E hﬂﬁ ﬂfzﬂzﬂ: :ﬂ:]{mPL N
flllo §E

B

FOU
f
HHHHHHHHH



Butterworth-Heinemann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2010, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (444) 1865 843830, fax: (+44) 1865 853333,
email: permissions@elsevier.com. You may also complete your request online

via the Elsevier homepage (http://www.elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-7506-8560-3

For information on all Butterworth—Heinemann publications,
visit our web site at: www.elsevierdirect.com

Printed in the United States of America
09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID oo Foundation



mailto:permissions@elsevier.com
http://www.elsevier.com
http://www.elsevierdirect.com

Preface to the Fourth Edition

The first as well as the second (SI/Metric) editions of this book, published in 1974 and 1978, respectively,
were prepared for use as a text for an undergraduate course in continuum mechanics. The third edition,
published in 1994, broadened the coverage of the earlier editions so that it could be used as a text for a
one- or two-semester graduate course in continuum mechanics. In this fourth edition, the coverage is further
broadened so that it may be used as a text for a one- or two-semester graduate course in either continuum
mechanics or theory of elasticity. In the following, we list the additions and changes to the third edition:

m Seven new appendices are included in this new edition: (1) derivation of the necessary and sufficient condi-
tions for strain compatibility, (2) on positive definite symmetric tensors, (3) on the positive definite roots of
[U]2 = a positive definite diagonal matrix, (4) determination of maximum shearing stress and the planes on
which it acts, (5) representation of isotropic tensor-valued function, (6) on the solution of an integral equation,
related to the indentation problem in elasticity, and (7) derivation of the components of the gradient of a sec-
ond-order tensor in cylindrical and spherical coordinates. We expect that readers of this text are familiar with
matrices; therefore, the appendix on matrices, which was in the older editions, has been eliminated.

m The title of Chapter 4 has been changed to “Stresses and Integral Formulations of General Principles.” The
last section of this chapter, after the subject of stresses is concluded, is devoted to the integral formulation
of the field equations. The purpose of this additional section is twofold: (1) to provide an alternate approach
to the formulation of field equations, and (2) to put all field equations in one place for easy reference before
specific constitutive models are discussed. This approach is favored by several reviewers of the current
edition; the authors are indebted to their suggestions. The title of Chapter 7 has been changed to “The
Reynolds Theorem and Applications.”

m In the chapter on elasticity (Chapter 5), there are now 18 sections on plane strain and plane stress problems in
this edition, compared to five in the third edition. In addition, Prandtl’s formulation of the torsion problem is
now included in the text rather than in the problems. Furthermore, nine new sections on the potential function
approach to the solutions of three-dimensional elastostatic problems, such as the Kelvin problem, the Boussi-
nesq problem, and the indentation problems, have been added. Selected potential functions and the stress field
and strain field they generated are given in examples (rather than in tabulated form) from pedagogical consid-
erations. That is, most examples are designed to lead students to complete the derivations rather than simply go
to a table. This approach is consistent with our approach since the first edition—that one can cover advanced
topics in an elementary way using examples that go from simple to complex.

m Invariant definitions of the Laplacian of a scalar function and of a vector function have been added to Part
D of Chapter 2, including detail derivations of their components in cylindrical and spherical coordinates.
Components of the gradient of a second-order tensor, which is a third-order tensor, are derived in an appen-
dix in Chapter 8 for these two coordinate systems. With these additions, the text is self-sufficient insofar as
obtaining, in cylindrical coordinates and spherical coordinates, all the mathematical expressions and
equations used in this text (e.g., material derivatives, divergence of the stress tensor, Navier-Stokes
equations, scalar and vector potential functions, Rivlin-Ericksen tensors, and so on). Although all these
results can be obtained very elegantly using a generalized tensor approach, there are definite merits in
deriving them using basic vector operations, particularly when only cylindrical and spherical coordinates
are of interest.
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= Some problems and examples in the previous editions have been revised or eliminated from this edition.
There are about 10% more problems and examples in this new edition.

m For instructors using this text in a university course, an instructor’s solutions manual is available by
registering at the publisher’s Website, www.textbooks.elsevier.com.

The authors would like to acknowledge, with thanks, our receipt of a grant from the Elsevier Publishing
Company, which has encouraged us to undertake this task resulting in this fourth edition. We also want to thank
Professor Gerard Artesian of Columbia University, Professor William C. Van Buskirk of the New
Jersey Institute of Technology, Professor Rebecca Dupaix of Ohio State University, Professor Mark Kachanov
of Tufts University, and Professor David Nicholson of the University of Central Florida for their valuable
suggestions for this edition.

W. Michael Lai
David Rubin
Erhard Krempl
January 2009
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CHAPTER

Introduction

INTRODUCTION

Matter is formed of molecules, which in turn consist of atoms and subatomic particles. Thus, matter is not
continuous. However, there are many aspects of everyday experience regarding the behaviors of materials,
such as the deflection of a structure under loads, the rate of discharge of water in a pipe under a pressure gra-
dient, or the drag force experienced by a body moving in the air, that can be described and predicted with
theories that pay no attention to the molecular structure of materials. The theory that aims to describe relation-
ships among gross phenomena, neglecting the structure of material on a smaller scale, is known as continuum
theory. The continuum theory regards matter as indefinitely divisible. Thus, within this theory, one accepts
the idea of an infinitesimal volume of materials, referred to as a particle in the continuum, and in every neigh-
borhood of a particle there are always neighboring particles.

Whether the continuum theory is justified or not depends on the given situation. For example, although the
continuum approach adequately describes the behaviors of real materials in many circumstances, it does not
yield results that are in accord with experimental observations in the propagation of waves of extremely small
wavelength. On the other hand, a rarefied gas may be adequately described by a continuum in certain circum-
stances. At any rate, it is misleading to justify the continuum approach on the basis of the number of mole-
cules in a given volume. After all, an infinitesimal volume in the limit contains no molecules at all. Neither is
it necessary to infer that quantities occurring in a continuum theory must be interpreted as certain particular
statistical averages. In fact, it has been known that the same continuum equations can be arrived at by differ-
ent hypotheses about the molecular structure and definitions of gross variables. Though molecular-statistical
theory, whenever available, does enhance understanding of the continuum theory, the point to be made is sim-
ply that whether the continuum theory is justified in a given situation is a matter of experimental test and of
philosophy. Suffice it to say that more than 200 years of experience have justified such a theory in a wide
variety of situations.

WHAT IS CONTINUUM MECHANICS?

Continuum mechanics studies the response of materials to different loading conditions. Its subject matter can
be divided into two main parts: (1) general principles common to all media and (2) constitutive equations
defining idealized materials. The general principles are axioms considered to be self-evident from our expe-
rience with the physical world, such as conservation of mass; the balance of linear momentum, moment of

Copyright © 2010, Elsevier Ltd. All rights reserved.




2 CHAPTER 1 Introduction

momentum, and energy; and the entropy inequality law. Mathematically, there are two equivalent forms of
the general principles: (1) the integral form, formulated for a finite volume of material in the continuum,
and (2) the field equations for differential volume of material (particles) at every point of the field of interest.
Field equations are often derived from the integral form. They can also be derived directly from the free body
of a differential volume. The latter approach seems to better suit beginners. In this text both approaches are
presented. Field equations are important wherever the variations of the variables in the field are either of
interest by themselves or are needed to get the desired information. On the other hand, the integral forms
of conservation laws lend themselves readily to certain approximate solutions.

The second major part of the theory of continuum mechanics concerns the “constitutive equations” that
are used to define idealized materials. Idealized materials represent certain aspects of the mechanical beha-
viors of natural materials. For example, for many materials, under restricted conditions, the deformation
caused by the application of loads disappears with the removal of the loads. This aspect of material behaviors
is represented by the constitutive equation of an elastic body. Under even more restricted conditions, the state
of stress at a point depends linearly on the change of lengths and angles suffered by elements at the point
measured from the state where the external and internal forces vanish. The previous expression defines the
linearly elastic solid. Another example is supplied by the classical definition of viscosity, which is based
on the assumption that the state of stress depends linearly on the instantaneous rates of change of lengths
and angles. Such a constitutive equation defines the linearly viscous fluid. The mechanical behaviors of real
materials vary not only from material to material but also with different loading conditions for a given mate-
rial. This leads to the formulation of many constitutive equations defining the many different aspects of mate-
rial behaviors.

In this text we present four idealized models and study the behaviors they represent by means of some
solutions of boundary-value problems. The idealized materials chosen are (1) the isotropic and anisotropic
linearly elastic solid, (2) the isotropic incompressible nonlinear elastic solid, (3) the linearly viscous fluid,
including the inviscid fluid, and (4) the non-Newtonian incompressible fluid.

One important requirement that must be satisfied by all quantities used in the formulation of a physical
law is that they be coordinate invariant. In the following chapter, we discuss such quantities.



CHAPTER

Tensors

As mentioned in the introduction, all laws of continuum mechanics must be formulated in terms of quantities
that are independent of coordinates. It is the purpose of this chapter to introduce such mathematical entities.
We begin by introducing a shorthand notation—the indicial notation—in Part A of this chapter, which is fol-
lowed by the concept of tensors, introduced as a linear transformation in Part B. Tensor calculus is considered
in Part C, and expressions for the components in cylindrical and spherical coordinates for tensors resulting
from operations such as the gradient, the divergence, and the Laplacian of them are derived in Part D.

INDICIAL NOTATION

SUMMATION CONVENTION, DUMMY INDICES

Consider the sum
s =aix; +axx, + ...+ a,x,. 2.1.1)

We can write the preceding equation in a compact form using a summation sign:
n
s= a. (2.12)
i=1

It is obvious that the following equations have exactly the same meaning as Eq. (2.1.2):

n n n
s = E aixj, §= g Xy, S = E A Xy. 2.1.3)
j=1 m=1 k=1

The index i in Eq. (2.1.2), or j or m or k in Eq. (2.1.3), is a dummy index in the sense that the sum is inde-
pendent of the letter used for the index. We can further simplify the writing of Eq. (2.1.1) if we adopt the
following convention: Whenever an index is repeated once, it is a dummy index indicating a summation with
the index running through the integral numbers 1, 2, ..., n.

This convention is known as Einstein’s summation convention. Using this convention, Eq. (2.1.1) can be
written simply as:

S=aix; Of §=aX; Or §= dpXy, etc. 2.1.4)

Copyright © 2010, Elsevier Ltd. All rights reserved.



4 CHAPTER 2 Tensors

It is emphasized that expressions such as a;b;x; or a,,b,.x,, are not defined within this convention. That is,
an index should never be repeated more than once when the summation convention is used. Therefore, an
expression of the form

n
g a;jbix;,
i=1

must retain its summation sign.
In the following, we shall always take the number of terms # in a summation to be 3, so that, for example:

aixj = ayXy + axxy + asxs,  a; = ay +ax + as;.

The summation convention obviously can be used to express a double sum, a triple sum, and so on. For
example, we can write:
3 3

o= E a,jx,-xj
i=1 j=1
concisely as
o = a;jXX;. (215)
Expanding in full, Eq. (2.1.5) gives a sum of nine terms in the right-hand side, i.e.,
o= @jiXiXj = A XXy + apXixy + a13xX1xX3 + a1 XX + anXoXy + axannx;
+ az1x3x| + az3x3xy + dzxaxs.

For newcomers, it is probably better to perform the preceding expansion in two steps: first, sum over i,

and then sum over j (or vice versa), i.e.,
QiXiXj = AyX1Xj + XX + a3Xsx;,

where

apX1x; = anxi Xy + apxix; + apxxs,

and so on. Similarly, the indicial notation a;x;x;x; represents a triple sum of 27 terms, that is,

3 3 3
ZZZaijkx,-xjxk = QjjkXiXjXf- (2.1.6)

i=1 j=1 k=1

FREE INDICES

Consider the following system of three equations:

/
X; = apXy + apx; + ajzxs,
)
Xy = dz1X] + axnXxy + axxs, 2.2.1)
xj = a3 x; + anx; + azx;.

Using the summation convention, Eqgs. (2.2.1) can be written as:
I
X1 = AimXm,

/

Xy = AomXm;s 2.2.2)
/

X3 = A3mXm,
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which can be shortened into
X =l Xy i=1,2,3. (2.2.3)

An index that appears only once in each term of an equation such as the index i in Eq. (2.2.3) is
called a free index. Unless stated otherwise, we agree that a free index takes on the integral num-
ber 1, 2 or 3. Thus, x/ = ajmX» is shorthand for three equations, each having a sum of three terms on
its right-hand side. Another simple example of a free index is the following equation defining the com-
ponents of a vector a in terms of a dot product with each of the base vectors e;,

ai=a-e;, (224)

and clearly the vector a can also be expressed in terms of its components as

a = a;e;. (225)

A further example is given by

e,‘/ = Omi€m, (2.2.6)
representing

e/ =01e; + 0res + Osje3,
e, = One; + One; + Ones, 2.2.7)
e; = Qize; + One; + Oszes.

We note that x,! = QjuXy 1s the same as Eq. (2.2.3) and e,! = Qpjep, is the same as Eq. (2.2.6). However,
a; = b; is a meaningless equation. The free index appearing in every term of an equation must be the same.
Thus, the following equations are meaningful:

a+ki=c¢ or a-+ b,’(‘jdj :ﬁ
If there are two free indices appearing in an equation such as:
Tij = AimnAjm, (22.8)

then the equation is a shorthand for the nine equations, each with a sum of three terms on the right-hand side.
In fact,

Ty = AipAim = AnlAn + ARApn + AAis,
T2 = AipAom = A11A21 + ApAp + AzAn,
T3 = A1pAzm = AnAz + ApAz + A3Ass,
Ty = AppAim = AniAn + ApAip + AxpAis,

T33 = A3pAzm = A31431 + AnAsz + AszAsz.

THE KRONECKER DELTA
The Kronecker delta, denoted by d;;, is defined as:

1 ifi=j,
5'7_{0 if i # j. @30
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That is,
O =0p=2033=1, 0J1p=2013=273 =03 =203 =0n=0. (2.3.2)

In other words, the matrix of the Kronecker delta is the identity matrix:
05 = |62 62 3| =10 1 0. (2.3.3)
031 0n 033 0 0 1
We note the following:
(@) 0 =011 +0n+dn=1+1+1,
that is,

(b) Oimam = d11a1 + 012as + d13a3 = d11a1 = ay,
Oy = 02141 + Onas + 023a3 = dxnar = ay,
03may = 03141 + Onay + 033a3 = d33a3 = as,

that is,
Oimm = aj. (2.3.5)
(€) O1mTmj = 0T+ 01212 + 01373 = T1j,
OamTmj = 021T1j + 622T2; + 023135 = Ty,
03mTmj = 031T1j + 03T + 033T3; = T3,
that is,
OimTmj =T (2.3.6)
In particular,
OimOmj = Oijs  OimOmnOpj = 05,  etc. 2.3.7)

(d) If ey, e,, e3 are unit vectors perpendicular to one another, then clearly,

€ - € = 5,‘1'. (238)

THE PERMUTATION SYMBOL

The permutation symbol, denoted by &, is defined by:

1 form an even
gt = § —1 » = according to whetheri,j,k| form an odd |permutation of 1,2,3, (2.4.1)
0 do not form

ie.,

€123 = €31 = &312 = +1,
&13 = €321 = €132 = — 1, 2.4.2)
e =éemp=é&n=...=0.



2.5 Indicial Notation Manipulations

We note that
Eijk = Ejki = &kij = —é&jik = —Ekji — Eikj-

If {ey, e,, e3} is a right-handed triad, then

e Xxe =e;, € Xe =—e3 € Xe3=e;, e Xe =—e, e,

which can be written in a short form as
€; X € = &jk€r = Ejki€k = Eij€k-
Now, if a = a;e; and b = b,e;, then, since the cross-product is distributive, we have
a x b = (ae;) x (bjej) = aib;(e; x €;) = aibje;jrex.

The following useful identity can be proven (see Prob. 2.12):

&ijmErim = Oik0j1 — Oitj.

7

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

INDICIAL NOTATION MANIPULATIONS

(a) Substitution: If

a; = U[m bm7
and

bi = Vi Cm,

®

(ii)

then, in order to substitute the b; in Eq. (ii) into the b,, in Eq. (i), we must first change the free index in Eq. (ii)

from i to m and the dummy index m to some other letter—say, n—so that
bm = Vmn Cn-
Now Egs. (i) and (iii) give

a; = UiV Cy-

(iii)

(iv)

Note that Eq. (iv) represents three equations, each having a sum of nine terms on its right-hand side.

(b) Multiplication: If

p= amby, and q= Cnm,
then

pq = Ambpcad,.

It is important to note that pg # a,b,,cmd,y,. In fact, the right-hand side of this expression, i.e., @,,0,,C,.d,

is not even defined in the summation convention, and further, it is obvious that

3
Pa# Y AnbuCndn.
m=1
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Since the dot product of vectors is distributive, therefore, if a = a;e; and b = b;e;, then
a-b = (aie;) - (bje;) = aibj(e; - ¢;).
In particular, if ey, e,, e; are unit vectors perpendicular to one another, then e; - ¢; = J;; so that
a-b = a;bj0; = a;b; = a1by + a)by + azbs,
which is the familiar expression for the evaluation of the dot product in terms of the vector components.

(c) Factoring: If
T,‘jl’lj — )L}’l,‘ = 0,

then, using the Kronecker delta, we can write n; = J;n;, so that we have

T;nj — 20;n; = 0.
Thus,

(T;; — Ao4)n; = 0.
(d) Contraction: The operation of identifying two indices is known as a contraction. Contraction indicates a

sum on the index. For example, T}; is the contraction of Tj; with
Tii =T + T+ Ts.
If
Ty = AAS;; + 2UEj;,
then
T = AAS; + 2uE;; = 37A + 2uE;.

PROBLEMS FOR PART A
2.1 Given

1 0 2 1
[S,'/'] = |:0 1 2:| and [(1,'] = |:2:| s
303 3

evaluate (a) Sii’ (b) SijSija (C) SjiSji» (d) Sijkj’ (C) A, (f) Smnamam and (g) Snmaman-

2.2 Determine which of these equations has an identical meaning with a; = Q,-jaj’ .
(a) ap = mea,/m (b) ap = qua(;, ©) am = a,;an-

2.3 Given the following matrices
1 2 30
[a,-] =10 s [B,:,‘] = 0 5 1 s
2 0 2 1

demonstrate the equivalence of the subscripted equations and the corresponding matrix equations in the
following two problems:

(a) b; = Bjja; and [b] = [B][a] and (b) s = Bjja;a; and s = [a]T[B][a].
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2.4 Write in indicial notation the matrix equation (a) [A]=[B][C], (b) [D]= [B]T[C 1and (c) [E]= [B]T[C] [F].

2¢ 62¢ 82(]')
2.5 Write in indicial notation the equation (a) s = A2 + A2 +A2 and (b) 2 +—=0.
Ox 8x2 Ox3
2.6 Given that S;j=a;a; and S =al aj, where a/ = Qp,a, and aj’ = Qyjan, and Q;Qjx=0;;, show that

Sk =Si.
i Oy,
2.7 Write a; = ?vt + vja—:j in long form.
2.8 Given that T;; = 2uE;; + AEd;;, show that
(a) T;Ej = 2uE;E; + M(Ew)” and (b) T;Ty = 4PE;E; + (Ew )’ (4ul + 37%).

2.9 Given that a; = T;b;, and a/ = Tubj’ , where a; = Qjna,, and T;; = Qi QjuT,,,,

(a) show that Q,mT,:mb,g QimQinT,,,bj and (b) if Qi Qim = 51<m, then T}/, (b, — Qjub;) =0
2.10 Given

1 0
[ai] = {2}, [bi] = [2}7
0 3

evaluate [d;], if dy = &;a;b;, and show that this result is the same as dy = (a X b) - e,
2.11 (a) If ¢ T;; = 0, show that T; = T};, and (b) show that J;&; = 0.

2.12 Verify the following equation: &;,&um = 0y — 0ydjx. Hint: There are six cases to be considered:
MDi=j,Qi=kQ@ i=L@@j=k (5)j=1and (6) k =1

2.13 Use the identity &jméwm = Oixdjy — 0idj as a shortcut to obtain the following results: (a) €im&jm = 20
and (b) EijkEijk = 6.

2.14 Use the identity &;p&xm = 0i0j — 0;0j to show that a x (b x ¢) = (a-¢)b — (a-b)c.

2.15 Show that (a) if T,:,' = —Tj,', then T,'ja,'llj =0, (b) if T,‘j = —Tj,‘, and S,‘j = Sj[, then T,]SU =0.

1 1
5 (S + Sji) and Ry = = (S — Sji), show that Tyj = Tj;, Ry = —R;i, and S; = T + Ry

2.17 Let f(x1,x2,x3) be a function of xy, x,, and x3 and let v;(x;,x2,x3) be three functions of x;, x,, and x3.
Express the total differential df and dv; in indicial notation.

2.16 Let T,:,‘ =

2.18 Let |A;| denote the determinant of the matrix [A;]. Show that |A;| = &;zAi1ApAss.

TENSORS

TENSOR: A LINEAR TRANSFORMATION

Let T be a transformation that transforms any vector into another vector. If T transforms a into ¢ and b into d,
we write Ta = ¢ and Tb = d.
If T has the following linear properties:

T(a+b) = Ta+ Tb, (2.6.1)
T(xa) = oTa, (2.6.2)
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where a and b are two arbitrary vectors and o is an arbitrary scalar, then T is called a linear transformation. It
is also called a second-order tensor or simply a tensor.* An alternative and equivalent definition of a linear
transformation is given by the single linear property:

T(oa + fb) = oTa + fTb, (2.6.3)

where a and b are two arbitrary vectors and o and f§ are arbitrary scalars. If two tensors, T and S, transform
any arbitrary vector a identically, these two tensors are the same, that is, if Ta = Sa for any a, then T = S.
We note, however, that two different tensors may transform specific vectors identically.

Example 2.6.1
Let T be a nonzero transformation that transforms every vector into a fixed nonzero vector n. Is this transformation a
tensor?

Solution

Let a and b be any two vectors; then Ta = n and Tb = n. Since a + b is also a vector, therefore T(a + b) = n.
Clearly T(a + b) does not equal Ta + Th. Thus, this transformation is not a linear one. In other words, it is not a
tensor.

Example 2.6.2
Let T be a transformation that transforms every vector into a vector that is k times the original vector. Is this transfor-
mation a tensor?

Solution
Let a and b be arbitrary vectors and « and f be arbitrary scalars; then, by the definition of T,
Ta=ka, Tb=kb and T(ca+ Bb) = k(xa + pb). (i)
Clearly,
T(oa + pb) = aka + fkb = oTa + STb. (ii)

Therefore, T is a linear transformation. In other words, it is a tensor. If k= 0, then the tensor transforms all vectors
into a zero vector (null vector). This tensor is the zero tensor or null tensor and is symbolized by the boldface 0.

Example 2.6.3
Consider a transformation T that transforms every vector into its mirror image with respect to a fixed plane. Is T a
tensor?

Solution
Consider a parallelogram in space with its sides representing vectors a and b and its diagonal the vector sum of
a and b. Since the parallelogram remains a parallelogram after the reflection, the diagonal (the resultant vector)

*Scalars and vectors are sometimes called the zeroth order tensor and the first-order tensor, respectively. Even though they can also
be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical concept of scalars and vectors,
with which we assume readers are familiar, is quite sufficient for our purpose.
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of the reflected parallelogram is clearly both T(a + b) (the reflected a + b) and Ta + Tb (the sum of the reflected a
and the reflected b). That is, T(a + b) = Ta + Th. Also, for an arbitrary scalar «, the reflection of «a is obviously the
same as o times the reflection of a, that is, T(«a) = a(Ta), because both vectors have the same magnitude given by o
times the magnitude of a and in the same direction. Thus, T is a tensor.

Example 2.6.4

When a rigid body undergoes a rotation about some axis n, vectors drawn in the rigid body in general change their
directions. That is, the rotation transforms vectors drawn in the rigid body into other vectors. Denote this transforma-
tion by R. Is R a tensor?

Solution

Consider a parallelogram embedded in the rigid body with its sides representing vectors a and b and its diagonal
representing the resultant (a + b). Since the parallelogram remains a parallelogram after a rotation about any axis,
the diagonal (the resultant vector) of the rotated parallelogram is clearly both R(a + b) (the rotated a + b) and
Ra + Rb (the sum of the rotated a and the rotated b). That is, R(a + b) = Ra + Rb. A similar argument as that used
in the previous example leads to R(ea) = «(Ra). Thus, R is a tensor.

Example 2.6.5

Let T be a tensor that transforms the specific vectors a and b as follows:
Ta=a+2b,
Tb=a-bh.

Given a vector ¢ = 2a + b, find Tc.

Solution
Using the linearity property of tensors, we have

Tc = T(2a+b) =2Ta+Th =2(a+2b) + (a—b) =3a+3b.

COMPONENTS OF A TENSOR

The components of a vector depend on the base vectors used to describe the components. This will also be
true for tensors.

Let ey, e,, e3 be unit vectors in the direction of the x;-, X,-, X3-, respectively, of a rectangular Cartesian
coordinate system. Under a transformation T, these vectors e, e,, e; become Te;, Te;, Te;. Each of these
Te;, being a vector, can be written as:

Te; =Tie; + Ta1€x + T31€3,
Te, =Tire; + Trrer + Txes, (2.7.1)
Te; = Tize; + Tazes + Tazes,

or

Tei = Tjiej~ (272)
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The components Tj; in the preceding equations are defined as the components of the tensor T. These com-
ponents can be put in a matrix as follows:

Ty T2 Ti
M= |To Tn Tnl|. 2.73)
T35 Tz Ts3

This matrix is called the matrix of the tensor T with respect to the set of base vectors {e;}. We note that, because
of the way we have chosen to denote the components of transformation of the base vectors, the elements of the
first column in the matrix are components of the vector Te,, those in the second column are the components of
the vector Te,, and those in the third column are the components of Tej.

Example 2.7.1
Obtain the matrix for the tensor T that transforms the base vectors as follows:
Te1 = 461 + e,
Te, = 2e; + 3es, (i)

Tes = —e; + 3es +e3.

Solution
By Eq. (2.7.1),
4 2 -1
mM=1{1 0 3|. (ii)
0 3 1
Example 2.7.2

Let T transform every vector into its mirror image with respect to a fixed plane; if e; is normal to the reflection plane
(e5 and ez are parallel to this plane), find a matrix of T.

Solution
Since the normal to the reflection plane is transformed into its negative and vectors parallel to the plane are not
altered, we have

Te1 = —€e, T82 = €y, T83 = €3

which corresponds to

Mirror

€

45°
€4

FIGURE 2.7-1
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We note that this is only one of the infinitely many matrices of the tensor T; each depends on a particular choice of
base vectors. In the preceding matrix, the choice of e; is indicated at the bottom-right corner of the matrix. If we
choose e] and e} to be on a plane perpendicular to the mirror, with each making 45° with the mirror, as shown in
Figure 2.7-1, and e} pointing straight out from the paper, then we have

Te; =e), Te;=e;, Tej=ej.
Thus, with respect to {e/}, the matrix of the tensor is
010
M'=1]100
0 0 1],

Throughout this book, we denote the matrix of a tensor T with respect to the basis {e} by either [T] or [T}]
and with respect to the basis {e/} by either [T] or [T;]. The last two matrices should not be confused with [T,
which represents the matrix of the tensor T’ with respect to the basis {e}, not the matrix of T with respect to the
primed basis {e/}.

Example 2.7.3

Let R correspond to a right-hand rotation of a rigid body about the xs-axis by an angle 6 (Figure 2.7-2). Find a
matrix of R.

€
Re,

€4

FIGURE 2.7-2

Solution

From Figure 2.7-2, it is clear that
Re; = cosfe; +sinfe,
Re, = —sinfe; + cosle,,,
R63 = e3.

which corresponds to

cos@ —sing O
[Rl=|sin@ cos@ O
0 0 1

€
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Example 2.7.4
Obtain the matrix for the tensor T, which transforms the base vectors as follows:

Te; = e + 2e, + 3es,
Te, = 4e; + bes + 6es.
Tes = 7e; + 8es + 9es.

Solution
By inspection,

This example emphasizes again the convention we use to write the matrix of a tensor: The components of Te; fill
the first column, the components of Te, fill the second column, and so on. The reason for this choice of convention
will become obvious in the next section.

Since e; -e; = e;-e; = e3-e; = 0 (because they are mutually perpendicular), it can be easily verified
from Eq. (2.7.1) that

Tii=e Te;,, Tip=e-Tey, Ti3=e;-Te;s,
Tz] =€ Tel, T22 =€ T(EQ7 T23 =€) Te3, (274)
T3 =e3-Te;, T3 =e3-Tey, Ts;3=e3-Tes,

or
Tij =€ Tej. (275)

These equations are totally equivalent to Eq. (2.7.1) [or Eq. (2.7.2)] and can also be regarded as the defi-
nition of the components of a tensor T. They are often more convenient to use than Eq. (2.7.2).

We note again that the components of a tensor depend on the coordinate systems through the set of base
vectors. Thus,

r_ /
T;=e/ -Te], (2.7.6)

where Tij’- are the components of the same tensor T with respect to the base vectors {e/}. It is important to note
that vectors and tensors are independent of coordinate systems, but their components are dependent on the
coordinate systems.

COMPONENTS OF A TRANSFORMED VECTOR

Given the vector a and the tensor T, which transforms a into b (i.e., b = Ta), we wish to compute the com-
ponents of b from the components of a and the components of T. Let the components of a with respect to
{61,62763} be (al,az,ag), that is,

a=ae| + ae; + ases, 2.8.1)
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then

b=Ta= T(a1e1 + arey + [1363) =a,Te; + a,Te; + asTes,

thus,

by =b-e; =e;-T(are; + ares + azes) = a;(e; - Tey) + ax(e; - Tey) + az(e; - Tez),
by=b-e;=¢e ~T(a1e1 + are; +a3e3) = 01(62 'TC]) +a2(e2 ~Te2) +a3(e2 ~Te3),
b;=b-e3=¢3 -T(a1e1 + aze; +a3e3) = 01(63 ~Te1) +a2(e3 ~Te2) +a3(e3 ~Te3).

By Egs. (2.7.4), we have
b1 = Tnay + Tpas + Thzas,

by = Toiay + Trnar + Tasas, (2.8.2)
by = T31a1 + Taas + Ts3a3.

We can write the preceding three equations in matrix form as:
by Ty T Ts||a
by| =|Ta T Tn||a|, (2.8.3)
bs T3 Ty Ts3 | | a3

[b] = [T][a]. (2.8.4)

or

We can also derive Eq. (2.8.2) using indicial notations as follows: From a = a;e;, we get Ta = T(a;e;) = a;Te;.
Since Te; = Tje; [Eq. (2.7.2)], b = Ta = a;T};¢; so that
by =b-e, =aTje; e, = aTjjdp, = a;Ty,
that is,
by = aiTy; = Tya;. (2.8.5)

Eq. (2.8.5) is nothing but Eq. (2.8.2) in indicial notation.

We see that for the tensorial equation b = Ta, there corresponds a matrix equation of exactly the same form, that
is, [b] = [T][a]. This is the reason we adopted the convention that Te; = Tje; (i.e., Te; = T11e; + Ta1e; + T3 €3,
etc.). If we had adopted the convention that Te; = Tj;e; (i.e., Te; = T1e; + T12e; + T13e3, etc.), then we would
have obtained [b] = [T]" [a] for the tensorial equation b = Ta, which would not be as natural.

Example 2.8.1
Given that a tensor T transforms the base vectors as follows:

Te; = 2e; — 6e, + 4e;s,
Te, = 3e; + 4ep — les,
Tes = —2e; + le, + 2es.

how does this tensor transform the vector a = e; + 2e, + 3e3?
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Solution
Use the matrix equation

El-Le 2 HE L

we obtain b = 2e; + 5e, + 8es.

SUM OF TENSORS
Let T and S be two tensors. The sum of T and S, denoted by T + S, is defined by
(T+S)a=Ta + Sa (2.9.1)

for any vector a. It is easily seen that T + S, so defined, is indeed a tensor. To find the components of
T + 8, let

W=T+S. (29.2)
The components of W are [see Eqgs. (2.7.5)]
Wi =¢e;-(T+S)e; =e;-Te; +e;-Sej,
that is,
Wy =Ty +S;. (2.9.3)
In matrix notation, we have
(W] = [T] +[S], (2.9.4)

and that the tensor sum is consistent with the matrix sum.

PRODUCT OF TWO TENSORS

Let T and S be two tensors and a be an arbitrary vector. Then TS and ST are defined to be the transformations
(easily seen to be tensors) such that

(TS)a = T(Sa), (2.10.1)
and

(ST)a = S(Ta). (2.10.2)
The components of TS are

(TS)” =€;- (TS)ej =€;- T(Se,) =€ TSmjem = Smje,- . Tem = Sijim7 (2103)

that is,

(TS);; = TimSmj- (2.10.4)
Similarly,

(ST); = SinTo;- (2.10.5)
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Eq. (2.10.4) is equivalent to the matrix equation:

[TS] = [T][S], (2.10.6)
whereas Eq. (2.10.5) is equivalent to the matrix equation:

[ST] = [S][T]. (2.10.7)

The two products are, in general, different. Thus, it is clear that in general TS # ST. That is, in general, the
tensor product is not commutative.
If T, S, and V are three tensors, then, by repeatedly using the definition (2.10.1), we have

(T(SV))a =T((SV)a) = T(S(Va)) and (TS)(Va) = T(S(Va)), (2.10.8)
that is,
T(SV) = (TS)V = TSV. (2.10.9)

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive powers of a ten-
sor by these simple products, so that

=TT, T=TIT,... (2.10.10)

Example 2.10.1
(a) Let R correspond to a 90° right-hand rigid body rotation about the xz-axis. Find the matrix of R.
(b) Let S correspond to a 90° right-hand rigid body rotation about the x;-axis. Find the matrix of S.
(c) Find the matrix of the tensor that corresponds to the rotation R, followed by S.
(d) Find the matrix of the tensor that corresponds to the rotation S, followed by R.
(e) Consider a point P whose initial coordinates are (1,1,0). Find the new position of this point after the
rotations of part (c). Also find the new position of this point after the rotations of part (d).

