for the starred frame,

T� ¼ aC�; (5.57.5)

and for the unstarred frame,

T ¼ aC; (5.57.6)

where we note that since the same material is considered by the two frames, the proportional constant must be the

same. Now, from Eqs. (5.57.1) and (5.56.28), we have

T� ¼ QTQT and C� ¼ C;

thus Eq. (5.57.5) becomes

QTQT ¼ aC ¼ T: (5.57.7)

The only T for the preceding equation to be true is T ¼ �aI. Thus, Eq. (5.57.6) is not an acceptable constitutive

equation.

More generally, if we assume that the Cauchy stress is a function of the right Cauchy-Green tensor, then for the

starred frame T� ¼ f C�ð Þ and for the unstarred frame T¼ f (C), where f is the same function for both frames because it

is for the same material. Again, in a change of frame, QTQT ¼ f ðCÞ ¼ T. That is, again, T¼ f (C) is not acceptable.

Example 5.57.3
Assume that the second Piola-Kirchhoff stress tensor ~T is a function of the right Cauchy-Green deformation tensor C.

Show that it is an acceptable constitutive equation.

Solution
We have, according to the assumption,

~T ¼ f Cð Þ; (5.57.8)

and

~T
� ¼ f C�ð Þ; (5.57.9)

where we demand that both frames (the starred and the unstarred) have the same function f for the same material.

Now, in a change of frame, the second Piola-Kirchhoff stress tensor, ~T ¼ jðdet FÞjF�1TðF�1ÞT, is transformed as [see

Eq. (5.57.3) and Prob. 5.110]:

~T
� ¼ ~T: (5.57.10)

Therefore, in a change of frame, the equation ~T
� ¼ f C�ð Þ does transform into ~T ¼ f Cð Þ, which shows that the

assumption is acceptable. In fact, it can be shown that Eq. (5.57.8) is the most general constitutive equation for

an anisotropic elastic solid (see Prob. 5.111).
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Example 5.57.4
Show that T¼ f(B), where T is the Cauchy stress tensor and B is the left Cauchy-Green deformation tensor, is an

acceptable constitutive law for an isotropic elastic solid.

Solution
For the starred frame

T� ¼ f B�ð Þ; (5.57.11)

and for the unstarred frame,

T ¼ f Bð Þ; (5.57.12)

where both frames have the same function f. In a change of frame, from Eqs. (5.57.1) and (5.56.31), we have

T� ¼ QTQT and B� ¼ QBQT: (5.57.13)

Thus,

QTQT ¼ f QBQT

 �

: (5.57.14)

That is, in order that the equation T¼ f(B) be acceptable as a constitutive law, it must satisfy the condition given

by the preceding equation, Eq. (5.57.14). In matrix form, Eqs. (5.57.12) and (5.57.14) are T½ � ¼ fðBÞ½ � and

Q½ � T½ � Q½ �T ¼ ½fð Q½ � B½ � Q½ �TÞ�, respectively. Now if we view these two matrix equations as those corresponding to

changes of rectangular Cartesian bases, then we come to the conclusion that the constitutive equation, given by

Eq. (5.57.12), describes an isotropic material because both matrix equations have the same function f for any [Q].

We note that Eq. (5.57.14) can also be written as

QfðBÞQT ¼ f QBQT

 �

: (5.57.15)

A function f satisfying the preceding equation is known as an isotropic function.

A special case of the preceding constitutive equation is given by

T ¼ aB; (5.57.16)

where a is a constant. Eq. (5.57.16) describes a so-called Hookean solid.

5.58 CONSTITUTIVE EQUATION FOR AN ISOTROPIC ELASTIC MEDIUM
From the examples in the last section, we see that the assumption that T¼ f(B), where T is the Cauchy stress

and B is the left Cauchy-Green deformation tensor, leads to the constitutive equation for an isotropic elastic

medium under large deformation and the function f(B) is an isotropic function satisfying the condition

[Eq. (5.57.15)].

It can be proved that in three-dimensional space, the most general isotropic function can be represented by

the following equation (see Appendix 5C.1):

fðBÞ ¼ aoIþ a1Bþ a2B
2; (5.58.1)

where ao, a1 and a2 are scalar functions of the principal scalar invariants of the tensor B, so that the general

constitutive equation for an isotropic elastic solid under large deformation is given by

T ¼ aoIþ a1Bþ a2B
2: (5.58.2)
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Since a tensor satisfies its own characteristic equation (see Example 5.58.1), we have

B3 � I1B
2 þ I2B� I3I ¼ 0; (5.58.3)

where I1, I2 and I3 are the principal scalar invariants of the tensor B. From Eq. (5.58.3), we have

B2 ¼ I1B� I2Iþ I3B
�1: (5.58.4)

Substituting Eq. (5.58.4) into Eq. (5.58.2), we obtain

T ¼ ’oIþ ’1Bþ ’2B
�1; (5.58.5)

where ’o, ’1 and ’2 are scalar functions of the principal scalar invariants of the tensor B. This is the alternate
form of the constitutive equation for an isotropic elastic solid under large deformations.

Example 5.58.1
Derive the Cayley-Hamilton Theorem, Eq. (5.58.3).

Solution
Since B is real and symmetric, there always exist three eigenvalues corresponding to three mutually perpendicular

eigenvector directions (see Section 2.23). The eigenvalue li satisfies the characteristic equation:

l3i � I1l
2
i þ I2li � I3 ¼ 0; i ¼ 1; 2; 3: (5.58.6)

The preceding three equations can be written in a matrix form as

l1 0 0
0 l2 0
0 0 l3

2
4

3
5
3

� I1

l1 0 0
0 l2 0
0 0 l3

2
4

3
5
2

þ I2

l1 0 0
0 l2 0
0 0 l3

2
4

3
5� I3

1 0 0
0 1 0
0 0 1

2
4

3
5 ¼

0 0 0
0 0 0
0 0 0

2
4

3
5: (5.58.7)

Now the matrix

l1 0 0
0 l2 0
0 0 l3

2
4

3
5

is the matrix for the tensor B using its eigenvectors as the Cartesian rectangular basis. Thus, Eq. (5.58.7) has the

following invariant form given by Eq. (5.58.3), i.e.,

B3 � I1B
2 þ I2B� I3I ¼ 0:

Equation (5.58.2), or equivalently, Eq. (5.58.5), is the most general constitutive equation for an isotropic

elastic solid under large deformation.

If the material is incompressible, then the constitutive equation is indeterminate to an arbitrary hydrostatic

pressure and the constitutive equation becomes

T ¼ �pIþ ’1Bþ ’2B
�1; (5.58.8)

where ’1 and ’2 are functions of the principal scalar invariants of B, I1, and I2 (I3¼ 1 for an incompressible

solid). If the functions ’1 and ’2 are derived from a potential function A of I1 and I2, such that

’1 ¼ 2r
@A

@I1
and ’2 ¼ �2r

@A

@I2
; (5.58.9)
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then

T ¼ �pIþ 2r
@A

@I1
B� 2r

@A

@I2
B�1: (5.58.10)

Such a solid is known as an incompressible hyperelastic isotropic solid. A well-known constitutive equa-

tion for such a solid is given by the following:

T ¼ �pIþ m
1

2
þ b

� �
B� m

1

2
� b

� �
B�1; (5.58.11)

where m > 0; � 1=2 � b � 1=2. This constitutive equation defines the Mooney-Rivlin theory for rubber (see

Encyclopedia of Physics, ed. S. Flugge, Vol. III/3, Springer-Verlag, 1965, p. 349). The strain energy function

corresponding to this constitutive equation is given by

rAðBÞ ¼ 1

2
m

1

2
þ b

� �
I1 � 3ð Þ þ 1

2
� b

� �
I2 � 3ð Þ

� �
(5.58.12)

5.59 SIMPLE EXTENSION OF AN INCOMPRESSIBLE ISOTROPIC ELASTIC SOLID
A rectangular bar of an incompressible isotropic elastic solid is pulled in the x1 direction. At equilibrium, the

ratio of the deformed length to the undeformed length (the stretch) is l1 in the x1 direction and l2 in the trans-

verse direction. Thus, the equilibrium configuration is given by

x1 ¼ l1x1; x2 ¼ l2x2; x3 ¼ l2x3; l1l
2
2 ¼ 1; (5.59.1)

where the condition l1l
2
2 ¼ 1 describes the isochoric condition (i.e., no change in volume).

The matrices of the left Cauchy-Green deformation tensor and its inverse are given by

B½ � ¼
l21 0 0

0 l22 0

0 0 l22

2
64

3
75; B½ ��1 ¼

1=l21 0 0

0 1=l22 0

0 0 1=l22

2
64

3
75: (5.59.2)

From the constitutive equation T ¼ �pIþ ’1Bþ ’2B
�1, the nonzero stress components are obtained to be

T11 ¼ �pþ ’1l
2
1 þ ’2=l

2
1; T22 ¼ T33 ¼ �pþ ’1l

2
2 þ ’2=l

2
2: (5.59.3)

Since these stress components are constants, the equations of equilibrium in the absence of body forces are

clearly satisfied. Also, from the boundary conditions that on the faces x2 ¼ �b, T22 ¼ 0 and on the faces

x3 ¼ �c, T33 ¼ 0, we obtain that everywhere in the rectangular bar,

T22 ¼ T33 ¼ 0: (5.59.4)

Thus, from Eq. (5.59.3), since l1l
2
2 ¼ 1, we have

p ¼ ’1l
2
2 þ ’2=l

2
2 ¼ ’1=l1 þ ’2l1: (5.59.5)

Therefore, the normal stress T11, needed to stretch the incompressible bar (which is laterally unconfined) in

the x1 direction for an amount given by the stretch l1, is given by

T11 ¼ l21 � 1=l1
� �

’1 þ 1=l21 � l1
� �

’2 ¼ l21 � 1=l1
� �

’1 � ’2=l1ð Þ: (5.59.6)
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5.60 SIMPLE SHEAR OF AN INCOMPRESSIBLE ISOTROPIC ELASTIC
RECTANGULAR BLOCK
The state of simple shear deformation is defined by the following equations relating the spatial coordinates xi
to the material coordinates Xi:

x1 ¼ X1 þ KX2; x2 ¼ X2; x3 ¼ X3:

The deformed configuration of the rectangular block is shown in plane view in Figure 5.60-1, where one

sees that the constant K is the amount of shear. The left Cauchy-Green tensor and its inverse are given by

B½ � ¼ FFT
� 	 ¼ 1 K 0

0 1 0

0 0 1

2
4

3
5 1 0 0

K 1 0

0 0 1

2
4

3
5 ¼

1þ K2 K 0

K 1 0

0 0 1

2
4

3
5: (5.60.1)

B½ ��1 ¼
1 �K 0

�K 1þ K2 0

0 0 1

2
4

3
5: (5.60.2)

The principal scalar invariants are

I1 ¼ 3þ K2; I2 ¼ 3þ K2; I3 ¼ 1: (5.60.3)

Thus, from Eq. (5.58.8),

T11 ¼ �pþ 1þ K2ð Þ’1 þ ’2; T22 ¼ �pþ ’1 þ 1þ K2ð Þ’2; T33 ¼ �pþ ’1 þ ’2;

T12 ¼ K ’1 � ’2ð Þ; T13 ¼ T23 ¼ 0:
(5.60.4)

Let

�P � �pþ ’1 þ ’2; (5.60.5)

then

T11 ¼ �Pþ ’1K
2; T22 ¼ �Pþ ’2K

2; T33 ¼ �P; T12 ¼ K ’1 � ’2ð Þ;
T13 ¼ T23 ¼ 0;

(5.60.6)

where ’1 and ’2 are functions of K2.

0
x1

x2

k

C

A

B

FIGURE 5.60-1
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The stress components are constants; therefore, the equations of equilibrium in the absence of body forces

are clearly satisfied. If the boundary X3 ¼ x3 ¼ constant plane is free of stress, then P¼ 0 so that

T11 ¼ ’1K
2; T22 ¼ ’2K

2; T33 ¼ 0; T12 ¼ K ’1 � ’2ð Þ; T13 ¼ T23 ¼ 0; (5.60.7)

where ’1 � ’2ð Þ is sometimes called the generalized shear modulus in the particular undistorted state used as

the reference. It is an even function of K, the amount of shear. The surface traction needed to maintain this

simple shear state of deformation is as follows.

On the top face in Figure 5.60-1, there is a normal stress, T22 ¼ ’2K
2, and a shear stress,

T12 ¼ K ’1 � ’2ð Þ. On the bottom face, there is an equal and opposite surface traction to that on the top face.

On the right face, which, at equilibrium, is no longer perpendicular to the x1-axis but has a unit normal

given by

n ¼ e1 � Ke2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p ; (5.60.8)

therefore, the surface traction on this deformed plane is given by

t½ � ¼ T½ � n½ � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p ’1K
2 K ’1 � ’2ð Þ

K ’1 � ’2ð Þ ’2K
2

" #
1

�K

� �

¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p ’2K

’1 � 1þ K2ð Þ’2

" #
:

(5.60.9)

Thus, the normal stress on this plane is

Tn ¼ t 	 n ¼ � K2

1þ K2
’1 � 2þ K2

� �
’2

� 	
; (5.60.10)

and the shear stress on this plane is, with unit tangent vector given by,

et ¼ Ke1 þ e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p ; (5.60.11)

Ts ¼ t 	 et ¼ K

1þ K2
’1 � ’2ð Þ: (5.60.12)

We see from the preceding equations that in addition to shear stresses, normal stresses are needed to main-

tain the simple shear state of deformation. We also note that

T11 � T22 ¼ KT12: (5.60.13)

This is a universal relation, independent of the coefficients ’i of the material.

5.61 BENDING OF AN INCOMPRESSIBLE ISOTROPIC RECTANGULAR BAR
It is easy to verify that the deformation of a rectangular bar into a curved bar as shown in Figure 5.61-1 can be

described by the following equations:

r ¼ 2aX þ bð Þ1=2; y ¼ cY; z ¼ Z; a ¼ 1=c;

where X; Y; Zð Þ are Cartesian material coordinates and r; y; zð Þ are cylindrical spatial coordinates. Indeed,

the boundary planes X ¼ �þa deform into cylindrical surfaces r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2aaþ b
p

and the boundary planes

Y ¼ þ�b deform into the planes y ¼ þ�cb.
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The left Cauchy-Green tensor B corresponding to this deformation field can be calculated using Eqs.

(3.29.59) to Eq. (3.29.64) in Chapter 3 (see Prob. 5.112):

B½ � ¼
a2=r2 0 0

0 c2r2 0

0 0 1

2
4

3
5 ¼

a2=r2 0 0

0 r2=a2 0

0 0 1

2
4

3
5: (5.61.1)

The inverse of B can be obtained to be

B�1
� 	 ¼ r2=a2 0 0

0 1= c2r2ð Þ 0

0 0 1

2
4

3
5 ¼

r2=a2 0 0

0 a2=r2 0

0 0 1

2
4

3
5: (5.61.2)

The principal scalar invariants of B are

I1 ¼ a2

r2
þ r2

a2
þ 1 ¼ I2; I3 ¼ a2c2 ¼ 1: (5.61.3)

We shall use the constitutive equation for a hyperelastic solid for this problem. From Eq. (5.58.10), with A
replacing rA since r is a constant, we have

Trr ¼ �pþ 2
@A

@I1

a2

r2
� 2

@A

@I2

r2

a2
; Tyy ¼ �pþ 2

@A

@I1

r2

a2
� 2

@A

@I2

a2

r2
; (5.61.4)

Tzz ¼ �pþ 2
@A

@I1
� 2

@A

@I2
; Try ¼ Trz ¼ Tyz ¼ 0; (5.61.5)

where the function A ¼ A I1; I2ð Þ is a function of r alone.
The equations of equilibrium in the absence of body forces are [see Eqs. (4.8.1) to (4.8.3)]

@Trr
@r

þ Trr � Tyy
r

¼ 0;
@Tyy
@y

¼ 0;
@Tzz
@z

¼ 0: (5.61.6)

From the second equation in Eq. (5.61.4) and the second equation in Eq. (5.61.6), we have @p=@y ¼ 0. Also,

the first equation in Eq. (5.61.5) and the third equation in Eq. (5.61.6) give @p=@z ¼ 0. Thus,

p ¼ p rð Þ: (5.61.7)

Y

b

b
θ=cb

θ=−cb

θ
o o

a a

r

X

r2

r1

FIGURE 5.61-1
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Now it is a simple matter to verify that

dA

dr
¼ @A

@I1

dI1
dr

þ @A

@I2

dI2
dr

¼ � 2a2

r3
þ 2r

a2

� �
@A

@I1
þ @A

@I2

� �
¼ � Trr � Tyy

r
; (6.61.8)

therefore, the r equation of equilibrium becomes

dTrr
dr

� dA

dr
¼ 0; (5.61.9)

so that

Trr ¼ A rð Þ þ K: (5.61.10)

Using the preceding equation and the r equation of equilibrium again, we have

Tyy ¼ r
dTrr
dr

þ Trr ¼ d rTrrð Þ
dr

¼ d rAð Þ
dr

þ K: (5.61.11)

The boundary conditions are

Trr r1ð Þ ¼ Trr r2ð Þ ¼ 0: (5.61.12)

Thus,

A r1ð Þ þ K ¼ 0 and A r2ð Þ þ K ¼ 0; (5.61.13)

from which we have

A r1ð Þ ¼ A r2ð Þ: (5.61.14)

Recalling that

A ¼ A I1; I2ð Þ where I1 ¼ I2 ¼ a2

r2
þ r2

a2
þ 1; (5.61.15)

we have

a2

r21
þ r21
a2

þ 1 ¼ a2

r22
þ r22
a2

þ 1; (5.61.16)

from which we can obtain

a2 ¼ r1r2: (5.61.15)

For given values of r1 and r2, Eq. (5.61.16) allows us to obtain a and b from the equations r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2aaþ b

p
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aaþ b

p
so that a ¼ r22 � r21

� �
=ð4aÞ and b ¼ r21 þ r22

� �
=2.

Using Eq. (5.61.11), the normal force per unit width (in z direction) on the end planes y ¼ �cb in the

deformed state is given by ðr2
r1

Tyydr ¼
ðr2
r1

d rAð Þ
dr

þ K

� �
dr ¼ r A rð Þ þ Kf g½ �r2r1 ¼ 0; (5.61.17)

where we have used the boundary conditions Eqs. (5.61.13). Thus, on these end planes, there are no net resultant

forces, only equal and opposite couples. Let M denote the flexural couple per unit width, then

M ¼
ðr2
r1

rTyydr ¼
ðr2
r1

r
dðrAÞ
dr

þ Kr

0
@

1
Adr ¼ r2AðrÞ� 	r2

r1
�
ðr2
r1

rAðrÞdr þ Kr2

2

2
4

3
5
r2

r1

¼ r22A r2ð Þ � r21A r1ð Þ �
ðr2
r1

rA rð Þdr þ Kr22
2

� Kr21
2

:

(5.61.18)
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That is,

M ¼ K

2
r21 � r22
� �� ðr2

r1

rA rð Þdr: (5.61.19)

In arriving at the preceding equation, we used Eqs. (5.61.13).

5.62 TORSION AND TENSION OF AN INCOMPRESSIBLE ISOTROPIC SOLID
CYLINDER
Consider the following equilibrium configuration for a circular cylinder:

r ¼ l1R; y ¼ Yþ KZ; z ¼ l3Z; l21l3 ¼ 1; (5.62.1)

where r; y; zð Þ are the spatial coordinates and R; Y; Zð Þ are the material coordinates for a material point,

and l1 and l3 are stretches for elements that were in the radial and axial direction, respectively. The equation

l21l3 ¼ 1 indicates that there is no change in volume [see I3 in Eq. (5.62.3)].

The left Cauchy-Green deformation tensor B and its inverse can be obtained from Eq. (3.29.19) to

Eq. (3.29.24) (note: ro � R; yo � Y; zo � Z in those equations) as (see Prob. 5.113)

B½ � ¼
l21 0 0

0 l21 þ r2K2 rKl3

0 rKl3 l23

2
6664

3
7775; B½ ��1 ¼

1=l21 0 0

0 1=l21 �Kr

0 �Kr l41 þ l21r
2K2

2
664

3
775: (5.62.2)

The principal scalar invariants of B are (note: l21l3 ¼ 1):

I1 ¼ 2

l3
þ r2K2 þ l23; I2 ¼ 2l3 þ 1

l23
1þ l3r2K2
� �

; I3 ¼ l41l
2
3 ¼ 1: (5.62.3)

Since Ii’s are functions of r only, ’i’s are functions of r only.
Now, from the constitutive equation T ¼ �pIþ ’1Bþ ’2B

�1, we have

Trr ¼ �pþ ’1l
2
1 þ

’2

l21
¼ �pþ ’1

l3
þ ’2l3; (5.62.4)

Tyy ¼ �pþ ’1 l21 þ r2K2
� �þ ’2

l21
¼ �pþ ’1

1

l3
þ r2K2

� �
þ ’2l3; (5.62.5)

Tzz ¼ �pþ ’1l
2
3 þ ’2l

2
1 l21 þ r2K2
� � ¼ �pþ ’1l

2
3 þ

’2

l3

1

l3
þ r2K2

� �
; (5.62.6)

Tyz ¼ Kl3r ’1 �
’2

l3

� �
; (5.62.7)

Trz ¼ Try ¼ 0: (5.62.8)

The equations of equilibrium in the absence of body forces are

@Trr
@r

þ Trr � Tyy
r

¼ 0;
@Tyy
@y

¼ 0;
@Tzz
@z

¼ 0: (5.62.9)
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Thus,
@p

@y
¼ @p

@z
¼ 0, so that

p ¼ p rð Þ: (5.62.10)

From the r equation of equilibrium, we have

r
dTrr
dr

¼ Tyy � Trr: (5.62.11)

The total normal force on a cross-section plane is given by

N ¼
ðro
o

Tzz2prdr: (5.62.12)

To evaluate the preceding integral, we first need to eliminate p from the equation for Tzz. This can be done in

the following way.

Let

Tzz ¼ �pþ tzz; Trr ¼ �pþ trr; Tyy ¼ �pþ tyy; (5.62.13)

where

trr ¼ ’1

l3
þ ’2l3; tyy ¼ ’1

1

l3
þ r2K2

� �
þ ’2l3; tzz ¼ ’1l

2
3 þ

’2

l3

1

l3
þ r2K2

� �
: (5.62.14)

Then we have, from Eq. (5.62.13),

2Tzz ¼ �2pþ 2tzz ¼ Trr � trrð Þ þ Tyy � tyyð Þ þ 2tzz ¼ Trr þ Tyy � trr � tyy þ 2tzz: (5.62.15)

Using Eq. (5.62.11), we can write Trr þ Tyy ¼ 2Trr þ Tyy � Trrð Þ ¼ 2Trr þ r
dTrr
dr

¼ 1

r

dr2Trr
dr

; thus,

2Tzz ¼ 1

r

d

dr
r2Trr
� �� trr � tyy þ 2tzz: (5.62.16)

Substituting the preceding equation in Eq. (5.62.12), we have

N ¼
ðro
o

2Tzzprdr ¼ p
ðro
o

d

dr
r2Trr
� �

dr þ p
ðro
o

2tzz � trr � tyyð Þrdr: (5.62.17)

Applying the boundary condition Trr roð Þ ¼ 0, the first integral in the right-hand side is zero; therefore,

N ¼ p
ðro
o

2tzz � trr � tyyð Þrdr: (5.62.18)

Now Eqs. (5.62.14) give

2tzz � trr � tyy ¼ 2 l23 �
1

l3

� �
’1 �

’2

l3

� �
� ’1 �

2’2

l3

� �
r2K2: (5.62.19)

Thus,

N ¼ 2p l23 �
1

l3

� �ðro
o

’1 �
’2

l3

� �
rdr � pK2

ðro
o

’1 �
2’2

l3

� �
r3dr: (5.62.20)

Since r ¼ l1R and l21l3 ¼ 1 [see Eq. (5.62.1)], rdr ¼ l21 RdR ¼ RdR=l3; therefore,

N ¼ 2p l3 � 1

l23

 !ðRo

o

’1 �
’2

l3

� �
RdR� pK2

l23

ðRo

o

’1 �
2’2

l3

� �
R3dR; (5.62.21)
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where Ro ¼ ro=l1. Similarly, the twisting moment can be obtained to be

M ¼
ðro
o

rTyz2prdr ¼ 2pKl3

ðro
o

r3 ’1 �
’2

l3

� �
dr ¼ 2pK

l3

ðRo

o

’1 �
’2

l3

� �
R3dR: (5.62.22)

In the preceding equations for M and N, ’1 and ’2 are functions of I1 and I2 and are therefore functions

of R.
If the angle of twist K is very small, then

I1 � 2

l3
þ l23; I2 � 2l3 þ 1

l23
; (5.62.23)

which are independent of R. As a consequence, ’1 and ’2 are independent of R, and the integrals in

Eq. (5.62.21) and (5.62.22) can be integrated to give

N ¼ pR2
o l3 � 1

l23

 !
’1 �

’2

l3

� �
þ O K2

� �
; (5.62.24)

and

M ¼ KpR4
o

2l3
’1 �

’2

l3

� �
: (5.62.25)

We see, therefore, that if the bar is prevented from extension or contraction (i.e., l3 ¼ 1), then twisting of the

bar with an angle of twisting K approaching zero gives rise to a small axial force N, which approaches zero

with K2. On the other hand, if the bar is free from axial force (i.e., N¼ 0), then as K approaches zero, there is

an axial stretch l3 such that l3 � 1ð Þ approaches zero with K2. Thus, when a circular bar is twisted with an

infinitesimal angle of twist, the axial stretch is negligible, as was shown earlier in the infinitesimal theory.

From Eq. (5.62.24) and (5.62.25), we can obtain for K!0

M

K
¼ R2

o

2

N

l23 � 1=l3
� � : (5.62.26)

Eq. (5.62.26) is known as Rivlin’s universal relation. This equation gives, for a small twisting angle, the tor-

sion stiffness as a function of l3, the stretch in the axial direction. We see, therefore, that the torsion stiffness

can be obtained from a simple-extension experiment that measures N as a function of the axial stretch l3.

APPENDIX 5C.1: REPRESENTATION OF ISOTROPIC TENSOR-VALUED FUNCTIONS
Let S ¼ FðTÞ be such that for every orthogonal tensor Q,

QSQT ¼ F QTQT
� �

: (i)

The function F(T) is said to be an isotropic function. Here in this appendix, we show that the most general

form of F(T) is

FðTÞ ¼ ao Iið Þ þ a1 Iið ÞTþ a2 Iið ÞT2; (ii)

or

FðTÞ ¼ fo Iið Þ þ f1 Iið ÞTþ f2 Iið ÞT�1: (iii)
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We will prove the preceding statement in several steps:

1. First, we show that the principal directions of T are also principal directions of S:
Let ei be a principal direction of T. Since T is symmetric, the principal directions e1; e2; e3f g form

an orthonormal basis with respect to which the matrix of T is diagonal. Let Q1 be a reflection about a

plane normal to e1, i.e., Q1e1 ¼ �e1, then

Q1½ � ¼
�1 0 0

0 1 0

0 0 1

2
4

3
5

e1 ; e2; e3f g

: (iv)

Thus,

Q1½ � T½ � Q1½ �T ¼
�1 0 0

0 1 0

0 0 1

2
4

3
5 T1 0 0

0 T2 0

0 0 T3

2
4

3
5 �1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

T1 0 0

0 T2 0

0 0 T3

2
4

3
5 ¼ T½ �: (v)

That is, Q1TQ
T
1 ¼ T. Now, by Eq. (i), Q1SQ

T
1 ¼ FðTÞ ¼ S, so that Q1S ¼ SQ1. Therefore,

Q1Se1 ¼ SQ1e1 ¼ �Se1: (vi)

The only vectors transformed by the reflection Q1 into their opposite are the multiples of e1; therefore,
Se1 ¼ m1e1. That is, e1 is a principal direction of S. Clearly, then, every principal direction of T is a

principal direction of S.

2. Next we show that for all orthogonal tensors Q, QTQT have the same set of eigenvalues as that

of T.
Let l be an eigenvalue of T. Then Tn ¼ ln, so that QTQT

� �ðQnÞ ¼ QTn ¼ lðQnÞ. Thus, l is

also an eigenvalue of QTQT. Also, if QTQT
� �

m ¼ lm, then T QTm
� � ¼ l QTm

� �
. That is, if l is

an eigenvalue of QTQT, then it is also an eigenvalue for T. Thus, all QTQT have the same set of

eigenvalues ðl1; l2; l3Þ of T, and all QSQT have the same set of eigenvalues ðm1; m2; m3Þ of S.
Now QSQT ¼ FðQTQTÞ; therefore, the eigenvalues ðl1; l2; l3Þ completely determine ðm1; m2; m3Þ
In other words,

m1 ¼ m̂1 l1; l2; l3ð Þ; m2 ¼ m̂2 l1; l2; l3ð Þ; m3 ¼ m̂3 l1; l2; l3ð Þ: (vii)

3. If ðl1; l2; l3Þ are distinct, then one can always find

ao l1; l2; l3ð Þ; a1 l1; l2; l3ð Þ and a3 l1; l2; l3ð Þ;
such that

m1 ¼ ao þ a1l1 þ a2l21;

m2 ¼ ao þ a1l2 þ a2l22;

m3 ¼ ao þ a1l3 þ a2l23:

(viii)

because the determinant

1 l1 l21

1 l2 l22

1 l3 l23

��������

��������
¼ l1 � l2ð Þ l2 � l3ð Þ l3 � l1ð Þ 6¼ 0: (ix)
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4. Eq. (viii) can be written in matrix form as

m1 0 0

0 m2 0

0 0 m3

2
4

3
5 ¼ ao

1 0 0

0 1 0

0 0 1

2
4

3
5þ a1

l1 0 0

0 l2 0

0 0 l3

2
4

3
5þ a2

l21 0 0

0 l22 0

0 0 l23

2
4

3
5: (x)

Now, since the eigenvectors of T coincide with the eigenvectors of S. Therefore, using the eigenvec-

tors as an orthonormal basis, the preceding matrix equation becomes

S ¼ ao lið ÞIþ a1 lið ÞTþ a2 lið ÞT2: (xi)

In the preceding equation, the eigenvalues li are determined from l3 � I1l
2 þ I2l� I3 ¼ 0, the char-

acteristic equation of T, where I1; I2; I3f g are the principal scalar invariants of T; therefore,

li ¼ li I1; I2; I3ð Þ. Thus, Eq. (xi) can be written

S ¼ bo Iið ÞI þ b1 Iið ÞTþ b2 Iið ÞT2: (xii)

5. If the characteristic equation for the tensor T has a repeated root l2 ¼ l3 6¼ l1, then the eigenvector

corresponding l1 is also an eigenvector for S with eigenvalue m1 ¼ m̂1 l1; l2ð Þ, and every eigenvector

(infinitely many) for the repeated root l2 is also an eigenvector for S, with one eigenvalue

m2 ¼ m̂2 l1; l2ð Þ. Thus,
m1 ¼ ao l1; l2ð Þ þ a1 l1; l2ð Þl1 and m2 ¼ ao l1; l2ð Þ þ a1 l1; l2ð Þl2; (xiii)

and as a consequence,

S ¼ bo Iið ÞIþ b1 Iið ÞT: (xiv)

6. If l1 ¼ l2 ¼ l3 ¼ l, then every direction is an eigenvector for T with eigenvalue l; therefore, every
direction is an eigenvector for S with eigenvalue m. Thus, m ¼ ao lð Þ, a function of l. As a

consequence,

S ¼ fo Iið ÞI: (xv)

PROBLEMS FOR PART C
5.104 Show that if a tensor is objective, then its inverse is also objective.

5.105 Show that the rate of deformation tensor D ¼ rvþ rvð ÞT
h i

=2 is objective. (See Example 5.56.2.)

5.106 Show that in a change of frame, the spin tensor W ¼ rv� rvð ÞT
h i.

2 transforms in accordance with

the equation W* ¼ QðtÞWQTðtÞ þ _QQT. (See Example 5.56.2.)

5.107 Show that in a change of frame, the material derivative of an objective tensor T transforms in accor-

dance with the equation _T* ¼ _QTQTðtÞ þQðtÞ _TQTðtÞ þQðtÞT _Q
T
, where a super-dot indicates mate-

rial derivative. Thus the material derivative of an objective tensor T is nonobjective.

5.108 The second Rivlin-Ericksen tensor is defined by A2 ¼ _A1 þ A1 rvð Þ þ rvð ÞTA1; where
_A1 � DA1=DT and A1 ¼ 2D ¼ rvþ rvð ÞT. Show that A2 is objective. (See Prob. 5.105 and Exam-

ple 5.56.2.)
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5.109 The Jaumann derivative of a second-order objective tensor T is _Tþ TW�WT, where W is the spin

tensor. Show that the Jaumann derivative of T is objective. (See Prob. 5.106 and Prob. 5.107.)

5.110 The second Piola-Kirchhoff stress tensor ~T is related to the first Piola-Kirchhoff stress tensor To by the

formula ~T ¼ F�1To, or to the Cauchy stress tensor T by ~T ¼ ðdet FÞF�1TðF�1ÞT. Show that, in a

change of frame, ~T* ¼ ~T. (See Example 5.56.3 and Example 5.57.1.)

5.111 Starting from the constitutive assumption that T ¼ H Fð Þ and T* ¼ HðF*Þ, where T is Cauchy

stress and F is deformation gradient, show that in order that the assumption be independent of ob-

servers, H Fð Þ must transform in accordance with the equation QTQT ¼ HðQFÞ. Choose Q ¼ RT

to obtain T ¼ RHðUÞRT, where R is the rotation tensor associated with F and U is the right stretch

tensor. Show that ~T ¼ h Uð Þ, where h ¼ ðdet UÞU�1HðUÞU�1. C ¼ U2; therefore, we may write

T ¼ f Cð Þ.
5.112 From r ¼ 2axþ bð Þ1=2; y ¼ cY; z ¼ Z; where a ¼ 1=c, obtain the right Cauchy-Green deformation

tensor B. Hint: Use formulas given in Chapter 3.

5.113 From r ¼ l1R; y ¼ Yþ KZ; z ¼ l3Z; where l21l3 ¼ 1, obtain the right Cauchy-Green deformation

tensor B. Hint: Use formulas given in Section 3.29, Chapter 3.

352 CHAPTER 5 The Elastic Solid



CHAPTER

Newtonian Viscous Fluid

6
Substances such as water and air are examples of fluids. Mechanically speaking, they are different from a

piece of steel or concrete in that they are unable to sustain shearing stresses without continuously deforming.

For example, if water or air is placed between two parallel plates with, say, one of the plates fixed and the

other plate applying a shearing stress, it will deform indefinitely with time if the shearing stress is not

removed. Also, in the presence of gravity, the fact that water at rest always conforms to the shape of its con-

tainer is a demonstration of its inability to sustain shearing stress at rest.

Based on this notion of fluidity, we define a fluid to be a class of idealized materials which, when in rigid

body motion (including the state of rest), cannot sustain any shearing stress. Water is also an example of a

fluid that is referred to as a liquid which undergoes negligible density changes under a wide range of loads,

whereas air is a fluid that is referred to as a gas which does otherwise. This aspect of behavior is generalized

into the concept of incompressible and compressible fluids. However, under certain conditions (low Mach

number flow), air can be treated as incompressible, and under other conditions (e.g., the propagation of the

acoustic waves), water has to be treated as compressible.

In this chapter, we study a special model of fluid which has the property that the stress associated with the

motion depends linearly on the instantaneous value of the rate of deformation. This model of fluid is known

as a Newtonian fluid or linearly viscous fluid, which has been found to describe adequately the mechanical

behavior of many real fluids under a wide range of situations. However, some fluids, such as polymeric solu-

tions, require a more general model (non-Newtonian fluids) for an adequate description. Non-Newtonian fluid

models are discussed in Chapter 8.

6.1 FLUIDS
Based on the notion of fluidity discussed in the previous paragraphs, we define a fluid to be a class of

idealized materials that, when in rigid body motions (including the state of rest), cannot sustain any shearing

stresses. In other words, when a fluid is in a rigid body motion, the stress vector on any plane at any point

is normal to the plane. That is, for any n,

Tn ¼ ln: (6.1.1)

It is easy to show from Eq. (6.1.1) that the magnitude of the stress vector l is the same for every plane

passing through a given point. In fact, let n1 and n2 be normal vectors to any two such planes; then we have

Tn1 ¼ l1n1 and Tn2 ¼ l2n2: (6.1.2)
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Thus,

n1 � Tn2 � n2 � Tn1 ¼ l2 � l1ð Þn1 � n2: (6.1.3)

Since n2 � Tn1 ¼ n1 � TTn2 and T is symmetric (T ¼ TT), the left side of Eq. (6.1.3) is zero. Thus,

l2 � l1ð Þn1 � n2 ¼ 0: (6.1.4)

Since n1 and n2 are any two vectors,

l1 ¼ l2: (6.1.5)

In other words, on all planes passing through a point, not only are there no shearing stresses, but also the nor-

mal stresses are all the same. We shall denote this normal stress by –p. Thus,

T ¼ �pI: (6.1.6)

Or, in component form,

Tij ¼ �pdij: (6.1.7)

The scalar p is the magnitude of the compressive normal stress and is known as the hydrostatic pressure.

6.2 COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS
What one generally calls a “liquid” such as water or mercury has the property that its density essentially

remains unchanged under a wide range of pressures. Idealizing this property, we define an incompressible

fluid to be one for which the density of every particle remains the same at all times, regardless of the state

of stress. That is, for an incompressible fluid,

Dr
Dt

¼ 0: (6.2.1)

It then follows from the equation of conservation of mass, Eq. (3.15.3),

Dr
Dt

þ r
@vk
@xk

¼ 0; (6.2.2)

that for an incompressible fluid,

@vk
@xk

¼ 0; (6.2.3)

or

div v ¼ 0: (6.2.4)

All incompressible fluids need not have a spatially uniform density (e.g., salt water with nonuniform salt

concentration with depth may be modeled as a nonhomogeneous fluid). If the density is also uniform, it is

referred to as a homogeneous fluid, for which r is constant everywhere.

Substances such as air and vapors that change their density appreciably with pressure are often treated as

compressible fluids. Of course, it is not hard to see that there are situations in which water has to be regarded

as compressible and air may be regarded as incompressible. However, for theoretical studies, it is convenient

to regard the incompressible and compressible fluids as two distinct kinds of fluids.
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6.3 EQUATIONS OF HYDROSTATICS
The equations of equilibrium in terms of stresses are [see Eq. (4.7.6)]

@Tij
@xj

þ rBi ¼ 0; (6.3.1)

where Bi are components of body forces per unit mass. With

Tij ¼ �pdij; (6.3.2)

Eq. (6.3.1) becomes

@p

@xi
¼ rBi; (6.3.3)

or

rp ¼ rB: (6.3.4)

In the case where Bi are components of the weight per unit mass, if we let the positive x3-axis point ver-
tically downward, we have

B1 ¼ 0; B2 ¼ 0; B3 ¼ g; (6.3.5)

so that

@p

@x1
¼ 0;

@p

@x2
¼ 0;

@p

@x3
¼ rg: (6.3.6)

Equations (6.3.6) state that p is a function of x3 alone, and the pressure difference between any two points,

say, point 2 and point 1 in the liquid, is simply

p2 � p1 ¼ rgh; (6.3.7)

where h is the depth of point 2 relative to point 1. Thus, the static pressure in the liquid depends only on the

depth. It is the same for all particles that are on the same horizontal plane within the same liquid.

If the fluid is in a state of rigid body motion (rate of deformation ¼ 0), then Tij is still given by Eq. (6.3.2),

but the right-hand side of Eq. (6.3.1) is equal to rai; where ai are the acceleration components of the fluid,

which moves like a rigid body, so that the governing equation is now given by

� @p

@xi
þ rBi ¼ rai: (6.3.8)

Example 6.3.1
A cylindrical body of radius r , length ℓ, and weight W is tied by a rope to the bottom of a container that is filled

with a liquid of density r. If the density of the body rB is less than that of the liquid, find the tension in the rope

(Figure 6.3-1).

Solution
Let pu and pb be the pressure at the upper and the bottom surfaces of the cylinder, respectively. Let T be the tension

in the rope. Then the equilibrium of the cylindrical body requires that

pb pr2
� �� pu pr2

� ��W � T ¼ 0:
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That is,

T ¼ pr2 pb � puð Þ �W:

Now, from Eq. (6.3.7),

pb � puð Þ ¼ rgℓ;

therefore,

T ¼ pr2rgℓ �W ¼ pr2ℓg r� rBð Þ:
We note that pr2ℓrg is the buoyancy force which is equal to the weight of the liquid displaced by the body.

Example 6.3.2
A tank containing a homogeneous fluid moves horizontally to the right with a constant acceleration a (Figure 6.3-2).

(a) Find the angle y of the inclination of the free surface and (b) find the pressure at any point P inside the fluid.

Solution
(a) With a1 ¼ a; a2 ¼ a3 ¼ 0; B1 ¼ B2 ¼ 0; and B3 ¼ g ; the equations of motion, Eq. (6.3.8) becomes

ra ¼ � @p

@x1
; 0 ¼ � @p

@x2
; 0 ¼ � @p

@x3
þ rg : (i)

Integration of the preceding equations give

p ¼ �rax1 þ rgx3 þ c: (ii)

r

pu

pb

ρ

Δ

FIGURE 6.3-1

0

h

p

θ a

x1

x3

FIGURE 6.3-2
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To determine the integration constant c, we note that on any point on the free surface, the pressure is equal to

the ambient pressure po: Let the origin of the coordinate axes (fixed respect to the earth) be location at a point

on the free surface at the instant of interest; then

c ¼ po: (iii)

Thus, the pressure inside the fluid at any point x1; x2; x3ð Þ is given by

p ¼ �rax1 þ rgx3 þ po: (iv)

To find the equation for the free surface where the pressure is po; we substitute p ¼ po in Eq. (iv) and obtain

x3 ¼ a

g
x1: (v)

Thus, the free surface is a plane with an angle of inclination given by

tan y ¼ dx3
dx1

¼ a

g
: (vi)

(b) Referring to Figure 6.3-2, we have x3 � hð Þ=x1 ¼ tan y; thus,

x3 ¼ x1 a=gð Þ þ h;

therefore,

p ¼ �rax1 þ rg h þ x1a

g

� �
þ po ¼ rgh þ po; (vii)

i.e., the pressure at any point inside the fluid depends only on the depth h of that point from the free surface

directly above it and the pressure at the free surface.

6.4 NEWTONIAN FLUIDS
When a shear stress is applied to an elastic solid, it deforms from its initial configuration and reaches an equi-

librium state with a nonzero shear deformation; the deformation will disappear when the shear stress is

removed. When a shear stress is applied to a layer of fluid (such as water, alcohol, mercury, or air), it will

deform from its initial configuration and eventually reach a steady state where the fluid continuously deforms

with a nonzero rate of shear, as long as the shear stress is applied. When the shear stress is removed, the fluid

will simply remain at the deformed state obtained prior to the removal of the shear stress. Thus, the state of

shear stress for a fluid in shearing motion is independent of shear deformation but is dependent on the rate of

shear. For such fluids, no shear stress is needed to maintain a given amount of shear deformation, but a defi-

nite amount of shear stress is needed to maintain a constant rate of shear deformation.

Since the state of stress for a fluid under rigid body motion (including rest) is given by an isotropic tensor,

in dealing with a fluid in general motion it is natural to decompose the stress tensor into two parts:

Tij ¼ �pdij þ T 0
ij; (6.4.1)
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where T 0
ij depend only on the rate of deformation in such a way that they are zero when the fluid is under rigid

body motion or rest (i.e., zero rate of deformation) and p is a scalar whose value is not to depend explicitly on

the rate of deformation.

We now define a class of idealized materials called Newtonian fluids as follows:

1. For every material point, the values T 0
ij at any time t depend linearly on the components of the rate of

deformation tensor Dij at that time and not on any other kinematical quantities (such as higher rates of

deformation). The rate of deformation is related to the velocity gradient by

Dij ¼ 1

2

@vi
@xj

þ @vj
@xi

� �
: (6.4.2)

2. The fluid is isotropic with respect to any reference configuration.

Following the same arguments made in connection with the isotropic linear elastic material, we obtain

that for a Newtonian fluid (also known as a linearly viscous fluid) the most general form of T 0
ij is, with

D � D11 þ D22 þ D33 ¼ Dkk;

T 0
ij ¼ lDdij þ 2mDij: (6.4.3)

where l and m are material constants (different from those of an elastic body) having the dimension of

(Force)(time)/ lengthð Þ2: The stress tensor T 0
ij is known as the viscous stress tensor. Thus, the total stress

tensor is

Tij ¼ �pdij þ lDdij þ 2mDij; (6.4.4)

i.e.,

T11 ¼ �pþ lDþ 2mD11; T22 ¼ �pþ lDþ 2mD22; T33 ¼ �pþ lDþ 2mD33; (6.4.5)

and

T12 ¼ 2mD12; T13 ¼ 2mD13; T23 ¼ 2mD23: (6.4.6)

The scalar p in the preceding equation is called the pressure. As shown in Eqs. (6.4.5), the pressure p is in

general not the total compressive normal stress on a plane. As a fluid theory, it is only necessary to remember

that the isotropic tensor �pdij
� �

is that part of Tij that does not depend explicitly on the rate of deformation.

6.5 INTERPRETATION OF l AND m
Consider the shear flow given by the velocity field

v1 ¼ v1 x2ð Þ; v2 ¼ 0; v3 ¼ 0: (6.5.1)

For this flow,

D11 ¼ D22 ¼ D33 ¼ D13 ¼ D23 ¼ 0 and D12 ¼ 1

2

dv1
dx2

(6.5.2)

so that

T11 ¼ T22 ¼ T33 ¼ �p; T13 ¼ T23 ¼ 0 (6.5.3)
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and

T12 ¼ m
dv1
dx2

: (6.5.4)

Thus, m is the proportionality constant relating the shearing stress to the rate of decrease of the angle

between two mutually perpendicular material lines Dx1 and Dx2 (see Section 3.13). It is called the first coef-
ficient of viscosity, or simply viscosity.

From Eq. (6.4.3), we have, for a general velocity field,

1

3
T 0
ii ¼ lþ 2m

3

� �
D; (6.5.5)

where D ¼ Dii is the rate of change of volume (or rate of dilatation). Thus lþ 2m
3

� �
is the proportionality con-

stant relating the viscous mean normal stress T 0
ii=3

� �
to the rate of change of volume D. It is known as the

second coefficient of viscosity, or the bulk viscosity.
The mean normal stress is given by

1

3
Tii ¼ �pþ lþ 2m

3

� �
D: (6.5.6)

We see that in general, p is not the mean normal stress unless either D is zero (e.g., in flows of an incompress-

ible fluid) or the bulk viscosity lþ 2m=3ð Þ is zero. The assumption that the bulk viscosity is zero for a com-

pressible fluid is known as the Stokes assumption.

6.6 INCOMPRESSIBLE NEWTONIAN FLUID
For an incompressible fluid, D � Dii ¼ 0 at all times. Thus the constitutive equation for such a fluid

becomes

Tij ¼ �pdij þ 2mDij: (6.6.1)

From this equation, we have Tii ¼ �3pþ 2mDii ¼ �3p: That is,

p ¼ Tii
3
: (6.6.2)

Therefore, for an incompressible viscous fluid, the pressure p has the meaning of mean normal stress. The

value of p does not depend explicitly on any kinematic quantities; its value is indeterminate as far as the

fluid’s mechanical behavior is concerned. In other words, since the fluid is incompressible, one can superpose

any uniform pressure to the fluid without affecting its mechanical response. Thus, the pressure in an incom-

pressible fluid is often known constitutively as the indeterminate pressure. Of course, in any given problem

with prescribed boundary condition(s) for the pressure, the pressure field is determinate.

Since

Dij ¼ 1

2

@vi
@xj

þ @vj
@xi

� �
; (6.6.3)

where vi are the velocity components, the constitutive equations can be written:

Tij ¼ �pdij þ m
@vi
@xj

þ @vj
@xi

� �
: (6.6.4)
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In component form:

T11 ¼ �pþ 2m
@v1
@x1

; T22 ¼ �pþ 2m
@v2
@x2

; T33 ¼ �pþ 2m
@v3
@x3

; (6.6.5)

and

T12 ¼ m
@v1
@x2

þ @v2
@x1

� �
; T13 ¼ m

@v1
@x3

þ @v3
@x1

� �
; T23 ¼ m

@v2
@x3

þ @v3
@x2

� �
: (6.6.6)

Example 6.6.1
Show that for an incompressible fluid,

@Tij
@xj

¼ � @p

@xi
þ m

@2vi
@xj@xj

: (6.6.7)

Solution
For an incompressible fluid,

Tij ¼ �pdij þ m
@vi
@xj

þ @vj
@xi

� �
;

therefore,

@Tij
@xj

¼ � @p

@xj
dij þ m

@2vi
@xj@xj

þ m
@2vj
@xj@xi

¼ � @p

@xi
þ m

@2vi
@xj@xj

þ m
@2vj
@xj@xi

:

Now, interchanging the order of differentiation in the last term of the preceding equation and noting that for an

incompressible fluid @vj=@xj ¼ 0; we have

@2vj
@xj@xi

¼ @

@xi

@vj
@xj

� �
¼ 0:

Thus,

@Tij
@xj

¼ � @p

@xi
þ m

@2vi
@xj@xj

:

6.7 NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS
Navier-Stokes equations are equations of motion written in terms of the velocity components of the fluid. The

equations of motion in terms of the stress components are given by [see Eq. (4.7.5), Chapter 4].

r
@vi
@t

þ vj
@vi
@xj

� �
¼ @Tij

@xj
þ rBi: (6.7.1)

Substituting the constitutive equation [Eq. (6.6.4)] into the preceding equation, we obtain (see Example

6.6.1)

r
@vi
@t

þ vj
@vi
@xj

� �
¼ rBi � @p

@xi
þ m

@2vi
@xj@xj

: (6.7.2)
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In component form,

r
@v1
@t

þ v1
@v1
@x1

þ v2
@v1
@x2

þ v3
@v1
@x3

� �
¼ rB1 � @p

@x1
þ m

@2v1
@x21

þ @2v1
@x22

þ @2v1
@x23

� �
; (6.7.3)

r
@v2
@t

þ v1
@v2
@x1

þ v2
@v2
@x2

þ v3
@v2
@x3

� �
¼ rB2 � @p

@x2
þ m

@2v2
@x21

þ @2v2
@x22

þ @2v2
@x23

� �
; (6.7.4)

r
@v3
@t

þ v1
@v3
@x1

þ v2
@v3
@x2

þ v3
@v3
@x3

� �
¼ rB3 � @p

@x3
þ m

@2v3
@x21

þ @2v3
@x22

þ @2v3
@x23

� �
: (6.7.5)

Or, in invariant form,

r
@v

@t
þ rvð Þv

� �
¼ rB�rpþ mr2v: (6.7.6)

These are known as the Navier-Stokes equations of motion for incompressible Newtonian fluids. There are

four unknown functions, v1; v2; v3; and p, in the three equations [Eqs. (6.7.3) to (6.7.5)]. The fourth equation

is supplied by the continuity equation

@v1
@x1

þ @v2
@x2

þ @v3
@x3

¼ 0; (6.7.7)

which, in variant form, is

div v ¼ 0: (6.7.8)

Example 6.7.1
If all particles have their velocity vectors parallel to a fixed direction, the flow is said to be a parallel flow or a unidirec-

tional flow. Show that for parallel flows of an incompressible Newtonian fluid the total normal compressive stress at

any point on any plane parallel to and perpendicular to the direction of flow is the pressure p.

Solution
Let the direction of the flow be the x1-axis, then v2 ¼ v3 ¼ 0 and from the equation of continuity,

@v1
@x1

¼ 0:

Thus, the velocity field for the parallel flow is

v1 ¼ v1 x2; x3; tð Þ; v2 ¼ 0; v3 ¼ 0:

For this flow,

D11 ¼ @v1
@x1

¼ 0; D22 ¼ @v2
@x2

¼ 0; D33 ¼ @v3
@x3

¼ 0:

Therefore, from Eq. (6.6.5),

T11 ¼ T22 ¼ T33 ¼ �p:
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Example 6.7.2
Figure 6.7-1 shows a unidirectional flow in the x1 direction. Let the z-axis point vertically upward (i.e., opposite the

direction of gravity) from some reference plane. The piezometric head h at any point inside the flow is defined by

the equation

h ¼ p

rg
þ z: (6.7.9)

Show that h is a constant for all points on any given plane that is perpendicular to the flow.

Solution
With the flow in the x1 direction, with respect to a Cartesian coordinates x1; x2; x3ð Þ we have v2 ¼ v3 ¼ 0: From Eqs.

(6.7.4) and (6.7.5), we have

rB2 � @p

@x2
¼ 0; rB3 � @p

@x3
¼ 0: (i)

With ez denoting the unit vector in the direction of positive z-axis, the body force per unit mass is given by

B ¼ �gez ; (ii)

so that

B2 ¼ B � e2 ¼ �g ez � e2ð Þ: (iii)

Let r be the position vector for a particle in the fluid with

r ¼ x1e1 þ x2e2 þ x3e3: (iv)

Then

z ¼ ez � r ¼ ez � e1ð Þx1 þ ez � e2ð Þx2 þ ez � e3ð Þx3; (v)

so that

@z

@x2
¼ ez � e2ð Þ: (vi)

x2

x1

gz

ez
r

Q

A

A

FIGURE 6.7-1
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From Eq. (iii), we have

B2 ¼ �g ez � e2ð Þ ¼ �g
@z

@x2
¼ � @gz

@x2
: (vii)

Thus, from the first equation of Eq. (i), we have

�r
@gz

@x2
� @p

@x2
¼ 0: (viii)

That is,

@

@x2

p

rg
þ z

� �
¼ 0: (ix)

Similarly, one can show that

@

@x3

p

rg
þ z

� �
¼ 0: (x)

Thus, the piezometric head h depends only on x1: That is, h is the same for any point lying in the plane x1¼ con-

stant, which is a plane perpendicular to the unidirectional flow.

Example 6.7.3
For the unidirectional flow shown in Figure 6.7-2, find the pressure at point A as a function of pa (atmospheric pres-

sure), r (density of the fluid), h (depth of the fluid in the direction perpendicular to the flow), and y (the angle of incli-

nation of the flow).