Solution
(a) Let {e1, ey, e3} be a set of right-handed unit base vector with e3 along the axis of rotation of the rigid
body. Then,
Re; =e;, Re,=—e;, Re3=e;,
that is,

0 -1 0
Rl=|1 0 Of.
0 0 1
(b) In a manner similar to (a), the transformation of the base vectors is given by:

Se; =e;, Ser=e3 Sez=—e,

that is,
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(c) Since S(Ra) = (SR)a, the resultant rotation is given by the single transformation SR whose components are

given by the matrix:
1 0 O 0 -1 0 0O -1 O
[SRj=|0 O -1(|1 O O|=]|0 O -1].

601 0][0 O 1 1 0 O

(d) In a manner similar to (c), the resultant rotation is given by the single transformation RS whose components
are given by the matrix:

0 -1 01[1 0 © 00 1
RS]=|1 0 ofl0o 0 -1|=|1 0 0f.
0 0 1/l0 1 O 010

(e) Let r be the initial position of the material point P. Let r* and r** be the rotated position of P after the
rotations of part (c) and part (d), respectively. Then

0 -1 011 -1
[r*}:[SR][r]:[O 0 1“1} :[o},
1 0 o0]lo 1

that is,
" = —e; +e;3,
and
0 01 1 0
r1=[RS]rf=|1 0 O||1|=1|1],
01 0|0 1
that is,

r =e, +e;s.

This example further illustrates that the order of rotations is significant.

TRANSPOSE OF A TENSOR

The transpose of a tensor T, denoted by T", is defined to be the tensor that satisfies the following identity for

all

vectors a and b:

a-Tb=b-T'a. (2.11.1)

It can be easily seen that T is a tensor (see Prob. 2.34). From the preceding definition, we have

e-Te;=¢e -T'e;. (2.11.2)

Thus,

or

(2.11.3)

)" = [17], 2.11.4)
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that is, the matrix of T" is the transpose of the matrix T. We also note that by Eq. (2.11.1),
we have

a-T"b=b-(T" a. (2.11.5)
Thus, b-Ta = b - (T")"a for any a and b, so that
(T =T. (2.11.6)
It can be easily established that (see Prob. 2.34)
(Ts)" = s™1". (2.11.7)

That is, the transpose of a product of the tensors is equal to the product of transposed tensors in reverse order,
which is consistent with the equivalent matrix identity. More generally,

(ABC...D)" =D"...C"B"A". (2.11.8)

DYADIC PRODUCT OF VECTORS

The dyadic product of vectors a and b, denoted” by ab, is defined to be the transformation that transforms any
vector ¢ according to the rule:

(ab)e = a(b-c¢). (2.12.1)
Now, for any vectors ¢, d, and any scalars o and f3, we have, from the preceding rule,

(ab)(xc + pd) = a(b- (xc + d)) = a((ab-c) + (fb-d)) = za(b-c) + fa(b-d)

= o(ab)c + S(ab)d. (2.122)
Thus, the dyadic product ab is a linear transformation.
Let W = ab, then the components of W are:
W,'j =€ - Wej =€ - (ab)ej =€ a(b . e]') = aibj, (2.12.3)
that is,
W,‘j = a,‘bj, (2124)
or
a1by aib, abs aj
[W] = azb1 d2b2 a2b3 = |a [b] b2 bg ] (2125)
asby azby azbs as
In particular, the dyadic products of the base vectors e; are:
1 00 010
eie;]]=10 0 Of, J[ejexJ=[0 0 Of-.... (2.12.6)
0 0 O 0 0 0

*Some authors write a ® b for ab. Also, some authors write (ab)-c for (ab)c and c-(ab) for (ab)TCA
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Thus, it is clear that any tensor T can be expressed as:

T= T11e1e1 + T12e192 + T13e1e3 + T21e2e1 +...= T,-J-eiej, (2127)

TRACE OF A TENSOR

The trace of a tensor is a scalar that obeys the following rules: For any tensor T and S and any vectors a and b,

tr(T+S)=tuT+trS,
tr(a T) = atr T, (2.13.1)
tr(ab) =a-b.

In terms of tensor components, using Eq. (2.12.7),

tr' T = tr(Tjjeie;) = Tyjtr(eie;) = Tje; - €j = Tjj0;; = Tis. (2.13.2)
That is,
tr'T =Ty, + Ty + T33 = sum of diagonal elements. (2.13.3)
It is, therefore, obvious that
trTT =trT. (2.13.4)

Example 2.13.1
Show that for any second-order tensor A and B

tr(AB) = tr(BA). (2.13.5)

Solution
Let C = AB, then Cj = A By, so that tr(AB) =trC = C;j = AinBpm.

Let D = BA, then Dj = BinApm, so that tr(BA) =tr D = Dj; = BjnAmi. But BinAmi = BmiAim (change of dummy
indices); therefore, we have the desired result

tr(AB) = tr(BA).

IDENTITY TENSOR AND TENSOR INVERSE

The linear transformation that transforms every vector into itself is called an identity tensor. Denoting this
special tensor by I, we have for any vector a,

Ia =a. (2.14.1)
In particular,

IE| =€, Ie2 = €7, Ie3 = €3. (2142)
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Thus the (Cartesian) components of the identity tensor are:

I[j = €; ~Iej =€ e, = 5,:,‘, (2143)

10
[1]—{01
0 0

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates and that
TI = IT = T for any tensor T. We also note that if Ta = a for any arbitrary a, then T = L

that is,

—_— o O

} . (2.14.4)

Example 2.14.1
Write the tensor T, defined by the equation Ta = «a, where « is a constant and a is arbitrary, in terms of the identity
tensor, and find its components.

Solution
Using Eq. (2.14.1), we can write «a as «la, so that

Ta=oca =uala.
Since a is arbitrary, therefore,
T=oal

The components of this tensor are clearly T; = «dj.

Given a tensor T, if a tensor S exists such that
ST =1, (2.14.5)
then we call S the inverse of T and write
S=17" (2.14.6)

To find the components of the inverse of a tensor T is to find the inverse of the matrix of T. From the
study of matrices, we know that the inverse exists if and only if det T # O (that is, T is nonsingular) and in
this case,

(T[] = [T~ = 1. (2.14.7)

Thus, the inverse of a tensor satisfies the following relation:

T 'T=TT'=L (2.14.8)
It can be shown (see Prob. 2.35) that for the tensor inverse, the following relations are satisfied:

(Th)™" = (1", (2.14.9)

and

(TS)"' =s7I17L. (2.14.10)

We note that if the inverse exists, we have the reciprocal relations that

Ta=b and a=T"'b. (2.14.11)
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This indicates that when a tensor is invertible, there is a one-to-one mapping of vectors a and b. On the other
hand, if a tensor T does not have an inverse, then, for a given b, there are in general more than one a that
transform into b. This fact is illustrated in the following example.

Example 2.14.2
Consider the tensor T = cd (the dyadic product of ¢ and d).

(a) Obtain the determinant of T.
(b) Show that if Ta = b, then T(a + h) = b, where h is any vector perpendicular to the vector d.

Solution
1 1 d1 C1 d2 C1 C/3 1 11
(a) [T} = | [dl d2 O’3} = C2d1 C2d2 CQC/3 and det [T} = C1(,‘2C3d1d2d3 1 1 1|=0.
C3 C3d1 C3d2 C3C/3 1 11

That is, T is a singular tensor, for which an inverse does not exist.
(b) T(a+h) = (cd)(@+h) =c(d-a) + c(d-h). Now d-h = O (h is perpendicular to d); therefore,
T@+h)=c(d-a)=(cdja=Ta=h.

That is, all vectors a + h transform into the vector b, and it is not a one-to-one transformation.

ORTHOGONAL TENSORS

An orthogonal tensor is a linear transformation under which the transformed vectors preserve
their lengths and angles. Let Q denote an orthogonal tensor; then by definition, |Qa|=|a|, |Qb|=b|, and
cos(a,b) = cos(Qa, Qb). Therefore,

Qa-Qb=a-b 2.15.1)

for any vectors a and b.
Since by the definition of transpose, Eq. (2.11.1), (Qa) - (Qb) = b - Q'(Qa), thus

b-a=b-(Q'Q)a or b-Ia=b-Q'Qa.
Since a and b are arbitrary, it follows that
Q'Q=1L (2.15.2)
This means that for an orthogonal tensor, the inverse is simply the transpose,
Q'=Q". (2.15.3)
Thus [see Eq. (2.14.8)],
Q'Q=QQ"=1L (2.15.4)
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In matrix notation, Eq. (2.15.4) takes the form:
[QI'[Ql = [QI[Q]" = [, (2.15.5)
and in subscript notation, we have
QmiQmj = QimQjm = 61] (2156)
Example 2.15.1
The tensor given in Example 2.7.2, being a reflection, is obviously an orthogonal tensor. Verify that [T][T]" = [I] for the

[T] in that example. Also, find the determinant of [TI.

Solution
Evaluating the matrix product:

The determinant of T is

Example 2.15.2

The tensor given in Example 2.7.3, being a rigid body rotation, is obviously an orthogonal tensor. Verify that

[R][R]" = 1] for the [R] in that example. Also find the determinant of [R1.

cosf —sinf O cosf sinf O 1 00
RIR]"=|sin® cos® Of|—-sind cosd O|=1[0 1 0Of,
0

0 1 0 0 1

Solution

cosf —sinf O
sinf cosf O
0 0 1

det[R] = |R| = =1

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to either +1 or —1.

In fact, since
[Ql[Ql" = m,

therefore,

QIQ"| = QIIQ"| = .
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Now |Q| = |Q"| and [I| = 1, therefore, |Q|* = 1, thus
Q| = £1. (2.15.7)

From the previous examples, we can see that for a rotation tensor the determinant is +1, whereas for a
reflection tensor, it is —1.

TRANSFORMATION MATRIX BETWEEN TWO RECTANGULAR
CARTESIAN COORDINATE SYSTEMS

Suppose that {e;,e;,e3} and {el’ ,€5, e3’} are unit vectors corresponding to two rectangular Cartesian coordi-
nate systems (see Figure 2.16-1). It is clear that {e;,e;, e3} can be made to coincide with {el’, e, eg} through
either a rigid body rotation (if both bases are same-handed) or a rotation followed by a reflection (if different-
handed). That is, {e;} and {el-’ } are related by an orthogonal tensor Q through the equations below.

e, 2
e;
€4
€3
€3
FIGURE 2.16-1
e/ = Qe; = Oien, (2.16.1)
that is,
e] = 011 + 0212 + 03183,
e, = One; + One; + Ones, (2.16.2)
e; = Onze; + O + Ox3es,
where
OinQjm = OmiQmj = 0ij, (2.16.3)
or
QQ"=Q'Q=1L (2.16.4)
We note that
011 =e;-Qe; =e; -e] = cosine of the angle between e; and e],

Q1> =e;-Qe; = e, -ej = cosine of the angle between e; and ej, etc.
That is, in general, Q;; = cosine of the angle between e; and ei’ , which may be written:

Q,:,' = COS((‘J,‘7 ej’). (2165)
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The matrix of these direction cosines, i.e., the matrix

031 QOn» 03

is called the transformation matrix between {e;, e, es} and {el’ ,e5, e3’}. Using this matrix, we shall obtain in
the following sections the relationship between the two sets of components, with respect to these two sets of
base vectors, of a vector and a tensor.

On Qn 0O
Ql=(0x O»n 0On], (2.16.6)

Example 2.16.1
Let {e{, eé,eé} be obtained by rotating the basis {e1, e», e3} about the ez axis through 30°, as shown in Figure 2.16-2.
In this figure, e3 and ej coincide.

, €
€

30° e

30°
€

FIGURE 2.16-2

Solution
We can obtain the transformation matrix in two ways:

1. Using Eq. (2.16.5), we have

Qi1 = cos(ep,e]) =cos30° = V3/2, Q= cos(er,e}) =cos120° = —1/2, (3 =cos(er,e}) = cos90° =0,
(o1 = cos(ey,e]) =cos60° =1/2, Qo = cos(ey,e)) =cos30° = V3/2, Qo3 = cos(ey, el) =cos90° =0,
Q31 = cos(ez,e) = cos90° =0, Qs = cos(ez, e)) = cos90° =0, (v3 = cos(ez, ef) =cos0° = 1.

2. ltis easier to simply look at Figure 2.16-2 and decompose each of the e/ into its components in the
{e1,ey,e3} directions, i.e.,

. 3 1
e] =cos30°e; +sin30%; = gel —+ §e2’

1
e, = —sin30°e; + cos30°e; = —éel +§e2,

e = es.

Thus, by Eqg. (2.16.2), we have

/2 V3/2 0

V3/2 -1/2 0
Q= .
0 0 1
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TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A VECTOR

Consider any vector a. The Cartesian components of the vector a with respect to {e;,e;,e3} are:
a;=a-e;, 2.17.1)
and its components with respect to {e[, e}, e}} are:
a =a-e. (2.17.2)
Now ei’ = Omien [see Eq. (2.16.1)]; therefore,

al =a-Qpien = Omi(a-ey), (2.17.3)
that is,
ai/ = Qniam. (2.17.4)
In matrix notation, Eq. (2.17.4) is
aj Ou OQu Oan| |a
a| =00 On On| |al, (2.17.5)

aj Q13 O 03 as

or

la]’ = [Q]"[a]. (2.17.6)

Equation (2.17.4), or Eq. (2.17.5), or Eq. (2.17.6) is the transformation law relating components of
the same vector with respect to different rectangular Cartesian unit bases. It is very important to note
that in Eq. (2.17.6), [a]’ denotes the matrix of the vector a with respect to the primed basis {ei’ }, and [a]
denotes the same vector with respect to the unprimed basis {e;}. Eq. (2.17.6) is not the same as a’ = Q'a.
The distinction is that [a]’ and [a] are matrices of the same vector, whereas a and a’ are two different vec-
tors—a’ being the transformed vector of a (through the transformation a’ = Q'a).

If we premultiply Eq. (2.17.6) with [Q], we get

[a] = [Q][a]". 2.17.7)
The indicial notation for this equation is:

ai = Qima,,. (2.17.8)

Example 2.17.1

Given that the components of a vector a with respect to {e;} are given to be [2,0,0]. That is, a = 2e;, find its com-
ponents with respect to {e/}, where the {e/} axes are obtained by a 90° counter-clockwise rotation of the {e;} axis
about its ez axis.

Solution
The answer to the question is obvious from Figure 2.17-1, that is,

a=2e = —2e).
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To show that we can get the same answer from Eq. (2.17.6), we first obtain the transformation matrix of Q. Since

e] =ep,e, = —ej and e = e3, we have
0 -1 0
Q] = [1 0 O}.

0 0 1
Thus,
0 1 0][2 0
@ =[Q'a]=|-1 0 0] [0]|=]|-2],
0O 0 1] |0 0
that is,
a=—2e,.
Xo
eile,
g Xq
es ey a
FIGURE 2.17-1

TRANSFORMATION LAW FOR CARTESIAN COMPONENTS OF A TENSOR

Consider any tensor T. The components of T with respect to the basis {e;,e,,e3} are:
T;; =e;-Te,. (2.18.1)
Its components with respect to {e[, e}, e} are:
T[;- = e[/ . Tej’. (2.18.2)
With e/ = Qe,,, we have
T,-j/- = Omin TOne, = 0iQyjen - Te,,

that is,
T,'j/' = QmiQn/’Tmn~ (2]83)

In matrix notation, the preceding equation reads:
T{, T/, T, On QOn Qs Ty T2 T3 On Qn 0O
Ty, Ty, Ty | =|0n 0n On Toy T Ta 0On Q»n 0Oxn|, (2.18.4)
O 0O»n On T3 T3 T3 Q31 QOn 03

or

1)’ = [Q]" [T] [Q]. (2.18.5)
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We can also express the unprimed components in terms of the primed components. Indeed, if we premul-
tiply the preceding equation with [Q] and post-multiply it with [Q]", we obtain, since

QI [Q" = [Q"[Q] = 1], (2.18.6)
1] = [Q] [T] [Q]". (2.18.7)

In indicial notation, Eq. (2.18.7) reads
Tij = QinQinT - (2.18.8)

Equations (2.18.5) [or Eq. (2.18.3)] and Eq. (2.18.7) [or Eq. (2.18.8)] are the transformation laws relating
components of the same tensor with respect to different Cartesian unit bases. Again, it is important to note
that in Eqs. (2.18.5) and (2.18.7), [T] and [T] are different matrices of the same tensor T. We note that
the equation [T]" = [Q]"[T][Q] differs from T’ = QTTQ in that the former relates the components of the
same tensor T whereas the latter relates the two different tensors T and T’

Example 2.18.1
Given that with respect to the basis {e;, e»,e3}, the matrix of a tensor T is given by

010
[T]{l 2 o].
001

Find [TV, that is, find the matrix of T with respect to the e/ basis, where {e], e}, e} is obtained by rotating
{e1,e2,e3} about its es-axis through 90° (see Figure 2.17-1).

Solution
Since e =ey,e), = —ej and e; = e3, by Eq. (2.7.1) we have

0 -1 0
[Q]:[l 0 o]
0 0 1

0 -1 0 2 -1 0
1 0 O0|=(-1 0 Of,
O 0 1 0O 0 1

Th=2 T,=-1, T53=0, T,=0T5;=0T5;=1L

Thus, Eqg. (2.18.5) gives

that is,

Example 2.18.2
Given a tensor T and its components Tj and T/].’ with respect to two sets of bases {e;} and {e,’}. Show that Tjis invari-
ant with respect to these bases, i.e., Tj = T/

n:

Solution
The primed components are related to the unprimed components by Eq. (2.18.3):

T//‘, = Qm/ an Tmn 5
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thus,
Tii = Qi Qni Trmn-
But Qi Qn = dmn [Eq. (2.15.6)], therefore,
T = 0mn Tn = Tom = Tii,
that is,

N+ Too+ Tz =T} + T + Tas.

We see from Example 2.18.1 that we can calculate all nine components of a tensor T with respect to {e,—’ }
from the matrix [T] (e} by using Eq. (2.18.5). However, there are often times when we need only a few com-
ponents. Then it is more convenient to use Eq. (2.18.1). In matrix form, this equation is written:

T = [¢/]"[T] [¢]] (2.18.9)

where [e/]" denote the row matrix whose elements are the components of e/ with respect to the basis {e;}.

Example 2.18.3
Obtain Ty, for the tensor T and the bases {e;} and {e/} given in Example 2.18.1 by using Eq. (2.18.1).

Solution
Since e; = ep and e = —ey, therefore,

Th,=e;-Te;=ey-T(—e;) = —To = 1.

Alternatively, using Eq. (2.18.9), we have

01 0][-1 0
T, =[e]"Mles] =(0 1 0] [1 2 o] {o][o 1 0] {_1]_1.
00 1]]0

DEFINING TENSOR BY TRANSFORMATION LAWS

Equation (2.17.4) or (2.18.3) states that when the components of a vector or a tensor with respect to
{e1,ey,e3} are known, then its components with respect to any {el’,ez’,eg} are uniquely determined from
them. In other words, the components a; or T;; with respect to one set of {e;, e,, e3} completely characterize
a vector or a tensor. Thus, it is perfectly meaningful to use a statement such as “consider a tensor T;;,” mean-
ing consider the tensor T whose components with respect to some set of {e;, ,, e3} are Tj;. In fact, an alter-
native way of defining a tensor is through the use of transformation laws relating components of a tensor with
respect to different bases. Confining ourselves to only rectangular Cartesian coordinate systems and using unit
vectors along positive coordinate directions as base vectors, we now define Cartesian components of tensors

of different orders in terms of their transformation laws in the following, where the primed quantities are



30 CHAPTER 2 Tensors

referred to basis {e[,e},e}} and unprimed quantities to basis {e|,e,,es}, where the e/ and e, are related by
e/ = Qe;, Q being an orthogonal transformation:

o' =a zeroth-order tensor (or scalar),
al.’ = Qi first-order tensor (or vector),
= OmiQniTmn second-order tensor (or tensor), 2.19.1)
uk = O0niOniOtSmnr third-order tensor, 7
CI_,/kl Ohmi anQl‘stlcmnm fourth-order tensor,

Using the preceding transformation laws, we can easily establish the following three rules for tensor com-
ponents: (1) the addition rule, (2) the multiplication rule, and (3) the quotient rule.

1. The addition rule. If T;; and S;; are components of any two second-order tensors, then T;; + S;; are com-
ponents of a second-order tensor. Similarly, if 7;; and S;; are components of any two th1rd order ten-
sors, then T + S, are components of a third-order tensor.

To prove this rule, we note that since T, = = OmiQnjOrTynr and S,jk OmiQjOricSmnr» thus,

k + S,]k QmianQ/‘kTmm' + QmianQrkSmnr = QmianQl‘k(Tmnr + Smnr)‘

Letting
W,:;‘]; l]k + S,jk and Wmm - Tmm + Smm»

we have
Uk le Ql’l]Q)]\ Wmm )

that is, W are components of a third-order tensor.

2. The multiplication rule. Let a; be components of any vector and T;; be components of any tensor. We
can form many kinds of products from these components. Examples are (a) a;a;, (b) a,ajay, (¢) T;iTy,
(d) T;Tj, etc. It can be proved that these products are components of a tensor Whose order is equal
to the number of free indices. For example, a,a; are components of a second-order tensor aa;ay are
components of a third-order tensor, T;T; are components of a fourth-order tensor, and T;;T;, are com-
ponents of a second-order tensor.

To prove that a,a; are components of a second-order tensor, we let S;; = a;a; and S L =a aJ’ , then,
since a; are components of the vector a, ai’ = Qpia,, and aj’ = 0,;a,, so that

Sl; = Qmiaanjan = Qmianaman = QmianSmm
thus,
S,; = QmianSmm

which is the transformation law for a second-order tensor.
To prove that T;T}; are components of a fourth-order tensor, let M,y = T;;Ty; then we have

Mi/,'kl kl - leQn/ anerles - thQn/Q/erlenTrv:

that is,
,]k[ th Qn/Qlelemm Sy

which is the transformation law for a fourth-order tensor. It is quite clear from the proofs given above that
the order of the tensor whose components are obtained from the multiplication of components of tensors
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is determined by the number of free indices; no free index corresponds to a scalar, one free index corre-
sponds to a vector, two free indices correspond to a second-order tensor, and so on.

3. Quotient rule. If a; are components of an arbitrary vector, T;; are components of an arbitrary tensor, and
a; = Tyb; for all coordinates, then b; are components of a vector.
To prove this, we note that since a; are components of a vector and T;; are components of a second-
order tensor, therefore,

a; = Q[ma,,/y” ()
and
T = QimQinT - (ii)
Now, substituting Eq. (i) and Eq. (ii) into the equation a; = T;b;, we have
Qima,/n = Q[)annTy:1,7bj~ (iii)
But the equation a; = T;;b; is true for all coordinates, thus we also have
a; =T;bj and a, =T,,b,, (iv)
and thus Eq. (iii) becomes
QimTy:mby/, = QimanT,;,,b/- )

Multiplying the preceding equation with Q;; and noting that 0;:Q;,, = ., We get
ST by = OmQinT b 0 Tiyby = QinTiybj,
thus,
T}, (b, = Qjubj) = 0. (vi)
Since this equation is to be true for any tensor T, therefore b] — Q;,b; must be identically zero. Thus,
b! = Qjub;. (vii)

This is the transformation law for the components of a vector. Thus, b; are components of a vector.

Another example that will be important later when we discuss the relationship between stress and
strain for an elastic body is the following: If T;; and E;; are components of arbitrary second-order ten-
sors T and E, and

Ty = CijuEu, (viii)

for all coordinates, then C;;; are components of a fourth-order tensor. The proof for this example fol-
lows exactly the same steps as in the previous example.

SYMMETRIC AND ANTISYMMETRIC TENSORS

A tensor is said to be symmetric if T = T". Thus, the components of a symmetric tensor have the property

T, =T, (2.20.1)
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that is,
Tyo=Tn, Ti3=Tsn, Tn=Tsn (2.20.2)
A tensor is said to be antisymmetric if T = —T". Thus the components of an antisymmetric tensor have
the property
Ty = —Tj, (2.20.3)
that is,
Thw=Tn=T53=0, Tn=-Tn, Ti=-T3, Tn=-Tsn (2.20.4)
Any tensor T can always be decomposed into the sum of a symmetric tensor and an antisymmetric tensor.
In fact,
T=T54+T4, (2.20.5)
where
T+T' T-T"

T = is symmetric and T = is anti-symmetric. (2.20.6)

It is not difficult to prove that the decomposition is unique (see Prob. 2.47).

THE DUAL VECTOR OF AN ANTISYMMETRIC TENSOR

The diagonal elements of an antisymmetric tensor are always zero, and, of the six nondiagonal elements, only
three are independent, because T\, = —T»1, T»3 = —T3; and T3; = —T3. Thus an antisymmetric tensor has
really only three components, just like a vector. Indeed, it does behave like a vector. More specifically, for
every antisymmetric tensor T there is a corresponding vector t* such that for every vector a, the transformed
vector of a under T, i.e., Ta, can be obtained from the cross-product of t* with the vector a. That is,

Ta=t" x a. (2.21.1)

This vector t* is called the dual vector of the antisymmetric tensor. It is also known as the axial vector.
That such a vector indeed can be found is demonstrated here.
From Eq. (2.21.1), we have

T12:e1~Te2:e1~tA><e2:tA-e2><e1:— re3 = —I3,
T3 =e;-Tep =e;-th xe; =th-e; xe3 = —t ey = —1, (2.21.2)
T23:e2-Te3:e2~tA><e3:tA-e3><e2:— e =

Similar derivations will give To; = 3, T13 = 13, T3o = 1 and Ty; = Ty = T33 = 0. Thus, only an antisym-
metric tensor has a dual vector defined by Eq. (2.21.1). It is given by

th = —(Tase; + T31€2 + Thoes) = Taoey + Thzer + Tayes (2.21.3)
or, in indicial notation,
2 — ey Tye. @2.21.4)

The calculations of dual vectors have several uses. For example, it allows us to easily obtain the axis of
rotation for a finite rotation tensor. In fact, the axis of rotation is parallel to the dual vector of the
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antisymmetric part of the rotation tensor (see Example 2.21.2). Also, in Chapter 3 it will be shown that the dual
vector can be used to obtain the infinitesimal angles of rotation of material elements under infinitesimal defor-
mation (Section 3.11) and to obtain the angular velocity of material elements in general motion (Section 3.14).

Example 2.21.1
Given

1 23
m—{zx 2 1}.
111

(@) Decompose the tensor into a symmetric and an antisymmetric part.
(b) Find the dual vector for the antisymmetric part.
(c) Verify Tha=t" x a for a = e; + es.

Solution

(@) [T] = [T°] + [T"], where

132 T [0 -1 1
[Tﬂ:W:[g 2 %},[TA]zm;m:[l 0 o}.

(b) The dual vector of TA is

th = —(Tihe1 + Thieo + Tihes) = —(Oe; —ep —e3) = €5 + es.

0o -1 1 1 1
SUEE[RE
-1 0 O 1 -1

b=e; +e,—e;s.

(c) Let b = T"a. Then

that is,

We note that t* x a = (e +e3) x(ej+e3)=—e3+e; +e,=Dh.

Example 2.21.2
Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of rotation, prove that the dual
vector q of R” is parallel to m.

Solution
Since m is parallel to the axis of rotation, therefore,

Rm =m.
Multiplying the preceding equation by R and noticing that R'R = I, we then also have the equation R'm = m. Thus,

(R-RYm=0 or 2R"m=0,
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but R*m = g x m, where q is the dual vector of R”. Therefore,
gxm=0, (2.21.5)

that is, q is parallel to m. We note that it can be shown [see Prob. 2.54(b)] that if @ denotes the right-hand rotation
angle, then

q = (sinf)m. (2.21.6)

EIGENVALUES AND EIGENVECTORS OF A TENSOR

Consider a tensor T. If a is a vector that transforms under T into a vector parallel to itself, that is,
Ta = Ja, (2.22.1)

then a is an eigenvector and A is the corresponding eigenvalue.
If a is an eigenvector with corresponding eigenvalue 4 of the linear transformation T, any vector parallel
to a is also an eigenvector with the same eigenvalue A. In fact, for any scalar o

T(xa) = «Ta = a(la) = A(ca). (2.22.2)

Thus, an eigenvector, as defined by Eq. (2.22.1), has an arbitrary length. For definiteness, we shall agree that
all eigenvectors sought will be of unit length.

A tensor may have infinitely many eigenvectors. In fact, since Ia = a, any vector is an eigenvector for the
identity tensor I, with eigenvalues all equal to unity. For the tensor 1, the same is true except that the eigen-
values are all equal to f.

Some tensors only have eigenvectors in one direction. For example, for any rotation tensor that effects a
rigid body rotation about an axis through an angle not equal to an integral multiple of 7, only those vectors
that are parallel to the axis of rotation will remain parallel to themselves.

Let n be a unit eigenvector. Then

Tn = An = /In, (2.22.3)
thus,
(T—)n=0 with n-n=1. (2.22.4)
Let n = o;e;; then, in component form,
(Tj — 28;)o; =0 with ooy = 1. (2.22.5)

In long form, we have

(T11 — /1)0(1 + Tp0 + Tiz03 = 0,
Ty0n + (T — A)on + Toz03 = 0, (2.22.6)
T30y + T30 + (T33 — /1)0(3 =0.

Equations (2.22.6) are a system of linear homogeneous equations in «y, , and a3. Obviously, a solution
for this system is a; = ap = o3 = 0. This is known as the trivial solution. This solution simply states the
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obvious fact that a = 0 satisfies the equation Ta = Za, independent of the value of A. To find the nontrivial
eigenvectors for T, we note that a system of homogeneous, linear equations admits a nontrivial solution only
if the determinant of its coefficients vanishes. That is,

T — A =0, (2.22.7)
that is,
Ty —X T T3
Ty Tn—% Ty |=0. (2.22.8)
T3 T3 Ty — A

Expanding the determinant results in a cubic equation in A. It is called the characteristic equation of T.
The roots of this characteristic equation are the eigenvalues of T.
Equations (2.22.6), together with the equation

B4l =1, (2.22.9)

allow us to obtain eigenvectors of unit length. The procedure for finding the eigenvalues and eigenvectors of a
tensor are best illustrated by example.

Example 2.22.1
Find the eigenvalues and eigenvectors for the tensor whose components are

2 00
mz{o 2 o}.
00 2

Solution

We note that this tensor is 21, so that Ta = 2la = 2a for any vector a. Therefore, by the definition of eigenvector [see
Eq. (2.22.1)], any direction is a direction for an eigenvector. The eigenvalue for every direction is the same, which is
2. However, we can also use Eq. (2.22.8) to find the eigenvalues and Egs. (2.22.6) to find the eigenvectors. Indeed,
Eq. (2.22.8) gives, for this tensor, the following characteristic equation:

(2-4°=0,
so we have a triple root 4 = 2. Substituting this value in Egs. (2.22.6), we have
2-2)1 =0, (2-2)ap =0, (2—2)a3=0.

Thus, all three equations are automatically satisfied for arbitrary values of oq, ao and a3z so that every direction is a
direction for an eigenvector. We can choose any three noncoplanar directions as the three independent eigenvectors;
on them all other eigenvectors depend. In particular, we can choose {e;, e,, es} as a set of independent eigenvectors.

Example 2.22.2
Show that if To; = T3; = 0, then +e; are eigenvectors of T with eigenvalue T;;.

Solution
From Te; = T11e1 + To1€0 + T31€3, we have

TE1 = T11e1 and T(—el) = T11(—e1).



36 CHAPTER 2 Tensors

Thus, by definition, Eq. (2.22.1), +e; are eigenvectors with T1; as its eigenvalue. Similarly, if T, = T3» = 0, then
+e, are eigenvectors with corresponding eigenvalue To,, and if Ti3 = T3 =0, then +ez are eigenvectors with
corresponding eigenvalue Tss.

Example 2.22.3
Given that

T =

o O N
o NN O
w O O

Find the eigenvalues and their corresponding eigenvectors.

Solution
The characteristic equation is

(2-7)?@B-1)=0.

Thus, 41 = 3, o = A3 = 2 (obviously the ordering of the eigenvalues is arbitrary). These results are obvious in
view of Example 2.22.2. In fact, that example also tells us that the eigenvectors corresponding to 11 = 3 are +e3
and eigenvectors corresponding to A, = 13 = 2 are +e; and +e,. However, there are actually infinitely many eigen-
vectors corresponding to the double root. In fact, since

Te; =2e; and Te, = 2ey,
therefore, for any o and p,
T(oe; + pey) = aTe; + fTe, = 2ue; + 26 = 2(xe; + fey),

that is, ae; + e, is an eigenvector with eigenvalue 2. This fact can also be obtained from Egs. (2.22.6). With 1 = 2,
these equations give

Oocl = O7 OO€2 = O7 o3 = 0.

Thus, «; = arbitrary, ao = arbitrary, and a3 = 0, so that any vector perpendicular to es, that is, any
n =o€, + axey, iS an eigenvector.