Solution
From the result of the previous example, the piezometric heads of point A and point B are the same. Since point B is

on the free surface, its pressure is the atmospheric pressure; thus,

pA
rg

þ zA ¼ pB
rg

þ zB ¼ pa
rg

þ zB :

Thus,

pA ¼ pa þ rg zB � zAð Þ ¼ pa þ rghð Þ cos y:

θ

h

A

B

zB−zA

FIGURE 6.7-2
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6.8 NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS IN CYLINDRICAL
AND SPHERICAL COORDINATES

A. Cylindrical Coordinates

With vr; vy; vzð Þ denoting the velocity components in r; y; zð Þ directions, and the equations for r2v pre-

sented in Chapter 2 for cylindrical coordinates, the Navier-Stokes equation for an incompressible fluid can

be obtained as follows (see Problem 6.17):

@vr
@t

þ vr
@vr
@r

þ vy
r

@vr
@y

� vy

0
@

1
Aþ vz

@vr
@z

¼ � 1

r
@p

@r
þ Br

¼ m
r

@2vr
@r2

þ 1

r2
@2vr

@y2
þ @2vr

@z2
þ 1

r

@vr
@r

� 2

r2
@vy
@y

� vr
r2

2
4

3
5;

(6.8.1)
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þ vr
@vy
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þ vy
r

@vy
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þ vr

0
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1
Aþ vz

@vy
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¼ � 1

rr
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þ m
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� vy
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2
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@vz
@t

þ vr
@vz
@r

þ vy
r

@vz
@y

þ vz
@vz
@z

¼ � 1

r
@p

@z
þ Bz

þ m
r

@2vz
@r2

þ 1

r2
@2vz

@y2
þ @2vz

@z2
þ 1

r

@vz
@r

2
4

3
5: (6.8.3)

The equation of continuity takes the form

1

r

@

@r
rvrð Þ þ 1

r

@vy
@y

þ @vz
@z

: (6.8.4)

B. Spherical Coordinates

With vr; vy; vf
� �

denoting the velocity components in r; y; fð Þ directions, and the equations for r2v pre-

sented in Chapter 2 for spherical coordinates, the Navier-Stokes equation for an incompressible fluid can

be obtained as follows (see Problem 6.18):

@vr
@t

þ vr
@vr
@r

þ vy
r

@vr
@y

þ vf
r sin y

@vr
@f

�
v2f þ v2y

� 	
r

¼ � 1

r
@p

@r
þ Br þ m

r
@

@r

1

r2
@

@r
r2vr
� �0

@
1
A

2
4

þ 1

r2 sin y
@

@y
sin y

@vr
@y

0
@

1
Aþ 1

r2 sin2y
@2vr

@f2
� 2

r2 sin y
@

@y
vy sin yð Þ � 2

r2 sin y
@vf
@f

3
5;

(6.8.5)
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@vy
@t

þ vr
@vy
@r

þ vy
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@vy
@y

þ vr
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1
Aþ vf

r sin y
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@f

� vf cos y

0
@
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2
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@vf
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þ vy
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@vf
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þ vf
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(6.8.7)

The equation of continuity takes the form

1

r2
@

@r
r2vr
� �þ 1

r sin y
@

@y
vy sin yð Þ þ 1

r sin y
@vf
@f

¼ 0: (6.8.8)

6.9 BOUNDARY CONDITIONS
On a rigid boundary, we shall impose the nonslip condition (also known as the adherence condition), i.e., the fluid
layer next to a rigid surface moves with that surface; in particular, if the surface is at rest, the velocity of the fluid

at the surface is zero. The nonslip condition is well supported by experiments for practically all fluids, including

those that do not wet the surface (e.g., mercury) and non-Newtonian fluids (e.g., most polymeric fluids).

6.10 STREAMLINE, PATHLINE, STEADY, UNSTEADY, LAMINAR,
AND TURBULENT FLOW

A. Streamline

A streamline at time t is a curve for which the tangent at every point has the direction of the instantaneous

velocity vector of the particle at the point. Experimentally, streamlines on the surface of a fluid are often

obtained by sprinkling it with reflecting particles and making a short-time exposure photograph of the surface.

Each reflecting particle produces a short line on the photograph, approximating the tangent to a streamline.

Mathematically, streamlines can be obtained from the velocity field v x; tð Þ as follows.
Let x ¼ x sð Þ be the parametric equation for the streamline at time t, which passes through a given point xo:

Clearly, the vector dx=ds at any given s is tangent to the curve at that s, and an s can always be chosen so that

dx=ds ¼ v: If we let s ¼ 0 correspond to the position xo; then, for a given velocity field v x; tð Þ; the streamline

that passes through the point xo can be determined from the following differential system:

dx

ds
¼ v x; tð Þ; (6.10.1)

with

xð0Þ ¼ xo: (6.10.2)
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Example 6.10.1
Given the velocity field

v1 ¼ kx1
1þ at

; v2 ¼ kx2; v3 ¼ 0; (i)

find the streamline that passes through the point a1; a2; a3ð Þ at time t :

Solution
With respect to the Cartesian coordinates x1; x2; x3ð Þ; we have, from Eqs. (6.10.1) and (6.10.2),

dx1
ds

¼ kx1
1þ at

;
dx2
ds

¼ kx2;
dx3
ds

¼ 0; (ii)

and

x1ð0Þ ¼ a1; x2ð0Þ ¼ a2; x3ð0Þ ¼ a3: (iii)

Thus, ðx1
a1

dx1
x1

¼ k

ðs
0

ds

1þ at
;

ðx2
a2

dx2
x2

¼ k

ðs
0

ds;

ðx3
a3

dx3
x3

¼ 0: (iv)

Integrating the preceding equations, we obtain

x1 ¼ a1 exp
ks

1þ at

� �
; x2 ¼ a2e

ks ; x3 ¼ a3: (v)

Equations (v) give the desired streamline equations.

B. Pathline

A pathline is the path traversed by a fluid particle. To photograph a pathline, it is necessary to use long time

exposure of a reflecting particle. Mathematically, the pathline of a particle that was at X at time to can be

obtained from the velocity field v x; tð Þ as follows: Let x ¼ x tð Þ be the pathline; then

dx

dt
¼ v x; tð Þ; (6.10.3)

with

x toð Þ ¼ X: (6.10.4)

Example 6.10.2
For the velocity field of the previous example, find the pathline for a particle that was at X1; X2; X3ð Þ at time to:

Solution
We have, according to Eqs. (6.10.3) and (6.10.4),

dx1
dt

¼ kx1
1þ at

;
dx2
dt

¼ kx2;
dx3
dt

¼ 0; (i)
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and

x1 toð Þ ¼ X1; x2 toð Þ ¼ X2; x3 toð Þ ¼ X3: (ii)

Thus, ðx1
X1

dx1
x1

¼ k

ðt
to

dt

1þ at
;

ðx2
X2

dx2
x2

¼ k

ðt
to

dt ; x3 ¼ X3: (iii)

Thus,

ln x1 � ln X1 ¼ k

a
ln 1þ atð Þ � ln 1þ atoð Þ½ �; ln x2 � lnX2 ¼ k t � toð Þ; x3 ¼ X3; (iv)

so that

x1 ¼ X1
1þ atð Þ
1þ atoð Þ


 �k=a
; x2 ¼ X2e

k t�toð Þ; x3 ¼ X3: (v)

C. Steady and Unsteady Flow

A flow is called steady if at every fixed location nothing changes with time. Otherwise, the flow is called

unsteady. It is important to note, however, that in a steady flow, the velocity, acceleration, temperature,

etc. of a given fluid particle in general change with time. In other words, let C be any dependent variable;

then, in a steady flow, @C=@tð Þx�fixed ¼ 0, but DC=Dt is in general not zero. For example, the steady flow

given by the velocity field

v1 ¼ kx1; v2 ¼ �kx2; v3 ¼ 0

has a nonzero acceleration field given by

a1 ¼ Dv1
Dt

¼ k2x1; a2 ¼ Dv2
Dt

¼ k2x2; a3 ¼ 0:

We remark that for steady flows, a pathline is also a streamline, and vice versa.

D. Laminar and Turbulent Flow

A laminar flow is a very orderly flow in which the fluid particles move in smooth layers, or laminae, sliding
over particles in adjacent laminae without mixing with them. Such flows are generally realized at slow speed.

For the case of water (viscosity m and density r) flowing through a tube of circular cross-section of diameter d
with an average velocity vm; it was found by Reynolds, who observed the thin filaments of dye in the tube,

that when the dimensionless parameter NR (now known as the Reynolds number), defined by

NR ¼ vmrd
m

; (6.10.5)

is less than a certain value (approximately 2100), the thin filament of dye was maintained intact throughout

the tube, forming a straight line parallel to the axis of the tube. Any accidental disturbances were rapidly
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obliterated. As the Reynolds number is increased, the flow becomes increasingly sensitive to small pertur-

bations until a stage is reached wherein the dye filament breaks and diffuses through the flowing water.

This phenomenon of irregular intermingling of fluid particle in the flow is termed turbulence. In the case

of a pipe flow, the upper limit of the Reynolds number, beyond which the flow is turbulent, is indeterminate.

Depending on the experimental setup and the initial quietness of the fluid, this upper limit can be as high

as 100,000.

In the following sections, we restrict ourselves to the study of laminar flows of an incompressible Newto-

nian fluid only. It is therefore to be understood that the solutions presented are valid only within certain limits

of some parameter (such as the Reynolds number) governing the stability of the flow.

6.11 PLANE COUETTE FLOW

The steady unidirectional flow, under zero pressure gradients in the flow direction, of an incompressible vis-

cous fluid between two horizontal plates of infinite extent, one fixed and the other moving in its own plane

with a constant velocity v0; is known as the plane Couette flow (Figure 6.11-1). Let x1 be the direction of

the flow; then v2 ¼ v3 ¼ 0: It follows from the continuity equation that v1 cannot depend on x1: Let x1x2 plane
be the plane of flow; then the velocity field for the plane Couette flow is of the form

v1 ¼ v x2ð Þ; v2 ¼ 0; v3 ¼ 0: (6.11.1)

From the Navier-Stokes equation and the boundary conditions vð0Þ ¼ 0 and v dð Þ ¼ v0; it can be easily

obtained that

v x2ð Þ ¼ v0x2
d

: (6.11.2)

6.12 PLANE POISEUILLE FLOW
The plane Poiseuille flow is the two-dimensional steady unidirectional flow between two fixed plates of infi-

nite extent. Let x1x2 be the plane of flow with x1 in the direction of the flow; then the velocity field is of the

form

v1 ¼ v x2ð Þ; v2 ¼ 0; v3 ¼ 0: (6.12.1)

Let us first consider the case where gravity is neglected. We shall show later that the presence of gravity

does not at all affect the flow field; it only modifies the pressure field.

x2

x1

d

v0

FIGURE 6.11-1
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In the absence of body forces, the Navier-Stokes equations, Eqs. (6.7.3) to (6.7.5), yield

@p

@x1
¼ m

d2v

dx22
;

@p

@x2
¼ 0;

@p

@x3
¼ 0: (6.12.2)

From the second and third equations of Eq. (6.12.2), we see that the pressure p cannot depend on x2 and

x3: If we differentiate the first equation with respect to x1; and noting that the right-hand side is a function of

x2 only, we obtain

d2p

dx21
¼ 0: (6.12.3)

Thus,

dp

dx1
¼ a constant; (6.12.4)

i.e., in a plane Poiseuille flow, the pressure gradient is a constant along the flow direction. This pressure gra-

dient is the driving force for the flow. Let

dp

dx1
� �a; (6.12.5)

so that a positive a corresponds to the case where the pressure decreases along the flow direction. Going back

to the first equation in Eq. (6.12.2), we now have

m
d2v

dx22
¼ �a: (6.12.6)

Integrating the preceding equation twice, we get

mv ¼ � ax22
2

þ Cx2 þ D: (6.12.7)

The integration constants C and D are to be determined from the boundary conditions

v �bð Þ ¼ v þbð Þ ¼ 0: (6.12.8)

They are C ¼ 0 and D ¼ ab2=2; thus,

v x2ð Þ ¼ a
2m

b2 � x22
� �

: (6.12.9)

b

b

x2

x1

FIGURE 6.12-1
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Equation (6.12.9) shows that the profile is a parabola, with a maximum velocity at the mid-channel given by

vmax ¼ a
2m

b2: (6.12.10)

The flow volume per unit time per unit width (in the x3 direction) passing any cross-section can be

obtained by integration:

Q ¼
ðb
�b

vdx2 ¼ a
m

2b3

3

� �
: (6.12.11)

The average velocity is

�v ¼ Q

2b
¼ a

m
b2

3
: (6.12.12)

We shall now prove that in the presence of gravity and independent of the inclination of the channel, the

Poiseuille flow always has the parabolic velocity profile given by Eq. (6.12.9).

Let k be the unit vector pointing upward in the vertical direction; then the body force is

B ¼ �gk; (6.12.13)

and the components of the body force in the x1; x2; and x3 directions are

B1 ¼ �g e1 � kð Þ ; B2 ¼ �g e2 � kð Þ; B3 ¼ �g e3 � kð Þ: (6.12.14)

Let r be the position vector of a fluid particle so that

r ¼ x1e1 þ x2e2 þ x3e3; (6.12.15)

and let y be the vertical coordinate. Then

y ¼ r � k ¼ x1 e1 � kð Þ þ x2 e2 � kð Þ þ x3 e3 � kð Þ; (6.12.16)

and

@y

@x1
¼ e1 � kð Þ; @y

@x2
¼ e2 � kð Þ; @y

@x3
¼ e3 � kð Þ: (6.12.17)

Equations (6.12.17) and (6.12.14) then give

B1 ¼ �g
@y

@x1
; B2 ¼ �g

@y

@x2
; B3 ¼ �g

@y

@x3
: (6.12.18)

The Navier-Stokes equations

rB1 � @p

@x1
þ m

d2v

dx22
¼ 0; rB2 � @p

@x2
¼ 0; rB3 � @p

@x3
¼ 0; (6.12.19)

then become

@ pþ rgyð Þ
@x1

¼ m
@2v

@x2
;

@ pþ rgyð Þ
@x2

¼ 0;
@ pþ rgyð Þ

@x3
¼ 0: (6.12.20)

These equations are the same as Eq. (6.12.2) except that the pressure p is replaced by pþ rgy: From these

equations, one clearly will obtain the same parabolic velocity profile, except that the driving force in this case

is the gradient of pþ rgy in the flow direction instead of simply the gradient of p.

370 CHAPTER 6 Newtonian Viscous Fluid



6.13 HAGEN-POISEUILLE FLOW
The so-called Hagen-Poiseuille flow is a steady unidirectional axisymmetric flow in a circular cylinder. Thus,

we look for the velocity field in cylindrical coordinates in the following form:

vr ¼ 0; vy ¼ 0; vz ¼ v rð Þ: (6.13.1)

For whatever v rð Þ; the velocity field given by Eq. (6.13.1) obviously satisfies the equation of continuity

[Eq. (6.8.4)]:

1

r

@

@r
rvrð Þ þ 1

r

@vy
@y

þ @vz
@z

¼ 0: (6.13.2)

In the absence of body forces, the Navier-Stokes equations, in cylindrical coordinates for the velocity field

of Eqs. (6.13.1), are from Eqs. (6.8.1) to (6.8.3).

0 ¼ � @p

@r
; 0 ¼ � @p

@y
; 0 ¼ � @p

@z
þ m

1

r

d

dr
r
dv

dr

� �
 �
: (6.13.3)

From the preceding equations, we see clearly that p depends only on z and

d2p

dz2
¼ 0: (6.13.4)

Thus, dp=dz is a constant. Let

a � � dp

dz
; (6.13.5)

then

� a
m
¼ 1

r

d

dr
r
dv

dr

� �
: (6.13.6)

Integration of the preceding equation gives

v ¼ � ar2

4m
þ b ln r þ c: (6.13.7)

Since v must be bounded in the flow region, the integration constant b must be zero. Now the nonslip condi-

tion on the cylindrical wall demands that

v ¼ 0 at r ¼ d=2; (6.13.8)

d

r

z

FIGURE 6.13-1
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where d is the diameter of the pipe. Thus, c ¼ ða=mÞ d2=16ð Þ and

v ¼ a
4m

d2

4
� r2

� �
: (6.13.9)

The preceding equation states that the velocity over the cross-section is distributed in the form of a parab-

oloid. The maximum velocity is at r ¼ 0; its value is

vmax ¼ ad2

16m
: (6.13.10)

The mean velocity is

�v ¼ 1

pd2=4ð Þ
ð
A

vdA ¼ ad2

32m
¼ vmax

2
: (6.13.11)

and the volume flow rate is

Q ¼ pd2

4

� �
�v ¼ apd4

128m
; (6.13.12)

where a ¼ �dp=dz [see Eq. (6.13.5)]. As is in the case of a plane Poiseuille flow, if the effect of gravity is

included, the velocity profile in the pipe remains the same as that given by Eq. (6.13.9); however, the driving

force now is the gradient of pþ rgyð Þ; where y is the vertical height measured from some reference datum.

6.14 PLANE COUETTE FLOW OF TWO LAYERS OF INCOMPRESSIBLE
VISCOUS FLUIDS
Let the viscosity and the density of the top layer be m1 and r1; respectively, and those of the bottom layer be

m2 and r2; respectively. Let x1 be the direction of flow, and let x2 ¼ 0 be the interface between the two layers.

We look for steady unidirectional flows of the two layers between the infinite plates x2 ¼ þb1 and x2 ¼ �b2:
The plate x2 ¼ �b2 is fixed and the plate x2 ¼ þb1 is moving on its own plane with velocity vo: The pressure
gradient in the flow direction is assumed to be zero (Figure 6.14-1).

Let the velocity distribution in the top layer be

v
ð1Þ
1 ¼ vð1Þ x2ð Þ; v

ð1Þ
2 ¼ v

ð1Þ
3 ¼ 0; (6.14.1)

and that in the bottom layer be

v
2ð Þ
1 ¼ v 2ð Þ x2ð Þ; v

2ð Þ
2 ¼ v

2ð Þ
3 ¼ 0: (6.14.2)

b1

b2

g

μ1, ρ1

μ2, ρ2

x2

x1

n0

FIGURE 6.14-1
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The equation of continuity is clearly satisfied for each layer. The Navier-Stokes equations give

Layer 1: 0 ¼ m1
d2vð1Þ

dx22
; 0 ¼ � @pð1Þ

@x2
� r1g; 0 ¼ � @pð1Þ

@x3
; (6.14.3)

Layer 2: 0 ¼ m2
d2v 2ð Þ

dx22
; 0 ¼ � @p 2ð Þ

@x2
� r2g; 0 ¼ � @p 2ð Þ

@x3
: (6.14.4)

Integrations of the preceding equations give

vð1Þ ¼ A1x2 þ B1; pð1Þ ¼ �r1gx2 þ C1; (6.14.5)

and

v 2ð Þ ¼ A2x2 þ B2; p 2ð Þ ¼ �r2gx2 þ C2: (6.14.6)

The boundary condition on the bottom fixed plate is

v 2ð Þ ¼ 0 at x2 ¼ �b2: (6.14.7)

The boundary condition on the top moving plate is

vð1Þ ¼ vo at x2 ¼ þb1: (6.14.8)

The interfacial conditions between the two layers are

vð1Þ ¼ v 2ð Þ at x2 ¼ 0; (6.14.9)

and

t 1ð Þ
�e2

¼ �t
2ð Þ
þe2 or T 1ð Þe2 ¼ T 2ð Þe2 at x2 ¼ 0: (6.14.10)

Equation (6.14.9) states that there is no slip between the two layers, and Eq. (6.14.10) states that the stress

vector on layer 1 is equal and opposite to that on layer 2 in accordance with Newton’s third law. In terms of

stress components, Eq. (6.14.10) becomes

T
ð1Þ
12 ¼ T

2ð Þ
12 ; T

ð1Þ
22 ¼ T

2ð Þ
22 ; T

ð1Þ
32 ¼ T

2ð Þ
32 at x2 ¼ 0: (6.14.11)

That is, these stress components must be continuous across the fluid interface in accordance with Newton’s

third law. Now

T
ð1Þ
12 ¼ m1

dvð1Þ

dx2
; T

2ð Þ
12 ¼ m2

dv 2ð Þ

dx2
; T

ð1Þ
32 ¼ 0; T

2ð Þ
32 ¼ 0; (6.14.12)

and

T
ð1Þ
22 ¼ �pð1Þ; T

2ð Þ
22 ¼ �p 2ð Þ: (6.14.13)

Thus, we have

m1
dvð1Þ

dx2
¼ m2

dv 2ð Þ

dx2
and pð1Þ ¼ p 2ð Þ at x2 ¼ 0: (6.14.14)

Using the boundary conditions, Eqs. (6.14.7), (6.14.8), (6.14.9), and (6.14.14), we obtain

B2 ¼ A2b2; B1 ¼ vo � A1b1; B1 ¼ B2; m1A1 ¼ m2A2: (6.14.15)
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Equations (6.14.15) are four equations for the four unknowns, A1; A2; B1; and B2; these can be easily

obtained to be

A1 ¼ m2vo
m1b2 þ m2b1ð Þ ; B1 ¼ m1vob2ð Þ

m1b2 þ m2b1ð Þ ; A2 ¼ m1vo
m1b2 þ m2b1ð Þ ; B2 ¼ b2m1vo

m1b2 þ m2b1ð Þ : (6.14.16)

Thus, the velocity distributions are

v
ð1Þ
1 ¼ m2x2 þ m1b2ð Þvo

m2b1 þ m1b2ð Þ ; v
ð1Þ
2 ¼ v

ð1Þ
3 ¼ 0 and v

2ð Þ
1 ¼ m1x2 þ m1b2ð Þvo

m2b1 þ m1b2ð Þ ; v
2ð Þ
2 ¼ v

2ð Þ
3 ¼ 0: (6.14.7)

Finally, the condition pð1Þ ¼ p 2ð Þ at x2 ¼ 0 gives C1 ¼ C2 ¼ po; so that

pð1Þ ¼ �r1gx2 þ po; p 2ð Þ ¼ �r2gx2 þ po (6.14.18)

where po is the pressure at the interface, which is a prescribed value.

6.15 COUETTE FLOW
The laminar steady two-dimensional flow of an incompressible viscous fluid between two coaxial infinitely

long cylinders caused by the rotation of either one or both cylinders with constant angular velocities is known

as Couette flow.
For this flow, we look for the velocity field in the following form in cylindrical coordinates:

vr ¼ 0; vy ¼ v rð Þ; vz ¼ 0: (6.15.1)

This velocity field obviously satisfies the equation of continuity for any v rð Þ [Eq. (6.8.4)],
1

r

@

@r
rvrð Þ þ 1

r

@vy
@y

þ @vz
@z

¼ 0: (6.15.2)

In the absence of body forces and taking into account the rotational symmetry of the flow (i.e., nothing depends

on y), we have, from the Navier-Stokes equation in y direction, Eq. (6.8.2) for the two-dimensional flow,

d2v

dr2
þ 1

r

dv

dr
� v

r2
¼ 0: (6.15.3)

The general solution for the preceding equation is

v ¼ Ar þ B

r
: (6.15.4)

Ω1

Ω2

o

r2

r1

FIGURE 6.15-1
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Let r1 and r2 denote the radii of the inner and outer cylinders, respectively; O1 and O2 their respective

angular velocities (Figure 6.15-1). Then the boundary conditions are

v r1ð Þ ¼ r1O1; v r2ð Þ ¼ r2O2: (6.15.5)

Equations (6.15.4) and (6.15.5) give

r1O1 ¼ Ar1 þ B

r1
; r2O2 ¼ Ar2 þ B

r2
; (6.15.6)

so that

A ¼ O2r
2
2 � O1r

2
1

r22 � r21
; B ¼ r21r

2
2 O1 � O2ð Þ
r22 � r21

; (6.15.7)

and

vy ¼ v ¼ 1

r22 � r21
� � O2r

2
2 � O1r

2
1

� �
r � r21r

2
2

r
O2 � O1ð Þ


 �
; vr ¼ vz ¼ 0: (6.15.8)

It can be easily obtained that the torques per unit length of the cylinder which must be applied to the cylin-

ders to maintain the flow are given by

M ¼ � ez
4pmr21r

2
2 O1 � O2ð Þ
r22 � r21

; (6.15.9)

where the plus sign is for the outer wall and the minus sign is for the inner wall. We note that when O1 ¼ O2;
the flow is that of a rigid body rotation with constant angular velocity; there is no viscous stress on either

cylinder.

6.16 FLOW NEAR AN OSCILLATING PLANE
Let us consider the following unsteady parallel flow near an oscillating plane:

v1 ¼ v x2; tð Þ; v2 ¼ 0; v3 ¼ 0: (6.16.1)

Omitting body forces and assuming a constant pressure field, the only nontrivial Navier-Stokes equation is

r
@v

@t
¼ m

@2v

@x22
: (6.16.2)

It can be easily verified that

v ¼ ae�bx2 cos ot� bx2 þ eð Þ; (6.16.3)

satisfies the preceding equation if

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro=2m

p
: (6.16.4)

From Eq. (6.16.3), the fluid velocity at x2 ¼ 0 is (see Figure 6.16-1)

v ¼ a cos otþ eð Þ: (6.16.5)
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Thus, the solution Eq. (6.16.3), together with (6.16.4), represents the velocity field of an infinite extent of liq-

uid lying in the region x2 � 0 and bounded by a plate at x2 ¼ 0; which executes simple harmonic oscillations

of amplitude a and circular frequency o. It represents a transverse wave of wavelength 2p=b; propagating
inward from the boundary with a phase velocity o=b but with rapidly diminishing amplitude—the falling

off within a wavelength being in the ratio e�2p ¼1=535ð Þ: Thus, we see that the influence of viscosity extends

only to a short distance from the plate performing rapid oscillation of small amplitude a.

6.17 DISSIPATION FUNCTIONS FOR NEWTONIAN FLUIDS
The rate of work done P by the stress vectors and the body forces on a material particle of a continuum was

derived in Chapter 4 as [see Eq. (4.12.1)]

P ¼ D

Dt
K:E:ð Þ þ PsdV: (6.17.1)

The first term of the preceding equation is the rate of change of kinetic energy (K:E:), and the second term

PsdV is the rate of work done to change the volume and shape of the particle of volume dV: Here Ps denotes
this rate of change per unit volume, which is also known as stress working, or stress power. In terms of the

stress components and the velocity gradient, the stress power is given by

Ps ¼ Tij
@vi
@xj

: (6.17.2)

In this section, we compute the stress power in terms of Dij; the components of the rate of deformation tensor

for a Newtonian fluid.

A. Incompressible Newtonian Fluid

We have

Tij ¼ �pdij þ T 0
ij; (6.17.3)

thus,

Tij
@vi
@xj

¼ �p
@vi
@xi

þ T 0
ij

@vi
@xj

: (6.17.4)

For incompressible fluid, @vi=@xi ¼ 0; therefore,

Tij
@vi
@xj

¼ T 0
ij

@vi
@xj

¼ 2mDij
@vi
@xj

¼ 2mDij Dij þWij

� � ¼ 2mDijDij (6.17.5)

plate

a cos (ωt+ε)

x2

x1
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where we recall Wij (the spin tensor) is the antisymmetric part of @vi=@xj and DijWij ¼ 0: Thus,

Ps ¼ 2mDijDij ¼ 2m D2
11 þ D2

22 þ D2
33 þ 2D2

12 þ 2D2
13 þ 2D2

23

� �
: (6.17.6)

This is work per unit volume done to change the shape, and this part of the work accumulates with time,

regardless of how Dij vary with time (Ps is always positive and is zero only for rigid body motions where

Dij ¼ 0). Thus, the function

Finc ¼ 2mDijDij ¼ 2m D2
11 þ D2

22 þ D2
33 þ 2D2

12 þ 2D2
13 þ 2D2

23

� �
(6.17.7)

is known as the dissipation function for an incompressible Newtonian fluid. It represents the rate at which

work is converted into heat.

B. Newtonian Compressible Fluid

For this case, we have, with D denoting @vi=@xi;

Tij
@vi
@xj

¼ �pdij þ lDdij þ 2mDij

� � @vi
@xj

¼ �pDþ lD2 þ Finc � �pDþ F; (6.17.8)

where

F ¼ l D11 þ D22 þ D33ð Þ2 þ Finc (6.17.9)

is the dissipation function for a compressible Newtonian fluid. We leave it as an exercise (see Problem 6.43)

to show that the dissipation function F can be written

F ¼ lþ 2m
3

0
@

1
A D11 þ D22 þ D33ð Þ2

þ 2m
3

D11 � D22ð Þ2 þ D11 � D33ð Þ2 þ D22 � D33ð Þ2
h i

þ 4m D2
12 þ D2

13 þ D2
23

� �
:

(6.17.10)

Example 6.17.1
For the simple shearing flow with

v1 ¼ kx2; v2 ¼ v3 ¼ 0;

find the rate at which work is converted into heat if the liquid inside the plates is water with

m ¼ 2� 10�5 lb � s=ft2ð0:958 mPa � sÞ and k ¼ 1 s�1:

Solution
Since the only nonzero component of the rate of deformation tensor is

D12 ¼ k=2;

therefore, from Eq. (6.17.7),

Finc ¼ 4mD2
12 ¼ mk2 ¼ 2� 10�5ð1Þ ¼ 2� 10�5 ft � lbð Þ= ft3 � s� �

0:958� 10�3 N � mð Þ= m3 � s� �h i
:
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6.18 ENERGY EQUATION FOR A NEWTONIAN FLUID
In Section 4.15 of Chapter 4, we derived the energy equation for a continuum to be [see Eq. (4.15.4)]

r
Du

Dt
¼ Tij

@vi
@xj

� @qi
@xi

þ rqs; (6.18.1)

where u is the internal energy per unit mass, r is density, qi is the component of heat flux vector, and qs is the
heat supply due to external sources.

If the only heat flow taking place is that due to conduction governed by Fourier’s law q ¼ �krY, where

Y is the temperature, then Eq. (6.18.1) becomes, assuming a constant coefficient of thermoconductivity k,

r
Du

Dt
¼ Tij

@vi
@xj

þ k
@2Y
@xj@xj

: (6.18.2)

For an incompressible Newtonian fluid, if it is assumed that the internal energy per unit mass is given

by cY, where c is the specific heat, then Eq. (6.18.2) becomes

rc
DY
Dt

¼ Finc þ k
@2Y
@xj@xj

; (6.18.3)

where, from Eq. (6.17.7), Finc ¼ 2m D2
11 þ D2

22 þ D2
33 þ 2D2

12 þ 2D2
13 þ 2D2

23

� �
representing the heat gener-

ated through viscous forces.

There are many situations in which the heat generated through viscous action is very small compared with

that arising from the heat conduction from the boundaries, in which case, Eq. (6.18.3) simplifies to

DY
Dt

¼ a
@2Y
@xj@xj

; (6.18.4)

where a ¼ k=rc is known as the thermal diffusivity.

Example 6.18.1
The plane Couette flow is given by the following velocity distribution

v1 ¼ kx2; v2 ¼ 0; v3 ¼ 0:

If the temperature at the lower plate is kept at Yℓ and the upper plate at Yu, find the steady-state temperature

distribution.

Solution
We seek a temperature distribution that depends only on x2. From Eq. (6.18.3), we have, since D12 ¼ k=2,

0 ¼ mk2 þ k
d2Y
dx22

:

Thus,

d2Y
dx22

¼ � mk2

k
;
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from which

Y ¼ � mk2

2k
x22 þ Yu �Yℓ

d
þ mk2d

2k

� �
x2 þYℓ:

6.19 VORTICITY VECTOR
We recall from Chapter 3, Section 3.13, that the antisymmetric part of the velocity gradient rvð Þ is defined as

the spin tensor W [see Eq. (3.13.3)]. Being antisymmetric, the tensor W is equivalent to a vector v in the

sense that Wx ¼ v� x (see Sections 2.21 and 3.14). In fact [see Eq. (3.14.2)],

v ¼ � W23e1 þW31e2 þW12e3ð Þ: (6.19.1)

Since [see Eq. (3.12.6)],

D

Dt
dxð Þ ¼ rvð Þdx ¼ DdxþWdx ¼ Ddxþv� dx; (6.19.2)

the vector v is the angular velocity vector of that part of the motion, representing the rigid body rotation in

the infinitesimal neighborhood of a material point. Furthermore, we will show that v is the angular velocity

vector of the principal axes of the rate of deformation tensor D. That is, we will show that if n is a unit vector

in a principal direction of D, then

Dn

Dt
¼ Wn ¼ v� n: (6.19.3)

Let dx be a material element in the direction of n at time t; we have

n ¼ dx

ds
; (6.19.4)

where ds is the length of dx. Taking the material derivative of the preceding equation, we have

Dn

Dt
¼ D

Dt

dx

ds

� �
¼ 1

ds

D

Dt
dx

� �
� 1

ds2
D

Dt
ds

� �
dx: (6.19.5)

But, from Eq. (3.13.12) of Chapter 3,

1

ds

D

Dt
ds

� �
¼ n � Dn: (6.19.6)

d
0

θu

θ

x2

x1

FIGURE 6.18-1
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Using Eqs. (6.19.2), (6.19.4), and (6.19.6), Eq. (6.19.5) becomes

Dn

Dt
¼ DþWð Þn� n � Dnð Þn ¼ Wnþ Dn� n � Dnð Þn: (6.19.7)

Now, since Dn ¼ ln and n � Dn ¼ l, therefore, Dn� n � Dnð Þn ¼ 0 so that Eq. (6.19.7) becomes

Dn

Dt
¼ Wn;

which is Eq. (6.19.3), and which states that the material elements that are in the principal directions of D
rotate with angular velocity v while at the same time changing their lengths.

In rectangular coordinates,

v ¼ 1

2

@v3
@x2

� @v2
@x3

� �
e1 þ 1

2

@v1
@x3

� @v3
@x1

� �
e2 þ 1

2

@v2
@x1

� @v1
@x2

� �
e3: (6.19.8)

Conventionally, the factor ½ is dropped and one defines the so-called vorticity vector B,

V ¼ 2v ¼ @v3
@x2

� @v2
@x3

� �
e1 þ @v1

@x3
� @v3
@x1

� �
e2 þ @v2

@x1
� @v1
@x2

� �
e3: (6.19.9)

The tensor 2W (where W is the spin tensor) is known as the vorticity tensor.
In indicial notation, the Cartesian components of B are

zi ¼ eijk
@vk
@xj

; (6.19.10)

or, equivalently,

@vi
@xj

� @vj
@xi

¼ �ekijBk; (6.19.11)

and in direct notation,

V ¼ curl v: (6.19.12)

In cylindrical coordinates r; y; zð Þ,

V ¼ 1

r

@vz
@y

� @vy
@z

� �
er þ @vr

@z
� @vz

@r

� �
ey þ @vy

@r
þ vy

r
� 1

r

@vr
@y

� �
ez; (6.19.13)

and in spherical coordinates r; y;fð Þ,

V ¼ vf cot y
r

þ 1

r

@vf
@y

� 1

r sin y
@vy
@f

8<
:

9=
;er þ 1

r sin y
@vr
@f

� 1

r

@ rvf
� �
@r

8<
:

9=
;ey

þ 1

r

@ rvyð Þ
@r

� 1

r

@vr
@y

8<
:

9=
;ef:

(6.19.14)
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Example 6.19.1
Find the vorticity vector for the simple shearing flow:

v1 ¼ kx2; v2 ¼ 0; v2 ¼ 0:

Solution
We have

z1 ¼ @v3
@x2

� @v2
@x3

� �
¼ 0; z2 ¼ @v1

@x3
� @v3
@x1

� �
¼ 0; z3 ¼ @v2

@x1
� @v1
@x2

� �
¼ �k:

Thus,

V ¼ �ke3:

We see that the angular velocity vector (¼V=2) is normal to the x1x2 plane, and the minus sign simply means that

the spinning is clockwise, looking from the positive side of x3:

Example 6.19.2
Find the distribution of the vorticity vector in the Couette flow discussed in Section 6.15.

Solution
With vr ¼ vz ¼ 0 and

vy ¼ Ar þ B=r ;

it is clear that the only nonzero vorticity component is in the z direction. From Eq. (6.19.13),

zz ¼
dvy
dr

þ vy
r
¼ A� B

r2
þ Aþ B

r2
¼ 2A:

Thus (see Section 6.15),

zz ¼ 2
O2r

2
2 � O1r

2
1

r22 � r21
:

6.20 IRROTATIONAL FLOW
If the vorticity vector (or equivalently, the vorticity tensor) corresponding to a velocity field is zero in some

region and for some time interval, the flow is called irrotational in that region and in that time interval.

Let ’ x1; x2; x3; tð Þ be a scalar function and let the velocity components be derived from ’ according to the

following equations:

v1 ¼ � @’

@x1
; v2 ¼ � @’

@x2
; v2 ¼ � @’

@x2
; i:e:; vi ¼ � @’

@xi
: (6.20.1)
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Then the vorticity components are all zero. Indeed,

z1 ¼
@v3
@x2

� @v2
@x3

¼ � @2’

@x2@x3
þ @2’

@x3@x2
¼ 0 (6.20.2)

and similarly, z2 ¼ z3 ¼ 0. That is, any scalar function ’ x1; x2; x3ð Þ defines an irrotational flow field through

Eqs. (6.20.1). Obviously, not all arbitrary functions ’ of x1; x2; x3 and t will give rise to velocity fields that are

physically possible. For one thing, the equation of continuity, expressing the principle of conservation of

mass, must be satisfied. For an incompressible fluid, the equation of continuity reads:

@vi
@xi

¼ 0: (6.20.3)

Combining Eq. (6.20.1) with Eq. (6.20.3), we obtain the Laplacian equation for ’:

@2’

@xj@xj
¼ 0: (6.20.4)

In the next two sections, we discuss the conditions under which irrotational flows are dynamically possible

for an inviscid fluid and a viscous fluid.

6.21 IRROTATIONAL FLOW OF AN INVISCID INCOMPRESSIBLE FLUID
OF HOMOGENEOUS DENSITY
An inviscid fluid is defined by the constitutive equation

Tij ¼ �pdij; (6.21.1)

obtained by setting the viscosity m ¼ 0 in the constitutive equation for a Newtonian viscous fluid.

The equations of motion for an inviscid fluid are

r
@vi
@t

þ vj
@vi
@xj

� �
¼ � @p

@xi
þ rBi: (6.21.2)

Equation (6.21.2) is known as the Euler’s equation of motion. We now show that irrotational flows are

always dynamically possible for an inviscid, incompressible fluid with homogeneous density, provided that

the body forces are conservative, that is, they are derivable from a potential by the formulas

Bi ¼ � @O
@xi

: (6.21.3)

For example, in the case of gravity force, with the x3-axis pointing vertically upward,

O ¼ gx3; (6.21.4)

so that

B1 ¼ 0; B2 ¼ 0; B3 ¼ �g: (6.21.5)

Using Eq. (6.21.3) and noting that r ¼ constant for a homogeneous fluid, Eq. (6.21.2) can be written as

@vi
@t

þ vj
@vi
@xj

¼ � @

@xi

p

r
þ O

� �
: (6.21.6)
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For an irrotational flow,

@vi
@xj

¼ @vj
@xi

; (6.21.7)

so that

vj
@vi
@xj

¼ vj
@vj
@xi

¼ 1

2

@

@xi
vjvj
� � ¼ 1

2

@v2

@xi
; (6.21.8)

where v2 ¼ v21 þ v22 þ v23 is the square of the speed. Therefore, Eq. (6.21.6) becomes

@

@xi
� @’

@t
þ v2

2
þ p

r
þ O

� �
¼ 0: (6.21.9)

Thus,

� @’

@t
þ v2

2
þ p

r
þ O ¼ f tð Þ: (6.21.10)

If the flow is also steady, then we have

v2

2
þ p

r
þ O ¼ C ¼ constant: (6.21.11)

Equation (6.21.10) and the special case Eq. (6.21.11) are known as the Bernoulli’s equations. In addition to

being a very useful formula in problems where the effect of viscosity can be neglected, the preceding derivation

of the formula shows that irrotational flows are always dynamically possible under the conditions stated earlier

(constant density and conservative body forces). Under those conditions, for whatever function ’, so long as

vi ¼ �@’=@xi andr2’ ¼ 0, the dynamic equations of motion can always be integrated to give Bernoulli’s equa-

tion, fromwhich the pressure distribution is obtained, corresponding towhich the equations ofmotion are satisfied.

Example 6.21.1
Given ’ ¼ x31 � 3x1x

2
2 . (a) Show that ’ satisfies the Laplace equation. (b) Find the irrotational velocity field. (c) Find

the pressure distribution for an incompressible homogeneous fluid, if O ¼ gx3 and p ¼ po at 0; 0; 0ð Þ, and (d) if the

plane x2 ¼ 0 is a solid boundary, find the tangential component of velocity on the plane.

Solution

(a)
@2’

@x21
þ @2’

@x22
þ @2’

@x23
¼ 6x1 � 6x1 ¼ 0.

(b) v1 ¼ � @’

@x1
¼ �3x21 þ 3x22 ; v2 ¼ � @’

@x2
¼ 6x1x2; v3 ¼ 0:

(c) At 0;0;0ð Þ;v1 ¼ 0; v2 ¼ 0; v3 ¼ 0;p ¼ po;O¼ 0; therefore, from theBernoulli’s equation, Eq. (6.21.11),C ¼ po=r.

Thus,
v2

2
þ p

r
þO¼ po

r
so that p ¼ po � r

2
v21 þ v22
� �� rgx3, or p ¼ po � r

2
9 x22 � x21
� �2 þ 36x21 x

2
2

h i
� rgx3:

(d) On the plane x2 ¼ 0, v1 ¼ �3x21 ; v2 ¼ 0; v3 ¼ 0. Now, v2 ¼ 0 means that the normal components of velocity

are zero on the plane, which is what it should be if x2 ¼ 0 is a solid fixed boundary. Since v1 ¼ �3x21 , the tan-

gential components of velocity are not zero on the plane, that is, the fluid slips on the boundary. In inviscid

fluid theory, consistent with the assumption of zero viscosity, the slipping of fluid on a solid boundary is

allowed. The next section further discusses this point.
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Example 6.21.2
A liquid is being drained through a small opening as shown in Figure 6.21-1. Neglect viscosity and assume that the

falling of the free surface is so slow that the flow can be treated as a steady one. Find the exit speed of the liquid jet as

a function of h.

Solution
For a point on the free surface such as the point A, p ¼ po; v 	 0 and z ¼ h. For a point B on the exiting jet, its

dimension is assumed to be much smaller than h so that z ¼ 0 and p ¼ po. Therefore, from Eq. (6.21.11),

v2

2
þ po

r
¼ po

r
þ gh;

from which,

v ¼
ffiffiffiffiffiffiffiffi
2gh

p
: (6.21.12)

This is the well-known Torricelli’s formula.

6.22 IRROTATIONAL FLOWS AS SOLUTIONS OF NAVIER-STOKES EQUATION
For an incompressible Newtonian fluid, the equations of motion are the Navier-Stokes equations:

@vi
@t

þ vj
@vi
@xj

¼ � 1

r
@p

@xi
þ m
r

@2vi
@xj@xj

þ Bi: (6.22.1)

For irrotational flow,

vi ¼ � @’

@xi
; (6.22.2)

so that

@2vi
@xj@xj

¼ � @2

@xj@xj

@’

@xi

� �
¼ � @

@xi

@2’

@xj@xj

� �
¼ 0: (6.22.3)

where we have made use of Eq. (6.20.4). Therefore, the terms involving viscosity in the Navier-Stokes equa-

tion (6.22.1) drop out in the case of irrotational flows so that the equations take the same form as the Euler’s

equation for an inviscid fluid. Thus, if the viscous fluid has homogeneous density and if the body forces are

z

h

B

AΔ
FIGURE 6.21-1
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conservative (i.e., Bi ¼ @O=@xi), the results of the last section show that irrotational flows are also dynami-
cally possible for a viscous fluid. However, in any physical problems, there are always solid boundaries.

A viscous fluid adheres to the boundary so that both the tangential and the normal components of the fluid

velocity at the boundary should be those of the boundary. This means that both velocity components at the

boundary are to be prescribed. For example, if y ¼ 0 is a solid boundary at rest, then we have, at y ¼ 0,

vx ¼ vz ¼ 0 (i.e., tangential components are zero) and vy ¼ 0 (i.e., the normal component is zero). For irrota-

tional flow with potential function ’, these conditions become ’ ¼ constant and @’=@y ¼ 0 at y ¼ 0. But it

is known from the potential theory that in general there does not exist a solution of the Laplace equation

satisfying both ’ ¼ constant and r’ � n ¼ @’=@n ¼ 0 (n is normal to the boundary) on the boundary. There-

fore, unless the motion of solid boundaries happens to be consistent with the requirements of irrotationality,

vorticity will be generated on the boundary and diffuse into the flow field in accordance with the vorticity

equations (to be derived in the next section). However, in certain problems under suitable conditions, the vor-

ticity generated by the solid boundaries is confined to a thin layer of fluid in the vicinity of the boundary so

that outside the layer, the flow is irrotational if it originates from a state of irrotationality. We shall have more

to say about this topic in the next two sections.

Example 6.22.1
For the Couette flow of a viscous fluid between two coaxial infinitely long cylinders, how should the ratio of the angular

velocities of the two cylinders be so that the flow is irrotational?

Solution
The only nonzero vorticity component in the Couette flow is (see Example 6.19.2)

zz ¼ 2
O2r

2
2 � O1r

2
1

r22 � r21
; (6.22.4)

where Oi denotes the angular velocities. If O2r
2
2 � O1r

2
1 ¼ 0, the flow is irrotational. Thus,

O2

O1
¼ r21

r22
: (6.22.5)

It should be noted that even though the viscous terms drop out from the Navier-Stokes equations in the case of

irrotational flow, it does not mean that there is no viscous dissipation in an irrotational flow of a viscous fluid. In fact, so

long as there is a nonzero rate of deformation component, there is viscous dissipation [given by Eq. (6.17.7)] and the

rate of work done to maintain the irrotational flow exactly compensates the viscous dissipation.

6.23 VORTICITY TRANSPORT EQUATION FOR INCOMPRESSIBLE VISCOUS FLUID
WITH A CONSTANT DENSITY
In this section, we derive the equation governing the vorticity vector for an incompressible homogeneous

(r ¼ constant) viscous fluid. Assuming that the body force is derivable from a potential O, i.e.,

Bi ¼ �@O=@xi, the Navier-Stokes equation can be written

@vi
@t

þ vj
@vi
@xj

¼ � @

@xi

p

r
þ O

� �
þ n

@2vi
@xj@xj

; (6.23.1)
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where n � m=r � kinematic viscosity. The vorticity components are given by

zm ¼ emni
@vi
@xn

: (6.23.2)

It can be shown (see the following example) that in terms of vorticity components zm, the Navier-Stokes

equation takes the form of

Dzm
Dt

¼ @vm
@xn

zn þ n
@2zm
@xj@xj

; (6.23.3)

or, in direct notation,
DV
Dt

¼ rvð ÞV þ nr2V : (6.23.4)

Example 6.23.1
Show:

(a) emni
@vj
@xn

@vj
@xi

¼ 0 and emni
@2A

@xn@xi
¼ 0 for any A xið Þ.

(b) For an incompressible fluid, emni epji
@vj
@xn

zp ¼ � @vm
@xn

zn :

(c) emni
@vj
@xn

@vi
@xj

¼ � @vm
@xn

zn :

(d)
Dzm
Dt

¼ @vm
@xn

zn þ n
@2zm
@xj@xj

[Eq. (6.23.3)].

Solution
(a) Changing the dummy index from n to i and i to n, we obtain

emni
@vj
@xn

@vj
@xi

¼ emin
@vj
@xi

@vj
@xn

¼ �emni
@vj
@xi

@vj
@xn

:

Therefore,

emni
@vj
@xn

@vj
@xi

¼ 0:

Similarly,

emni
@2A

@xn@xi
¼ emin

@2A

@xi@xn
¼ 0:

(b) Since emniepji ¼ dmpdnj � dmjdnp (see Prob. 2.12),

emni epji
@vj
@xn

zp ¼ dmpdnj � dmjdnp
� � @vj

@xn
zp ¼ @vj

@xj
zm � @vm

@xn
zn ¼ � @vm

@xn
zn;

where we have used the equation
@vj
@xj

¼ 0 for an incompressible fluid.

(c) From
@vi
@xj

� @vj
@xi

¼ �ekijzk [see Eq. (6.19.11)], we have

@vi
@xj

¼ @vj
@xi

� ekijzk ¼ @vj
@xi

� epijzp :
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Multiplying this last equation by emni
@vj
@xn

, we have

emni
@vj
@xn

@vi
@xj

¼ emni
@vj
@xn

@vj
@xi

� emniepij
@vj
@xn

zp ¼ emni
@vj
@xn

@vj
@xi

þ emniepji
@vj
@xn

zp :

Using the results in (a) and (b), we have

emni
@vj
@xn

@vi
@xj

¼ � @vm
@xn

zn:

(d) Operating emni
@

@xn

� �
on the equation

@vi
@t

þ vj
@vi
@xj

¼ � @

@xi

p

r
þ O

� �
þ n

@2vi
@xj@xj

, we get

emni
@

@xn

@vi
@t

þ emni
@

@xn
vj
@vi
@xj

¼ �emni
@2A

@xn@xi
þ emni

@

@xn
n

@2vi
@xj@xj

;

where A ¼ p
r þ O
� 	

and emni
@2A

@xn@xi
¼ 0 [see result in part (a)]. Thus, we have

@

@t
emni

@vi
@xn

� �
þ emni

@vj
@xn

@vi
@xj

þ emnivj
@2vi

@xn@xj
¼ n

@2

@xj@xj
emni

@vi
@xn

� �
:

Now, using the result in part (c), the preceding equation becomes

@

@t
emni

@vi
@xn

� �
� @vm

@xn
zn þ vj

@

@xj
emni

@vi
@xn

� �
¼ n

@2

@xj@xj
emni

@vi
@xn

� �
:

Therefore,

@zm
@t

þ vj
@zm
@xj

¼ @vm
@xn

zn þ n
@2zm
@xj@xj

;

which is Eq. (6.23.3), or Eq. (6.23.4).

Example 6.23.2
Reduce from Eq. (6.23.4) the vorticity transport equation for the case of two-dimensional flows.

Solution
Let the velocity field be

v1 ¼ v1 x1; x2; tð Þ; v2 ¼ v2 x1; x2; tð Þ; v3 ¼ 0:

Then

V ¼ @v3
@x2

� @v2
@x3

� �
e1 þ @v1

@x3
� @v3
@x1

� �
e2 þ @v2

@x1
� @v1
@x2

� �
e3 ¼ @v2

@x1
� @v1
@x2

� �
e3 ¼ B3e3:
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Also,

rvð ÞV½ � ¼
@v1=@x1 @v1=@x2 0

@v2=@x1 @v2=@x2 0

0 0 0

2
64

3
75

0

0

z3

2
64

3
75 ¼

0

0

0

2
64
3
75:

Thus, Eq. (6.23.4) reduces to the scalar equation

Dz3
Dt

¼ nr2z3: (6.23.5)

6.24 CONCEPT OF A BOUNDARY LAYER
In this section we describe, qualitatively, the concept of the viscous boundary layer by means of an analogy.

In Example 6.23.2, we derived the vorticity equation for two-dimensional flows of an incompressible viscous

fluid to be the following:

Dz
Dt

¼ nr2z; (6.24.1)

where z is the only nonzero vorticity component for the 2-D flow and n is kinematic viscosity.

In Section 6.18 we saw that, if the heat generated through viscous dissipation is neglected, the equation

governing the temperature distribution in the flow field due to heat conduction through the boundaries of a

hot body is given by [see Eq. (6.18.4)]

DY
Dt

¼ ar2Y; (6.24.2)

where Y is temperature and a, the thermal diffusivity, is related to conductivity k, density r, and specific heat

per unit mass c by the formula a ¼ k=rc:
Now suppose that we have the problem of a uniform stream flowing past a hot body whose temperature in

general varies along the boundary. Let the temperature at large distance from the body be Y1; then, defining

Y0 ¼ Y�Y1, we have

DY0

Dt
¼ ar2Y0; (6.24.3)

whereY0 ¼ 0 at x2 þ y2 ! 1. On the other hand, the distribution of vorticity around the body is governed by

Dz
Dt

¼ nr2z; (6.24.4)

with z ¼ 0 at x2 þ y2 ! 1. Comparing the preceding two equations, we see that the distribution of vorticity

in the flow field, due to its diffusion from the boundary, where it is generated, is much like that of temperature

due to the diffusion of heat from the boundary of the hot body.

Now, it is intuitively clear that in the case of the temperature distribution, the influence of the hot temper-

ature of the body in the field depends on the speed of the stream. At very low speed, conduction dominates

over the convection of heat so that its influence will extend deep into the fluid in all directions, as shown by

the curve C1 in Figure 6.24-1; whereas at high speed, the heat is convected away by the fluid so rapidly that

the region affected by the hot body will be confined to a thin layer in the immediate neighborhood of the body

and a tail of heated fluid behind it, as shown by the curve C2 in the same figure.

388 CHAPTER 6 Newtonian Viscous Fluid



Analogously, the influence of viscosity, which is responsible for the generation of vorticity on the boundary,

depends on the speedU1 far upstream. At low speed, the influence will be deep into the field in all directions so

that essentially the whole flow field has vorticity. On the other hand, at high speed, the effect of viscosity is

confined in a thin layer (known as a boundary layer) near the body and behind it. Outside the layer, the flow

is essentially irrotational. This concept enables one to solve a fluid flow problem by dividing the flow region

into an irrotational external flow region and a viscous boundary layer. Such a method simplifies considerably

the complexity of the mathematical problem involving the full Navier-Stokes equations. We shall not go into

the methods of solution and of the matching of the regions, since they belong to the boundary layer theory.

6.25 COMPRESSIBLE NEWTONIAN FLUID
For a compressible fluid to be consistent with the state of stress corresponding to the state of rest and to be con-

sistent with the definition that p is not to depend explicitly on any kinematic quantities when in motion, we shall

regard p as having the same value as the thermodynamic equilibrium pressure. That is, for a particular density r
and temperature Y, the pressure p is assumed to be determined by the equilibrium equation of state

p ¼ p r;Yð Þ: (6.25.1)

For example, for an ideal gas, p ¼ RrY, where R is the gas constant. Thus,

Tij ¼ �p r;Yð Þdij þ lDdij þ 2mDij; (6.25.2)

and

Tii=3 ¼ �pþ kD; (6.25.3)

where D is the rate of dilatation given by

D ¼ @vj
@xj

; (6.25.4)

and k is bulk viscosity given by

k ¼ lþ 2=3ð Þm: (6.25.5)

We see that in general all stress components, including the normal stress components, depend on the

motion through the terms involving the rate of deformation. In particular, the mean normal stress Tii=3

C1

U∞

C2

Θ∞

FIGURE 6.24-1
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depends not only on p but also on the rate of dilatation. However, if either the bulk viscosity k is zero or the

rate of dilatation is zero (e.g., incompressible fluid), then the mean normal stress is the same as p. The
assumption that k ¼ 0 is known as the Stokes assumption, which is known to be valid for monatomic gases.

In terms of m and k, the constitutive equation can be written

Tij ¼ �pdij � 2

3
mDdij þ 2mDij þ kDdij (6.25.6)

and the equations of motion become (assuming constant m and k)

r
Dvi
Dt

¼ �rBi � @p

@xi
þ m

3

@

@xi

@vj
@xj

� �
þ m

@2vi
@xj@xj

þ k
@

@xi

@vj
@xj

� �
: (6.25.7)

We also have the equation of continuity [see Eq. (3.15.3)]

Dr
Dt

þ r
@vj
@xj

¼ 0 (6.25.8)

and the energy equation [see Eq. (6.18.2)]

r
Du

Dt
¼ Tij

@vi
@xj

þ k
@2Y
@xj@xj

; (6.25.9)

where the internal energy u depends on r and Y,

u ¼ u r;Yð Þ: (6.25.10)

For example, for ideal gas, with cv denoting specific heat at constant volume,

u ¼ cvY: (6.25.11)

Equations (6.25.1), (6.25.7), (6.25.8), (6.25.9), and (6.25.10) form a system of seven scalar equations for

the seven unknowns v1; v2; v3; p; r;Y, and u.