Example 2.22.4
Find the eigenvalues and eigenvectors for the tensor

20 0
[T]:[OS 4}
0 4 -3



2.22 Eigenvalues and Eigenvectors of a Tensor 37

Solution
The characteristic equation gives

— M| = - =2-1) - =0.
T— Ml 0 3-4 4 22 -25)=0

Thus, there are three distinct eigenvalues, A; = 2, ., = 5 and A3 = —5.
Corresponding to 4; = 2, Egs. (2.22.6) gives

Oy =0, op+4a3=0, 4oy —5baz=0,
and we also have Eq. (2.22.9):
02 4 a5 405 = 1.
Thus, ao = a3 = 0 and «; = +1 so that the eigenvector corresponding to 4; = 2 is
n; = te;.
We note that from the Example 2.22.2, this eigenvalue 2 and the corresponding eigenvectors n; = +e; can be

written by inspection.
Corresponding to A, = 5, we have

—301 =0, —20p+403=0, 4dap—8uz=0,
thus (note the second and third equations are the same),
oy =0, ap = 203,

and the unit eigenvectors corresponding to A, = 5 are
n, ==+ ! (2e2 + e3)

Similarly for 43 = —5, the unit eigenvectors are

1
n3 = i—(—eg + 283).

V5

All the examples given here have three eigenvalues that are real. It can be shown that if a tensor is
real (i.e., with real components) and symmetric, then all its eigenvalues are real. If a tensor is real
but not symmetric, then two of the eigenvalues may be complex conjugates. The following is such an
example.
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Example 2.22.5
Find the eigenvalues and eigenvectors for the rotation tensor R corresponding to a 90° rotation about the e (see
Example 2.10.1).

Solution
With

0 -1 0
[R]_[l 0 o}

the characteristic equation is

that is,
PA=D+1=-=10=-1A*+1)=0.

Thus, only one eigenvalue is real, namely A; = 1; the other two, 1, = +v/—1 and A3 = —v/—1, are imaginary. Only
real eigenvalues are of interest to us. We shall therefore compute only the eigenvector corresponding to 41 = 1. From

O—1og —ap=0, a3 —0p=0, (1-1)az=0,
and
o+ og ol =1,
we obtain a1 =0, ap =0, ez = +1, that is,
n = +es,

which, of course, are parallel to the axis of rotation.

PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF REAL SYMMETRIC
TENSORS

In the following chapters, we shall encounter several real tensors (stress tensor, strain tensor, rate of deforma-
tion tensor, etc.) that are symmetric. The following significant theorem can be proven: The eigenvalues of any
real symmetric tensor are all real (we omit the proof). Thus, for a real symmetric tensor, there always exist at
least three real eigenvectors, which we shall also call the principal directions. The corresponding eigenvalues
are called the principal values.

We now prove that there always exist three principal directions that are mutually perpendicular. Let n,
and n, be two eigenvectors corresponding to the eigenvalues A; and 4,, respectively, of a tensor T. Then

Tnl = /11[117 (2231)

and
Tll2 = j.gl'lz. (2232)

Thus,
H2~TII| = j.lllz'l'll7 (2233)
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and
n;-Tn, = Aong -ny. (2.23.4)
For a symmetric tensor, T = TT, so that
n -Tn; =n,-T'n; = ny - Tny. (2.23.5)
Thus, from Egs. (2.23.3) and (2.23.4), we have
(1 — 22)(ny -my) = 0. (2.23.6)

It follows that if 4, is not equal to A,, then n; - ny = 0, that is, n; and n, are perpendicular to each other.
We have thus proved that if the eigenvalues of a symmetric tensor are all distinct, then the three principal
directions are mutually perpendicular.

Next, let us suppose that n; and n, are two eigenvectors corresponding to the same eigenvalue A. Then, by
definition, Tn; = An; and Tn, = /n; so that for any o and f,

T(OCI]] + ﬁl‘lz) = O(Tll] + ﬁTI‘lz = O()Jl] -+ ﬂ/ll]z = /1(0([]1 + ﬁl‘lz).

That is, (en; + fn,) is also an eigenvector with the same eigenvalue A. In other words, if there are
two distinct eigenvectors with the same eigenvalue, then there are infinitely many eigenvectors (which form
a plane) with the same eigenvalue. This situation arises when the characteristic equation has a repeated root
(see Example 2.22.3). Suppose the characteristic equation has roots 1; = A, = 4 and A5 (43 distinct from ).
Let n3 be the eigenvector corresponding to A3; then n3 is perpendicular to any eigenvector of 1. Therefore
there exist infinitely many sets of three mutually perpendicular principal directions, each containing n; and
any two mutually perpendicular eigenvectors of the repeated root A.

In the case of a triple root, 4, = 4, = A3 = A, any vector is an eigenvector (see Example 2.22.1) so that
there exist infinitely many sets of three mutually perpendicular principal directions.

From these discussions, we conclude that for every real symmetric tensor there exists at least one triad of
principal directions that are mutually perpendicular.

MATRIX OF A TENSOR WITH RESPECT TO PRINCIPAL DIRECTIONS

We have shown that for a real symmetric tensor, there always exist three principal directions that are mutually
perpendicular. Let ny, n, and n3 be unit vectors in these directions. Then, using n;, n, and n; as base vectors,
the components of the tensor are

Ty =n;-Tny =n;-4ing = iny -0y = 44,
Ty =ny-Tny =my-Jony = /omy -y = Ay,
T33 =13 'Tl'l3 =n3 '/13113 = )u3l’l3 ‘N3 = /13,

T12 =ng- Tl’lz = '/lznz = ;»2111 ‘M = O7 (2.24.1)
T3 =n;-Tny =n;-/3n3 = /3n;-m3 =0,
T3 =my-Tn3 =my-/3n3 = A3y -m3 = 0,
that is,
A1 0 0
m=|0 % 0] . (2.24.2)
0 0 A

Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T.
We now show that the principal values of a tensor T include the maximum and the minimum values that
the diagonal elements of any matrix of T can have. First, for any unit vector e{ = an; + fin, + yns,
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),1 0 0 o
T/, =e-Tef=[a B y]| 0 4 O0||B], (2.24.3)
that is,
T/, = Mo? + 2af® + iy’ (2.24.4)

Without loss of generality, let

>0 > s (2.24.5)
Then, noting that o? + [32 + yz =1, we have

I =2(2 + B2 +97) > e + Aaf + Iay?, (2.24.6)

that is,
A>T, (2.24.7)

We also have

ot + Iaf? 4 A3yt > da(of + B +97) = s, (2.24.3)

that is,
T/, > J3. (2.24.9)

Thus, the maximum value of the principal values of T is the maximum value of the diagonal elements of
all matrices of T, and the minimum value of the principal values of T is the minimum value of the diagonal
elements of all matrices of T. It is important to remember that for a given T, there are infinitely many matri-
ces and therefore, infinitely many diagonal elements, of which the maximum principal value is the maximum
of all of them and the minimum principal value is the minimum of all of them.

PRINCIPAL SCALAR INVARIANTS OF A TENSOR

The characteristic equation of a tensor T, |T;; — A0;;| = 0 can be written as:

B+ hi—1;=0, (2.25.1)
where
I =Ty + Ty +T33 =T; =uT, (2.25.2)
Ty T Ty Ta Tu Tis 1 1 [ 2 2 }

I, = =—(T;T;; — T;;Ty;) == |(&rT)” — e (T) ]|, 2.25.3
2T Ty T + Ty, Tss + T3 Tss| 2 (T3 iTi) 2 (rT) o) ( )

Ty T Ti
I3 =Ty Ty Ty|=det [T} (2.25.4)

T3 T T

Since by definition, the eigenvalues of T do not depend on the choices of the base vectors, therefore the
coefficients of Eq. (2.25.1) will not depend on any particular choices of basis. They are called the principal
scalar invariants of T.
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We note that, in terms of the eigenvalues of T, which are the roots of Eq. (2.25.1), the scalar invariants
take the simple form

11 = ;\.1 + ;,2 + ]3,
I, = 2]/12 + )uz/l3 + 23/1], (2255)
Iy = 1 243.

Example 2.25.1
For the tensor of Example 2.22.4, first find the principal scalar invariants and then evaluate the eigenvalues using
Eq. (2.25.1).

Solution
The matrix of T is

0 4 -3
Thus,
h=24+3-3=2,
2 0 3 4 2 0
b= + + = 25,
0 3 4 -3 0 -3
I =T = -50.
These values give the characteristic equation as
22 —2,%2-25,+50=0,
or
(A=2)(A—=5)(4+5) =0.
Thus the eigenvalues are A = 2, A = 5 and 4 = —b, as previously determined.

PROBLEMS FOR PART B

2.19 A transformation T operates on any vector a to give Ta = a/|a|, where |a]| is the magnitude of a. Show
that T is not a linear transformation.

2.20 (a) A tensor T transforms every vector a into a vector Ta = m x a, where m is a specified vector. Show
that T is a linear transformation. (b) If m = e; + e,, find the matrix of the tensor T.

2.21 A tensor T transforms the base vectors e; and e, such that Te; =e; +e,, Te, =e; —es.
Ifa = 2e; + 3e, and b = 3e; + 2e;,, use the linear property of T to find (a) Ta, (b) Tb, and (c) T(a+b).

2.22 Obtain the matrix for the tensor T, that transforms the base vectors as follows: Te; = 2e; + e3,
Te, = e; + 3e3, Te; = —e; + 3e;.

2.23 Find the matrix of the tensor T that transforms any vector a into a vector b = m(a - n) where

2 2
m = 7(e1 +e) andn :7(—e1 +es3).
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2.24

2.25

2.26

2.27

2.28

2.29

2.30

231

2.32

2.33

2.34

2.35

CHAPTER 2 Tensors

(a) A tensor T transforms every vector into its mirror image with respect to the plane whose normal is
e,. Find the matrix of T. (b) Do part (a) if the plane has a normal in the e; direction.

(a) Let R correspond to a right-hand rotation of angle 6 about the x;-axis. Find the matrix of R. (b) Do
part (a) if the rotation is about the x,-axis. The coordinates are right-handed.

Consider a plane of reflection that passes through the origin. Let n be a unit normal vector to the plane
and let r be the position vector for a point in space. (a) Show that the reflected vector for r is given by
Tr=r —2(r-n)n, where T is the transformation that corresponds to the reflection. (b) Let
n = (e; + e, + e3)/+/3; find the matrix of T. (c) Use this linear transformation to find the mirror image
of the vector a = e; + 2e, + 3es.

Knowing that the reflected vector for r is given by Tr =r — 2(r-n)n (see the previous problem),
where T is the transformation that corresponds to the reflection and n is the normal to the mirror, show
that in dyadic notation the reflection tensor is given by T = I — 2nn and find the matrix of T if the nor-
mal of the mirror is given by n = (e; + e, + e3)/v/3.

A rotation tensor R is defined by the relation Re; = e;, Re, = e3, Res; = e;. (a) Find the matrix of R
and verify that R™R = I and det R = 1 and (b) find a unit vector in the direction of the axis of rotation
that could have been used to effect this particular rotation.

A rigid body undergoes a right-hand rotation of angle 6 about an axis that is in the direction of
the unit vector m. Let the origin of the coordinates be on the axis of rotation and r be the position
vector for a typical point in the body. (a) Show that the rotated vector of r is given
by: Rr=(1—cosf)(m-r)m+ cosfr + sinf(m x r), where R is the rotation tensor. (b) Let
m = (e; + e, + e3)/+/3, find the matrix for R.

For the rotation about an arbitrary axis m by an angle 0, (a) show that the rotation tensor is given
by R = (1 —cosf)(mm) + cosf1 + sinfE, where mm denotes that dyadic product of m and m,
and E is the antisymmetric tensor whose dual vector (or axial vector) is m, (b) find R?, the antisym-
metric part of R and (c) show that the dual vector for R® is given by (sin 0)m. Hint:
Rr = (1 —cosf)(m-r)m + cosfOr + sinf (m X r) (see previous problem).

(a) Given a mirror whose normal is in the direction of e,, find the matrix of the tensor S, which first trans-
forms every vector into its mirror image and then transforms them by a 45° right-hand rotation about the
e;-axis. (b) Find the matrix of the tensor T, which first transforms every vector by a 45° right-hand rotation
about the e;-axis and then transforms them by a reflection with respect to a mirror (with normal e;).
(c) Consider the vector a = e + 2e; + 3es; find the transformed vector by using the transformation S.
(d) For the same vector a = e + 2e; + 3es, find the transformed vector by using the transformation T.

Let R correspond to a right-hand rotation of angle @ about the xs-axis; (a) find the matrix of R
(b) Show that R? corresponds to a rotation of angle 20 about the same axis. (¢) Find the matrix of
R" for any integer n.

Rigid body rotations that are small can be described by an orthogonal transformation R =1 + ¢R”,
where ¢ — 0 as the rotation angle approaches zero. Consider two successive small rotations, R; and
R,; show that the final result does not depend on the order of rotations.

Let T and S be any two tensors. Show that (a) T' is a tensor, (b) TT +8T = (T+S)T, and
(c) (TS)" = S™TT.

For arbitrary tensors T and S, without relying on the component form, prove that (a) (T~")T = (TT)™!
and (b) (TS) ' =s~'T .
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2.36 Let {e;}and {e/} be two rectangular Cartesian base vectors. (a) Show that if e/ = Q,,e,, then
e; = Qine,,. (b) Verify 0,0, = 0jj = QimQjm-

2.37 The basis {e/} is obtained by a 30° counterclockwise rotation of the {e;} basis about the e; axis.
(a) Find the transformation matrix [Q] relating the two sets of basis. (b) By using the vector transforma-
tion law, find the components of a = v3e| + e, in the primed basis, i.e., find a/ and (c) do part (b)
geometrically.

2.38 Do the previous problem with the {e/} basis obtained by a 30° clockwise rotation of the {e;} basis
about the ez axis.

2.39 The matrix of a tensor T with respect to the basis {e;} is

Find T{,, T{, and T}, with respect to a right-handed basis {e/} where e] is in the direction of —e, + 2e3
and e] is in the direction of e;.

2.40 (a) For the tensor of the previous problem, find [T;], i.e., [T],, where {e/} is obtained by a 90° right-
hand rotation about the e; axis and (b) obtain T}, and the determinant \Ti}| and compare them with T;;
and |Ty]. '

2.41 The dot product of two vectors a = a;e; and b = b;e; is equal to a;b;. Show that the dot product is a sca-
lar invariant with respect to orthogonal transformations of coordinates.

242 If T; are the components of a tensor, (a) show that T;T; is a scalar invariant with respect to
orthogonal transformations of coordinates, (b) evaluate T;7; with respect to the basis {e;} for

1 00 0 0 1
M= |1 2 5/, (c)find [T]"if e/ =Qe;, where [Q = |1 0 O [, and (d) verify for the above that
1 2 3 01 0
€; €;

TiTy; = TyTy.
2.43 Let [T] and [T]’ be two matrices of the same tensor T. Show that det[T] = det[T]’.

2.44 (a) If the components of a third-order tensor are R;j, show that R;; are components of a vector. (b) If
the components of a fourth-order tensor are R;j;, show that R;;; are components of a second-order ten-
sor. (c) What are components of R;;.. if R;j... are components of a tensor of n™ order?

2.45 The components of an arbitrary vector a and an arbitrary second tensor T are related by a triply sub-
scripted quantity R;; in the manner a; = R;3Tj for any rectangular Cartesian basis {e;}. Prove that
R are the components of a third-order tensor.

2.46 For any vector a and any tensor T, show that (a) a - TAa = 0 and (b) a-Ta = a- TSa, where T and TS
are antisymmetric and symmetric part of T, respectively.

2.47 Any tensor can be decomposed into a symmetric part and an antisymmetric part, that is, T = TS 4+ T%.
Prove that the decomposition is unique. (Hint: Assume that it is not true and show contradiction.)

1 2 3
2.48 Given that a tensor T has the matrix [T] = |4 5 6|, (a) find the symmetric part and the antisym-
7 8 9

metric part of T and (b) find the dual vector (or axial vector) of the antisymmetric part of T.
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2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58
2.59
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Prove that the only possible real eigenvalues of an orthogonal tensor Q are A = +1. Explain the direc-
tion of the eigenvectors corresponding to them for a proper orthogonal (rotation) tensor and for an
improper orthogonal (reflection) tensor.

[1o—2 2
Given the improper orthogonal tensor [Q] = 3 [—2 1 —2/]. (a) Verify that det [Q] = —1.

-2 -2 1
(b) Verify that the eigenvalues are 4 = 1 and —1. (c¢) Find the normal to the plane of reflection (i.e.,
eigenvectors corresponding to A = —1) and (d) find the eigenvectors corresponding to A = 1 (vectors

parallel to the plane of reflection).

Given that tensors R and S have the same eigenvector n and corresponding eigenvalues r; and sy,
respectively, find an eigenvalue and the corresponding eigenvector for T = RS.

Show that if n is a real eigenvector of an antisymmetric tensor T, then the corresponding eigenvalue
vanishes.

(a) Show that a is an eigenvector for the dyadic product ab of vectors a and b with eigenvalue a - b,
(b) find the first principal scalar invariant of the dyadic product ab and (c) show that the second and
the third principal scalar invariant of the dyadic product ab vanish, and that zero is a double eigenvalue
of ab.

For any rotation tensor, a set of basis {e/} may be chosen with e} along the axis of rotation so that
Re| = cosfe| +sinfej, Rej = —sinfe| 4 cosfe), Re; = e}, where 0 is the angle of right-hand rota-
tion. (a) Find the antisymmetric part of R with respect to the basis {e/}, i.e., find [R*],,. (b) Show that
the dual vector of R is given by t* = sinfe} and (c) show that the first scalar invariant of R is given
by 1 + 2cosf. That is, for any given rotation tensor R, its axis of rotation and the angle of rotation can
be obtained from the dual vector of R” and the first scalar invariant of R.

The rotation of a rigid body is described by Re; = e;, Re, = e3, Re; = e;. Find the axis of rotation
and the angle of rotation. Use the result of the previous problem.

[100

Given the tensor [Q]=| 0 —1 0] . (@) Show that the given tensor is a rotation tensor. (b) Verify

0 0 1
that the eigenvalues are 4 = 1 and —1. (c) Find the direction for the axis of rotation (i.e., eigenvectors
corresponding to 4 = 1). (d) Find the eigenvectors corresponding to 4 = —1 and (e) obtain the angle of rotation
using the formula /; = 1+ 2cos 0 (see Prob. 2.54), where I; is the first scalar invariant of the rotation
tensor.

Let F be an arbitrary tensor. (a) Show that F TF and FF' are both symmetric tensors. (b) If
F = QU = VQ, where Q is orthogonal, show that U? = F'F and V> = FF". (c) If / and n are eigen-
value and the corresponding eigenvector for U, find the eigenvalue and eigenvector for V.
LTy TyT;i

2 2
A tensor T has a matrix [T] given below. (a) Write the characteristic equation and find the principal
values and their corresponding principal directions. (b) Find the principal scalar invariants. (c) If
n;, Ny, nj are the principal directions, write [T]n,-‘ (d) Could the following matrix [S] represent the same

5 4 0 7 2 0

4 -1 0],[8] [2 1 0 ]
0o 0 3 0 0 -1

Verify that the second principal scalar invariant of a tensor T can be written: I, =

tensor T with respect to some basis? [T] =
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300
2.60 Do the previous problem for the following matrix: [T]= |0 0 4
0 4 0

2.61 A tensor T has a matrix given below. Find the principal values and three mutually perpendicular prin-

cipal directions.
1 10
T=1|1 1 0].
0 0 2

TENSOR CALCULUS

TENSOR-VALUED FUNCTIONS OF A SCALAR

Let T = T(¢) be a tensor-valued function of a scalar ¢ (such as time). The derivative of T with respect to ¢ is
defined to be a second-order tensor given by:

dar . T+ At) —T(2)
AT A (2.26.1)

The following identities can be easily established:

d dT dS

Srs) ="+ (2.26.2)
& atom) =21 a2 (226.3)
%(m _ %s + T%?, (2.26.4)
) =Tar 1, (226.5)
% (T7) — (% >T. (2.26.6)

We shall prove here only Eq. (2.26.5). The other identities can be proven in a similar way. Using the
definition given in Eq. (2.26.1), we have

T(r+ Ar)a(t + Ar) — T(r)a(r)

d
— (Ta) = limAHo

dt At
~ lima, T(t+ At)a(t + Ar) — T(t)a(t) — T(t)a(r + At) + T(r)a(r + Ar)
= A At
T T(t+ At)a(t + Ar) — T(t)a(r 4 Ar) + T(t)a(r 4 At) — T(t)a(z)
= MmA—o At

T(t+ Ar) — T(z)
At
d(Ta) dT da

= — T—.
dt dta+ dt

= limp, o

. a(r+ Ar) —a(r)
a(t+ Ar) + Al::no T() A

Thus,



46 CHAPTER 2 Tensors

Example 2.26.1
Show that in Cartesian coordinates, the components of d T/dt, i.e., (dT/dt) are given by the derivatives of the com-
ponents dTj/dt.

Solution
From
Tj=ei-Tey,
we have
dTy  de, aT de;
— =——"Te
gt ~dr e Tter g ste g
Since the base vectors are fixed, their derivatives are zero; therefore,
dfy _, dT, _ (dT
at 7 dt” o \at)/

Example 2.26.2 4Q
Show that for an orthogonal tensor Q(1), (E) Q' is an antisymmetric tensor.

Solution
Since QQ" = I, we have
T
d(QQ ) QL@ dQQT A_,
dt dt '
T T
Since [see Eq. (2.26.6)] ﬂ = <(Z;?) therefore, the above equation leads to

QY  da_;
o(F)--F0

.
Now Q(%) = (dQQT) therefore,

that is, (%?) Q' is an antisymmetric tensor.

Example 2.26.3
A time-dependent rigid body rotation about a fixed point can be represented by a rotation tensor R(#), so that a posi-
tion vector r, is transformed through the rotation into r(¢) = R(¢)r,. Derive the equation

d
G- exr (2.26.7)

where w is the dual vector of the antisymmetric tensor %RT.
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Solution
From r(f) = R(t)r,, we obtain
dr dR dR dR

_ = — = — T i
G- a @R rmgRe M

R
But %RT is an antisymmetric tensor (see the previous example, Example 2.26.2) so that

ar

dtfwxr (i)

. dR L . . . ,
where w is the dual vector of ERT. From the well-known equation in rigid body kinematics, we can identify w as the

angular velocity of the rigid body.

SCALAR FIELD AND GRADIENT OF A SCALAR FUNCTION

Let ¢(r) be a scalar-valued function of the position vector r. That is, for each position r, ¢(r) gives the value
of a scalar, such as density, temperature, or electric potential at the point. In other words, ¢ (r) describes a
scalar field. Associated with a scalar field is a vector field, called the gradient of ¢. The gradient of ¢ at a
point is defined to be a vector, denoted by grad ¢ or by V¢ such that its dot product with dr gives the dif-
ference of the values of the scalar at r + dr and r, i.e.,

d = ¢(r +dr) — ¢(r) = Ve - dr. (2.27.1)

If dr denote the magnitude of dr, and e the unit vector in the direction of dr (Note: e = dr/dr). Then the
above equation gives, for dr in the e direction,

dp

S =Ve (227.2)

That is, the component of V¢ in the direction of e gives the rate of change of ¢ in that direction (directional
derivative). In particular, the components of V¢ in the coordinate directions e; are given by

2_ (4

B dr)e = Vo e (2.27.3)

Therefore, the Cartesian components of V¢ are d¢/0x;, that is,

09 0 (09 (99, 09, (2.27.4)

V‘ﬁ*axl o 2 O ox;

The gradient vector has a simple geometrical interpretation. For example, if ¢(r) describes a temper-
ature field, then, on a surface of constant temperature (i.e., isothermal surface), ¢ = a constant. Let r be a
point on an isothermal surface. Then, for any and all neighboring point r+dr on the same isothermal sur-
face, d¢p = 0. Thus,V¢ - dr = 0. In other words, V¢ is a vector, perpendicular to the surface at the point
r. On the other hand, the dot product V¢ -dr is a maximum when dr is in the same direction as V¢. In
other words, V¢ is greatest if dr is normal to the surface of constant ¢ and in this case, d¢p = |V|dr, or

(@) —Vél, (2.27.5)
dr ) max

for dr in the direction normal to the surface of constant temperature.
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Example 2.27.1
If ¢ = x1% + 2x3, find a unit vector n normal to the surface of a constant ¢ passing through the point (2,1,0).

Solution
By Eq. (2.27.4),

¢ o ¢
V(f) 8—)(191 +a—X262 +a—e3 Xo€1 + X1 +293.

At the point (2,1,0), V¢ = e; + 2e, + 2e3. Thus,

(e1 + 2ey + 2e3).

U..)l'—‘

Example 2.27.2
If q denotes the heat flux vector (rate of heat transfer/area), the Fourier heat conduction law states that

q= —kve, 0

where © is the temperature field and k is thermal conductivity. If ® =2(x%+x%), find VO at the
location A (1,0) and B@/\/Z 1/\/§>. Sketch curves of constant ® (isotherms) and indicate the vectors q at the
two points.

Solution
By Eq. (2.27.4),

Ve = 2—2 1 +§7®e2 +g® e3 = 4xe; +4xe;.

Thus,

q= —4k(X161 + Xgﬁg).

s

X4

FIGURE 2.27-1
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At point A,
dn = —4key,
and at point B,
Qs = —2V2k(e1 + e).

Clearly, the isotherms, Figure 2.27-1, are circles and the heat flux is an inward radial vector (consistent with heat
flowing from higher to lower temperatures).

Example 2.27.3
A more general heat conduction law can be given in the following form:

q=—-KVo,

where K is a tensor known as thermal conductivity tensor. (a) What tensor K corresponds to the Fourier heat conduc-
tion law mentioned in the previous example? (b) Find q if ® = 2x; + 3x», and

2 -1 0
K] = [—1 2 o}.
0 0 3

Solution
(a) Clearly, K = kI, so that q = —kIVO® = —kV®O.

2 -1 0 2 -1
SCHIEE
0O 0 3 0 0

q=—-€ — 4827

(b) VO = 2e; + 3e, and

that is,

which is clearly not normal to the isotherm (see Figure 2.27-2).

X1

FIGURE 2.27-2
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VECTOR FIELD AND GRADIENT OF A VECTOR FUNCTION

Let v(r) be a vector-valued function of position describing, for example, a displacement or a velocity field.
Associated with v(r), is a tensor field, called the gradient of v, which is of considerable importance. The gra-
dient of v (denoted by Vv or grad v) is defined to be the second-order tensor, which, when operating on dr,
gives the difference of v at r 4 dr and r. That is,

dv=v(r+dr)—v(r) = (Vv)dr. (2.28.1)

Again, let dr denote |dr| and e denote dr/dr; we have

dv
(5) in e—direction a (VV)e. (2282)

Therefore, the second-order tensor Vv transforms a unit vector e into the vector describing the rate of
change of v in that direction. In Cartesian coordinates,

dv ov
- =_= ; 2.28.3
(dl‘) in e;—direction 8xj (VV)eM ( )

therefore, the components of Vv in indicial notation are given by

ov_O(v-e) O

(VV),,:ef-(Vv)e,=e,~0—)g_ o o’ (2.28.4)
and in matrix form
[Ovi v O ]
ox; Oxp 0Ox3
8V2 8\12 (9\12
[Vv] = ox; Ox, O | (2.28.5)
8x| 8x2 a)n

Geometrical interpretation of Vv will be given later in connection with the deformation of a continuum
(Chapter 3).

DIVERGENCE OF A VECTOR FIELD AND DIVERGENCE OF A TENSOR FIELD

Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the trace of the gra-
dient of v. That is,

divv = tr(Vv). (2.29.1)
In Cartesian coordinates, this gives

Ovy  Ovy  Ovs  Ov

divv=——-4 =4 —=2="71
vy ox;  Oxy Oxz  Ox;

(2.29.2)
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Let T(r) be a tensor field. The divergence of T(r) is defined to be a vector field, denoted by div T, such
that for any vector a

(div T) -a=div(T"a) — tr(T"Va). (2.29.3)

To find the Cartesian components of the vector div T, let b = div T, then (Note: Ve; = 0 for Cartesian
coordinates), from (2.29.3), we have

bi =b-e; =div(T"e;) — tr(T"Ve;) = div(Tje;) — 0 = 9T;;/0x;. (2.29.4)
In other words,

Example 2.29.1
Let « = a(r) anda = a(r). Show that div(ea) = adiva + (Vv) - a.

Solution
Let b=oa. Then b;= aa; S0

L Ob da;  On
divbh = 6_)(, = af)x, %, aj.
That is,

div (ea) = a diva+ (Vo) -a. (2.29.6)
Example 2.29.2
Given a = a(r) and T = T(r), show that

div (aT) = T(Va) + o div T (2.29.7)
Solution
We have, from (2.29.5),

. _0(aTy) o Ty .
div (oT) = % e = 8_)9 Tiei + aa—xje, =T(Va) +adivT.

*We note that the Cartesian components of the third-order tensor M = VT = V(T,:,-e,-q)are OT;j/Ox;.. In terms of M = Mjj.e;eje;, div
T is a vector given by M;je;. More on the components of VT will be given in Chapter 8.
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CURL OF A VECTOR FIELD

Let v(r) be a vector field. The curl of v(r) is defined to be a vector field given by twice the dual vector of the
antisymmetric part of Vv. That is

curl v = 2t*, (2.30.1)
where t* is the dual vector of (Vv)™.
In rectangular Cartesian coordinates,
[ Ufon _om)  Lfom_aw)]

2 8}(2 8X1 2 8){3 8X1

A 1 Bvl 8\)2 1 8\/2 8V3
= |- (=== 2.30.2
[VV} 2 (8}(2 8)(1 0 2 8}(3 8x2 ( 3 )

_Lfon _dvs) o L1 [0v2 Ovs 0
2 6}(3 ox) 2 8X3 Ox,

Thus, the curl of v(r) is given by [see Eq. (2.21.3)]:

aV3 aVZ 6v1 8V3 8\’2 8vl
lyv =2 A _ _ - -2 - . 2.30.
curl v t (8)(2 6x3)e1 + (6x3 8x1>e2 + (E)xl 8x2) €3 (2.30.3)

It can be easily verified that in indicial notation

(") .
curl v = —g; —e;. (2.30.4)
’ 8xk

LAPLACIAN OF A SCALAR FIELD

Let f(r) be a scalar-valued function of the position vector r. The definition of the Laplacian of a scalar field is
given by

V2 = div (Vf) = t(V(Vf)). (231.1)
In rectangular coordinates the Laplacian becomes

. o  Of f ¥
20 — = < 2
Vi =u(V(Vf)) = o o + 2 + el (2.31.2)

LAPLACIAN OF A VECTOR FIELD

Let v(r) be a vector field. The Laplacian of v is defined by the following:

V2v =V (div v) — curl (curl v). (2.32.1)
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In rectangular coordinates,

. 0 (0w (o
V(le V) = 87_)51 (aixk) €, curl v = — ik (67/\’,() €y, (2322)
and
1o} v, a [0v,
curl (curl v) = _SM8_X,3 (—sw-k B_)Cj() € = Einfluji 8_»6,; (8—)(1) e;. (2.32.3)

NOW &iupénji = —Enipbojt = —(551'5/5’/« - 5ik5,;j) [see Prob. 2.12], therefore,

a (0v 0 (Ov; a (0
et et =~on =0u0n) 5 ()= { =gy )+ () for 0

Thus,

0 (0Ov 9 (0v; 9 (ov
vz -V (di _ _ k ) i p )
V= (le V) curl (curl V) 8x,- (8xk) ¢ { 8Xﬁ (8xﬁ) + 8x,~ (6)(,;) }el. (2'32’5)

That is, in rectangular coordinates,

2 62\1,' 2
= B0, e; = Vve;. (2.32.6)
In long form,
(92\11 82v1 (?2\/] 82l’2 02\/2 82172 02\/3 82\/3 (92\13
Viy = Z ey 424 es. 2.32.7
v (Ox% +0x% +6x§)el+<8x% +6x% +6x§)e2+(&\% +8x% +8x§)e3 ( )

Expressions for the polar, cylindrical, and spherical coordinate systems are given in Part D.

PROBLEMS FOR PART C

d dT dS
2.62 Prove the identity ” (T+S)= -t using the definition of derivative of a tensor.
. d dS dT . - -
2.63 Prove the identity pr (TS) = TE + ES using the definition of derivative of a tensor.

dt dt
constant vectors.

dr’  (dT\"
2.64 Prove that — = (—) by differentiating the definition a- Tb = b-T"a, where a and b are arbitrary

2.65 Consider the scalar field ¢ = x% + 3x1x2 + 2x3. (a) Find the unit vector normal to the surface of con-
stant ¢ at the origin and at (1,0,1). (b) What is the maximum value of the directional derivative of ¢
at the origin? at (1,0,1)? (c) Evaluate d¢/dr at the origin if dr = ds(e; + e3).

2.66 Consider the ellipsoidal surface defined by the equation x?/a* + y*/b* + 72 /b* = 1. Find the unit vec-
tor normal to the surface at a given point (x, y, z).
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2.67 Consider the temperature field given by ® = 3xx;. (a) If ¢ = —kVO, find the heat flux at the point
A(1,1,1). (b) If ¢ = —KVO, find the heat flux at the same point, where

k 0 O
Kl=1[0 2 o0].
0 0 3k
2.68 Let ¢(x1,x2,x3) and Y(x,x2,x3) be scalar fields, and let v (x1, xp,x3) and w (x,x,x3) be vector fields.
By writing the subscripted components form, verify the following identities:

(@) V(¢ +y)=V¢+ Vy, sample solution:

W+ =2ID 2 B gy v,

(b) div(v+w) =divv+div w, (c) div(¢v) = (Vo)v + ¢(div v) and (d) div(curl v) = 0.

2.69 Consider the vector field v = x%el + x%ez + x%e3. For the point (1,1,0), find (a) Vv, (b) (VVv)v, (c) div v
and curl v, and (d) the differential dv for dr = ds(e; + e, + e3)/\/3.

CURVILINEAR COORDINATES

In Part C, the Cartesian components for various vector and tensor operations such as the gradient, the diver-
gence, and the Laplacian of a scalar field and tensor fields were derived. In this part, components in polar,
cylindrical, and spherical coordinates for these same operations will be derived.