6.26 ENERGY EQUATION IN TERMS OF ENTHALPY
Enthalpy per unit mass is defined as

h ¼ uþ p

r
: (6.26.1)

The stagnation enthalpy is defined by the equation

ho ¼ hþ v2

2
: (6.26.2)

It can be shown (see Example 6.26.1) that in terms of ho, the energy equation becomes (in the absence of

body forces Bi and heat supply qs)

Dho
Dt

¼ @p

@t
þ @

@xj
T 0
ijvi � qj

� 	
; (6.26.3)

where T 0
ij is the viscous stress tensor (in Tij ¼ �pdij þ T 0

ij) and qj the heat flux vector.
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Example 6.26.1
Show that:

(a) �p
@vi
@xi

þ r
D

Dt

p

r

� �
� vi

@p

@xi
¼ @p

@t
;

(b) r
Du

Dt
þ rvi

Dvi
Dt

¼ @p

@t
� r

D

Dt

p

r

� �
þ T 0

ij

@vi
@xj

� @qi
@xi

þ vi
@T 0

ij

@xj
, assuming no heat source, i.e., qs ¼ 0;

(c) r
Dho
Dt

¼
@ T 0

ij vi

� 	
@xj

� @qi
@xi

þ @p

@t
:

Solution

(a) �p
@vi
@xi

þ r
D

Dt

p

r

� �
� vi

@p

@xi
¼ �p

@vi
@xi

� p

r
Dr
Dt

þ Dp

Dt
� vi

@p

@xi

¼ � p

r
r
@vi
@xi

þ Dr
Dt

� �
þ @p

@t
þ vi

@p

@xi

� �
� vi

@p

@xi
¼ @p

@t
:

(b) From the energy equation r
Du

Dt
¼ Tij

@vi
@xj

� @qi
@xi

[see Eq. (6.18.1)] and the equation of motion r
Dvi
Dt

¼ @Tij
@xj[see Eq. (4.7.5)], we have

r
Du

Dt
þ rvi

Dvi
Dt

¼ Tij
@vi
@xj

� @qi
@xi

� �
þ vi

@Tij
@xj

¼ �pdij þ T 0
ij

� 	 @vi
@xj

� @qi
@xi

þ vi
@ �pdij þ T 0

ij

� 	
@xj

¼ �p
@vi
@xi

þ T 0
ij

@vi
@xj

� @qi
@xi

� vi
@p

@xi
þ vi

@T 0
ij

@xj
¼ �p

@vi
@xi

� vi
@p

@xi

� �
þ T 0

ij

@vi
@xj

� @qi
@xi

þ vi
@T 0

ij

@xj
:

Now, using the result in (a), we have

r
Du

Dt
þ rvi

Dvi
Dt

¼ @p

@t
� r

D

Dt

p

r

� �
þ T 0

ij

@vi
@xj

� @qi
@xi

þ vi
@T 0

ij

@xj
:

(c) r
Dho
Dt

¼ r
D

Dt
h þ v2

2

� �
¼ r

D

Dt
u þ p

r
þ vi vi

2

� �
¼ r

Du

Dt
þ r

D

Dt

p

r

� �
þ rvi

Dvi
Dt

:

Now, using the result in (b), we have

r
Dho
Dt

¼ @p

@t
þ T 0

ij

@vi
@xj

� @qi
@xi

þ vi
@T 0

ij

@xj
or r

Dho
Dt

¼ @p

@t
þ
@ T 0

ij vi

� 	
@xj

� @qi
@xi

;

which is Eq. (6.26.3).

Example 6.26.2
Show that for steady flows of an inviscid, non-heat-conducting fluid, if the flow originates from a homogeneous state,

then (a)

h þ v2

2
¼ constant; (6.26.4)

6.26 Energy Equation in Terms of Enthalpy 391



and (b) if the fluid is an ideal gas, then

g
g � 1

p

r
þ v2

2
¼ constant; (6.26.5)

where g ¼ cp=cv , the ratio of specific heat.

Solution
(a) Since the flow is steady, @p=@t ¼ 0. Since the fluid is inviscid and non-heat-conducting, T 0

ij ¼ 0 and qi ¼ 0.

Thus, the energy equation (6.26.3) reduces to

Dho
Dt

¼ 0: (6.26.6)

In other words, ho is a constant for each particle. But since the flow originates from a homogeneous state,

ho ¼ h þ v2

2
¼ p

r
þ u þ v2

2
¼ constant (6.26.7)

in the whole flow field.

(b) For an ideal gas, p ¼ rRY; u ¼ cvY and R ¼ cp � cv , therefore,

u ¼ p

r
1

g� 1

� �
; (6.26.8)

and

ho ¼ p

r
g

g� 1

� �
þ v2

2
¼ constant: (6.26.9)

6.27 ACOUSTIC WAVE
The propagation of sound can be approximated by considering the propagation of infinitesimal disturbances

in a compressible inviscid fluid. For an inviscid fluid, neglecting body forces, the equations of motion are

@vi
@t

þ vj
@vi
@xj

¼ � 1

r
@p

@xi
: (6.27.1)

Let us suppose that the fluid is initially at rest with

vi ¼ 0; r ¼ ro; p ¼ po: (6.27.2)

Now suppose that the fluid is perturbed from rest such that

vi ¼ v 0i x; tð Þ; r ¼ ro þ r0 x; tð Þ; p ¼ po þ p0 x; tð Þ: (6.27.3)

Substituting Eqs. (6.27.3) into Eq. (6.27.1), we obtain

@v 0
i

@t
þ v 0

j

@v 0
i

@xj
¼ � 1

ro 1þ r0=roð Þ
@p0

@xi
: (6.27.4)
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Since we assumed infinitesimal disturbances, the terms v 0
j @v 0

i =@xj
� �

are negligible compared to @v 0
i =@t and

r0=ro is negligible compared to 1; thus, we obtain the linearized equations of motion

@v 0
i

@t
¼ � 1

ro

@p0

@xi
: (6.27.5)

In a similar manner, we consider the mass conservation equation

@r0

@t
þ v 0

j

@r0

@xj
þ ro 1þ r0=roð Þ @v

0
i

@xi
¼ 0 (6.27.6)

and obtain the linearized equation

@v 0
i

@xi
¼ � 1

ro

@r0

@t
: (6.27.7)

Differentiating Eq. (6.27.5) with respect to xi and Eq. (6.27.7) with respect to t, we eliminate the velocity

to obtain

@2p0

@xi@xi
¼ @2r0

@t2
: (6.27.8)

We further assume that the flow is barotropic, i.e., the pressure depends explicitly on density only. That is,

p ¼ p rð Þ. Expanding p ¼ p rð Þ in a Taylor series about the rest value of pressure po, we have

p ¼ po þ dp

dr

� �
ro

r� roð Þ þ . . . ; (6.27.9)

Neglecting the higher-order terms, we have

p0 ¼ c2or
0; c2o ¼

dp

dr

� �
ro

: (6.27.10)

Thus, for a barotropic flow,

c2o
@2p0

@xi@xi
¼ @2p0

@t2
and c2o

@2r0

@xi@xi
¼ @2r0

@t2
: (6.27.11)

These equations are exactly analogous (for one-dimensional waves) to the elastic wave equations of Chapter

5. Thus, we conclude that the pressure and density disturbances will propagate with a speed

co ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=drð Þro

q
. We call co the speed of sound at stagnation; the local speed of sound is defined to be

c ¼
ffiffiffiffiffiffi
dp

dr

s
: (6.27.12)

When the isentropic relation of p and r is used, i.e.,

p ¼ brg; (6.27.13)

where b is a constant and g is the ratio of specific heats, the speed of sound becomes

c ¼
ffiffiffiffiffiffi
g
p

r

r
: (6.27.14)
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Example 6.27.1
For simplicity, let p; r, and vi denote disturbances (instead of p 0; r0 and v 0

i ).

(a) Write an expression for a harmonic plane acoustic wave propagating in the e1 direction.

(b) Find the velocity disturbance v1:

(c) Compare @vi=@t to the neglected vj @vi=@xj
� �

:

Solution

(a) p ¼ e sin
2p
ℓ

x1 � cotð Þ

 �

.

(b) Using Eq. (6.27.5), we have

@v1
@t

¼ � 1

ro

@p

@x1
¼ � e

ro

2p
ℓ

� �
cos

2p
ℓ

x1 � cotð Þ

 �

;

thus, the velocity disturbance is

v1 ¼ e
roco

sin
2p
ℓ

x1 � cotð Þ

 �

:

(c) For the one-dimensional case, we have the following ratio of amplitudes:

v1
@v1
@x1

@v1
@t




















¼

jv1j 2pe
ℓroco

� �
e
ro

2p
ℓ

� � ¼ jv1j
co

:

Thus, the approximation is best when the disturbance has velocity that is much smaller than the speed of sound.

Example 6.27.2
Two fluids have a plane interface at x1 ¼ 0. Consider a plane acoustic wave that is normally incident on the interface

and determine the amplitudes of the reflected and transmitted waves.

Solution
Let the fluid properties to the left of the interface (x1 < 0) be denoted by r1 and c1 and to the right (x1 > 0) by r2
and c2:

Now let the incident pressure wave propagate to the right be given by

pI ¼ eI sin
2p
ℓI

x1 � c1tð Þ

 �

; x1 � 0ð Þ: (i)

This pressure wave results in a reflected wave

pR ¼ eR sin
2p
ℓR

x1 þ c1tð Þ

 �

; x1 
 0ð Þ; (ii)

and a transmitted wave

pT ¼ eT sin
2p
ℓT

x1 � c2tð Þ

 �

; x1 � 0ð Þ: (iii)
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On the interface x1 ¼ 0, the pressure on the left fluid exerted by the right fluid is given by pI þ pRð Þjx1¼0, whereas

the pressure on the right fluid exerted by the left fluid is pTð Þjx1¼0. By Newton’s third law, we must have

pI þ pRð Þjx1¼0 ¼ pTð Þjx1¼0: (iv)

Thus, Eqs. (i), (ii), and (iii) give

eI sin
2pc1t
ℓI

� eR sin
2pc1t
ℓR

¼ eT sin
2pc2t
ℓT

: (v)

This equation will be satisfied at all times if

ℓI ¼ ℓR ¼ c1=c2ð ÞℓT (vi)

and

eI � eR ¼ eT : (vii)

In addition, we require that the normal velocity be continuous at all times on the interface x1 ¼ 0 so that

@v1=@tð Þx1¼0 is also continuous. Thus, by using Eq. (6.27.5),

� @v1
@t

� �
x1¼0

¼ 1

r1

@pI
@x1

þ @pR
@x1

� �
x1¼0

¼ 1

r2

@pT
@x1

� �
x1¼0

: (viii)

Substituting for the pressures, we obtain

1

r1

eI
ℓI
þ eR
ℓR

� �
¼ 1

r2

eT
ℓT

� �
: (ix)

Combining Eqs. (vi), (vii), and (ix), we obtain

eT ¼ 2

1þ r1c1=r2c2ð Þ

 �

eI ; eR ¼ r1c1=r2c2ð Þ � 1

1þ r1c1=r2c2ð Þ

 �

eI : (x)

Note that for the special case r1c ¼ r2c2

eT ¼ eI ; eR ¼ 0: (xi)

The product rc is referred to as the fluid impedance. This result shows that if the impedances match, there is no

reflection.

6.28 IRROTATIONAL, BAROTROPIC FLOWS OF AN INVISCID
COMPRESSIBLE FLUID
Consider an irrotational flow field given by

vi ¼ � @f
@xi

: (6.28.1)
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To satisfy the mass conservation principle, we must have

@r
@t

þ � @f
@xj

� �
@r
@xj

þ r
@

@xj
� @f
@xj

� �
¼ 0: (6.28.2)

The equations of motion for an inviscid fluid are the Euler equations

@vi
@t

þ vj
@vi
@xj

¼ � 1

r
@p

@xi
þ Bi: (6.28.3)

We assume that the flow is barotropic, that is, the pressure is an explicit function of density only (such as in

isentropic or isothermal flow). Thus, in barotropic flow,

p ¼ p rð Þ and r ¼ r pð Þ: (6.28.4)

Now

@

@xi

ð
1

r
dp

� �
¼ d

dp

ð
1

r
dp

� �
 �
@p

@xi
¼ 1

r
@p

@xi
: (6.28.5)

Therefore, for barotropic flows of an inviscid fluid under conservative body forces (i.e., Bi ¼ �@O=@xi), the
equations of motion can be written:

@vi
@t

þ vj
@vi
@xj

¼ � @

@xi

ð
dp

r
þ O

� �
: (6.28.6)

Comparing Eq. (6.28.6) with Eq. (6.21.6), we see immediately that under the conditions stated, irrotational

flows are again always dynamically possible. In fact, the integration of Eq. (6.28.6) (in exactly the same way

as was done in Section 6.21) gives the following Bernoulli equation:

� @f
@t

þ
ð
dp

r
þ v2

2
þ O ¼ f ðtÞ; (6.28.7)

which, for steady flow, becomes ð
dp

r
þ v2

2
þ O ¼ constant: (6.28.8)

For most problems in gas dynamics, the body force is small compared with other forces and is often

neglected. We then have ð
dp

r
þ v2

2
¼ constant: (6.28.9)

Example 6.28.1
Show that for steady isentropic irrotational flows of an inviscid compressible fluid (body forces neglected)

g
g� 1

p

r
þ v2

2
¼ constant: (6.28.10)

Solution
For an isentropic flow p ¼ brg; dp ¼ bgrg�1dr so thatð

dp

r
¼ bg

ð
rg�2dr ¼ bg

rg�1

g� 1
¼ g

g� 1

p

r
:
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Thus, the Bernoulli equation [Eq. (6.28.9)] becomes

g
g� 1

p

r
þ v2

2
¼ constant:

We note that this is the same result as that obtained in Example 6.26.2 [Eq. (6.26.5)] by the use of the energy

equation. In other words, under the conditions stated (inviscid, non-heat-conducting, initial homogeneous state),

the Bernoulli equation and the energy equation are the same.

Example 6.28.2
Let po denote the pressure at zero speed (called the stagnation pressure). Show that for isentropic steady flow

(p=rg ¼ constant) of an ideal gas,

po ¼ p 1þ 1

2
g� 1ð Þ v

c

� 	2
 � g
g�1

; (6.28.11)

where c is the local speed of sound.

Solution
Since (see previous example)

g
g� 1

p

r
þ v2

2
¼ constant ¼ g

g� 1

po
ro

; and c2 ¼ gp
r

see Eq: ð6:27:14Þ;½
therefore,

v2

2c2
¼ g

g� 1

po
ro

� p

r

� �
r
gp

¼ 1

g� 1

po
p

� �
r
ro

� �
� 1


 �
¼ 1

g� 1

po
p

� �
po
p

� ��1
g

� 1

" #
¼ 1

g� 1

po
p

� �g�1
g

� 1

" #
:

Thus,

po
p

� �
¼ 1þ 1

2
g� 1ð Þ v

2

c2


 � g
g�1

;

which is Eq. (6.28.11).

Example 6.28.3
Obtain the following relations:

po ¼ p þ rv
2

2

(6.28.12)

for a small Mach number, defined as

M ¼ v

c
: (6.28.13)

Solution
The binomial expansion of Eq. (6.28.11) gives, for small v=c,

po
p

¼ 1þ 1

2
g� 1ð Þ v

c

� 	2
 � g
g�1

¼ 1þ 1

2
g

v

c

� 	2
þ . . . : ¼ 1þ 1

2

g
c2

� 	
v2 þ . . . : :
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Now

g
c2

¼ g
gp=rð Þ ¼

r
p
:

Therefore, for a small Mach number M; we have

po ¼ p þ rv
2

2

;

which is Eq. (6.28.12).

We note that this equation is the same as that for an incompressible fluid. In other words, for steady isentropic

flow, the fluid may be considered incompressible if the Mach number is small.

6.29 ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE FLUID
In this section, we discuss some internal flow problems of a compressible fluid. The fluid will be assumed to

be an ideal gas. The flow will be assumed to be one-dimensional in the sense that the pressure, temperature,

density, velocity, and so on are uniform over any cross-section of the channel or duct in which the fluid is

flowing. The flow will also be assumed to be steady and adiabatic.

In steady flow, the rate of mass flow is constant for all cross-sections. With A denoting the variable cross-

sectional area, r the density, and v the velocity, we have

rAv ¼ constant: (6.29.1)

Taking the total derivative of the preceding equation, we get

Avð Þdrþ rvð ÞdAþ rAð Þdv ¼ 0: (6.29.2)

That is,

dr
r

þ dA

A
þ dv

v
¼ 0: (6.29.3)

In the following example, we show that for steady isentropic flow of an ideal gas in one dimension, we have

dA

A
¼ dv

v
M2 � 1
� �

; (6.29.4)

where M is the Mach number. Eq. (6.29.4) is known as the Hugoniot equation.

Example 6.29.1
Derive the Hugoniot equation.

Solution
From Eq. (6.28.9), i.e., ð

dp

r
þ v2

2
¼ constant; (6.29.5)
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we obtain

vdv þ dp

r
¼ 0 ¼ vdv þ 1

r
dp

dr
dr: (i)

The speed of sound c2 ¼ dp

dr
, therefore,

dr
r

¼ � vdv

c2
: (ii)

Using Eq. (6.29.3) and the preceding equation, we have

dA

A
¼ vdv

c2
� dv

v
¼ dv

v
M2 � 1
� �

; (iii)

which is Eq. (6.29.4).

From the Hugoniot equation, we see that for subsonic flows (M < 1), an increase in area produces a

decrease in velocity, just as in the case of an incompressible fluid. On the other hand, for supersonic flow

(M > 1), an increase in area produces an increase in velocity. Furthermore, the critical velocity (M ¼ 1)

can only be obtained at the smallest cross-sectional area where dA ¼ 0.

6.30 STEADY FLOW OF A COMPRESSIBLE FLUID EXITING A LARGE TANK
THROUGH A NOZZLE
We consider the adiabatic flow of an ideal gas exiting a large tank (inside which the pressure p1 and the den-

sity r1 remain essentially unchanged) through two types of exit nozzles: (a) a convergent nozzle and (b) a

convergent-divergent nozzle. The surrounding pressure of the exit jet is pR 
 p1.

A. The Case of a Divergent Nozzle

Application of the energy equation [Eq. (6.28.10)], using the conditions inside the tank and at the section 2 of

the exit jet, gives

v22
2
þ g
g� 1

p2
r2

¼ 0þ g
g� 1

p1
r1

; (6.30.1)

where p2; r2 and v2 are pressure, density, and velocity at section 2 of the exit jet. Thus

v22 ¼
2g

g� 1

p1
r1

1� r1
r2

p2
p1

� �
: (6.30.2)

For adiabatic flow,

p2
p1

� �1=g

¼ r2
r1

: (6.30.3)

Using the preceding equation, we can eliminate r2 from Eq. (6.30.2) and obtain

v22 ¼
2g

g� 1

p1
r1

1� p2
p1

� �g�1
g

 !
: (6.30.4)
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The rate of mass flow dm=dt exiting the tank is (with A2 denoting the cross-sectional area at section 2)

dm

dt
¼ A2r2v2 ¼ A2

r2
r1

r1v2 ¼ A2

p2
p1

� �1=g

r1v2: (6.30.5)

Using Eq. (6.30.2) in the preceding equation, we get v22 ¼
2g

g� 1

p1
r1

1� r1
r2

p2
p1

� �

dm

dt
¼ A2

2g
g� 1

p1r1
p2
p1

� �2=g

� p2
p1

� � gþ1ð Þ=g( )" #1=2
: (6.30.6)

For given p1; r1 and A2, dm=dt depends on p2=p1. We see from the preceding equation that dm=dt ¼ 0 when

p2=p1 ¼ 1 as expected. It also shows dm=dt ¼ 0 when p2 ¼ 0. This last root is not acceptable; we show below that

for a convergent nozzle, the pressure p2, at the exit section 2 inside the jet, can never be less than a critical value pc.
Let us calculate the maximum value of dm=dt. Taking the derivative of (dm=dt) with respect to p2=p1 and

setting it to zero, we get (see Prob. 6.58)

p2
p1

� �
¼ 2

gþ 1

� � g
g�1

: (6.30.7)

The preceding equation gives the critical value pc for a given value of p1. At this value of p2=p1, it can be

obtained

v22 ¼ g
p2
r2

� �
¼ speed of sound at section 2 of the exit jet: (6.30.8)

That is, for a given p1, when the pressure p2 at the exit section (section 2 in the figure) reaches the critical

value given by Eq. (6.30.7), the speed at that section reaches the speed of sound. Now, the pressure at section

2 can never be less than the critical value because otherwise the flow will become supersonic at section 2,

which is impossible in view of the conclusion reached in the last section, that to have M ¼ 1, dA must be zero

and to have M > 1, dA must be increasing (divergent nozzle). Thus, for the case of a convergent nozzle, p2
can never be less than pR, the pressure surrounding the exit jet. When pR > pc; p2 ¼ pR, and when

pR < pc; p2 ¼ pc. The rate of mass flow is,

for pR � pc;
dm

dt
¼ A2

2g
g� 1

p1r1ð Þ

 �1=2 pR

r1

� �2=g

� pR
r1

� � gþ1ð Þ=g" #1=2
; (6.30.9)

and for pR 
 pc,

dm

dt
¼ A2

2g
g� 1

p1r1ð Þ

 �1=2

2

gþ 1

� �2= g�1ð Þ
� 2

gþ 1

� � gþ1ð Þ= g�1ð Þ" #1=2
¼ constant: (6.30.10)

v1= 0

p1
ρ1

2

FIGURE 6.30-1
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B. The Case of a Convergent-Divergent Nozzle

In this case, we take section 2 to be at the throat where dA ¼ 0. From the results in (a), we know that the flow

in the convergent part of the nozzle is always subsonic, regardless of the receiver pressure pR(<p1). The
flow in the diverging passage is subsonic for a certain range of pR=p1 (curves a and b in Figure 6.30-2). There

is a value of pR at which the flow at the throat is sonic; the flow corresponding to this case is known as choked
flow (curve c). Further reductions of pR cannot affect the condition at the throat and produce no change in

flow rate. There is one receiver pressure, pR, for which the flow can expand isentropically to pR (the solid

curve e). If the receiver pressure is between c and e; such as d; the flow following the throat for a short dis-

tance will be supersonic. This is then followed by a discontinuity in pressure (compression shock), and flow

becomes subsonic for the remaining distance to the exit. If the receiver pressure is below that indicated by e in
the figure, a series of expansion waves and oblique shock waves occur outside the nozzle.

6.31 STEADY LAMINAR FLOW OF A NEWTONIAN FLUID IN A THIN ELASTIC
TUBE: AN APPLICATION TO PRESSURE-FLOW RELATION IN A PULMONARY
BLOOD VESSEL
In Section 6.13, we obtain the relation between the volume flow rate Q and the pressure gradient for the

Hagen Poiseuille flow as

Q ¼ � dp

dz

� �
pd4

128m
¼ � dp

dz

� �
pr4

8m
: (6.31.1)

Thus,

dp

dz

� �
¼ � 8m

pr4
Q or r4dp ¼ � 8m

p
Qdz: (6.31.2)

This formula is for flow of a viscous fluid in a rigid cylindrical tube, where the radius of the tube is indepen-

dent of the pressure, which decreases in the flow direction. For an elastic tube, however, the radius depends

on the pressure so that upstream radii will be larger than downstream radii. That is, it will be a function of z.

p1

p
p1

pR
r1

o

a
b
c
d

e

Normal Shock

FIGURE 6.30-2
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Let ro be the uniform radius of a thin elastic tube at zero fluid pressure. The average local circumferential

strain of the thin tube is given by

Eyy ¼ r � ro
ro

; (6.31.3)

and for a thin tube, the local hoop stress Tyy can be calculated from the formula

Tyy ¼ pr

t
; (6.31.4)

where t is the wall thickness, which is assumed to be very small (that is, t=r � 1). We note that when r ¼ ro,
Eyy ¼ 0 and p ¼ 0. Now, by Hooke’s law,

Eyy ¼ Tyy
EY

¼ pr

tEY
; (6.31.5)

where EY is the Young’s modulus. Thus,

r � ro
ro

¼ pr

tEY
; (6.31.6)

from which we have

r ¼ ro 1� rop

tEY

� ��1

: (6.31.7)

Substituting Eq. (6.31.7) in Eq. (6.31.2), we obtain

ðp Lð Þ

p 0ð Þ
1� rop

tEY

� ��4

dp ¼ �
ðL
0

8m
pr4o

Qdz: (6.31.8)

Thus

Q ¼ r3optEY

24mL
1� rop 0ð Þ

tEY

� ��3

� 1� rop Lð Þ
tEY

� ��3
" #

: (6.31.9)

Unlike the case of a rigid uniform tube where Q is directly proportional to p 0ð Þ � p Lð Þ½ �, here it depends

on p 0ð Þ and p Lð Þ in a nonlinear manner given in Eq. (6.31.9).

Example 6.31.1
Obtain the pressure-flow relation for a deformable thin tube where the pressure-radius relationship is known to be

given by

r ¼ ro þ a
p

2
: (6.31.10)

This relation is known to be a good representation of the pulmonary blood vessel (see Fung, Biodynamics: Circu-

lation, Springer-Verlag, 1984, and the references therein). In the preceding equation, ro is the radius when the trans-

mural pressure (pressure across the wall) is zero and a is a compliance constant.
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Solution
Using Eq. (6.30.10), we have

dp

dz
¼ dp

dr

dr

dz
¼ 2

a
dr

dz
:

Thus, from Eq. (6.31.2), we have

2

a
dr

dz
¼ � 8m

pr 4
Q:

Integrating the preceding equation, we have

ðr Lð Þ

r 0ð Þ
r4dr ¼ �

ðL
0

4amQ
p

dz ;

from which we obtain

r5ð0Þ � r5ðLÞ ¼ 20amQ
p

L: (6.31.11)

We see that the volume flow rate varies with the difference of the fifth power of the tube radius at the entry section

(z ¼ 0) minus that at the exit section (z ¼ L).

Using Eq. (6.30.10), i.e., r ¼ ro þ a
p

2
, we get

ro þ a
p 0ð Þ
2


 �5
� ro þ a

p Lð Þ
2


 �5
¼ 20amQ

p
L: (6.31.12)

This is the pressure-flow relationship.

PROBLEMS FOR CHAPTER 6
6.1 In Figure P6.1, the gate AB is rectangular with width b ¼ 60 cm and length L ¼ 4 m. The gate is hinged

at the upper edge A: Neglecting the weight of the gate, find the reactional force at B: Take the specific

weight of water to be 9800 N=m3 and neglect friction.

6.2 The gate AB in Figure P6.2 is 5 m long and 3 m wide. Neglecting the weight of the gate, compute the

water level h for which the gate will start to fall. Take the specific weight of water to be 9800 N=m3.

hinge

30�

4 m

3 m

A

B

FIGURE P6.1

Problems for Chapter 6 403



6.3 The liquid in the U-tube shown in Figure P6.3 is in equilibrium. Find h2 as a function of

r1; r2; r3; h1 and h3. The liquids are immiscible.

6.4 In Figure P6.4, the weightWR is supported by the weightWL via the liquid in the container. The area under

WR is twice that under WL. Find WR in terms ofWL; r1; r2;AL, and h r2 < r1 and assume no mixingð Þ.

h

20,000 N
A

B

5
m

60�

Δ

FIGURE P6.2

r3
r1

r2

h3

h2

h1

FIGURE P6.3

h r2

r1

WL WR

AL AR

FIGURE P6.4
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6.5 Referring to Figure P6.5, the radius and length of the cylinder are r and L, respectively. The specific

weight of the liquid is g: (a) Find the buoyancy force on the cylinder, and (b) find the resultant force

on the cylindrical surface due to the water pressure. The centroid of a semicircular area is 4r=3p from

the diameter.

6.6 A glass of water moves vertically upward with a constant acceleration a: Find the pressure at a point

whose depth from the surface of the water is h: Take the atmospheric pressure to be pa.

6.7 A glass of water shown in Figure P6.6 moves with a constant acceleration a in the direction shown. (a)

Show that the free surface is a plane and find its angle of inclination, and (b) find the pressure at the

point A: Take the atmospheric pressure to be pa:

6.8 The slender U-tube shown in Figure P6.7 moves horizontally to the right with an acceleration a: Deter-
mine the relation among a; ℓ and h.

FIGURE P6.5

g

y

a

A

r
�

θ
x

FIGURE P6.6

h

a

FIGURE P6.7
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6.9 A liquid in a container rotates with a constant angular velocity o about a vertical axis. Show that the

free surface is a paraboloid given by z ¼ r2o2ð Þ=2g, where the origin is on the axis of rotation and z
is measured upward from the lowest point of the free surface.

6.10 The slender U-tube rotates with an angular velocity o about the vertical axis shown in Figure P6.8. Find

the relation among dh � h1 � h2ð Þ;o; r1 and r2.

6.11 For minor altitude differences, the atmosphere can be assumed to have constant temperature. Find the

pressure and density distribution for this case. The pressure p; density r; and absolute temperature Y
are related by the ideal gas law p ¼ rRY.

6.12 In astrophysical applications, an atmosphere having the relation between the density r and the pressure

p given by p=po ¼ r=roð Þn, where po and ro are some reference pressure and density, is known as a

polytropic atmosphere. Find the distribution of pressure and density in a polytropic atmosphere.

6.13 Given the following velocity field for a Newtonian liquid with viscosity m ¼ 0:982 mPa:s
2:05� 10�5 lb� s=ft2
� �

: v1 ¼ �c x1 þ x2ð Þ; v2 ¼ c x2 � x1ð Þ; v3 ¼ 0; c ¼ 1 s�1. For a plane whose

normal is in the e1 direction, (a) find the excess of the total normal compressive stress over the pressure

p; and (b) find the magnitude of the shearing stress.

6.14 For a steady parallel flow of an incompressible linearly viscous fluid, if we take the flow direction to be

e3, (a) show that the velocity field is of the form v1 ¼ 0; v2 ¼ 0, and v3 ¼ v x1; x2ð Þ. (b) If v x1; x2ð Þ ¼ kx2,
find the normal and shear stresses on the plane whose normal is in the direction of e2 þ e3 in terms of vis-

cosity m and pressure p; and (c) on what planes are the total normal stresses given by p?

6.15 Given the following velocity field for a Newtonian incompressible fluid with a viscosity m ¼ 0:96 mPa:s:
v1 ¼ k x21 � x22

� �
; v2 ¼ �2kx1x2; v3 ¼ 0; k ¼ 1 s�1m�1. At the point (1,2,1)m and on the plane whose

normal is in the direction of e1, (a) find the excess of the total normal compressive stress over the pressure

p, and (b) find the magnitude of the shearing stress.

6.16 Do Prob. 6.15 except that the plane has a normal in the direction 3e1 þ 4e2.

6.17 Using the results of Section 2.34, Chapter 2, and the constitutive equations for the Newtonian viscous

fluid, verify the Navier-Stokes equation in the r-direction in cylindrical coordinates, Eq. (6.8.1).

6.18 Using the results of Section 2.35, Chapter 2, and the constitutive equations for the Newtonian viscous

fluid, verify Navier-Stokes equation in the r-direction in spherical coordinates, Eq. (6.8.5).

ω

O

h1

r1 r2

h2

FIGURE P6.8
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6.19 Show that for a steady flow, the streamline containing a point P coincides with the pathline for a parti-

cle that passes through the point P at some time t:

6.20 Given the two-dimensional velocity field v1 ¼ kx1x2= 1þ kx2tð Þ; v2 ¼ 0. (a) Find the streamline at

time t; which passes through the spatial point a1; a2ð Þ, and (b) find the pathline equation x ¼ xðtÞ for
a particle that is at X1;X2ð Þ at time to.

6.21 Given the two-dimensional flow v1 ¼ kx2; v2 ¼ 0. (a) Obtain the streamline passing through the point

a1; a2ð Þ. (b) Obtain the pathline for the particle that is at X1;X2ð Þ at t ¼ 0, including the time history

of the particle along the pathline.

6.22 Do Prob. 6.21 for the following velocity field: v1 ¼ ox2; v2 ¼ �ox1.

6.23 Given the following velocity field in polar coordinates r; yð Þ:
vr ¼ Q= 2prð Þ; vy ¼ 0:

(a) Obtain the streamline passing through the point ro; yoð Þ, and (b) obtain the pathline for the particle

that is at R;Yð Þ at t ¼ 0, including the time history of the particle along the pathline.

6.24 Do Prob. 6.23 for the following velocity field in polar coordinates r; yð Þ: vr ¼ 0; vy ¼ C=r.

6.25 From the Navier-Stokes equations, obtain Eq. (6.11.2) for the velocity distribution of the plane Couette flow.

6.26 For the plane Couette flow, if in addition to the movement of the upper plate there is also an applied

negative pressure gradient @p=@x1, obtain the velocity distribution. Also obtain the volume flow rate

per unit width.

6.27 Obtain the steady unidirectional flow of an incompressible viscous fluid layer of uniform depth d flow-

ing down an inclined plane, which makes an angle y with the horizontal.

6.28 A layer of water (rg ¼ 62:4 lb=ft3) flows down an inclined plane (y ¼ 30o) with a uniform thickness of

0:1 ft. Assuming the flow to be laminar, what is the pressure at any point on the inclined plane? Take

the atmospheric pressure to be zero.

6.29 Two layers of liquids with viscosities m1 and m2, densities r1 and r2, respectively, and with equal depths

b flow steadily between two fixed horizontal parallel plates. Find the velocity distribution for this steady

unidirectional flow.

6.30 For the Couette flow of Section 6.15, (a) obtain the shear stress at any point inside the fluid, (b) obtain

the shear stress on the outer and inner cylinder, and (c) obtain the torque that must be applied to the

cylinders to maintain the flow.

6.31 Verify the equation b2 ¼ ro=2m for the oscillating problem of Section 6.16.

6.32 Consider the flow of an incompressible viscous fluid through the annular space between two concentric

horizontal cylinders. The radii are a and b. (a) Find the flow field if there is no variation of pressure in

the axial direction and if the inner and the outer cylinders have axial velocities va and vb, respectively,
and (b) find the flow field if there is a pressure gradient in the axial direction and both cylinders are

fixed. Take body forces to be zero.

6.33 Show that for the velocity field: vx ¼ vðy; zÞ; vy ¼ vz ¼ 0, the Navier-Stokes equations, with B ¼ 0,

reduce to
@2v

@y2
þ @2v

@z2
¼ 1

m
dp

dx
¼ b ¼ constant.
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6.34 Given the velocity field in the form vx ¼ v ¼ A y2=a2 þ z2=b2ð Þ þ B; vy ¼ vz ¼ 0. Find A and B for the

steady laminar flow of a Newtonian fluid in a pipe having an elliptical cross-section given by

y2=a2 þ z2=b2 ¼ 1. Assume no body forces, and use the governing equation obtained in the previous

problem.

6.35 Given the velocity field in the form of

vx ¼ A zþ b

2
ffiffiffi
3

p
� �

zþ
ffiffiffi
3

p
y� bffiffiffi

3
p

� �
z�

ffiffiffi
3

p
y� bffiffiffi

3
p

� �
þ B; vy ¼ vz ¼ 0:

Find A and B for the steady laminar flow of a Newtonian fluid in a pipe having an equilateral triangular

cross-section defined by the planes

zþ b

2
ffiffiffi
3

p ¼ 0; zþ
ffiffiffi
3

p
y� bffiffiffi

3
p ¼ 0; z�

ffiffiffi
3

p
y� bffiffiffi

3
p ¼ 0:

Assume no body forces, and use the governing equation obtained in Prob. 6.33.

6.36 For the steady-state, time-dependent parallel flow of water (density r ¼ 103 kg=m3, viscosity

m ¼ 10�3 Ns=m2) near an oscillating plate, calculate the wave length for o ¼ 2 cps.

6.37 The space between two concentric spherical shells is filled with an incompressible Newtonian fluid. The

inner shell (radius ri) is fixed; the outer shell (radius ro) rotates with an angular velocity O about a diam-

eter. Find the velocity distribution. Assume the flow to be laminar without secondary flow.

6.38 Consider the following velocity field in cylindrical coordinates for an incompressible fluid:

vr ¼ v rð Þ; vy ¼ 0; vz ¼ 0:

(a) Show that vr ¼ A=r, where A is a constant, so that the equation of conservation of mass is satisfied.

(b) If the rate of mass flow through the circular cylindrical surface of radius r and unit length (in

z-direction) is Qm, determine the constant A in terms of Qm.

6.39 Given the following velocity field in cylindrical coordinates for an incompressible fluid:

vr ¼ v r; yð Þ; vy ¼ 0; vz ¼ 0. Show that (a) vr ¼ f yð Þ=r, where f yð Þ is any function of y; and (b) in

the absence of body forces,

d2f

dy2
þ 4f þ rf 2

m
þ k ¼ 0; p ¼ 2m

f

r2
þ km
2r2

þ C; k and C are constants:

6.40 Consider the steady two-dimensional channel flow of an incompressible Newtonian fluid under the

action of an applied negative pressure gradient @p=@x1, as well as the movement of the top plate with

velocity vo in its own plane (see Prob. 6.26). Determine the temperature distribution for this flow due to

viscous dissipation when both plates are maintained at the same fixed temperature yo. Assume constant

physical properties.

6.41 Determine the temperature distribution in the plane Poiseuille flow where the bottom plate is kept at a

constant temperature Y1 and the top plate at Y2. Include the heat generated by viscous dissipation.

6.42 Determine the temperature distribution in the steady laminar flow between two coaxial cylinders

(Couette flow) if the temperatures at the inner and the outer cylinders are kept at the same fixed tem-

perature Yo.

6.43 Show that the dissipation function for a compressible fluid can be written as that given in Eq. (6.17.10).
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6.44 Given the velocity field of a linearly viscous fluid: v1 ¼ kx1; v2 ¼ �kx2; v3 ¼ 0. (a) Show that the

velocity field is irrotational. (b) Find the stress tensor. (c) Find the acceleration field. (d) Show that

the velocity field satisfies the Navier-Stokes equations by finding the pressure distribution directly from

the equations. Neglect body forces. Take p ¼ po at the origin. (e) Use the Bernoulli equation to find the

pressure distribution. (f) Find the rate of dissipation of mechanical energy into heat. (g) If x2 ¼ 0 is a

fixed boundary, what condition is not satisfied by the velocity field?

6.45 Do Prob. 6.44 for the following velocity field: v1 ¼ k x21 � x22
� �

; v2 ¼ �2kx1x2; v3 ¼ 0.

6.46 Obtain the vorticity vector for the plane Poiseuille flow.

6.47 Obtain the vorticity vector for the Hagen-Poiseuille flow.

6.48 For a two-dimensional flow of an incompressible fluid, we can express the velocity components in

terms of a scalar function c (known as the Lagrange stream function) by the relations

vx ¼ @c
@y

; vy ¼ � @c
@x

. (a) Show that the equation of conservation of mass is automatically satisfied

for any c x; yð Þ that has continuous second partial derivatives. (b) Show that for two-dimensional flow

of an incompressible fluid, c ¼ constants are streamlines. (c) If the velocity field is irrotational, then

vi ¼ �@’=@xi. Show that the curves of constant velocity potential ’ ¼ constant and the streamline c
¼ constant are orthogonal to each other. (d) Obtain the only nonzero vorticity component in terms of c:

6.49 Show that c ¼ Voy 1� a2

x2 þ y2

� �
represents a two-dimensional irrotational flow of an inviscid fluid.

6.50 Referring to Figure P6.9, compute the maximum possible flow of water. Take the atmospheric pressure

to be 93.1 kPa:, the specific weight of water 9810 N=m3, and the vapor pressure 17.2 kPa. Assume the

fluid to be inviscid. Find the length ℓ for this rate of discharge.

6.51 Water flows upward through a vertical pipeline that tapers from cross-sectional area A1 to area A2 in a

distance of h: If the pressure at the beginning and end of the constriction are p1 and p2, respectively,
determine the flow rate Q in terms of r;A1;A2; p1; p2 and h. Assume the fluid to be inviscid.

Δ

5 m

3 m

10 cm dia

FIGURE P6.9
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6.52 Verify that the equation of conservation of mass is automatically satisfied if the velocity components in

cylindrical coordinates are given by

vr ¼ � 1

rr
@c
@z

; vz ¼ 1

rr
@c
@r

; vy ¼ 0;

where the density r is a constant and c is any function of r and z having continuous second partial

derivatives.

6.53 From the constitutive equation for a compressible fluid, derive the equation

r
Dvi
Dt

¼ rBi � @p

@xi
þ m

3

@

@xi

@vj
@xj

� �
þ m

@2vi
@xj@xj

þ k
@

@xi

@vj
@xj

� �
:

6.54 Show that for a one-dimensional, steady, adiabatic flow of an ideal gas, the ratio of temperature Y1=Y2

at sections 1 and 2 is given by

Y1

Y2

¼
1þ 1

2
g� 1ð ÞM2

1

1þ 1

2
g� 1ð ÞM2

2

;

where g is the ratio of specific heat, and M1 and M2 are local Mach numbers at section 1 and section

2 respectively.

6.55 Show that for a compressible fluid in isothermal flow with no external work,

dM2

M2
¼ 2

dv

v
;

where M is the Mach number. (Assume perfect gas.)

6.56 Show that for a perfect gas flowing through a duct of constant cross-sectional area at constant tempera-

ture,
dp

p
¼ � 1

2

dM2

M2
. (Use the results of the last problem.)

6.57 For the flow of a compressible inviscid fluid around a thin body in a uniform stream of speed Vm

in the x1 direction, we let the velocity potential be ’ ¼ �Vo x1 þ ’1ð Þ, where ’1 is assumed to

be very small. Show that for steady flow, the equation governing ’1 is, with Mo ¼ Vo=co,

1�M2
o

� � @2’1

@x21
þ @2’1

@x22
þ @2’1

@x23
¼ 0.

6.58 For a one-dimensional steady flow of a compressible fluid through a convergent channel, obtain the crit-

ical pressure and the corresponding velocity. That is, verify Eqs. (6.30.7) and (6.30.8).
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CHAPTER

The Reynolds Transport Theorem
and Applications 7
In Chapters 3 and 4, the field equations expressing the principles of conservation of mass, linear momentum,

moment of momentum, energy, and entropy inequality were derived by the consideration of differential ele-

ments in the continuum (Sections 3.15, 4.7, 4.4, 4.15 and 4.16) and by the consideration of an arbitrary fixed

part of the continuum (Section 4.18). In the form of differential equations, the principles are sometimes

referred to as local principles. In the form of integrals, they are known as global principles. Under the

assumption of smoothness of functions involved, the two forms are completely equivalent, and in fact the

requirement that the global theorem be valid for each and every part of the continuum results in the differen-

tial form of the balanced equations, which was demonstrated in Section 4.18; indeed, in that section, the pur-

pose is simply to provide an alternate approach to the formulation of the field equations and to group all the

field equations for a continuum into one section for easy reference.

In this chapter, we revisit the derivations of the integral form of the principles with emphasis on the Rey-

nolds transport theorem and its applications to obtain the approximate solutions of engineering problems

using the concept of control volumes, moving as well as fixed. A small portion of this chapter is a repeat

of Section 4.18, which perhaps is desirable from the point of view of pedagogy. Furthermore, in the deriva-

tions used in Section 4.18, it is assumed that the readers are familiar with the divergence theorem; we refer

those readers who are not familiar with the theorem to the present chapter, wherein the divergence theorem

will be introduced through a generalization of Green’s theorem (a two-dimensional divergence theorem),

the proof of which is given in detail. A detailed discussion of the distinction between integrals over a control

volume and integrals over a material volume is also given before the derivation of the Reynolds transport

theorem.

7.1 GREEN’S THEOREM
Let P x; yð Þ; @P=@x and @P=@y be continuous functions of x and y in a closed region R bounded by the closed

curve C. Let n ¼ nxex þ nyey be the unit outward normal of C. Then Green’s theorem states thatð
R

@P

@x
dA ¼

ð
C

Pdy ¼
ð
C

Pnxds (7.1.1)

and ð
R

@P

@y
dA ¼ �

ð
C

Pdx ¼
ð
C

Pnyds; (7.1.2)
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where the subscript C denotes the line integral around the closed curve C in the counterclockwise direction

and s is the arc length measured along the boundary curve in the counterclockwise direction. For the proof,

let us assume for simplicity that the region R is such that every straight line through an interior point and par-

allel to either axis cuts the boundary in exactly two points. Figure 7.1-1 shows one such region. Let a and b be

the least and the greatest values of y on C (point G and H in the figure). Let x ¼ x1(y) and x ¼ x2(y) be the

equations for the boundaries HAG and GBH, respectively. Then

ð
R

@P

@x
dA ¼

ðb
a

ðx2 yð Þ

x1 yð Þ

@P

@x
dx

" #
dy: (7.1.3)

Now,

ðx2ðyÞ
x1ðyÞ

@P

@x
dx ¼ Pðx; yÞ

���x2ðyÞ
x1ðyÞ

¼ P½x2ðyÞ; y� � P½x1ðyÞ; y�: (7.1.4)

Thus,

ð
R

@P

@x
dA ¼

ðb
a

P x2 yð Þ; y½ �dy�
ðb
a

P x1 yð Þ; y½ �dy ¼
ð

GBH

Pdy�
ð

GAH

Pdy: (7.1.5)

Since ð
GAH

Pdy ¼ �
ð

HAG

Pdy; (7.1.6)

then ð
R

@P

@x
dA ¼

ð
GBH

Pdyþ
ð

HAG

Pdy ¼
ð
C

Pdy: (7.1.7)

R

A

B

G

H

C
b

a

n

O

x2(y)

x1(y)

x

y

FIGURE 7.1-1
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Let x ¼ x(s) and y ¼ y(s) be the parametric equations for the boundary curve. Then dy=ds ¼ nx so thatð
R

@P

@x
dA ¼

ð
C

Pnxds: (7.1.8)

Eq. (7.1.2) can be proven in a similar manner.

Example 7.1.1
For P x ; yð Þ ¼ xy2, evaluate

Ð
CP x ; yð Þnxds along the closed path OABC (Figure 7.1-2). Also evaluate the area integralð

R

@P

@x
dA. Compare the results.

Solution
We have ð

C

P x; yð Þnxds ¼
ð
OA

x 0ð Þ2 0ð Þds þ
ð
AB

by2 1ð Þdy þ
ð
BC

xh2 0ð Þds þ
ð
CO

0ð Þy2 �1ð Þds

That is, ð
C

P x ; yð Þnxds ¼
ðh
0

by2dy ¼ bh3

3
:

On the other hand,

ð
R

@P

@x
dA ¼

ð
R

y2dA ¼
ðh
0

y2bdy ¼ bh3

3
;

and we see ð
C

Pnxds ¼
ð
R

@P

@x
dA:

O b
A

B
C

h

x

y

FIGURE 7.1-2
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7.2 DIVERGENCE THEOREM
Let v ¼ v1 x1; x2ð Þe1 þ v2 x1; x2ð Þe2 be a vector field. Applying Eqs. (7.1.1) and (7.1.2) to v1 and v2 and adding,

we have ð
C

v1n1 þ v2n2ð Þds ¼
ð
R

@v1
@x1

þ @v2
@x2

� �
dA: (7.2.1)

In indicial notation, Eq. (7.2.1) reads ð
C

vinids ¼
ð
R

@vi
@xi

dA; (7.2.2)

and in invariant notation, ð
C

v � nds ¼
ð
R

div vð ÞdA: (7.2.3)

The following generalization not only appears natural but can indeed be proven (we omit the proof):ð
S

vjnjdS ¼
ð
V

@vj
@xj

dV: (7.2.4)

Or, in invariant notation, ð
S

v � ndS ¼
ð
V

div vð ÞdV; (7.2.5)

where S is a surface forming the complete boundary of a bounded closed region R in space and n is the out-

ward unit normal of S. Equation (7.2.5) is known as the divergence theorem (or the Gauss theorem). The the-
orem is valid if the components of v are continuous and have continuous first partial derivatives in R. It is also
valid under less restrictive conditions on the derivatives. In Eq. (7.2.5), if we replace v with av, where a is a

scalar function, we have ð
S

av � ndS ¼
ð
V

div avð ÞdV: (7.2.6)

Next, if we replace vj with Tij in Eq. (7.2.4), where Tij are components of a tensor T, then we haveð
S

TijnjdS ¼
ð
V

@Tij
@xj

dV: (7.2.7)

Or, in invariant notation, ð
S

TndS ¼
ð
V

div Tð ÞdV: (7.2.8)

Equation (7.2.8) is the divergence theorem for a tensor field. It is obvious that for tensor fields of higher

order, Eq. (7.2.8) is also valid, provided the Cartesian components of div T are defined to be @Tijkl...s=@xs.
For example, ð

S

TijknkdS ¼
ð
V

@Tijk
@xk

dV: (7.2.9)
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Example 7.2.1
Let T be a stress tensor field and let S be a closed surface. Show that the resultant force f of the distributive forces on

S is given by

f ¼
ð
V

div Tð ÞdV : (7.2.10)

Solution
We have

f ¼
ð
S

tdS; (7.2.11)

where t is the stress vector. Now t ¼ Tn; therefore, from the divergence theorem, we have

f ¼
ð
S

tdS ¼
ð
S

TndS ¼
ð
V

div TdV

or, in indicial notation,

fi ¼
ð
V

@Tij
@xj

dV : (7.2.12)

Example 7.2.2
Referring to Example 7.2.1, also show that the resultant moment m about a fixed point O of the distributive forces on

S is given by

m ¼
ð
V

x� div Tð Þ þ 2tA
� �

dV ; (7.2.13)

where x is the position vector of the particle with volume dV, relative to the fixed point O, and tA is the axial (or dual)

vector of the antisymmetric part of T (see Section 2.21).

Solution
We have

m ¼
ð
V

x� tdS: (7.2.14)

Let mi be the component of m; then

mi ¼
ð
S

eijkxj tkdS ¼
ð
S

eijk xjTkpnpdS: (7.2.15)

Using the divergence theorem, Eq. (7.2.4), we have

mi ¼
ð
V

@

@xp
eijk xjTkp
� �

dV : (7.2.16)
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Now

@

@xp
eijkxjTkp
� � ¼ eijk

@xj
@xp

Tkp þ xj
@Tkp
@xp

0
@

1
A ¼ eijk djpTkp þ xj

@Tkp
@xp

0
@

1
A

¼ eijk Tkj þ xj
@Tkp
@xp

0
@

1
A ¼ �eikjTkj þ eijk xj

@Tkp
@xp

:

Noting that �eikj Tkj are the components of 2tA (i.e., twice the dual vector of the antisymmetric part of T) [see

Eq. (2.21.4)], and eijk xj
@Tkp
@xp

are components of x� div Tð Þ, we have

m ¼
ð
S

x� tdS ¼
ð
V

x� div Tð Þ þ 2tA
� �

dV :

Example 7.2.3
Referring to Example 7.2.1, show that the total power P (rate of work done) by the stress vector on S is given by

P ¼
ð
S

t � vdS ¼
ð
V

div Tð Þ � vþ tr TTrv
	 
h i

dV ; (7.2.17)

where v is the velocity field.

Solution
The power is given by

P ¼
ð
S

t � vdS ¼
ð
S

Tn � vdS: (7.2.18)

Now Tn � v ¼ n � TTv (definition of the transpose of a tensor), and using the divergence theorem,

P ¼
ð
S

n � TTv
	 


dS ¼
ð
V

div TTv
	 


dV :

Now

div TTv
	 


¼ @Tji vj
@xi

¼ @Tji
@xi

vj þ Tji
@vj
@xi

¼ div Tð Þ � vþ tr TTrv
	 


:

Thus,

P ¼
ð
S

t � vdS ¼
ð
V

div Tð Þ � vþ tr TTrv
	 
h i

dV ;

which is Eq. (7.2.17).
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7.3 INTEGRALS OVER A CONTROL VOLUME AND INTEGRALS OVER
A MATERIAL VOLUME
Consider first a one-dimensional problem in which the motion of a continuum, in Cartesian coordinates,

is given by

x ¼ x̂ X; tð Þ; y ¼ Y; z ¼ Z (7.3.1)

and the density field is given by

r ¼ r x; tð Þ: (7.3.2)

The integral

m t; x 1ð Þ; x 2ð Þ
	 


¼
ðx 2ð Þ

x 1ð Þ
r x; tð ÞAdx; (7.3.3)

with fixed values of x(1) and x(2) is an integral over a fixed control volume; it gives the total mass at time

t within the spatially fixed cylindrical volume of constant cross-sectional area A and bounded by the end faces

x ¼ x 1ð Þ and x ¼ x 2ð Þ:

Let X(1), X(2) be the material coordinates for the particles, which, at time t, are at x(1) and x(2), respectively,
i.e., x 1ð Þ ¼ x̂ðXð1Þ; tÞ and x 2ð Þ ¼ x̂ X 2ð Þ; t

� �
. Then the integral

M t;X 1ð Þ;X 2ð Þ
	 


¼
ð x̂ X 2ð Þ ;tð Þ
x̂ X 1ð Þ;tð Þ

r x; tð ÞAdx; (7.3.4)

with its integration limits functions of time (in accordance with the motion of the material particles that at

time t are at x(1) and x(2)), is an integral over a material volume; it gives the total mass at time t of that part
of the material that is instantaneously (at time t) coincidental with that inside the fixed boundary surface con-

sidered in Eq. (7.3.3). Obviously, at time t, both integrals, i.e., Eqs. (7.3.3) and (7.3.4), have the same value.

At other times, say at t þ dt, however, they have different values. Indeed,

@m

@t
� @

@t

ðx 2ð Þ

x 1ð Þ
r x; tð ÞAdx

" #
x 1ð Þ;x 2ð Þ�fixed

; (7.3.5)

is different from

@M

@t
� @

@t

ð x̂ X 2ð Þ ;tð Þ
x̂ X 1ð Þ;tð Þ

r x; tð ÞAdx
" #

X 1ð Þ ;X 2ð Þ�fixed

� D

Dt

ð x̂ X 2ð Þ ;tð Þ
x̂ X 1ð Þ;tð Þ

r x; tð ÞAdx: (7.3.6)

We note that @m/@t in Eq. (7.3.5) gives the rate at which mass is increasing inside the fixed control volume

bounded by the cylindrical lateral surface and the end faces x ¼ x(1) and x ¼ x(2), whereas @M/@t in Eq. (7.3.6)

gives the rate of increase of the mass of that part of the material that at time t is coincidental with that in the

fixed control volume. They should obviously be different. In fact, the principle of conservation of mass

demands that the mass within a material volume should remain a constant, whereas the mass within the fixed

control volume in general changes with time.

The preceding example serves to illustrate the two types of volume integrals that we employ in the follow-

ing sections. We use Vc to indicate a fixed control volume and Vm to indicate a material volume. That is, for
any tensor T (including a scalar), the integral
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ð
Vc

T x; tð ÞdV

is over the fixed control volume Vc, and the rate of change of this integral is denoted by

@

@t

ð
Vc

T x; tð ÞdV;

whereas the integral ð
Vm

T x; tð ÞdV;

is over the material volume and the rate of change of this integral is denoted by

D

Dt

ð
Vm

T x; tð ÞdV:

7.4 THE REYNOLDS TRANSPORT THEOREM
Let T(x, t) be a given scalar or tensor function of spatial coordinates x1; x2; x3ð Þ and time t. Examples of

T(x, t) are density r(x, t), linear momentum r x; tð Þv x; tð Þ, and angular momentum r� r x; tð Þv x; tð Þ:
Let

Ð
Vm
T x; tð ÞdV be an integral of T(x, t) over a material volume Vm. As discussed in the last section, the

material volume Vm consists of the same material particles at all times and therefore has time-dependent

boundary Sm due to the movement of the material.

We wish to evaluate the rate of change of such integrals (e.g., the rate of change of mass, of linear

momentum, and so on of a material volume) and to relate them to physical laws (such as the conservation

of mass, balance of linear momentum, and the like).

The Reynolds transport theorem states that

D

Dt

ð
Vm tð Þ

T x; tð ÞdV ¼
ð
Vc

@T x; tð Þ
@t

dV þ
ð
Sc

T v � nð ÞdS; (7.4.1)

or

D

Dt

ð
Vm tð Þ

T x; tð ÞdV ¼
ð
Vc

DT

Dt
þ T div v

� �
dV; (7.4.2)

where Vc is the control volume (fixed in space) that instantaneously coincides with the material volume Vm

(moving with the continuum), Sc is the boundary surface of Vc, and n is the outward unit normal vector.

We note that the notation D/Dt in front of the integral at the left-hand side of Eqs. (7.4.1) and (7.4.2) empha-

sizes that the boundary surface of the integral moves with the material and we are calculating the rate of

change by following the movements of the material.

The Reynolds theorem can be derived in the following two ways:

(a) We have

D

Dt

ð
Vm tð Þ

T x; tð ÞdV ¼
ð
Vm¼Vc

D

Dt
TdVð Þ

� �
¼

ð
Vc

DT

Dt
dV þ

ð
Vc

T
D dVð Þ
Dt

: (7.4.3)
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Since [see Eq. (3.13.14)]

D dVð Þ
Dt

¼ div vð ÞdV; (7.4.4)

Eq. (7.4.3) becomes Eq. (7.4.2). That is,

D

Dt

ð
Vm tð Þ

T x; tð ÞdV ¼
ð
Vc

DT

Dt
þ T div v

� �
dV:

In Cartesian coordinates, the preceding equation reads,

D

Dt

ð
Vm tð Þ

Tij x; tð ÞdV ¼
ð
Vc

DTij
Dt

þ Tij
@vk
@xk

� �� �
dV ¼

ð
Vc

@Tij
@t

þ @Tijvk
@xk

� �� �
dV: (7.4.5)

Now, from the Gauss theorem, Eq. (7.2.9), we have

ð
V

@ Tijvk
� �
@xk

dV ¼
ð
S

TijvknkdS: (7.4.6)

Thus,

D

Dt

ð
Vm tð Þ

Tij x; tð ÞdV ¼
ð
Vc

@Tij x; tð Þ
@t

dV þ
ð
Sc

TijvknkdS:

In invariant notation, we have

D

Dt

ð
Vm tð Þ

TdV ¼
ð
Vc

@T

@t
dV þ

ð
Sc

T v � nð ÞdS:

This is Eq. (7.4.1).

(b) Alternatively, we can derive Eq. (7.4.2) in the following way. Since [see Eq. (3.28.3)]

dV ¼ det Fð ÞdVo; (7.4.7)

where F is the deformation gradient and dVo is the volume at the reference state,ð
Vm

T x; tð ÞdV ¼
ð
Vo

T x; tð Þ det Fð ÞdVo; (7.4.8)

thus,

D

Dt

ð
Vm

T x; tð ÞdV ¼
ð
Vo

D

Dt
T det Fð Þ

� �
dVo ¼

ð
Vo

DT

Dt
det Fð Þ þ T

D det Fð Þ
Dt

� �
dVo (7.4.9)

Now, from Eqs. (7.4.7) and (7.4.4), we have

D det Fð Þ
Dt

¼ 1

dVo

D

Dt
dV

� �
¼ 1

dVo

div vð ÞdV ¼ div vð Þ det Fð Þ; (7.4.10)
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therefore, Eq. (7.4.9) becomes

D

Dt

ð
Vm

T x; tð ÞdV ¼
ð
Vc

DT

Dt
þ T div vð Þ

� �
det FdVo ¼

ð
Vc

DT

Dt
þ T div vð Þ

� �
dV;

which is Eq. (7.4.2).

From Eqs. (7.4.1) and (7.4.2), we also haveð
Vc

@T x; tð Þ
@t

dV þ
ð
Sc

T v � nð ÞdS ¼
ð
Vc

DT

Dt
þ T div v

� �
dV: (7.4.11)

7.5 THE PRINCIPLE OF CONSERVATION OF MASS
The global principle of conservation of mass states that the total mass of a fixed part of a material should

remain constant at all times. That is,

D

Dt

ð
Vm

r x; tð ÞdV ¼ 0: (7.5.1)

Using Reynolds transport theorem Eq. (7.4.1), we obtainð
Vc

@

@t
r x; tð Þ ¼ �

ð
Sc

r v � nð ÞdS; (7.5.2)

or

@

@t

ð
Vc

r x; tð ÞdV ¼ �
ð
Sc

r v � nð ÞdS: (7.5.3)

This equation states that the time rate at which mass is increasing inside a control volume ¼ the mass

influx (i.e., net rate of mass inflow) through the control surface. Using Eq. (7.2.6), we haveð
S

r v � nð ÞdS ¼
ð
V

div rvð ÞdV; (7.5.4)

thus, Eq. (7.5.2) can be written as ð
Vc

@r
@t

þ div rvð Þ
� �

dV ¼ 0: (7.5.5)

This equation is to be valid for all Vc; therefore, we must have

@r
@t

þ div rvð Þ ¼ 0; (7.5.6)

or

Dr
Dt

þ rdiv v ¼ 0: (7.5.7)

Eq. (7.5.6) or Eq. (7.5.7) is the same equation of continuity derived in Section 3.15.
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Example 7.5.1
Given the motion

x1 ¼ 1þ atð ÞX1; x2 ¼ X2; x3 ¼ X3 (i)

and the density field

r ¼ ro
1þ at

ro ¼ constantð Þ: (ii)

(a) Obtain the velocity field.

(b) Check that the equation of continuity is satisfied.

(c) Compute the total mass and the rate of increase of mass inside a cylindrical control volume of cross-sectional

area A and having as its end faces the plane x1 ¼ 1 and x1 ¼ 3.

(d) Compute the net rate of inflow of mass into the control volume of part (c).

(e) Find the total mass at time t of the material that at the reference time (t ¼ 0) was in the control volume of (c).

(f) Compute the total linear momentum for the fixed part of material considered in part (e).

Solution
(a)

v1 ¼ Dx1
Dt

¼ aX1 ¼ ax1
1þ at

; v2 ¼ 0; v3 ¼ 0: (iii)

(b) Using (ii) and (iii),

Dr
Dt

þ r div vð Þ ¼ @r
@t

þ v1
@r
@x1

þ r
@v1
@x1

¼ � aro
1þ atð Þ2

þ ax1
1þ atð Þ 0ð Þ þ ro

1þ atð Þ
a

1þ atð Þ ¼ 0: (iv)

(c) The total mass inside the control volume at time t is

mðtÞ ¼
ð
Vc

r x ; tð ÞdV ¼
ðx1¼3

x1¼1

r x ; tð ÞdV ¼
ðx1¼3

x1¼1

ro
1þ at

Adx1 ¼ 2Aro
1þ at

; (v)

and the rate at which the mass is increasing inside the control volume at time t is

@m

@t
¼ � 2aAro

1þ atð Þ2
: (vi)

The negative sign means that the mass is decreasing.

(d) Since v2 ¼ v3 ¼ 0, there is neither inflow nor outflow through the lateral surface of the control volume.

Through the end face x1 ¼ 1, the rate of inflow (mass influx) is

rAvð Þx1¼1 ¼ roaA= 1þ atð Þ2: (vii)

On the other hand, the mass outflux through the end face x1 ¼ 3 is

rAvð Þx1¼3 ¼ 3roaA= 1þ atð Þ2: (viii)
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Thus, the net mass influx is

@m

@t
¼ � 2roaA

1þ atð Þ2
; (ix)

which is the same as Eq. (vi).

(e) The particles that were at x1 ¼ 1 and x1 ¼ 3 when t ¼ 0 have the material coordinates X1 ¼ 1 and X1 ¼ 3,

respectively. Thus, the total mass at time t is

M ¼
ðx1¼3 1þatð Þ

x1¼ 1þatð Þ

ro
1þ at

Adx1 ¼ Aro
1þ at

3 1þ atð Þ � 1þ atð Þ½ � ¼ 2Aro: (x)

We see that this time-dependent integral turns out to be independent of time. This is because the chosen

density and velocity fields satisfy the equation of continuity so that the total mass of a fixed part of material

is indeed a constant.

(f) Total linear momentum is, since v2 ¼ v3 ¼ 0,

P ¼
ðx1¼3 1þatð Þ

x1¼ 1þatð Þ
rv1Adx1e1 ¼ Aroa

1þ atð Þ2
ð3 1þatð Þ

1þatð Þ
x1dx1e1 ¼ 4Aroae1: (xi)

The fact that P is also a constant is accidental. The given motion happens to be acceleration-less, which

corresponds to no net force acting on the material volume. In general, the linear momentum for a fixed part of

material is a function of time.

7.6 THE PRINCIPLE OF LINEAR MOMENTUM
The global principle of linear momentum states that the total force (surface and body forces) acting on any

fixed part of material is equal to the rate of change of linear momentum of the part. That is, with r denoting

density, v velocity, t stress vector, and B body force per unit mass, the principle statesð
Sc

tdSþ
ð
Vc

rBdV ¼ D

Dt

ð
Vm

rvdV: (7.6.1)

Now, using the Reynolds transport theorem Eq. (7.4.1), Eq. (7.6.1) can be written asð
Sc

tdSþ
ð
Vc

rBdV ¼
ð
Vc

@rv
@t

dV þ
ð
Sc

rv v � nð ÞdS: (7.6.2)

In words, Eq. (7.6.2) states that:

Total force exerted on a fixed part of a material instantaneously in a control volume Vc ¼ time rate of

change of total linear momentum inside the control volume þ net outflux of linear momentum through the

control surface Sc.

Equation (7.6.2) is very useful for obtaining approximate results in many engineering problems.

Using Eq. (7.4.11), Eq. (7.6.2) can also be written asð
Vc

D rvð Þ
Dt

þ rv div vð ÞdV
� �

¼
ð
Sc

tdSþ
ð
Vc

rBdV: (7.6.3)
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But

D rvð Þ
Dt

¼ Dr
Dt

vþ r
Dv

Dt
¼ � rdiv vð Þvþ r

Dv

Dt
; (7.6.4)

where we have made use of the conservation of mass equation Dr=Dtþ rdiv v ¼ 0; therefore, Eq. (7.6.3)

becomes ð
Vc

r
Dv

Dt
dV ¼

ð
Sc

tdSþ
ð
Vc

rBdV: (7.6.5)

Since ð
Sc

tdS ¼
ð
Sc

TndS ¼
ð
Vc

div TdV; (7.6.6)

we have ð
Vc

r
Dv

Dt
� div T� rB

� �
dV ¼ 0; (7.6.7)

from which the following field equation of motion is obtained:

r
Dv

Dt
¼ div Tþ rB: (7.6.8)

This is the same equation of motion derived in Chapter 4 (see Section 4.7).

We can also obtain the equation of motion in the reference state as follows: Let ro, dSo, and dVo denote

the density, surface area, and volume, respectively, at the reference time to for the differential material having

r, dS, and dV at time t; then the conservation of mass principle gives

rodVo ¼ rdV; (7.6.9)

and the definition of the stress vector to, associated with the first Piola-Kirchhoff stress tensor To, gives

[see Eq. (4.10.6)]

todSo ¼ tdS: (7.6.10)

Now, using Eqs. (7.6.9) and (7.6.10), Eq. (7.6.5) can be transformed to the reference configuration. That is,

ð
Vo

ro
Dv

Dt
dVo ¼

ð
So

todSo þ
ð
Vo

roBdVo ¼
ð
So

TonodSo þ
ð
Vo

roBdVo: (7.6.11)

In the preceding equation, everything is a function of the material coordinates Xi and t, To is the first

Piola-Kirchhoff stress tensor, and no is the outward normal. Using the divergence theorem for the stress tensor

term, Eq. (7.6.11) becomes ð
Vo

ro
Dv

Dt
dVo ¼

ð
Vo

Div TodVo þ
ð
Vo

roBdVo; (7.6.12)

where, in Cartesian coordinates,

Div To ¼ @ Toð Þij=@Xj

h i
ei: (7.6.13)
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From Eq. (7.6.12), we obtain

ro
Dv

Dt
¼ Div To þ ro B: (7.6.14)

This is the same equation derived in Chapter 4, Eq. (4.11.2).

Example 7.6.1
A homogeneous rope of total length ℓ and total mass m slides down from the corner of a smooth table. Find the

motion of the rope and tension at the corner.

Solution
Let x denote the portion of rope that has slid down the corner at time t. Then the portion that remains on the table at

time t is ℓ � x. Consider the control volume shown as Vcð Þ1 in Figure 7.6-1. The momentum in the horizontal direction

inside the control volume at any time t is, with _x denoting dx/dt,
m

ℓ
ℓ � xð Þ _x, and the net momentum outflux is

m

ℓ
_x

h i
_x.

Thus, if T denotes the tension at the corner point of the rope at time t, we have

T ¼ d

dt

m

ℓ
ℓ � xð Þ _x

h i
þm

ℓ
_x2 ¼ m

ℓ
� _xð Þ _x þm

ℓ
ℓ � xð Þ€x þm

ℓ
_x2; (i)

i.e.,

T ¼ m

ℓ
ℓ � xð Þ€x ; (ii)

as expected.

On the other hand, by considering the control volume Vcð Þ2 (see Figure 7.6-1), the momentum in the downward

direction is m=ℓð Þx _x and the momentum influx in the same direction is m=ℓð Þ _x½ � _x. Thus,

�T þ m

ℓ
x

	 

g ¼ d

dt

m

ℓ
x _x

	 

�m

ℓ
_x2; (iii)

g

x

   − x(Vc)1

(Vc)2

FIGURE 7.6-1

424 CHAPTER 7 The Reynolds Transport Theorem and Applications



i.e.,

�T þm

ℓ
xg ¼ m

ℓ
x €x : (iv)

From Eqs. (ii) and (iv), we have

m

ℓ
ℓ � xð Þ€x ¼ m

ℓ
xg �m

ℓ
x €x ; (v)

i.e.,

€x � g

ℓ
x ¼ 0: (vi)

The general solution of Eq. (vi) is

x ¼ C1exp
ffiffiffiffiffiffiffiffi
g=ℓ

p	 

t

h i
þ C2exp �

ffiffiffiffiffiffiffiffi
g=ℓ

p	 

t

h i
: (vii)

If the rope starts at rest with an initial overhang of xo, we have

x ¼ xo
2

exp
ffiffiffiffiffiffiffiffi
g=ℓ

p	 

t

h i
þ exp �

ffiffiffiffiffiffiffiffi
g=ℓ

p	 

t

h in o
: (viii)

The tension at the corner is given by

T ¼ m

ℓ
ℓ � xð Þ€x ¼ m

ℓ
ℓ � xð Þ gx

ℓ

	 

: (ix)

We note that the motion can also be obtained by considering the whole rope as a system. In fact, the total linear

momentum of the rope at any time t is

m

ℓ
ℓ � xð Þ _xe1 þm

ℓ
x _xe2: (x)

Its rate of change is

m

ℓ
ℓ � xð Þ€x � _x2

h i
e1 þm

ℓ
x €x þ _x2

	 

e2; (xi)

and the total resultant force on the rope is (m/ℓ )xg e2. Thus, equating the force to the rate of change of momentum

for the whole rope, we obtain

ℓ � xð Þ€x � _x2 ¼ 0 (xii)

and

€xx þ _x2 ¼ gx : (xiii)

Eliminating _x2 from the preceding two equations, we arrive at Eq. (vi) again.
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Example 7.6.2
Figure 7.6-2 shows a steady jet of water impinging onto a curved vane in a tangential direction. Neglect the effect of

weight and assume that the flow at the upstream region, section A, as well as at the downstream region, section B, is

a parallel flow with a uniform speed vo. Find the resultant force (over that due to the atmospheric pressure) exerted on

the vane by the jet. The volume flow rate is Q.

Solution
Let us take as a control volume that portion of the jet bounded by the planes at A and B. Since the flow at A is assumed to

be a parallel flow of uniform speed, the stress vector on the plane A is normal to the plane with a magnitude equal to the

atmospheric pressure, which we take to be zero. The same is true on the plane B. Thus, the only force acting on the

material in the control volume is that from the vane to the jet. Let F be the resultant of these forces. Since the flow is

steady, the rate of increase of momentum inside the control volume is zero. The rate of out flow of linear momentum

across B is rQvo cos ye1 þ sin ye2ð Þ and the rate of inflow of linear momentum across A is rQvoe1. Thus,

F ¼ rQ vo cos y� 1ð Þe1 þ vo sin ye2½ �:
The force on the vane by the jet is equal and opposite to that given above.

Example 7.6.3
For a boundary layer flow of water over a flat plate, if the velocity profile of the horizontal components at the leading

and the trailing edges of the plate, respectively, are assumed to be those shown in Figure 7.6-3, find the shear force

acting on the fluid by the plate. Assume that the flow is steady and that the pressure is uniform in the whole flow field.

A

B

θ

e2

e1
v

�

v
�

FIGURE 7.6-2

A

B
C

D
V1 = uy/δ

δ

y

u u

FIGURE 7.6-3
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Solution
Consider the control volume ABCD. Since the pressure is assumed to be uniform and since the flow outside the

boundary layer d is essentially uniform in horizontal velocity components (in x direction) with very small vertical veloc-

ity components (so that the shearing stress on BC is negligible), the net force on the control volume is the shearing

force from the plate. Denoting this force (per unit width in z direct ion) Fe1, we have, from the momentum principle,

F ¼ net outflux of x momentum through ABCD. Thus,

F ¼
ð
Sc

v1 rv � nð ÞdS ¼ �
ðd
o

�u r�uð Þdy þ
ð
BC

�u rv2ð ÞdS þ
ðd
o

�uy

d

� �
r

�uy

d

� �
dy þ

ð
AD

0ð ÞdS; (i)

where �u denotes the uniform horizontal velocity of the upstream flow and the uniform horizontal velocity component

beyond the boundary layer at the trailing edge, v1 and v2 are the horizontal and vertical velocity components of the

fluid particles, respectively, and d is the thickness of the boundary layer. Thus,

F ¼ �r�u2dþ �u

ð
BC

rv2dS þ r�u2d
3

: (ii)

From the principle of conservation of mass, we have

ð
BC

rv2dS �
ðd
o

r�udy þ
ðd
o

r
�uy

d
dy ¼ 0; (iii)

i.e.,

ð
BC

rv2dS ¼ r�ud� r�ud
2

¼ r�ud
2

: (iv)

Thus,

F ¼ �r�u2dþ r�u2d
2

þ r�u2d
3

¼ �r�u2d
6

: (v)

That is, the force per unit width on the fluid by the plate is acting to the left with a magnitude of r�u2d=6:

7.7 MOVING FRAMES
There are certain problems for which the use of a control volume fixed with respect to a frame moving rela-

tive to an inertial frame is advantageous. For this purpose, we derive the momentum principle valid for a

frame moving relative to an inertial frame.

Let F1 and F2 be two frames of references. Let r denote the position vector of a differential mass dm in a

continuum relative to F1, and let x denote the position vector relative to F2 (see Figure 7.7-1). The velocity of

dm relative to F1 is

dr=dtð ÞF1
� vF1

; (7.7.1)
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and the velocity relative to F2 is

dx=dtð ÞF2
� vF2

: (7.7.2)

Since

r ¼ Ro þ x; (7.7.3)

then

dr

dt

� �
F1

¼ dRo

dt

� �
F1

þ dx

dt

� �
F1

; (7.7.4)

i.e.,

vF1
¼ voð ÞF1

þ dx

dt

� �
F1

: (7.7.5)

Now, for any vector b, we have

db

dt

� �
F1

¼ db

dt

� �
F2

þv� b; (7.7.6)

where v is the angular velocity of F2 relative to F1. Thus,

dx

dt

� �
F1

¼ dx

dt

� �
F2

þv� x ¼ vð ÞF2
þv� x; (7.7.7)

and Eq. (7.7.5) becomes

vF1
¼ voð ÞF1

þ vF2
þv� x: (7.7.8)

dm

I3

e1

e2

e3

I1

R�

l2

r

F1

F2

x

FIGURE 7.7-1
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The linear momentum relative to F1 is
Ð
vF1

dm and that relative to F2 is
Ð
vF2

dm. The rates of change of

linear momentum are related in the following way (for simplicity, we drop the subscript of the integrals):

D

Dt

� �
F1

ð
vF1

dm ¼ D

Dt

� �
F1

voð ÞF1

ð
dmþ

ð
vF2

dmþv�
ð
xdm

� �

¼ aoð ÞF1

ð
dmþ D

Dt

� �
F1

ð
vF2

dmþ D

Dt

� �
F1

v�
ð
xdm

� �
;

(7.7.9)

where aoð ÞF1
is the acceleration with respect to the frame F1. Using Eq. (7.7.6) again, we have

D

Dt

� �
F1

ð
vF2

dm ¼ D

Dt

� �
F2

ð
vF2

dmþv�
ð
vF2

dm; (7.7.10)

and

D

Dt

� �
F1

v�
ð
xdm

� �
¼ _v�

ð
xdmþv�

ð
Dx

Dt

� �
F1

dm

¼ _v�
ð
xdmþv�

ð
vF2

dmþv� v�
ð
xdm

� �
:

(7.7.11)

Thus,

D

Dt

� �
F1

ð
vF1

dm ¼ aoð ÞF1

ð
dmþ D

Dt

� �
F2

ð
vF2

dmþ 2v�
ð
vF2

dm

þ _v�
ð
xdmþv� v�

ð
xdm

� �
:

(7.7.12)

Now let F1 be an inertial frame. The momentum principle then reads:

D

Dt

� �
F1

ð
vF1

dm ¼
ð
tdSþ

ð
rBdV: (7.7.13)

From Eqs. (7.7.12) and (7.7.13), we have

D

Dt

� �
F2

ð
vF2

dm ¼
ð
tdSþ

ð
rBdV

� m aoð Þ þ 2v�
ð
vF2

dmþ _v�
ð
xdmþv� v�

ð
xdm

� �� �
;

(7.7.14)

where m ¼ Ð
dm, aoð Þ � aoð ÞF1

is the acceleration of the point o with respect to the inertia frame, and

v and _v are angular velocity and angular acceleration of the frame 2 relative to the inertia frame.

Eq. (7.7.14) shows that when a moving frame is used to compute momentum and its time rate of change,

the same momentum principle for an inertial frame can be used provided that we include the effect of the
moving frame through the terms inside the bracket in the right-hand side of Eq. (7.7.14).
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7.8 A CONTROL VOLUME FIXED WITH RESPECT TO A MOVING FRAME
If a control volume is chosen to be fixed with respect to a frame of reference that moves relative to an inertial

frame with an acceleration ao, an angular velocity v, and angular acceleration _v, the momentum equation is

given by Eq. (7.7.14). If we now use the Reynolds transport theorem for the left-hand side of Eq. (7.7.14), we

obtain ð
Vc

@

@t
rvF2
ð ÞdV þ

ð
Sc

rvF2
vF2

� nð ÞdS ¼
ð
Sc

tdSþ
ð
Vc

rBdV

� m aoð ÞF þ 2v�
ð
vF2

dmþ _v�
ð
xdmþv� v�

ð
xdm

� �� �
:

(7.8.1)

In particular, if the control volume has only translation (with acceleration ¼ ao) with respect to the inertial

frame, then we have ð
Vc

@

@t
rvF2
ð ÞdV þ

ð
Sc

rvF2
vF2

� nð ÞdS ¼
ð
Sc

tdSþ
ð
Vc

rBdV � m aoð ÞF: (7.8.2)

7.9 THE PRINCIPLE OF MOMENT OF MOMENTUM
The global principle of moment of momentum states that the total moment about a fixed point of surface and

body forces on a fixed part of material is equal to the time rate of change of total moment of momentum of

the part about the same point. That is,

D

Dt

ð
Vm

x� rvdV ¼
ð
Sc

x� tð ÞdSþ
ð
Vc

x� rBð ÞdV; (7.9.1)

where x is the position vector for a general particle.

Using the Reynolds transport theorem, Eq. (7.4.2), the left-hand side of the preceding equation,

Eq. (7.9.1), becomes

D

Dt

ð
Vm

x� rvdV ¼
ð
Vc

D

Dt
x� rvð ÞdV þ

ð
Vc

x� rvð Þ div vð ÞdV: (7.9.2)

Since

D

Dt
x� rvð Þ ¼ v� rvþ x� Dr

Dt

� �
vþ x� r

Dv

Dt
¼ x� Dr

Dt

� �
vþ x� r

Dv

Dt
; (7.9.3)

the sum of the integrands on the right side of Eq. (7.9.2) becomes

x� Dr
Dt

þ r div v

� �
vþ x� r

Dv

Dt
¼ x� r

Dv

Dt
: (7.9.4)

Thus,

D

Dt

ð
Vm

x� rvdV ¼
ð
Vc

x� r
Dv

Dt

� �
dV: (7.9.5)
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Also, from Eq. (7.2.13), we have ð
Sc

x� tð ÞdS ¼
ð
Vc

x� div Tð Þ þ 2tA
� �

dV:

Using Eqs. (7.9.5) and (7.2.13), Eq. (7.9.1) becomesð
Vc

x� r
Dv

Dt
� div T� rB

� �
dV � 2

ð
Vc

tAdV ¼ 0; (7.9.6)

where tA is the axial vector of the antisymmetric part of the stress tensor T. Now the first term in Eq. (7.9.6)

vanishes because of Eq. (7.6.8); therefore, tA ¼ 0 and the symmetry of the stress tensor

T ¼ TT (7.9.7)

is obtained.

On the other hand, if we use the Reynolds transport theorem, Eq. (7.4.1), for the left-hand side of

Eq. (7.9.1), we obtain ð
Sc

x� tð ÞdSþ
ð
Vc

x� rBð ÞdV ¼
ð
Vc

@

@t
x� rvð ÞdV þ

ð
Sc

x� rvð Þ v � nð ÞdS: (7.9.8)

That is, the total moment about a fixed point due to surface and body forces acting on the material instanta-

neously inside a control volume ¼ total rate of change of moment of momentum inside the control volume þ
total net rate of outflow of moment of momentum across the control surface.

If the control volume is fixed in a moving frame, then the following terms should be added to the left side

of Eq. (7.9.8):

�
ð
xdm

� �
� ao �

ð
x� _v� xð Þdm�

ð
x� v� v� xð Þ½ �dm� 2

ð
x� v� vð Þdm; (7.9.9)

where v and _v are absolute angular velocity and acceleration of the moving frame (and of the control

volume), the vector x of dm is measured from an arbitrary chosen point O in the control volume, ao is the

absolute acceleration of point O, and v is the velocity of dm relative to the control volume.

Example 7.9.1
Each sprinkler arm in Figure 7.9-1 discharges a constant volume of water Q per unit time and is free to rotate around

the vertical center axis. Determine its constant speed of rotation.

r
�

r
�

ω

Vc

θ
θ

e1

e2

FIGURE 7.9-1
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Solution
Let Vc be a control volume that rotates with the sprinkler arms. The velocity of water particles relative to the sprinkler is

(Q /A)e1 inside the right arm and (Q /A)(�e1) inside the left arm. If r is density, then the total net outflux of moment of

momentum about point O is

2rQ
Q

A
sin yroe3: (i)

The moment of momentum about O due to weight is zero. Since the pressure in the water jet is the same as the

atmospheric pressure, taken to be zero gauge pressure, there is no contribution due to surface force on the control vol-

ume. Now, since the control volume is rotating with the sprinkler, we need to add those terms given in Eq. (7.9.9) to the

moments of forces. With xmeasured from O, the first term in Eq. (7.9.9) is zero. With v a constant, the second term in

that equation is also zero. With x ¼ x1e1 and v ¼ o3e3, the third term is also zero. Thus, the only nonzero term is

�2

ð
x� v� vð Þdm; (ii)

which is the moment due to the Coriolis forces. Now, for the right arm, v ¼ Q=Að Þe1; therefore,

x� v� vð Þ ¼ xe1 � oe3 � Q

A
e1

� �
¼ xe1 � oQ

A
e2 ¼ xoQ

A
e3: (iii)

Thus, the contribution from the fluid in the right arm to the integral in the expression (ii) is

� 2oQ
A

e3

ðro
o

x rAdxð Þ ¼ �oQrr2o e3: (iv)

Including that due to the left arm, the integral has the value of �2oQrr2o e3. Therefore, from the moment of

momentum principle for a moving control volume, we have

2rQ
Q

A

� �
sin yro ¼ �2oQrr2o ; (v)

from which we have

o ¼ � Q

A

� �
sin y
ro

: (vi)

7.10 THE PRINCIPLE OF CONSERVATION OF ENERGY
The principle of conservation of energy states that the time rate of increase of the kinetic energy and internal

energy for a fixed part of material is equal to the sum of the rate of work done by the surface and body forces,

the heat energy entering the boundary surface, and the heat supply throughout the volume. That is, if v2

denotes v � vð Þ, u the internal energy per unit mass, q the heat flux vector (i.e., rate of heat flow per unit area

across the boundary surface), and qs the heat supply per unit mass, then the principle states:

D

Dt

ð
Vm

rv2

2
þ ru

� �
dV ¼

ð
Sc

t � vð ÞdSþ
ð
Vc

rB � vdV �
ð
Sc

q � nð ÞdSþ
ð
Vc

rqsdV: (7.10.1)
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The minus sign in the term with (q � n) is due to the convention that n is an outward unit normal vector and

therefore (�q � n) represents inflow.
Again, using the Reynolds transport theorem, Eq. (7.4.2), the left side of the preceding equation becomes

D

Dt

ð
Vm

r
v2

2
þ u

� �
dV ¼

ð
Vc

D

Dt
r

v2

2
þ u

� �
þ r

v2

2
þ u

� �
div v

� �
dV

¼
ð
Vc

r
D

Dt

v2

2
þ u

� �
þ v2

2
þ u

� �
Dr
Dt

þ rdiv v
� �� �

dV ¼
ð
Vc

r
D

Dt

v2

2
þ u

� �� �
dV:

(7.10.2)

We have previously obtained [see Eq. (7.2.17)]ð
Sc

t � vdS ¼
ð
Vc

div Tð Þ � vþ tr TTrv
� �� �

dV;

and the divergence theorem gives [see Eq. (7.2.5)]ð
Sc

q � ndS ¼
ð
Vc

div qð ÞdV:

Using Eqs. (7.10.2), (7.2.17), and (7.2.5), Eq. (7.10.1) becomes

ð
Vc

r
D

Dt

v2

2
þ u

� �
dV ¼

ð
Vc

div Tþ rBð Þ � vþ tr TTrv
� �� div qþ rqs

� �
dV: (7.10.3)

Since

div Tþ rBð Þ � v ¼ r
Dv

Dt
� v ¼ 1

2
r
Dv2

Dt
; (7.10.4)

Eq. (7.10.3) becomes ð
Vc

r
Du

Dt
dV ¼

ð
Vc

tr TTrv
� �� div qþ rqs

� �
dV: (7.10.5)

Thus, at every point, we have

r
Du

Dt
¼ tr TTrv

� �� div qþ rqs: (7.10.6)

For a symmetric tensor T, this equation can also be written

r
Du

Dt
¼ tr Trvð Þ � div qþ rqs: (7.10.7)

Eq. (7.10.6) or Eq. (7.10.7) is the energy equation. A slightly different form of Eq. (7.10.7) can be

obtained if we recall that rv ¼ DþW, where D, the symmetric part of rv, is the rate of deformation tensor

and W, the antisymmetric part of rv, is the spin tensor. We have

tr Trvð Þ ¼ tr TDþ TWð Þ ¼ tr TDð Þ þ tr TWð Þ: (7.10.8)
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But tr TWð Þ ¼ TijWji ¼ TjiWji ¼ TijWij ¼ �TijWji ¼ 0; therefore, we rediscover the energy equation in the

following form [see Eq. (4.15.4)]:

r
Du

Dt
¼ tr TDð Þ � div qþ rqs: (7.10.9)

On the other hand, if we use the Reynolds equation in the form of Eq. (7.4.1), we obtain from Eq. (7.10.1)

ð
Sc

t � vdSþ
ð
Vc

rB � vdV �
ð
Sc

q � ndSþ
ð
Vc

rqsdV ¼

ð
Vc

r
@

@t

v2

2
þ u

� �
dV þ

ð
Sc

r
v2

2
þ u

� �
v � nð ÞdS:

(7.10.10)

Equation (7.10.10) states that:

The time rate of work done by surface and body forces in a control volume þ rate of heat input across the

boundary surface þ heat supply throughout the volume ¼ total rate of increase of internal and kinetic

energy of the material inside the control volume þ rate of outflow of the internal and kinetic energy across

the control surface.

Example 7.10.1
A supersonic one-dimensional flow in an insulating duct suffers a normal compression shock. Assuming ideal gas,

find the pressure after the shock in terms of the pressure and velocity before the shock.

Solution
For the control volume shown in Figure 7.10-1, we have, for steady flow:

1. Mass outflux ¼ mass influx, that is,

r1Av1 ¼ r2Av2; (i)

i.e.,

r1v1 ¼ r2v2 (ii)

2. Force in x direction ¼ net momentum outflux in x direction,

p1A� p2A ¼ r2Av2ð Þv2 � r1Av1ð Þv1: (iii)

p1, r1, v1 p2, r2, v2

Vc

FIGURE 7.10-1
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Using Eq. (ii), we have

p1 � p2 ¼ r2v
2
2 � r1v

2
1 ¼ r1v1 v2 � v1ð Þ: (iv)

3. Rate of work done by surface forces ¼ net energy (internal and kinetic) outflux. That is,

p1Av1 � p2Av2 ¼ r2Av2ð Þu2 � r1Av1ð Þu1 þ 1

2
r2Av2ð Þv22 � 1

2
r1Av1ð Þv21

� �
: (v)

For ideal gas [see Eq. (6.26.8), Chapter 6],

u ¼ p

r
1

g� 1

� �
; (vi)

where g ¼ cp=cv is the ratio of specific heats. Thus, Eq. (v) becomes

p1v1 � p2v2 ¼ p2v2ð Þ 1

g� 1

� �
� p1v1ð Þ 1

g� 1

� �
þ 1

2
r2v

3
2 � 1

2
r1v

3
1

� �
; (vii)

or

p1v1ð Þ g
g� 1

� �
þ 1

2
r1v

3
1 ¼ p2v2ð Þ g

g� 1

� �
þ 1

2
r2v

3
2 : (viii)

That is,

r1v1ð Þ g
g� 1

p1
r1

þ 1

2
v21

� �
¼ r2v2ð Þ g

g� 1

p2
r2

þ 1

2
v22

� �
: (ix)

In view of Eq. (ii), this equation becomes

g
g� 1

p1
r1

þ 1

2
v21 ¼ g

g� 1

p2
r2

þ 1

2
v22 : (x)

From Eqs. (ii), (iv), and (x), one can obtain the following quadratic equation for p2=p1 in terms of the Mach

number M1 ¼ v1=að Þ, a2 ¼ gp1=r1 (see Prob.7.27):

p2
p1

� �2

� 2

gþ 1ð Þ
p2
p1

gM2
1 þ 1

� �� 2

gþ 1ð Þ
g� 1ð Þ
2

� gM2
1

� �
¼ 0: (xi)

This equation has two roots:

p2 ¼ p1; (xii)

and

p2 ¼ 1

gþ 1
2gM2

1 � g� 1ð Þ� �
p1 or p2 ¼ 1

gþ 1
2r1v

2
1 � g� 1ð Þp1

� �
: (xiii)

The second root describes the pressure after the shock in terms of the pressure and velocity before the

shock.
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7.11 THE ENTROPY INEQUALITY: THE SECOND LAW OF THERMODYNAMICS
The entropy inequality, also known as the Clausius-Duhem inequality or the second law of thermodynamics,

is given by the following inequality:

D

Dt

ð
Vm

r�dV � �
ð
Sc

q

Y
� ndSþ

ð
Vc

rqs
Y

dV; (7.11.1)

where � is the entropy per unit mass; Vm the material volume; Sc and Vc the control surface and the control

volume, respectively, which are instantaneously coincidental with the surface and the volume of the material;

q is the heat flux vector; Y is the absolute temperature; n is the unit outward vector [thus, �q � nð Þ is heat
flux into the volume across the surface Sc]; and qs is the heat supply per unit mass, if any, within the control

volume.

The inequality states that:

The rate of increase of entropy in a fixed part of material is not less than the influx of entropy, q/Y, across

the surface of the part þ the entropy supply within the volume.

Now

D

Dt

ð
Vm

r�dV ¼
ð
Vm

D

Dt
r�dVð Þ

� �
¼

ð
Vm

�
D

Dt
rdVð Þ þ D�

Dt
rdV

� �
¼

ð
Vc

r
D�

Dt
dV; (7.11.2)

where we have used the conservation of mass equation in the form

D

Dt
rdVð Þ ¼ 0: (7.11.3)

Thus, using Eqs. (7.11.2) and (7.2.5), Eq. (7.11.1) can be written:

ð
Vc

r
D�

Dt
dV � �

ð
Vc

div
q

Y

	 

dV þ

ð
Vc

rqs
Y

dV: (7.11.4)

In differential form, we have the following second law of thermodynamics:

r
D�

Dt
� �div

q

Y

	 

þ rqs

Y
(7.11.5)

This is the same entropy equation given in Section 4.16 (Eq. 4.16.2).

We now show that Eq. (7.11.4) can also be written in the following form for material within a fixed con-

trol volume:

@

@t

ð
Vc

r�dV � �
ð
Sc

�rv � ndS�
ð
Sc

q

Y
� ndSþ

ð
Vc

rqs
Y

dV: (7.11.6)
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To do that, since Dr=Dt ¼ �rdiv v (conservation of mass equation), we have

r
D�

Dt
¼ D r�ð Þ

Dt
� �

Dr
Dt

¼ D r�ð Þ
Dt

þ �rdiv v ¼ D r�ð Þ
Dt

þ div �rvð Þ � v � r �rð Þ

¼ @ r�ð Þ
@t

þ div �rvð Þ:
(7.11.7)

Thus, in view of Eq. (7.11.2), we have

D

Dt

ð
Vm

r�dV ¼
ð
Vc

r
D�

Dt
dV ¼

ð
Vc

@ r�ð Þ
@t

dV þ
ð
Vc

div �rvð ÞdV: (7.11.8)

Using the divergence theorem for the last integral in the preceding equation, we have

D

Dt

ð
Vm

r�dV ¼
ð
Vc

@ r�ð Þ
@t

dV þ
ð
Sc

�rv � ndV: (7.11.9)

We now have the alternate form of the entropy inequality:ð
Vc

@ r�ð Þ
@t

dV � �
ð
Sc

�rv � ndS�
ð
Sc

q

Y
� ndSþ

ð
Vc

rqs
Y

dV; (7.11.10)

or

@

@t

ð
Vc

r�dV � �
ð
Sc

�rv � ndS�
ð
Sc

q

Y
� ndSþ

ð
Vc

rqs
Y

dV: (7.11.11)

The preceding inequality states that:

The rate of increase of entropy for the material within the fixed control volume Vc is not less than the

entropy entering the volume due to convection of material and conduction of heat through the control sur-

face Sc þ entropy supply within the volume.

Example 7.11.1
From the second law of thermodynamics, demonstrate that heat flow through conduction is always in the direction

from high temperature to low temperature.

Solution
Consider a cylinder of fixed continuum insulated on its lateral surface and that undergoes steady heat conduction in

the direction from the left end face at temperature Y1 to the right end face at temperature Y2.

Let the cross-sectional area of the cylinder be A and the one-dimensional heat flux from left to right be q. With

@()/@t ¼ 0, v ¼ 0, and qs ¼ 0, the inequality (7.11.11) states that

0 � q

Y1
A� q

Y2
A ¼ qA

1

Y1
� 1

Y2

� �
:

Thus,
1

Y1
� 1

Y2

� �
� 0, or Y2 �Y1 � 0. In other words, Y1 is not less than Y2.
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PROBLEMS FOR CHAPTER 7
7.1 Verify the divergence theorem

Ð
Sv � ndS ¼ Ð

Vdiv vdV for the vector field v ¼ 2xe1 þ ze2 by considering

the region bounded by

x ¼ 0; x ¼ 2; y ¼ 0; y ¼ 2; z ¼ 0; z ¼ 2:

7.2 Verify the divergence theorem
Ð
Sv � ndS ¼ Ð

Vdiv vdV for the vector field, which, in cylindrical coordi-

nates, is v ¼ 2rer þ zez, by considering the region bounded by r ¼ 2, z ¼ 0, and z ¼ 4.

7.3 Verify the divergence theorem
Ð
Sv � ndS ¼ Ð

Vdiv vdV for the vector field, which, in spherical coordi-

nates, is v ¼ 2rer, by considering the region bounded by the spherical surface r ¼ 2.

7.4 Show that
Ð
Sx � ndS ¼ 3V, where x is the position vector and V is the volume enclosed by the boundary

surface S.

7.5 (a) Consider the vector field v ¼ ’a, where ’ is a given scalar field and a is an arbitrary constant vector

(independent of position). Using the divergence theorem, prove that
Ð
Vr’dV ¼ Ð

S’ndS. (b) Show that

for any closed surface S;
Ð
SndS ¼ 0 where n is normal to the surface.

7.6 A stress field T is in equilibrium with a body force rB. Using the divergence theorem, show that for any

volume V with boundary surface S ð
S

tdSþ
ð
V

rBdV ¼ 0;

where t is the stress vector. That is, the total resultant force is equipollent to zero.

7.7 Let u* define an infinitesimal strain field E* ¼ 1

2
ru* þ ru*

� �Th i
and let T** be the symmetric stress

tensor in static equilibrium with a body force rB** and a surface traction t**. Using the divergence the-

orem, verify the following identity (theory of virtual work):ð
S

t** � u*dSþ
ð
V

rB** � u*dV ¼
ð
V

T**
ij E

*
ijdV:

7.8 Using the equations of motion and the divergence theorem, verify the following rate of work identity.

Assume the stress tensor to be symmetric.

ð
S

t � vdSþ
ð
V

rB � vdV ¼
ð
V

r
D

Dt

v2

2

� �
dV þ

ð
V

TijDijdV:

7.9 Consider the velocity and density fields

v ¼ ax1e1; r ¼ roe
�a t�toð Þ:

(a) Check the equation of mass conservation. (b) Compute the mass and rate of increase of mass in the

cylindrical control volume of cross-section A and bounded by x1 ¼ 0 and x1 ¼ 3. (c) Compute the net

mass inflow into the control volume of part (b). Does the net mass inflow equal the rate of mass

increase inside the control volume?
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7.10 (a) Check that the following motion:

x1 ¼ X1e
a t�toð Þ; x2 ¼ X2; x3 ¼ X3;

corresponds to the velocity field v ¼ ax1e1. (b) For a density field r ¼ roe
�a t�toð Þ, verify that the mass

contained in the material volume that was coincident with the control volume described in (b) of Prob-

lem 7.9, at time to, remains a constant at all times, as it should (conservation of mass). (c) Compute the

total linear momentum for the material volume of part (b). (d) Compute the force acting on the material

volume.

7.11 Do Problem 7.9 for the velocity field v ¼ ax1e1 and the density field r ¼ k ro=x1ð Þ and for the cylindri-

cal control volume bounded by x1 ¼ 1 and x1 ¼ 3.

7.12 The center of mass xc:m of a material volume is defined by the equation

mxc:m ¼
ð
Vm

xrdV where m ¼
ð
Vm

rdV:

Demonstrate that the linear momentum principle may be written in the formð
S

tdSþ
ð
V

rBdV ¼ mac:m;

where ac:m is the acceleration of the mass center.

7.13 Consider the following velocity field and density field:

v ¼ ax1
1þ at

e1; r ¼ ro
1þ at:

(a) Compute the total linear momentum and rate of increase of linear momentum in a cylindrical con-

trol volume of cross-sectional area A and bounded by the planes x1 ¼ 1 and x1 ¼ 3. (b) Compute the net

rate of outflow of linear momentum from the control volume of (a). (c) Compute the total force on the

material in the control volume. (d) Compute the total kinetic energy and rate of increase of kinetic

energy for the control volume of part (a). (e) Compute the net rate of outflow of kinetic energy from

the control volume.

7.14 Consider the velocity and density fields: v ¼ ax1e1; r ¼ roe
�a t�toð Þ. For an arbitrary time t, consider the

material contained in the cylindrical control volume of cross-sectional area A bounded by x1 ¼ 0 and

x1 ¼ 3. (a) Determine the linear momentum and rate of increase of linear momentum in this control vol-

ume. (b) Determine the outflux of linear momentum. (c) Determine the net resultant force that is acting

on the material contained in the control volume.

7.15 Do Problem 7.14 for the same velocity field, v ¼ ax1e1, but with r ¼ kro=x1 and the cylindrical control

volume bounded by x1 ¼ 1 and x1 ¼ 3.

7.16 Consider the flow field v ¼ k xe1 � ye2ð Þ with r ¼ constant. For a control volume defined by

x ¼ 0; x ¼ 2; y ¼ 0; y ¼ 2; z ¼ 0; z ¼ 2, determine the net resultant force and moment about the origin

that are acting on the material contained in this volume.

7.17 For Hagen-Poiseuille flow in a pipe: v ¼ C r2o � r2
� �

e1. Calculate the momentum flux across a cross-

section. For the same flow rate, if the velocity is assumed to be uniform, what is the momentum flux

across a cross-section? Compare the two results.
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7.18 Consider a steady flow of an incompressible viscous fluid of density r, flowing up a vertical pipe of

radius R. At the lower section of the pipe, the flow is uniform with a speed vl and a pressure pl. After
flowing upward through a distance ℓ, the flow becomes fully developed with a parabolic velocity distri-

bution at the upper section, where the pressure is pu. Obtain an expression for the fluid pressure drop

pl � pu between the two sections in terms of r, R, and the frictional force Ff exerted on the fluid column

from the wall through viscosity.

7.19 A pile of chain on a table falls through a hole in the table under the action of gravity. Derive the differ-

ential equation governing the hanging length x. Assume that the pile is large compared with the hanging

portion.

7.20 A water jet of 5 cm diameter moves at 12 m/sec, impinging on a curved vane that deflects it 60	 from its

original direction. Neglecting the weight, obtain the force exerted by the liquid on the vane (see

Figure 7.6-2).

7.21 A horizontal pipeline of 10 cm diameter bends through 90	, and while bending, changes its diameter

to 5 cm. The pressure in the 10 cm pipe is 140 kPa. Estimate the resultant force on the bends when

0.005 m3/sec of water is flowing in the pipeline.

7.22 Figure P7.1 shows a steady water jet of area A impinging onto a flat wall. Find the force exerted on the

wall. Neglect weight and viscosity of water.

7.23 Frequently in open channel flow, a high-speed flow “jumps” to a low-speed flow with an abrupt rise in

the water surface. This is known as a hydraulic jump. Referring to Figure P7.2, if the flow rate is Q per

unit width, show that when the jump occurs, the relation between y1 and y2 is given by

y2 ¼ �y1=2þ y1=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v21=gy1

� �q
. Assume that the flow before and after the jump is uniform and

the pressure distribution is hydrostatic.

v
�

v
�

v
�

FIGURE P7.1

v1

y1

y2

FIGURE P7.2
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7.24 If the curved vane of Example 7.6.2 moves with a velocity v < vo in the same direction as the oncoming

jet, find the resultant force exerted on the vane by the jet.

7.25 For the half-arm sprinkler shown in Figure P7.3, find the angular speed if Q ¼ 0:566 m3=sec. Neglect
friction.

7.26 The tank car shown in Figure P7.4 contains water and compressed air regulated to force a water jet out

of the nozzle at a constant rate of Q m3/sec. The diameter of the jet is d cm, and the initial total mass of

the tank car is Mo. Neglecting frictional forces, find the velocity of the car as a function of time.

7.27 For the one-dimensional problem discussed in Section 7.10, (a) from the continuity equation r1v1 ¼
r2v2 and the momentum equation p1 � p2 ¼ r2v

2
2 � r1v

2
1, obtain

v2
v1

¼ 1� 1

gM2
1

p2
p1

� 1

� �
:

(b) From the energy equation
g

g� 1

p1
r1

þ 1

2
v21 ¼

g
g� 1

p2
r2

þ 1

2
v22, obtain

1þ g� 1

2

v21
a21

¼ p2
p1

v2
v1

� �
þ g� 1

2

v21
a21

v22
v21

� �
:

(c) From the results of (a) and (b), obtain

p2
p1

� �2

� 2

gþ 1
1þ gM2

1

� � p2
p1

� �
� 2

gþ 1

g� 1

2
� gM2

1

� �
¼ 0:

d = 2.54 cm

d

1.83 m

FIGURE P7.3

d

FIGURE P7.4
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CHAPTER

Non-Newtonian Fluids

8
In Chapter 6, the linear viscous fluid was discussed as an example of a constitutive equation of an idealized

fluid. The mechanical behaviors of many real fluids are adequately described under a wide range of circum-

stances by this constitutive equation, which is referred to as the constitutive equation of Newtonian fluids.
Many other real fluids exhibit behaviors that are not accounted for by the theory of Newtonian fluids. Exam-

ples of such substances include polymeric solutions, paints, and molasses.

For a steady unidirectional laminar flow of water in a circular pipe, the theory of Newtonian fluids gives the

experimentally confirmed result that the volume discharge Q is proportional to the (constant) pressure gradient

jdp/dzj in the axial direction and to the fourth power of the diameter d of the pipe, that is [see Eq. (6.13.12)],

Q ¼ pd4

128m
dp

dz

����
����: (8.0.1)

However, for many polymeric solutions, it has been observed that the preceding equation does not hold. For a

fixed d, the Q vs. jdp/dzj relation is nonlinear as sketched in the Figure 8.0-1.

For a steady laminar flow of water placed between two very long coaxial cylinders of radii r1 and r2, if the
inner cylinder is at rest while the outer one is rotating with an angular velocity O, the theory of Newtonian

fluid gives the result, agreeing with experimental observations, that the torque per unit length that must be

applied to the cylinders to maintain the flow is proportional to O. In fact [see Eq. (6.15.9)],

M ¼ 4pmr21r
2
2O

r22 � r21
: (8.0.2)

Q

dp

dz

FIGURE 8.0-1

Copyright © 2010, Elsevier Ltd. All rights reserved.



However, for those fluids that do not obey Eq. (8.0.1), it is found that they do not obey Eq. (8.0.2) either.

Furthermore, for Newtonian fluids such as water in this flow, the normal stress exerted on the outer cylinder

is always larger than that on the inner cylinder due to the effect of centrifugal forces. However, for those

fluids that do not obey Eq. (8.0.1), the compressive normal stress on the inner cylinder can be larger than that

on the outer cylinder. Figure 8.0-2 is a schematic diagram showing a higher fluid level in the center tube than

in the outer tube for a non-Newtonian fluid in spite of the centrifugal forces due to the rotations of the cylin-

ders. Other manifestations of the non-Newtonian behaviors include the ability of the fluids to store elastic

energy and the occurrence of nonzero stress relaxation time.

In this chapter we discuss several constitutive equations that define idealized viscoelastic fluids exhibiting

various characteristics of non-Newtonian behaviors.

PART A: LINEAR VISCOELASTIC FLUID

8.1 LINEAR MAXWELL FLUID
The linear Maxwell fluid is defined by the following constitutive equations:

T ¼ �pIþ S; (8.1.1)

Sþ l
@S

@t
¼ 2mD; (8.1.2)

where �pI is the isotropic pressure that is constitutively indeterminate due to the incompressibility property

of the fluid; S is called the extra stress, which is related to the rate of deformation D by Eq. (8.1.2); and l and

m are material coefficients.

In the following example, we show, with the help of a mechanical analogy, that the linear Maxwell fluid

possesses elasticity.

FIGURE 8.0-2
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Example 8.1.1
Figure 8.1-1 shows the so-called linear Maxwell element, which consists of a spring (an elastic element) with spring

constant G, connected in series to a viscous dashpot (viscous element) with a damping coefficient �. The elongation e
of the Maxwell element can be divided into an elastic portion ee and a viscous portion e�, i.e.,

e ¼ ee þ e�: (8.1.3)

Since the spring and the dashpot are connected in series, the force S in each is the same for all time That is,

S ¼ Gee ¼ �
de�
dt

: (8.1.4)

Thus,

dee
dt

¼ 1

G

dS

dt
and

de�
dt

¼ S

�
: (8.1.5)

Taking the time derivative of Eq. (8.1.3) and using the equations in Eq. (8.1.5), we have

S þ l
dS

dt
¼ �

de
dt

; (8.1.6)

where

l ¼ �

G
: (8.1.7)

We note that l has the dimension of time, the physical meaning of which is discussed shortly. Equation (8.1.6) is

of the same form as Eq. (8.1.2). Indeed, both D and de/dt (in the right-hand side of these equations) describe rates of

deformation. Thus, by analogy, we see that the constitutive equation, Eq. (8.1.2), endows the fluid with “elasticity”

through the term l(@S/@t).
Let us consider the following experiment performed on the Maxwell element: Starting at time t ¼ 0, a constant

force So is applied to the element. We are interested in how, for t > 0, the strain changes with time. This is the so-

called creep experiment. From Eq. (8.1.6), we have, since S is a constant for t > 0, dS/dt ¼ 0 for t > 0 so that

de
dt

¼ So
�

for t > 0; (8.1.8)

which yields

e ¼ So
�
t þ eo: (8.1.9)

h

G

FIGURE 8.1-1
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The integration constant eo is the instantaneous strain e of the element at t ¼ 0þ from the elastic response of the

spring and is therefore given by So/G. Thus,

e ¼ So
�
t þ So

G
: (8.1.10)

We see from Eq. (8.1.10) that under the action of a constant force So in a creep experiment, the strain of the

Maxwell element first has an instantaneous jump from 0 to So /G and then continues to increase with time (i.e., flows)

without limit, with a rate of flow inversely proportional to the viscosity.

We note that there are no contributions to the instantaneous strain from the dashpot because, with de/dt ! 1, an

infinitely large force is required for the dashpot to do that. On the other hand, there are no contributions to the rate of

elongation from the spring because the elastic response is a constant under a constant load.

We may write Eq. (8.1.10) as

e
So

¼ 1

�
t þ 1

G
� JðtÞ: (8.1.11)

The function J(t) gives the creep history per unit force. It is known as the creep compliance function of the linear

Maxwell element.

In another experiment, the Maxwell element is given a strain eo at t ¼ 0, which is then maintained for all time.

We are interested in how the force S changes with time. This is the so-called stress relaxation experiment. From

Eq. (8.1.6), with de/dt ¼ 0 for t > 0, we have

S þ l
dS

dt
¼ 0 for t > 0; (8.1.12)

which yields

S ¼ Soe
�t=l: (8.1.13)

The integration constant So is the instantaneous force that is required to produce the elastic strain eo at t ¼ 0þ.
That is, So ¼ Geo. Thus,

S ¼ Geoe�t=l: (8.1.14)

Equation (8.1.14) is the force history for the stress relaxation experiment for the Maxwell element. We may write

Eq. (8.1.14) as

S

eo
¼ Ge�t=l ¼ �

l
e�t=l � fðtÞ: (8.1.15)

The function f(t) gives the stress history per unit strain. It is called the stress relaxation function, and the constant

l is known as the relaxation time, which is the time for the force to relax to 1/e of the initial value of S.

It is interesting to consider the limiting cases of the Maxwell element. If G ! 1, then the spring element becomes

a rigid bar, and the element no longer possesses elasticity. That is, it is a purely viscous element. In the creep experi-

ment, there will be no instantaneous elongation; the element simply creeps linearly with time [see Eq. (8.1.10)] from

the unstretched initial position. In the stress relaxation experiment, an infinitely large force is needed at t ¼ 0 to pro-

duce the finite jump in elongation eo. The force is, however, instantaneously returned to zero (i.e., the relaxation time

l ¼ � /G ! 0). We can write the relaxation function for the purely viscous element in the following way:

fðtÞ ¼ �dðtÞ; (8.1.16)
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where d(t) is known as the Dirac delta function, which may be defined as the derivative of the unit step function H(t),

defined by

HðtÞ ¼
0 �1 < t < 0

1 0 � t < 1;

(
(8.1.17)

so that

dðtÞ ¼ dHðtÞ
dt

; (8.1.18)

and ðt
dðtÞdt ¼ HðtÞ: (8.1.19)

Example 8.1.2
Consider a linear Maxwell fluid, defined by Eqs. (8.1.1) and (8.1.2), in steady simple shearing flow: v1¼ kx2, v2¼ v3¼ 0.