POLAR COORDINATES

Consider polar coordinates (r,0), (see Figure 2.33-1) such that

r=/2+2 and 0:tan’1j§—?. (2.33.1)

X1

FIGURE 2.33-1

The unit base vectors e, and ey can be expressed in terms of the Cartesian base vectors e; and e, as

e, = coslle; +sinle,, ey = —sinle; + cosOe;. (2.33.2)
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X2
eg+dey er+des éczP
%e
Q ep+deg
S
% €0
ae P
er+der
e % 0
e
0 e, Xq

FIGURE 2.33-2

These unit base vectors vary in direction as 6 changes. In fact, from Eqgs. (2.33.2), we have
de, = (—sinfe; + cosle;)d0 = dOey, dey = (—cosle; —sinle,)d0 = —dOe,. (2.33.3)

The geometrical representation of de, and dey are shown in Figure 2.33-2, where one notes that e, (P) has
rotated an infinitesimal angle d0 to become e,(Q) = e,(P) + de, where de, is perpendicular to e,(P) with a
magnitude |de,| = (1)d0 = dO. Similarly, dej is perpendicular to eq (P) but pointing in the negative e, direc-
tion, and its magnitude is also d0.

Now, from the position vector

r=re,, (2.33.4)
we have
dr = dre, + rde,. (2.33.5)
Using Eq. (2.33.3), we get
dr =dre, +rd0ey. (2.33.6)

The geometrical representation of this equation is also easily seen if one notes that dr is the vector PQ in the
preceding figure.
The components of Vf, Vv, div v, div T, V?f and V?v in polar coordinates will now be obtained.

(i) Components of Vf:
Let f(r,0) be a scalar field. By definition of the gradient of f, we have

df =Vf-dr = (a,e, +apey)- (dre, +rdley) = a,dr +agrd0, (2.33.7)
where a, and ay are components of Vf in the e, and e, direction, respectively. But from calculus,

U Y (2.33.8)

af or 00

Since Egs. (2.33.7) and (2.33.8) must yield the same result for all increments dr, df, we have

_u _Lor

a, = E, ag = ;69 ) (2339)
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thus,

Components of Vv: Let

By definition of Vv, we have
dv = Vvdr.

Let T = Vv. Then

dv ="Tdr =T(dre, + rdOeg) = drTe, + rd0Tey.
Now

Te, =T, e +Tygep and Tey =T, pe. + Typey,
therefore,

dv = (Tydr +Trgrd0)e, + (To,dr +Toord0)ey.
From Eq. (2.33.11), we also have

dv =dv,e, +v,de. +dvgey + vodey.
Since [see Eq. (2.33.3)]
de, =d0Oey, dey = —d0e,,
therefore, Eq. (2.33.16) becomes
dv = (dv, —vodO)e, + (v,dO +dvy)ey.

From calculus,

_Ov, Oy, vy vy
F_Ed’+%d97 dV()—Werr%de.

Substituting Eq. (2.33.19) into Eq. (2.33.18), we have

_ove v, Ovg vy
dv = [Ed’ + (g*V[))d@}er+ |:Wdi =+ <W+Vr)d0:|e().

dv

Eq. (2.33.15) and Eq. (2.33.20), then, give

%d‘-i- %
"\ o0 a0

or
Eq. (2.33.21) must hold for any values of dr and df). Thus,

0w, 1 (o, _Ovy 1 {0vy
Trr*E: Trof’—,(a—e—VG), TG;‘*W7 T90*;<8_0+V1')~

Ovy vy
or

- vH)dG =T,dr+T,grd0, ——dr—+

—+V,A)d9 =Tg,dr +Teyrd0.

(2.33.10)

(2.33.11)

(2.33.12)

(2.33.13)

(2.33.14)

(2.33.15)

(2.33.16)

(2.33.17)

(2.33.18)

(2.33.19)

(2.33.20)

(2.33.21)

(2.33.22)
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In matrix form,

[Vv] = . (2.33.23)

8\)() 1 8v0
o r (a_e + )
(iii) div v:

Using the components of Vv given in (ii), that is, Eq. (2.33.23), we have

divv =1tr(Vv) = % —0—% (% + vr) . (2.33.24)
-

(iv) Components of curl v:
The antisymmetric part of Vv is

L AT B0
| rlao or

[Vv]* = 5 . (2.33.25)
D L (LU BT 0
Flao V) T e

Therefore, from the definition that curl v = twice the dual vector of (VV)A, we have

_(Ove ve 10V,

(v) Components of div T:
The invariant definition of the divergence of a second-order tensor is
(div T) -a = div(T"a) — tr((Va)TT) for any a. (2.33.27)
Take a = e,; then the preceding equation gives
(div T), = div(T"e,) — tr((Ve,)TT). (2.33.28)

To evaluate the first term on the right-hand side, we note that

TTe/‘ =Tne +Toeq, (2.33.29)
so that according to Eq. (2.33.24),
. . oT, 1 (0T,
T _ _ i - 7 ). . .
div(T"e,) = div(T,e, + T,pep) = o + ( 50 + T,,) (2.33.30)

To evaluate the second term, we first use Eq. (2.33.23) to obtain Ve,. In fact, since e, = (1)e, + (0)ey,
we have, with v, = 1l and vy = 0,
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0 0
. [Ve]M = |Tro Too

r r

0

Ver] = ([ Ve, 1)) = 2

0

N |l—= O

Thus, Eq. (2.33.28) gives

. aTrr 1 aTr(‘) Trl‘ - T99
divT) =—+——+- 4+ ——.
(div ), or + r 00 r

In a similar manner, one can derive

_ 0Ty,  10T9y  Tro +Tor
WD =5 730 T =+
(vi) Laplacian of f(x):
Given a scalar field f(x), the Laplacian of f(x) is given by V*f = div(Vf)

coordinates,
10
V=L 1 e,
ov, 10 »
From, divv = av —1—’—%—&—‘}— e have
2 2
V3 =div Vf = ﬂ—‘—iﬂ%— laf

2902 ror

(vii) Laplacian of a vector field v(x):

Laplacian of v is given by: V2v = V(div v) — curl curl v. Now, in polar coordinates:

. o0 [Ov, 10vy v, 10 [0Ov, 10vy v,
dive) = o [ St -2l T e o [ -0
V(divy) 1"(0r+)‘00+r>e+r80 (0}"+r60+r)e0

0
_ 62‘}"4,182‘}9 ,laﬁ+l%,ﬂ e + lazv" +l82\/9 +l8v" e
"\ roro0 200  ror 2| " ro00r 12 90*  r2o0 0

and

_(Ovg vy 10V,
C“ﬂv—<w+7‘;ae)

Since [see Eq. (2.34.7)]
dv = l@vz_% + %_% + aV() + Vo 1(9\/,
rv=\ra0 a2 )Y e e )% T ar r o0

19 (Ovg  ve 10v\ _ l[)zvo 1avg 132vr
790 =\ra0or T2 90 2907

therefore,

(curl curl v), = o + 7790

(2.33.31)

(2.33.32)

(2.33.33)

= tr(V(Vf)). In polar

(2.33.34)

(2.33.35)

(2.33.36)

(2.33.37)

(2.33.38)
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0 (Ovyg ve 10v,. vy 10vy vy 1 0%, 1 0v,
leurlv), = —— (20 Y0 290 _ (¢ “cve Fo, D oh DO 2.33.
(curl curl v), or ( or + r 1”00) < o r or + r? * rordd  rr o0 (2.33.39)
Thus,
v, 107, v, 10v, 208vy v,
20y 9V YW r, - 2 v T 2334
(V2Y), or? +r2 06?2 + 072 +r or rroo ¥’ (2.33.40)
and
Pvyg 10%y 10vy 20v, vy
2 7
V¥ =Gzt 20 Trar Trae 2 (23341

CYLINDRICAL COORDINATES

In cylindrical coordinates, the position of a point P is determined by (r, 0, z), where r and 0 determine the
position of the vertical projection of the point P on the xy plane (the point P’ in Figure 2.34-1) and the coor-
dinate z determines the height of the point P from the xy plane. In other words, the cylindrical coordinates is a
polar coordinate (r, 6) in the xy plane plus a coordinate z perpendicular to the xy plane.

We shall denote the position vector of P by R, rather than r, to avoid confusion between the position vec-
tor R and the coordinate » (which is a radial distance in the xy plane). The unit vector e, and ey are on the xy
plane and it is clear from Figure 2.34-1 that

R = re, + ze., (2.34.1)
and

dR = dre, + rde, + dze, + zde.. (2.34.2)

In the preceding equation, de, is given by exactly the same equation given earlier for the polar coordinates

[Eq. (2.33.3)]. We note also that e, never changes its direction or magnitude regardless where the point P is,
thus de. = 0. Therefore,

dR =dre, +rd0ey + dze,. (2.34.3)

FIGURE 2.34-1



60 CHAPTER 2 Tensors

By retracing all the steps used in the previous section on polar coordinates, we can easily obtain the fol-
lowing results:

(i) Components of Vf:

Uo (LU U (2.34.4)

VI = ar r00¢" " oz

(ii) Components of Vv:

Y R
a rl\eo ") &
(wv)= | o 1[0 ) v (2.34.5)
or r\ o0 ! 0z
o dow v
or roo 0z
(iii) div v:
. Ove 1 (0v ov,
divv = o + - (8—9 + v,,) + 5 (2.34.6)
(iv) Components of curl v:
The vector curl v = twice the dual vector of (VV)A, thus,
_(10v. 0Ovy Ov,  Ov, dvg vy 10v,
curl v= (;a—e—g)er-i‘ (E—E)e + (a’ +——’—8—0)e2. (2347)

(v) Components of div T:

(divT), = 0; %aar (’)" ﬂ + aaTZ : (2.34.8)
(divT), 8;}?’ %8; i Lo J,r Tor | 6(79‘52 7 (2.34.9)
(divT), = aaT + ’1 aaT 9" + % + TT (2.34.10)
(vi) Laplacian of f:
V3 =div Vf = 82f LOf Lo O (2.34.11)

2692 ror | 02’

(vii) Laplacian of v:

v, 102, v, 10v, v, 20vy
gy =Gy J OV O SOV Y 2OV 234.12
(V) or? + 2902 + 072 + ror 12 2900’ ( )




2.35 Spherical Coordinates 61

2 2 2
Pvg 1 Pvyg Pvg 10vg 20v, vy (2.34.13)

20y = LA
VYo =%z Y ager "oz Trar TRan 2

782\)2 1@ 19v, 0%,

2 —_— N —_— —_—
(Vi), = 92 +,.2 90?2 + r or + 022

(2.34.14)

SPHERICAL COORDINATES

In Figure 2.35-1, we show the spherical coordinates (r, 8, ¢) of a general point P. In this figure, e,, ey and
e, are unit vectors in the direction of increasing r, 6 and ¢, respectively.

FIGURE 2.35-1

The position vector for the point P can be written as
r=re, (2.35.1)
where r is the magnitude of the vector r. Thus,
dr = dre, + rde,. (2.35.2)
To evaluate de, we note from Figure 2.35-1(b) that
e, = cosle, +sinfe/, ey =cosle/ —sinle;, (2.35.3)
where e/ is the unit vector in the OF (i.e., 7’y direction (+/ is in the xy plane). Thus,
de, = —sin0d0e. + cosOde. + cosOdOe/ + sinfde] = (—sinfe. + cosOe/)d0 + sinOde],
that is,
de, = dOey + sinfde/. (2.35.4)
Now, just as in polar coordinates, due to d¢,

de! = doey, (2.35.5)
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therefore,
de, = d0Oey + sinOdde,. (2.35.6)
Now, from the second equation of (2.35.3), we have,
dey = —sinfd0e/ + cosOde, — cosfdle. = —(sinfe, + cosbe.)dl + cosOde,.
Using Eq. (2.35.3) and Eq. (2.35.5), the preceding equation becomes
deg = —e,d0 + cosOdgpe,. (2.35.7)
From Figure 2.35-1(a) and similar to the polar coordinate, we have
dey = dop(—e)). (2.35.8)

With e/ = coslOey + sinle, (see Figure 2.35-1(b)), the preceding equation becomes

dey = —sinfdge, — cosOddey. (2.35.9)
Summarizing the preceding, we have
de, = d0eg +sinOdpey, deyg = —e.d0 + cosOdpey, dey = —sinOdpe, — cosOdpey, (2.35.10)
and from Eq. (2.35.2), we have
dr =dre, +rd0eg +r sinOdgpey. (2.35.11)

We can now obtain the components of Vf, Vv, div v, curl v, div T, sz, and V2v for spherical
coordinates.

(i) Components of Vf:
Let f(r,0,¢) be a scalar field. By the definition of Vf, we have

df = Vf-dr = |(Vf),e, + (Vf)yeq + (Vf) ¢e¢)] - (dre, + rd0egy + rsinfddes), (2.35.12)
that is,
df = (Vf), dr + (Vf)4rd0 + (Vf) ,r sin0d. (2.35.13)

From calculus, the total derivative of df is

F o +gd(9 +—d¢ (2.35.14)

I =75 ¢

Comparing Eq. (2.35.14) and Eq. (2.35.13), we have

of 18] 1o

290" (Vf)y = sn00 (2.35.15)

(Vf), =

(ii) Components of Vv:
Let the vector field be represented by

v(r,0,¢) =v.(r,0,¢)e, +vo(r,0,p)es +vy(r, 0,d)ey. (2.35.16)
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Letting T = Vv, we have
dv =Tdr = T(dre, + rd0Oey + rsin0dpes) = drTe, + rd0Tey + rsin0d¢Te,. (235.17)

By the definition of components of a tensor T in spherical coordinates, we have

Ter - Trrer + TG)'eG + T¢r'e¢7
Teg =T,ge, +Togeg + Tyopey, (2.35.18)
Te(/, =Tpe +Topeg +Tppey.

Substituting these into Eq. (2.35.17), we get

dv = (Tydr +T,grd0 + T,¢r sin0d¢)e, + (Togrd0 + Tg,dr + Togr sinfde)ey

+(Tgrdr + Tpord0 + Typgr sinfde)es. (2.35.19)
We also have, from Eq. (2.35.16),
dv =dv,e, +v,de, +dvoey +vodey + dvyey + vodey. (2.35.20)
Using the expression for the total derivatives:
8\/, 8vr Bv,-
dv, = ——dr —d9 —do,
y o r + + 99 ¢
. vy vy vy
dvyg = o dr +89 d0+8¢ do, (2.35.21)

_Ovp vy

Eq. (2.35.10) and Eq. (2.35.20) become

dv = {E)v,. ( )d0+ (vd,smH)dqb}e,
or
+{%ﬂd; n (v, +aﬂ)d6 n ( _— cosﬂ>d¢}eg (2.35.22)

+{8av¢dr+8v¢d0 + (+v, sinf + vy cos())dd)}%7
-

Now, comparing Eq. (2.35.22) with Eq. (2.35.19), we have

. v, 0 v, .
(Tyydr + Trg1d0 + Tyyr sin0de) = {av; dr + (ave )de n (%— Vo 51n0>d¢},

(Tordr + Togrd0 + Togr sin0de) = {av—ed; T ( v, + aﬁ) do + ((rjv—f’ — vy cos 0) d</>}, (2.35.23)

p) 90 9

(T¢rdr+T¢0rd0 + Typgr sin9d¢) = %d}*+ ngdﬁ + %%Jrv, sinf + vy cosf d¢}
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These equations must be valid for arbitrary values of dr, df and d¢, therefore,

8V,< o 8V,< . _ 6V,~ .
T, = Tror = (6(9”’)7 Typrsind = (8(]5 Ve sm0),

Ty, = %9 Toor = <\ + %VO") . Togrsind = (‘T;V(Z - v(/,cose> , (2.35.24)
Ty = aavld’ . Teor = %, Tyyrsinf = (%‘Z: + v,8inf + vGCOSH) .
In matrix form, we have
[ Ov, lc?v,» Ve 1 Ov, v
or ral r rsinf 0¢ r
Ovg 10vy n v, 1 0Ovg vgcotl
WI=1"ar 706 "+ rsn6op 7 : (2.35.25)
Qg L0y 1 vy v vocotf
or r o0 rsin0 0¢p  r r

(iii) div v:
Using Eq. (2.35.25), we obtain

divv:tr(Vv):av" 10vy 1 Ovy & vgcotl

o r o0 rsin()% r r
100 1 O(vgsing) 1 dv, (2.35.26)
T2 or rsind 90 rsinf ¢
(iv) Components of curl v:
The vector curl v = twice the dual vector of (Vv)*, therefore
_Jvgoot0 10vy 1 vy 1 %_lﬁ(m@)
curlv = { r * r 90 rsinf 0¢ et rsin@ ¢ r Or ¢
(2.35.27)
19(rvg) 10v,
+{; o roo [
(v) Components of div T:
Using the definition of div T given in Eq. (2.33.27) and take a =e,, we have
(divT), = div(Te,) — tr((Ve,)TT). (2.35.28)

To evaluate the first term on the right-hand side, we note that

T e, = T,ve, + Troeg + Trgep, (2.35.29)
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so that by using Eq. (2.35.26) for the divergence of a vector in spherical coordinates, we obtain,

a(rZT,.,.)+ 1 G(T,.gsinf))_'_ 1 0Ty
or rsinf o0 rsin0 O0¢

1
div(TTe,) = = (2.35.30)

To evaluate the second term in Eq. (2.35.28), we first used Eq. (2.35.25) to evaluate Ve,, then calcu-
late (Ve,)T":

0 0 0 0 0 0
[Ve,] = 1/r 0|, [(Ve)T" = |T,o/r Too/r Tpo/r (2.35.31)
0 0 l/r T,.¢/r T9¢/r T¢¢/l‘
thus,
(Ve )17y = 100 Too (2.35.32)
r r
Substituting Eq. (2.35.32) and Eq. (2.35.30) into Eq. (2.35.28), we obtain,
. - 1 8(1‘2T,.,.) 1 6(T,.9 sin@) 1 8T,,¢, T()() + T(/Nb
@D =55 Trsin0 00 rsm0 06 1 (235-33)
In a similar manner, we can obtain (see Prob. 2.75)
. - 1 8(1‘3T(),-) 1 B(ng sin9) 1 8T94, T.o — Ty, — T(M,COtO
(divT), TR or +rsin0 00 +rsin0 o¢ + r (2.35.34)
. 1 (9(7'3T¢,~) 1 0(T¢()Sin0) 1 0Tyy Try — Ty + Togcotl
(divT), = B or rsin@ a0 rsinf 9¢ + r ' (2.35.35)
(vi) Laplacian of f:
From
1) 1 Ovysind 1 Ovy
dwv*r_2 or +rsin9 a6 rsin0 d¢
2.35.36
SR AR 3 e
o 10 rsind 9¢
we have
10| ,0f 1 Lof 1 0 1 of
2 __9 9 Y “
Vi =dv(Vf) =55, ( ar> tsin000 ( a0 “0) t sin0 06 <rsin9 ¢
(2.35.37)

O 20f 1 (0% )\ cotd of 1 O*f
o2 o T \aer| T2 a0 TRt \ 992 )
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(vii) Laplacian of a vector function v:

It can be obtained (see Prob. 2.75)

. 1%, 2 0rty, 1 0vpsind vy 1 vy sinf vy
V(divv) = (’7 a2 P or J“,.Sin@ ( oroo +6;~8¢) ~ 2sind ( a0 %))er

N 1 %%, 1 vy sinf  9%vy sind 1 [/cos0 8vesin(9+1 9 1 vy .
90 12005sin0 0 )"

3 000r | 2sin0 962 + 902 2 \sin?0

> o) . 2
( 19 a0y 1 3 (vysin0) 1 5%) . (2.35.38)

Psin0d O r2sint0 090 | r2sin20 024 )¢

and
dourd v — 1 Prvy _@ +cot9 18rv0 B l% B 1 & 1 821‘v¢
curteurtv = 2 \000r 96* r \r Or roo r2sin®0 > r2sin0 Opor e
n 1 82v¢ sinf B vy 1 orvy B % B l(’)zrv(g B l(?rv(; 71 v, . l% e
P2sin?0 \ 0600 99> ) 2\ or 90 r o2 2 or roro0 r200) "

1L 9ov, 1 1 0Ov, 182)‘\/4, n 1 9rvg n L[ 1 9, Orvy
rsin® Ord¢p  risinf d¢ r Orr 2 Or r2 \sin d¢  Or
+

e. (2.35.39)
_i 1 B sinH—b—sinHazv(p— vy n cosf 6v¢,sin9_8v_g
Psing \ ¢ 90> 0004 " 2sin?0 \ 00 0
Thus, Vv = V(div v) — curl curl v leads to:
i(?zrzv,. 3 garzv,. N iazvr N cotd dv, N 1 &%, 2 dvgsind
, r2 or? 3 or 2 902 r2 90  r2sin?0 9¢* r?sinf 90
o=y o, : (2.35.40)
r2sinf d¢
10 [ ,0vg 10 1 0 . 1 Pvy
9|2 Y)Y 0 _ YV
. 2or\" o | "0 {sin() g " sin )} T Tsin?0 04
(V) = , (2.35.41)
L2 20w,
r2060  r?sinf 9¢
10 9 vy 1 0 1 0 . 1 82v¢
2 2 0r (’ 6r> +r280{sir16 00 (v 51110)} +r25in29 dp*
(V V)d) (2.35.42)
n 2 % N zcotﬁ ('?v_g
r2sin® 0¢  r?sin® 9
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PROBLEMS FOR PART D

2.70 Calculate div u for the following vector field in cylindrical coordinates:

2.71

2.72

2.73

2.74

2.75

2.76

@ u=uy =0, u,=A+Br.
M) u, =sin0/r, ug =u,=0.
(¢) u =r*sin0/2, wug=r>cos0/2, u,=0.

Calculate Vu for the following vector field in cylindrical coordinates:

u =A/r, ug=Br, u,=0.
Calculate div u for the following vector field in spherical coordinates:
B
u, :Ar+r—2, ug =uy =0.
Calculate Vu for the following vector field in spherical coordinates:
u, = Ar +B/r2, ug =uy =0.

From the definition of the Laplacian of a vector, V?v = V(div v) — curl curl v, derive the following
results in cylindrical coordinates:

v, 10%, v, 20vy 10v, v,
2 _ r - T T i r .
(V7v), = (8}‘2 +r2 062 + 02 1200 ror r2> and

_Pvo 1 Pv  Pvg  10vg  20v vy
oo 292 02 r Or r200 %’

(Vzv)(,

From the definition of the Laplacian of a vector, V?v = V(div v) — curl curl v, derive the following
result in spherical coordinates:

2 1 8%r%v,  20r*v, 10%*, cot0dv, 1 9%, 2 Ovgsinl 2 0Ovy
V), = (5 e S Ty T — 5=t
! 2 Or? r3 or 290 r2 90 r2sin®0 0¢ r2sin@ 90 r2sinf ¢

From the equation (div T) -a = div(T"a) — tr(T"Va) [see Eq. (2.29.3)], verify that in polar coordinates
the O-component of the vector (divT) is:

. OTg, 10Tg9  Trog +To,
divT), = - .
(divT), or r 00 + r
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2.77 Calculate div T for the following tensor field in cylindrical coordinates:

B
Top =A——

a2 T..=constant, T,9 =Tg, =T, =T, =Ty, =T,y =0.

2.78 Calculate div T for the following tensor field in cylindrical coordinates:

Az 3Br’z Az Az 3Bz} Ar  3Brz?
Tr/‘:ﬁ_Ta TH(J:E, T.=- F‘FF s Te=T,=-— F‘FT )

Tog =Ty =Ty.=T.9 = 07 R2 = "2 + 22'
2.79 Calculate div T for the following tensor field in spherical coordinates:

2B B
T, =A —3 Top =Tpp =A +r73’ T.g =To,=Tygy =Tp9 =T,y =Ty = 0.

2.80 From the equation (div T)-a = div(T"a) — tr(T"Va) [see Eq. (2.29.3)], verify that in spherical coordi-
nates the 6-component of the vector (div T) is:

8(1‘3T9,-) 1 9(Tgysin0) 1 0Tgy  Trg —Tor — Tygcotl

1
divT), =—
(divT), =3 or rsin0 00 rsin@ O¢ r

7




CHAPTER

Kinematics of a Continuum

The branch of mechanics in which materials are treated as continuous is known as continuum mechanics.
Thus, in this theory, one speaks of an infinitesimal volume of material, the totality of which forms a body.
One also speaks of a particle in a continuum, meaning, in fact, an infinitesimal volume of material. This chap-
ter is concerned with the kinematics of such particles.

DESCRIPTION OF MOTIONS OF A CONTINUUM
In particle kinematics, the path line of a particle is described by a vector function of time ¢,
r=r(), (.11
where r(t) = x;(t)e; + x,(t)ex + x3(7)e; is the position vector. In component form, the previous equation reads:
x1=x1(8), x2=x(1), x3=x3(¢). (3.1.2)
If there are N particles, there are N path lines, each of which is described by one of the equations:
r,=r,(t), n=1 2 3...N. (3.1.3)

That is, for the particle number 1, the path line is given by r;(¢), for the particle number 2, it is given
by ra(?), etc.

For a continuum, there are infinitely many particles. Therefore, it is not possible to identify particles by
assigning each of them a number in the same way as in the kinematics of particles. However, it is possible
to identify them by the position they occupy at some reference time #,.

FIGURE 3.1-1

Copyright © 2010, Elsevier Ltd. All rights reserved.
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For example, if a particle of a continuum was at the position (1, 2, 3) at time ¢ = 0, the set of coordinates
(1, 2, 3) can be used to identify this particle. In general, therefore, if a particle of a continuum was at the posi-
tion (X, X5, X3) at the reference time #,, the set of coordinates (X, X, X3) can be used to identity this par-
ticle. Thus, in general, the path lines of every particle in a continuum can be described by a vector equation of
the form

x=x(X, ¢t) with X=x(X,1), (3.1.4)

where X = x;e; + x,e; + x3es is the position vector at time ¢ for the particle P (see Figure 3.1-1), which was
at X = Xe; + X,e; + X3es at time #,. In component form, Eq. (3.1.4) takes the form:

x1 =x1(X1, X2, X3, 1), X1 =x1(X1, X2, X3,1,),
X =0X1, X2, X3, 1), X2 =x2(X1, X2, X3,1,), (3.1.5)
x3=x3X1, X0, X3, 1), X3 =x3(X1, X2, X3,1,),

or
X :)C,-(Xl7 Xz7 X3, l‘) with X; :)C,-(Xl7 Xz7 X3,l‘o). (316)

In Eq. (3.1.5), the triple (X;, X2, X3) serves to identify the different particles of the body and is known as
the material coordinates. Eq. (3.1.5) [or Eq. (3.1.6)] is said to define a motion for a continuum; these equa-
tions describe the path line for every particle in the continuum.

Example 3.1.1
Consider the motion

x = X+ ktXoe,, 0]

where x = x;e; + x€, + x3e3 is the position vector at time t for a particle P that was at X = X;e; + Xoe»
+ Xse3 at t = 0. Sketch the configuration at time t for a body which, at t =0, has the shape of a cube of unit
sides as shown.

X2
kt )
c C'| B B
0 A X
FIGURE 3.1-2
Solution

From Eq. (i), we have

X1 =X+ ktXo, xo =X, XxX3=Xs. (ii)
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At t = 0, the particle O is located at (0, O, 0). Thus, for this particle, the material coordinates are
X1=0, X=0, X3=0.
Substituting these values for X; in Eq. (i), we get, for all time f,
(x1, X2, x3) = (0,0,0).
In other words, this particle remains at (0, 0, O) at all times. Similarly, the material coordinates for the particle A are
(X1, X2, X3) = (1,0,0),
and the position for A at time tis
(x1, X2, x3) = (1,0,0).
Thus, the particle A also does not move with time. In fact, since the material coordinates for the points on the
material line OA are
(X1, X2, X3) = (X1,0,0),
for them, the positions at time t are
(x1, X2, x3) = (X1,0,0).
That is, the whole material line OA is motionless. On the other hand, the material coordinates for the material line CBare
(X1, X2, X3) = (X1,1,0),
so that according to Eq. (ii)
(x1, X0, X3) = (X1 + kt,1,0).

In other words, the material line has moved horizontally through a distance of kt (see Figure 3.1-2). The material
coordinates for the material line OC are

(X1, Xo, X3) = (0,X,0),

so that for the particles on this line
(X1, X2, X3) = (kt X5, X5,0).

The fact that x; = kt Xo means that the straight material line OC remains a straight line OC’at time ¢, as shown in
Figure 3.1-2. The situation for the material line AB is similar. Thus, at time {, the side view of the cube changes from
that of a square to a parallelogram, as shown in Figure 3.1-2.

Since x3 = X3 at all time for all particles, it is clear that all motions are parallel to the plane x3 = 0. The motion
given in this example is known as the simple shearing motion.

Example 3.1.2
Let Y7 = —X1, Y= X5, and Y3 = X3. Express the simple shearing motion given in Example 3.1.1 in terms of
(N, Y2, ¥3).

Solution
Straightforward substitutions give

x1=-N+kts, Xo=Ys, x3=Ya.
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These equations, i.e., x; = xi(Y1, Y2, Y3, t) also describe the simple shearing motion just as the equations given
in the previous example. The triples (Y1, Y», Y3) are also material coordinates in that they also identify the particles in
the continuum, although they are not the coordinates of the particles at any time. This example demonstrates the fact
that though the positions of the particles at some reference time f, can be used as the material coordinates, the mate-
rial coordinates need not be the positions of the particle at any particular time. However, within this book, all material
coordinates will be coordinates of the particles at some reference time.

MATERIAL DESCRIPTION AND SPATIAL DESCRIPTION

When a continuum is in motion, its temperature O, its velocity v, and its stress tensor T (to be defined in the
next chapter) may change with time. We can describe these changes as follows.

1.

Following the particles, i.e., we express @, v, T as functions of the particles [identified by the material
coordinates (X, X2, X3)] and time . In other words, we express

0= G(Xla X27 X37 t)a
v ‘AI(XU X27 X3a I)? (321)
T= T(X17 X5, X3, I).

Such a description is known as the material description. Other names for it are the Lagrangean
description and the reference description.

Observing the changes at fixed locations, i.e., we express @, v, T as functions of fixed position and
time. Thus,

© =0(x|, X2, x3, 1),
v =V(xi, X2, X3, t), (3.2.2)
T= T(xl, X2, X3, 1).

Such a description is known as a spatial description or Eulerian description. The triple (x, X2, x3) locates
the fixed position of points in the physical space and is known as the spatial coordinates. The spatial
coordinates x; of a particle at any time ¢ are related to the material coordinates X; of the particle by Eq.
(3.1.5). We note that in spatial description, what is described (or measured) is the change of quantities at
a fixed location as a function of time. Spatial positions are occupied by different particles at different
times. Therefore, the spatial description does not provide direct information regarding changes in particle
properties as they move about. The material and spatial descriptions are, of course, related by the motion,
Eq. (3.1.4). That is, if the motion is known, one description can be obtained from the other, as illustrated
by the following example.

Example 3.2.1
Given the motion of a continuum to be

X1 =X+ ktXo, X0 = (1 + kf)Xg, X3 = X3. (i)

If the temperature field is given by the spatial description

O =u(x + X), (ii)
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(a) find the material description of temperature and (b) obtain the velocity and the rate of change of temperature for
particular material particles and express the answer in both a material and a spatial description.

Solution
(a) Substituting Eq. (i) into Eq. (i), we obtain the material description for the temperature,

O = OC(Xl =+ Xg) = OCXl + 06(1 + 2/(1'))(2 (iii)

(b) Since a particular material particle is designated by a specific X, its velocity will be given by

8X,'> .
vi= [ , (iv)
/ (8t X;—fixed

V] = kX2, Vo = /()(27 V3 = 0. (v)

so that from Eq. (i)

This is the material description of the velocity field. To obtain the spatial description, we make use of Eq. (i) again,
where we have

. X2 .
X2—7(1+kt). (vi)

Therefore, the spatial description for the velocity field is

kX2 ng

Orm 2 aTrm 270 (vii

V] =

From Eq. (iii), in material description, the rate of change of temperature for particular material particles is given

(8(9) = 20kX>. (viii)
Xj—fixed

by

ot

To obtain the spatial description, we substitute Eq. (vi) in Eq. (viii):

(@) . 20(kX2
ot Xi—fixed (1 + kt) .

We note that even though the given temperature field is independent of time, each particle experiences changes
of temperature since it flows from one spatial position to another.

Example 3.2.2
The position at time ¢ of a particle initially at (X1, Xz, X3) is given by the equations

X1:X1+k(X1+X2)l‘., X2:X2+k(X1+X2)t, X3 = X3. (i)

(a) Find the velocity at ¢ = 2 for the particle that was at (1, 1, 0) at the reference time.
(b) Find the velocity at t = 2 for the particle that is at the position (1, 1, 0) at { = 2.
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Solution ox
(a) v = (_) = k(XL + X)), vo= <_2) = k(X,+ X), v3=0. (ii)
ot Xi—fixed ot X;—fixed

For the particle (X1, Xo, X3) = (1,1,0), the velocity at t =2 is

vi=k(1+1)=2k, vy=k(14+1)=2k, v3=0,
that is,
v = 2kej + 2kes.
(b) We need to calculate the reference position (X1, X2, X3) that was occupied by the particle which, at t = 2, is
at (x1, x, x3) = (1,1.0). To do this, we substitute this condition into Eq. (i) and solve for (X1, X2, X3), that s,
1=(1+2X +2kXo, 1=(142k)Xo+2kX,
thus,

1 1

=1 T

Substituting these values in Eq. (ii), we obtain

MATERIAL DERIVATIVE

The time rate of change of a quantity (such as temperature or velocity or stress tensor) of a material particle is
known as a material derivative. We shall denote the material derivative by D/Dt.