Find the stress components.

Solution
Since the given velocity field is steady, all field variables are independent of time. Thus, (@/@t)S ¼ 0 and we have

S ¼ 2mD:

Thus, the stress field is exactly the same as that of a Newtonian incompressible fluid.

Example 8.1.3
For a Maxwell fluid, consider the stress relaxation experiment with the displacement field given by

u1 ¼ eoHðtÞx2; u2 ¼ u3 ¼ 0; (i)

where H(t) is the unit step function defined in Eq. (8.1.17). Neglecting inertia effects, (a) obtain the components of

the rate of deformation tensor, (b) obtain S12 at t ¼ 0, and (c) obtain the history of the shear stress S12.

Solution
(a) Differentiating Eq. (i) with respect to time, we get

v1 ¼ eodðtÞx2; v2 ¼ v3 ¼ 0; (ii)

where d(t) is the Dirac delta function defined in Eq. (8.1.18). The only nonzero rate of deformation is

D12 ¼ 1

2

@v1
@x2

þ @v2
@x1

� �
¼ eodðtÞ

2
.

(b) From Eq. (8.1.2), we obtain

S12 þ l
@S12
@t

¼ meodðtÞ: (iii)
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Integrating the preceding equation from t ¼ 0 � e to t ¼ 0 þ e, we have

ð0þe

0�e

S12dt þ l
ð0þe

0�e

@S12
@t

dt ¼ meo

ð0þe

0�e

dðtÞdt : (iv)

The integral on the right-hand side of the preceding equation is equal to unity [see Eq. (8.1.19)]. As e ! 0,

the first integral on the left side approaches zero, whereas the second integral becomes

S12ð0þÞ � S12ð0�Þ
� �

:

Since S12(0
�) ¼ 0, Eq. (iv) gives

S12ð0þÞ ¼ meo
l

: (v)

For t > 0, d(t) ¼ 0 so that Eq. (iii) becomes

S12 þ l
@S12
@t

¼ 0; t > 0: (vi)

The solution of the preceding equation with the initial condition S12ð0þÞ ¼ meo
l

is

S12
eo

¼ m
l
e�t=l: (8.1.20)

This is the same relaxation function we obtained for the spring-dashpot model in Eq. (8.1.15). In arriving at

Eq. (8.1.15), we made use of the initial condition So ¼ Geo, which was obtained from considerations of the

responses of the elastic element. Here, in the present example, the initial condition is obtained by integrating

the differential equation, Eq. (iii), over an infinitesimal time interval (from t ¼ 0� to t ¼ 0þ). By comparing

Eq. (8.1.20) with Eq. (8.1.15) of the mechanical model, we see that m /l is the equivalent of the spring con-

stant G of the mechanical model. It gives a measure of the elasticity of the linear Maxwell fluid.

Example 8.1.4
A linear Maxwell fluid is confined between two infinitely large parallel plates. The bottom plate is fixed. The top plate

undergoes a one-dimensional oscillation of small amplitude uo in its own plane. Neglecting inertia effects, find the

response of the shear stress.

Solution
The boundary conditions for the displacement components may be written:

y ¼ h: ux ¼ uoe
iot ; uy ¼ uz ¼ 0; (i)

y ¼ 0: ux ¼ uy ¼ uz ¼ 0; (ii)

where i ¼
ffiffiffiffiffiffiffi
�1

p
and eiot ¼ cos ot þ i sin ot . We may take the real part of ux to correspond to our physical problem.

That is, in the physical problem, ux ¼ uo cos ot.
Consider the following displacement field:

uxðyÞ ¼ uoe
iot ðy=hÞ; uy ¼ uz ¼ 0: (iii)
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Clearly, this displacement field satisfies the boundary conditions (i) and (ii). The velocity field corresponding to

Eq. (iii) is

vxðyÞ ¼ iouoeiot ðy=hÞ; vy ¼ vz ¼ 0: (iv)

Thus, the components of the rate of deformation tensor D are

D12 ¼ 1

2
iouoeiot ð1=hÞ; all other Dij ¼ 0: (v)

This is a homogeneous field, and it corresponds to a homogeneous stress field. In the absence of inertia forces,

every homogeneous stress field satisfies all the momentum equations and is therefore a physically acceptable solu-

tion. Let the homogeneous stress component S12 be given by

S12 ¼ Soe
iot : (vi)

Then the equation S12 þ l
@S12
@t

¼ 2mD12 gives ð1þ lioÞSo ¼ mio
uo
h
. That is,

So
ðuo=hÞ ¼

mio
ð1þ iloÞ ¼

mioð1� iloÞ
ð1þ iloÞð1� iloÞ ¼

mlo2

1þ l2o2
þ i

mo

1þ l2o2
: (vii)

Let

G� ¼ So
ðuo=hÞ ; (8.1.21)

then

S12 ¼ G�ðuo=hÞeiot : (8.1.22)

The complex variable G� is known as the complex shear modulus, which may be written

G� ¼ G 0ðoÞ þ iG00ðoÞ; (8.1.23)

where the real part of the complex modulus is

G 0ðoÞ ¼ mlo2

1þ l2o2
; (8.1.24)

and the imaginary part is

G00ðoÞ ¼ mo

1þ l2o2
: (8.1.25)

If we write (m/l) as G, the spring constant in the spring-dashpot model, we have

G 0ðoÞ ¼ m2o2G

G2 þ m2o2
and G00ðoÞ ¼ moG2

G2 þ m2o2
: (8.1.26)

We note that as limiting cases of the Maxwell model, a purely elastic element has m ! 1 so that G 0 ¼ G and

G 00 ¼ 0, and a purely viscous element has G ! 1 so that G 0 ¼ 0 and G 00 ¼ mo. Thus, G 0 characterizes the extent

of elasticity of the fluid that is capable of storing elastic energy, whereas G00 characterizes the extent of loss of energy

due to viscous dissipation of the fluid. Thus, G 0 is called the storage modulus and G 00 is called the loss modulus.
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Writing

G� ¼ jG�jeid; where jG�j ¼ ðG 02 þ G002Þ1=2 and tan d ¼ G00

G 0 ; (8.1.27)

we have G�eiot ¼ |G�|ei(otþd), so that taking the real part of Eq. (8.1.22), we obtain

S12 ¼ ðuo=hÞjG�jcosðot þ dÞ: (8.1.28)

Thus, for a Maxwell fluid, the shear stress response in a sinusoidal oscillatory experiment under the condition that

the inertia effects are negligible is

S12 ¼ uo
h
jG�jcosðot þ dÞ ¼ uo

h

� 	 moffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2o2

p cosðot þ dÞ; (8.1.29)

where

tan d ¼ 1=ðloÞ: (8.1.30)

The angle d is known as the phase angle. For a purely elastic material (l ! 1) in a sinusoidal oscillation, the

stress and the strain are oscillating in the same phase (d ¼ 0), whereas for a purely viscous fluid (l ! 0), the stress

is 90o ahead of the strain.

8.2 A GENERALIZED LINEAR MAXWELL FLUID WITH DISCRETE RELAXATION
SPECTRA
A linear Maxwell fluid with N discrete relaxation spectra is defined by the following constitutive equation:

S ¼
XN
1

Sn with Sn þ ln
@Sn
@t

¼ 2mnD: (8.2.1)

The mechanical analog for this constitutive equation may be represented by N Maxwell elements connected in

parallel. The shear relaxation function is the sum of the N relaxation functions, each with a different relaxa-

tion time ln:

fðtÞ ¼
XN
1

mn
ln

e�t=ln : (8.2.2)

It can be shown that Eq. (8.2.1) is equivalent to the following constitutive equation:

Sþ
XN
1

an
@nS

@tn
¼ boDþ

XN�1

1

bn
@nD

@tn
: (8.2.3)

We demonstrate this equivalence for the case N ¼ 2 as follows: When N ¼ 2,

S ¼ S1 þ S2; (8.2.4)

with

S1 þ l1
@S1
@t

¼ 2m1D and S2 þ l2
@S2
@t

¼ 2m2D: (8.2.5)
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Now

ðl1 þ l2Þ @S
@t

¼ l1
@S1
@t

þ l2
@S2
@t

þ l2
@S1
@t

þ l1
@S2
@t

¼ 2ðm1 þ m2ÞD� Sþ l2
@S1
@t

þ l1
@S2
@t

; (i)

and

l1l2
@2S

@t2
¼ l1l2

@2S1
@t2

þ l1l2
@2S2
@t2

¼ 2ðl2m1 þ l1m2Þ
@D

@t
� l2

@S1
@t

� l1
@S2
@t

: (ii)

Adding Eqs. (i) and (ii), we have

Sþ ðl1 þ l2Þ @S
@t

þ l1l2
@2S

@t2
¼ 2ðm1 þ m2ÞDþ 2ðl2m1 þ l1m2Þ

@D

@t
: (iii)

Let

a1 ¼ ðl1 þ l2Þ; a2 ¼ l1l2; bo ¼ 2ðm1 þ m2Þ and b1 ¼ 2ðl2m1 þ l1m2Þ; (8.2.6)

we have

Sþ a1
@S

@t
þ a2

@2S

@t2
¼ boDþ b1

@D

@t
: (8.2.7)

Similarly, for N ¼ 3, one can obtain the following (see Problem 8.2):

a1 ¼ ðl1 þ l2 þ l3Þ; a2 ¼ ðl1l2 þ l2l3 þ l3l1Þ; a3 ¼ l1l2l3; bo ¼ 2ðm1 þ m2 þ m3Þ;
b1 ¼ 2 m1ðl2 þ l3Þ þ m2ðl3 þ l1Þ þ m3ðl1 þ l2Þ½ �; b2 ¼ 2 m1l2l3 þ m2l3l1 þ m3l1l2½ �: (8.2.8)

8.3 INTEGRAL FORM OF THE LINEAR MAXWELL FLUID AND OF THE GENERALIZED
LINEAR MAXWELL FLUID WITH DISCRETE RELAXATION SPECTRA
Consider the following integral form of the constitutive equation:

S ¼ 2

ðt
�1

fðt� t 0ÞDðt 0Þdt 0; (8.3.1)

where

fðtÞ ¼ m
l
e�t=l; (8.3.2)

is the relaxation function for the linear Maxwell fluid.

If we differentiate Eq. (8.3.1) with respect to time t, we obtain (note: t appears in both the integrand and

the integration limit; we need to use the Leibnitz rule of differentiation)

@S

@t
¼ 2m

l

ðt
�1

� 1

l

� �
e�ðt�t 0 Þ=lDðt 0Þdt 0 þ DðtÞ


 �
¼ � 1

l

� �
Sþ 2m

l
D;

that is,

Sþ l
@S

@t
¼ 2mD: (8.3.3)
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Thus, the integral form of the constitutive equation, Eq. (8.3.1), with relaxation function given by

Eq. (8.3.2), is the same as the rate form constitutive equation, Eq. (8.1.2). Of course, Eq. (8.3.1) is nothing

but the solution of the linear nonhomogeneous ordinary differential equation, Eq. (8.1.2) (see Problem 8.6).

It is not difficult to show that the constitutive equation for the generalized linear Maxwell equation with N
discrete relaxation spectra, Eq. (8.2.1), is equivalent to the following integral form:

S ¼ 2

ðt
�1

fðt� t 0ÞDðt 0Þdt 0 with fðtÞ ¼
XN
1

mn
ln

e�t=ln : (8.3.4)

8.4 A GENERALIZED LINEAR MAXWELL FLUID WITH A CONTINUOUS
RELAXATION SPECTRUM
The linear Maxwell fluid with a continuous relaxation spectrum is defined by the constitutive equation:

S ¼ 2

ðt
�1

fðt� t 0ÞDðt 0Þdt 0 with fðtÞ ¼
ð1
0

HðlÞ
l

e�t=ldl: (8.4.1)

The function H(l)/l is the relaxation spectrum. The relaxation function in Eq. (8.4.1) can also be written:

fðtÞ ¼
ð1
0

HðlÞe�t=ld ln l: (8.4.2)

As we shall see later, the linear Maxwell models considered so far are physically acceptable models only if

the motion is such that the components of the relative deformation gradient (i.e., deformation gradient

measured from the configuration at the current time t; see Section 8.6) are small. When this is the case,

the components of rate of deformation tensor D are also small so that [see Eq. (5.2.15), Example 5.2.1]

D � @E

@t
; (8.4.3)

where E is the infinitesimal strain measured with respect to the current configuration.

Substituting the preceding approximation of D in Eq. (8.4.1) and integrating the right-hand side by parts,

we obtain

S ¼ 2

ðt
�1

fðt� t 0Þ @E
@t 0

dt 0 ¼ 2 fðt� t 0ÞEðt 0Þ½ �t 0¼t
t 0¼�1 � 2

ðt
�1

Eðt 0Þ @fðt� t 0Þ
@t 0

dt 0:

The first term in the right-hand side is zero because f(1) ¼ 0 for a fluid and E(t) ¼ 0 because the defor-

mation is measured relative to the configuration at time t. Thus,

S ¼ �2

ðt
�1

Eðt 0Þ @fðt� t 0Þ
@t 0

dt 0: (8.4.4)

Or, letting t�t0 ¼ s, we can write the preceding equation as

S ¼ �2

ðs¼0

s¼1

dfðsÞ
ds

Eðt� sÞds ¼ 2

ðs¼1

s¼0

dfðsÞ
ds

Eðt� sÞds: (8.4.5)

Let

f ðsÞ � dfðsÞ
ds

: (8.4.6)
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Eq. (8.4.5) then becomes

S ¼ 2

ðs¼1

s¼0

f ðsÞEðt� sÞds: (8.4.7)

Or

S ¼ 2

ðt
�1

f ðt� t 0ÞEðt 0Þdt 0: (8.4.8)

Equation (8.4.7) or (8.4.8) is the integral form of the constitutive equation for the linear Maxwell fluid

written in terms of the infinitesimal strain tensor E (instead of the rate of deformation tensor D). The function
f(s) in these equations is known as the memory function. The relation between the memory function and the

relaxation function is given by Eq. (8.4.6).

The constitutive equation given by Eq. (8.4.7) or (8.4.8) can be viewed as the superposition of all the

stresses, weighted by the memory function f(s), caused by the deformation of the fluid particle (relative to the

current time) at all past times (t0 ¼ �1 to the current time t).
For the linear Maxwell fluid with one relaxation time, the memory function is given by

f ðsÞ ¼ d

ds
fðsÞ ¼ d

ds

m
l
e�s=l

� 	
¼ � m

l2
e�s=l: (8.4.9)

For the linear Maxwell fluid with discrete relaxation spectra, the memory function is

f ðsÞ ¼ �
XN
n¼1

mn
l2n

e�s=ln : (8.4.10)

and for the Maxwell fluid with a continuous spectrum,

f ðsÞ ¼ �
ð1
0

HðlÞ
l2

e�s=ldl: (8.4.11)

We note that when we write s � t � t 0, Eq. (8.4.1) becomes

S ¼ 2

ð1
0

fðsÞDðt� sÞds: (8.4.12)

Example 8.4.1
Obtain the storage modulus G 0(o) and the loss modulus G 00 (o) for the linear Maxwell fluid with a continuous relaxa-

tion spectrum by subjecting the fluid to an oscillatory shearing strain described in Example 8.1.4.

Solution
From Example 8.1.4, the oscillatory shear component of the rate of deformation tensor is D12 ¼ (iouo/2h)e

iot. Thus,

with S12 ¼ Seiot, Eq. (8.4.12) gives

S

ðuo=hÞ ¼ io
ð1
0

fðsÞe�iosds: (8.4.13)
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With the relaxation function given by fðtÞ ¼
ð1
0

ðHðtÞ=tÞe�t=tdt, the complex shear modulus is

G� � S

ðuo=hÞ ¼ io
ð1
0

ð1
0

HðtÞ
t

e�s=tdt

2
4

3
5e�iosds ¼ io

ð1
0

HðtÞ
t

ð1
0

e�ð1þitoÞstds

2
4

3
5dt

¼ io
ð1
0

HðtÞ
t

� te�ð1þitoÞs=t

ð1þ itoÞ
����
1

s¼0


 �
dt ¼ io

ð1
0

HðtÞ
1þ ito

dt:

That is,

G� ¼
ð1
0

to2HðtÞ
ð1þ t2o2Þdtþ i

ð1
0

oHðtÞ
ð1þ t2o2Þdt: (8.4.14)

Thus, the storage modulus is

G 0 ¼
ð1
0

ðtoÞ2HðtÞ
tð1þ t2o2Þdt; (8.4.15)

and the loss modulus is

G00 ¼
ð1
0

ðtoÞHðtÞ
tð1þ t2o2Þdt: (8.4.16)

8.5 COMPUTATION OF RELAXATION SPECTRUM AND RELAXATION FUNCTION
Whenever either G0(o) or G00(o) is known (e.g., from experimental measurements), the relaxation spectrum

H (t) can be obtained from either Eq. (8.4.15) or Eq. (8.4.16). It has been found that numerically, it is better

to invert G00(o). The inversion procedure is as follows:

1. From the experimental data of G00(o), use the following formula due to Tanner* as an approximate H(t)
to start the iteration procedure:

HðtiÞjti¼1=oi
¼ 2

p
G00ðoiÞ for i ¼ 1 and N;

and

HðtiÞjti¼1=oi
¼ 2

3p
G00ðoi=aÞ þ G00ðoiÞ þ G00ðaoiÞ½ � for i ¼ 2; 3; . . . ðN � 1Þ;

where, for best results, choose the parameter a so that log a ¼ 0.2.

2. Substitute the H(t) in Eq. (8.4.16) to calculate the new G00(o) using, for example, Simpson’s rule for

numerical calculations. Let this calculated G00(o) be denoted by (G00)cal.

3. Calculate the difference DG00 ¼ (G00)data � (G00)cal.

4. Compute the correction DHi:

DHi ¼ 2

p
DG00ðoiÞ for i ¼ 1 and N;

*Tanner, R. I., J. Appl. Polymer Sci. 12, 1649, 1968.
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and

DHi ¼ 2

3p
DG00ðoi=aÞ þ DG00ðoiÞ þ DG00ðaoiÞ½ � for i ¼ 2; 3; . . . ðN � 1Þ:

5. Obtain the new H(ti):

HnewðtiÞ ¼ HðtiÞ þ DHðtiÞ:
6. Repeat step 2 using the newly obtained H(ti). Continue the iteration process until (G00)cal converges to

(G00)data for a prescribed convergence criterion.

7. After H(t) is obtained, the relaxation function f(t) can be obtained from Eq. (8.4.1) by numerical

integration.

Example 8.5.1
Synovial fluid is the fluid in the cavity of the synovial joints. It contains varying amounts of a hyaluronic acid-protein

complex, which has an average molecular weight of about 2 million. This macromolecule forms ellipsoidal three-

dimensional networks that occupy a solvent domain much larger than the volume of the polymer chain itself. This

spatial arrangement endows synovial fluids with non-Newtonian fluid behaviors. Figure 8.5-1 shows the storage

and loss modulus for synovial fluids in three clinical states: (A) young normal human knee sample, (B) old normal

knee sample, and (C) osteoarthritic human knee sample.{ Use the procedure described in this section to obtain

the relaxation spectra and the relaxation functions for these fluids.

Solution
The relaxation spectra and the relaxation functions for the three fluids have been obtained using the procedure

described in this section. Table 8.5.1 shows the results; Figure 8.5-2 shows the calculated relaxation functions for

these fluids.{
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FIGURE 8.5-1 Experimental curves of G0 and G00 for three synovial fluids.

{From Balazs, E. A., and Gibbs, D. A., Chemistry and Molecular Biology of the Intercellular Matrix, E. A. Balazs (ed.), Vol. 3, Aca-
demic Press, 1970, pp. 1241–1253.
{Lai, W. M., Kuei, S. C., and Mow, V. C., Biorheology 14:229–236, 1977.
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From both the experimental data and the calculated stress relaxation functions, we see that the osteoarthritic fluid

can store less elastic energy and has less relaxation time. That is, compared with the normal fluids, its behaviors are

closer to that of a Newtonian fluid.

PART B: NONLINEAR VISCOELASTIC FLUID

8.6 CURRENT CONFIGURATION AS REFERENCE CONFIGURATION
Let x be the position vector of a particle at current time t, and let x0 be the position vector of the same particle

at time t. Then the equation

x 0 ¼ x 0
t ðx; tÞ with x ¼ x 0

t ðx; tÞ (8.6.1)

defines the motion of a continuum using the current time t as the reference time. The subscript t in the

function x 0
t ðx; tÞ indicates that the current time t is the reference time, and as such x 0

t ðx; tÞ is also a function

of t.

Table 8.5.1 Relaxation Spectrum H(t) in N /m2 for Fluids A, B, and C

t 0.025 0.063 0.159 0.400 1.000 2.512 6.329 10.00 15.85

A �3.77 1.01 11.09 7.03 3.36 1.88 0.65 0.21 0.087

B �4.49 5.23 3.94 0.985 1.25 �0.083 0.169 0.128 �0.083

C 31.57 10.74 �4.15 1.78 0.722 0.282 �0.183 �0.014 0.060
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FIGURE 8.5-2 Calculated relaxation functions for three human synovial fluids.
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For a given velocity field v ¼ v(x, t), the velocity at position x0 at time t is v ¼ v(x0, t). On the other hand,

for a particular particle (i.e., for fixed x and t), the velocity at time t is given by ð@x 0
t =@tÞx;t�fixed. Thus,

vðx 0; tÞ ¼ @x 0
t

@t
: (8.6.2)

Equation (8.6.2) allows one to obtain the pathline equations from a given velocity field, using the current

time t as the reference time.

Example 8.6.1
Given the velocity field of the steady unidirectional flow:

v1 ¼ vðx2Þ; v2 ¼ v3 ¼ 0: (8.6.3)

Describe the motion of the particles by using the current time t as the reference time.

Solution
From the given velocity field, the velocity components at the position ðx 0

1; x
0
2; x

0
3Þ at time t:

v1 ¼ vðx 0
2Þ; v2 ¼ v3 ¼ 0: (i)

Thus, with x 0 ¼ x 0
i ei , Eq. (8.6.2) gives

@x 0
1

@t
¼ vðx 0

2Þ;
@x 0

2

@t
¼ @x 0

3

@t
¼ 0: (ii)

From @x 0
2=@t ¼ @x 0

3=@t ¼ 0 and the initial conditions x 0
2 ¼ x2; x

0
3 ¼ x3 at t ¼ t , we have, at all time t,

x 0
2 ¼ x2 and x 0

3 ¼ x3: (iii)

Now, from @x 0
1=@t ¼ vðx 0

2Þ ¼ vðx2Þ, we get

x 0
1 ¼ vðx2Þtþ gðx1; x2; x3; tÞ: (iv)

At t ¼ t ; x 0
1 ¼ x1, therefore, x1 ¼ v (x2)t þ g(x1,x2,x3,t), so that

gðx1; x2; x3; tÞ ¼ x1 � vðx2Þt : (v)

Thus,

x 0
1 ¼ x1 þ vðx2Þðt� tÞ; x 0

2 ¼ x2; x 0
3 ¼ x3: (8.6.4)

8.7 RELATIVE DEFORMATION GRADIENT
Let dx and dx0 be the differential vectors representing the same material element at time t and t, respectively.
Then they are related by

dx 0 ¼ x 0
t ðxþ dx; tÞ � x 0

t ðx; tÞ ¼ ðrx 0
t Þdx: (8.7.1)

That is,

dx 0 ¼ Ftdx; (8.7.2)

8.7 Relative Deformation Gradient 457



where

Ft ¼ rx 0
t : (8.7.3)

The tensor Ft is known as the relative deformation gradient. Here, the adjective relative indicates that the
deformation gradient is relative to the configuration at the current time. We note that for t ¼ t, dx0 ¼ dx
so that

FtðtÞ ¼ I: (8.7.4)

In rectangular Cartesian coordinates, with pathline equations given by

x 0
1 ¼ x 01ðx1; x2; x3; tÞ; x 0

2 ¼ x 0
2ðx1; x2; x3; tÞ; x 0

3 ¼ x 03ðx1; x2; x3; tÞ; (8.7.5)

the matrix of Ft (t) is

Ft½ � ¼ rx 0
t

� � ¼

@x 0
1

@x1

@x 0
1

@x2

@x 0
1

@x3

@x 0
2

@x1

@x 0
2

@x2

@x 0
2

@x3

@x 0
3

@x1

@x 0
3

@x2

@x 0
3

@x3

2
6666666664

3
7777777775
: (8.7.6)

In cylindrical coordinates, with pathline equations given by

r 0 ¼ r 0ðr; y; z; tÞ; y 0 ¼ y 0ðr; y; z; tÞ; z 0 ¼ z 0ðr; y; z; tÞ; (8.7.7)

the two point components of Ft with respect to fe 0
r ; e

0
y; e

0
zg at t and {er, ey, ez} at t can be written down easily

from Eq. (3.29.12) of Chapter 3 by noting the difference in the reference times. For example, r ¼ r(ro, yo, zo, t)
in Section 3.29 corresponds to r0 ¼ r0 (r, y, z, t) here in this section:

Ft½ � ¼

@r 0

@r

1

r

@r 0

@y
@r 0

@z

r 0@y 0

@r

r 0

r

@y 0

@y
r 0@y 0

@z

@z 0

@r

1

r

@z 0

@y
@z 0

@z

2
6666666664

3
7777777775
: (8.7.8)

In spherical coordinates, with pathline equations given by

r 0 ¼ r 0ðr; y;f; tÞ; y 0 ¼ y 0ðr; y;f; tÞ; f 0 ¼ f 0ðr; y;f; tÞ; (8.7.9)

the two point components of Ft with respect to fe 0
r ; e

0
y; e

0
fg at t and {er, ey, ef} at t are given by the matrix

Ft½ � ¼

@r 0

@r

1

r

@r 0

@y
1

r sin y
@r 0

@f

r 0@y 0

@r

r 0

r

@y 0

@y
r 0

r sin y
@y 0

@f

r 0 sin y 0@f 0

@r

r 0 sin y 0

r

@f 0

@y
r 0 sin y 0

r sin y
@f 0

@f

2
6666666664

3
7777777775
: (8.7.10)
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8.8 RELATIVE DEFORMATION TENSORS
The descriptions of the relative deformation tensors (using the current time t as reference time) are similar to

those of the deformation tensors using a fixed reference time (see Chapter 3, Sections 3.18 to 3.29). Indeed,

by polar decomposition theorem (Section 3.21),

Ft ¼ RtUt ¼ VtRt; (8.8.1)

where Ut and Vt are relative right and left stretch tensors, respectively, and Rt is the relative rotation tensor.

We note that

FtðtÞ ¼ UtðtÞ ¼ VtðtÞ ¼ RtðtÞ ¼ I: (8.8.2)

From Eq. (8.8.1), we clearly also have

Vt ¼ RtUtR
T
t and Ut ¼ RT

t VtRt: (8.8.3)

The relative right Cauchy-Green deformation tensor Ct is defined by

Ct ¼ FT
t Ft ¼ UtUt: (8.8.4)

The relative left Cauchy-Green deformation tensor Bt is defined by

Bt ¼ FtF
T
t ¼ VtVt: (8.8.5)

The tensors Ct and Bt are related by

Bt ¼ RtCtR
T
t and Ct ¼ RT

t BtRt: (8.8.6)

The tensors C�1
t and B�1

t are often encountered in the literature. They are known as the relative Finger
deformation tensor and the relative Piola deformation tensor, respectively.

We note that

CtðtÞ ¼ BtðtÞ ¼ C�1
t ðtÞ ¼ B�1

t ðtÞ ¼ I: (8.8.7)

Example 8.8.1
Show that if dx(1) and dx(2) are two material elements emanating from a point P at time t and dx0(1) and dx0(2) are the

corresponding elements at time t, then

dx 0ð1Þ � dx 0ð2Þ ¼ dxð1Þ � Ct dx
ð2Þ (8.8.8)

and

dxð1Þ � dxð2Þ ¼ dx 0ð1Þ � B�1
t dx0ð2Þ: (8.8.9)

Solution
From Eq. (8.7.2), we have

dx 0ð1Þ � dx 0ð2Þ ¼ Ft dx
ð1Þ � Ft dxð2Þ ¼ dxð1Þ � FTt Ft dxð2Þ:

That is,

dx 0ð1Þ � dx 0ð2Þ ¼ dxð1Þ � Ct dx
ð2Þ:
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Also, since dx ¼ F�1
t dx 0,

dxð1Þ � dxð2Þ ¼ F�1
t dx 0ð1Þ � F�1

t dx 0ð2Þ ¼ dx 0ð1Þ � ðF�1
t ÞTF�1

t dx 0ð2Þ ¼ dx 0ð1Þ � ðFt ðFt ÞTÞ�1dx 0ð2Þ:

That is,

dxð1Þ � dxð2Þ ¼ dx 0ð1Þ � B�1
t dx 0ð2Þ:

Let dx ¼ dse1 be a material element at the current time t and dx0 ¼ ds0n be the same material element at

time t, where e1 is a unit base vector in a coordinate system and n is a unit vector in the direction of the

deformed vector. Then Eq. (8.8.8) gives

ðds 0=dsÞ2 ¼ e1 � Cte1 ¼ ðCtÞ11: (8.8.10)

On the other hand, if dx0 ¼ ds0e1 is a material element at time t and dx ¼ dsn is the same material element

at the current time t, then Eq. (8.8.9) gives

ðds=ds 0Þ2 ¼ e1 � B�1
t e1 ¼ ðB�1

t Þ11: (8.8.11)

The meaning of the other components can also be obtained from Eqs. (8.8.8) and (8.8.9).

8.9 CALCULATIONS OF THE RELATIVE DEFORMATION TENSOR

A. Rectangular Coordinates

Let

x 0
1 ¼ x 01ðx1; x2; x3; tÞ; x 0

2 ¼ x 02ðx1; x2; x3; tÞ; x 0
3 ¼ x 03ðx1; x2; x3; tÞ (8.9.1)

be the pathline equations. Eqs. (8.8.4) and (8.7.6) give

Ctð Þ11 ¼
@x 0

1

@x1

� �2

þ @x 0
2

@x1

� �2

þ @x 0
3

@x1

� �2

; (8.9.2)

Ctð Þ22 ¼
@x 0

1

@x2

� �2

þ @x 0
2

@x2

� �2

þ @x 0
3

@x2

� �2

; (8.9.3)

Ctð Þ12 ¼
@x 0

1

@x1

� �
@x 0

1

@x2

� �
þ @x 0

2

@x1

� �
@x 0

2

@x2

� �
þ @x 0

3

@x1

� �
@x 0

3

@x2

� �
: (8.9.4)

Other components can be similarly written.

The components of C�1
t can be obtained using the inverse function of Eq. (8.9.1), i.e.,

x1 ¼ x1ðx 01; x 0
2; x

0
3; tÞ; x2 ¼ x2ðx 01; x 0

2; x
0
3; tÞ; x3 ¼ x3ðx 01; x 0

2; x
0
3; tÞ: (8.9.5)

They are

C�1
t

� 

11

¼ @x1
@x 0

1

� �2

þ @x1
@x 0

2

� �2

þ @x1
@x 0

3

� �2

; (8.9.6)

C�1
t

� 

22

¼ @x2
@x 0

1

� �2

þ @x2
@x 0

2

� �2

þ @x2
@x 0

3

� �2

; (8.9.7)
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C�1
t

� 

12

¼ @x1
@x 0

1

� �
@x2
@x 0

1

� �
þ @x1

@x 0
2

� �
@x2
@x 0

2

� �
þ @x1

@x 0
3

� �
@x2
@x 0

3

� �
: (8.9.8)

Other components can be similarly written.

Example 8.9.1
Find the relative right Cauchy-Green deformation tensor and its inverse for the velocity field given in Eq. (8.6.3), i.e.,

v1 ¼ vðx2Þ; v2 ¼ v3 ¼ 0: (8.9.9)

Solution
In Example 8.6.1, we obtained the pathline equations for this velocity field to be [Eq. (8.6.4)]:

x 0
1 ¼ x1 þ vðx2Þðt� tÞ; x 0

2 ¼ x2; x 0
3 ¼ x3; (8.9.10)

with k ¼ dv/dx2, we have

Ft½ � ¼
1 kðt� tÞ 0
0 1 0
0 0 1

2
4

3
5: (8.9.11)

Thus,

½Ct � ¼ ½Ft �T½Ft � ¼
1 0 0

kðt� tÞ 1 0
0 0 1

2
4

3
5 1 kðt� tÞ 0

0 1 0
0 0 1

2
4

3
5 ¼

1 kðt� tÞ 0

kðt� tÞ k2ðt� tÞ2 þ 1 0
0 0 1

2
4

3
5: (8.9.12)

The inverse of Eq. (8.6.4) is

x1 ¼ x 0
1 � vðx2Þðt� tÞ; x2 ¼ x 0

2; x3 ¼ x 0
3: (8.9.13)

Thus,

F�1
t

h i
¼

1 �kðt� tÞ 0
0 1 0
0 0 1

2
4

3
5; (8.9.14)

½C�1
t � ¼ F�1

t ½F�1
t �T ¼

1 �kðt� tÞ 0

0 1 0

0 0 1

2
664

3
775

1 0 0

�kðt� tÞ 1 0

0 0 1

2
664

3
775 ¼

1þ k2ðt� tÞ2 �kðt� tÞ 0

�kðt� tÞ 1 0

0 0 1

2
664

3
775: (8.9.15)

B. Cylindrical Coordinates

For pathline equations given as

r 0 ¼ r 0ðr; y; z; tÞ; y 0 ¼ y 0ðr; y; z; tÞ; z 0 ¼ z 0ðr; y; z; tÞ; (8.9.16)

the components of Ct with respect to {er, ey, ez} at t can be written easily from the equations given in Chapter

3, Section 3.29, for cylindrical coordinates. Attention should be paid, however, that in Section 3.29, (r, y, z)
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and (ro, yo, zo) are the coordinates at t and to (where to is the reference time), respectively, whereas in this

section (r0, y0, z0) and (r, y, z) are the coordinates at t and t (where t is the reference time), respectively.

For example, r ¼ r(ro, yo, zo, t) in Section 3.29 corresponds to r0 ¼ r0(r, y, z, t) here in this section. Thus,

Ctð Þrr ¼
@r

0

@r

� �2

þ r 0
@y 0

@r

� �2

þ @z 0

@r

� �2

; Ctð Þyy ¼
1

r2
@r 0

@y

� �2

þ r 0
@y 0

@y

� �2

þ @z 0

@y

� �2
" #

; (8.9.17)

Ctð Þry ¼
1

r

@r 0

@r

� �
@r 0

@y

� �
þ r 02

@y 0

@r

� �
@y 0

@y

� �
þ @z 0

@r

� �
@z 0

@y

� �
 �
; etc: (8.9.18)

Similarly, with the inverse of Eq. (8.9.16) given by

r ¼ rðr 0; y 0; z 0; tÞ; y ¼ yðr 0; y 0; z 0; tÞ; z ¼ zðr 0; y 0; z 0; tÞ; (8.9.19)

the components of C�1
t are given by

C�1
t

� 

rr
¼ @r

@r 0

� �2

þ 1

r 0
@r

@y 0

� �2

þ @r

@z 0

� �2

; Ctð Þyy ¼
r@y
@r 0

� �2

þ r

r 0
@y
@y 0

� �2

þ r
@y
@z 0

� �2
" #

(8.9.20)

C�1
t

� 

ry ¼

@r

@r 0

� �
r
@y
@r 0

� �
þ 1

r 0
@r

@y 0

� �
r

r 0
@y
@y 0

� �
þ @r

@z 0

� �
r
@y
@z 0

� �
; etc: (8.9.21)

C. Spherical Coordinates

For pathline equations given as

r 0 ¼ r 0ðr; y;f; tÞ; y 0 ¼ y 0ðr; y;f; tÞ; f 0 ¼ f 0ðr; y;f; tÞ; (8.9.22)

the components of Ct with respect to {er, ey, ef} can be written down easily from the equations given in

Chapter 3, Section 3.29, for spherical coordinates. Attention should be paid, however, that in Section 3.29,

(r, y, f) and (ro, yo, fo) are the coordinates at t and to (where to is the reference time), respectively, whereas

in this section (r0, y0, f0) and (r, y, f) are the coordinates at t and t (where t is the reference time), respec-

tively. For example, r ¼ r(ro, yo, fo, t) in Section 3.29 corresponds to r0 ¼ r0(r, y, f, t) here in this section.

Thus,

Ctð Þrr ¼
@r 0

@r

� �2

þ r 0
@y 0

@r

� �2

þ r 0 sin y 0 @f
0

@r

� �2

; (8.9.23)

Ctð Þyy ¼
1

r2
@r 0

@y

� �2

þ r 0
@y 0

@y

� �2

þ r 0 sin y 0 @f
0

@y

� �2
" #

; (8.9.24)

Ctð Þry ¼
1

r

@r 0

@r

� �
@r 0

@y

� �
þ r 02

@y 0

@r

� �
@y 0

@y

� �
þ r 0 sin y 0ð Þ2 @f 0

@r

� �
@f 0

@y

� �
 �
; etc: (8.9.25)

Similarly, with the inverse of Eq. (8.9.22) given by

r ¼ rðr 0; y 0;f 0; tÞ; y ¼ yðr 0; y 0;f 0; tÞ; f ¼ fðr 0; y 0;f 0; tÞ; (8.9.26)
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the components of C�1
t are given by

C�1
t

� 

rr
¼ @r

@r 0

� �2

þ 1

r 0
@r

@y 0

� �2

þ 1

r 0 sin y 0
@r

@f 0

� �2

; (8.9.27)

C�1
t

� 

yy ¼

r@y
@r 0

� �2

þ r

r 0
@y
@y 0

� �2

þ r

r 0 sin y 0
@y
@f 0

� �2
" #

; (8.9.28)

C�1
t

� 

ry ¼

@r

@r 0

� �
r
@y
@r 0

� �
þ 1

r 0
@r

@y 0

� �
r

r 0
@y
@y 0

� �
þ 1

r 0 sin y 0
@r

@f 0

� �
r

r 0 sin y 0
@y
@f 0

� �
: (8.9.29)

Other components can be written easily following the patterns given in the preceding equations.

8.10 HISTORY OF THE RELATIVE DEFORMATION TENSOR AND RIVLIN-ERICKSEN
TENSORS
The tensor Ct (x, t) describes the deformation at time t of the element which at time t, is at x. Thus, as one
varies t from t ¼ �1 to t ¼ t in the function Ct (x, t), one gets the whole history of the deformation, from

infinitely long ago to the present time t.
If we assume that we can expand the components of Ct in the Taylor series about t ¼ t, we have

Ct x; tð Þ ¼ Ct x; tð Þ þ @Ct

@t

� �
t¼t

t� tð Þ þ 1

2

@2Ct

@t2

� �
t¼t

t� tð Þ2 þ . . . (8.10.1)

Let

A1 ¼ @Ct

@t

� �
t¼t

; A2 ¼ @2Ct

@t2

� �
t¼t

. . . AN ¼ @NCt

@tN

� �
t¼t

; (8.10.2)

Eq. (8.10.1) then becomes

Ctðx; tÞ ¼ Iþ ðt� tÞA1 þ ðt� tÞ2
2

A2 þ . . . (8.10.3)

The tensors AN are known as the Rivlin-Ericksen tensors. We see from Eq. (8.10.3) that, provided the Tay-

lor series expansion is valid, the Rivlin-Ericksen tensors AN’s (N ¼ 1 to 1) determine the history of relative

deformation. It should be noted, however, that not all histories of relative deformation can be expanded in the

Taylor series. For example, the stress relaxation test, in which a sudden jump in deformation is imposed on

the fluid, has a history of relative deformation that cannot be represented by a Taylor series.

Example 8.10.1
The relative right Cauchy-Green tensor for the steady unidirectional flow given by the velocity field v1 ¼ v (x2), v2 ¼
v3 ¼ 0 has been found in Example 8.9.1 to be

Ct½ � ¼
1 k t� tð Þ 0

k t� tð Þ k2 t� tð Þ2 þ 1 0
0 0 1

2
4

3
5;

where k ¼ dv /dx2. Find the Rivlin-Ericksen tensors for this flow.
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Solution

Ct½ � ¼
1 k t� tð Þ 0

k t� tð Þ k2 t� tð Þ2 þ 1 0
0 0 1

2
4

3
5 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5þ

0 k 0
k 0 0
0 0 0

2
4

3
5ðt� tÞ þ

0 0 0
0 2k2 0
0 0 0

2
4

3
5 t� tð Þ2

2
:

Thus [see Eq. (8.10.3)],

A1½ � ¼
0 k 0
k 0 0
0 0 0

2
4

3
5; A2½ � ¼

0 0 0
0 2k2 0
0 0 0

2
4

3
5; AN½ � ¼

0 0 0
0 0 0
0 0 0

2
4

3
5 ¼ 0½ � for all N 	 3;

and

Ct½ � ¼ I½ � þ A1½ � t� tð Þ þ A2½ � t� tð Þ2
2

:

Example 8.10.2
Given an axisymmetric velocity field in cylindrical coordinates:

vr ¼ 0; vy ¼ 0; vz ¼ v rð Þ: (i)

(a) Obtain the pathline equations using current time t as reference.

(b) Compute the relative deformation tensor Ct.

(c) Find the Rivlin-Ericksen tensors.

Solution
(a) Let the pathline equations be

r 0 ¼ r 0 r ; y; z ; tð Þ; y 0 ¼ y 0 r ; y; z; tð Þ; z 0 ¼ z 0 r ; y; z; tð Þ: (ii)

Then, from the given velocity field, we have

dr 0

dt
¼ 0;

dy 0

dt
¼ 0;

dz 0

dt
¼ v r 0ð Þ: (iii)

Integration of these equations with the conditions that at t ¼ t: r 0 ¼ r, y0 ¼ y and z 0 ¼ z, we obtain

r 0 ¼ r ; y 0 ¼ y and z 0 ¼ z þ v rð Þ t� tð Þ: (iv)

(b) Using Eqs. (8.9.17), (8.9.18), etc., we obtain, with k(r) ¼ dv/dr,

Ctð Þrr ¼
@r 0

@r

� �2

þ r 0
@y 0

@r

� �2

þ @z 0

@r

� �2

¼ 1þ 0þ dv=drð Þ t� tð Þ;
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Ctð Þyy ¼
1

r2
@r 0

@y

� �2

þ r 0
@y 0

@y

� �2

þ @z 0

@y

� �2
" #

¼ 1

r2
0þ r 0ð Þ2 þ 0
h i

¼ r2

r2
¼ 1;

Ctð Þzz ¼
@r 0

@z

� �2

þ r 0
@y 0

@z

� �2

þ @z 0

@z

� �2
" #

¼ 0þ 0þ 1 ¼ 1;

Ctð Þry ¼
1

r

@r 0

@r

� �
@r 0

@y

� �
þ r 02

@y 0

@r

� �
@y 0

@y

� �
þ @z 0

@r

� �
@z 0

@y

� �
 �
¼ 0þ 0þ 0 ¼ 0;

Ctð Þrz ¼
@r 0

@r

� �
@r 0

@z

� �
þ r 02

@y 0

@r

� �
@y 0

@z

� �
þ @z 0

@r

� �
@z 0

@z

� �
 �
¼ 0þ 0þ dv=drð Þ t� tð Þ 1ð Þ;

Ctð Þyz ¼
@r 0

r@y

� �
@r 0

@z

� �
þ r 02

@y 0

r@y

� �
@y 0

@z

� �
þ @z 0

r@y

� �
@z 0

@z

� �
 �
¼ 0þ 0þ 0 ¼ 0:

That is,

Ct½ � ¼
1þ k2 t� tð Þ2 0 k t� tð Þ

0 1 0
k t� tð Þ 0 1

2
4

3
5: (v)

(c) Ct½ � ¼
1 0 0
0 1 0
0 0 1

2
4

3
5þ

0 0 k
0 0 0
k 0 0

2
4

3
5 t� tð Þ þ

2k2 0 0
0 0 0
0 0 0

2
4

3
5 t� tð Þ2

2
; (vi)

thus,

A1½ � ¼
0 0 k
0 0 0
k 0 0

2
4

3
5; A2½ � ¼

2k2 0 0
0 0 0
0 0 0

2
4

3
5; AN½ � ¼ 0 for N 	 3: (vii)

Example 8.10.3
Consider the Couette flow with a velocity field given in cylindrical coordinates as

vr ¼ 0; vy ¼ v rð Þ; vz ¼ 0: (i)

(a) Obtain the pathline equations using current time t as reference.

(b) Compute the relative deformation tensor Ct.

(c) Find the Rivlin-Ericksen tensors.
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Solution
(a) Let the pathline equations be

r 0 ¼ r 0 r ; y; z ; tð Þ; y 0 ¼ y 0 r ; y; z; tð Þ; z 0 ¼ z 0 r ; y; z; tð Þ; (ii)

then, from the given velocity field, we have

dr 0

dt
¼ 0; r 0

dy 0

dt
¼ v r 0ð Þ; dz 0

dt
¼ 0: (iii)

Integration of these equations with the conditions that at t ¼ t : r 0 ¼ r, y 0 ¼ y and z 0 ¼ z, we obtain

r 0 ¼ r ; y 0 ¼ yþ v rð Þ
r

t� tð Þ; z 0 ¼ z : (iv)

(b) Using Eqs. (8.9.17), (8.9.18), etc., we obtain

Ctð Þrr ¼
@r 0

@r

� �2

þ r 0
@y 0

@r

� �2

þ @z 0

@r

� �2

¼ 1þ r � v

r2
þ dv=dr

r


 �
t� tð Þ

� �2

¼ 1þ dv

dr
� v

r

� �2

t� tð Þ2;

Ctð Þyy ¼
1

r2
@r 0

@y

� �2

þ r 0
@y 0

@y

� �2

þ @z 0

@y

� �2
" #

¼ 1

r2
0þ r 0ð Þ2 þ 0
h i

¼ r2

r2
¼ 1;

Ctð Þzz ¼
@r 0

@z

� �2

þ r 0
@y 0

@z

� �2

þ @z 0

@z

� �2
" #

¼ 0þ 0þ 1 ¼ 1;

Ctð Þry ¼
1

r

@r 0

@r

� �
@r 0

@y

� �
þ r 02

@y 0

@r

� �
@y 0

@y

� �
þ @z 0

@r

� �
@z 0

@y

� �
 �
¼ dv

dr
� v

r

� �
t� tð Þ;

Ctð Þrz ¼
@r 0

@r

� �
@r 0

@z

� �
þ r 02

@y 0

@r

� �
@y 0

@z

� �
þ @z 0

@r

� �
@z 0

@z

� �
 �
¼ 0;

Ctð Þyz ¼
@r 0

r@y

� �
@r 0

@z

� �
þ r 02

@y 0

r@y

� �
@y 0

@z

� �
þ @z 0

r@y

� �
@z 0

@z

� �
 �
¼ 0:

That is,

Ct½ � ¼
1þ k2 t� tð Þ2 k t� tð Þ 0

k t� tð Þ 1 0
0 0 1

2
4

3
5; k ¼ dv

dr
� v

r

� �
: (v)

(c)

Ct½ � ¼
1 0 0
0 1 0
0 0 1

2
4

3
5þ

0 k 0
k 0 0
0 0 0

2
4

3
5 t� tð Þ þ

2k2 0 0
0 0 0
0 0 0

2
4

3
5 t� tð Þ2

2
; (vi)

thus,

A1½ � ¼
0 k 0
k 0 0
0 0 0

2
4

3
5; A2½ � ¼

2k2 0 0
0 0 0
0 0 0

2
4

3
5; AN½ � ¼ 0 for N 	 3; (vii)

where k ¼ dv

dr
� v

r

� �
.
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Example 8.10.4
Given the velocity field of a sink flow in spherical coordinates:

vr ¼ � a

r2
; vy ¼ 0; vf ¼ 0: (i)

(a) Obtain the pathline equations using current time t as reference.

(b) Compute the relative deformation tensor Ct.

(c) Find the Rivlin-Ericksen tensors.

Solution
(a) Let the pathline equations be

r 0 ¼ r 0 r ; y;f; tð Þ; y 0 ¼ y 0 r ; y;f; tð Þ; z 0 ¼ z 0 r ; y;f; tð Þ; (ii)

then, from the given velocity field, we have

dr 0

dt
¼ � a

r 02
;

dy 0

dt
¼ 0;

df 0

dt
¼ 0: (iii)

Integration of these equations with the conditions that at t ¼ t: r 0 ¼ r, y 0 ¼ y and z 0 ¼ z, we obtain

r 03 ¼ 3a t � tð Þ þ r3; y 0 ¼ y; f 0 ¼ f: (iv)

(b) Using Eqs. (8.9.23), (8.9.24), (8.9.25), etc., we have

Ctð Þrr ¼
@r 0

@r

� �2

þ r 0
@y 0

@r

� �2

þ r 0 sin y 0 @f
0

@r

� �2

¼ r2

r 02

� �2

¼ r4

r3 þ 3a t � tð Þ½ �4=3
; (v)

Ctð Þyy ¼
1

r2
@r 0

@y

� �2

þ r 0
@y 0

@y

� �2

þ r 0 sin y 0 @f
0

@y

� �2
" #

¼ r 02

r2
¼ 3a t � tð Þ þ r3

� �2=3
r2

; (vi)

Ctð Þff ¼ 1

r2 sin2 y

@r 0

@f

� �2

þ r 0@y 0

@f

� �2

þ r 0 sin y 0@f 0

@f

� �2
" #

¼ r 02 sin2 y 0

r2 sin2 y
¼ r 02

r2
¼ Ctð Þyy; (vii)

Ctð Þry ¼
1

r

@r 0

@r

� �
@r 0

@y

� �
þ r 02

@y 0

@r

� �
@y 0

@y

� �
þ r 0 sin y 0ð Þ2 @f 0

@r

� �
@f 0

@y

� �
 �
¼ 0; (viii)

Ctð Þrf ¼ 1

r sin y
@r 0

@r

� �
@r 0

@f

� �
þ r 02

@y 0

@r

� �
@y 0

@f

� �
þ r 0 sin y 0ð Þ2 @f 0

@r

� �
@f 0

@f

� �
 �
¼ 0; (ix)

Ctð Þyf ¼ 1

r2 sin y
@r 0

@y

� �
@r 0

@f

� �
þ r 02

@y 0

@y

� �
@y 0

@f

� �
þ r 0 sin y 0ð Þ2 @f 0

@y

� �
@f 0

@f

� �
 �
¼ 0: (x)

(c) A1ð Þrr ¼
d Ctð Þrr
dt


 �
t¼t

¼ 4ar4 r3 þ 3aðt � tÞ� ��7=3
h i

t¼t
¼ 4ar�3; (xi)

A1ð Þyy ¼
d Ctð Þyy

dt


 �
t¼t

¼ � 2a

r2
3a t � tð Þ þ r3
� ��1=3


 �
t¼t

¼ � 2a

r3
¼ A1ð Þff; (xii)
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A2ð Þrr ¼
d2 Ctð Þrr
dt2


 �
t¼t

¼ 28a2r4 r3 þ 3aðt � tÞ� ��10=3
h i

t¼t
¼ 28a2r�6; (xiii)

A2ð Þyy ¼
d2 Ctð Þyy

dt2


 �
t¼t

¼ � 2a2

r2
3a t � tð Þ þ r3
� ��4=3


 �
t¼t

¼ � 2a2

r6
¼ A2ð Þff; (xiv)

A2ð Þry ¼ A2ð Þrf ¼ A2ð Þfy ¼ 0: (xv)

By computing the higher derivatives of the components of Ct and evaluating them at t ¼ t, one can obtain

A3, A4 . . ., etc. We note that along each radial pathline, the base vectors are fixed.

8.11 RIVLIN-ERICKSEN TENSORS IN TERMS OF VELOCITY GRADIENT:
THE RECURSIVE FORMULA
In this section, we show that

A1 ¼ 2D ¼ rvþ ðrvÞT; (8.11.1)

A2 ¼ DA1

Dt
þ A1ðrvÞ þ ðrvÞTA1; (8.11.2)

and

ANþ1 ¼ DAN

Dt
þ ANðrvÞ þ ðrvÞTAN ; N ¼ 1; 2; 3 . . .; (8.11.3)

where rv is the velocity gradient and D is the rate of deformation tensor.

We have, at any time t,

ds 02 ¼ dx 0 � dx 0 ¼ dx � Ctdx; (8.11.4)

thus [see Eq. (8.10.2)],

Dðds 02Þ
Dt

� @

@t
ds 02


 �
xi�fixed

¼ dx � @Ct

@t

� �
xi�fixed

dx;

D2ðds 02Þ
Dt2

� @2

@t2
ds 02


 �
xi�fixed

¼ dx � @2Ct

@t2

� �
xi�fixed

dx;

and in general,

DNðds 02Þ
DtN

� @N

@tN
ds 02


 �
xi�fixed

¼ dx � @NCt

@tN

� �
xi�fixed

dx: (8.11.5)

Now, at t ¼ t,

@

@t
ds 02


 �
xi�fixed

t¼t

¼ D

Dt
ds;

@2

@t2
ds 02


 �
xi�fixed

t¼t

¼ D2

Dt2
ds;

@N

@tN
ds 02


 �
xi�fixed

t¼t

¼ DN

DtN
ds; (8.11.6)
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therefore,

DðdsÞ2
Dt

¼ dx � A1dx;
D2ðdsÞ2
Dt2

¼ dx � A2dx;
DNðdsÞ2
DtN

¼ dx � ANdx: (8.11.7)

In Chapter 3, we obtained [Eq. (3.13.11)],

DðdsÞ2
Dt

¼ 2dx � Ddx; where D ¼ 1

2
rvþ ðrvÞT
h i

;

thus,

A1 ¼ 2D: (8.11.8)

Next, from the first equation in Eqs. (8.11.7), we have

D2ðdsÞ2
Dt2

¼ Ddx

Dt
� A1dxþ dx � DA1

Dt
dxþ dx � A1

Ddx

Dt
:

Since (D/Dt)dx ¼ (rv)dx [see Eq. (3.12.6)],

D2ðdsÞ2
Dt2

¼ dx � ðrvÞTA1dxþ dx � DA1

Dt
dxþ dx � A1ðrvÞdx:

Comparing this last equation with the second equation in Eqs. (8.11.7), we have

A2 ¼ DA1

Dt
þ A1ðrvÞ þ ðrvÞTA1: (8.11.9)

Equation (8.11.3) can be similarly derived (see Prob. 8.21).

Example 8.11.1
Using Eqs. (8.11.8) and (8.11.9) to obtain the first two Rivlin-Ericksen tensors for the velocity field here in spherical

coordinates:

vr ¼ � a

r2
; vy ¼ 0; vf ¼ 0: (8.11.10)

Solution
Using the equations provided in Chapter 2 for spherical coordinates, we obtain

½rv� ¼
2a=r3 0 0

0 �a=r3 0

0 0 �a=r3

2
64

3
75 (8.11.11)

and

½A1� ¼ ½rv� þ ½rv�T ¼
4a=r3 0 0

0 �2a=r3 0

0 0 �2a=r3

2
64

3
75: (8.11.12)
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To use Eq. (8.11.9), we need to obtain DA1/Dt ¼ @A1/@t þ (rA1)v, where (rA1) is a third-order tensor. Since

@A1/@t ¼ 0 and vy ¼ vf ¼ 0,

ðDA1=DtÞrr ¼ ðrA1Þrrr vr ;

ðDA1=DtÞry ¼ ðrA1Þryr vr ;

ðDA1=DtÞyy ¼ ðrA1Þyyr vr ; etc:
Now, from Appendix 8.1, we obtain

ðrA1Þrrr ¼
@ðA1Þrr
@r

¼ @

@r

4a

r3

� �
 �
¼ �12a

r4
;

ðrA1Þyyy ¼
@ðA1Þyy

@r
¼ @

@r
� 2a

r3

� �
 �
¼ 6a

r4
;

ðrA1Þfff ¼ @ðA1Þff
@r

¼ @

@r
� 2a

r3

� �
 �
¼ 6a

r4
;

ðrA1Þryr ¼
@ðA1Þry

@r
¼ 0;

ðrA1Þrfr ¼ ðrA1Þyrr ¼ ðrA1Þyfr ¼ ðrA1Þfrr ¼ ðrA1Þfyr ¼ 0:

Thus, [DA1/Dt] is diagonal, with diagonal elements given by

DA1

Dt

� �
rr

¼ rA1ð Þrrr vr ¼ � 12a

r4

� �
� a

r2

� 	
¼ 12a2

r6
; (8.11.13)

DA1

Dt

� �
yy

¼ ðrA1Þyyr vr ¼
6a

r4

� �
� a

r2

� 	
¼ �6a2

r6
¼ DA1

Dt

� �
ff
: (8.11.14)

Since both A1 and rv are diagonal, A1 (rv) þ (rv)T A1 is also diagonal and is equal to 2A1(rv) with diagonal

elements given by

2A1ðrvÞ½ �rr ¼
16a2

r6
; 2A1ðrvÞ½ �yy ¼ 2A1ðrvÞ½ �ff ¼ 4a2

r6
: (8.11.15)

Thus,

A2½ � ¼

12a2

r6
0 0

0 � 6a2

r6
0

0 0 � 6a2

r6

2
6666666664

3
7777777775
þ

16a2

r6
0 0

0
4a2

r6
0

0 0 � 4a2

r6

2
6666666664

3
7777777775
¼

28a2

r6
0 0

0 � 2a2

r6
0

0 0 � 2a2

r6

2
6666666664

3
7777777775
: (8.11.16)

These are the same results as those obtained in an example in the previous section using Eq. (8.10.2).

470 CHAPTER 8 Non-Newtonian Fluids



8.12 RELATION BETWEEN VELOCITY GRADIENT AND DEFORMATION GRADIENT
From

dx 0ðtÞ ¼ x 0
t ðxþ dx; tÞ � x 0

t ðx; tÞ ¼ Ftðx; tÞdx; (8.12.1)

we have

D

Dt
dx 0 ¼ v 0ðxþ dx; tÞ � v 0ðx; tÞ � ðrxv

0Þdx ¼ DFt

Dt
dx:

Thus,

DFt

Dt
¼ rxv

0ðx; tÞ; (8.12.2)

from which we have

DFt

Dt
¼ rxvðx; tÞ: (8.12.3)

Using this relation, we can obtain the following relations between the rate of deformation tensor D and the

relative stretch tensor Ut as well as the relation between the spin tensor W and the relative rotation tensor Rt.

In fact, from the polar decomposition theorem

Ftðx; tÞ ¼ Rtðx; tÞUtðx; tÞ; (8.12.4)

we have

DFtðx; tÞ
Dt

¼ DRtðx; tÞ
Dt

Utðx; tÞ þ Rtðx; tÞDUtðx; tÞ
Dt

: (8.12.5)

Evaluating the preceding equation at t ¼ t and using Eq. (8.12.3) [note also that Ut(x, t) ¼ Rt (x, t) ¼ I], we
obtain

rxvðx; tÞ ¼ DRt

Dt


 �
t¼t

þ DUt

Dt


 �
t¼t

; (8.12.6)

where on right-hand side, the first term is antisymmetric and the second term is symmetric. Now, since rxv
(x, t) ¼ D þ W and the decomposition is unique (see Chapter 3),

W ¼ DRt

Dt


 �
t¼t

; D ¼ DUt

Dt


 �
t¼t

: (8.12.7)

8.13 TRANSFORMATION LAW FOR THE RELATIVE DEFORMATION TENSORS
UNDER A CHANGE OF FRAME
The concept of objectivity was discussed in Chapter 5, Section 5.56. We recall that a change of frame, from x
to x*, is defined by the transformation

x* ¼ cðtÞ þQðtÞðx� xoÞ; (8.13.1)
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and if a tensor A, in the unstarred frame, transforms to A* in the starred frame in accordance with the

relation

A* ¼ QðtÞAQTðtÞ; (8.13.2)

then the tensor A is said to be objective, or frame indifferent (i.e., independent of observers).

From Eq. (8.13.1), we have [recall x0 ¼ x0 (x, t)]

dx*ðtÞ ¼ QðtÞdx; dx 0*ðtÞ ¼ QðtÞdx 0ðtÞ: (8.13.3)

Since [see Eq. (8.12.1)]

dx 0ðtÞ ¼ Ftðx; tÞdx and dx 0*ðtÞ ¼ F*
t ðx*; t*Þdx*; (8.13.4)

from Eqs. (8.13.3) and (8.13.4), we have

F*
t ðx*; t*Þdx*ðtÞ ¼ QðtÞFtðx; tÞdx: (8.13.5)

Now the first equation of Eq. (8.13.3) gives dx ¼ QT(t) dx*(t); therefore Eq. (8.13.5) becomes

F*
t ðx*; t*Þ ¼ QðtÞFtðx; tÞQTðtÞ: (8.13.6)

This is the transformation law for Ft (x, t) under a change of frame. We see that Ft (x, t) is not an objective

tensor.

In the following, we agree that, for simplicity, we write

F*
t � F*

t ðx*; t*Þ;R*
t � R*

t ðx*; t*Þ;Ft � Ftðx; tÞ;Rt � Rtðx; tÞ; etc: (8.13.7)

Since Ft ¼ RtUt and F*
t ¼ R*

tU
*
t ; therefore, from Eq. (8.13.6), we have

R*
tU

*
t ¼ QðtÞRtUtQ

TðtÞ:
We can write the preceding equation as

R*
tU

*
t ¼ QðtÞRtQ

TðtÞ� �
QðtÞUtQ

TðtÞ� �
;

where Q(t) RtQ
T(t) is orthogonal and Q(t) UtQ

T(t) is symmetric; therefore, by the uniqueness of the polar

decomposition, we can conclude that

R*
t ¼ QðtÞRtQ

TðtÞ (8.13.8)

and

U*
t ¼ QðtÞUtQ

TðtÞ: (8.13.9)

Now, from Ct ¼ UtUt and C*
t ¼ U*

tU
*
t , we easily obtain

C*
t ¼ QðtÞCtQ

TðtÞ; (8.13.10)

and

C*�1
t ¼ QðtÞC�1

t QTðtÞ: (8.13.11)

Similarly, we can obtain (see Prob. 8.24)

V*
t ¼ QðtÞVtQ

TðtÞ; B*
t ¼ QðtÞBtQ

TðtÞ; B*�1
t ¼ QðtÞB�1

t QTðtÞ: (8.13.12)

Equations (8.13.9), (8.13.10), and (8.13.11) show that the right relative stretch tensor Ut, the right relative

Cauchy-Green tensor Ct, and its inverse C�1
t are all objective tensors, whereas Eqs. (8.13.12) show that Vt,

472 CHAPTER 8 Non-Newtonian Fluids



Bt and B�1
t are nonobjective. We note that this situation is different from that of the deformation tensors using

a fixed reference configuration (see Section 5.56).

From Eqs. (8.12.7) and (8.13.8), we have [note: D/Dt* ¼ D/Dt]

W* ¼ DR*
t

Dt


 �
t¼t

¼ dQðtÞ
dt

� �
RtðtÞQTðtÞ


 �
t¼t

þ QðtÞ DRt

Dt

� �
QTðtÞ


 �
t¼t

:

Since RtðtÞ ¼ I and
DRt

Dt
¼ W; therefore,

W* ¼ ðdQ=dtÞQTðtÞ þQðtÞWQTðtÞ; (8.13.13)

which shows, as expected, that the spin tensor is not objective.

Using Eq. (8.13.13), we can show that for any objective tensor T, the following tensor

S � DT

Dt
þ TW�WT; (8.13.14)

is an objective tensor (see Prob. 8.22). That is,

S* ¼ QðtÞSQTðtÞ: (8.13.15)

Example 8.13.1
The transformation law for rxv in a change of frame was obtained in Chapter 5, Section 5.56, as [Eq. (5.56.20)]:

r�v� ¼ QðtÞðrvÞQTðtÞ þ ðdQ=dtÞQT: (8.13.16)

Use Eq. (8.13.16) to obtain the transformation law for the rate of deformation tensor D and the spin tensor W.

Solution
From r� v� ¼ Q(t)(rv)QT(t) þ (dQ /dt) QT, we have

ðr�v�ÞT ¼ QðtÞðrvÞTQTðtÞ þ QðdQ=dtÞT:
Therefore,

2D� ¼ r�v� þ ðr�v�ÞT ¼ QðtÞ ðrvÞ þ ðrvÞT
n o

QTðtÞ þ ðdQ=dtÞQT þ QðdQ=dtÞT:

But

ðdQ=dtÞQT þ QðdQ=dtÞT ¼ ðd=dtÞðQQTÞ ¼ ðd=dtÞðIÞ ¼ 0: (8.13.17)

Therefore,

D� ¼ QðtÞDQTðtÞ: (8.13.18)

That is, the rate of deformation tensor D is objective. Next,

2W� ¼ r�v� � ðr�v�ÞT ¼ QðtÞ ðrvÞ � ðrvÞT
n o

QTðtÞ þ ðdQ=dtÞQT � QðdQ=dtÞT:

But, from Eq. (8.13.17), Q(dQ /dt)T ¼ �(dQ /dt)QT, therefore,

W� ¼ QðtÞWQTðtÞ þ ðdQ=dtÞQT: (8.13.19)

This is the same as Eq. (8.13.13).
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8.14 TRANSFORMATION LAW FOR RIVLIN-ERICKSEN TENSORS UNDER
A CHANGE OF FRAME
From Eq. (8.13.10),

C*
t ðtÞ ¼ QðtÞCtðtÞQTðtÞ; (8.14.1)

we obtain (note: D/Dt* ¼ D/Dt),

DC*
t ðtÞ

Dt*
¼ QðtÞDCtðtÞ

Dt
QTðtÞ; (8.14.2)

and

DNC*
t ðtÞ

Dt*N
¼ QðtÞD

NCtðtÞ
DtN

QTðtÞ: (8.14.3)

Thus [see Eq. (8.10.2)],

A*
NðtÞ ¼ QðtÞANðtÞQTðtÞ: (8.14.4)

We see, therefore, that all AN (N ¼ 1, 2 . . .) are objective. This is quite to be expected because these ten-

sors characterize the rate and the higher rates of changes of length of material elements which are independent

of the observers.

8.15 INCOMPRESSIBLE SIMPLE FLUID
An incompressible simple fluid is an isotropic ideal material with the following constitutive equation

T ¼ �pIþ S; (8.15.1)

where S depends on the past histories up to the current time t of the relative deformation tensor Ct. In other

words, a simple fluid is defined by

T ¼ �pIþH Ctðx; tÞ;�1 < t � t½ �; (8.15.2)

where �1 < t � t indicates that the values of the functional H depends on all Ct from Ct (x, �1) to

Ct (x, t). We note that such a fluid is called “simple” because it depends only on the history of the relative

deformation gradient Ft (x, t) [from which Ct (x, t) is obtained] and not on the histories of the relative higher

deformation gradients [e.g., rFt (x, t) rrFt (x, t) and so on].

Obviously, the functional H in Eq. (8.15.2) is to be the same for all observers (i.e., H* ¼ H). However, it

cannot be arbitrary, because it must satisfy the frame indifference requirement. That is, in a change of frame,

H C*
t ðx*; t*Þ

� � ¼ QðtÞH Ctðx; tÞ½ �QTðtÞ: (8.15.3)

Since Ct (x, t) transforms in a change of frame as

C*
t ðx*; t*Þ ¼ QðtÞCtðx; tÞQTðtÞ: (8.15.4)

Therefore, the functional H[Ct (x, t); �1 < t �t] must satisfy the condition

H QðtÞCtQ
TðtÞ� � ¼ QðtÞH Ct½ �QTðtÞ: (8.15.5)

We note that Eq. (8.15.5) also states that the fluid defined by Eq. (8.15.2) is an isotropic fluid.
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Any function or functional that obeys the condition given by Eq. (8.15.5) is known as an isotropic function
or isotropic functional.

The relationship between stress and deformation, given by Eq. (8.15.2), is completely general. In fact, it

includes Newtonian incompressible fluid and Maxwell fluids as special cases. In Part C of this chapter, we

consider a special class of flow, called viscometric flow, using this general form of constitutive equation.

First, however, we discuss some special constitutive equations, some of which have been shown to be approx-

imations to the general constitutive equation given in Eq. (8.15.2) under certain conditions such as slow flow

and/or fading memory. They can also be considered simply as special fluids. For example, a Newtonian

incompressible fluid can be considered either as a special fluid by itself or as an approximation to the general

simple fluid when it has no memory of its past history of deformation and is under slow-flow condition

relative to its relaxation time (which is zero).

8.16 SPECIAL SINGLE INTEGRAL-TYPE NONLINEAR CONSTITUTIVE EQUATIONS
In Section 8.4, we saw that the constitutive equation for the linear Maxwell fluid is defined by

S ¼ 2

ð1
0

f ðsÞEðt� sÞds; (8.16.1)

where E is the infinitesimal strain tensor measured with respect to the configuration at time t. It can be shown

that for small deformations (see Example 8.16.2),

Ct � I ¼ I� C�1
t ¼ 2E: (8.16.2)

Thus, the following two nonlinear viscoelastic fluids represent natural generalizations of the linear Maxwell

fluid in that they reduce to Eq. (8.16.1) under small deformation conditions:

S ¼
ð1
0

f1ðsÞ Ctðt� sÞ � I½ �ds; (8.16.3)

and

S ¼
ð1
0

f2ðsÞ I� C�1
t ðt� sÞ� �

ds; (8.16.4)

where the memory function fi(s) may be given by any one of Eqs. (8.4.9), (8.4.10), or (8.4.11).

We note that since Ct (t) is an objective tensor; therefore, the constitutive equations defined by

Eq. (8.16.3) and Eq. (8.16.4) are frame indifferent (that is, independent of observers). We note also that if

f1 ¼ f2 in Eq. (8.16.3) and Eq. (8.16.4), then they describe the same behaviors at small deformation. But they

are two different nonlinear viscoelastic fluids, behaving differently at large deformation, even with f1 ¼ f2.
Furthermore, if we treat f1(s) and f2(s) as two different memory functions, Eq. (8.16.3) and Eq. (8.16.4) define

two nonlinear viscoelastic fluids whose behavior at small deformation are also different.

Example 8.16.1
For the nonlinear viscoelastic fluid defined by Eq. (8.16.3), find the stress components when the fluid is under steady

shearing flow defined by the velocity field:

v1 ¼ kx2; v2 ¼ v3 ¼ 0: (i)
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Solution
The relative Cauchy-Green deformation tensor corresponding to this flow was obtained in Example 8.9.1 as

½Ct � ¼
1 kðt� tÞ 0

kðt� tÞ k2ðt� tÞ2 þ 1 0
0 0 1

2
4

3
5: (ii)

Thus,

Ct ðt � sÞ � I½ � ¼
0 �ks 0

�ks k2s2 0
0 0 0

2
4

3
5: (iii)

From Eq. (8.16.3),

S11 ¼ S13 ¼ S23 ¼ S33 ¼ 0; (iv)

S12 ¼ �k

ð1
0

sf1ðsÞds; S22 ¼ k2

ð1
0

s2f1ðsÞds: (v)

We see that for this fluid, the viscosity is given by

m ¼ S12=k ¼ �
ð1
0

sf1ðsÞds: (vi)

We also note that the normal stresses are not equal in the simple shearing flow. In fact,

T11 ¼ �p þ S11 ¼ �p; T22 ¼ �p þ S22 ¼ �p þ k2

ð1
0

s2f1ðsÞds; T33 ¼ �p þ S33 ¼ �p: (vii)

We see from the preceding example that for the nonlinear viscoelastic fluid defined by

S ¼
ð1
0

f1ðsÞ Ctðt� sÞ � I½ �ds;

the shear stress function t(k) is given by

tðkÞ � S12 ¼ �k

ð1
0

sf1ðsÞds; (8.16.5)

and the two normal stress functions are given by either

s1ðkÞ � S11 � S22 ¼ �k2
ð1
0

s2f1ðsÞds; s2ðkÞ � S22 � S33 ¼ k2
ð1
0

s2f1ðsÞds (8.16.6)

or

�s1ðkÞ � S22 � S33 ¼ k2
ð1
0

s2f1ðsÞds; �s2ðkÞ � S11 � S33 ¼ 0: (8.16.7)

The shear stress function t(k) and the two normal stress functions (either s1 and s2 or �s1 and �s2)

completely describe the material properties of this nonlinear viscoelastic fluid in the simple shearing flow.
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In Part C, we will show that these three material functions completely describe the material properties of

every simple fluid, of which the present nonlinear fluid is a special case in viscometric flow, of which the

simple shearing flow is a special case. The function

mapp � tðkÞ=k; (8.16.8)

is known as the apparent viscosity function. Similarly, for the nonlinear viscoelastic fluid defined by

Eq. (8.16.4), i.e.,

S ¼
ð1
0

f2ðsÞ I� C�1
t ðt� sÞ� �

ds; (8.16.9)

the shear stress function and the two normal stress functions can be obtained to be (see Prob. 8.23)

S12ðkÞ ¼ �k

ð1
0

sf2ðsÞds; s1ðkÞ ¼ �k2
ð1
0

s2f2ðsÞds; s2ðkÞ ¼ 0: (8.16.10)

A special nonlinear viscoelastic fluid defined by Eq. (8.16.4) with a memory function dependent on the

second invariant I2 of the tensor Ct in the following way:

f2ðsÞ ¼ f ðsÞ ¼ � m

l2
e�s=l when I2 	 B2 þ 3 and f2ðsÞ ¼ 0 when I2 < B2 þ 3 (8.16.11)

is known as the Tanner and Simmons network model fluid. For this model, the network “breaks” when a scalar

measure of the deformation I2 reaches a limiting value of B2 þ 3, where B is called the strength of the

network.

Example 8.16.2
Show that for small deformation relative to the configuration at the current time t

Ct � I � I� C�1
t � 2E; (8.16.12)

where E is the infinitesimal strain tensor.

Solution
Let u denote the displacement vector measured from the configuration at time t. Then

x 0ðtÞ ¼ xþ uðx; tÞ:
Thus,

Ft ¼ rx 0 ¼ Iþru:

If u is infinitesimal, then

Ct ¼ FTt Ft ¼ Iþ ðruÞT
h i

Iþ ðruÞ½ � � Iþ 2E; E ¼ ruþ ðruÞT
h i

=2;

and

C�1
t � ðIþ 2EÞ�1 � I� 2E:

Thus, for small deformation,

Ct � I � 2E and I� C�1
t � 2E:
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Example 8.16.3
Show that any polynomial function of a real symmetric tensor A can be represented by

FðAÞ ¼ foIþ f1Aþ f2A
�1; (8.16.13)

where fi are real valued functions of the scalar invariants of the symmetric tensor A.

Solution
Let

FðAÞ ¼ aoIþ a1Aþ a2A
2 þ . . . aNA

N : (8.16.14)

Since A satisfies its own characteristic equation:

A3 � I1A
2 þ I2A� I3I ¼ 0; (8.16.15)

therefore,

A3 ¼ I1A
2 � I2A� I3I;

A4 ¼ I1A
3 � I2A

2 � I3A ¼ I1ðI1A2 � I2A� I3Þ � I2A
2 � I3A; etc:

(8.16.16)

Thus, every AN for N 	 3 can be expressed as a sum of A, A2, and I with coefficients being functions of the scalar

invariants of A. Substituting these expressions in Eq. (8.16.14), one obtains

FðAÞ ¼ boðIiÞIþ b1ðIiÞAþ b2ðIi ÞA2: (8.16.17)

Now, from Eq. (8.16.15),

A2 ¼ I1A� I2Iþ I3A
�1; (8.16.18)

therefore, Eq. (8.16.17) can be written as

FðAÞ ¼ foðIi ÞIþ f1ðIiÞAþ f2ðIi ÞA�1: (8.16.19)

In the preceding example, we have shown that if F(A) is given by a polynomial, Eq. (8.16.14), then it can be

represented by Eq. (8.16.19). More generally, it was shown in Appendix 5C.1 (the representation theorem of

isotropic functions) of Chapter 5 that every isotropic function F(A) of a symmetric tensor A can be represented

by Eq. (8.16.17) and therefore by Eq. (8.16.19). Now, let us identify A with Ct and Ii with the scalar invariants

of Ct (note: however, I3 ¼ 1 for an incompressible fluid), then the most general representation of F(Ct) (which

must be an isotropic function in order to satisfy the condition for frame indifference) may be written:

FðCtÞ ¼ f1ðI1; I2ÞCt þ f2ðI1; I2ÞC�1
t : (8.16.20)

8.17 GENERAL SINGLE INTEGRAL-TYPE NONLINEAR CONSTITUTIVE EQUATIONS
From the discussion given in the end of the previous example (see also Appendix 5C.1 of Chapter 5), we see that

the most general single integral-type nonlinear constitutive equation for an incompressible fluid is defined by

S ¼
ð1
0

f1ðs; I1; I2ÞCtðt� sÞ þ f2ðs; I1; I2ÞC�1
t ðt� sÞ� �

ds; (8.17.1)

where I1 and I2 are the first and second principal scalar invariants of C�1
t ðtÞ.
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A special nonlinear viscoelastic fluid, known as the BKZ fluid,} is defined by Eq. (8.17.1) with f1 (s, I1, I2)
and f2 (s, I1, I2) given by:

f1ðs; I1; I2Þ ¼ �2
@U

@I2
and f2ðs; I1; I2Þ ¼ 2

@U

@I1
; (8.17.2)

where the function U (I1, I2, s) is chosen as

�U ¼ 9

2
_b ln

I1 þ I2 þ 3

9
þ 24ð _b� _cÞ ln I1 þ 15

I2 þ 15

� �
þ _cðI1 � 3Þ; (8.17.3)

with

_b � dbðsÞ
ds

; _c � dcðsÞ
ds

and bðsÞ þ cðsÞ ¼ fðsÞ=2: (8.17.4)

where f(s) is the relaxation function. The function c(s) will be seen to be related to the viscosity at very large

rate of shear.

For simple shearing flow, with v1 ¼ kx2, v2 ¼ v3 ¼ 0 and t � t � s, we have

Ct½ � ¼
1 �ks 0

�ks k2s2 þ 1 0

0 0 1

2
4

3
5; C�1

t

� � ¼ k2s2 þ 1 ks 0

ks 1 0

0 0 1

2
4

3
5; (8.17.5)

and

I1 ¼ k2s2 þ 3; I2 ¼ k2s2 þ 1 ks
ks 1

����
����þ k2s2 þ 1 0

0 1

����
����þ 1 0

0 1

����
���� ¼ 3þ k2s2: (8.17.6)

Thus,

I1 þ I2 þ 3 ¼ 9þ 2k2s2; I1 þ 15 ¼ k2s2 þ 18 ¼ I2 þ 15; (8.17.7)

so that

f1 ¼ �2
@U

@II
¼ 9 _b

9þ 2k2s2
� 48ð _b� _cÞ

k2s2 þ 18
; f2 ¼ 2

@U

@I
¼ � 9 _b

9þ 2k2s2
� 48ð _b� _cÞ

k2s2 þ 18
� _c: (8.17.8)

Now, from S ¼ Ð1
0

f1ðs; I; IIÞCt þ f2ðs; I; IIÞC�1
t

� �
ds and ðCtÞ12 ¼ �ks and ðC�1

t Þ12 ¼ ks, we obtain the

shear stress function and the apparent viscosity as

S12 ¼ �2k

ð1
0

9 _bs
9þ 2k2s2

þ _cs

" #
ds; mapp ¼

S12
k

¼ �2

ð1
0

9 _bs
9þ 2k2s2

þ _cs

" #
ds: (8.17.9)

At a very large rate of shear, k ! 1, the viscosity is

m1 ¼ �2

ð1
0

_cðsÞsds ¼ �2

ð1
0

dc

ds
sds ¼ �2 cs

����
1

0

�
ð1
0

cds


 �
¼ 2

ð1
0

cds: (8.17.10)

}Bernstein, B., E. A. Kearsley, and L. J. Zappas, Trans. Soc. of Rheology, Vol. VII, 1963, p. 391.
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Example 8.17.1
For synovial fluids, the viscosity at a large rate of shear k is much smaller than that at small k (as much as 10,000

times smaller has been measured); therefore, we can take c(s) ¼ 0 so that b(s) ¼ f(s)/2, where f(s) is the relaxation

function. (a) Show that for this case, the BKZ model gives the apparent viscosity as

mapp ¼
ð1
0

HðtÞ
ð1
0

xe�x

ð1þ ð2=9Þk2x2t2Þdx
8<
:

9=
;dt; (8.17.11)

where H(t) is the relaxation spectrum, and (b) obtain the apparent viscosities for the three synovial fluids of

Example 8.5.1.

Solution
(a) With c(s) ¼ 0 and b(s) ¼ f(s)/2, the second equation in Eq. (8.17.9) becomes

mapp ¼ �
ð1
0

s

1þ ð2=9Þk2s2
df
ds


 �
ds: (i)

With fðsÞ ¼
ð1

t¼0

HðtÞ
t

e�s=tdt, we have df=ds ¼
ð1

t¼0

HðtÞ
t

e�s=t � 1

t

� �
dt;

so that

mapp ¼
ð1

s¼0

ð1
t¼0

s

1þ ð2=9Þk2s2
HðtÞ
t2

e�
s
tdt

2
4

3
5ds ¼

ð1
t¼0

ð1
s¼0

s

1þ ð2=9Þk2s2
HðtÞ
t2

e�
s
tds=dt: (ii)

Next, let x ¼ s/t, then ds ¼ tdx; we arrive at Eq. (8.17.11).

(b) Using the relaxation spectra H(t) obtained in Example 8.5.1 for the three synovial fluids, numerical integration

of the above equation gives the apparent viscosities as shown in Figure 8.17-1.�

*Lai, Kuei, and Mow, loc. cit.
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FIGURE 8.17-1 Calculated apparent viscosity as a function of rate of shear k(s�1) for the three synovial fluids.
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8.18 DIFFERENTIAL-TYPE CONSTITUTIVE EQUATIONS FOR INCOMPRESSIBLE
FLUIDS
We saw in Section 8.10 that under the assumption that the Taylor series expansion of the history of the defor-

mation tensor Ct(x, t) is justified, the Rivlin-Ericksen tensor AN, (N ¼ 1, 2 . . . 1) determines the history of

Ct (x, t). Thus, we may write Eq. (8.15.2) as

T ¼ �pIþ fðA1;A2 . . .AN . . .Þ; trA1 ¼ 0; (8.18.1)

where f(A1, A2 . . .AN . . .) is a function of the Rivlin-Ericksen tensor and trA1 ¼ 0 follows from the equation

of conservation of mass for an incompressible fluid.

To satisfy the frame-indifference condition, the function f cannot be arbitrary but must satisfy the relation

that for any orthogonal tensor Q:

QfðA1;A2 . . .AN . . .ÞQT ¼ fðQA1Q
T;QA2Q

T. . . QANQ
T. . .Þ: (8.18.2)

We note, again, that Eq. (8.18.2) makes “isotropy of material property” a part of the definition of a simple

fluid.

The following are special constitutive equations of this type.

A. Rivlin-Ericksen Incompressible Fluid of Complexity n

T ¼ �pIþ fðA1;A2 . . .ANÞ: (8.18.3)

In particular, a Rivlin-Ericksen liquid of complexity 2 is given by

T ¼ �pIþ m1A1 þ m2A
2
1 þ m3A2 þ m4A

2
2 þ m5ðA1A2 þ A2A1Þ

m6ðA1A
2
2 þ A2

2A1Þ þ m7ðA2
1A2 þ A2A

2
1Þ þ m8ðA2

1A
2
2 þ A2

2A
2
1Þ;

(8.18.4)

where m1, m2 . . . mN are scalar material functions of the following scalar invariants:

trA2
1; trA

3
1; trA2; trA

2
2; trA

3
2; trA1A2; trA1A

2
2; trA2A

2
1; trA

2
1A

2
2: (8.18.5)

We note that if m2 ¼ m3 ¼ . . . mN ¼ 0 and m1 = a constant, Eq. (8.18.4) reduces to the constitutive equation

for a Newtonian liquid with viscosity m1.

B. Second-Order Fluid

T ¼ �pIþ m1A1 þ m2A
2
1 þ m3A2; (8.18.6)

where m1, m2 and m3 are material constants. The second-order fluid may be regarded as a special case of the

Rivlin-Ericksen fluid. However, it has also been shown that under the assumption of fading memory, small

deformation, and slow flow, Eq. (8.18.6) provides the second-order approximation, whereas the Newtonian

fluid provides the first-order approximation and the inviscid fluid, the zeroth-order approximation for the

simple fluid.

Example 8.18.1
For a second-order fluid, compute the stress components in a simple shearing flow given by the velocity field:

v1 ¼ kx2; v2 ¼ v3 ¼ 0: (8.18.7)
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Solution
From Example 8.10.1, we have for the simple shearing flow

A1½ � ¼
0 k 0
k 0 0
0 0 0

2
4

3
5; A2½ � ¼

0 0 0
0 2k2 0
0 0 0

2
4

3
5; AN ¼ 0; N 	 3: (8.18.8)

Now

A2
1

h i
¼

0 k 0
k 0 0
0 0 0

2
4

3
5 0 k 0

k 0 0
0 0 0

2
4

3
5 ¼

k2 0 0
0 k2 0
0 0 0

2
4

3
5; (8.18.9)

therefore, Eq. (8.18.6) gives

T11 ¼ �p þ m2k
2; T22 ¼ �p þ m2k

2 þ 2m3k
2; T33 ¼ �p; T12 ¼ m1k; T13 ¼ T23 ¼ 0: (8.18.10)

We see that because of the presence of m2 and m3, normal stresses, in excess of p on the planes x1 = constant and

x2 = constant, are necessary to maintain the shearing flow. Furthermore, these normal stress components are not

equal. The normal stress functions are given by

s1ðkÞ � T11 � T22 ¼ �2m3k
2; s2ðkÞ � T22 � T33 ¼ m2k

2 þ 2m3k
2: (8.18.11)

By measuring the normal stress differences and the shearing stress components, the three material constants m1,
m2 and m3 can be determined.

Example 8.18.2
For the simple shearing flow, compute the stress components for a Rivlin-Ericksen liquid.

Solution
We note that for this flow, AN ¼ 0 for N 	 3; therefore, the stress is the same as that given by Eq. (8.18.4). We have

½A1� ¼
0 k 0
k 0 0
0 0 0

2
4

3
5; ½A2� ¼

0 0 0
0 2k2 0
0 0 0

2
4

3
5; ½A2

1� ¼
k2 0 0
0 k2 0
0 0 0

2
4

3
5; ½A2

2� ¼
0 0 0
0 4k4 0
0 0 0

2
4

3
5;

½A1�½A2� ¼
0 2k3 0
0 0 0
0 0 0

2
4

3
5; ½A2�½A1� ¼

0 0 0
2k3 0 0
0 0 0

2
4

3
5; ½A1�½A2

2� ¼
0 4k5 0
0 0 0
0 0 0

2
4

3
5;

½A2
2�½A1� ¼

0 0 0
4k5 0 0
0 0 0

2
4

3
5; ½A2

1�½A2� ¼ ½A2�½A2
1� ¼

0 0 0
0 2k4 0
0 0 0

2
4

3
5;

½A2
1�½A2

2� ¼ ½A2
2�½A2

1� ¼
0 0 0
0 4k6 0
0 0 0

2
4

3
5; ½A3

1� ¼
0 k3 0
k3 0 0
0 0 0

2
4

3
5; ½A3

2� ¼
0 0 0
0 8k6 0
0 0 0

2
4

3
5;
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and

trA2
1 ¼ 2k2; trA3

1 ¼ 0; trA2 ¼ 2k2; trA2
2 ¼ 4k4; trA3

2 ¼ 8k6;

trA1A2 ¼ 0; trA2
1A2 ¼ 2k4; trA2

2A1 ¼ 0; trA2
1A

2
2 ¼ 4k6:

Thus, from Eq. (8.18.4), we have

½T� ¼ �p½I� þ m1
0 k 0
k 0 0
0 0 0

2
4

3
5þ m2

k2 0 0
0 k2 0
0 0 0

2
4

3
5þ m3

0 0 0
0 2k2 0
0 0 0

2
4

3
5þ m4

0 0 0
0 4k4 0
0 0 0

2
4

3
5þ

m5
0 2k3 0

2k3 0 0
0 0 0

2
4

3
5þ m6

0 4k5 0
4k5 0 0
0 0 0

2
4

3
5þ m7

0 0 0
0 4k4 0
0 0 0

2
4

3
5þ m8

0 0 0
0 8k6 0
0 0 0

2
4

3
5:

where m 0
i s are functions of k2. We note that the shear stress function [t(k) � T12] is an odd function of the rate of

shear k, whereas the normal stress functions [s1 ¼ T11 � T22 and s2 ¼ T22 � T33] are even functions of k.

8.19 OBJECTIVE RATE OF STRESS
The stress tensor is objective [see Chapter 5C, Eq. (5.57.1)]; that is, in a change of frame,

T* ¼ QðtÞTQTðtÞ: (8.19.1)

Taking material derivative of the preceding equation, we obtain (note: D/Dt* ¼ D/Dt)

DT

Dt

*

¼ DQ

Dt
TQT þQ

DT

Dt
QT þQT

DQ

Dt

� �T

: (8.19.2)

The preceding equation shows that the material derivative of stress tensor T is not objective.

That the stress rate DT/Dt is not objective is physically quite clear. Consider the case of a time-

independent uniaxial state of stress with respect to the first observer. With respect to this observer, the stress

rate DT/Dt is identically zero. Consider the second observer who rotates with respect to the first observer.

To the second observer, the given stress state is rotating with respect to him and therefore, to him, the stress

rate DT*/Dt* is not zero.
In the following, we present several stress rates at time t that are objective.

A. Corotational Derivative, Also Known as the Jaumann Derivative

Let us consider the tensor

JðtÞ ¼ RT
t ðtÞTðtÞRtðtÞ: (8.19.3)

We note that since RtðtÞ ¼ RT
t ðtÞ ¼ I, the tensor J and the tensor T are the same at time t. That is,

JðtÞ ¼ TðtÞ: (8.19.4)

However, while DT/Dt is not an objective tensor, we will show that [DJ(t)/Dt]t¼t is an objective tensor. To

show this, we note that in Section 8.13, we obtain, in a change of frame,

R*
t ¼ QðtÞRtðtÞQTðtÞ: (8.19.5)
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Thus,

J*ðtÞ ¼ R*T
t ðtÞT*ðtÞR*

t ðtÞ ¼ QðtÞRtðtÞQTðtÞ� �T
QðtÞTðtÞQTðtÞ� �

QðtÞRtðtÞQTðtÞ� � ¼ QðtÞRT
t ðtÞTðtÞRtðtÞQTðtÞ:

That is,

J*ðtÞ ¼ QðtÞJðtÞQTðtÞ; (8.19.6)

and

DNJ*ðtÞ
DtN


 �
t¼t

¼ QðtÞ DNJðtÞ
DtN


 �
t¼t

QTðtÞ; N ¼ 1; 2; 3 . . .: (8.19.7)

That is, the tensor J(t), as well as its material derivatives evaluated at time t, is objective. The derivative

[DJ(t)/Dt]t¼t is known as the corotational derivative and will be denoted by T
o
. That is,

T
o � DJðtÞ

Dt


 �
t¼t

: (8.19.8)

It is called the corotational derivative because it is the derivative of T at time t as seen by an observer who

rotates with the material element (whose rotation tensor is R). The higher derivatives will be denoted by

T
o

N ¼ DNJðtÞ=DtN� �
t¼t

; (8.19.9)

where T
o

1 ¼ T
o
. These corotational derivatives are also known as the Jaumann derivatives.

We now show

T
o ¼ DT

Dt
þ TðtÞWðtÞ �WðtÞTðtÞ; (8.19.10)

where W(t) is the spin tensor of the element.

From Eq. (8.19.3), i.e., JðtÞ ¼ RT
t ðtÞTðtÞRtðtÞ, we have

DJðtÞ
Dt

¼ DRT
t ðtÞ
Dt

TðtÞRtðtÞ þ RT
t ðtÞ

DTðtÞ
Dt

RtðtÞ þ RT
t ðtÞTðtÞ

DRtðtÞ
Dt

: (8.19.11)

Evaluating the preceding equation at t ¼ t and noting that [see Eq. (8.12.7)]

DRtðtÞ
Dt


 �
t¼t

¼ WðtÞ; DRT
t ðtÞ
Dt


 �
t¼t

¼ WTðtÞ ¼ �WðtÞ; and RT
t ðtÞ ¼ RtðtÞ ¼ I;

Eq. (8.19.11) becomes Eq. (8.19.10).

B. Oldroyd Lower Convected Derivative

Let us consider the tensor

JLðtÞ ¼ FT
t ðtÞTðtÞFtðtÞ: (8.19.12)

Again, since FtðtÞ ¼ FT
t ðtÞ ¼ I, the tensor JL and the tensor T are the same at time t. That is,

JLðtÞ ¼ TðtÞ: (8.19.13)
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We now show that [DJL (t)/Dt]t¼t is an objective tensor. To do so, we note that in Section 8.13, we

obtained, in a change of frame,

F*
t ðtÞ ¼ QðtÞFtðtÞQTðtÞ: (8.19.14)

Thus,

J*LðtÞ ¼ QðtÞFtðtÞQTðtÞ� �T
QðtÞTðtÞQTðtÞ� �

QðtÞFtðtÞQTðtÞ� �
¼ QðtÞFT

t ðtÞTðtÞFtðtÞQTðtÞ:
(8.19.15)

Thus,

J*LðtÞ ¼ QðtÞJLðtÞQTðtÞ; (8.19.16)

and

DNJ*LðtÞ
DtN


 �
t¼t

¼ QðtÞ DNJLðtÞ
DtN


 �
t¼t

QTðtÞ; N ¼ 1; 2; 3 . . .: (8.19.17)

That is, the tensor JL(t), as well as its material derivatives evaluated at time t, is objective. The derivative

[DJL(t)/Dt]t¼t is known as the Oldroyd lower convected derivative and will be denoted by �T. That is,

�T � DJLðtÞ
Dt


 �
t¼t

: (8.19.18)

It is called a convected derivative because Oldroyd obtained the derivative by using “convected coordinates,”

that is, coordinates that are embedded in the continuum and thereby deforming and rotating with the con-

tinuum.** The higher derivatives will be denoted by

�TN � DNJLðtÞ
DtN


 �
t¼t

: (8.19.19)

In Section 8.12, we derived that [see Eq. (8.12.3)]

DFtðtÞ
Dt


 �
t¼t

¼ rv: (8.19.20)

Using this, one can show that (see Prob. 8.25)

�T ¼ DT

Dt
þ Trvþ ðrvÞTT: (8.19.21)

Further, since rv ¼ D þ W, Eq. (8.19.21) can also be written as

�T ¼ T
o þTDþ DT: (8.19.22)

It can be easily shown (see Prob. 8.29) that the lower convected derivative of the first Rivlin-Ericksen

tensor A1 is the second Rivlin-Ericksen tensor A2.

**The “lower convected derivatives” and the “upper convected derivatives” correspond to the derivatives of the covariant compo-

nents and the contravariant components of the tensor, respectively, in a convected coordinate system that is embedded in the contin-

uum and thereby moves and deforms with the continuum. This is the method used by Oldroyd to obtain objective derivatives.
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C. Oldroyd Upper Convected Derivative

Let us consider the tensor

JUðtÞ ¼ F�1
t ðtÞTðtÞF�1T

t ðtÞ: (8.19.23)

Again, as in (A) and (B),

JUðtÞ ¼ TðtÞ; (8.19.24)

and the derivatives

DNJLðtÞ
DtN


 �
t¼t

; N ¼ 1; 2; 3 . . . : (8.19.25)

can be shown to be objective tensors. These are known as the Oldroyd upper convected derivatives of T,
which will be denoted by T̂. It can also be derived (see Prob. 8.26) that

T̂ � DJUðtÞ
Dt


 �
t¼t

¼ DT

Dt
� TðrvÞT � ðrvÞT ¼ T

o � ðTDþ DTÞ: (8.19.26)

The preceding three objective time derivatives are perhaps the most well-known objective derivatives of objec-

tive tensors. There are many others. For example, T
o þ aðTDþ DTÞ are objective rates for the tensor T for any

scalar a, including the corotational rate (a ¼ 0), the Oldroyd lower convected rate (a ¼ 1), and the Oldroyd

upper convected rate (a ¼ �1). When applied to stress tensors, they are known as objective stress rates.

Example 8.19.1
Given that the state of stress in a body is that of a uniaxial state of stress with

T11 ¼ s; all other Tij ¼ 0

where s is a constant. Clearly, the stress rate is zero at all places and at all times. Consider a second observer, repre-

sented by the starred frame, which rotates with an angular velocity o relative the unstarred frame. That is,

x�1
x�2
x�3

2
64

3
75 ¼

cos ot �sin ot 0

sin ot cos ot 0

0 0 1

2
64

3
75

x1

x2

x3

2
64

3
75; Q½ � ¼

cos ot �sin ot 0

sin ot cos ot 0

0 0 1

2
64

3
75: (i)

For the starred frame, find (a) the time-dependent state of stress, (b) the stress rate, and (c) the corotational

stress rate.

Solution
(a) The time-dependent T�½ � is

T�½ � ¼ Q½ � T½ � Q½ �T ¼ s
cos2ot sin2ot=2 0

sin2ot=2 sin2ot 0

0 0 0

2
64

3
75: (ii)

(b)

DT�

Dt


 �
¼ so

�2 sin ot cos ot cos2ot 0

cos2ot 2 sin ot cos ot 0

0 0 0

2
64

3
75: (iii)
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That is, for the � frame, the stress rate is not zero due to its own rotation relative to the unstarred frame. To

obtain a stress rate that is not dependent on the observer’s own rotation, we calculate the corotational stress

rate in (c).

(c) From Eq. (5.56.20), i.e., r�v� ¼ QðrvÞQT þ _QQT, we have, with rv ¼ 0,

r�v�½ � ¼ dQ=dt½ � Q½ �T ¼ o

�sin ot �cos ot 0

cos ot �sin ot 0

0 0 1

2
64

3
75

cos ot sin ot 0

�sin ot cos ot 0

0 0 1

2
64

3
75

¼ o

0 �1 0

1 0 0

0 0 1

2
64

3
75:

(iv)

Thus,

W�½ � ¼ r�v�½ �Antisym ¼ o
0 �1 0
1 0 0
0 0 0

2
4

3
5; (v)

so that

T�W�½ � � W�T�½ � ¼ so
2 cos ot sin ot �cos 2ot 0

�cos 2ot �2 cos ot sin ot 0
0 0 0

2
4

3
5: (vi)

Thus, the corotational stress rate is

½To �� ¼ DT�=Dt½ � þ T�W�½ � � W�T�½ � ¼ 0½ �: (vii)

This is the same stress rate as the first observer.

8.20 RATE-TYPE CONSTITUTIVE EQUATIONS
Constitutive equations of the following form are known as rate-type nonlinear constitutive equations:

T ¼ �pIþ S; (8.20.1)

and

Sþ l1 S
* þl2 S

**þ. . . ¼ 2m1Dþ m2 D
* þ. . . (8.20.2)

where S is extra stress and D is the rate of deformation. The super star or stars in S and D denote some

chosen objective time derivatives or higher derivatives. For example, if the corotational derivative is chosen,

then

S
* � S

o ¼ DS

Dt
þ SW�WS and D

* ¼ D
o ¼ DD

Dt
þ DW�WD; etc: (8.20.3)

Equation (8.20.1), together with Eq. (8.20.2), may be regarded as a generalization of the generalized linear

Maxwell fluid defined in Section 8.2. The following are some examples.
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A. The Convected Maxwell Fluid

The convected Maxwell fluid is defined by the constitutive equation

T ¼ �pIþ S; Sþ l S
o ¼ 2mD; S

o ¼ DS

Dt
þ SW�WS: (8.20.4)

Example 8.20.1
Obtain the stress components for the convected Maxwell fluid in a simple shearing flow.

Solution
The velocity field for the simple shearing flow is

v1 ¼ kx2; v2 ¼ v3 ¼ 0: (8.20.5)

For this flow, the rate of deformation and the spin tensors are

D½ � ¼
0 k=2 0

k=2 0 0
0 0 0

2
4

3
5; W½ � ¼

0 k=2 0
�k=2 0 0
0 0 0

2
4

3
5: (8.20.6)

Thus,

SW½ � ¼ k=2ð Þ
�S12 S11 0
�S22 S21 0
�S32 S31 0

2
4

3
5; WS½ � ¼ k=2ð Þ

S21 S22 S23
�S11 �S12 �S13
0 0 0

2
4

3
5;

SW½ � � WS½ � ¼ k=2ð Þ
�2S12 S11 � S22 �S23

S11 � S22 2S12 S13
�S32 S31 0

2
4

3
5:

Since the flow is steady and the rate of deformation is a constant, independent of position, the stress field is also

independent of time and position. Thus, DS/Dt ¼ 0 so that

S
o ¼ SW½ � � WS½ � ¼ k=2ð Þ

�2S12 S11 � S22 �S23
S11 � S22 2S12 S13
�S32 S31 0

2
4

3
5: (8.20.7)

Thus, Eq. (8.20.4) gives the following six equations:

S11 � klS12 ¼ 0; S12 þ kl=2ð Þ S11 � S22ð Þ ¼ mk; S13 � kl=2ð ÞS23 ¼ 0;

S22 þ klS12 ¼ 0; S23 þ kl=2ð ÞS13 ¼ 0; S33 ¼ 0:

Thus,

S11 ¼ lmk2

1þ klð Þ2
; S12 ¼ mk

1þ klð Þ2
; S22 ¼ � lmk2

1þ klð Þ2
; S13 ¼ S23 ¼ S33 ¼ 0: (8.20.8)

The shear stress function is

t kð Þ ¼ S12 ¼ mk

1þ klð Þ2
: (8.20.9)
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The apparent viscosity is

� kð Þ ¼ m kð Þ
k

¼ m

1þ klð Þ2
: (8.20.10)

The normal stress functions are

s1 kð Þ � T11 � T22 ¼ 2mk2l

1þ klð Þ2
; s2 kð Þ � T22 � T33 ¼ � mk2l

1þ klð Þ2
: (8.20.11)

B. The Corotational Jeffrey Fluid

The corotational Jeffrey fluid is defined by the constitutive equation

T ¼ �pIþ S; Sþ l1 S
o ¼ 2m Dþ l2 D

o� 	
; (8.20.12)

where

S
o ¼ DS

Dt
þ SW�WS; D

o ¼ DD

Dt
þ DW�WD: (8.20.13)

Example 8.20.2
Obtain the stress components for the corotational Jeffrey fluid in a simple shearing flow.

Solution
From the previous example, we have

S
o ¼ 0½ � þ SW½ � � WS½ � ¼ k=2ð Þ

�2S12 S11 � S22 �S23
S11 � S22 2S12 S13
�S32 S31 0

2
4

3
5: (8.20.14)

Now

D
o ¼ 0½ � þ DW½ � � WD½ � ¼

�k2=2 0 0
0 k2=2 0
0 0 0

2
4

3
5: (8.20.15)

Thus, Eq. (8.20.12) gives

S11 � kl1S12 ¼ �ml2k2; S12 þ kl1=2ð Þ S11 � S22ð Þ ¼ mk; S13 � kl1=2ð ÞS23 ¼ 0;

S22 þ kl1S12 ¼ ml2k2; S23 þ kl1=2ð ÞS13 ¼ 0; S33 ¼ 0:

These equations give

S12 ¼ mk 1þ l1l2k2
� 

1þ l21k2

; S11 ¼ mk2 l1 � l2ð Þ
1þ l21k2

; S22 ¼ mk2 l2 � l1ð Þ
1þ l21k2

S13 ¼ S23 ¼ S33 ¼ 0:

(8.20.16)
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Thus, the apparent viscosity is

� kð Þ ¼ S12
k

¼ m 1þ l1l2k2
� 

1þ l21k2

; (8.20.17)

and the normal stress functions are

s1 � T11 � T22 ¼ 2mk2 l1 � l2ð Þ
1þ l21k2

; s2 � T22 � T33 ¼ mk2 l2 � l1ð Þ
1þ l21k2

: (8.20.18)

C. The Oldroyd 3-Constant Fluid

The Oldroyd 3-constant model (also known as the Oldroyd fluid A) is defined by the following constitutive

equations:

T ¼ �pIþ S; Sþ l1Ŝ ¼ 2m Dþ l2D̂
� 


; (8.20.19)

where

Ŝ ¼ S
o � SDþ DSð Þ and D̂ ¼ D

o � DDþ DDð Þ ¼ D
o �2D2 (8.20.20)

are the Oldroyd upper convected derivative of S and D. By considering the simple shearing flow as was done

in the previous two examples, we can obtain the apparent viscosity as

� kð Þ ¼ S12
k

¼ m ¼ a constant (8.20.21)

and the normal stress functions as

s1 � T11 � T22 ¼ 2m l1 � l2ð Þk2; s2 � T22 � T33 ¼ 0: (8.20.22)

D. The Oldroyd 4-Constant Fluid

The Oldroyd 4-constant fluid is defined by the following constitutive equations:

T ¼ �pIþ S; Sþ l1Ŝþ mo tr Sð ÞD ¼ 2m Dþ l2D̂
� 


; (8.20.23)

where

Ŝ ¼ S
o � SDþ DSð Þ and D̂ ¼ D

o � DDþ DDð Þ ¼ D
o �2D2 (8.20.24)

are the Oldroyd upper convected derivative of S and D. We note that in this model, an additional term mo(tr S)
D is added to the left-hand side. This term is obviously an objective term since both S and D are objective.

The inclusion of this term will make the viscosity of the fluid dependent on the rate of deformation.

By considering the simple shearing flow as was done in the previous models, we can obtain the following

results (see Prob. 8.38):

S11 ¼ 2mk2 l1 � l2ð Þ
1þ l1mok2ð Þ ; S12 ¼ mk 1þ l2mok

2ð Þ
1þ l1mok2ð Þ ; all other Sij ¼ 0: (8.20.25)
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Thus, the apparent viscosity is

� kð Þ � S12
k

¼ m 1þ l2mok
2ð Þ

1þ l1mok2ð Þ ; (8.20.26)

and the normal stress functions are

s1 ¼ T11 � T22 ¼ 2mk2 l1 � l2ð Þ
1þ l1mok2ð Þ ; s2 ¼ T22 � T33 ¼ 0: (8.20.27)

PART C: VISCOMETRIC FLOW OF AN INCOMPRESSIBLE
SIMPLE FLUID

8.21 VISCOMETRIC FLOW
Viscometric flows may be defined as the class of flows that satisfies the following conditions:

1. At all times and at every material point, the history of the relative right Cauchy-Green deformation ten-

sor can be expressed as

Ct tð Þ ¼ Iþ t� tð ÞA1 þ t� tð Þ2
2

A2: (8.21.1)

2. There exists an orthonormal basis (ni) with respect to which the only nonzero Rivlin-Ericksen tensors

are given by

A1½ � ¼
0 k 0

k 0 0

0 0 0

2
4

3
5

nif g

; A2½ � ¼
0 0 0

0 2k2 0

0 0 0

2
4

3
5

nif g

: (8.21.2)

The orthonormal basis (ni) in general depends on the position of the material element.

The statement given in point 2 is equivalent to the following: There exists an orthonormal basis (ni) with
respect to which

A1 ¼ k Nþ NT
� 


; A2 ¼ 2k2NTN; (8.21.3)

where the matrix of N with respect to (ni) is given by

N½ � ¼
0 1 0

0 0 0

0 0 0

2
4

3
5

nif g

: (8.21.4)

In the following examples, we demonstrate that simple shearing flow, plane Poiseuille flow, Poiseuille

flow, and Couette flow are all viscometric flows.

Example 8.21.1
Consider the unidirectional flow with a velocity field given in Cartesian coordinates as

v1 ¼ v x2ð Þ; v2 ¼ v3 ¼ 0: (8.21.5)

Show that it is a viscometric flow. We note that the unidirectional flow includes the simple shearing flow and the

plane Poiseuille flow.
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Solution
In Example 8.10.1, we obtained that for this flow, the history of Ct(t) is given by Eq. (8.21.1), and the matrix of the two

nonzero Rivlin-Ericksen tensors A1 and A2 with respect to the rectangular Cartesian basis are given in Eq. (8.21.2),

where k ¼ k(x2). Thus, the given unidirectional flows are viscometric flows and the basis (ni), with respect to which

A1 and A2 have the forms given in Eq. (8.21.2), is clearly {e1, e2, e3}.

Example 8.21.2
Consider the axisymmetric flow with a velocity field given in cylindrical coordinates as

vr ¼ 0; vy ¼ 0; vz ¼ v rð Þ: (8.21.6)

Show that this is a viscometric flow. Find the basis (ni) with respect to which A1 and A2 have the forms given in

Eq. (8.21.2).

Solution
In Example 8.10.2, we obtained that for this flow, the history of Ct(t) is given by Eq. (8.21.1), i.e.,

Ct tð Þ ¼ Iþ t� tð ÞA1 þ t� tð Þ2
2

A2;

and the matrix of the two nonzero Rivlin-Ericksen tensors A1 and A2 are given by

A1½ � er ;ey;ezf g ¼
0 0 k rð Þ
0 0 0

k rð Þ 0 0

2
4

3
5

er ;ey ;ezf g

; A2½ � ¼
2k2 rð Þ 0 0

0 0 0
0 0 0

2
4

3
5

er ;ey;ezf g

: (8.21.7)

Let

n1 ¼ ez ; n2 ¼ er ; n3 ¼ ey; (8.21.8)

so that (A1)11 ¼ (A1)zz, (A1)12 ¼ (A1)zr, (A1)13 ¼ (A1)zy, etc., that is,

A1½ � n1;n2 ;n3f g ¼
0 k rð Þ 0

k rð Þ 0 0
0 0 0

2
4

3
5

nif g

; A2½ � n1 ;n2;n3f g ¼
0 0 0
0 2k2 rð Þ 0
0 0 0

2
4

3
5

nif g

: (8.21.9)

Thus, this is viscometric flow for which the basis (ni) is related to the cylindrical basis {er, ey, ez} by Eq. (8.21.8)

(see Figure 8.21-1).

θ
e1

e2

n2n3

FIGURE 8.21-1
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Example 8.21.3
Consider the Couette flow with a velocity field given in cylindrical coordinates as

vr ¼ 0; vy ¼ v rð Þ ¼ ro rð Þ; vz ¼ 0:

Show that this is a viscometric flow and find the basis {ni} with respect to which A1 and A2 have the form given in

Eq. (8.21.2).

Solution
For the given velocity field, we obtained in Example 8.10.3

Ct tð Þ½ � er ;ey ;ezf g ¼ I½ � þ t� tð Þ
0 k rð Þ 0

k rð Þ 0 0
0 0 0

2
4

3
5þ t� tð Þ2

2

2k2 rð Þ 0 0
0 0 0
0 0 0

2
4

3
5; (8.21.10)

where

k rð Þ ¼ dv

dr
� v

r
¼ rdo

dr
: (8.21.11)

The nonzero Rivlin-Ericksen tensors with respect to {er, ey, ez} are

A1½ � ¼
0 k rð Þ 0

k rð Þ 0 0
0 0 0

2
4

3
5

er ;ey;ezf g

A2½ � ¼
2k2 rð Þ 0 0

0 0 0
0 0 0

2
4

3
5

er ;ey ;ezf g

: (8.21.12)

Let {n1, n2, n3} � {ey, er, ez}, then

A1½ � ¼
0 k rð Þ 0

k rð Þ 0 0
0 0 0

2
4

3
5

n1 ;n2;n3f g

; A2½ � ¼
0 0 0
0 2k2 rð Þ 0
0 0 0

2
4

3
5

n1 ;n2;n3f g

: (8.21.13)

which have the form given in Eq. (8.21.2).