1. When a material description of a scalar quantity is used, we have
0 =0(X,, Xz, X3, 1), (3.3.1)

then,
DO (96
= (E) B 3.3.2)
X;—fixed

2. When a spatial description of the same quantity is used, we have

0= @(Xl, X2, X3, l‘), 3.3.3)
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where x;, the coordinates of the present positions of material particles at time ¢ are related to the material
coordinates by the known motion x; = £;(X;, X5, X3, ). Then,

D_®7 @ = @ %_’_ @ @+ @ %_’_ @ (334)
Dt \ ot ‘e ~\0x ) o Oxy) Ot Ox3) Ot M ) _fied o
0%, 0x 0%
where %, %, and % are to be obtained with fixed values of the X;’s. When rectangular Cartesian

coordinates are used, these are the velocity components v; of the particle X;. Thus, the material derivative
in rectangular coordinates is

po_ (26 0 (29) 11, (29 1, (29 (335)
o \or) o o) T ow) T o) "

or, in indicial notation,

DO (06 o0 00
X;—fixed
and in direct notation,
DO 90 .

It should be emphasized that these equations are for © in a spatial description, that is,
® = O(xy, x2, X3, t). Note that if the temperature field is independent of time and if the velocity of a particle

~ DO
is perpendicular to VO (i.e., the particle is moving along the path of constant ®), then, as expected, i 0.

In the following, for simplicity, whenever it is obvious which kind of function we are dealing with (material
and spatial), we shall omit the super-hat or super-tilde on the function.

Note again that Eq. (3.3.5) or Eq. (3.3.6) is valid only for rectangular Cartesian coordinates, whereas
Eq. (3.3.7) has the advantage that it is valid for all coordinate systems. For a specific coordinate system,
all that is needed is the appropriate expression for the gradient. For example, in cylindrical coordinates
(r, 0, z),

vV =yv,e + vpey + v.e;, (3.3.8)
and from Eq. (2.34.4)

00 100 00
Vo=t a T (-39
thus,

DO _ 8@ 8@ Vo (9_@ 6@

oo et T e G:310

In spherical coordinates,

V=V, + vgey + vgey, (3.3.11)
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and from Eq. (2.35.15)
00 _ 100 1 00

(VO), = B (VO), = TR (VO), = rsin09g’ (3.3.12)
thus,
DO _ 00 00 Vo 00 Vo 00
E*E‘.‘V,E—F’—ﬁ% )‘Sin@%‘ (3313)
Example 3.3.1

Use Eq. (3.3.7) to obtain D®/Dt for the motion and temperature field given in Example 3.2.1.

Solution
From Example 3.2.1, we have

ng
V= m(el +e) and O =ua(x + Xx).

The gradient of © is simply ae; + ae,, therefore,

D®=O+ /(XQ

Lo ( 20!kX2
Dt 14kt

e +92) . ((Xel -+ 0(92) = m

ACCELERATION OF A PARTICLE

The acceleration of a particle is the rate of change of velocity of the particle. It is, therefore, the material
derivative of velocity. If the motion of a continuum is given by Eq. (3.1.4), i.e.,

x=x(X, ) with X=x(X,1), (3.4.1)

then the velocity v at time ¢ of a particle X is given by

v = (8") _bx (3.4.2)

Ot ) x _fixea Dt

and the acceleration a at time ¢ of a particle X is given by

a= (8V) _bv (3.4.3)

Ot ) _tixea Dt

Thus, if the material description of velocity v(X,¢) is known [or is obtained from Eq. (3.4.2)], then the
acceleration is very easily computed, simply taking the partial derivative with respect to time of the function.
On the other hand, if only the spatial description of velocity [i.e., v = v(x, )] is known, the computation of
acceleration is not as simple. We derive the formulas for its computation in the following:

1. Rectangular Cartesian coordinates (x1,x2,x3). With

v = vy (X1, X2, X3, )€ + Vo (X1, X2, X3, 1)€ + v3(x1, X2, X3, 1)e3, (3.4.4)
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we have, since the base vectors e, e;, and e3 are fixed vectors,

In component form, we have

o T o o T o
or

T
Y ’(’)xj'

In a form valid for all coordinate systems, we have
v + (Vv)v.

a:é)t

. Cylindrical coordinates (r, 0,z). With

v=v,(r,0,z,0)e, +vo(r,0,z,1)eg + v.(r,0,z,1)e,

_Bv,- 1 v, - 8vr-
ar r\a0 ") oz

and [see Eq. (2.34.9)]

—

~

(Vv = [ Do L[ ) Dol
o r\ao TV e
oo 1o on
or r 00 0z
we have
[ov ] |9y L [Ow O,
o a r\ao” "] &
a, 5 v,
o
_ | = Ovg 1 [0y ov
ap | = + (2o 9%, Y1 1 ve |,
ot o r (ae + v’) R
a; o Vz
7 B A T R
L] or r 00 oz

77

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)*

(3.4.9)

(3.4.10)

(3.4.11)

e 5 .
*In dyadic notation, the preceding equation is written as a = — + v - (Vv), where V = (e,,0/0x,).

ot
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thus,

3. Spherical coordinates (r

_ v, O Vo (O
R VR S T
78\)9 3v€ (9\19

W= T 'a,~+—(%+ )
_8_v+ 8v2+v08v va_v
T o v o r o0 Cor

, 0, ¢). With

n v,
vZ 62 )

Al
2027

= Vl‘(r7 07 ¢7t)er + Vg(r7 07¢7I)e9 + vd)("v 07 (,b, t)ed’

and [see Eq. (2.35.25)],

we have

and thus,

a,

ag

%
or
8\10
[Vv] = o (—,
s
or
v, v,
81‘ (9}’
vy vy
o |
v,
or vy
- or
v, 4y v,
o T o
_3\)9 avH
W= T o
_8v¢ 8V¢
“ =Tt

(o
00

Lo
r\ 00

1 8vd,
r 00

ov,
00

Yoy
r 00

0>

)

)

+— o,
a0 """

Vo
rsin 0

L v v
rsinfo¢p r

rsinf 0¢ r

v, vgcot 0)
+
’
! v — vy sin 0 |
rsin0 \ 0p ¢

1 %_v(pcote)

1 6V¢

rsinf O¢

1
rsin0

1 0Ov

¢+ ,4+V9C0t9
rsinf O¢ r

(

Ovg
a6 T

o — vgcosl
o ¢

v(}) % _ .
tsing (3 ' sm9),

V¢ 0\19
+rsin0(8¢ \)4,00S9>7

sin 0 + vy cos 9) .

Vy
Vo

Vo

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)
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Example 3.4.1
(a) Find the velocity field associated with the motion of a rigid body rotating with angular velocity @ = wes
in Cartesian and in polar coordinates. (b) Using the velocity field of part (a), evaluate the acceleration field.

Solution
(a) For rigid body rotation

V= X X. (i)
In Cartesian coordinates,
vV =wme;3 X (X1€] + Xo€p + X3€3) = wX1€2 — wXre1, (ii)
that is,
V1 = —WXp, Vo = WX, V3= 0. (iii)
In cylindrical coordinates,
V=wme, X (re;) = roey, (iv)
that is,
vy=0, v=or, v,=0. (v)

(b) We can use either Eq. (iii) or Eq. (v) to find the acceleration. Using Eq. (iii) and Eq. (3.4.7), we obtain
a1 =0+ (~0x2)(0) + (wx1)(~o) + (0)(0) = —w’x1,
a =0+ (—ox) () + (wx1)(0) + (0)(0) = —w’x, (vi)
a3 =0,
that is,
a=—ow’(xe; + xne) = —o’r (vii)
or, using Eq. (v) and Eq. (3.4.12), we obtain

(o)

a,:O+O+V—rH(OfVg)+0:77:frw2,
a9:o+o+”70(o+0)+ozo7 (viii)
Vo
a;=0+0+-10+0=0,
that is,
a=—ro® e = —or. (ix)

We note that in this example, even though at every spatial position, the velocity does not change with time, but the
velocity of every particle does change with time so that it has a centripetal acceleration.
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Example 3.4.2
Given the velocity field
N le vy — kX2 S ng
P Tkt P14k T 14kt
(a) Find the acceleration field and (b) find the path line x = x(X, t).
Solution
(a) With
. kx;
R
we have
Ov, av,- kzX,‘ ka kﬁ,j kZX,' kzX,'
8127—0—\/]‘7:— 2+ = — 2+ 2:
ot Tox (1+kt)? 1+kt1+kt  (1+kt)® (1+kt)
or

a=0.

We note that in this example, even though at any spatial position (except the origin) the velocity is observed to
be changing with time, the actual velocity of a particular particle is a constant with a zero acceleration.

(b) Since
(),
"Nty tea LA
therefore,
X1 t
[E
le 1 + kt’
X 0
that is,
l Inx; —In X flln 1+ kt
k( 1 1) - P ( + ),
or
X1 = (1 + kt)Xl
Similarly,

Xop = (1 + kf)Xz,
x3=(1+ kf)Xg

These path-line equations show that each particle’s displacement varies linearly with time so that its motion is
acceleration-less.
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DISPLACEMENT FIELD

FIGURE 3.5-1

The displacement vector of a particle in a continuum (identified by its material coordinate X), from
the reference position P(z,), to the current position P(f), is given by the vector from P(z,) to P(f) (see
Figure 3.5-1) and is denoted by u(X, ). That is,

u(X,n =x(X,1) — X. (3.5.1)

From the preceding equation, it is clear that whenever the path lines of a continuum are known, its dis-
placement field is also known. Thus, the motion of a continuum can be described either by the path lines
as given in Eq. (3.1.4) or by its displacement vector field as given by Eq. (3.5.1).

Example 3.5.1
The position at time t of a particle initially at (X1, Xz, X3) is given by

X1 = X1+ (X1 + Xg)kl’, Xo = Xo + (X1 + Xo)kt, x3= X;,

obtain the displacement field.

Solution
h =x1— Xi = (X1 + Xo)kt
Up = Xp — X2 (X1 + Xo)kt
U3 = X3 — X3 =0.
Example 3.5.2

The deformed configuration of a continuum is given by

1
X1 :§X1, Xo=Xo, X3=Xz,

obtain the displacement field.
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Solution
U1:X1—X1:%X1—X1:—%X17 U2:X2—X2:X2—X2:O, U3:X3—X3:X3—X3:O.
This motion represents a state of confined compression.
KINEMATIC EQUATION FOR RIGID BODY MOTION
(a) Rigid body translation. For this motion, the kinematic equation of motion is given by
x=X+c(l), 3.6.1)
where ¢(0) = 0. We note that the displacement vector, u = x — X = ¢(7), is independent of X. That is,
every material point is displaced in an identical manner, with the same magnitude and the same direc-
tion at time 7.
(b) Rigid body rotation about a fixed point. For this motion, the kinematic equation of motion is
given by
x—b=R()(X —b), (3.62)
where R(?) is a proper orthogonal tensor (i.e., a rotation tensor; see Section 2.15, with R(0) = I), and
b is a constant vector. We note when X = b, x = b so that the material point X = b is always at the
spatial point x = b so that the rotation is about the fixed point x = b. If the rotation is about the origin,
then b = 0, and
x = R(1)X. (3.6.3)
(¢) General rigid body motion. The equation describing a general rigid body motion is given by
x=R()(X = b) +c(1), (3.6.4)
where R(7) is a rotation tensor with R(0) =1 and ¢(¢) is a vector with ¢(0) = b. Equation (3.6.4)
states that the motion is described by a translation ¢(¢) of an arbitrary chosen material base point
X = b plus a rotation R(z) about the base point.
Example 3.6.1
Show that for the motion given by (3.6.2) there is no change in the distance between any pair of material points.
Solution

Consider two material points X1 and X@ in the body; we have, from Eq. (3.6.2),

so that

D —b=R()XY —b),
x@ — b =R(t)(X? —b),
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That is, due to the moation, the material vector AX = X1 — X® changes to Ax = x1) — x® with
Ax = R(t)AX.
Let A¢ and AL be the length of Ax and AX, respectively, we have
(A0)® = Ax- Ax = (R(t)AX) - (R(1)AX).
Using the definition of transpose and the fact that R'R = I, the right side of the preceding equation becomes

(R()AX) - (R(t)AX) = AX-RTRAX = AX- IAX = AX- AX.

Thus,
(AC)® = (AL)?,
that is, A¢ = AL
Example 3.6.2

From Eq. (3.6.4), derive the relation between the velocity of a general material point in the rigid body with the angular
velocity of the body and the velocity of the arbitrary chosen material point.

Solution
Taking the material derivative of Eq. (3.6.4), we obtain

v=R(X—b)+c(f).
Here we have used a super dot to denote a material derivative. Now, from Eq. (3.6.4) again, we have
(X—b)=R"(x—c).
Thus,
v=RR"(x —c) +¢().
Now, by taking the time derivative of the equation RR' = I, we have
RR" +RR' = 0.
As a consequence,
RR' = —RR' = f(RRT>T.
Thatis, RR" is an antisymmetric tensor, which is equivalent to a dual vector w such that <RRT>a = w x aforany
vector a (see Section 2.21). Thus,
v=w X (X—c)+c(t).

If for a general material point, we measure its position vector r from the position at time t of the chosen material
base point, i.e., r = x — ¢, then we obtain the well-known equation below:

v=w xXr+c(f).
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INFINITESIMAL DEFORMATION

There are many important engineering problems that involve structural members or machine parts for which
the deformation is very small (mathematically treated as infinitesimal). In this section, we derive the tensor
that characterizes the deformation of such bodies.

FIGURE 3.7-1

Consider a body having a particular configuration at some reference time #,, changes to another configu-
ration at time ¢. Referring to Figure 3.7-1, a typical material point P undergoes a displacement u so that it
arrives at the position

x=X+ulX, 7). (3.7.1)
A neighboring point Q at X + dX arrives at X 4 dx, which is related to X + dX by
X+dx =X+dX +u(X +dX, 7). (3.72)
Subtracting Eq. (3.7.1) from Eq. (3.7.2), we obtain
dx = dX +u(X +dX, 1) —u(X, 7). (3.7.3)
Using the definition of gradient of a vector function [see Eq. (2.28.1)], Eq. (3.7.3) becomes
dx = dX + (Vu)dX, (3.7.4)

where Vu is a second-order tensor known as the displacement gradient. The matrix of Vu with respect to
rectangular Cartesian coordinates (X = X;e; and u = u;e;) is

O O O ]
8X1 8X2 6X3
8142 8142 8142
[Vu] = X, X, O0Xs |- (3.7.5)
Ou  Ouy - Ouy
00X, 0X, 0X3
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Example 3.7.1
Given the following displacement components

u = kX22, Up = U3 = 0. (i)

(a) Sketch the deformed shape of the unit square OABC shown in Figure 3.7-2.

(b) Find the deformed vectors (i.e., dxM) and dx®) of the material elements dXV = dX,e; and dX® = dXce,,
which were at the point C.

(c) Determine the ratio of the deformed to the undeformed lengths of the differential elements (known as stretch)
of part (b) and the change in angle between these elements.

X2
dax@ dx(2)
N e 4 - ] ,
C B B
()
dX o)
€5
T—»e1
0 A X
FIGURE 3.7-2
Solution

(a) For the material line OA, X> = 0, therefore, from Eq. (i), u; = o = u3 = 0. That is, the line is not displaced.
For the material line CB, X, = 1, uy = k, u, = uz =0, the line is displaced by k units to the right. For the
material line OC and AB, u; = X22, up, = uz = 0, each line becomes parabolic in shape. Thus, the deformed
shape is given by OAB’C’ shown in Figure 3.7-2.

(b) For the material point C, the matrix of the displacement gradient is

0 2kX, O 0 2k 0
[Vu=|0 0 © =|0 0 0. (ii)
0 0 0f,, |0 00O
Therefore, for dX) = dX;eq, from Eq. (3.7.4), we have
axM) = aX® + (Vu)dX) = dX,e; + 0 = dXje;. (iii)
and for dX® = dx,e,,
dx® = dX@ + (Vu)dX® = dX.e, + 2kdXoe; = dXo(2ke; + €5). (iv)

(c) From Egs. (iii) and (iv), we have

|oxV| =dX; and [dx@| = dX V4K + 1,
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therefore,
|dxV] e B
|dX(1)\ =1 and | (2)| =4k +1, v)
and
D). gx®@
cosf = dx” - ox = 2K (vi)

|axM|[ax@ | VT +4k2

If kis very small, we have the case of small deformations, and by the binomial theorem, we have, from Eq. (v),
keeping only the first power of k,

||Z;((E“ ~1 and |‘Z;(<?>|\ — VI T~ 142K ~ 1,
and from Eq. (vi),
cos 8 ~ 2k.
If v denotes the decrease in angle, then
cosf = cos(% — y) =siny = 2k.
Now, for very small k, y is also small, so that sin y &~ y and we have
y & 2K.

We can write Eq. (3.7.4), i.e., dx = dX + (Vu)dX as
dx = FdX, (3.7.6)
where
F=1I+Vu. (3.7.7)

Here F is known as the deformation gradient because it is the gradient of the function X (X, ) describing
the motion, i.e., x = X(X, 7).

To find the relationship between ds (the length of dx) and dS (the length of dX), we take the dot product of
Eq. (3.7.6) with itself:

dx -dx = FdX -FdX = dX - (F'F)dX, (3.7.8)

that is,
ds* = dX - CdX, (3.7.9)

where
C=F"F. (3.7.10)

The tensor C is known as the right Cauchy-Green deformation tensor. We note that if C = I, then ds> = dS>.
Therefore, C = I corresponds to a rigid body motion (translation and/or rotation). From Eq. (3.7.7), we have

C=F"F=I+Vu)/(I+Vu)=I+Vu+ (Vo) + (Vu)'(Vu). (3.7.11)
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E' = % [Vu+ (Vu)' + (Vu)"(Vu)],

then Eq. (3.7.11) becomes

C=1+2E"
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(3.7.12)

(3.7.13)

Since C =1 corresponds to a rigid body motion, Eq. (3.7.13) clearly shows that the tensor E* charac-
terizes the changes of lengths in the continuum due to displacements of the material points. This tensor E*
is known as the Lagrange strain tensor. It is a finite deformation tensor.

In this section, we consider only cases where the components of the displacement vector as well as their par-
tial derivatives are all very small (mathematically infinitesimal) so that the absolute value of every component
of (Vu)"(Vu) is a small quantity of higher order than those of the components of (Vu). For such cases

where

C~I+2E,

1
E= 3 [Vu + (Vu)T] = symmetric part of (Vu).

This tensor E is known as the infinitesimal strain tensor. In Cartesian coordinates

1 Ou,- au,
Fi=sy (9X./ " 3Xi> '

(3.7.14)

(3.7.15)

(3.7.16)

Consider two material elements dX") and dX®. Due to motion, they become dx'") and dx® at time .
We have, for small deformation, from Eq. (3.7.6) and Eq. (3.7.14),

dx\V . dx® = FaXV . FaX® = aXV . Ccax® = aX - (1 + 2E)dX?,

that is,

dxV . dx® = gXV.ax® 424XV . EaX®.

(3.7.17)

(3.7.18)

This equation will be used in the next section to establish the meaning of the components of the infinitesimal

strain tensor E.

Using the expressions derived in Parts C and D of Chapter 2, we can obtain the matrices of infinitesimal
strain tensor E in terms of the components of the displacement gradients in rectangular coordinates, cylindri-
cal coordinates, and spherical coordinates.

(a) Rectangular coordinates:

81,{1

X,
o 1 8141
E=13 (a—xﬁ

Tfom
2 | 0X3

L 9w, Oux

210X, 0X,
9y 9y
0Xi 0X»

8143

Ous |\ 1[0  Ous
X1 2\ 0X;  0X;

Lfom
2\ 9x;

L[ 9w
2| 0X3

L) _
X,
8143

+ a—Xz)

(3.7.19)
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(b) Cylindrical coordinates:

_ Ouy (10w _up  Ou) 1[0 | Ou: _
or 2\ r o0 r or 2\ 0z or
o 1 1 814,, Up 8149 1 81,{@ 1273 1 8u9 1 814_7
=13 (7@‘7*5) T390 P (Eﬂ‘@) (3.7.20)
1[0u Ou. 1 (0uy 10u, Ou.
2\ 0z  oOr 2\ 0z r oo 0z
(c) Spherical coordinates:
Oup 110w, _ug , Oy DL 0w _uy Oy
or 2\ro0 r Or 2\rsinf0¢p r or
[E] = _ 10uy L[ 1 Oup ugeotd  10uy (3.7.21)
En =En F 90 T r AT
Ev —E Eu —E 1 Oug uy | ugcot 0
TR TS rsinf 0¢p  r r

GEOMETRICAL MEANING OF THE COMPONENTS OF THE INFINITESIMAL

STRAIN TENSOR

(a) Diagonal elements of E. Consider the single material element dX'") = dX® = dX = dSn, where n is a

unit vector and dS is the length of dX. Due to motion, dX becomes dx with a length of ds. Eq. (3.7.18)
gives dx -dx = dX-dX + 2dSn - EdSn. That is,

ds* = dS* + 2dS*(n - En). (3.8.1)

For small deformation, ds*> — dS? = (ds — dS)(ds + dS) = 2dS(ds — dS). Thus, Eq. (3.8.1) gives:

ds —dS

5= n-En =E,, (no sum on n). (3.8.2)

This equation states that the unit elongation (i.e., increase in length per unit original length) for the
element that was in the direction n, is given by n-En. In particular, if the element was in the e,
direction in the reference state, then n — e; and e, - Ee; = E;;, etc. Thus,

E1, is the unit elongation for an element originally in the x; direction.
Ey is the unit elongation for an element originally in the x, direction.
E33 is the unit elongation for an element originally in the x3 direction.

These components (the diagonal elements of E) are also known as the normal strains.
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(b) The off diagonal elements of E. Let axV = 4s ym and ax® = dS>n, where m and n are unit vectors
perpendicular to each other. Due to motion, dX") becomes dx() with length ds; and dX® becomes
dx® with length ds,. Let the angle between the two deformed vectors dx(!) and dx® be denoted by 6.
Then Eq. (3.7.18) gives

dsids, cos 0 = 2dS;dS,m - En. (3.8.3)
If we let
7
0 — 57 (3.8.4)

then y measures the small decrease in angle between dX) and dX® (known as the shear strain) due
to deformation. Since

cos (g - y) =sin?y, (3.8.5)
and for small strain

dS] dS2
—=1, —=1 3.8.6
as b b (3.8.6)

siny & 7,
therefore, Eq. (3.8.3) becomes
y =2(m-En). (3.8.7)

In particular, if the elements were in the e; and e, directions before deformation, then
m-En = e, - Ee, = E», etc., so that, according to Eq. (3.8.7):

2E, gives the decrease in angle between two elements initially in the x; and x, directions.
2E3 gives the decrease in angle between two elements initially in the x; and x3 directions.
2E»3 gives the decrease in angle between two elements initially in the x, and x3 directions.

Example 3.8.1
Given the displacement components

n=kE w=u=0 k=107 (i)

(a) Obtain the infinitesimal strain tensor E.

(b) Using the strain tensor E, find the unit elongation for the material elements dX* = dX;e; and dX® = dXce,,
which were at the point C(O, 1, 0) of Figure 3.8-1. Also find the decrease in angle between these two
elements.

(c) Compare the results with those of Example 3.7.1.

Solution
(a) We have

0 2kX O
Vu=|0 0 o0f, (ii)
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therefore,
0 kX O
[E]Z[(VU)S]Z{/OQ 0 0} (i)
0 0 O
X2
ax(2) dx(2)
N c A0 "k’l
C B B’
1
ax) ax(1)
€5
T—»e1
o A o
FIGURE 3.8-1
(b) At point C, Xo = 1, therefore,
0 kK O
[E] = [Vu]® = {k 0 o} (iv)
0 0O

For the element dX!) = dX;e;, the unit elongation is £11, which is zero. For the element dX® = dX,e,, the
unit elongation is E»y, which is also zero. The decrease in angle between these elements is given by 2£;,,
which is equal to 2k, i.e., 2 x 107 radians.

(c) In Example 3.7.1, we found that

dx(D e
||d;(1>|| —1, \|d;(2)}| — Va2 +1 and siny = 2k, W)
i.e.,
W) |gxV @) _ |gx@
o]~ |oXT] ny“‘)Cy/X A Ll LSl |LX(2’)TX | VaETTo1~1420—1-262~0,

and y ~ 2 x 107

Comparing the results of part (b) with part (c), we see that the result of part (b), where infinitesimal strain tensor
was used, is accurate up to the order of k.

Example 3.8.2
Given the displacement field

n=k@X +X2), w=k(X?-X?), w=0, k=10" (i)
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(a) Find the unit elongation and the change of angle for the two material elements ax®) = aX,e; and
dX® = dX.e, that emanate from a particle designated by X = e; — e».
(b) Find the deformed position of these two elements: dX) and dX®.

Solution
(a) We evaluate [Vu] and [E] at (X1, X2, X3) = (1, —1, O0) as
2 -2 0 2 00
Vu=k|2 2 O|,E=[Vu°=k|0 2 0]. (ii)
0 0 O 0 0O

Since £11 = E»» = 2k, both elements have a unit elongation of 2 x 107*. Further, since £, =0, these line
elements remain perpendicular to each other.

(b) From Eq. (3.7.4),

rdX ] 2 -2 07 [dX r1+ 2k
{dxm] :[dx<1)]+[Vu][dX<l)]: 0 |+kl2 2 ofl]o|=ax| 2« [, (il
Lo] Lo o o]lol L o |
and
r07 2 -2 0770 T2k 7
{dx@]:[dx@)}ﬂw][dx(z)}: | +kl2 2 of |de|=d6|1+2k]. (iv)
Lo] Lo o o]lol L o |

The deformed positions of these elements are sketched in Figure 3.8-2. Note from the diagram that

O 2kd | %k
e Lt ST R ST el V)

R

p = ax;—=1 ¢ - Xy —=| 2kdX; |

FIGURE 3.8-2
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and

2kdX,

Do(l+2K) V)

pfrtanp =

Thus, as previously obtained, there is no change of angle between dX* and dX@.

Example 3.8.3
A unit cube with edges parallel to the coordinate axes is given a displacement field

U =kX,, wb=u3=0, k=10"% 0)

Find the increase in length of the diagonal AB (see Figure 3.8-3) (a) by using the infinitesimal strain tensor E and
(b) by geometry.

Solution
(a) We have
k 0 0
[El=|0 0 0]. (ii)
0 0O

2 . . o
Since the diagonal element was originally in the direction n = £(e1 + ep), its unit elongation is given by

2
07 [v2/2

Emm=n-En=[v2/2 v2/2 0] |0 O O] |v2/2 =g(nosumon n. (iii)

0

Since AB = /2,
MB=5V3 (iv
Xo
B B

A X4
—1— Kk }—

FIGURE 3.8-3
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(b) Geometrically,

1/2
AAB=AB'—AB =1+ (1 4+ k7]~ V2= Va1 +k+ (K/2)] V2 )
Now,
2
[1+k+k2/2]1/2:1+%<k+%)+...zl+%k. (vi)

Therefore, in agreement with part (a),

AAB = g\@ (vii)

PRINCIPAL STRAIN

Since the strain tensor E is symmetric, there exist at least three mutually perpendicular directions (n;, ny, n3)
with respect to which the matrix of E is diagonal (see Section 2.23). That is,

E, 0 0
[E,=|0 E o] (3.9.1)
0 0 E;

Geometrically, this means that infinitesimal line elements in the directions of (n;, ny, n3) remain mutu-
ally perpendicular after deformation. These directions are known as principal directions. The unit elongations
along the principal directions (i.e., E1, E;, E3) are the eigenvalues of E, or principal strains. They include the
maximum and the minimum normal strains among all directions emanating from the particle. For a given E,
the principal strains are to be found from the characteristic equation of E, i.e.,

BL)24+Li-15L=0, (3.9.2)
where
Iy = E\1 + Ep + Es3, (3.9.3)
Enn Ep Ey Exn Enn Ep
I, = : o, 394
7 |En Ex ‘Ezz Es; ‘531 Es | ( )
Iy = |Ej|. (3.9.5)

The coefficients I, I, and I3 are called the principal scalar invariants of the strain tensor.

DILATATION

The first scalar invariant of the infinitesimal strain tensor has a simple geometric meaning. For a specific
deformation, consider the three material lines that emanate from a single point P and are in the principal
directions. These lines define a rectangular parallelepiped whose sides have been elongated from the initial
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lengths dSy, dS,, and dS; to dS (1 + E;), dS»(1 + E,), and dS3(1 + E3), where E;, E;, and E3 are the prin-
cipal strains. The change A(dV) in this material volume dV is

A(dV) = dS,dS»dSs(1 + E1)(1 + Ex)(1 + Ez) — dS,dS,dS3

. . (3.10.1)
= dS1dS»dS3(Ey + E» + E3) + higher order terms in E;.
For small deformation
A(av
e= % = E| + E, + E5 = the first principal scalar invariant. (3.10.2)
Thus, in general,
Ou; .
e=E;= a—xl =divu. (3.10.3)
This unit volume change is known as dilatation. In terms of displacements, we have:
In rectangular Cartesian coordinates:
8M1 8142 8143
=—+—+—. 3.10.4
6x1 E)xz + 8x3 ( )
In cylindrical coordinates:
Ou, 1 (Ouy ou,
LI Gl Iy 10,
e 8r+r(80+u>+62 (3.10.5)
In spherical coordinates:
o ou, 1% 2u, 1 Ouy uy c0t0. (3.10.6)

or r dl r rsinf % r

THE INFINITESIMAL ROTATION TENSOR

Decomposing Vu into a symmetric part E and an antisymmetric part Q, Eq. (3.7.4) can be written as
dx = dX + (Vu)dX = dX + (E + Q)dX, (3.11.1)

where Q = (Vu)A, the antisymmetric part of Vu, is known as the infinitesimal rotation tensor. We see that
the change of direction of dX in general comes from two sources, the infinitesimal deformation tensor E and
the infinitesimal rotation tensor (2. However, for any dX that is in the direction of an eigenvector of E, there is
no change in direction due to E, only that due to Q. Therefore, the tensor Q represents the infinitesimal rota-
tion of the triad of the eigenvectors of E. It can be described by a vector t* (dual vector of the antisymmetric
tensor Q) in the sense that

th x dX = QdX, (3.11.2)
where (see Section 2.21)
th = Qe + Qizer + Mes. (3.11.3)

Thus, (Q3, Qi3, Q) gives the infinitesimal angle of rotation about the e, e, and e; axes of the triad of the
material elements that are in the principal direction of E.
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TIME RATE OF CHANGE OF A MATERIAL ELEMENT

Let us consider a material element located at x at time 7. We wish to compute (D/Dt)dx, the rate of change of
length and direction of the material element dx. From x = x(X, ), we have

dx =x(X +dX, 1) —x(X, ¢). (3.12.1)

Taking the material derivative of this equation, we obtain

D D D
0% = o X(X X, 1) = ox(X, 1) (3.12.2)

Now Dx/Dt is the velocity, which can be expressed in material description as v(X, t) or, in spatial descrip-
tion, V(x, t). (Note that v and v are two different functions describing the same velocity.) That is,

D . -
EdX:V(X, 1) =v(x, 1). (3.12.3)
Equation (3.12.2) becomes
L%dx — $(X dX, 1) —V(X, 1) = V(x+dx, ) — V(x, 1), (3.12.4)
or
D . -
D_tdx = (VxV)dX = (V,V)dx. (3.12.5)

The subscript X or x for the gradient V serves to emphasize whether it is taken with respect to the material
description or the spatial description of the velocity function.

In the following, the spatial description of the velocity function will be used exclusively so that the notation
(Vv) will be understood to mean (V4V). Thus we write Eq. (3.12.5) simply as

D
Dy 4% = (Vv)dx. (3.12.6)

With respect to rectangular Cartesian coordinates,

-8\)1 (9\)1 6\11-
oy Oy Oxs
0\)2 (9V2 8v2
[Vv] = 671 872 oxs |- (3.12.7)
(9V3 (9\)3 0\13
i Ox, O

THE RATE OF DEFORMATION TENSOR

The velocity gradient (Vv) can be decomposed into a symmetric part and an antisymmetric part as follows:

(Vv) =D+ W, (3.13.1)
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where D is the symmetric part, i.e.,
1
=3 [(VV) + (VV)T] : (3.13.2)
and W is the antisymmetric part, i.e.,
1 T
W= [(Vv) — (V) ] . (3.13.3)
The symmetric part D is known as the rate of deformation tensor and the antisymmetric part W as the spin

tensor. The reason for these names will become apparent soon. With respect to rectangular Cartesian coordi-
nates, the components of D and W are given here:

[ % l % Lo Ovy 8v1 Lo vz ]
ox1 2\ 0x,  Oxq qu oxy
vy Ovy o, v, Ovs
D| = — 134
[ ] <8x2 8x1> sz (8}@ 8x2) ’ (3 3 )
8\)1 8V3 1 8\/2 6\)3 8\)3
((’)x; + Oxl) 2 (0,&3 + (’hz) (’)Tc;
and
— 0 % _ % _
8x2 6)” 8)(3 8x1
B ovy  Ov Ov,  Ovs
W] = (a—)@ - a_x.> 0 (8—)“ - a—)@) (3.13.5)

% I % E 0
Ox3  Ox Ox3  Oxy

With respect to cylindrical and spherical coordinates, the matrices for D take the same form as those given
in Section 3.7 [Egs. (3.7.20) and (3.7.21)] for the tensor E, and those for W can be obtained from the equa-
tions for the gradients given in Eq. (3.4.10) and Eq. (3.4.14) by taking their antisymmetric part.