8.22 STRESSES IN VISCOMETRIC FLOW OF AN INCOMPRESSIBLE SIMPLE FLUID
When a simple fluid is in viscometric flow, its history of deformation Ct(t) is completely characterized by the

two nonzero Rivlin-Ericksen tensors A1 and A2. Thus, the functional in Eq. (8.15.2) becomes simply a func-

tion of A1 and A2. That is,

T ¼ �pIþ f A1;A2ð Þ; (8.22.1)

where the Rivlin-Ericksen tensors A1 and A2 are expressible as

A1 ¼ k Nþ NT
� 


; A2 ¼ 2k2NTN; (8.22.2)

where the matrix of N relative to some choice of basis {ni} is

N½ � ¼
0 1 0

0 0 0

0 0 0

2
4

3
5

nif g

: (8.22.3)
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Furthermore, the objectivity condition, Eq. (8.15.5), is

f QA1Q
T;QA2Q

T
� 
 ¼ Q tð Þf A1;A2ð ÞQT tð Þ: (8.22.4)

In the following, we show that with respect to the basis {ni}, T13 ¼ T31 ¼ T23 ¼ T32 ¼ 0 and the normal

stresses are all different from one another.

Let us choose an orthogonal tensor Q such that

Q½ � nif g ¼
1 0 0

0 1 0

0 0 �1

2
4

3
5

nif g

; (8.22.5)

then,

½Q�½N�½QT� ¼
1 0 0

0 1 0

0 0 �1

2
4

3
5 0 1 0

0 0 0

0 0 0

2
4

3
5 1 0 0

0 1 0

0 0 �1

2
4

3
5 ¼

0 1 0

0 0 0

0 0 0

2
4

3
5 ¼ N½ �; (8.22.6)

and

½Q� NTN
� �

QT
� � ¼ 1 0 0

0 1 0

0 0 �1

2
4

3
5 0 0 0

0 1 0

0 0 0

2
4

3
5 1 0 0

0 1 0

0 0 �1

2
4

3
5 ¼

0 0 0

0 1 0

0 0 0

2
4

3
5 ¼ NTN

� �
: (8.22.7)

That is, for this choice of Q,

QNQT ¼ N and QNTNQT ¼ NTN: (8.22.8)

Thus, Eq. (8.22.2)

QA1Q
T ¼ kQ Nþ NT

� 

QT ¼ k Nþ NT

� 
 ¼ A1; (8.22.9)

and

QA2Q
T ¼ 2k2QNTNQT ¼ 2k2NTN ¼ A2: (8.22.10)

Now, from Eq. (8.22.1), Eq. (8.22.4), Eq. (8.22.9), and Eq. (8.22.10), for this particular choice of Q,

QTQT ¼ �pIþQf A1;A2ð ÞQT ¼ �pIþ f QA1Q
T;QA2Q

T
� 
 ¼ �pIþ f A1;A2ð Þ (8.22.11)

i.e., for this Q,

QTQT ¼ T: (8.22.12)

Thus,

1 0 0

0 1 0

0 0 �1

2
4

3
5 T11 T12 T13

T21 T22 T23

T31 T32 T33

2
4

3
5 1 0 0

0 1 0

0 0 �1

2
4

3
5 ¼

T11 T12 T13
T21 T22 T23

T31 T32 T33

2
4

3
5:

Carrying out the matrix multiplication, one obtains

T11 T12 �T13

T21 T22 �T23

�T31 �T32 T33

2
4

3
5 ¼

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
4

3
5:
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The preceding equation leads to

T13 ¼ T31 ¼ T23 ¼ T32 ¼ 0: (8.22.13)

Since A1 and A2 depend only on k, the nonzero stress components with respect to the basis {ni} are

T12 ¼ S12 � t kð Þ; T11 ¼ �pþ S11 kð Þ; T22 ¼ �pþ S22 kð Þ; T33 ¼ �pþ S33 kð Þ: (8.22.14)

Defining the normal stress functions by the equations

s1 � T11 � T22 and s2 � T22 � T33; (8.22.15)

we can write the stress components of a simple fluid in viscometric flows as follows:

T12 ¼ t kð Þ; T11 ¼ T22 þ s1 kð Þ; T22 ¼ T33 þ s2 kð Þ; T13 ¼ T31 ¼ T23 ¼ T32 ¼ 0: (8.22.16)

As mentioned earlier in Part B, the function t(k) is called the shear stress function and the functions s1(k)
and s2(k) are called the normal stress functions. These three functions are known as the viscometric functions.
These functions, when determined from the experiment on one viscometric flow of a simple fluid, determine

completely the properties of the fluid in any other viscometric flow.

It can be shown that (see Prob. 8.39)

t �kð Þ ¼ �t kð Þ; s1 �kð Þ ¼ s1 kð Þ; s2 �kð Þ ¼ s2 kð Þ: (8.22.17)

That is, t(k) is an odd function of k, while s1(k) and s2(k) are even functions of k.
For a Newtonian fluid, such as water, in simple shearing flow, t(k) ¼ mk, s1 ¼ 0 and s2 ¼ 0. For a non-

Newtonian fluid, such as a polymeric solution, for small k, the viscometric functions can be approximated by

a few terms of their Taylor series expansion. Noting that t(k) is an odd function of k, we have

t kð Þ ¼ mk þ m1k
3 þ . . . (8.22.18)

and

s1 kð Þ ¼ s
1ð Þ
1 k2 þ s

1ð Þ
2 k4 þ . . . ; s2 kð Þ ¼ s

2ð Þ
1 k2 þ s

2ð Þ
2 k4 þ . . . : (8.22.19)

Since the deviation from Newtonian behavior is of the order of k2 for s1 and s2 but of the order of k
3 for t,

it is expected that the deviation of the normal stresses will manifest themselves within the range of k in which

the response of shear stress remains essentially the same as that of a Newtonian fluid.

8.23 CHANNEL FLOW
We now consider the steady unidirectional flow between two infinite parallel fixed plates. That is,

v1 ¼ v x2ð Þ; v2 ¼ v3 ¼ 0; (8.23.1)

with

v 
h=2ð Þ ¼ 0: (8.23.2)

We saw in Example 8.21.1, that the basis {ni} for which the stress components are given by Eq. (8.22.14) is

the Cartesian basis {ei}. That is, with k(x2) � dv/dx2,

T12 ¼ S12 � t kð Þ; T11 ¼ �pþ S11 kð Þ; T22 ¼ �pþ S22 kð Þ; T33 ¼ �pþ S33 kð Þ: (8.23.3)

Substituting the preceding equations in the equations of motion @Tij /@xj ¼ 0 and noting that k depends only

on x2, we get, in the absence of body forces,

� @p

@x1
þ dt
dx2

¼ 0; � @p

@x2
þ dS22

dx2
¼ 0; � @p

@x3
¼ 0: (8.23.4)
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Differentiating the preceding three equations with respect to x1 and interchanging the order of differentiations,

we get

@

@x1

@p

@x1
¼ @

@x2

@p

@x1
¼ @

@x3

@p

@x1
¼ 0: (8.23.5)

Thus, @p/@x1, the driving force of the flow, is independent of the coordinates. Let this driving force be

denoted by f, that is,

� @p

@x1
� f ; (8.23.6)

then we have
dt
dx2

¼ �f so that

t k x2ð Þð Þ ¼ �fx2; (8.23.7)

where the integration constant is taken to be zero because the flow is symmetric with respect to the plane

x2 ¼ 0 [see boundary conditions (8.23.2)]. Inverting Eq. (8.23.7), we have

k ¼ g �fx2ð Þ � �g fx2ð Þ; (8.23.8)

where g(s), the inverse function of t(k), is an odd function because t(k) is an odd function. Now k(x2) �
dv/dx2; therefore, the preceding equation gives

dv

dx2
¼ �g fx2ð Þ: (8.23.9)

Integrating, we get

v x2ð Þ ¼ �
ðx2
�h=2

g fx2ð Þdx2: (8.23.10)

For a given simple fluid with a known shear stress function t(k), g(S) is also known, the preceding equation
can be integrated to give the velocity distribution in the channel. The volume flux per unit width,Q, is given by

Q ¼
ðh=2
�h=2

v x2ð Þdx2: (8.23.11)

Equation (8.23.11) can be written in a form suitable for determining the function g(S) from an experimentally

measured relationship between Q and f. Indeed, integration by parts gives

Q ¼ x2v x2ð Þ
���h=2
�h=2

�
ðh=2
�h=2

x2
dv

dx2

� �
dx2 ¼ �

ðh=2
�h=2

x2
dv

dx2

� �
dx2: (8.23.12)

Using Eq. (8.23.9), we obtain

Q ¼
ðh=2
�h=2

x2g fx2ð Þdx2 ¼ 1

f 2

ðfh=2
S¼�fh=2

Sg Sð ÞdS: (8.23.13)

or

Q ¼ 2

f 2

ðfh=2
S¼0

Sg Sð ÞdS: (8.23.14)

Thus,

@f 2Q

@f
¼ 2

@

@f

ðfh=2
S¼0

Sg Sð ÞdS ¼ 2

ðfh=2
S¼0

0dSþ Sg Sð Þ½ �S¼ f h
2

@

@f

fh

2

� �
� 0

( )
: (8.23.15)
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That is,

@f 2Q

@f
¼ 2

fh

2

� �
g

fh

2

� �
 �
h

2

� �
¼ fh2

2
g

fh

2

� �
: (8.23.16)

or

g
fh

2

� �
¼ 2

fh2
@ f 2Qð Þ
@f

: (8.23.17)

Now, if the variation of Q with the driving force f (the pressure gradient �@p/@x1) is measured experimen-

tally, then the right-hand side of the preceding equation is known so that the inverse shear stress function

g(S) can be obtained from the preceding equation.

Example 8.23.1
For a Newtonian fluid, (a) use Eq. (8.23.10) to calculate the velocity profile in the channel, and (b) use Eq. (8.23.14)

to calculate the volume discharge per unit width across a cross-section of the channel.

Solution
For a Newtonian fluid,

t kð Þ ¼ mk: (8.23.18)

The inverse of this equation is

k ¼ g tð Þ ¼ t
m

or g Sð Þ ¼ S

m
: (8.23.19)

Thus, g fx2ð Þ ¼ fx2
m

and Eq. (8.23.10) gives

v x2ð Þ ¼ �
ðx2
�h=2

g fx2ð Þdx2 ¼ � f

m

ðx2
�h=2

x2dx2 ¼ � f

m
x22
2


 �x2
�h=2

¼ � f

m
x22
2
� h2

8

� �
; (8.23.20)

and from Eq. (8.23.14),

Q ¼ 2

f 2

ðfh=2
S¼0

Sg Sð ÞdS ¼ 2

f 2

ðfh=2
S¼0

S
S

m

� �
dS ¼ 2

mf 2

ðfh=2
S¼0

S2dS ¼ fh3

12m
: (8.23.21)

These results are, of course, the same as those obtained in Chapter 6 for the plane Poiseuille flow.

8.24 COUETTE FLOW
Couette flow is defined as the two-dimensional steady laminar flow between two concentric infinitely long

cylinders that rotate with angular velocities O1 and O2. The velocity field is given by

vr ¼ 0; vy ¼ v rð Þ ¼ ro rð Þ; vz ¼ 0: (8.24.1)

In Example 8.21.3, we see that the Couette flow is a viscometric flow, and with {n1, n2, n3} � {ey, er, ez},
the nonzero Rivlin-Ericksen tensors are given by

A1½ � ¼
0 k rð Þ 0

k rð Þ 0 0

0 0 0

2
4

3
5

n1;n2;n3f g

A2½ � ¼
0 0 0

0 2k2 rð Þ 0

0 0 0

2
4

3
5

n1;n2;n3f g

; (8.24.2)
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where

k rð Þ ¼ dv

dr
� v

r
¼ rdo

dr
: (8.24.3)

Thus, the stress components with respect to {n1, n2, n3} � {ey, er, ez} are given by (see Section 8.21)

Tyr ¼ Syr � t kð Þ; Tyy ¼ �pþ Syy kð Þ; Trr ¼ �pþ Srr kð Þ; Tzz ¼ �pþ Szz kð Þ; (8.24.4)

and

Tyz ¼ Tzy ¼ Tzr ¼ Trz � 0: (8.24.5)

The shear stress function is t(k) and the normal stress functions are

s1 ¼ Tyy � Trr; s2 ¼ Trr � Tzz: (8.24.6)

These three functions completely characterize the fluid in any viscometric flow, of which the Couette flow

is one. For a given simple fluid, these three functions are assumed to be known. On the other hand, we may

use any one of the viscometric flows to measure these functions for use with the same fluid in other viscomet-

ric flows.

Let us first assume that we know these functions; then our objective is to find the velocity distribution v(r)
and the stress distribution Tij(r) in this flow when the externally applied torque M per unit height in the axial

direction is given.

In the absence of body forces, the equations of motion for the Couette flow, where nothing depends on y, are

dTrr
dr

þ Trr � Tyy
r

¼ �rro2;
dTry
dr

þ 2Try
r

� �
¼ 0; � @p

@z
¼ 0: (8.24.7)

From the second of the preceding equation, we have

dTry
dr

þ 2Try
r

¼ 1

r2
d

dr
r2Try
� 
 ¼ 0; thus

Try ¼ C

r2
; (8.24.8)

where C is the integration constant. The torque per unit height of the cylinders needed to maintain the flow is

given by

M ¼ 2prTryð Þr: (8.24.9)

Thus, C ¼ M/2p and

t kð Þ � Try ¼ M

2pr2
; kðrÞ ¼ r

do
dr

: (8.24.10)

We wish to find the velocity distribution v(r) from the known shear stress function t(k). To do this, we let

S rð Þ ¼ t k rð Þð Þ and k rð Þ ¼ g Sð Þ; (8.24.11)

where g(S) is the inverse of the function t(k). From Eqs. (8.24.10) and (8.24.11), we have

r
do
dr

¼ g Sð Þ; S ¼ M

2pr2
: (8.24.12)
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Now

do
dr

¼ do
dS

dS

dr
¼ do

dS
� M

pr3

� �
¼ � do

dS

2S

r

� �
;

thus,

g Sð Þ ¼ r
do
dr

¼ �2S
do
dS

; (8.24.13)

from which we get

do ¼ � g Sð Þ
2S

dS: (8.24.14)

Integration of the preceding equation gives

ðo
O1

do ¼ �
ðM=2pr2

M=2pR2
1

g Sð Þ
2S

� �
dS: (8.24.15)

That is,

o� O1 ¼ �
ðM=2pr2

M=2pR2
1

g Sð Þ
2S

dS; (8.24.16)

and

DO � O2 � O1 ¼ �
ðM=2pR2

2

M=2pR2
1

g Sð Þ
2S

dS; (8.24.17)

where O1 and O2 are the angular velocity of the inner cylinder (radius R1) and outer cylinder (radius R2). For a

given material function g(S), the applied torque M, the angular velocity of the inner cylinder O1, and the radii

of the cylinders R1 and R2, the preceding equations allow us to calculate O2 and o(r), from which we can

calculate vy(r) ¼ ro(r).
Next, we calculate the normal stresses Trr at the two cylindrical surfaces r ¼ R1 and r ¼ R2. From the

r-equation of motion in Eq. (8.24.7), we have, with s1 � Tyy�Trr denoting the normal stress function of

the fluid

dTrr
dr

� s1
r
¼ �rro2: (8.24.18)

Integration of the preceding equation gives

Trr rð Þ � Trr R1ð Þ ¼
ðr
R1

s1
r
dr � r

ðr
R1

ro2dr: (8.24.19)

We now calculate the difference between the compressive normal stress on the outer cylinder (r ¼ R2) and

the inner cylinder (r ¼ R1). That is,

�Trr R2ð Þ½ � � �Trr R1ð Þ½ � ¼ r
ðR2

R1

ro2dr �
ðR2

R1

s1
r
dr: (8.24.20)
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On the right-hand side of the preceding equation, the first term is always positive, stating that the centrif-

ugal force effects always make the pressure on the outer cylinder larger than that on the inner cylinder. On the

other hand, for a fluid with a positive normal stress function s1, the second term in the preceding equation is

negative, stating that the contribution to the pressure difference due to the normal stress effect is in the oppo-

site direction to that due to the centrifugal force effect. Indeed, all known polymeric solutions have a positive

s1 and in many instances, this normal stress effect actually causes the pressure on the inner cylinder to be

larger than that on the outer cylinder.

We now consider the reverse problem of determining the material function g(S) from a measured

relationship between the torque M needed to maintain the Couette flow and the angular velocity difference

DO ¼ O2 � O1. Once g(S) is obtained, its inverse then gives the shear stress function t(S).
From Eq. (8.24.17), that is,

DO ¼ �
ðM=2pR2

2

M=2pR2
1

g Sð Þ
2S

dS;

we obtain, with S1 ¼ M=2pR2
1 and S2 ¼ M=2pR2

2,

� @DO
@M

¼ g S2ð Þ
2S2


 �
1

2pR2
2

� �
� g S1ð Þ

2S1


 �
1

2pR2
1

� �
¼ g S2ð Þ

2M
� g S1ð Þ

2M
:

That is,

2M
@DO
@M

¼ g S1ð Þ � g S2ð Þ: (8.24.21)

Let

S2 � bS1 and G S1ð Þ � g S1ð Þ � g bS1ð Þ; (8.24.22)

then Eq. (8.24.21) becomes

2M
@DO
@M

¼ G S1ð Þ; S1 ¼ M

2pR2
1

: (8.24.23)

Equation (8.24.23) allows the determination of G(S1) from experimental results relating DO with M. To obtain

g(S), we note from G(S1) ¼ g(S1) � g(bS1); we obtain

G bS1ð Þ ¼ g bS1ð Þ � g b2S1
� 


; G b2S1
� 
 ¼ g b2S1

� 
� g b3S1
� 


; . . . :

Thus, summing all these equations, we get

XN
n¼0

G bnS1ð Þ ¼ g S1ð Þ � g bS1ð Þ þ g bS1ð Þ � g b2S1
� 
þ g b2S1

� 

. . . :� g bNþ1S1

� 

: (8.24.24)

Thus, XN
n¼0

G bnS1ð Þ ¼ gðS1Þ � gðbNþ1S1Þ: (8.24.25)

Since b � S2=S1 ¼ R2
1=R

2
2 < 1, as N ! 1, bN ! 0. Thus,

g S1ð Þ ¼
X1
n¼0

G bnS1ð Þ: (8.24.26)
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From experimentally determined G(S) [see Eq. (8.24.23)], the preceding equation allows us to obtain g(S)
from which the shear stress function t(k) can be obtained [see Eq. (8.24.11)].

If the gap R2 � R1 is very small, the rate of shear k will essentially be a constant independent of r and is

given by

k ¼ R1DO
R2 � R1

: (8.24.27)

Thus, k ¼ g(S1) leads to

g
M

2pR2
1

� �
¼ R1DO

R2 � R1

: (8.24.28)

By measuring the relationship between M and DO, the preceding equation determines the inverse shear stress

function g(S).

APPENDIX 8.1: GRADIENT OF SECOND-ORDER TENSOR FOR ORTHOGONAL
COORDINATES
In the following derivations, tensors will be expressed in terms of dyadic products eiej and eiejek of base vec-
tors. That is,

Second-order tensor T: T ¼ Tijeiej and Tem ¼ Tjmej.
Third-order tensor M: M ¼ Mijkeiejek and Men ¼ Mijneiej.

A. Polar Coordinates with Basis {er , eu}

Let

T r; yð Þ ¼ Trrerer þ Tryerey þ Tyreyer þ Tyyeyey: (8A.1)

By definition of rT, we have

dT ¼ rTdr � Mdr; (8A.2)

where M denotes the gradient of T, which is a third-order tensor. In polar coordinates,

dT ¼ Mdr ¼ M drer þ rdyeyð Þ ¼ dr Merð Þ þ rdy Meyð Þ: (8A.3)

Now

Mer ¼ Mrrrerer þMryrerey þMyrreyer þMyyreyey;

Mey ¼ Mrryerer þMryyerey þMyryeyer þMyyyeyey;
(8A.4)

therefore,

dT ¼ Mrrrdr þMrryrdyð Þerer þ Mryrdr þMryyrdyð Þerey
þ Myrrdr þMyryrdyð Þeyer þ Myyrdr þMyyyrdyð Þeyey:

(8A.5)

We also have, from Eq. (8A.1),

dT r; yð Þ ¼ dTrrerer þ Trr derð Þer þ Trrer derð Þ þ dTryerey þ Try derð Þey þ Tryer deyð Þ
þ dTyreyer þ Tyr deyð Þer þ Tyrey derð Þ þ dTyyeyey þ Tyy deyð Þey þ Tyyey deyð Þ: (8A.6)
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Since

der ¼ dyey; dey ¼ �dyer; (8A.7)

Eq. (8A.6) becomes

dT r; yð Þ ¼ dTrr � Tyrdy� Trydyð Þerer þ dTry þ Trrdy� Tyydyð Þerey
þ dTyr þ Trrdy� Tyydyð Þeyer þ dTyy þ Tyrdyþ Trydyð Þeyey:

(8A.8)

Now, from calculus,

dTij ¼ @Tij
@r

dr þ @Tij
@y

dy: (8A.9)

Substituting Eq. (8A.9) into Eq. (8A.8), we have

dT r; yð Þ ¼ @Trr
@r

dr þ @Trr
@y

� Tyr � Try

0
@

1
Ady

2
4

3
5erer þ @Try

@r
dr þ @Try

@y
þ Trr � Tyy

0
@

1
Ady

2
4

3
5erey

þ @Tyr
@r

dr þ @Tyr
@y

þ Trr � Tyy

0
@

1
Ady

2
4

3
5eyer þ @Tyy

@r
dr þ @Tyy

@y
þ Tyr þ Try

0
@

1
Ady

0
@

1
Aeyey:

(8A.10)

Comparing Eq. (8A.10) with Eq. (8A.5), we have

Mrrr ¼ @Trr
@r

; Mrry ¼ 1

r

@Trr
@y

� Tyr þ Try
r

0
@

1
A; Mryr ¼ @Try

@r
;

Mryy ¼ 1

r

@Try
@y

þ Trr � Tyy
r

0
@

1
A; Myrr ¼ @Tyr

@r
; Myry ¼ 1

2

@Tyr
@y

þ Trr � Tyy
r

0
@

1
A;

Myyr ¼ @Tyy
@r

; Myyy ¼ 1

r

@Tyy
@y

þ Tyr þ Try
r

0
@

1
A:

(8A.11)

B. Cylindrical Coordinates with Basis {er, eu, ez} and Spherical Coordinates
with Basis {er , eu, ef}:

In general, we can write

dei ¼ Gijkdxjek; (8A.12)

where the values of Gijk depend on the particular coordinate system. For example:

For a cylindrical coordinate system:

der ¼ dyey; dey ¼ �dyer; dez ¼ 0;

therefore,

Gryy ¼ 1; Gyyr ¼ �1; all other Gijk ¼ 0: (8A.13)
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For a spherical coordinate system:

der ¼ dyey þ sin ydfef; dey ¼ �dyer þ cos ydfef; def ¼ �sin ydfer � cos ydfef;

therefore, the nonzero Gijk are

Gryy ¼ 1; Grff ¼ sin y; Gffr ¼ �sin y; Gffy ¼ �cos y;
Gyyr ¼ �1; Gyff ¼ cos y (8A.14)

Let rT denote the gradient of the second-order tensor T; then, by definition,

dT ¼ rTdr � Mdr; (8A.15)

where M � rT is a third-order tensor. In general,

dr ¼
X3
m¼1

hmdxmem; (8A.16)

where for cylindrical coordinates (r, y, z), hr ¼ 1, hy ¼ r, hz ¼ 1 and for spherical coordinates (r, y, f), hr ¼ 1,

hy ¼ r, hf ¼ r sin y. Thus,

dT ¼ Mdr ¼ M
X3
m¼1

hmdxmem ¼
X3
m¼1

hmdxm Memð Þ½ � ¼
X3
m¼1

hmdxm Memð Þ½ �: (8A.17)

Now, M is a third-order tensor so that Mei is a second-order tensor given by

Meið Þ ¼ Mmniemen; (8A.18)

therefore,

dT ¼
X3
m¼1

hmdxm Memð Þ½ � ¼
X3
m¼1

hmMijmdxmeiej
� �

: (8A.19)

From T ¼ Tijeiej, we have

dT ¼ dTijeiej þ Tijdeiej þ Tijeidej ¼ dTijeiej þ Tqjdeqej þ Tijeidej: (8A.20)

With

deq ¼ Gqpidxpei ¼ Gqpjdxpej; (8A.21)

we have

dT ¼ dTij þ TqjGqpidxp þ TiqGqpjdxp
� 


eiej: (8A.22)

Now, from calculus,

dTij ¼ @Tij=@xm
� 


dxm: (8A.23)

Substituting Eq. (8A.9) into Eq. (8A.8), we have

dT ¼ @Tij=@xm þ TqjGqmi þ TiqGqmj

� 

dxm

� �
eiej: (8A.24)

Comparing Eq. (8A.10) with Eq. (8A.5), we have

dT ¼
X3
m¼1

Mijmhmdxm
� � ¼ X3

m¼1

@Tij=@xm þ TqjGqmi þ TiqGqmj

� 

dxm: (8A.25)
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Thus,

Mijmhm ¼ @Tij
@xm

þ TqjGqmi þ TiqGqmj no sum on m; sum on q: (8A.26)

In the following, the preceding equation is used to obtain the components for the third-order tensor rT for

cylindrical and spherical coordinates.

B.1. Cylindrical Coordinates

From Table A8.1, we can also obtain the divergence of a second-order T as

div Tð Þr ¼ rTð Þrrr þ rTð Þryy þ rTð Þrzz ¼
@Trr
@r

þ 1

r

@Try
@y

þ Trr � Tyy
r

þ @Trz
@z

; (8A.27)

div Tð Þy ¼ rTð Þyrr þ rTð Þyyy þ rTð Þyzz ¼
@Tyr
@r

þ 1

r

@Tyy
@y

þ Try þ Tyr
r

þ @Tyz
@z

; (8A.28)

div Tð Þz ¼ rTð Þzrr þ rTð Þzyy þ rTð Þzzz ¼
@Tzr
@r

þ 1

r

@Tzy
@y

þ Tzr
r

þ @Tzz
@z

: (8A.29)

We note that these equations for divT are the same as those obtained in Chapter 2 by using a different method.

Table A8.1 rTð Þijmhm ¼ @Tij
@xm

þ TqjGqmi þ TiqGqmj no sum on m; sum on q:

hr ¼ 1; hy ¼ r ; hz ¼ 1;Gryy ¼ 1;Gyyr ¼ �1; all other Gijk ¼ 0:

r u z

r r rTð Þrrr ¼
@Trr
@r

rTð Þrry ¼
1

r

@Trr
@y

� Tyr þ Try
r


 �
rTð Þrrz ¼

@Trr
@z

y rTð Þryr ¼
@Try
@r

rTð Þryy ¼
1

r

@Try
@y

þ Trr � Tyy
r

rTð Þryz ¼
@Try
@z

z rTð Þrzr ¼
@Trz
@r

rTð Þrzy ¼
1

r

@Trz
@y

� Tyz
r

rTð Þrzz ¼
@Trz
@z

u r rTð Þyrr ¼
@Tyr
@r

rTð Þyry ¼
1

r

@Tyr
@y

þ Trr � Tyy
r

rTð Þyrz ¼
@Tyr
@z

y rTð Þyyr ¼
@Tyy
@r

rTð Þyyy ¼
1

r

@Tyy
@y

þ Try þ Tyr
r

rTð Þyyz ¼
@Tyy
@z

z rTð Þyzr ¼
@Tyz
@r

rTð Þyzy ¼
1

r

@Tyz
@y

þ Trz
r

rTð Þyzz ¼
@Tyz
@z

z r rTð Þzrr ¼
@Tzr
@r

rTð Þzry ¼
1

r

@Tzr
@y

� Tzy
r

rTð Þzrz ¼
@Tzr
@z

y rTð Þzyr ¼
@Tzy
@r

rTð Þzyy ¼
1

r

@Tzy
@y

þ Tzr
r

rTð Þzyz ¼
@Tzy
@z

z rTð Þzzr ¼
@Tzz
@r

rTð Þzzy ¼
1

r

@Tzz
@y

rTð Þzzz ¼
@Tzz
@z
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B.2. Spherical Coordinates

From Table A8.2, we can also obtain the divergence of a second-order T as:

div Tð Þr ¼ rTð Þrrr þ rTð Þryy þ rTð Þrff
¼ @Trr

@r
þ 1

r

@Try
@y

þ 2Trr
r

þ 1

r sin y
@Trf
@f

� Tyy þ Tff
r

þ Try cot y
r

;
(8A.30)

div Tð Þy ¼ rTð Þyrr þ rTð Þyyy þ rTð Þyff
¼ @Tyr

@r
þ 1

r

@Tyy
@y

þ Try
r

þ 2Tyr
r

þ 1

r sin y
@Tyf
@f

þ Tyy � Tff
� 


cot y
r

;
(8A.31)

div Tð Þf ¼ rTð Þfrr þ rTð Þfyy þ rTð Þfzz
¼ @Tfr

@r
þ 1

r

@Tfy
@y

þ 2Tfr
r

þ 1

r sin y
@Tff
@f

þ Trf
r

þ Tyf þ Tfy
� 


cot y
r

:
(8A.32)

We note again that these equations for divT are the same as those obtained in Chapter 2 by using a

different method.

Table A8.2 rTð Þijmhm ¼ @Tij
@xm

þ TqjGqmi þ TiqGqmj no sum on m; sum on q;

hr ¼ 1; hy ¼ r ; hf ¼ r sin y;Gryy ¼ 1;Grff ¼ sin y;
Gffr ¼ �sin y;Gffy ¼ �cos y;Gyyr ¼ �1;Gyff ¼ cos y all other Gijk ¼ 0:

r u f

r r @Trr
@r

1

r

@Trr
@y

� Tyr þ Try
r

1

r sin y
@Trr
@f

� Tfr þ Trf
� 


r

y @Try
@r

1

r

@Try
@y

þ Trr � Tyy
r

1

r sin y
@Try
@f

� Tfy þ Trf cot y
r

f @Trf
@r

1

r

@Trf
@y

� Tyf
r

1

r sin y
@Trf
@f

þ Trr � Tff
r

þ Try cot y
r

u r @Tyr
@r

1

r

@Tyr
@y

þ Trr � Tyy
r

1

r sin y
@Tyr
@f

� Tfr cot y
r

� Tyf
r

y @Tyy
@r

1

r

@Tyy
@y

þ Try þ Tyr
r

1

r sin y
@Tyy
@f

� Tfy þ Tyf
� 


cot y
r

f @Tyf
@r

1

r

@Tyf
@y

þ Trf
r

1

r sin y
@Tyf
@f

þ Tyr
r

þ Tyy � Tff
� 


cot y
r

f r @Tfr
@r

1

r

@Tfr
@y

� Tfy
r

1

r sin y
@Tfr
@f

þ Trr � Tff
r

þ Tyr cot y
r

y @Tfy
@r

1

r

@Tfy
@y

þ Tfr
r

1

r sin y
@Tfy
@f

þ Try
r

þ Tyy � Tff
� 


cot y
r

f @Tff
@r

1

r

@Tff
@y

1

r sin y
@Tff
@f

þ Trf þ Tfr
� 


r
þ Tyf þ Tfy
� 


cot y
r
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PROBLEMS FOR CHAPTER 8
8.1 Show that for an incompressible Newtonian fluid in Couette flow, the pressure at the outer cylinder

(r ¼ Ro) is always larger than that at the inner cylinder. That is, obtain

�Trr Roð Þ½ � � �Trr Rið Þ½ � ¼ r
ðRo

Ri

ro2 rð Þdr:

8.2 Show that the constitutive equation

t ¼ t1 þ t2 þ t3; with tn þ ln
@tn
@t

¼ 2mnD; n ¼ 1; 2; 3

is equivalent to

tþ a1
@t
@t

þ a2
@2t
@t2

þ a3
@3t
@t3

¼ boDþ b1
@D

@t
þ b2

@2D

@t2
;

where

a1 ¼ l1 þ l2 þ l3ð Þ; a2 ¼ l1l2 þ l2l3 þ l3l1ð Þ; a3 ¼ l1l2l3;

bo ¼ 2 m1 þ m2 þ m3ð Þ; b1 ¼ 2 m1 l2 þ l3ð Þ þ m2 l1 þ l3ð Þ þ m3 l2 þ l1ð Þ½ �;
b2 ¼ 2 m1l2l3 þ m2l1l3 þ m3l1l2ð Þ:

8.3 Obtain the force-displacement relationship for the Kelvin-Voigt solid, which consists of a dashpot (with

damping coefficient �) and a spring (with spring constant G) connected in parallel. Also obtain its relax-

ation function.

8.4 (a) Obtain the force-displacement relationship for a dashpot (damping coefficient �o) and a Kelvin-

Voigt solid (damping coefficient � and spring constant G; see the previous problem) connected in series.

(b) Obtain its relaxation function.

8.5 A linear Maxwell fluid, defined by Eq. (8.1.2), is between two parallel plates that are one unit apart.

Starting from rest, at time t ¼ 0, the top plate is given a displacement u ¼ vot while the bottom plate

remains fixed. Neglect inertia effects, obtain the shear stress history.

8.6 Obtain Eq. (8.3.1), i.e., S ¼ 2
Ð t
�1 f t� t0ð ÞD t0ð Þdt0; where f tð Þ ¼ m=lð Þe�t=l, by solving the linear non-

homogeneous ordinary differential equation S þ ldS/dt ¼ 2mD.

8.7 Show that
Ð t
�1 f t� t0ð ÞJ t0ð Þdt0 ¼ t for the linear Maxwell fluid, defined by Eq. (8.1.2), where f(t) is the

relaxation function and J(t) is the creep compliance function.

8.8 Obtain the storage modulus and loss modulus for the linear Maxwell fluid with a continuous relaxation

spectrum defined by Eq. (8.4.1), i.e., f tð Þ ¼ Ð1
o

H lð Þ=l½ �e�t=ldl:

8.9 Show that for a linear Maxwell fluid, define by S ¼ 2
Ð t
�1 f t� t0ð ÞD t0ð Þdt0, its viscosity m is related to

the relaxation function f(t) and the memory function f(s) by the relation

m ¼
ð1
o

f sð Þds ¼ �
ð1
o

sf sð Þds:

8.10 Show that the relaxation function for the Jeffrey model [Eq. (8.2.7)] with a2 ¼ 0 is given by

fðtÞ ¼ S12
go

¼ bo
2a1

1� b1
boa1

� �
e�t=a1 þ b1

bo
dðtÞ


 �
; dðtÞ ¼ Dirac Function:
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8.11 Given the following velocity field: v1 ¼ 0, v2 ¼ v(x1), v3 ¼ 0. Obtain (a) the particle pathline equa-

tions using the current time as the reference time, (b) the relative right Cauchy-Green deformation ten-

sor, (c) the Rivlin-Ericksen tensors using the equation Ct ¼ I þ (t�t)A1 þ (t�t)2 A2/2 þ . . . , and
(d) the Rivlin-Ericksen tensor A2 using the recursive equation [A2] ¼ [DA1/Dt] þ [A1] [rv] þ
[rv]T [A1], etc.

8.12 Given the following velocity field: v1 ¼ �kx1, v2 ¼ kx2, v3 ¼ 0. Obtain (a) the particle pathline equations

using the current time as the reference time, (b) the relative right Cauchy-Green deformation tensor, (c) the

Rivlin-Ericksen tensors using the equation Ct ¼ I þ (t�t)A1 þ (t�t)2 A2 /2 þ . . . , and (d) the Rivlin-

Ericksen tensor A2 and A3 using the recursive equation [A2] ¼ [DA1/Dt] þ [A1] [rv] þ [rv]T [A1], etc.

8.13 Given the following velocity field: v1 ¼ kx1, v2 ¼ kx2, v3 ¼ �2kx3. Obtain (a) the particle pathline equa-

tions using the current time as the reference time, (b) the relative right Cauchy-Green deformation

tensor, (c) the Rivlin-Ericksen tensors using the equation Ct ¼ I þ (t�t)A1 þ (t�t)2 A2/2 þ . . . ,
and (d) the Rivlin-Ericksen tensor A2 and A3 using the recursive equation [A2] ¼ [DA1/Dt] þ [A1]

[rv] þ [rv]T [A1], etc.

8.14 Given the following velocity field: v1 ¼ kx2, v2 ¼ kx1, v3 ¼ 0. Obtain (a) the particle pathline equations

using the current time as the reference time, (b) the relative right Cauchy-Green deformation tensor,

(c) the Rivlin-Ericksen tensors using the equation Ct ¼ I þ (t�t)A1 þ (t�t)2 A2/2 þ . . ., and (d) the

Rivlin-Ericksen tensor A2 and A3 using the recursive equation [A2] ¼ [DA1/Dt] þ [A1] [rv] þ
[rv]T [A1], etc.

8.15 Given the velocity field in cylindrical coordinates: vr ¼ 0, vy ¼ 0, vz ¼ v(r), obtain the second Rivlin-

Ericksen tensors AN, N ¼ 2, 3, . . . using the recursive formula.

8.16 Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the rry component of

the third-order tensor rT is given by

rTð Þrry ¼
1

r

@Trr
@y

� Tyr þ Try
r

:

8.17 Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the ryy component of

the third-order tensor rT is given by

rTð Þryy ¼
1

r

@Try
@y

þ Trr � Tyy
r

:

8.18 Using the equations given in Appendix 8.1 for spherical coordinates, verify that the rrf component of

the third-order tensor rT is given by

rTð Þrrf ¼ 1

r sin y
@Trr
@f

� Tfr þ Trf
� 


r
:

8.19 Using the equations given in Appendix 8.1 for spherical coordinates, verify that the fff component of

the third-order tensor rT is given by

1

r sin y
@Tff
@f

þ Trf þ Tfr
r

þ ðTyf þ TfyÞcot y
r

:

8.20 Given the velocity field in cylindrical coordinates: vr ¼ 0, vy ¼ v(r), vz ¼ 0, obtain (a) first Rivlin-Erick-

sen tensors A1, (b) rA1, and (c) second Rivlin-Ericksen tensors A2 using the recursive formula.
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8.21 Derive Eq. (8.11.3), i.e., ANþ1 ¼ DAN

Dt
þ AN rvð Þ þ rvð ÞTAN .

8.22 Let S � DT

Dt
þ TW�WT, where T is an objective tensor and W is the spin tensor. Show that S is

objective, i.e., S* ¼ Q(t)SQT(t).

8.23 Obtain the viscosity function and the two normal stress functions for the nonlinear viscoelastic fluid

defined by S ¼ Ð1
o

f2 sð Þ I� C�1
t t� sð Þ� �

ds.

8.24 Derive the following transformation laws [Eqs. (8.13.8) and (8.13.12)] under a change of frame.

V*
t ¼ Q tð ÞVtQ

T tð Þ and R*
t ¼ Q tð ÞRtQ

T tð Þ:

8.25 From �T � DJL tð Þ
Dt


 �
t¼t

and
DFt tð Þ
Dt


 �
t¼t

¼ rv, show that �T ¼ T
∘ þTDþ DT.

8.26 Consider JU tð Þ ¼ F�1
t tð ÞT tð ÞF�1T

t tð Þ. Show that (a)
DJu tð Þ
Dt


 �
t¼t

is objective and (b)
DJU tð Þ
Dt


 �
t¼t

¼

DT

Dt
� T rvð ÞT � rvð ÞT ¼ T

o � TDþ DT).ð

8.27 Given the velocity field of a plane Couette flow: v1 ¼ 0, v2 ¼ kx1. (a) For a Newtonian fluid, find the

stress field [T] and the corotational stress rate [T
o
]. (b) Consider a change of frame (change of observer)

described by

x*1
x*2


 �
¼ cos ot �sin ot

sin ot cos ot


 �
x1
x2


 �
; ½Q� ¼ cos ot �sin ot

sin ot cos ot


 �
:

Find [v*], [r*v*], [D*] and [W*]. (c) Find the corotational stress rate for the starred frame. (d) Verify

that the two stress rates are related by the objective tensorial relation.

8.28 Given the velocity field: v1 ¼ �kx1, v2 ¼ kx2, v3 ¼ 0. Obtain (a) the stress field for a second-order fluid

and (b) the corotational derivative of the stress tensor.

8.29 Show that the lower convected derivative of A1 is A2, i.e., �A1 ¼ A2.

8.30 The Reiner-Rivlin fluid is defined by the constitutive equation

T ¼ �pIþ S; S ¼ f1 I2; I3ð ÞDþ f2 I2; I3ð ÞD2;

where Ii are the scalar invariants of D. Obtain the stress components for this fluid in a simple shearing

flow.

8.31 The exponential of a tensor A is defined as exp A½ � ¼ IþPN
1

1

n!
An. If A is an objective tensor, is exp[A]

also objective?

8.32 Why is the following constitutive equation not acceptable? T ¼ �pI þ S, S ¼ a(rv), where v is veloc-

ity and a is a constant.
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8.33 Let da and dA denote the differential area vectors at time t and time t, respectively. For an incompress-

ible fluid, show that

DNda2

DtN


 �
t¼t

¼ dA � DNC�1
t

DtN


 �
t¼t

dA � �dA � MNdA;

where da is the magnitude of da and the tensors MN are known as the White-Metzner tensors.

8.34 (a) Verify that the Oldroyd lower convected derivatives of the identity tensor I are the Rivlin-Ericksen

tensors AN. (b) Verify that the Oldroyd upper derivatives of the identity tensor are the negative White-

Metzner tensors (see Prob. 8.33 for the definition of White-Metzner tensor).

8.35 Obtain �T ¼ DT

Dt
þ Trvþ rvð ÞTT, where �T is the lower convected derivative of T.

8.36 Consider the following constitutive equation: Sþ l
D*S

Dt
¼ 2mD; where

D*S

Dt
� S

o þa DSþ SDð Þ and S
o

is corotational derivative of S. Obtain the shear stress function and the two normal stress functions

for this fluid.

8.37 Obtain the apparent viscosity and the normal stress functions for the Oldroyd 3-constant fluid [see

Part (C) of Section 8.20].

8.38 Obtain the apparent viscosity and the normal stress functions for the Oldroyd 4-constant fluid [see

Part (D) of Section 8.20].

8.39 Given ½Q� ¼
�1 0 0

0 1 0

0 0 1

2
4

3
5

nif g

, N½ � ¼
0 1 0

0 0 0

0 0 0

2
4

3
5

nif g

, A1 ¼ k(N þ NT) and A2 ¼ 2k2NTN. (a) Verify

that QA1Q
T ¼ �A1 and QA2Q

T ¼ A2. (b) From T ¼ �pI þ f(A1, A2) and Qf(A1, A2)Q
T ¼ f(QA1Q

T,

QA2Q
T), show that QT kð ÞQT ¼ T �kð Þ:

(c) From the results of part (b), show that the viscometric functions have the properties:

S kð Þ ¼ �S �kð Þ; s1 kð Þ ¼ s1 �kð Þ; s2 kð Þ ¼ s2 �kð Þ:
8.40 For the velocity field given in Example 8.21.2, i.e., vr ¼ 0, vy ¼ 0, vz ¼ v(r), (a) obtain the stress com-

ponents in terms of the shear stress function S(k) and the normal stress functions s1(k) and s2(k), where

k ¼ dv/dr; (b) obtain the velocity distribution v rð Þ ¼ Ð R
r g fr=2ð Þdr for the Poiseuille flow under a pres-

sure gradient of �f, where g is the inverse shear stress function; and (c) obtain the relation

g
Rf

2

� �
¼ 1

pR3f 2
@ f 3Qð Þ
@f

:
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Answers to Problems

CHAPTER 2
2.1 (b) SijSij ¼ 28, (c) SjiSji ¼ SijSij ¼ 28, (d) SjkSkj ¼ 23, (g) Snmaman ¼ Smnaman ¼ 59.

2.3 (a) b1 ¼ 2; b2 ¼ 2; b3 ¼ 2. (b) s ¼ 6.

2.4 (c) Eij ¼ BmiCmkFkj.

2.7 i ¼ 1 ! a1 ¼ @v1
@t

þ v1
@v1
@x1

þ v2
@v1
@x2

þ v3
@v1
@x3

; etc:

2.10 d1 ¼ 6; d2 ¼ �3; d3 ¼ 2.

2.12 (2) For i ¼ k; LS ¼ RS ¼
0 if j 6¼ l
0 if j ¼ l ¼ i
1 if j ¼ l 6¼ i

8<
:

2.20 (b) T½ � ¼
0 0 1

0 0 �1

�1 1 0

2
4

3
5.

2.21 (c) T aþ bð Þ ¼ 10e1.

2.22 T½ � ¼
2 0 �1

0 1 3

1 3 0

2
4

3
5.

2.23 T½ � ¼
�1=2 0 1=2
�1=2 0 1=2
0 0 0

2
4

3
5.

2.24 (a) T½ � ¼
1 0 0

0 �1 0

0 0 1

2
4

3
5, (b) T½ � ¼

1 0 0

0 1 0

0 0 �1

2
4

3
5.

2.25 (a) R½ � ¼
1 0 0

0 cos y �sin y
0 sin y cos y

2
4

3
5, (b) R½ � ¼

cos y 0 sin y
0 1 0

�sin y 0 cos y

2
4

3
5.

2.26 (b) T½ � ¼ 1

3

1 �2 �2

�2 1 �2

�2 �2 1

2
4

3
5, (c) Ta ¼ � 3e1 þ 2e2 þ e3ð Þ.

2.27 ½T� ¼ 1

3

1 �2 �2

�2 1 �2

�2 �2 1

2
4

3
5.
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2.28 (b) n ¼ e1 þ e2 þ e3ð Þ=
ffiffiffi
3

p
.

2.29 T½ � ¼ 1

3

1þ 2 cos y 1� cos yð Þ � ffiffiffi
3

p
sin y 1� cos yð Þ þ ffiffiffi

3
p

sin y
1� cos yð Þ þ ffiffiffi

3
p

sin y 1þ 2 cos yð Þ 1� cos yð Þ � ffiffiffi
3

p
sin y

1� cos yð Þ � ffiffiffiffi
3

p
sin y 1� cos yð Þ þ ffiffiffi

3
p

sin y 1þ 2 cos yð Þ

2
4

3
5.

2.30 (b) RA ¼ sin yE.

2.31 (a) S½ � ¼
1 0 0

0 �1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
0 �1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

2
4

3
5; (b) T½ � ¼

1 0 0

0 �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

2
4

3
5, (d) c½ � ¼

1

1=
ffiffiffi
2

p
5=

ffiffiffi
2

p

2
4

3
5.

2.37 a ¼ 2e 0
1.

2.38 (b) a ¼ e 01 þ
ffiffiffi
3

p
e 0
2.

2.39 T 0
11 ¼ 4=5; T 0

12 ¼ �15=
ffiffiffi
5

p
; T 0

31 ¼ 2=5.

2.40 (a) T 0
ij

h i
¼ T½ � 0 ¼

0 �5 0

�5 1 5

0 5 1

2
4

3
5.

2.42 (b) TijTij ¼ 45, (c) T½ � 0 ¼
2 5 1

2 3 1

0 0 1

2
4

3
5.

2.48 (a) TS
� � ¼ 1 3 5

3 5 7

5 7 9

2
4

3
5, TA

� � ¼ 0 �1 �2

1 0 �1

2 1 0

2
4

3
5, (b) tA ¼ e1 � 2e2 þ e3.

2.50 (d) For l ¼ 1; n ¼ a1e1 þ a2e2 � a1 þ a2ð Þe3½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23

q
.

2.55 y ¼ 120o.

2.56 (c) For l ¼ 1; n ¼ �e3. (d) For l ¼ �1; n ¼ a1e1 þ a2e2; a21 þ a22 ¼ 1, (e) y ¼ p.

2.59 (a) For l1 ¼ 3; n1 ¼ �e3. For l2 ¼ �3; n2 ¼ � e1 � 2e2ð Þ=
ffiffiffi
5

p
.

2.60 (a) For l1 ¼ 3; n1 ¼ �e1. For l2 ¼ 4; n2 ¼ � e2 þ e3ð Þ=
ffiffiffi
2

p
.

2.61 For l1 ¼ 0; n1 ¼ � e1 � e2ð Þ=
ffiffiffi
2

p
. For l2 ¼ l3 ¼ 2; n ¼ � ae1 þ ae2 þ a3e3ð Þ; 2a2 þ a23 ¼ 1.

2.65 (b) At ð0; 0; 0Þ; ðdf=drÞmax ¼ jrfj ¼ 2 in the direction of n ¼ e3.

At ð1; 0; 1Þ; ðdf=drÞmax ¼ jrfj ¼ 17 in the direction of n ¼ 2e1 þ 3e2 þ 2e3ð Þ=
ffiffiffiffiffi
17

p
.

2.67 (a) q ¼ �3k e1 þ e2ð Þ; (b) q ¼ � 3ke1 þ 6ke2ð Þ.
2.69 (a) ½rv�ð1;1;0Þ ¼ 2½I�, (b) rvð Þv ¼ 2e1, (c) div v ¼ 2; curl v ¼ 2e1, (d) dv ¼ 2ds e1 þ e3ð Þ.

2.71 ru½ � ¼
�A=r2 �B 0

B A=r2 0

0 0 0

2
4

3
5.
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2.72 div u ¼ 3A.

2.73 ru½ � ¼
A� 2B=r3 0 0

0 Aþ B=r3 0

0 0 Aþ B=r3

2
4

3
5.

2.77 div Tð Þr ¼ div Tð Þy ¼ div Tð Þz ¼ 0.

CHAPTER 3

3.1 (b) v1 ¼ kx1
1þ kt

; v2 ¼ 0; v3 ¼ 0.

3.2 (a) v1 ¼ a; v2 ¼ v3 ¼ 0; a1 ¼ a2 ¼ a3 ¼ 0;
(b) y ¼ A atþ X1ð Þ. Dy=Dt ¼ Aa, (c) y ¼ BX2; Dy=Dt ¼ 0.

3.3 (b) v1 ¼ 0; v2 ¼ 2bX2
1t; v3 ¼ 0 and a1 ¼ 0; a2 ¼ 2bX2

1; v3 ¼ 0,

(c) v1 ¼ 0; v2 ¼ 2bx21t; v3 ¼ 0 and a1 ¼ 0; a2 ¼ 2bx21; a3 ¼ 0.

3.4 (b) v1 ¼ 2bX2
2t; v2 ¼ kX2; v3 ¼ 0 and a1 ¼ 2bX2

2; a2 ¼ 0; a3 ¼ 0,

(c) v1 ¼ 2bx22t=ð1þ ktÞ2; v2 ¼ kx2=ð1þ ktÞ; v3 ¼ 0; a1 ¼ 2bx22= 1þ ktð Þ2; a2 ¼ a3 ¼ 0.

3.5 (b) v1 ¼ k sþ X1ð Þ; v2 ¼ 0; v3 ¼ 0 and a1 ¼ 0; a2 ¼ 0; a3 ¼ 0,

(c) v1 ¼ k sþ x1ð Þ= 1þ ktð Þ; v2 ¼ 0; v3 ¼ 0 and a1 ¼ 0; a2 ¼ 0; a3 ¼ 0.

3.6 (b) For X1;X2;X3ð Þ ¼ 1; 3; 1ð Þ and t ¼ 2; v1 ¼ �4 3ð Þ2 2ð Þ ¼ �72; v2 ¼ �1; v3 ¼ 0:
(c) For x1; x2; x3ð Þ ¼ 1; 3; 1ð Þ and t ¼ 2; v1 ¼ �200; v2 ¼ �1; v3 ¼ 0:

3.7 (a) For X1;X2;X3ð Þ ¼ 1; 1; 0ð Þ and t ¼ 2; v1 ¼ 2k; v2 ¼ 2k; v3 ¼ 0:
(b) For x1; x2; x3ð Þ ¼ 1; 1; 0ð Þ and t ¼ 2; v1 ¼ 2k= 1þ 4kð Þ; v3 ¼ 0:

3.8 (a) t ¼ 2 ! x1 ¼ 5; x2 ¼ 3; x3 ¼ 0, (b) X1 ¼ �3; X2 ¼ 1; X3 ¼ 2,

(c) a1 ¼ 18; a2 ¼ 0; a3 ¼ 0, (d) a1 ¼ 2; a2 ¼ 0; a3 ¼ 0.

3.9 (b) ai ¼ 0.

3.10 (a) a ¼ �4xex � 4yey, (b) x2 þ y2 ¼ constant ¼ X2 þ Y2.

Or, x ¼ �Y sin 2tþ X cos 2t and y ¼ Y cos 2tþ X sin 2t.

3.11 (a) a ¼ k2 xex þ yey
� �

, (b) x ¼ Xekt; y ¼ Ye�kt. Or xy ¼ XY.

3.12 Material description: a ¼ 2k2 x2 þ y2
� �

xex þ yey
� �

.

3.14 (b) a1 ¼ 0; a2 ¼ �p2 sin ptð Þ sin p X1ð Þ; a3 ¼ 0.

3.15 (b) a ¼ �ða2
ffiffiffi
2

p
=4Þer; DY=Dt ¼ 2ak.

3.16 (b) a ¼ �ða2
ffiffiffi
2

p
=4Þer; DY=Dt ¼ 0.

3.17 (b) ds1=dS1 ¼ ð1=
ffiffiffi
2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kð Þ2 þ 1

q
¼ ds2=dS2,

cos p=2� gð Þ ¼ sin g ¼ f� 1þ kð Þ2 þ 1g=f 1þ kð Þ2 þ 1g.
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(c) For k ¼ 1; ds1=dS1 ¼ ds2=dS2 ¼
ffiffiffiffiffiffiffiffi
5=2

p
; sin g ¼ �3=5.

For k ¼ 10�2; ds1=dS1 ¼ ds2=dS2 � 1:005; g ¼ �0:0099 rad: (d) 2E 0
12 ¼ �0:01.

3.19 (a) E½ � ¼
0 0 k=2
0 k 0
k=2 0 0

" #
, (b) 10�5=2.

3.20 (a) E11 ¼ 5k ¼ 5� 10�4; E22 ¼ 2k ¼ 2� 10�4; 2E12 ¼ k ¼ 10�4rad.

3.21 (a) E 0
11 ¼ 10�4=3.

3.22 (a) E 0
11 ¼ ð58=9Þ � 10�4, (b) 2E 0

12 ¼ ð32=
ffiffiffiffiffi
45

p
Þ � 10�4rad:

3.23 (a) E 0
11 ¼ ð37=25Þ � 10�4, (b) 2E 00

12 ¼ ð72=25Þ � 10�4rad:

3.24 (a) I1 ¼ 11� 10�4; I2 ¼ 31� 10�8; I3 ¼ 17� 10�12.

3.25 I1 ¼ 0; I2 ¼ �t2; I3 ¼ 0.

3.26 At 1; 0; 0ð Þ; lmax ¼ 3k ¼ 3� 10�6.

3.27 (a) D dVð Þ=dV ¼ 0, (b) k1 ¼ 2k2.

3.28 (b) At 1; 2; 1ð Þ; E 0
11 ¼ k; (c) max elongation ¼ 4k; (d) DV ¼ k.