We now show that the rate of change of length of dx is described by the tensor D. Let dx = dsn, where n
is a unit vector, then

dx-dx = (ds)*. (3.13.6)
Taking the material derivative of the above equation, we have

D(ds)
Dt

D
2dx - D dx = 2ds (3.13.7)
Now, from Egs. (3.12.6) and (3.13.1),

D
dx - thx =dx-(Vv)dx = dx- (D + W)dx = dx - Ddx + dx - Wdx. (3.13.8)
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But, using the definition of transpose and the antisymmetric property of W, we have

dx - Wdx = dx-W'dx = —dx - Wdx = 0. (3.13.9)
Thus, Eq. (3.13.8) becomes
D
dx - —dx = dx - Ddx, (3.13.10)
Dt
and Eq. (3.13.7) leads to
D(ds)
ds D = dx - Ddx. (3.13.11)

With dx = dsn, Eq. (3.13.11) can also be written:

1 D(ds)
ds Dt

=n-Dn = D,, (no sum on n). (3.13.12)

Equation (3.13.12) states that for a material element in the direction of n, its rate of extension (i.e., its rate of change
of length per unit length) is given by D,,, (no sum on n). The rate of extension is known as stretching. In particular

D, = rate of extension for an element that is in the e; direction,
D>, = rate of extension for an element that is in the e, direction,
D33 = rate of extension for an element that is in the e; direction.

We note that since vdt gives the infinitesimal displacement undergone by a particle during the time inter-
val dt, the interpretation just given can be inferred from those for the infinitesimal strain components. Thus
we obviously will have the following results (see also Prob. 3.46):

2Dy, = rate of decrease of angle (from 7/2) of two elements in e; and e, directions,
2D,; = rate of decrease of angle (from 7/2) of two elements in e; and e; directions,
2D,3 = rate of decrease of angle (from 7t/2) of two elements in e, and e; directions.

These rates of decrease of angle are also known as the rates of shear, or shearing. Also, the first scalar invari-
ant of the rate of deformation tensor D gives the rate of change of volume per unit volume (see also
Prob. 3.47). That is,

1 D
D11+ D2 + D33 —WEdV, (3.13.13)

or, in terms of velocity components, we have

1 D 8\1,-
S P w2 vy, 3.13.14
v oy Y ( )

Since D is symmetric, we also have the result that there always exist three mutually perpendicular direc-
tions (eigenvectors of D) along which the stretchings (eigenvalues of D) include a maximum and a minimum

value among all different elements extending from a material point.

Example 3.13.1
Given the velocity field:

vy = ng, Vo = V3 = 0. (i)
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(a) Find the rate of deformation tensor and spin tensor.
(b) Determine the rate of extension of the following material elements:

dxD) = dsie;, dx® =dse, and dx® = (ds/v/5)(e; + 2ey). (ii)

(¢) Find the maximum and the minimum rate of extension.

Solution
(a) The matrix of the velocity gradient is

[Vv] = (iii)

o O O

k
0
0

o O O

So the rate of deformation tensor and the spin tensor are

0 k/2 0 0 k/2 0
D= |k/2 0 O|andW]=|-k2 0 0. (iv)
0O 0 0 0O 0 0

(b) The material element dx() is currently in the e; direction and therefore its rate of extension is D;; = O.
Similarly, the rate of extension of dx(@ is Dy, = 0. For the element dx(® = (ds/ﬁ) (e1 + 2ey),

L0E) _pn=lin 2 o k(/)Z ké2 8 ; ~24 V)
ds Dt 5 0 o ollo 5
(c) From the characteristic equation
D2l =—4 (;? — %2) =0, (vi)
we determine the eigenvalues of the tensor D as 2; = 0, 1, = k/2 and A3 = —k/2. Thus, the maximum rate

of extension is k/2 and the minimum rate of extension is —k/2 (the minus sign indicates a maximum rate of
shortening). The eigenvectors n; = <\/§/2) (e1+ep) and ny = (\/5/2) (e; —ey) give the directions of the

elements having the maximum and the minimum stretching, respectively.

THE SPIN TENSOR AND THE ANGULAR VELOCITY VECTOR

In Section 2.21 of Chapter 2, it was shown that an antisymmetric tensor W is equivalent to a vector w in the
sense that for any vector a

Wa=w x a. (3.14.1)

The vector w is called the dual vector or axial vector of the tensor W and is related to the three nonzero
components of W by the relation:

w = —(W23e1 + Wiiep + W1263). (3.14.2)
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Thus, for the spin tensor W, we have
Wdx = o x dx, (3.14.3)

and therefore,
D
D_tdx = (Vv)dx = (D + W)dx = Ddx + w x dx. (3.14.4)

We have already seen in the previous section that W does not contribute to the rate of change of length of the
material vector dx. Thus, Eq. (3.14.3) shows that its effect on dx is simply to rotate it (without changing its
length) with an angular velocity w.

It should be noted, however, that the rate of deformation tensor D also contributes to the rate of change of
direction of dx as well, so that in general, most material vectors dx rotate with an angular velocity different
from w (while changing their lengths). Indeed, it can be proved that in general, only the three material vectors
that are in the principal directions of D do rotate with the angular velocity @ (while changing their lengths;
see Prob. 3.48).

EQUATION OF CONSERVATION OF MASS

Having derived the expression for the rate of increase of volume for a particle in a continuum, we are in a
position to formulate an important principle in continuum mechanics: the principle of conservation of mass.
The principle states that if we follow an infinitesimal volume of material through its motion, its volume dV
and density p may change but its total mass pdV will remain unchanged. That is,

D
Dt(pdV) =0, (3.15.1)
ie.,
D Dp
— —dV =0. 152
Py (@AV) + 5 dV =0 (3.15.2)
Using Eq. (3.13.14), we obtain
i D
8—v+—p 0, (3.15.3)
Oxl
or, in invariant form,
Dp
di —=0 3.154
pdivv + D1 s ( )
where in the spatial description,
Dp 0Op
£ _=F 15.
D =g VP (3.15.5)

Equation (3.15.4) is the equation of conservation of mass, also known as the equation of continuity.
In Cartesian coordinates, Eq. (3.15.4) reads:

vy Ov 8vz p dp dp dp
p(@xl 8)&2 813) + ™ v Vs

. 15.
ot ox; O0xy Ox3 =0 (3.15.6)
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In cylindrical coordinates, it reads:

v, 10vg v, Ov, dp dp  voOp dp
(E ’—% 7 E) + = 8 + v ,8—+—%+v 570. (3.15.7)

In spherical coordinates, it reads:

v, 10vg  2v, 1 Ovg  vgcotl p Op veOp ve Op
<8r rt99Jr ‘+rsin0% r )+_+'_+__+ N

(3.15.8)

ot or ' r a0 rsin0d¢

For an incompressible material, the material derivative of the density is zero and the mass conservation
equation reduces to simply

divv =0. (3.15.9)
In rectangular Cartesian coordinates:

8\)1 6\)2 0\)3
— =0. 3.15.10
6/\’1 ton 8X2 ton 0/\3 ( )

In cylindrical coordinates:

v, 10wy v v,

e 5 =0 (3.15.11)
In spherical coordinates:

ov, 1% ﬁ 1 % vg cot 0
ar r 00 r rsinf 0¢ r

=0. (3.15.12)

Example 3.15.1
For the velocity field of

kx;
1+ kt’

Vi =

find the density of a material particle as a function of time.

Solution
From the conservation of mass equation,
Dp__ ovi_ _, %i _ _ 3pk
Dt~ Pox T TP Ti kT T 1vkt
thus,

Jf* dp _JT 3kdt
o P Lol kKt
from which we obtain

_ Po
(1+ kt)°
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COMPATIBILITY CONDITIONS FOR INFINITESIMAL STRAIN COMPONENTS

When any three displacement functions u;, u, and u3 are given, one can always determine the six strain com-
(9u,-
9X;
nents (Ey1, Ex, Ess, E12, E13, Ey3) are arbitrarily prescribed in some region, in general, there may not
exist three displacement functions u;, u, and u3 satisfying the following six equations defining the strain-
displacement relationships.

ponents in any region where the partial derivatives exist. On the other hand, when the six strain compo-

0”1
—=F 3.16.1
X, 11, ( )
8142
—=F 3.16.2
X, 2, ( )
0143
—=F 3.16.3
X5 33, ( )
1/0u; Ou
! <ax2 4 axl) — By, (3.16.4)
1 6u1 814;
- ") =F .16.
2 <8X3 * 8X1> 2 316
1 8142 8”3 _
For example, if we let
Eyy = kX3, Exn=Ey =E;p=E;=E;3=0, ()
then, from Eq. (3.16.1),
% =FE; = kX% and therefore, u; = leXg +f(X2, X3), (ii)
1
and from Eq. (3.16.2),
6142
——==F5» =0 and therefore, u, = g(Xi, X3), (iii)
0X,

where f and g are arbitrary integration functions. Now, since £, = 0, we must have, from Eq. (3.16.4),

3141 6142 _ .
67X2 + 67)(1 =0. (IV)

Using Eq. (ii) and Eq. (iii), we get from Eq. (iv)

of (X2, X3) +38(X17 X3)

2kX 1 X
A2 5% X,

=0. W)

Since the second or third term of the preceding equation cannot have terms of the form X, X, the preced-
ing equation can never be satisfied. In other words, there is no displacement field corresponding to this given
Ej;. That is, the given six strain components are not compatible.
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We now state the following theorem: If Ej;(X;, X», X3) are continuous functions having continuous
second partial derivatives in a simply connected region, then the necessary and sufficient conditions for the

existence of single-valued continuous functions u;, u; and u3 satisfying the six equations Eq. (3.16.1) to
Eq. (3.16.6) are:

OPEy  OPEp | OPEp

= 3.16.7
oz T ox?  Cox,ox, 3.16.7)
2 2 2
9 Ejz 9 Ef _, Ok , (3.16.8)
ox2 " ox2 OX,0X3
OPEs;  O%Eq O*Ex
: = 3.16.
ox: = 0X3 0X30X,’ (3.169)
62E11 0 8E23 8E31 8E12
= (-2, R 3.16.10
X0, 0X, ( ox, Tox, T ax3>’ (3.16.10)
2
0°Ey _ 0 _(9E31 OE1, OEx 7 (3.16.11)
OX:0X,  0X, \ 0X, | 0X; | 0X,
O?E33 0 OE;», OFE»; OE3
= (-2 B 3.16.12
6X18X2 8X3 ( 8X3 6X1 8X2 ( )

The preceding six equations are known as the equations of compatibility (or integrability conditions). That
these conditions are necessary can be easily proved as follows: From

8141 al/tz
—=F d —=E
ax,  ~oae gy, T
we get
82E11 - 83141 d 62E22 - 83142

= an = .
0X3  9X30X, 0X3  9X20X,

Now, since the left-hand side of each of the preceding two equations is, by postulate, continuous, the right-
hand side of each equation is continuous, and so the order of differentiation is immaterial, so that

PEn_ O (0w, PEn_ P (0w
X3  0X,10X, \0X» X3 0X10X2 \0X1)"

Thus,

82E11 82E22 _ 82 (8141) 82 (6”2) 82 <8M1 8M2> 82E12

X2 " OXT T OX,0X, \0X,) | OX,0X, \0X,) ~ 0X,0X, \OX,  oX,)  ~OX,0X;’

The other five equations can be similarly established. The proof that the conditions are also sufficient
(under the conditions stated in the theorem) will be given in Appendix 3.1. In Example 3.16.1, we give an
instance where the conditions are not sufficient for a region which is not simply connected. A region of space
is said to be simply connected if every closed curve drawn in the region can be shrunk to a point, by continu-
ous deformation, without passing out of the boundaries of the region. For example, the solid prismatic bar

whose cross-section is shown in Figure 3.16-1(a) is simply connected whereas the prismatic tube represented
in Figure 3.16-1(b) is not simply connected.
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zi [
% W /\{0,(1
= SO
|
@ (6)

FIGURE 3.16-1

We note that since each term in all the compatibility conditions involves second partial derivatives with
respect to the coordinates, if the strain components are linear functions of coordinates, the compatibility con-
ditions will obviously be satisfied.

Example 3.16.1
Will the strain components obtained from the following displacement functions be compatible?

u =X, w=¢e4 u=sinX.

Solution
The answer is yes. There is no need to check, because the displacement functions are given and therefore exist!

Example 3.16.2
Does the following strain field represent a compatible strain field?

2X1 X1 +2X 0
[E} =k| X1 +2X 2X1 0
0 0 2%

Solution

Since all strain components are linear functions of (X1, X2, X3), the compatibility equations are clearly satisfied. We
note that the given strain components are obviously continuous functions having continuous second derivatives (in
fact, continuous derivatives of all orders) in any bounded region. Thus, the existence of single-valued continuous dis-
placement field in any bounded simply connected region is ensured by the theorem stated previously. In fact, it can
be easily verified that

n=k(XP+X3), w=k2XX+XP), us=kG.

Example 3.16.3
For the following strain field

X1

A Ep=FEy=FEs=FE3=0 i
2(X12+X22)’ 22 33 23 13 ) (i)

Eh=———"—-, En=
11 X2+ 12
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does there exist single-valued continuous displacement fields for the cylindrical body with the normal cross-section
shown in Figure 3.16-1(a)? Or for the body with the normal cross-section shown in Figure 3.16-1(b), where the origin
of the axes is inside the hole of the cross-section?

Solution
Of the six compatibility conditions, only the first one needs to be checked; the others are automatically satisfied.
Now,
0E1; (Xlz + X22) — X2 (2X2) X22 - X12 0Ex "
M 2 - > % O W
2 (X +X3) (X +X3) !
and

0F _ (X +X5)-2X¢ X -Xp _0Fu
) I C ) R

(iii)

Thus, the condition

Py PEp _, PEp

axz " ox2 ~ “oxox )

is satisfied, and the existence of (u;, Uy, u3) is assured. In fact, it can be easily verified that for the given Ej,

X
u =arctan’2, =0, uz3=0 (v)
X1
(to which, of course, any rigid body displacement field can be added). Now arctan (X,/X;) is a multiple-valued
function, having infinitely many values corresponding to a point (X1, Xo, X3). For example, for the point
(X1, X2, X3) = (1, O, 0), arctan (X»/X1) =0, 2r, 4m, etc. It can be made a single-valued function by the restriction

X
0, < arctan 72 < 0o + 2m, (vi)
1

for any 0,. For a simply connected region such as that shown in Figure 3.16-1(a), a 0, can be chosen so that such a
restriction makes u; = arctan (Xo/X1) a single-valued continuous displacement for the region. But for the body
shown in Figure 3.16-1(b), the function u; = arctan (Xo/X1), under the same restriction as in Eq. (vi), is discontinu-
ous along the line 6 = 0, in the body (in fact, u; jumps by the value of 27 in crossing the line). Thus, for this so-called
doubly connected region, there does not exist a single-valued continuous u; corresponding to the given Ej, even
though the compatibility equations are satisfied.

COMPATIBILITY CONDITION FOR RATE OF DEFORMATION COMPONENTS

When any three velocity functions vy, v, and v3 are given, one can always determine the six rates of defor-
mation components in any region where the partial derivatives Ov;/0x; exist. On the other hand, when the
six components (D1, Dy, D33, D1z, D13, Do3) are arbitrarily prescribed in some region, in general, there
may not exist three velocity functions vy, v, and vs, satisfying the following six equations defining the rate
of deformation-velocity relationships.



3.18 Deformation Gradient 105

O vy Ov3
M _py, 2—p,, Bop
axl 11, axz 22, 8X3 33,
3.17.1)
ovy 0y Ovy  0Ovs vy 0w (
ML _op,, 22409 _op,,, 23, _op,.
Oxy + Ox 2 Oxs + Oxy 2 9 + Ox3 1

The compatibility conditions for the rate of deformation components are similar to those of the infinitesi-
mal strain components, i.e.,

O’Dyy | 8Dy, 9Dy otc
0x3 ox;  Toxox’ 7

and

82D11 _ i _8D23 8D31 n 8D12 etc
8X28X3 - 8x1 aX| aXZ 6x3 ’ ’

We note that if one deals directly with differentiable velocity functions v;(xy, x5, x3, f), as is often the
case in fluid mechanics, the question of compatibility does not arise.

DEFORMATION GRADIENT
We recall that the general motion of a continuum is described by
x = x(X, 1), (3.18.1)

where x is the spatial position at time ¢ of a material particle with material coordinate X. A material element
dX at the reference configuration is transformed, through motion, into a material element dx at time ¢. The
relation between dX and dx is given by

dx =x(X +dX, 1) —x(X, t) = (Vx)dX, (3.18.2)
ie.,
dx = FdX, (3.18.3)
where
F = Vx, (3.18.4)

denotes the gradient with respect to the material coordinate X of the function x(X, 7). It is a tensor known as
the deformation gradient tensor. In terms of the displacement vector u, where x = X + u, we have

F=1+Vu (3.18.5)
We note that physics requires that dx can be zero only if dX is zero. Thus, F~! exists and
dX =F 'dx. (3.18.6)

Also, physics does not allow for a reflection in deformation, so that Fe; - Fe, x Fe; must have the same sign
as e] - €, x ez, which is positive.” Since Fe; - Fe, x Fe; = det F (note: a-b x ¢ = determinant whose rows are
components of the vectors a, b and ¢), we have

det F > 0. (3.18.7)

So long as {e;, e, e3} is a right-handed basis.
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Example 3.18.1
Given the following motions in rectangular coordinates:

X1:X1+O(X12f, X =Xo — k(Xo + X3)t, x3=X3+ k(X2 — X3)L.
Obtain the deformation gradient at t =0and att = 1/k.

Solution
_ 1+2uXt O 0
[F]—{%]— 0 1—kt —kt |.
/ 0 kt 1 — kt
At t =0,
1 00
Fl=|0 1 0| =1,
01
and at t = 1/k,

LOCAL RIGID BODY MOTION

In Section 3.6, we discussed the case where the entire body undergoes rigid body displacements from the con-
figuration at a reference time ¢, to that at a particular time ¢. For a body in general motion, however, it is pos-
sible that the body as a whole undergoes deformations while some (infinitesimally) small volumes of material
inside the body undergo rigid body motion. For example, for the motion given in the last example, at r = 1/k

and X; =0,
1
[F]=10
0

It is easy to verify that the preceding F is a rotation tensor R (i.e., FFT = I and det F = +1). Thus, every
infinitesimal material volume with material coordinates (0, X, X3) undergoes a rigid body displacement
from the reference position to the position at r = 1/k.

0
-1
0

— o O

FINITE DEFORMATION

Deformations at a material point X of a body are characterized by changes of distances between any pair of
material points within a small neighborhood of X. Since, through motion, a material element dX becomes
dx = FdX, whatever deformation there may be at X is embodied in the deformation gradient. We have
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already seen that if F is a proper orthogonal tensor, there is no deformation at X. In the following, we first
consider the case where the deformation gradient F is a positive definite symmetric tensor before going to
the more general cases.

We shall use the notation U for a deformation gradient that is symmetric and positive definite (i.e., for any
real vector a, a-Ua > 0, where a- Ua = 0 if and only if a = 0). Clearly the eigenvalues of such a tensor are
all positive. For such a deformation gradient, we write

dx = UdX. (3.20.1)

In this case, the material within a small neighborhood of X is said to be in a state of pure stretch deformation
(from the reference configuration). Of course, Eq. (3.20.1) includes the special case where the motion is
homogeneous, i.e., x = UX, (U = constant tensor), in which case, the entire body is in a state of pure
stretch.

Since U is real and symmetric, there always exist three mutually perpendicular directions with respect to
which the matrix of U is diagonal. Thus, if e, e,, e; are these principal directions, with 4;, 4, A3 as their
eigenvalues, respectively, we have

0 0
=10 % ol . (3.20.2)
{ei}

Thus, for the element dX!) = dX e, Eq. (3.20.2) gives
dx'V = ),dX e; = J,dX V. (3.20.3)
Similarly, for the elements dx® = dX,e, and dX® = dXses, we have
dx® = 2,dX®, (3.20.4)
and
dx® = )3dX®. (3.20.5)

We see that along each of these directions, the deformed element is in the same direction as the unde-
formed element. If the eigenvalues are distinct, these will be the only elements that do not change their direc-
tions. The ratio of the deformed length to the original length is called the stretch, i.e.,

|ax|
Stretch = —. 3.20.6
retc x| ( )

Thus, the eigenvalues of U are the principal stretches; they therefore include the maximum and the mini-
mum stretches.

Example 3.20.1
Given that at time t

X1 = 3X1, Xo = 4)(27 X3 = Xg, (i)
Referring to Figure 3.20-1, find the stretches for the following material lines: (a) OP, (b) OQ, and (c) OB.
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Xo
3 BI
O!
5
4
Q B
1
o) 1p P X
FIGURE 3.20-1
Solution
The matrix of the deformation gradient for the given motion is
3 00
[F]=10 4 0}, (ii)
0 0 1

which is a symmetric and positive definite matrix and which is independent of X; (i.e., the same for all material points).
Thus, the given deformation is a homogeneous pure stretch deformation. The eigenvectors are obviously e, es, e3
with corresponding eigenvalues 3, 4, and 1. Thus:

(a) At the deformed state, the line OP triples its original length and remains parallel to the x;— axis; stretch
=11 =23.

(b) At the deformed state, the line OQ quadruples its original length and remains parallel to the x,— axis; stretch
= Ao = 4. This is the maximum stretch for the given motion.

(c) For the material line OB,

e; + e
dX =dS| ——=). (iii)
(%)
Its deformed vector is dx = FdX:
3 00 1
das as
dXl=—10 4 0 1| =— , (iv)
[dix] 7 )
0 01 0
ie.,
dx = ds (3e; + 4ey). (v)

V2
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Thus, for OB, the stretch is

o (505/V2) g
|dX| —  dS 1414

=3.54. (vi)

Before deformation, the material line OB makes an angle of 45° with the x;— axis. In the deformed state, from
Eq. (v), we see that it makes an angle of tan’1(4/3). The preceding results are easily confirmed by the geometry
shown in Figure 3.20-1.

Example 3.20.2
For a material sphere with center at X and described by |dX| = ¢, under a symmetric deformation gradient U, what
does the sphere become after the deformation?

Solution
Lete;, ey, e3 be the principal directions for U. Then, with respect to {e;, e,, e3}, a material element dX can be written

dX = dX,e; + dXoeor + dXses. (3.20.7)
In the deformed state, this material vector becomes
ax = dx;eq + dxoes + dxzes. (3.20.8)

U is diagonal with diagonal elements 11, A, and As; therefore, dx = UdX gives

dX1 = /llXm, dX2 = /lngQ, dX3 = /13dX3. (3.20.9)
Thus, the sphere
(@) + (dX)® + (aXa)® = &2, (3.20.10)
becomes
2 2 2
PN ()T, ()2 (3.20.11)
M Ao A3
This is the equation of an ellipsoid with its axis parallel to the eigenvectors of U (see Figure 3.20-2).
B Q aX
ax
Bl Ol
P A A’
PI
X —/
X
0

FIGURE 3.20-2
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POLAR DECOMPOSITION THEOREM

In the previous two sections, we considered two special deformation gradients F: a proper orthogonal F
(denoted by R), describing rigid body displacements, and a symmetric positive definite F (denoted by U),
describing pure stretch deformation tensor. It can be shown that for any real tensor F with a nonzero determi-
nant (i.e., F~! exists), one can always decompose it into the product of a proper orthogonal tensor and a sym-
metric tensor. That is,

F =RU, (3.21.1)
or
F = VR. (3.21.2)

In the preceding two equations, U and V are positive definite symmetric tensors, known as the right
stretch tensor and left stretch tensor, respectively, and R (the same in both equations) is a proper orthogonal
tensor. Egs. (3.21.1) and (3.21.2) are known as the polar decomposition theorem. The decomposition is
unique in that there is only one R, one U, and one V satisfying the preceding equations. The proof of this
theorem consists of two steps: (1) Establishing a procedure that always enables one to obtain a positive defi-
nite symmetric tensor U and a proper orthogonal tensor R (or a positive definite symmetric tensor V and a
proper orthogonal tensor R) that satisfy Eq. (3.21.1) [or Eq. (3.21.2)] and (2) proving that the U, V, and R
so obtained are unique.

The procedures for obtaining the tensors U, V, and R for a given F will be demonstrated in Example
3.22.1. The proof of the uniqueness of the decompositions will be given in Example 3.22.2. Before doing that,
we shall first discuss the geometric interpretations of the preceding two equations.

FIGURE 3.21-1

For any material element dX at X, the deformation gradient transforms it (i.e., dX) into a vector dx:
dx = FdX = RUdX. (3.21.3)

Now, UdX describes a pure stretch deformation (Section 3.20) in which there are three mutually perpen-
dicular directions (the eigenvectors of U) along each of which the material element dX stretches (i.e.,
becomes longer or shorter), but does not rotate. Figure 3.20-2 of Example 3.20.2 depicts the effect of U on
a spherical volume |dX| = constant. Now, in Figure 3.21-1, under U, the spherical volume at X becomes
an ellipsoid at x, depicted in dashed lines. The effect of R in R(UdX) is then simply to rotate this (dashed
line) ellipsoid through a rigid body rotation to its final configuration, depicted as a (solid line) ellipsoid
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in the same figure (Figure 3.21-1). Similarly, the effect of the same deformation gradient can be viewed as a
rigid body rotation (described by R) of the sphere followed by a pure stretch of the sphere resulting in the
same ellipsoid as described in the last paragraph.

From the polar decomposition, F = RU = VR, it follows immediately that

U=RTVR. (3.21.4)

While geometrically speaking, it makes no difference whether we view the motion as being a rotation fol-
lowed by a pure stretch or as a pure stretch followed by a rotation, they do lead to two different stretch tensors
(U or V) whose components have different geometrical meanings (to be discussed in the following several
sections). Furthermore, based on these two stretch tensors, two commonly used deformation tensors are
defined (see Sections 3.23 and 3.25), the so-called right Cauchy-Green tensor C(=U?) and the left
Cauchy-Green tensor B(= V?). In Chapter 5, we show that the tensor B is objective (independent of
observer), whereas the tensor C is nonobjective. This important difference is relevant to the formulation
of the constitutive equations for a continuum under large deformation (see Part C, Chapter 5).

CALCULATION OF STRETCH AND ROTATION TENSORS FROM THE
DEFORMATION GRADIENT

Using Eq. (3.21.1), we have
F'F = (RU)"(RU) = U'R'RU = U'U = UL, (3.22.1)
that is,
U? =F'F. (3.22.2)

For a given F, Eq. (3.22.2) allows us to calculate a unique U, which is positive definite (see example that
follows). Once U is obtained, R can be obtained from the equation

R=FU " (3.22.3)
We now demonstrate that the R so obtained is indeed an orthogonal tensor. We have
R'™R = (FU Y (FU) = (U )TFTFU' = U"'vUU ! = 1. (3.22.4)
The left stretch tensor V can be obtained from

V = FRT = RUR". (3.22.5)

Example 3.22.1
Given

X1 = Xl, Xo = 73)(3., X3 = 2X2

Find (a) the deformation gradient F, (b) the right stretch tensor U, (c) the rotation tensor R, and (d) the left stretch
tensor V.
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Solution
) 100
_|9Xi _ _
(a) [F}f{axj]f 00 -3],

0 0
1 0 0771 0 O 100
(b) W=[F'Fl=|0 0 2| |0 0 -3|=1|0 4 0f.
0 -3 0J[0 2 0 009

There is only one positive definite root for the preceding equation, which is (see Appendix 3.3).

100
U=1|0 2 ol.
0 0 3
10 07l 0 O 10 0
(c) [R]:[F}[Uﬂ: 00 -3/]0 12 o0]=]0o0 -1
02 olJlo o 13 01 0
10 0 0
(d) M:[F}[RT]: 00 -3 0 1= :
02 0 -1 0 00 2
or, using Eq. (3.22.5),
10 07771 00 ) 100
[V]:[R][U][RT]: 00 -1|]lo20|]o o 1|=|0 3 ol
01 oJlooa3]Jlo-10 00 2

In the preceding example, the calculation of [U] is simple because [F'F] happens to be diagonal. If [F'F]
is not diagonal, one can first diagonalize it and obtain the one positive definite diagonal matrix [U], with
respect to the principal axes of [FTF]. After that, one can then use the transformation law discussed in Chapter
2 to obtain the matrix with respect to the original basis (see Example 3.23.1).

Example 3.22.2

Show that (a) if F = R{U; = R,U5, then U; = U, and R; = R, and (b) if F=RU = VR’, then R =R’. That is, the
decomposition of F is unique.
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Solution
(a) Assuming that there are two proper orthogonal tensors R; and R, and two positive definite symmetric tensors
U; and U, such that

F =R;U; =R:U>. 0)
Then (R1U;)" = (RoUs)" so that

U;(R))" = Ux(Ry)". (ii)
From Eq. (i) and Eq. (ii), we have

U:(R1)'R1U; = Uy(Ry)'RoU,.
That is,
Ui =U3. (i)
Thus, U; and U, are the same positive definite tensors (see Appendix 3.3). That is,
U =U,=U.

Now, from R;U = R,U, we have (R; — R2)U =0, where U is positive definite (all eigenvalues 4; > 0),
therefore, R; — R, = O (see Prob. 3.74). That is,

R; =R, =R.
(b) Since

F=VR' =R'(R’)"'VR’ =R’{(R") 'VR'} =RU,

therefore, from the results of (a)

and

U=R!VR=R'VR.

From the decomposition theorem, we see that what is responsible for the deformation of a volume of mate-
rial in a continuum in general motion is the stretch tensor, either the right stretch tensor U or the left stretch
tensor V. Obviously, U?(= C) and V?(= B) also characterize the deformation, as do many other tensors related
to them, such as the Lagrangean strain tensor E* (Section 3.24) and the Eulerian strain tensor e* (Section 3.26).
In the following we discuss these tensors in detail, including the geometrical meanings of their components. It is
useful to be familiar with all these tensors not only because they appear in many works on continuum mechanics
but also because one particular tensor may be more suitable to a particular problem than others. For example,
the tensor E* is more suitable for problems formulated in terms of the material coordinates, whereas e* is more
suitable in terms of the spatial coordinates. As another example, the equation T = oB, where T is the Cauchy
stress tensor (to be defined in Chapter 4) and « is a constant, is an acceptable stress-deformation relationship,
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whereas T = oC is not because the tensor B is independent of observers whereas the tensor C is not, and all
laws of mechanics must be independent of observers (see Part C, Chapter 5).

In the following sections, we discuss those tensors that have been commonly used to describe finite defor-
mations for a continuum.

RIGHT CAUCHY-GREEN DEFORMATION TENSOR
Let
C =17 (3.23.1)

where U is the right stretch tensor. The tensor C is known as the right Cauchy-Green deformation tensor (also
known as Green's deformation tensor). We note that if there is no deformation, U= C = 1. From Eq.
(3.22.2), we have

C =FTF. (3.23.2)

The components of C have very simple geometric meanings, which we describe here.
Consider two material elements dX'") and dX?, which deform into dx!) = FdX" and dx® = FdXx®.
We have

dxV . dx@ = FaX . FgX® = XV . F'Fax®, (3.23.3)
ie.,
dxD . gx® = gx® . cax®. (3.234)

Thus, if dx =dsin is the deformed vector of the material element dX = dS;e;, then letting
dXV = dX? = dX = dS,e; in Eq. (3.23.4), we get

(ds))” = (dS1)’e; -Ce; for dXV =dSye;. (3.23.5)
That is
ds;\*
Cy = (ﬁ) for a material element dX = dS;e;. (3.23.6)
1
Similarly,
dsy\*
Cyp = (ﬁ) for a material element dX = dS;e,, (3.23.7)
2
and
ds3\*
Cy3 = (ﬁ) for a material element dX = dSses. (3.23.8)
3

It is important to note that, in general, Uy # +/C11, Uz # +/Ca2,Uss # +/C33, etc., so that the stretches
are in general not given by the diagonal elements of [U], except when it is a diagonal matrix.

Next, consider two material elements dX®) = ds 1e; and dx®? = dS»e,, which deform into dx(!) = ds;m
and dx®) = ds,n, where m and n are unit vectors having an angle of f§ between them. Then Eq. (3.23.4)
gives
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dsids; cos f = dS,dS»e; - Ces, (3.23.9)
that is,
dsyds, M) 4@ W @
lzzdS s cos (dx\V, dx*), fordX'" =dSie; and dX“ =dS,e;. (3.23.10)
1dS>
Similarly,
dsydss M) @ 0 )
T cos (dx'",dx"?), fordX'"" =dS;e; and dX“ = dS;e; (3.23.11)
1dS3
and
dsydss @ 4O @ )
CB:dS 75 cos (dx'7,dx"), fordX'” =dS,e; and dX"“ = dSse;. (3.23.12)
2dS;
Example 3.23.1
Given
X1 =X1+2X, X=X, XxX3=2X. (i)

(a) Obtain the right Cauchy-Green deformation tensor C.

(b) Obtain the principal values of C and the corresponding principal directions.
(c) Obtain the matrices of U and U™! with respect to the principal directions.
(d) Obtain the matrices U and U~ with respect to the {e;} basis.

(e) Obtain the matrix of R with respect to the {e;} basis.

Solution
(a) From (i), we obtain

1 20
Fl=|0 1 0 (ii)
001
1 00][1 20 120
C=F'Fl=|2 1 o|l|o 1 0o|=|2 5 0f. (i)
00 1]/]0 01 00 1

The eigenvalues of C and their corresponding eigenvectors are easily found to be

e; +2.414e,) = 0.3827e; + 0.9238e,,

) 1
Al = 58287 n = m(

e; —0.4142e5) = 0.9238e; — 0.3827ey, (iv)

1
12 201716, no :m(
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The matrix of C with respect to the principal axes of C is

5828 0 0
c=| o 01716 0.
0 0o 1

(¢) The matrix of U and U~} with respect to the principal axes of C is

[v/5.828 0 0 2414 0 0
U], = 0 V01716 0| =] 0 04142 0|,
L O 0 1 0 0 1
[1/2.414 0 0 0.4142 0 0
[U’l}n,: 0 1/0.4142 0Of = 0 24142 0.
| O 0 1 0 0 1
(d) The matrices of U and U~! with respect to the {e;} basis are given by:
[0.3827 09238 01 [2.414 0 0] [0.3827 09238 O
U], = 09238 -0.3827 O 0 0.4142 0| |0.9238 -0.3827 O
| O 0 1 0 0 1 0 0 1
[0.7070 0.7070 ©
=]0.7070 2.121 0],
0 0 1
and
[0.3827 0.9238 07 [0.4142 0 0] [0.3827 09238 0
{U’l} = 109238 -0.3827 O 0 2414 0] [0.9238 -0.3827 O
€
| O 0 1 0 0 1 0 0 1
r 2121 -0.7070 O
=1-0.7070 0.7070 0.
L O 0 1
1 20 2.121  -0.7070 O 0.707 0.707 O
(e) [R]elz[FMU’l}: 010 -0.7070 0.7070 0| = | -0.707 0.707 O
0 01 0 0 1 0 0 1

(vi)

(vii)

(viii)

Example 3.23.2
Consider the simple shear deformation given by (see Figure 3.23-1)

X=X+ ke, X=X, x=X.

(a) What is the stretch for an element that was in the direction of e1?
(b) What is the stretch for an element that was in the direction of e,?
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(c) What is the stretch for an element that was in the direction of e; + e,?
(d) Inthe deformed configuration, what is the angle between the two elements that were in the directions of e; and e,?

X5
]
B B C C
]
o 1 A *
FIGURE 3.23-1
Solution
1 k0O 1 00][1 kKO 1 Kk 0
Fl=|0 1 O, [C]=[F'F]J=|k 1 0| |0 1 O|=|k 14k O
001 00 1][0 01 0o 0 1

(a) For dX'V = dSieq, ds;/dS;, = 1.
(b) For dX® = dSse,, ds,/dS, = V1 + K.
(c) For dX = (dS/\/§> (e1 + ) = dSe's.

1k 077!
as\? ., 1 ) K2 ds K2
(ﬁ) =Ch=5[1 1, 0][/8 1Bk (1)} |:é:|1+k+?, thus, —==11+k+7

(d) For dXV) = dS e; and dX® = dSse,, from Eq. (3.23.10) and the results in (a) and (b),

1 2 -+

Example 3.23.3

Show that (a) the eigenvectors of U and C are the same and (b) an element that was in the principal direction n of C
becomes, in the deformed state, an element in the direction of Rn.

Solution
(a) Un = /n; therefore, Un = iUn = A°n, i.e.,
Cn = 2°n.

Thus, n is also an eigenvector of € with 2 as its eigenvalue.
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(b) If dX = dSn, where n is a principal direction of U and C, then UdX = dSUn = dS/n so that
dx = FdX = RUdX = 1dS(Rn).

That is, the deformed vector is in the direction of Rn.

LAGRANGIAN STRAIN TENSOR
Let

E* :%(c -1, (3.24.1)

where C is the right Cauchy-Green deformation tensor and I is the identity tensor. The tensor E* is known as
the Lagrangian finite strain tensor. We note that if there is no deformation, C = I and E* = 0.
From Eq. (3.23.4), we have

dxM . ax® — gXW . gX@ = gx . (C - 1)aX?, (3.242)
ie.,
dx . @x®@ — gx( . gx@ = 2gXD . E*gX®. (3.24.3)

For a material element dX = dS;e; deforming into dx = ds;n, where n is a unit vector, Eq. (3.24.3), with
dXV = dX? = dX = dS,e, and dxV) = dx?) = dx = ds;n, gives

ds} — dST = 2dSte; -E'e;. (3.24.9)
Thus,
y ds? — ds? L
El, = Tods for dX = dS,e; deforming into dx = ds;n. (3.24.5)
1
Similarly,
d 2 d 2
E}, = Sszzsz for dX = dS,e; deforming into dx = ds,m, (3.24.6)
2
and
ds? — ds?
Ey = % for dX = dS;e; deforming into dx = ds;q, (3.24.7)
3

where n, m and q are unit vectors, not mutually perpendicular in general. They are mutually perpendicular if
{e1, e, e3} are eigenvectors of E*.

By considering two material elements ax® = ds 1e1 and dX® = dsS,e,, deforming into dx(V) = dsin and
dx? = ds,m, then Eq. (3.24.3) gives

dsyds; cos (dx'V | dx?) = 2dS,dS,e; - E*e,. (3.24.8)



That is,

*

_ dS1d52
127 ds,dS,

3.24 Lagrangian Strain Tensor

cos(n,m).

The meanings for 2E}, and 2F3, can be established in a similar manner.
We can also express the components of E* in terms of the displacement components. From C = F'F and

F =1+ Vu, Eq. (3.24.1) leads to

E' =

N =

In indicial notation, we have

1 [ Ou;
Ef == !
vo2 (an+

and in long form,

8111 1
B =2
n=ox, T2

0X;

Ou;\ | 1 0uy Ouy,
20X, X,

6141 2 8u2 2 61/13 2
X, X, X,
S (CLTRCER W TR W 0 B CLER W)

B = 2 (axz + axl) *3 Kaxl) (8X2) + (axl) (8X2) + (

(FTF - 1) = % [Vu + (Vu)T} + % (Vu)" (Vu).

)

119

(3.24.9)

(3.24.10)

(3.24.11)

(3.24.12)

(3.24.13)

and so on. We note that for small values of displacement gradients, these equations reduce to those of the

infinitesimal strain tensor.

Example 3.24.1
For the simple shear deformation

X3 =X3

X=X +kXo, X=X,
X2

e ——
L
;
(0] 1 A

X

FIGURE 3.24-1

(a) Compute the Lagrangian strain tensor E*.

(b) Referring to Figure 3.24-1, by a simple geometric consideration, find the deformed length of the element OB.

(c) Compare the results of (b) with £3,.
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Solution
(a) Using the [C] obtained in Example 3.23.2, we easily obtain from the equation 2E* = C — |
1 k 0 O k/2 O
[F]:% k 1+k 0ol -I|=1k/2 K?/2 ©
0 0 1 0 0O O

(b) From Figure 3.24-1, we see from geometry that OB’ = v/1 + k2.
(c) We have E5, = k?/2; thus,

(As)* — (AS)* _ K?

2(AS)? 27
Thus, with AS = OB =1 and As = OB’, we have
OB’ = (As) = (AS)V 1+ k2 =+/1+ k2.

This is the same result as in (b). We note that if k is very small, then OB’ = OB to the first order of k.

Example 3.24.2
Consider the displacement components corresponding to a uniaxial strain field:

u = kX1, Up = Uz = 0. (i)

(a) Calculate both the Lagrangian strain tensor E* and the infinitesimal strain tensor E.

(b) Use the finite strain component £, and the infinitesimal strain component £;; to calculate (As/AS) for the
element AX = ASe;.

(c) For an element AX = AS(e; + e)/V/2, calculate (As/AS) from both the finite strain tensor E* and the infin-

itesimal strain tensor E.

Xo

C Bl'_k_"B;

FIGURE 3.24-2
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Solution
k 00 ) k+(k?/2) 0 O
(a) [E] = [(Vu)°] = [o 0 o} , and [E*] = [(Vu)®] +§[Vu]T[Vu] = 0 0 0. (i)
0 0O 0 00
2 2 _ 2 2
(b) Based on £}, = k +%, we have (AS)AS(?S) =k +%; therefore, (As)” = (AS)*(1 + 2k + Kk?).
That is,
As = AS(1 + k). (iii)
As — AS N o :
On the other hand, based on £17 = K, AS k, therefore, in this case, the infinitesimal theory also gives
As=AS(1 + k). (iv)

This is confirmed by the geometry shown in Figure 3.24-2.

(c) Lete; = L(el +ep); then

V2

k+k2/2 0 0 1 2 >
.1 k k% (As)® —(AS
Eﬁ(:_[]” 17 O] 0 0 0 1 :_+_:M. (V)
2 2 4 2(AS)?
0 0 0 0

Thus,

As =AS\/1+ k+k?/2. (vi)

This result is easily confirmed by the geometry in Figure 3.24-2, where we see that the diagonal length

of OB changes from AS=+v2 to As=1\/(1+k?+1=v2,/T+k+k?/2 (length of OB’) so that As=
AS+/1+ k+ k2/2, as in the previous equation.

On the other hand, using the infinitesimal tensor, we have £/, = e -Ee] = k/2, so that
As = [1 4 (k/2)]AS. (vii)

We note that, for small k, /1 +k+k2/2~ 1+ (1/2)(k+ k?/2) + ...~ 1+ (k/2) so that Eq. (vi) reduces to
Eq. (vii).

LEFT CAUCHY-GREEN DEFORMATION TENSOR
Let

B =V?, (3.25.1)

where V is the left stretch tensor. The tensor B is known as the left Cauchy-Green deformation tensor (also
known as Finger deformation tensor). We note that if there is no deformation, V=B =U=C =1.
From F = VR [Eq. (3.21.2)], it can be easily verified that

B = FF". (3.25.2)
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Substituting F = RU in Eq. (3.25.2), we obtain the relations between B and C as follows:
B=RCR" and C=R"BR. (3.25.3)

We also note that if n is an eigenvector of C with eigenvalue /, then Rn is an eigenvector of B with the same
eigenvalue /.

The components of B have very simple geometric meanings, which we describe here.

Consider a material element dX = dSn, where n = RTel, R being the rotation tensor, associated with
the deformation gradient F, which deforms dX = dSn into dx = dsm, where m is a unit vector. From

Eq. (3.23.4),
ds* = dS’n-Cn = dS’R"e; - CR"e; = dS”e; -RCR"e,, (3.25.4)
that is,
ds* = dS’e; -Be; for dX =dS(R'e). (3.25.5)
Thus,
dsy 2 . T
By = 5 for a material element dX = dS; (R"e;). (3.25.6)
1
Similarly,
ds, 2 . T
By = R for a material element dX = dS,(R"e;), (3.25.7)
2
and
ds; 2 . T
B33 = 7S+ for a material element dX = dS; (R e3). (3.25.8)
3
Next, consider two material elements axV = dS;RTe; and dx® = dS,R"e,, which deform into
dx") = dsym and dx'?) = ds,n, where m and n are unit vectors having an angle of  between them; then
Eq. (3.23.4) gives
dsyds; cos B = dSdS,R"e; - C(R"e;) = dSdS,e; - RCR"e; = dSdSze; - Bey, (3.25.9)
that is,
= Sz cos(dx(l),dx(2)> fordX"" = as;(R"e;) and dX? =ds,(R"e,). (3.25.10)
ds,dS,
Similarly,
5 = Badss cos (axV,ax®)  fordX" = ds;(R"e;) and X = ds;(R"es), (3.25.11)
dsS,dS;
and
N L R (ax®,ax)  fordX® = ds;(R"e;) and X = ds; (R"es). (3.25.12)
dS,dS;
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We can also express the components of B in terms of the displacement components. Using Eq. (3.18.5),
we have

B=FF = I+ Vu)(I+Vu) =1+ Vu+ (Vu)" + (Vu)(Vu)". (3.25.13)

In indicial notation, we have

Cot (2l 0 y (Qu) (O
Bjj =6+ (8X,- + 8X,»> + (6Xm) <8Xm)‘ (3.25.14)

1
We note that for small displacement gradients, 2 (B,-j — 5,7) =Ej.

Example 3.25.1
For the simple shear deformation

X1 =X1+ kX, XxX=Xo, X3=X;. (3.25.15)

(a) Obtain the Cauchy-Green deformation tensor C and B.
(b) Use the relation B = RCRT to verify that for this simple shear deformation:

X 1 k2 0
—k/2 1 0 . (3.25.16)

R=_—_ -~
R 0 o JI¥kJa

(c) Verify that

1 k/2 0
k/2 1+ k22 0

VIHR/MA 0 JITKYa

(0]

(d) Calculate RTe; and R'e.
(e) Sketch both the undeformed and the deformed position for the element RTe; and the element R"e,. Calculate
the stretches for these two elements from the geometry in the figure and compare it with By, and Bo;.

Solution
(a) We have
1 k0
[F]={0 1 O} (3.25.17)
00 1
Thus,
100771 K 0] 1 Kk O
€= [FFF[= |k 1 0 1 0| =|k 144K 0], (3.25.18)
loo1J]loo1] o o 1]
1 k O1[1 O 0] T[1+4K k O]
[B]:[FFT}f 01 0||k1o0l=| k 10| (3.25.19)
loo1/]loo1] | o o 1]
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(b) Using Eqg. (3.25.16), we have
1 1

T _
RICIR =T JTewna
1 k2 o0 1k O0][1 -k2 0
x | —k/2 1 0 k 1+k* 0Of |k/2 1 0

0 0 V1+k?/4 0 0 1 0 0 V1+k2/4

. (1+K2)(1+K2/4) k(1 +k?/4) 0 (1+4k%) k O
= k(1 + K2/4) (1+k2/4) 0 = [ k 1 o}
(L+42/4) 0 0 (1+K2/4) 0 01
Thus, for the given R, we have [R][C][R]" = [B].
() For the given [U],
1 k/2 0 1 k/2 0
[U]2:ﬁ K2 1+k/2 0 K2 1+K/2 0
TR 0 VI+K/a|| 0 0 1+ k24
1+k%/4 k(1+k2/4) 0 1 k 0
= | k(L +K/4) (1+K)(1+K/4) 0 = [k 1+ k2 o} =[]
e/ 0 0 (1+K2/4) o 0 1

Thus, [U] is the stretch tensor.
(d) RTe; = [e; + (k/2)es]d, and R'e, = [(—k/2)e; + es]d, where d = 1//1 + k2/4.

(e) Referring to Figure 3.25-1, R'e, is depicted by OE. After deformation, it becomes OE’; the distance between
Eand E'is kd, which is 2(kd/2) so that OE’ is the mirror image (with respect to the line OB) of OE and has
the same length as OE. Thus, from geometry, the stretch for this element is unity. This checks with the value
of Byp, which is also unity. Also, in the same figure, OG is the vector R'e;. After deformation, it becomes OG’.
The square of the length of OG’ is

(05)° = (d + K2d/2)% + (kd/2) = P[(L+ K2 /2)% + K2/
— d2(1 + k24 k4/4+ k2/4) _ dz(l + kz)(l + k2/4) —(1+ kg)7

and the length of RTe; is dS = 1; therefore, (ds/c/S)2 =1+ k2, which is the same as Bi;.
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*{
|ki2|k/2| g c}_k_‘c'
B
___\E E
J }<k(k )d‘
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we (k/2)d
0
<—.| A
d

FIGURE 3.25-1

EULERIAN STRAIN TENSOR

Let

*71 _p-l
e = (I-B"), (3.26.1)

where B = FFT is the left Cauchy-Green deformation tensor. The tensor e* is known as the Eulerian strain
tensor. We note that if there is no deformation, B~! = I and e* = 0.

The geometric meaning of the component of e* and B! are described here.

From dx = FdX, we have

dX = Fldx, (3.26.2)

where F~! is the inverse of F. In rectangular Cartesian coordinates, Eq. (3.26.2) reads

dX; = F;'dy;. (3.26.3)
Thus,
oX;
-1 _ 77 264
v an7 (3 6 )

where X; = X;(x1,x2,x3,1) is the inverse of x; = x;(X;,X>, X3, ). In other words, when rectangular Cartesian
coordinates are used for both the reference and the current configuration,

-8X1 8X1 6X1_
o O Ox
8X2 8X2 6X2
[F*l]: % oxy o | (3.26.5)
8X3 6X3 6X3
ox O O
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Now,
dX.ax® = FlaxV . Fax® = ax - (F) ' F'ax? = axV . (FFT) 'ax®,
i.e.,
dXM . ax®@ = gxM . B~'ax@, (3.26.6)
and
dxV . ax® —ax®W.ax® = axV . (1- B~ ")ax?, (3.26.7)
that is,
dxV . dx@ — axV.ax® = 2axV - e*ax®. (3.26.8)

Thus, if we consider a material element, which at time ¢ is in the direction of ey, i.e., dx = dse;, and which at
the reference time is dX = dSn, where n is a unit vector, then Egs. (3.26.6) and (3.26.8) give

das?

F =e -B_lel = Bl_llv (3.26.9)
and
ds? — ds? " "
—aE = e -e'e; = e, (3.26.10)

respectively. Similar meanings hold for the other diagonal elements of B! and e*.

By considering two material elements dx(D) = ds;e; and dx® = ds,e; at time ¢t corresponding to
axh = dSin and dx®? = dSim at the reference time, where n and m are unit vectors, Eqgs. (3.26.6) and
(3.26.8) give

ds,ds; ) )
dsds, SO m) = e B e =By, (3.26.11)
and
ds,ds,
- =e 26.12
Sdsids, S m) = €io, (3.26.12)
respectively.

We can also express B~! and e* in terms of the displacement components. From u = x — X, we can write
X=x-— u(xl,xz,X3., l) or X;,=x;— u,-(xl,xz,)c3,t), (3.26.13)

where we have used the spatial description of the displacement field because we intend to differentiate this
equation with respect to the spatial coordinates x;. Thus, from Eq. (3.26.13), we have

K ow
g oy

therefore, from B~! = (FFT)_l = (F’I)TF’I, and e* = (1/2)(I-B™"), we get

F!=1-V,u, (3.26.14)

B = [1- (V)| 1= (Vaw)] = 1= [(Vaw)" + (V)| + (V) (Vaw), (3.26.15)
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and

e = - . (3.26.16)

In indicial notation, Eq. (3.26.16) reads

. 1 (0w Oy 1 du,, Ou,,
and in long form,
. _Oup 1| (0w 2 Ouy 2 Ous 2
T 2 [@) (o) + (Go) | v
1 8141 8142 1 8u1 8141 8142 8142 81,{3 8143
e (SRR o | TR T T 26.1
‘12 2(8x2 Bxl) 2{8}(1 Oxy  Ox; Ox,  Oxy 8xj (3.26.19)
Ou;  Ou;
The other components can be similarly written. We note that for infinitesimal deformation, a—u = 8; and
products of the gradients are negligible, Eq. (3.26.17) becomes the same as Eq. (3.7.16). i ]
Example 3.26.1
For the simple shear deformation
X1 =X1+ kX, XxX=Xo, X3=X;. (i)
(a) Find B™" and e*.
(b) Use the geometry in Figure 3.26-1 to discuss the meaning of ej; and e5,.
Solution
1 kO 1 -k O
@ Fl = {o 1 o} and [F*l} - {o 1 0}7 (ii)
0 01 0 0 1
" 1 O] |1 -k O 1 -k 0
[B*l] - [F’l} [F’l] — |-k 1 0||0 1 0|=|-k 14k O], (iif)
0 0O 0 1 0 0 1
] ] 0O k O
* __ = _ -1 I _ 2 :
e =5(1-B1) =5 |k —& 0. (iv)
0O 0 O

(b) Since ef; =0, an element which is in the e; direction in the deformed state (such as B’C’ in Figure 3.26-1)
has the same length in the undeformed state (BC in the same figure).
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kv kg
B | [ 1C’
H B C|H
1
0 1
A
FIGURE 3.26-1
Also, since &3, :fk2/2, an element which is in the e, direction in the deformed state (such as AH’)

had a length AH, which can be calculated from an equation similar to Eq. (3.26.10). That is, from
(AH")? — (AH)? = 2(AH")?e3,, we obtain

AH = (AHWT + k2. v)

This result checks with the geometry of Figure 3.26-1, where AH' = OB =1 and HH' = k.

CHANGE OF AREA DUE TO DEFORMATION

Consider two material elements dX(!) = dS,e; and dX® = dS,e; emanating from X. The rectangular area
formed by dXV and dX@ at the reference time 7, is given by

dA, = dXV x dX? = dS,dS,e; = dA.es, (3.27.1)

where dA, is the magnitude of the undeformed area and e3 is normal to the area. At time 7, dX!) deforms into
dx) = FdX"" and dX® deforms into dx® = FdX?, and the deformed area is given by

dA = FdX"V x FaX® = dS,dS,Fe, x Fe, = dA,Fe, x Fe,. (3.27.2)

Thus, the orientation of the deformed area is normal to Fe; and Fe,. Let this normal direction be denoted by
the unit vector n, i.e.,

dA = dAn, (3.27.3)
then we have
dA
n= (dA0> (Fe; x Fe,). (3.27.4)

Now, Fe,; - (Fe; x Fe;) = Fe, - (Fe; x Fe,;) = 0; therefore,
Fe;-n=Fe, -n =0, (3.27.5)
thus,

e -Fin=e,-Fln=0. (3.27.6)
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That is, FTn is normal to e; and e,. Recalling that a- b x ¢ = determinant whose rows are components of the
vectors a, b and ¢, we have, from Eq. (3.27.4),

dA, dA,
Fe; -n = (dA )Fe3 - (Fe; x Fep) = (dA )det F, (3.27.7)
or
dA,
e;-FT'n = Jy detF. (3.27.8)
From Eq. (3.27.6) and Eq. (3.27.8), we have
T |dAo
F'n = { T4 (et F) fes, (3.27.9)
so that
dAn = dA,(det F)(F')Te;. (3.27.10)

Thus, the area in the deformed state is related to the area in the undeformed state by the relation

dA = dA,(det F)' (F')"es). (3.27.11)

In deriving Eq. (3.27.11), we have chosen the initial area to be the rectangular area whose sides are paral-
lel to the Cartesian base vectors e; and e, so that the undeformed area is normal to e;. In general, if the unde-
formed area is normal to n,, then Eq. (3.27.10) and Eq. (3.27.11) become

dAn = dAJ (F~)'n, and dA = dA.J|(F") n,|, (327.12)
where, to emphasize that in deformation det F is always positive,;t we write
J = |det F. (3.27.13)

CHANGE OF VOLUME DUE TO DEFORMATION

Consider three material elements dX") = dS 1e1, dx® = dS,e,, and dxX® = dS;es; emanating from X. The
volume formed by dXV, dX® and dX® at the reference time 7, is given by

dVy = dS,dS,dSs. (3.28.1)

At time ¢, aXV deforms into dx(!) = FdX(l>, dX® deforms into dx® = FdX(2>, and dX® deforms into
dx®) = FdX<3), and the volume is

dv = [FaX"V -FdX? x FdX®)| = dS,dS,dS;|Fe; - Fe, x Fes|. (3.28.2)

*Reflection is not allowed in deformation, and we shall not consider those reference configurations that the body could not continu-
ously get from without passing through a configuration for which det F = 0.
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That is,
dV = dV,|det F| = JdV.
Now, C = F'F and B = FFT; therefore,
det C = det B = (det F)?,
so that we have
dV = Vdet C dV, = v/det B dV,,.
We note that for incompressible material dV = dV,, and
detF =detC=detB = 1.
We also note that the conservation of mass equation pdV = p,dV, can also be written as

g Po o e Po o P

= T .
det F P = JaetC P = JdeiB

(3.28.3)

(3.28.4)

(3.28.5)

(3.28.6)

(3.28.7)

Example 3.28.1
The deformation of a body is given by

X1 =4X, X =-A3X, X3=Il2X.
(a) Find the deformed volume of the unit cube shown in Figure 3.28-1.
(b) Find the deformed area OABC.

(c) Find the rotation tensor and the axial vector of the antisymmetric part of the rotation tensor.

X2

X3

FIGURE 3.28-1

Solution
(a) From (i),

21 0 0
[F] =10 0 —)L3 ,det F= /11/1223.
O 2 O
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Thus, from dV = (det F) dV,, we have, since det F is independent of position and AV, = 1,
AV = (A1A223)AVy = A1 dols.
(b) Using Eq. (3.27.12), with AA, =1, n, = —e3, and

[Fl]:[l/o;d 8 1%2}

0 -1/i3 O
we have
. 1/ O 0 0 0
AAn:AAO(detF)(F’1> no=(1)(Mais)| O 0 —1/a3| | 0| =|hi],
0 1/i O -1 0
ie.,

AAn = /11/1282.

Thus, the area OABC, which was of unit area, having a normal in the direction of —e3, becomes an area
whose normal is in the direction of e, and with a magnitude of ;5.

1 0 0][4a O O 27 0 0 s 0 0
© UP=[F"Fl=[0 0 /4||0 0 —is|=|0 2 of,U=[0 4 O],
0 —},3 0 0 }Q 0 0 0 }é 0 0 /13
i 0 0 /41 0 0 10 0
RI=[FU* =]0 0 —is 0 1/, 0 |=]0 0 —-1/.
0 4 O 0 0 1/is 01 0

The dual vector of the antisymmetric part of this tensor R is e;. Thus, it represents a rotation about e; axis.
The angle of rotation is given by sin 0 = 1, i.e., 90° (see Chapter 2).

COMPONENTS OF DEFORMATION TENSORS IN OTHER COORDINATES

The components of the deformation gradient F, the left and right Cauchy-Green deformation tensors B and C
and their inverses B~ and C™!, have been derived for the case where the same rectangular Cartesian coordi-
nates have been used for both the reference and the current configurations. In this section, we consider the
case where the base vectors at the reference configuration are different from those at the current configura-
tion. Such situations arise not only in the case where different coordinate systems are used for the two con-
figuration (for example, a rectangular coordinate system for the reference and a cylindrical coordinate for the

current configuration) but also in cases where the same curvilinear coordinates are used for the two config-
urations. The following are examples.

(A) Cylindrical Coordinates System for Both the Reference and the Current Configuration
(A.1) Two-point components of F. Let

r=71(ro,00,20,1), 0 =0(r0,00,20,1), z=2(ro,00,%0,1) (3.29.1)
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be the pathline equations. We first show that, with {e,, eg, e.} and {e?, eJ, e} denoting the basis in the current
and the reference configuration, respectively,

or rof 0z
o _ _—
Fe. = or e + ar. ey + ar. e, (3.29.2)
o or ro0 0z
Fe) = 0. e + 0. ey + 0. e, (3.29.3)
or rol 0z
Fe® = — e +—e)+—e,. 294
e, 6zoe + o ey +8zo e, (3.29.4)
To do that, we substitute
dx = dre, + rdleg +dze. and dX = dr.e) + rod0oe) + dz.e?, (3.29.5)
into the equation dx = FdX to obtain
dr = drye, -Fe! + rodb,e, - Fej + dz,e, - Fe?, (3.29.6)
rd0 = dryey - Fe) + rodf,eq - Fej + dz,eq - Fe?, (3.29.7)
dz = droe; - Fe) + rod0.e. -Fey + dz.e. - Fe?. (3.29.8)
. or or or
Since dr = —dr, + —d0, + —dz,, etc., therefore, we have
or, a0, 0z,
or or or
"'F?:—7 /"F0:—7 I"F?:_7 .2.
e.-Fe ar. e, -Fe) 0. e, -Fe? B2 (3.29.9)
g0 100 g0 _ 100 g0 _ 100
ey -Fe) = . ey -Fey = —ra 90, ep-Fe, = 92, (3.29.10)
o Oz o 0Oz . 0Oz
ez-Fe,.—aT07 eZ~Fe9—r0890, eZ~FeZ—8—ZO. (3.29.11)
These equations are equivalent to Egs. (3.29.2), (3.29.3), and (3.29.4). The matrix
[ or or or ]
Ory 1,00, 0z,
ro0  rod  rof
[F] = Ora red0s Ozg (3.29.12)
oz 0z 0z
I Ore 1,00, 0Oz, ] {e[}{e;’},

is based on two sets of bases, one at the reference configuration {e? ey, ¢} and the other, the current config-

r z
uration {e,, ey, e, }. The components in this matrix are called the rwo-point components of the tensor F with
respect to {e,,eg,e.} and {e?, e, e’}.
From Eq. (3.29.9), using the definition of transpose, we have

¢ Fle, — or or

or
. i _ (O FT =
- ry’ ro00y’ €

e Fle, = € B (3.29.13)
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thus
or or or
T, _ ~" L0 Yo PN )
Fle = o e, +r0800 e+ o, e,
Similarly, from Egs. (3.29.10) and (3.29.11) we can obtain

ro0 . - roo r 80

FT = ¢° o i
O B & T a0, T B, ¢
Fe_az e 4 0z e°+aze°

Ore " 180, 0 9zo °
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(3.29.14)

(3.29.15)

(3.29.16)

(A.2) Components of the left Cauchy-Green tensor B, with respect to the basis at the current position x,

can be obtained as follows:

p) P or
B, —e -Be, —e,-FFle, — e, - ( a;’ &+ #eg + 67’e‘;),
o o o (3}

Biy=e Bey=e FFlej=¢, -F ("00 r00 o, 190 °>.

e e €
ar o0, 0 0,

Using Eq. (3.29.9), we have
B ﬁ 2+ or 2+ g 2
T\ 0, 16500, 0z,) '
g (100 (00, (100 (L0r ) (o0 (or
= \or,) \or, re00,) \ro00, 9z,) \0z,)"

The other components can be similarly derived:
— rae rd0 2+ rd0
= \or, 7600, 9z,
B 2+ o)
o 8r0 Zo
0z
Oro 810 r0(90 820 0z, )’
rob rof E rd0
8r0 Oro 00 7000, 0z,) \ 0z, )"

We note that the same result can be obtained from [F][F]", where [F] is given in Eq. (3.29.12).

N

(A.3) Components of B~! with respect to the basis at x.

(3.29.17)

(3.29.18)

(3.29.19)

(3.29.20)

(3.29.21)

(3.29.22)

(3.29.23)

(3.29.24)

The components of B~! can be obtained from inverting [B] above. But it is often more convenient to

express it in terms of the inverse of the pathline Eq. (3.29.1):
Fo =10(r,0,z,8), 0o =00(r,0,z,t), zo=120(r,0,z,1).
From dX = F~'dx and Eq. (3.29.5), we have

dro€? + rod0,€) + dzoe? = F~' (dre, + rd0ey + dze.),

(3.29.25)

(3.29.26)
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thus

dro = dr(e?-F~'e,) +rd0(e® - F'eg) + dz(e° - F'e,).

or, or, To
Since dro = —dr + do
o= U 50 dz
or, or, or,
o -1 o o (U — o o -1 } o
e -F e o e, €y peTE e, e, = e
Similarly, one can obtain
o el 1500, R 100, P 1600,
e)-F e = Erat e)-F eﬁ_r@@’ e, -F e = % , etc.
Equivalently,
or, ro00, 0z
—1 o o o o o n
F e,——are‘-i- or g+a
or, 1,00, 0z,
—1 0 o o o 0 0 0
© =00 T a0 0t a0
or, r,00 0z,
-1 _ 0 o 0o o o 0
B = et ity

Also, we have, by the definition of transpose,

-1\T o _ 0 —1 761’0
e-(F')e =e Fle=—22,

N _ or
e (F') e =eFle= etc.,

or ’ r ro0’
therefore
(51T = roaafo . r;ggo - 866 .
(F*I)Tefz%e +8;; 9+%—e

Now, with respect to the basis at x, we have

B, —e B le,—e - (FF") 'e,=¢ - (F') (Fle)

_ 8}’0 -1\T o
(e

(P (7000)*
-\ or or

1,00,
or

o ()6 + e (1))

%2
or )’

The other components can be similarly derived (see Prob.3.77):

oro\?
-1 _ o
Bo = (rae)
ors\?
—1 _ o
B = <6z)

L (1000) L (950
00 ro0 ) ’
N 1000, 2+ 0z, 2
0z 0z )’

(3.29.27)

(3.29.28)

(3.29.29)

(3.29.30)

(3.29.31)

(3.29.32)

(3.29.33)

(3.29.34)

(3.29.35)

(3.29.36)

(3.29.37)

(3.29.38)

(3.29.39)
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-1 8_ r, 100,\ (1,00, a_ 2,

b _(8 ) (8)+( or ) (r80)+(3~) (,39)7 (3.29.40)
-1 _ o Oﬂ @ ”0000 0z, 820

B = (81) (82) +( or > < oz ) (@,) ((’)z) (3.29.41)
1 % % ro00, 7000, % %

B = (82) (1’80) + ( 0z ) ( rof ) + ((92) (r@@)’ (3.29.42)

(A.4) Components of the right Cauchy-Green tensor C, with respect to the basis at the reference position
X. Using Eq. (3.29.1), that is,

>

<

r:r(ro7007zo7t)7 9:9(r07007zo7l)7 Z:Z(’~0>007207l)7

we can obtain [see Eqs. (3.29.2) to (3.29.4) and Eqgs. (3.29.14) to (3.29.16)]

-00

Cry, =€ -Ce) = ¢ -F'Fe) = ﬁe,‘_’ Fle, + ie,°. Fleg+ geff Fle,, (3.29.43)
o0 ore ore or,

o o o o or e° 189

Cr,0, = €°-Ce) = e°-F'Fej) = a0, °.FTe, 30, e -FTey +, 80 e -Fle,, (3.29.44)
ie.,
ar\?  [roo\? [0z\*

Crpr, = (aT) + (07) + (aT) , (3.29.45)

o () () () @) () () e

Other components can be similarly derived: They are [see Probs. 3.78 and 3.79]
Cop, = (rz;)(j + (r:ggo)z + (rgzgo)z, (3.29.47)
C.p, = <§Z:)2 + (2?)2 + ((;9;0)27 (3.29.48)
R ERE R o
BB DEOE)
@) ) e

(A.5) Components of c!
The components of C~! can be obtained from inverting [C] above. But it is often more convenient to
express it in terms of the inverse of the pathline Eq. (3.29.1):

ro =ro(r,0,2,1), 0o =0,(r,0,z,1), zo=2z0(r,0,z,10).
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We have (see Prob. 3.80)

Gl =e- (FTF) e =e0-F ' (F ') e :%e;%rle,. 889 e F~ e9+aa Fle,
OroOry  Org Ory  Ory Org (3.29.52)

T or or | r00r90 " 9z 9z

70000 o )

oy o i 00
ar o F ety

(3.29.53)
[ 700, % n 100, % n ro00, %
o or or ro0 ro0 Oz oz |’

The other components can be written down easily following the previous procedure.