3.32 E11 ¼ a; E22 ¼ c; E12 ¼ b� aþ cð Þ=2.
3.33 (a) E12 ¼ �100� 10�6: (b) For l1 ¼ 261:8� 10�6; y ¼ �31:7o, or

n ¼ 0:851e1 � 0:525e2. For l2 ¼ 38:2� 10�6; y ¼ 58:3o, or n ¼ 0:525e1 þ 0:851e2.

3.34 (a) E12 ¼ 0, (b) Prin. strains are 10�3 in any direction lying on the plane of e1 and e2.

3.35 E11 ¼ a; E22 ¼ 2bþ 2c� að Þ=3; E12 ¼ b� cð Þ=
ffiffiffi
3

p
.

3.36 E11 ¼ 2� 10�6; E22 ¼ 1� 10�6; E12 ¼ ½1=ð2
ffiffiffi
3

p
Þ� � 10�6.

3.37 E11 ¼ 2� 10�3; E22 ¼ 2� 10�3; E12 ¼ 0.

3.38 (a) D½ � ¼
0 kx2 0
kx2 0 0
0 0 0

2
4

3
5; W½ � ¼

0 kx2 0
�kx2 0 0
0 0 0

2
4

3
5, (b) D nð Þ nð Þ ¼ 3k.

3.39 D11 ¼ �a 1þ kð Þ; D 0
11 ¼ 1þ kð Þ=2.

3.40 (a) D12 ¼ p cos t cos px1ð Þ=2; W12 ¼ �W21 ¼ � p cos t cos px1ð Þ=2.
(b) D11 ¼ 0, D22 ¼ 0, D 0

11 ¼ p=2.

3.42 (a) Drr ¼ �1=r2; Dyy ¼ 1=r2; other Dij ¼ 0; W½ � ¼ 0½ �. (b) Drr ¼ �1=r2.

3.43 At r ¼ 2; ar ¼ �18; ay ¼ 0; (b) D½ � ¼ 0 �1

�1 0

� �
.

3.44 (a) ar ¼ �ðAr þ B=r2Þ2sin2y=r; ay ¼ �cos y sin yðAr þ B=r2Þ2=r; af ¼ 0.

(b) Drf ¼ �ð3B=2r3Þsiny; Dyf ¼ 0.
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3.45 W½ � ¼ 0:

3.49 k ¼ 1.

3.50 f ¼ g yð Þ=r.
3.51 vy ¼ � k=2ð Þsin y=

ffiffi
r

p
.

3.53 v1 ¼ f x2ð Þ; v2 ¼ 0:

3.54 (a) r ¼ ro 1þ ktð Þ�a=k; (b) r ¼ r*xo=x1.

3.55 r ¼ roe
�at2 .

3.60 (b) 2kX1X2 ¼ f X2;X3ð Þ þ g X1;X3ð Þ.

3.62
@r
@t

þ vr
@r
@r

þ vy
r

@r
@y

	 

þ vz

@r
@z

� �
þ r

@vr
@r

þ vr
r
þ 1

r

@vy
@y

þ @vz
@z

	 

¼ 0.

3.63 (b) U½ � ¼
1 0 0

0 2 0

0 0 3

2
4

3
5; (c) B½ � ¼

9 0 0

0 1 0

0 0 4

2
4

3
5, (d) R½ � ¼

0 0 1

�1 0 0

0 �1 0

2
4

3
5,

(e) E*
� � ¼ 0 0 0

0 3=2 0

0 0 4

2
4

3
5, (f) e*

� � ¼ 4=9 0 0

0 0 0

0 0 3=8

2
4

3
5, (g)

DV
DVo

¼ 6, (h) dA ¼ �3e3.

3.64 (b) U½ � ¼
1 0 0

0 2 0

0 0 3

2
4

3
5, (c) B½ � ¼

4 0 0

0 9 0

0 0 1

2
4

3
5, (d) R½ � ¼

0 1 0

0 0 1

1 0 0

2
4

3
5,

(e) E*
� � ¼ 0 0 0

0 3=2 0

0 0 4

2
4

3
5, (f) e*

� � ¼ 3=8 0 0

0 4=9 0

0 0 0

2
4

3
5, (g)

DV
DVo

¼ 6, (h) dA ¼ 3e1.

3.65 (b) U½ � ¼
1 0 0

0 2 0

0 0 3

2
4

3
5, (c) B½ � ¼

1 0 0

0 9 0

0 0 4

2
4

3
5, (d) R½ � ¼

1 0 0

0 0 1

0 �1 0

2
4

3
5,

(e) E*
� � ¼ 0 0 0

0 3=2 0

0 0 4

2
4

3
5, (f) e*

� � ¼ 0 0 0

0 4=9 0

0 0 3=8

2
4

3
5, (g)

DV
DVo

¼ 6,

(h) dA ¼ �3e3.

3.66 (b) U½ � ¼
1 0 0

0 2 0

0 0 3

2
4

3
5, (c) B½ � ¼

4 0 0

0 1 0

0 0 9

2
4

3
5, (d) R½ � ¼

0 1 0

�1 0 0

0 0 1

2
4

3
5,

(e) E*
� � ¼ 0 0 0

0 3=2 0

0 0 4

2
4

3
5; (f) e*

� � ¼ 3=8 0 0

0 0 0

0 0 4=9

2
4

3
5, (g)

DV
DVo

¼ 6,

(h) dA ¼ 3e1.

Answers to Problems 5



3.67 (a) C½ � ¼
1 3 0

3 10 0

0 0 1

2
4

3
5: (b) For l1 ¼ 10:908326; n1 ¼ 0:289785e1 þ 0:957093e2.

For l2 ¼ 0:0916735; n2 ¼ 0:957093e1 � 0:289784e2: For l3 ¼ 1; n3 ¼ e3,

(c) U½ �ni ¼
3:30277 0 0

0 0:302774 0

0 0 1

2
4

3
5, (d) U½ �ei ¼

0:554704 0:832057 0

0:832057 3:05087 0

0 0 1

2
4

3
5,

½U�1�ei ¼
3:050852 �0:832052 0

�0:832052 0:554701 0

0 0 1

2
4

3
5, (d) R½ �ei ¼

0:55470 0:83205 0

�0:83205 0:55470 0

0 0 1

2
4

3
5.

3.70 (a) 3, 2 and 0.6, (b) ds=dSð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
13=2

p
, (c) cos y ¼ 0. No change in angle.

3.71 (a) U½ � ¼ 1ffiffiffi
5

p
2 1 0

1 3 0

0 0
ffiffiffi
5

p

2
4

3
5, (b)

ffiffiffiffiffiffiffi
C22

p
¼

ffiffiffi
2

p
, (c)

ds

dS
¼

ffiffiffiffiffiffiffiffi
5=2

p
, (d) cos y ¼ 1ffiffiffi

2
p :

3.72 (a) U½ � ¼ 1ffiffiffi
2

p
1 1 0

1 3 0

0 0
ffiffiffi
2

p

2
4

3
5, (b)

ffiffiffiffiffiffiffi
C22

p
¼

ffiffiffi
5

p
, (c)

ds

dS
¼

ffiffiffi
5

p
, (d) cos y ¼ 2ffiffiffi

5
p :

3.77 B�1
rr ¼ @ro

@r

	 
2

þ ro@yo
@r

	 
2

þ @zo
@r

	 
2

; B�1
yy ¼ @ro

r@y

	 
2

þ ro@yo
r@y

	 
2

þ @zo
r@y

	 
2

.

3.80 C�1
royo ¼

ro@yo
@r

	 

@ro
@r

	 

þ ro@yo

r@y

	 

@ro
r@y

	 

þ ro@yo

@z

	 

@ro
@z

	 

.

3.81 Bry ¼ @r

@X

	 

r@y
@X

	 

þ @r

@Y

	 

r@y
@Y

	 

þ @r

@Z

	 

r@y
@Z

	 

.

3.82 B�1
ry ¼ @X

@r

	 

@X

r@y

	 

þ @Y

@r

	 

@Y

r@y

	 

þ @Z

@r

	 

@Z

r@y

	 

.

3.84 (a) B½ � ¼
1 0 0

0 1þ rkð Þ2 rk
0 rk 1

2
4

3
5; (b) C½ � ¼

1 0 0

0 1 rk
0 rk 1þ rkð Þ2

2
4

3
5.

3.85 (a) B½ � ¼
a=rð Þ2 0 0

0 r=að Þ2 0

0 0 1

2
4

3
5, (b) det B ¼ 1, no change of volume.

3.86 C½ � ¼
f ðXÞð Þ2 0 0

0 gðYÞð Þ2 0

0 0 hðZÞð Þ2

2
4

3
5.
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CHAPTER 4
4.1 (a) 1 MPa; 4 MPa; 0 MPa: (b) 3:61MPa; 5:39 MPa; 5:83 MPa.

4.2 (a) t ¼ 1=3ð Þ 5e1 þ 6e2 þ 5e3ð Þ: (b) Tn ¼ 3 MPa; Ts ¼ 0:745 MPa:

4.3 (a) t ¼ 3:47e1 � 2:41e2: (b) Tn ¼ 2:21 MPa; Ts ¼ 3:60 MPa:

4.4 t ¼ 25
ffiffiffi
3

p
e1 þ 25e2 � 25

ffiffiffi
3

p
e3.

4.5 (a) t ¼ e3. (b) n21 � n22 ¼ 0, including n ¼ e3; n ¼ e1 þ e2ð Þ=
ffiffiffi
2

p
; n ¼ e1 � e2ð Þ=

ffiffiffi
2

p
.

4.6 T 0
11 ¼ �6:43 MPa; T 0

13 ¼ 18:6 MPa.

4.7 (a) te1 ¼ ax2e1 þ be2. (b) FR ¼ 0e1 þ 4 be2; Mo ¼ � 4a=3ð Þe3.
4.8 (a) te1 ¼ ax22e1. (b) FR ¼ 4a=3ð Þe1; Mo ¼ 0.

4.9 (a) te1 ¼ ae1 þ ax3e2. (b) FR ¼ 4ae1; Mo ¼ � 4a=3ð Þe1.
4.10 (a) tn1 ¼ 0, tn2 ¼ ax3e2 � ax2e3; tn3 ¼ �ax3e2 þ ax2e3: (b) FR ¼ 0; Mo ¼ 8pae1.

4.11 (b) FR ¼ 0; Mo ¼ �p= 2
ffiffiffi
2

p
 �
.

4.12 (a) tr S ¼ 0. (b) S½ � ¼
0 500 �200

500 �300 400

�200 400 300

2
4

3
5kPa:

4.13 (a) 4.

4.14 (b) T12 ¼ T21.

4.17 fmax ¼ 2.

4.21 (a) Ts ¼ 0: (b) For Tmax ¼ 100 MPa; n1 ¼ e1 þ e2ð Þ=
ffiffiffi
2

p
. For Tmin ¼ �100 MPa;

n2 ¼ e1 � e2ð Þ=
ffiffiffi
2

p
: (c) Tsð Þmax ¼ 100 MPa, on the planes e1 and e2.

4.23 (a) Tsð Þmax ¼ 150 MPa; n ¼ ðe1 � e3Þ=
ffiffiffi
2

p
; (b) Tn ¼ 250 MPa:

4.24 T33 ¼ 1 and T11 ¼ 1.

4.25 (a) Tn ¼ 800=9 ¼ 88:89 kPa; Ts ¼ 260 kPa;
(b) Tsð Þmax ¼ 300 kPa:

4.26 (a) tn ¼ 5=
ffiffiffi
2

p
 �
e1 þ e2ð Þ, (b) Tn ¼ 5 MPa;

(d) Tnð Þmax ¼ 5 MPa; n1 ¼ 1=
ffiffiffi
2

p
 �
e1 þ e2ð Þ;

Tnð Þmin ¼ �3 MPa; n2 ¼ 1=
ffiffiffi
2

p
 �
e1 � e2ð Þ. Tsð Þmax ¼ 4 MPa, on n ¼ e1 and n ¼ e2.

4.27 (a) For l1 ¼ t; n1 ¼ 1=
ffiffiffi
2

p
 �
e1 þ e2ð Þ.

For l2 ¼ �t; n2 ¼ 1=
ffiffiffi
2

p
 �
e1 � e2ð Þ.

For l3 ¼ 0; n3 ¼ e3. (b) Tsð Þmax ¼ t; n ¼ e1 and n ¼ e2.
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4.29 T12 � T21 ¼ M*
3; T13 � T31 ¼ M*

2 and T23 � T32 ¼ M*
1.

4.30 (b) T12 ¼ 2x1 � x2 þ 3.

4.31 T33 ¼ 1þ rg=að Þx3 þ f x1; x2ð Þ.
4.32 (a) C ¼ �1, (b) A ¼ 1;B ¼ 2.

4.36
Tyr
r

þ @Tyr
@r

þ Try
r

þ 1

r

@Tyy
@y

þ @Tyz
@z

þ rBy ¼ ray.

4.39 B ¼ ðpo � piÞr2i r2o=ðr2o � r2i Þ; A ¼ ðpir2i � por
2
oÞ=ðr2o � r2i Þ.

4.41 A ¼ �ðpor3o � pir
3
i Þ=ðr3o � r3i Þ; B ¼ �ðpo � piÞr3or3i =½2ðr3o � r3i Þ�.

4.42 (a) To½ � ¼
1000=16 0 0

0 0 0

0 0 0

2
4

3
5MPa; to ¼ 1000=16ð Þe1.

(b) ~T
� � ¼ 1000=256 0 0

0 0 0

0 0 0

2
4

3
5MPa; ~t ¼ 1000=256ð Þe1.

4.44 (a) dV ¼ 1=4; dA ¼ 1=16ð Þe1,

(b) To½ � ¼
100=16 0 0

0 0 0

0 0 0

2
4

3
5MPa; to ¼ 100=16ð Þe1MPa:

(c) ~T
� � ¼ 100=64 0 0

0 0 0

0 0 0

2
4

3
5MPa; ~t ¼ 100=64ð Þe1MPa; d~f ¼ 100

64

	 

e1.

4.45 (a) dV ¼ dVo ¼ 1; dA ¼ e1 � ke2,

(b) To½ � ¼
�100k 100 0

100 0 0

0 0 0

2
4

3
5MPa; to ¼ 100 �ke1 þ e2ð Þ MPa; t ¼ 100ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p �ke1 þ e2ð Þ.

(c) ~T
� � ¼ �200k 100 0

100 0 0

0 0 0

2
4

3
5MPa; ~t ¼ 100 �2ke1 þ e2ð ÞMPa; d~f ¼ 100 �2ke1 þ e2ð Þ.

4.46 (a) dV ¼ 8dVo ¼ 8. dA ¼ 4e1

(b) To½ � ¼
400 0 0

0 400 0

0 0 400

2
4

3
5MPa; to ¼ 400e1 MPa; t ¼ 100e1 MPa:

(c) ~T
� � ¼ 200 0 0

0 200 0

0 0 200

2
4

3
5MPa; ~t ¼ 200e1 MPa; d~f ¼ 200e1.
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CHAPTER 5
5.3 EY=l ! 0; m ! EY=3.

5.4 m ¼ EY

2 1þ nð Þ ; k ¼ 2m 1þ nð Þ
3 1� 2nð Þ.

5.9 l ¼ 81:7 GPa 11:8� 106psi
� �

; m ¼ 38:4 GPa 5:56� 106psi
� �

; k ¼ 107:3 GPa 15:6� 106psi
� �

.

5.10 n ¼ 0:27; l ¼ 89:1 GPa 12:9� 106psi
� �

; k ¼ 140 GPa 20:3� 106psi
� �

.

5.11 T½ � ¼
17:7 1:9 4:75
1:9 18:4 0

4:75 0 16:0

2
4

3
5MPa:

5.13 (a) E½ � ¼
0:483 0:253 0:380
0:253 �1:41 0

0:380 0 1:12

2
4

3
5� 10�3,

(b) e ¼ 0:193� 10�3; DV ¼ 24:1� 10�3cm3.

5.14 DV ¼ 2:96� 10�3:

5.17 (a) T11 ¼ T22 ¼ T33 ¼ 0; T12 ¼ T21 ¼ 2mkx3; T13 ¼ T31 ¼ mk 2x1 þ x2ð Þ; T23 ¼ T32 ¼ mk x1 � 2x2ð Þ.

5.19 (a) T½ � ¼ 2k
lx3 mx3 mx2
mx3 lx3 mx1
mx2 mx1 lþ 2mð Þx3

2
4

3
5.

5.21 For n ¼ 1=3; cL=cT ¼ 2; n ¼ 0:49; cL=cT ¼ 7:14; n ¼ 0:499; cL=cT ¼ 22:4.

5.24 (c) a ¼ 1;
(d) b ¼ np= 2ℓð Þ; n ¼ 1; 3; 5 . . .

5.25 (c) a ¼ 1;
(d) b ¼ np=ℓ; n ¼ 1; 2; 3 . . .

5.28 (d) b ¼ np=ℓ; n ¼ 1; 2; 3 . . .

5.30 (a) u1 ¼ 3e
5
sin

2p
ℓ
f

� �
; u2 ¼ 4e

5
sin

2p
ℓ
f

� �
; f x1; x2tð Þ ¼ 3x1

5
þ 4x2

5
� cLt� �

	 

.

5.32 (a) a2 ¼ a3 ¼ 0, e2 ¼ e1, and (b) a3 ¼ 31:17o; e2 ¼ 0:742e1; e3 ¼ 0:503e1.

5.35 (b) e3=e1 ¼ �sin 2a1=cos a1 � a3ð Þ; e2=e1 ¼ cos a1 þ a3ð Þ=cos a1 � a3ð Þ.

5.38 (a) u1 ¼ a cos
ox1
cL

þ tan
oℓ
cL

sin
ox1
cL

	 

cos ot;

(b) oℓ=cL ¼ np=2; n ¼ 1; 3; 5 . . .

5.40 (a) u3 ¼ a cos ox1=cTð Þ � cot oℓ=cTð Þsin ox1=cTð Þ½ �cos ot,
(b) o ¼ npcT=ℓ; n ¼ 1; 2; 3 . . .

5.42 (a) Tnð Þmax ¼ 71:4� 106N; Tsð Þmax ¼ 23:7� 106N; bð Þdℓ ¼ 1:39� 10�3m.
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5.44 (a) Tn ¼ s cos2 a; Ts ¼ s sin 2a=2,
(b) (i) a ¼ p=2; Ts ¼ Tn ¼ 0; and iið Þ a ¼ p=4; Ts ¼ Tn ¼ s=2;
(c) s � 2to=sin 2a.

5.46 (a) To
11 ¼ 2s=3; To

22 ¼ To
33 ¼ �s=3; To

12 ¼ To
13 ¼ To

23 ¼ 0;

(b) I1 ¼ 0; I2 ¼ �s2=3; I3 ¼ 2s3=27.

5.49 M1 ¼ Mtℓ2= ℓ1 þ ℓ2ð Þ; M2 ¼ Mtℓ1= ℓ1 þ ℓ2ð Þ.

5.51 Tnð Þmax ¼ ½sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4b2r2

q
�=2; Ts ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4b2r2

q
�=2; s ¼ P=A; b ¼ Mt=Ip.

5.53 (a) Mtð Þell= Mtð Þcir ¼ 2, (b) a 0
ell=a

0
cir ¼ 5=16.

5.54 (b) C ¼ a0=6a; (c) T12 ¼ 0; T13 ¼ 0 at all three corners; along x3 ¼ 0,

T12 ¼ 0; T13 ¼ ma0=2að Þ 2ax2 þ x22
� �

, (d) Ts ¼ 3a=2ð Þma0 at x2; x3ð Þ ¼ a; 0ð Þ.

5.57 Mt ¼ ma0

3

	 

2að Þ3 2bð Þ 1� 192

p5
a

b


 � X1
n¼1;3;5

1

n5
tan h

npb
2a

" #
.

5.60 Neutral axis in the direction of M2e2 þ I22=I33ð ÞM3e3.

5.63 (b) T11 ¼ 2a3; T12 ¼ �a2; T22 ¼ 2a1;
(c) x1 ¼ 0; t ¼ �2a3e1 þ a2e2; x1 ¼ b; t ¼ 2a3e1 � a2e2;
(d) T33 ¼ 2n a3 þ a1ð Þ; T13 ¼ T23 ¼ 0; Ei3 ¼ 0; E11 ¼ 2 1=EYð Þ 1� n2

� �
a3 � n 1þ nð Þa1

� �
,

(e) Ti3 ¼ 0; E13 ¼ E23 ¼ 0; E33 ¼ �2 n=EYð Þ a3 þ a1ð Þ; E11 ¼ 2 1=EYð Þ a3 � na1ð Þ.
5.66 (b) T11 ¼ 2ax1 þ 6x1x2; T22 ¼ 0; T12 ¼ �2ax2 � 3x22;

ðcÞ a ¼ �3c=2; ðdÞ tx1¼0 ¼ 3x2 x2 � cð Þe2; tx1¼b ¼ 3b 2x2 � cð Þe1 � 3x2 x2 � cð Þe2; tx2¼0 ¼ 0.

5.67 u1 ¼ Px21x2
2EYI

þ nPx32
6EYI

� Px32
6mI

	 

þ P

2mI

	 

h

2

	 
2

x2 � c1x2 þ c3.

5.69 (a) T12 ¼ 2Am
� lmcð Þcos h lmcf gsin h lmx2 þ sin h lmc lmx2 cos h lmx2ð Þ

sin h 2lmcþ 2lmc

� �
sin lmx1.

5.72 ur ¼ 1þ nð Þ
EY

�A

r
þ 2B 1� 2nð Þr ln r � Br þ 2C 1� 2nð Þr

� �
þ H sin yþ G cos y,

uy ¼ 1=EYð Þ 4Bry 1� nð Þ 1þ nð Þ½ � þ H cos y� G sin yþ Fr:

5.74 r; r�1; r3 and r ln r.

5.84 Trr ¼ � 1� 2nð Þz
R3

þ 3r2z

R5
; Tyy ¼ � 1� 2nð Þz

R3
; Trz ¼ 1� 2nð Þr

R3
þ 3rz2

R5

	 

,

Tzz ¼ 3z3

R5
þ 1� 2nð Þ z

R3
.

5.87 Txx ¼ � Fz

2p
3x2z

R5
� 1� 2nð Þz

R3
þ 1� 2nð Þ
R Rþ zð Þ �

1� 2nð Þ
R Rþ zð Þ

1

R

x2

Rþ zð Þ þ
x2

R2

� �� �
.
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5.88 Tzz ¼ qoz
3

r2o þ z2
� �3=2 � qo.

5.101 C11 ¼ 1

DE2E3

1� n32n23ð Þ; C12 ¼ 1

DE2E3

n21 þ n31n23ð Þ; C13 ¼ 1

DE2E3

n31 þ n21n32ð Þ,

C23 ¼ 1

DE1E3

n32 þ n31n12ð Þ; D ¼ 1� 2n13n21n32 � n13n31 � n23n32 � n21n12½ �
E1E2E3

.

5.112 Brr ¼ a=rð Þ2; Byy ¼ rcð Þ2; Bzz ¼ 1; Bry ¼ 0; Brz ¼ 0, Byz ¼ 0.

5.113 Brr ¼ l21; Bry ¼ Brz ¼ 0; Byy ¼ l21 þ rKð Þ2; Bzz ¼ l23; Bzy ¼ Byz ¼ l3rK.

CHAPTER 6

6.1 RB ¼ 5:1� 104N:

6.2 h ¼ 2:48m.

6.3 h2 ¼ r1h1 � r3h3ð Þ=r2.
6.5 (b) Fx ¼ g 2r2L

� �
. Fx is 2r/3 above the ground. Fy is 4r/3p left of the diameter.

6.6 p� pa ¼ rðgþ aÞh:
6.8 h ¼ aℓ=g.

6.10 h1 � h2 ¼ o2ðr21 � r22Þ=ð2gÞ.
6.12 (A) for n 6¼ 1; p n�1ð Þ=n ¼ p�1= n�1ð Þ

o po � fðn� 1Þ=ngrog z� zoð Þ½ �n= n�1ð Þ
.

(B) for n ¼ 1, p ¼ po exp �rop
�1=n
o g z� zoð Þ

h i
.

6.14 (b) Tn ¼ mk � p; T2
s ¼ 0, (c) any plane n1; 0; n3ð Þ and n1; n2; 0ð Þ.

6.16 (a) �Tnð Þ � p ¼ 44m=5; (b) Ts ¼ 8m=5.

6.20 (a) x2 ¼ a2; (b) x1 ¼ 1þ kX2t

1þ kX2to
X1 and x2 ¼ X2.

6.22 (a) x21 þ x22 ¼ a21 þ a22, (b) x21 þ x22 ¼ X2
1 þ X2

2, time history:

x1 ¼ X2 sin otþ X1 cos ot; x2 ¼ X2 cos ot� X1 sin ot.

6.23 (a) y ¼ yo, (b) y ¼ Y, time history: r2 ¼ R2 þ Qt=ðpÞ.
6.26 v ¼ ða=2mÞðx2d � x22Þ þ vox2=d; Q ¼ ad3=ð12mÞ þ vod

2=ð2dÞ.
6.27 mv ¼ rg sin y d � x2=2ð Þx2.

6.29 m1v
tð Þ ¼ �a

x22
2
� b

2

m2 � m1
m1 þ m2

	 

x2 � b2

m1
m1 þ m2

	 
� �
.

6.32 (b) v ¼ 1

4m
dp

dz
r2 þ a2 � b2ð Þ

ln b=að Þ ln r þ b2ln a� a2ln bð Þ
ln b=að Þ

� �
.
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6.34 A ¼ ba2b2=f2ða2 þ b2Þg; B ¼ �A.

6.36 wave length ¼
ffiffiffiffiffiffi
2p

p
=103 ¼ 2:51� 10�3m.

6.38 (b) A ¼ Qm=ð2pÞ.

6.40 Y ¼ � m3

12ka2
vo
d
þ a

2m

	 

d � 2x2ð Þ

� �4
þ Cx2 þ D.

D ¼ Yo þ m3

12ka2
vo
d
þ ad
2m

	 
4

.

6.42 Y ¼ � mB2

kr2
þ C ln r þ D; C ¼ r2o � r2i

r2i r
2
o

	 

mB2

k

	 
�
ln

ri
ro

	 

:

6.44 (b) T11 ¼ �pþ 2mk; T22 ¼ �p� 2mk; T33 ¼ �p; T12 ¼ T13 ¼ T23 ¼ 0;

(c) a1 ¼ k2x1; a2 ¼ k2x2; a3 ¼ 0, (d) p ¼ �ðr=2Þðv21 þ v22Þ þ po, (f) F ¼ 4mk2;
(h) the nonslip boundary condition at x2 ¼ 0 is not satisfied for a viscous fluid.

6.46 Ans. B ¼ � 1=mð Þ @p=@x1ð Þx2e3.

6.48 (c)
dy

dx

	 

’¼constant

dy

dx

	 

c¼constant

¼ �1: (d) B ¼ � @2c
@y2

þ @2c
@x2

	 

ez.

6.49
@2c
@y2

þ @2c
@x2

¼ 0.

6.51 Q ¼ A1A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p1 � p2ð Þ � rgh½ �= r A2

1 � A2
2

� �� �q
:

CHAPTER 7

7.1

ð
v � ndS ¼

ð
div vdV ¼ 16.

7.3

ð
div vdV ¼

ð
v � ndS ¼ 64p.

7.9 (b) m ¼ 3roe
�a t�toð ÞA; dm=dt ¼ �3aroe

�a t�toð ÞA.

7.11 (b) m ¼ kAro ln 3; dm=dt ¼ 0.

7.14 (a)
dP

dt
¼ � 9

2
a2Aroe

�a t�toð Þe1; (b) 9Aroa
2e�a t�toð Þ, (c) F ¼ 9

2
Aroa

2e�a t�toð Þe1.

7.15 (a) P ¼ 2rokaAe1; (b) 2kroAa
2; (c) F ¼ 2kroAa

2e1.

7.17 ðrC2pr6o=3Þe1; ðprC2r6o=4Þe1.

7.19 gx ¼ x
d2x

dt2
þ dx

dt

	 
2

.
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7.21 Force from water to the bend is Fw ¼ 1100e1 � 282e2N:

7.22 rAv2o e1.

7.24 Force on the vane is Fvane ¼ rA vo � vð Þ2 1� cos yð Þe1 � sin ye2½ �.

CHAPTER 8

8.3 S ¼ Geþ �
de
dt

; S=eo ¼ GHðtÞ þ �dðtÞ.

8.4 (b)
S

eo
¼ �2oG

ð� þ �oÞ2
e

�Gt
�þ�o þ ��o

ð� þ �oÞ
dðtÞ.

8.5 S12 ¼ mvoð1� e�t=lÞ.

8.8 G 0 ¼
ð1

l¼o

l2o2H lð Þ
l 1þ l2o2
� � dl; G00 ¼

ð1
l¼o

loH lð Þ
l 1þ l2o2
� � dl .

8.11 (b) Ct½ � ¼
1 0 0

0 1 0

0 0 1

2
4

3
5þ

0 k 0

k 0 0

0 0 0

2
4

3
5 t� tð Þ þ

2k2 0 0

0 0 0

0 0 0

2
4

3
5 t� tð Þ2

2
; k 	 dv=dx1.

8.12 (b) Ct½ � ¼
e�2k t�tð Þ 0 0

0 e2k t�tð Þ 0

0 0 1

2
4

3
5 ¼

I½ � þ t� tð Þ
�2k 0 0

0 2k 0

0 0 0

2
4

3
5þ

4k2 0 0

0 4k2 0

0 0 0

2
4

3
5 t� tð Þ2

2
þ

�8k3 0 0

0 8k3 0

0 0 0

2
4

3
5 t� tð Þ3

3!
þ . . . :

8.13 (b) Ct½ � ¼
e2k t�tð Þ 0 0

0 e2k t�tð Þ 0

0 0 e�4k t�tð Þ

2
4

3
5 ¼ I½ � þ t� tð Þ

2k 0 0

0 2k 0

0 0 �4k

2
4

3
5

þ
4k2 0 0

0 4k2 0

0 0 16k2

2
4

3
5 t� tð Þ2

2
þ

8k3 0 0

0 8k3 0

0 0 �64k3

2
4

3
5 t� tð Þ3

3!
þ . . . :

8.14 (a) x 0 ¼ x1 cos h k t� tð Þ þ x2 sin h k t� tð Þ; x 0 ¼ x1 sin h k t� tð Þ þ x2 cos h k t� tð Þ,

(b) Ct½ � ¼
cos h2fk t� tð Þg þ sin h2fk t� tð Þg sin hf2k t� tð Þg 0

sin hf2k t� tð Þg sin h2fk t� tð Þg þ cos h2fk t� tð Þg 0

0 0 1

2
64

3
75

¼ I½ � þ
0 2k 0

2k 0 0

0 0 0

2
4

3
5 t� tð Þ þ

4k2 0 0

0 4k2 0

0 0 0

2
4

3
5 t� tð Þ2

2
þ

0 8k3 0

8k3 0 0

0 0 0

2
4

3
5 t� tð Þ3

6
þ . . . :
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8.20 (a) A1½ � ¼
0 k rð Þ 0

k rð Þ 0 0

0 0 0

2
4

3
5; k ¼ dv

dr
� v rð Þ

r

	 

.

(b) rA1ð Þrry ¼ � 2k

r
; rA1ð Þryy ¼ 0; rA1ð Þrzy ¼ 0; rA1ð Þyry ¼ 0;

rA1ð Þyyy ¼
2k

r
; rA1ð Þyzy ¼ 0; rA1ð Þzry ¼ 0; rA1ð Þzyy ¼ 0; rA1ð Þzzy ¼ 0.

(c) A2 ¼
2k2 0 0

0 0 0

0 0 0

2
4

3
5.

8.23 m 	 S12
k

¼ �
ð1
0

sf2 sð Þd; s1 ¼ S11 � S22 ¼ �k2
ð1
0

s2f2 sð Þds; s2 ¼ S22 � S33 ¼ 0.

8.27 (a) Corotational stress rate is: T
∘h i

¼ mk2 0

0 �mk2

� �
;

(c) T
∘ ¼ mk2

cos 2otð Þ sin 2otð Þ
sin 2otð Þ �cos 2otð Þ

� �
; (d) T

∘
*

h i
¼ Q½ � T∘

h i
Q½ �T .

8.28 (b) The corotational derivative of T: rk v22 � v21
� �

I.

8.30 T½ � ¼ �p I½ � þ f1 k2=4; 0
� � 0 k=2 0

k=2 0 0

0 0 0

2
4

3
5þ f2 k2=4; 0

� � k2=4 0 0

0 k2=4 0

0 0 0

2
4

3
5.

8.36 S12 ¼ mk
AðkÞ ; s1 	 S11� S22 ¼ 2lmk2

AðkÞ ; s2 ¼ S22� S33 ¼�lmk2 1þ að Þ
AðkÞ ; AðkÞ ¼ 1þ 1� a2

� �
lkð Þ2

h i
.

8.37 � kð Þ ¼ S12=k ¼ m; s1 ¼ T11 � T22 ¼ 2mk2 l1 � l2ð Þ; s1 ¼ T22 � T33 ¼ 0.

8.38 � kð Þ ¼ S12
k

¼ m 1þ l2mok
2ð Þ

1þ l1mok2ð Þ ; s1 ¼ T11 � T22 ¼ 2mk2 l1 � l2ð Þ
1þ l1mok2ð Þ ; s2 ¼ T22 � T33 ¼ 0.

8.40 (a) Szr ¼ t kð Þ; Szz � Srr ¼ s1 kð Þ; Srr � Syy ¼ s2 kð Þ; Szy ¼ Sry ¼ 0.
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Note: Page numbers followed by f indicates figures and t indicates tables.

A
Acceleration of particle

in cylindrical coordinates, 77

in rectangular Cartesian coordinates, 76

in spherical coordinates, 78

Acoustic wave, Newtonian fluids

barotropic, 393

fluid impedance, 396

local speed of sound, 394

Adherence condition, 365

Airy stress function, 251, 270–274

Anisotropic linearly elastic solid

constitutive equation

anisotropic linearly elastic solid, 319–321

isotropic linearly elastic solid, 207–209

monoclinic linearly elastic solid, 322–324

orthotropic linearly elastic solid, 324–325

transversely isotropic linearly elastic material, 325–327

engineering constants

isotropic linearly elastic solid, 328

monoclinic linearly elastic solid, 332–333

orthotropic linearly elastic solid, 330–331

transversely isotropic linearly elastic solid, 329–330

material symmetry plane, 321–322

Antisymmetric tensors

definition of, 32

dual vector of, 32–34

B
Bernoulli’s equations, 383

BKZ model, 480

Boundary layer concepts, 388–389

Bulk modulus, 203, 211

Bulk viscosity, 359

C
Cauchy stress tensor see Stress tensor

Cauchy-Green deformation tensor, 337, 476

Cauchy’s equations of motion, 169

Cauchy’s stress principle, 156

Compliance matrix, 320

Compressible newtonian fluid, 389–390

Conservation of energy, 184

principle of, 433–435

supersonic one-dimensional flow, 434

Conservation of mass

linear momentum, 421–422

principle of, 420–422

Constitutive equations, 2

anisotropic linearly elastic solid, 319–321

isotropic elastic solid

elastic medium, 338–340

isotropic elastic medium, 340–342

isotropic linearly elastic solid, 207–209

monoclinic linearly elastic solid, 322–324

orthotropic linearly elastic solid, 324–325

transversely isotropic linearly elastic material,

325–327

Continuum mechanics

constitutive equations of, 2

general principles of, 1–2

Continuum theory, 1

Corotational derivative, 483–484

Couette flow, 374–375

Curvilinear coordinates

cylindrical coordinates, 60–61

polar coordinates, 55–59

spherical coordinates, 62–67

Cylindrical coordinates, 504

and spherical coordinates, 170–171

D
Deformation, kinematics of continuum

change of area, 129–130

change of volume, 131–132

gradient, 419

cylindrical and spherical coordinates, 88

definition, 105–107

rectangular coordinates, 87

stretch and rotation tensors calculation, 112–114

tensor deformation components

cylindrical coordinates, 132–138

spherical coordinates, 139–140

Dilatational waves, 219

Displacement field, 81–82

Dissipation functions, Newtonian fluids

compressible, 377

incompressible, 376–377

stress working, or stress power, 376

Divergence of tensor field, 51–52



Divergence theorem

Cartesian components, 414–415

stress vector, 415

total power, 416

Dummy index, 3

E
Einstein’s summation convention, 3

Elastic solid materials

homogenous and inhomogenous properties, 203

mechanical properties

bulk modulus, 203

load-elongation diagram, 202, 202f

shear modulus, 203

tensile test, 203

Young’s modulus, 202

Elasticity tensor, 204

Elastostatic problems

Boussinesq problem, 293–295

elastic half-space surface

axisymmetric smooth indenter, 302–304, 306–309

distributive normal load, 296–297

flat-ended indenter, 304

rigid flat-ended smooth indenter, 300–301

smooth rigid sphere, 304–306

hollow sphere, 297–298

Kelvin problem, 290–291

potential functions, 279–289

spherical hole in tensile field, 298–300

Engineering constants

isotropic linearly elastic solid, 328

monoclinic linearly elastic solid, 332–333

orthotropic linearly elastic solid, 330–331

transversely isotropic linearly elastic solid, 329–330

Entropy inequality, 435

Helmholtz energy function, 186–187

law, 185

Eulerian description, 72

Eulerian strain tensor, 125–129

Euler’s equations, 382

F
Finger deformation tensor, 122–125

First coefficient viscosity, 359

First Piola Kirchhoff, 175

First Piola-Kirchhoff and Cauchy stress tensor relations, 175

G
Generalized shear modulus, 344

Green’s deformation tensor, 114–118

Green’s theorem

area integral, 413

boundary curve of, 411–413

H
Hagen-Poiseuille flow, 371–372

Helmholtz energy function, entropy inequality, 186–187

Hookean elastic solid materials see Linearly elastic

solid materials

Hugoniot equation, 399

Hydrostatic state of stress, 211

I
Idealized materials, 2

Identity tensors

Cartesian components of, 21

definition of, 20

Incompressible fluids

Navier-Stokes equations

cylindrical coordinates, 364

parallel flow or unidirectional flow, 361

piezometric head, 362–363

spherical coordinates, 364–365

plane Couette flow, 372–374

vorticity transport equation, 385–388

Incompressible hyperelastic isotropic solid, 342

Incompressible Newtonian fluid, 359–360

Incompressible simple fluid, viscometric flow

channel flow

Newtonian fluid, 497

volume flux per unit width, 496

Couette flow

compressive stress, 499–500

material function, 500

velocity and stress distribution, 498

gradient of second-order tensor, 501–505

stresses, 493–495

Indeterminate pressure, 359

Indicial notation, in tensors

Einstein’s summation convention and dummy indices, 3

free indices, 4

Kronecker delta, 5

manipulations, 7

permutation symbol, 6

Infinitesimal deformation

deformation gradient, 85

displacement gradient, 84–85

Lagrange strain tensor, 87

right Cauchy-Green deformation tensor, 85–87

Infinitesimal rotation tensor, 94–95

Infinitesimal strain tensor

diagonal elements, 88

off diagonal elements, 89

Interpretation of l and m, Newtonian fluid

first coefficient viscosity, 359

second coefficient viscosity, 359

stokes assumption, 359
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Inviscid incompressible fluid

barotropic flow, 395

isentropic irrotational flows, 397

Mach number, 398

Irrotational flow

inviscid incompressible fluid

Bernoulli’s equations, 383

Euler’s equation of motion, 382

Torricelli’s formula, 384

Navier-Stokes equation solutions, 384–385

Isotropic elastic solid, large deformation

bending of, rectangular bar, 344–347

change of frames

objective scalar, 334

objective tensor, 335

objective vector, 334

constitutive equation

elastic medium, 338–340

isotropic elastic medium, 340–342

simple extension, 342

simple shear deformation, 343

torsion and tension, 347–349

Isotropic linearly elastic solid materials

constitutive equations for, 208

elastostatic problems

Boussinesq problem, 293–295

hollow sphere, 297–298

Kelvin problem, 289–292

potential functions, 279–289

spherical hole in tensile field, 298–300

elastostatic problems, elastic half-space surface

axisymmetric smooth indenter, 302–304, 306–309

distributive normal load, 296–297

rigid flat-ended smooth indenter, 300–301

smooth rigid sphere, 304–306

infinitesimal theory of elasticity, 213–215

isotropic tensor, 207–208

Navier’s equations

cylindrical coordinates, 216–217

of motion for elastic medium, 215–216

spherical coordinates, 217–218

plane elastic waves

infinite plate vibration, 229–231

plane equivoluminal waves, 221–225

plane irrotational waves, 218–221

reflection of, 225–228

plane stress and strain solutions

Airy stress function, 251

cantilever beam with end load, 255–258

curved beam bending, 268–269

Flamont problem, 278–279

rectangular beam bent by end couples, 253–254

simple radial distribution, 277–278

simply supported beam, 258–259

slender bar, 260–262

strain conversion, 262–263

strain solutions, 250–253

stress concentration due to small circular hole in plate,

274–275, 276–277

stress problem, 254–255

symmetrical stress distribution, 265–267

thick-walled circular cylinder, 267–268

two dimensional problems, 264

simple bending of beam, 247–250

definition, 247

flexural stress, 249

simple extension

St. Venant’s principle, 234

three-dimensional elastostatic problems, 231–234

stress components

bulk modulus, 211

hydrostatic state of stress, 211

Lamé’s constants, 208

modulus of elasticity, 210

Poisson’s ratio, 210

shear modulus, 211

simple shear stress state, 211

uniaxial stress state, 210

superposition principle, 218

torsion

of circular cylinder, 234–239

of elliptical bar, 240–242

of noncircular cylinder, 239

Prandtl’s formulation, 242–245

of rectangular bar, 245–247

Isotropic tensor-valued function, 349–351

J
Jaumann derivative, 483–484

K
Kinematics of continuum

acceleration of particle

in cylindrical coordinates, 77

in rectangular Cartesian coordinates, 76

in spherical coordinates, 78

compatibility conditions

infinitesimal strain components, 101–105

rate of deformation components, 105

conservation of mass equation, 99–101

current configuration as reference configuration, 140–141

deformation

change of area, 129–130

change of volume, 131–132

deformation gradient

cylindrical and spherical coordinates, 88

definition, 105–107

rectangular coordinates, 87

stretch and rotation tensors calculation, 112–114

Index 515



Kinematics of continuum (Continued)

dilatation, 94

displacement field, 81–82

Eulerian strain tensor, 125–129

finite deformation, 107–109

infinitesimal deformation

deformation gradient, 85

displacement gradient, 84–85

Lagrange strain tensor, 87

right Cauchy-Green deformation tensor, 85–87

infinitesimal rotation tensor, 94–95

infinitesimal strain tensor

diagonal elements, 88

off diagonal elements, 89

kinematic equation for rigid body motion, 82–83

Lagrangian strain tensor, 119–122

left Cauchy-Green deformation tensor, 122–125

local rigid body motion, 107

material and spatial descriptions, 72–74

material derivative, 74–76

motions of continuum

description of, 69–72

material coordinates, 70

simple shearing motion, 70–72

polar decomposition theorem, 110–112

positive definite root, 143–145

positive definite symmetric tensors, 144

principal strain, 93

rate of deformation tensor, 96–99

right Cauchy-Green deformation tensor, 114–118

spin tensor and angular velocity vector, 99

strain compatibility, 141–143

tensor deformation components

cylindrical coordinates, 132–138

spherical coordinates

time rate of change of material element, 95–96

Kronecker delta, definition, 5

L
Lagrangean description, 72

Lagrangian strain tensor, 119–122

Lagrangian stress tensor, 175

Lamé’s constants, 208

Linear Maxwell fluid, non-Newtonian fluids

with continuous relaxation spectrum, 452–454

creep experiment, 444

with discrete relaxation spectra, 451–452

Maxwell element, 444

phase angle, 450

with relaxation spectra, 455–456

relaxation spectrum and relaxation function, 454–455

shear stress, 448–450

storage and loss modulus, 454

stress field, 445

stress relaxation experiment, 444

synovial fluid, 455

Linear momentum

boundary layer flow, 427

force per unit width, 427

homogeneous rope, 424–426

Piola-Kirchhoff stress tensor, 423

principle of, 168–170, 422–427

total resultant force, 425–426

volume flow rate, 425

Linear viscoelastic fluid, 444

Linearly elastic solid materials, 204

Elasticity tensor, 204

strain energy function, 205

Linearly viscous fluid see Newtonian fluids

M
Material coordinates, 70

Maximum shearing stresses

determination cases

T1=T26¼T3, 192

T1=T2=T3=T, 191

T2=T36¼T1, 192

T3=T16¼T2, 193

Ti s are distinct, 193

Lagrange multiplier, 164

state of plane stress, 166

Maxwell element, 444

Mechanics, general principles

conservation of energy, 190

conservation of mass, 187–188

divergence theorem, 188

entropy inequality, 186–187

linear momentum, 188

moment of momentum, 189

Modulus of elasticity, 202

Monoclinic material, 322

N
Navier-Stokes equations, incompressible fluids

cylindrical coordinates, 364

parallel flow or unidirectional flow, 361

piezometric head, 362–363

spherical coordinates, 364–365

Newtonian fluids

acoustic wave

barotropic, 393

fluid impedance, 395

local speed of sound, 394

boundary conditions, 365

compressible and incompressible fluids, 354

Couette flow, 374–375

definition of fluid, 353

dissipation functions
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compressible, 377

incompressible, 376–377

stress working/stress power, 376

energy equation, 378–379

energy equation enthalpy, 390–392

Hagen-Poiseuille flow, 371–372

hydrostatic pressure, 354

interpretation of l and m
first coefficient viscosity, 359

second coefficient viscosity, 359

stokes assumption, 359

inviscid incompressible fluid

Bernoulli’s equations, 383

Euler’s equation of motion, 382

Torricelli’s formula, 384

irrotational flow, 381–382

laminar and turbulent flow, 367–368

Navier-Stokes equations, 360–363

oscillating plane, 375–376

pathline, 366–367

plane Couette flow, 368

plane Poiseuille flow, 368–370

pressure-flow relation, 401–403

rate of deformation, 358

shear stress, 356

solutions of navier-stokes equation solutions, 384–385

steady and unsteady flow, 367

steady flow of a compressible fluid

choked flow, 401

convergent-divergent nozzle case, 402

divergent (convergent) nozzle case, 400–401

streamline, 365–366

viscous stress tensor, 358

vorticity vector, 379–381

Non-Newtonian fluids

linear Maxwell fluid

with continuous relaxation spectrum, 452–454

creep experiment, 445

with discrete relaxation spectra, 451–452

Maxwell element, 444

phase angle, 450

with relaxation spectra, 455–456

relaxation spectrum and relaxation function, 454–455

storage and loss modulus, 454

stress field, 445

stress relaxation experiment, 444

synovial fluid, 455

nonlinear viscoelastic fluid

BKZ model, 480

Cauchy-Green deformation tensor, 476

convected Maxwell fluid, 488–489

corotational derivative, 483–484

corotational Jeffrey fluid, 489–490

current configuration, 455–457

cylindrical coordinates, 461–462

differential-type equations, incompressible fluids, 481–483

incompressible simple fluid, 474–475

single integral-type nonlinear equations, 478–480

objective rate of stress, 483–487

Oldroyd 3-constant fluid, 490

Oldroyd 4-constant fluid, 490–491

Oldroyd derivative

lower convected, 484–485

upper convected, 486–487

rate-type constitutive equations, 487–491

rectangular coordinates, 460–461

relative deformation gradient, 457–458

relative deformation tensors, 459–460

Rivlin-Ericksen incompressible fluid of complexity, 481

Nonslip condition, 365

O
Oldroyd derivative, non-Newtonian fluids

lower convected, 484–485

upper convected, 486–487

Orthogonal tensors, 22–24

Orthotropic elastic material, 324–325

P
Permutation symbol, 6

Piola-Kirchhoff stress tensors, 338, 339, 423–424

deformed configuration, 177

equilibrium configuration, 177

first law, 175

second law, 176

stress power, 181–183

Plane Couette flow, 368

Plane elastic waves

infinite plate vibration, 229–231

plane equivoluminal waves, 221–225

plane irrotational waves

definition of, 219

elastodynamic problems, 218

reflection of

critical angle, 228

experimental study, 225–227

refraction index, 228

Plane Poiseuille flow, 368–370

Plane stress and strain solutions

Airy stress function, 251, 270–274

cantilever beam with end load, 255–258

curved beam bending, 268–269

Flamont problem, 278–279

rectangular beam bent by end couples, 253–254

simple radial distribution, 277–278

simply supported beam, 258–259

slender bar, 260–262

strain conversion, 262–263

strain solutions, 250–253
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Plane stress and strain solutions (Continued)

stress concentration, small circular hole in plate

under pure shear, 276–277

under tension, 274–275

stress problem

approximations and assumptions, 254–255

consequences of, 255

in welded ring, 270

symmetrical stress distribution

about an axis, 265

in plane stress solution, 265–267

thick-walled circular cylinder, 267–268

two dimensional problems, 264

Poisson’s ratio, 210

Polar decomposition theorem, 109–112

Principal scalar invariants, 40–41

Principal strain, 93

R
Real symmetric tensors

matrix of, 39–40

principal values and principal directions of, 38–39

Recursive formula see Rivlin-Ericksen tensors

Reference description, 72

Relative deformation gradient, 457–458

Relative deformation tensor, 460–463

Reynolds number, 367–368

Reynolds transport theorem

conservation of energy

principle of, 433–435

supersonic one-dimensional flow, 434

conservation of mass

linear momentum, 421–422

principle of, 420–422

divergence theorem

Cartesian components, 414–415

stress tensor field, 415

total power, 416

Green’s theorem, 411–413

area integral, 413

boundary curve of, 411–413

integrals over control and material volumes

density field, 417

material volume and the rate of change, 417–418

linear momentum

boundary layer flow, 426

force per unit width, 427

homogeneous rope, 424–426

Piola-Kirchhoff stress tensor, 423

principle of, 422–427

total resultant force, 425–426

volume flow rate, 425

moment of momentum

principle of, 430–432

sprinkler arms, 432

moving frames

control volume fixed, 430

momentum principle, 428–430

Rivlin-Ericksen tensors

axisymmetric velocity field, 464–465

BKZ model, 480

Cauchy-Green deformation tensor, 476

convected Maxwell fluid, 488–489

corotational derivative, 483–484

corotational Jeffrey fluid, 489–490

differential-type equations, incompressible fluids, 483–484

incompressible fluid of complexity, 481

incompressible simple fluid, 474–475

objective rate of stress, 483–487

Oldroyd 3-constant fluid, 490

Oldroyd 4-constant fluid, 490–491

Oldroyd derivative

lower convected, 484–485

upper convected, 486–487

rate-type constitutive equations, 487–491

recursive formula, 468–470

second-order fluid

simple shearing flow, 482

stress components, 482–483

single integral-type nonlinear equations, 475–480

Tanner and Simmons model fluid, 477

transformation law, 471–473

velocity gradient and deformation gradient, 471

Rivlin’s universal relation, 349

S
Scalar function, in tensors

Laplacian of scalar field, 53

scalar field and gradient, 47–50

tensor-valued function, 45–47

Second coefficient viscosity, 359

Second law of thermodynamics see Entropy inequality

Second-order fluid, 481–483

Shear modulus, 203, 211

Shear wave, 221

Shearing stresses, 158

Simple extension

isotropic elastic solid under large deformation, 342

isotropic linearly elastic solid materials

St. Venant’s principle, 234

three-dimensional elastostatic problems, 231–234

Simple shear stress state, 211

Single integral-type nonlinear constitutive equations, 475–478

Spatial coordinates, 72

Spatial description, 72

Spherical coordinates, 462–463

Steady flow, compressible fluid

choked flow, 402
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convergent-divergent nozzle case, 402

Stiffness matrix

definition, 319–320

positive definite matrix, 320

Strain energy function

definition of, 205

in thermoelastic theory, 206

Stress and integral formulations

Cauchy’s equations of motion, 169

Cauchy’s stress principle, 156

conservation of energy statement, 184

cylindrical and spherical coordinates, 170–171

determination, maximum shearing stress

T1=T26¼T3, 192

T1=T2=T3=T, 191

T2=T36¼T1, 192

T3=T16¼T2, 193

Ti s are distinct, 193

energy equation, 184

entropy inequality

Helmholtz energy function, 186–187

law, 185

equations of motion, reference configuration, 179–180

maximum shearing stresses

Lagrange multiplier, 164

state of plane stress, 166

mechanics, general principles

conservation of energy, 190

conservation of mass, 187–188

divergence theorem, 188

entropy inequality, 190–191

linear momentum, 188

moment of momentum, 189

principal stresses, 161

principle of linear momentum, 168–170

rate of heat flow, 183–184

stress power, 180–181

stress tensor, 156–157

stress vector, 155–156

surface tractions, 171

Stress power, 180–181

Stress tensor

boundary condition for, 171–174

components of, 158–159

hydrostatic state of stress, 160

Piola Kirchhoff equations

deformed configuration, 177

equilibrium configuration, 177

first law, 175

second law, 176

stress power, 181–183

symmetry of, 159–161

Stress vector, 155–156

Symmetric tensors, 31–32, 434

Synovial fluid, 455

T
Tanner and Simmons model fluid, 477

Tensile and compressive stresses, 158

Tensor calculus

divergence of tensor field, 51–52

scalar function

Laplacian of scalar field, 53

scalar field and gradient, 47–50

tensor-valued function, 45–47

vector function

curl of vector field, 52–53

Laplacian of vector field, 53–54

vector field and gradient, 50–51

Tensor deformation components

cylindrical coordinates, 132–138

Tensors

components of, 11

curvilinear coordinates

cylindrical coordinates, 60–61

polar coordinates, 55–59

spherical coordinates, 62–67

dyadic product of vectors, 19–20

eigenvalues and eigenvectors of, 34–38

identity tensor

Cartesian components of, 21

definition of, 20

indicial notation

Einstein’s summation convention and dummy indices, 16

free indices, 4

Kronecker delta, 5

manipulations, 7

permutation symbol, 6

linear transformation, 9

orthogonal tensor, 22–24

principal scalar invariants, 40–41

product of two tensors, 16–18

real symmetric tensors

matrix of, 39–40

principal values and principal directions of, 38–39

sum of, 16

symmetric and antisymmetric tensors, 31–32

trace of, 20

transformation laws

addition rule, 30

multiplication rule, 30

quotient rule, 31

transformation matrix, 24–26

transformed vector components, 14–16

transpose of, 18–19

Torricelli’s formula, 384

Torsion

of circular cylinder, 234–239

of elliptical bar, 240–242

of incompressible isotropic solid cylinder, 347–349
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Torsion (Continued)

of noncircular cylinder, 239–240

Prandtl’s formulation, 242–245

of rectangular bar, 245–247

Transformation laws

Cartesian components

of tensor, 27–29

of vector, 26–27

Cauchy-Green deformation tensor, 337

relative deformation tensors, 471–473

Rivlin-Ericksen tensors, 474

by tensors

addition rule, 30

multiplication rule, 30

quotient rule, 31

Transversely isotropic material, 325

Two-dimensional flows case, vorticity transport equation, 385–388

U
Uniaxial stress state, 210

V
Vector function, in tensors

curl of vector field, 52–53

Laplacian of vector field, 53–54

vector field and gradient, 50–51

Velocity gradient and deformation gradient, 471

Viscometric flow, incompressible simple fluid

channel flow, 493–495

Newtonian fluid, 497

volume flux per unit width, 496

Couette flow, 497–501

material function, 500

velocity and stress distribution, 498

gradient of second-order tensor, 501–505

stresses, 493–495

Vorticity vector, 379–381

Y
Young’s modulus, 202, 210
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