Cob, =€ (F'F) ej=e2-F'(F ') ej = S0 Fleg +

(B) Cylindrical Coordinates (r, @, 2) for the Current Configuration and Rectangular
Cartesian Coordinates (X,Y,Z) for the Reference Configuration

Let
r=rX,Y,Z,1), 0=0X,Y,Z,1), z=:z(X,Y,Z,1) (3.29.54)

be the pathline equations. Then, using the same procedure as described for the case where one single cylin-
drical coordinate is used for both references, it can be derived that (see Prob. 3.81)

or rof 0z

Fey = 878, + == X e+ == (9X (3.29.55)
or rof 0z
Fey = ﬁe +— ay e)+— OY (3.29.56)
or rof 0z
Fez = a—Zer + 8—299 + &ez. (32957)
That is, the two point components of F with respect to {e,, ey, e,} and {ex,ey, ez} are
oo o]
oX oY 0Z
rof rof roo
[F] = X oY oz . (3.29.58)
oxX oY 0Z
L d {e;e0.e.}.{ex.ey.ez}

(B.1) Components of the left Cauchy-Green deformation tensor B with respect to the basis at the current
configuration x, i.e., {e,, e, e,}, are

N\ 2 N 2 N 2
B, =e,-FFe, = (%{) + (%) + ((%) , (3.29.59)
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90\2  [roO\?  [roo\?
Boo = ey -FFTey = <—r8 ) + (—'m) + (—'az) , (3.29.60)
9z\?2 9z\? 92\ 2
— o .FFTe _ e
B:.=e.-FF e, (ax + <8Y) + (az) , (3.29.61)
or ro0 or roo or ro0
f— . T —_— —_— —_—
B,y = e, FFle, <ax) (ax) + (ay) <8Y> + (az) (az) (3.29.62)

o5}

e FFTe. = (O (92 L (9r) (92 (9 (2=

pomemrie= (2) ()4 (2) (2)+ (2) (2), e
o a (00 (02 | (rd0\ (0z\ . (rde) (o:

Bop. =e9-FF e, = (T?X) (QX) + (781/) (ay) + (782) (82)' (3.29.64)

(B.2) Components of B~! with respect to the basis at the current configuration x.
Again, it is often more convenient to express the components in terms of the pathline equations in the
form of

X=X(r0,z1), Y=Y(r0z1), Z=2Z(r0,zk1). (3.29.65)

Using the equation dX = F~!dx, one can obtain

X 2 Y 2 7 2
B! =e -(F")Fle = (%’) + (%) + (%,) , (3.29.66)

et () (XY, (1) (Y, (2) (22
By = (F)F e = (ar) (rae) * (ar) (rae) * (ar) (;ﬁ@)‘ (3.29.67)

The other components can be written down following the patterns of the preceding equations.

(B.3) Components of the right-Cauchy Green Tensor C with respect to the basis at the reference configu-

ration, i.e., {ex,ey,ez}:
or\>  [roo\* [0z\*
Cox — (6X> N (ax) N <_ax> 7 (3.29.68)

or ar ro0 rol 0z 0z
eo = (5%) (o) * (%) () * (%) () e

The other components can be easily written down following the preceding patterns.

(B.4) Components of C~! with respect to the basis {ex,ey,ez}:
ox\*  [ox\? , (ox\?
-1 _ (94 ox (24
Cxx = (a;) + (rao) + (82) ’ (3.29.70)

i (OX\ (O, (OX\ (OYN  (OX\ (0¥
Cxr = (w) (ar) + (rae) (rae) + (az) (az)' (3.29.71)

The other components can be easily written down following the preceding patterns.
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(C) Spherical Coordinate System for Both the Reference and the Current Configurations
Let
r=71(ro, 00, ¢o,t), 0=0(ro,00,0,,1), z=2(ro,00,d,,1) (3.29.72)

be the pathline equations. It can be derived that the two-point components for F with respect to the basis at
current configuration {e,, ey, e,} and that at the reference configuration {e,e), e?} are

or or or
ary 7000, T, sin 0,0,
rof rof rof
FI=1 3,  7d0, rosin0,00, : (3.29.73)
rsinf0¢ rsin0d¢p  rsin ¢
or, ro00, To sin 0,0¢,,
L i {e;‘,eg,ei},{e,we(,.e(p}

(C.1) Components of the left Cauchy-Green tensor B are

or\? or \* or 2
Brr = (67) * (1‘0890) * (ro sin eoaqso) ’ (3:29-79

or ro0 or 100 or ro0
Bro = (aT) (aT) + (roaeo) (roaeo) + (ro sin eoa(po) (ro sin 903(/)0)' (3.29.75)

The other components can be written down following the preceding pattern.

(C.2) Components of B~! are

Oro\>  [1000,\> [0 sin 0,0¢,\ >
-1 _ o o o o o )
b (2 (B (o) 70

_ ory\ (O, 10005\ (1,00, ro sin 0,0¢ ro sin 0,06
1 _ (Oro X )
B = <8F) (ré‘ﬁ) * ( or ) ( 00 ) + ( o ) ( 50 ) (3.29.77)

The other components can be written down following the preceding pattern.

(C.3) Components of the right Cauchy-Green tensor C with respect to the basis at the reference configu-
ration, i.e., {e?,e$, e}

or\*  [ro0\* = (rsin00¢\*
Crory = (5)7) + (aT) +( or. ) ; (3.29.78)

_(or or rof rdf rsinfo¢\ (rsin00¢
Crote = (67) (W) * (87) (1'0690) +< ar ) ( 00, ) (3.29.79)

The other components can be written down following the preceding pattern.

(C.4) Components of C~! with respect to {e?,e),e2}:

e\’ ro\” or, 2
-1 _ 0o o 0
Crao = (a;) - (;f)o) * (r sin 00</>) ’ (3.29.80)

or, 100 or, 100 ar, ro00
-1 _ [(X'o oUVo Y7o oUVYo o oUVo
Gt = (ar) ( or ) - (rae) ( o0 ) - (r sin 9a¢) (r sin 9&/))‘ (3.29.81)

The other components can be written down following the preceding pattern.




3.30 Current Configuration as the Reference Configuration 139

CURRENT CONFIGURATION AS THE REFERENCE CONFIGURATION

Let x be the position vector of a particle at current time ¢, and let X’ be the position vector of the same particle
at time t. Then the equation

X' =x/(x,7) with x=x/(x,1), (3.30.1)

defines the motion of a continuum using the current time ¢ as the reference time. The subscript ¢ in the func-
tion x/ (x, 7) indicates that the current time ¢ is the reference time and as such, x/(x, 7) is also a function of 7.

For a given velocity field v = v(x, ), the velocity at the position x’ at time t is v = (x, 7). On the other
!

. . . . . . . ox
hand, for a particular particle (i.e., for fixed x and ), the velocity at time 7 is given by ( ! ) . Thus,
x,t—fixed

ot
v(x,7) = %. (330.2)
Example 3.30.1
Given the velocity field
V] = ng, Vo = V3 = 0. (i)

Find the pathline equations using the current configuration as the reference configuration.

Solution

In component form, Eq. (3.30.2) gives
ox{
ot

ox,  0x4
— kx! 2 _ 773 _ i
= kxs, 5 = ot 0. (ii)

The initial conditions are
att=t, x{=x, X=x and x;=x. (iii)
The second and the third equation of (ii) state that both xJ and xJ are independent of © so that
X; =X and x3=xs. (iv)
From the first equation of (i), we have, since x; = x»,
x| = kxpt + C. W)
Applying the initial condition that at © = ¢, x] = x;, we have

x{ = X1+ kxo(t — t). (vi)

When the current configuration is used as the reference, it is customary also to denote tensors based on
such a reference with a subscript ¢, e.g.,

F, = Vx/ (relative deformation gradient)
C, = FF, (relative right Cauchy-Green Tensor)
B, = F,FtT (relative left Cauchy-Green Tensor)
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and so on. All the formulas derived earlier, based on a fixed reference configuration, can be easily rewritten
for the present case where the current configuration is used as the reference. Care should be taken in the dif-
ferent notations used in the previous section (Section 3.29) and in the present section. For example, let
(r',0',2") denote the cylindrical coordinates for the position X' at time t for a material point that is at
(r,0,z) at time ¢, i.e.,

¥ =r(r0,z1), 0=0000:1), Z=7000z1). (3.30.3)
These equations correspond to Eq. (3.29.1) in Section 3.29, where
r=r(ro,00,20,8), 0=0(ro,00,20,1), z=2(ro,00,%,1)

so that with respect to the current basis {e,, ey, e, }, we have, from Egs. (3.29.45) and (3.29.46) of Section 3.29,
A A A
(P (5) + ( 5 ) - (E) , (3.30.4)
or' or' 00’ o0 o7 o7
(Co)o = (E) (W) + ( = ) (r60> + (5> <r00)' (3.30.5)

and so on. We will have more to say about relative deformation tensors in Chapter 8, where we discuss the
constitutive equations for non-Newtonian fluids.

NECESSARY AND SUFFICIENT CONDITIONS FOR STRAIN
COMPATIBILITY

For any given set of six functions for the six infinitesimal strain components E;;(X;, X, X3), we have derived
the six necessary conditions, Egs. (3.16.7) to (3.16.12), which the given strain functions must satisfy for the
existence of three displacement functions u;, up, u3 whose strains are the given set functions. Here in this
appendix, we will show that those conditions are both necessary and sufficient. The establishment of the nec-
essary and sufficient conditions for strain components will be based on the well-known necessary and suffi-
cient conditions for a differential Pdx + Qdy + Rdz to be exact, where P, Q and R, are functions of (x, y, z).
These conditions are given in any text in advance calculus. They are

oP 90 0P OR 00 OR

op_0Q 0P _OR 00 _OR A3.11
Oy Ox’ 0z Ox' Oz Oy ( )

When these conditions are satisfied, the differential Pdx + Qdy + Rdz is said to be an exact differential
and a function W(x, y, z) exists such that

dW = Pdx + Qdy + Rd:. (A3.1.2)

As a consequence, the line integral f: Pdx + Qdy + Rdz depends only on the end points a and b; in fact, it is
equal to W (xp, ¥p, 2p) — W(Xa, Ya, Za). That s, the integral is independent of path. In indicial notation, we write

Pl(Xl‘ X2, X3)dx1 + 1'72()(17 X2, X3)dX2 +P3(.X1_’ X2, X3)dX3 = Pk(xl_, X2, x3)dxk, (A313)
and the necessary and sufficient conditions for Py(x; X2, x3)dx; to be an exact differential can be written as:

oP, 0P
k= A3.1.4
o Ox (A3.14)
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The following gives the derivation of compatibility conditions.

Let u;(X1, X2, X3) be displacement components at a generic point (X;, X, X3). Then, at
pe (X‘]’,, o Xg,), the displacement components are u = u (X‘]’,, X5, X;’,)7 and at P’ (Xl’, X5, X;) the dis-
placement components are u} = u/(X{, X3, X}).

We can obtain the displacement components u/ at P’ from the components u{ at P° by a line integral from
any chosen path. Thus,

P
u =u’ +J du; where du; = %de. (A3.1.5)
! ! o ava

In terms of the displacement function, the line integral is clearly independent of path so long as the func-

tions u;(Xy, X5, X3) are single valued. Indeed,
o

ul = ui + J ; du; = uf + (u! —u?) = u/. (A3.1.6)

On the other hand, if we evaluate the line integral in terms of the strain components, then certain condi-
tions must be satisfied by these components in order that the line integral is independent of path. Let us now
express du; in terms of the strain components and the rotation components: We have

Ou; 1/ 0u; Ouy, 1/0u; Ouy,
== Xm = |—= — - Xm - Eim im Xm> A3.1.
i = 5% {2 (axm * axi) 2 (axm ax,-)}d (Eim + Win)d A3.17)
thus,
. . P
J du; = J EindX,, + ‘ WimdX . (A3.1.8)
Pl) Pl) o P(I

The last integral in Eq. (A3.1.8) can be evaluated as follows:

m m

0 0

Xm:Xr;; P /
- J (Xm - Xm)dWim

P/ P/
J Widem = J Wimd(Xm 7X,) = Wim(Xm - Xl) X —xo

. (A3.1.9)
— W0~ X0 = [ (X = X)W
Thus, using Eq. (A3.1.8) and Eq. (A3.1.9), Eq. (A3.1.5) becomes:
0 0 i P ! 8Wim
(), = (ui)po — WO, (X0 =XV + | |Eix — (X — X)) dX;. (A3.1.10)
p ! " Ppo 8Xk

Now, using the definition of E;,, and W;,, in Eq. (A3.1.7), it can be simply obtained (see Prob. 3.56) that

OWin _ OEy  OE
Xe  OXm OXi'

(A3.1.11)

so that
-

(1) = ()0 — Wi (X5, — X)) + J Rudx, (A3.1.12)

where

o\ (OEi  OEm
Ri = Eix — (X — X,,) (an - a}; ) (A3.1.13)
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We demand that u; must be single-value functions of the coordinates. Therefore, the integral
P/ P/
J RixdX; = J Ri1 (X1, X2, X3)dX; + Rin(X1, X2, X3)dXs + Ri3(X1, X2, X3)dX3],
po po

must be independent of path. That is, R;;dX; must be an exact differential of a single-value function for each
i. The necessary and sufficient conditions for R;;dX; to be an exact differential are [see Eq. (A3.1.4)]

%’;’_‘ - ZI;‘Z, (A3.1.14)
J
i.e.,
%_axm aEik_aEkm —(X _X/)i aEik_aEkm
oX; 0X; \0X,  OX; "Tmox \ 0Xy  OX;
(A3.1.15)
_OE; OXy [OE; OB e —X’)i OE; _ OEjm
T oXe OXe \oX, OX; mormiox \ox,, 90X |’
Noting that 0X,,/0X; = J,,j and 0X,,/0Xy = O, so that
OX, (OEx  OEw\ OEy OE OX,, (OE; OEy\ OE; OE
ax; (axm c’)X,-) “ox, ox, M ax, (axm X, ) " oX,  ox;’ (43.1.16)
and we have
, [0 (0Ei OEw\ 0 (0E; OE.\)| _
-3 (5~ 55) ~ o (5 )} =0 @317
therefore
0 (OE; OE,\ 0 (0Ex OEw)
a_n(ax,n_ ax,.) _a_x_,-(aTm_ ax,-) =0 (A3.1.18)
that is,
27, 2 21 21,
Ly | OB OEx  OEm _ (A3.1.19)

X 09X,  OX;0X; OX;0X, OX.0X;

There are four free indices in the preceding equation, so there are superficially 81 equations. However,
many different sets of indices lead to the same equation; for example, all the following sets of indices:

{i=j=lLk=m=2}{k=m=1,i=j=2}{i=k=1,j=m=2}{j=m=1,i=k=2}
lead to the same equation:

OE\ | OEp | OPEp

= . A3.1.20
oz o~ tox,ox ( )

Indeed, of the 81 equations, only six are distinct, and they are given in Section 3.16 as necessary condi-
tions. We have now shown that they are the necessary and sufficient conditions for the strains to be
compatible.
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POSITIVE DEFINITE SYMMETRIC TENSORS

A real symmetric tensor T is positive definite if U = a-Ta > 0 for any nonzero real vector a. In this appen-
dix, we show that for a positive definite real symmetric tensor with matrix [T] = [T}]

T >O,T22 > 0,T33 >07

Ty Tio Ty, Tx Ty T3 =0 (A3.2.1)
T To Ty T T Ts ’
and [Tl > 0.
To prove that Ty; > 0, we choose [a] = [a;,0,0], then we get
U=a-Ta=T;a >0. (A3.2.2)

Thus, we have Ty, > 0. Similarly, by choosing [a] = [0, a2, 0] and [a] = [0, 0, a3], we obtain that T»; > 0
and T33 > 0. That is, the diagonal elements of a real positive definite tensor are all positive. Next, we choose
[a] = [a1,a2,0], then

Ty T Ti a T, Tnlla
U= [d] das 0] Ty Ty To a | = [(11 d2]|:T T :| |:a :| > 0. (A3.2.3)
Ty Tz Tss 0 A :

T, Tn

Thus, the submatrix
|:T2l T2

] is positive definite. Similarly, if we choose
[a] = [0 az a3] or [a] = [a; 0 a3],

we can show that

Ty T Tu Tis
and
{ T, T3 } [ T3 T3 }

are positive definite.
Now for a positive definite symmetric tensor, the determinant is equal to the product of the eigenvalues which
are all positive as they are the diagonal elements of the matrix using eigenvectors as a basis. Thus, we have

Ty Tn Ti
;“ ;12 0, ?2 ;23 ,;“ ;13 >0,|Toyy T Taz|>0. (A3.2.4)
21 Tm 2 T3 31 T3

T3y Txn Tss

THE POSITIVE DEFINITE ROOT OF U? = D

In this appendix, we show that if [U?] = [D], where [U] is a real positive definite matrix and [D] is a real posi-
tive definite diagonal matrix, then [U] must also be diagonal and there is only one positive definite root for
the equation. We first discuss the two-dimensional case, which is very simple and provides a good introduc-
tion to the three dimensional case.

(A) 2D Case: The equation [U*] = [D] gives:

{Un U12:| |:U11 U12] _ [a 0}
Uy Uxp||Uy Uxp 0 b|’
thus,

UnUp +UpUp =0 and Uy U + UxnUs; =0,
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so that
U]Q(Ul] + U22) =0 and Uz](U]] + U22) =0. (A331)

Since U is positive definite, Uy; > 0 and U, > 0; therefore,

Upp =Uy =0. (A3.3.2)
. . . 2 U%l 0 a 0
Now, with a diagonal U, the equation [U]" = o vl =1o bl has four roots for [U]. They are
2
Ja 0] [va o —Ja o0 —Ja 0
The only root that is positive definite is
Ja o0
{ 0o Vbl (A3.3.4)

(B) 3D Case: From [U?] = [D], we have

UnUp +UpUp +UUs, =D =0
UnUp +UpUxs +UzUss =Di3 =0 (A3.3.5)
U Uiz + UnUp + UpUss = Do3 =0,

From the first equation in Eq. (A3.3.5), we have U (Uy; + Up) = —U3Us,.
Thus,

Ui3Us
Up=—+1"3-" A3.3.6
12 U1 + Un) ( )
where Uy + Uy > 0 because [U] is positive definite. Substituting Eq. (A3.3.6) into the second equation in
Eq. (A3.3.5), we have

UpUs,
Uiz (U Usz) — — Uy =0. A3.3.7
13(Un + Us3) (Un + Un) 23 ( )
Thus,
U13[U11(U11 + Ussz + U22) + UpUsz — U32U23} =0. (A3.3.8)

Since [U] is pOSitiVC definite, U;; > 0,Uy > 0,Us3 > 0 and UyppUsz — U3 Uy > 0,
thus,

Uiz =0. (A3.3.9)

With U3 = 0, the first equation and the third equation in Eq. (A3.3.5) become U, (Uyy + Up,) = 0 and
U3 (Uay + Uss) = 0 respectively. Thus, we have

Up,=0 and Uy =0. (A3.3.10)

Similarly, D,y = D3; = D3, = 0 lead to Uy = 0,Us; = 0 and Uz, = 0. Thus [U] = [diagonal]. The equa-
tion [U?] = [D] has the following eight roots:
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rva 0 0 va 0 0 Ja 0 0 va o0 0
0 Vvb 0 ] 0 —vVb 0 ] o vb 0 |,|]0 —vb 0 [,
Lo 0 e 0 0 0 0 —& 0 0 —c
r—va 0 0 —a 0 0 —Va 0 0 —a 0 0
0 vb 01|, 0 Vb 0 |,| 0 b O0f,|] 0O Vb 0
Lo o0 e 0 0 —c 0 0 C 0 —c
All roots are real but only the first one is positive definite,
that is,
va 0 0
U=|10 +vb 0]. (A3.3.11)
0 0 e

We note also, that if [U;] is a positive definite symmetric matrix, then with respect to a set of principal
axes, [U;] and [U;]* are positive definite diagonal matrices. An equation such as [U,]* = [U,]* where both
[U;] and [U,] are positive definite symmetric matrices then leads to the result that [U;] = [Uy].

PROBLEMS FOR CHAPTER 3

1
3.1 Consider th tion: x| = X =X = X;.
onsider the motion: xi T klo 1, X2 2, X3 3

(a) Show that the reference time is ¢ = ¢,,.

(b) Find the velocity field in spatial coordinates.

(c) Show that the velocity field is identical to that of the following motion: x; = (1 + k£)X;,
X2 :Xz, X3 :X3.

3.2 Consider the motion: x; = ot + X1, x, = X5, x3 = X3, where the material coordinates X; designate the
position of a particle at t = 0.
(a) Determine the velocity and acceleration of a particle in both a material and a spatial description.
(b) If the temperature field in spatial description is given by 0 = Ax;, what is its material description?
Find the material derivative of 0 using both descriptions of the temperature.
(c) Do part (b) if the temperature field is 6 = Bx,.

3.3 Consider the motion x; = X;, xo = X2 + X», x3 = X3, where X; are the material coordinates.
(a) At 1 =0, the corners of a unit square are at A(0, 0, 0), B(0, 1, 0), C(1, 1, 0) and D(1, 0, 0).
Determine the position of ABCD at t = 1 and sketch the new shape of the square.
(b) Find the velocity v and the acceleration in a material description.
(¢) Find the spatial velocity field.

3.4 Consider the motion: x; = X372 + X1, xa = kXot + X2, x3 = X;.
(a) At t =0, the corners of a unit square are at A(0, 0, 0), B(0, 1, 0), C(1, 1, 0) and D (1, 0, 0).
Sketch the deformed shape of the square at 1 = 2.
(b) Obtain the spatial description of the velocity field.
(c) Obtain the spatial description of the acceleration field.
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3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13

3.14

3.15
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Consider the motion x; = k(s + X )t + X, x2 = X5, x3 = X.

(a) For this motion, repeat part (a) of the previous problem.

(b) Find the velocity and acceleration as a function of time of a particle that is initially at the origin.
(c¢) Find the velocity and acceleration as a function of time of the particles that are passing through the origin.

The position at time ¢ of a particle initially at (X, Xa, X3) is given by x; =X; — 28X3¢%,

x; = Xp — kX3t, x3 = X3, where ﬁ =landk=1.

(a) Sketch the deformed shape, at time ¢t = 1, of the material line OA, which was a straight line at t = 0
with the point O at (0, 0, 0) and the point A at (0, 1, 0).

(b) Find the velocity at = 2 of the particle that was at (1, 3, 1) at r = 0.

(c) Find the velocity of the particle that is at (1, 3, 1) at ¢ = 2.

The position at time ¢ of a particle initially at (X, X, X3) is given by: x; = X; + k(X1 + Xo)t,
X=X+ k(X] +X2)f, x3 = X3.

(a) Find the velocity at r = 2 of the particle that was at (1, 1, 0) at the reference time ¢ = 0.

(b) Find the velocity of the particle that is at (1, 1, 0) at r = 2.

The position at time 7 of a particle initially at (X1, X, X3) is given by: x; = X; + BX37%, x2 = Xo + kXot,

x3 =Xz where f=1and k = 1.

(a) For the particle that was initially at (1, 1, 0), what are its positions in the following instant of time?
t=0,t=1,t=2.

(b) Find the initial position for a particle that is at (1, 3, 2) at t = 2.

(c) Find the acceleration at ¢t = 2 of the particle that was initially at (1, 3, 2).

(d) Find the acceleration of a particle which is at (1, 3, 2) at t = 2.

(a) Show that the velocity field v; = kx;/(1 + kt) corresponds to the motion x; = X;(1 + kz).
(b) Find the acceleration of this motion in material description.

Given the two-dimensional velocity field: v, = —2y, v, = 2x. (a) Obtain the acceleration field and
(b) obtain the pathline equations.

Given the two-dimensional velocity field: v, = kx, v, = —ky. (a) Obtain the acceleration field and
(b) obtain the pathline equations.

Given the two-dimensional velocity field: v, = k(x* — y*), v, = —2kxy. Obtain the acceleration field.

In a spatial description, the equation Dv/Dt = dv /0t + (V) for evaluating the acceleration is nonlin-
ear. That is, if we consider two velocity fields v* and v, then a* 4 a® # a**B, where a® and a®
denote respectively the acceleration fields corresponding to the velocity fields v* and v® each existing
alone, a**® denotes the acceleration field corresponding to the combined velocity field v + vB. Verify
this inequality for the velocity fields:

VA = —2)(261 + 2)(182, VB = 2X2€1 — 2X1€2.

Consider the motion: x; = X1, x; = X, + (sin n¢)(sin X ), x3 = X;.

(a) At t =0, a material filament coincides with the straight line that extends from (0, 0, 0) to
(1, 0, 0). Sketch the deformed shape of this filament at t = 1/2, t = 1 and t = 3/2.

(b) Find the velocity and acceleration in a material and a spatial description.

Consider the following velocity and temperature fields:

N a(xlel +X2€2)

243 0 = k(x] +x3).
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(a) Write the preceding fields in polar coordinates and discuss the general nature of the given velocity
field and temperature field (e.g., what do the flow and the isotherms look like?).

(b) At the point A(1, 1, 0), determine the acceleration and the material derivative of the temperature
field.

a(—x2e1 + )C]Ez)

3.16 Do the previous problem for the following velocity and temperature fields: v = T2
AT

© = k(2 +2).

)

3.17 Consider the motion given by:
x=X + Xlkel .

Let dXV = (dS,/v2)(e; + ¢;) and dX? = (dS>/v/2)(—e; + ;) be differential material elements in
the undeformed configuration.

(a) Find the deformed elements dx!) and dx®.

(b) Evaluate the stretches of these elements ds; /dS; and ds; /dS, and the change in the angle between them.
(¢) Do part (b) for k =1 and k = 1072,

(d) Compare the results of part (c) to that predicted by the small strain tensor E.

3.18 Consider the motion x = X + AX, where A is a small constant tensor (i.e., whose components are small
in magnitude and independent of X;). Show that the infinitesimal strain tensor is given by
E=(A+A"))2.

3.19 At time ¢, the position of a particle, initially at (X;, X, X3), is defined by: x; = X; + kX3,
X, =Xo + kX2, x3=X3, k= 107°.
(a) Find the components of the strain tensor.
(b) Find the unit elongation of an element initially in the direction of e; + e;.

3.20 Consider the displacement field:
up = k(X +X,X2), wpy=kX3, uz =0, k=10""*

(a) Find the unit elongations and the change of angles for two material elements axXV = ax 1e; and
dX®? = dX,e, that emanate from a particle designated by X = e; + e;.
(b) Sketch the deformed positions of these two elements.

3.21 Given the displacement field u; = kX, up =u3 =0, k = 10~*. Determine the increase in length for
the diagonal element (OA) of the unit cube (see Figure P3.1) in the direction of e; 4 e, + e3 (a) by using
the strain tensor and (b) by geometry.

X3

FIGURE P3.1
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3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30
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With reference to a rectangular Cartesian coordinate system, the state of strain at a point is given by the

5 3 0
matrix [E] = |3 4 —1| x107%
0 -1 2

(a) What is the unit elongation in the direction of 2e; + 2e; + e3?
(b) What is the change in angle between two perpendicular lines (in the undeformed state) emanating
from the point and in the directions of 2e; + 2e; + e; and 3e; — 6e3?

For the strain tensor given in the previous problem, (a) find the unit elongation in the direction of
3e; — 4e; and (b) find the change in angle between two elements in the direction of 3e; — 4e; and
461 + 383.

(a) Determine the principal scalar invariants for the strain tensor given here at left and (b) show that the
matrix given at the right cannot represent the same state of strain.

5 3 0 300
El=|3 4 —1[x10% [0 6 0| x107*
0 -1 2 00 2

Calculate the principal scalar invariants for the following two tensors. What can you say about the
results?

0 O 0O -1t O
[T(l)}: £ 0 0| and [T@)}: —t 0 0
00 0 0 0 0

For the displacement field u; = kX%, Uy = kXo2X3, us = k(2X1X3 +X%), k = 107, find the maximum
unit elongation for an element that is initially at (1, 0, 0).

Given the matrix of an infinitesimal strain tensor as:

kX, 0 0
El=| 0 —kX, 0
0 0 —kX

(a) Find the location of the particle that does not undergo any volume change.
(b) What should be the relation between k; and k; so that no element changes its volume?

The displacement components for a body are uy = k(X7 +X,), u = k(4X3 —X1), u3 =0, k=10"%,

(a) Find the strain tensor.

(b) Find the change of length per unit length for an element which was at (1, 2, 1) and in the direction
of e; + e,.

(c) What is the maximum unit elongation at the same point (1, 2, 1)?

(d) What is the change of volume for the unit cube with a corner at the origin and with three of its
edges along the positive coordinate axes?

For any motion, the mass of a particle (material volume) remains a constant (conservation of mass prin-
ciple). Considering the mass to be the product of its volume and its mass density, show that (a) for infin-
itesimal deformation p(1 + Ex) = p,, where p, denote the initial density and p the current density.
(b) Use the smallness of Ej to show that the current density is given by p = p (1 — Ex).

True or false: At any point in a body there always exist two mutually perpendicular material elements that
do not suffer any change of angle in an arbitrary small deformation of the body. Give reason(s) for this.
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3.31 Given the following strain components at a point in a continuum: E;; = Ejp = Ey =k, Eszz = 3k,
Ei3 =Ex =0, k=1075.
Does there exist a material element at the point which decreases in length under the deformation?
Explain your answer.

3.32 The unit elongations at a certain point on the surface of a body are measured experimentally by means
of three strain gages that are arranged 45° apart (called the 45° strain rosette) in the direction of
el, e/ = (e; +ey)/v/2and ey. If these unit elongations are designated by a, b, c, respectively, what
are the strain components Ey1, Ey and E,?

3.33 (a) Do the previous problem, if the measured strains are 200 x 1076, 50 x 107, and 100 x 10~° in the
direction e;, e{ and e;, respectively. (b) Find the principal directions, assuming E3; = E3, = E33 = 0.
(c) How will the result of part (b) be altered if E33 # 0?

3.34 Repeat the previous problem with E; = E {1 = E» = 1000 x 1075.

3.35 The unit elongations at a certain point on the surface of a body are measured experimentally by means
of strain gages that are arranged 60° apart (called the 60° strain rosette) in the direction of
ei, (e +v/3ex)/2and (—e; + v/3e;)/2. If these unit elongations are designated by a, b, ¢, respec-
tively, what are the strain components £y, Ey» and Ej?

3.36 If the 60° strain rosette measurements give a =2 x 107%, b=1x107% ¢ = 1.5 x 107, obtain
Ej1, Ep and Ey. (Use the formulas obtained in the previous problem.)

3.37 Repeat the previous problem for the case @ = b = ¢ = 2000 x 1075,

3.38 For the velocity field v = kx%el, (a) find the rate of deformation and spin tensors. (b) Find the rate of
extension of a material element dx = dsn, where n = (e; + ,)/v/2 at x = 5e; + 3e,.

3.39 For the velocity field v = o{(r + k)/(1 4+ x;) }e;, find the rates of extension for the following material
elements: dx'") = dse; and dx? = (ds,/v/2) (e, + e) at the origin at time 7 = 1.

3.40 For the velocity field v = (cos ¢)(sin mx)ey, (a) find the rate of deformation and spin tensors, and
(b) find the rate of extension at t =0 for the following elements at the origin: dxV) = ds,eq,
dx\? = ds,e; and dx®) = (ds3/v/2)(e; + ).

3.41 Show that the following velocity components correspond to a rigid body motion: v; = x; — x3,
Vo = —X1 + X3, V3 = X| — X2.

3.42 Given the velocity field v = (1/r)e,, (a) find the rate of deformation tensor and the spin tensor and
(b) find the rate of extension of a radial material line element.

4
3.43 Given the two-dimensional velocity field in polar coordinates: v, = 0, vy = 2r + —.
r

(a) Find the acceleration at » = 2 and (b) find the rate of deformation tensor at r = 2.

B
3.44 Given the velocity field in spherical coordinates: v, =0, vy =0, vy = (Ar + —2> sin 6.
r

(a) Determine the acceleration field and (b) find the rate of deformation tensor.

3.45 A motion is said to be irrotational if the spin tensor vanishes. Show that the following velocity field is
irrotational:
—X2€2 + X1€
= = .

v_i’,z , =X
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3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55
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Let dx(D = dsin and dx® = ds,m be two material elements that emanate from a particle P which at
present has a rate of deformation D.
(a) Consider (D/Dt)(dx'V-dx?) to show that
1 D(dsl) 1 D(dSz)
ds; Dt ds, Dt

os@—sin@D—Q:Zm-Dn,
Dt

where 0 is the angle between m and n.

(b) Consider the case of dxV = dx®. What does the above formula reduce to?

(c) Consider the case where 0 = /2, i.e., dx® and dx?® are perpendicular to each other. What does
the above formula reduce to?

Let e, e, e3 and Dy, D,, D3 be the principal directions and the corresponding principal values
of a rate of deformation tensor D. Further, let dx(!) = ds,e;, dx® = ds,e,, and dx©® = ds;ez be three

1 D(av
material elements. From (D/Dt){dxV-dx® x dx®}, show that —(7) = D + D, + D3, where

dv = dS]dSzdS3.

Consider an element dx = dsn.

(a) Show that (D/Df)n = Dn + Wn — (n-Dn)n, where D is the rate of deformation tensor and W is
the spin tensor.

(b) Show that if n is an eigenvector of D, then Dn/Df = Wn = @ X n.

Given the following velocity field: vi = k(x, — 2)2x37 V) = —X1X2, V3 = kx;x3 for an incompressible
fluid, determine the value of k such that the equation of mass conservation is satisfied.

Given the velocity field in cylindrical coordinates v, = f(r, 8), vg = v. = 0. For an incompressible
material, from the conservation of mass principle, obtain the most general form of the function f(r, 0).

An incompressible fluid undergoes a two-dimensional motion with v, = k cos 0/+/r. From the con-
sideration of the principle of conservation of mass, find vy, subject to the condition that
vg=0atfd=0.

Are the following two velocity fields isochoric (i.e., no change of volume)?

Xxi€e; + xz€ > 2 P .
v= 2 o =X X (1)
and
—X2€1 + Xx1€; 2 2 2 ..
V= — a2 r°=x]+x; (i1)

Given that an incompressible and inhomogeneous fluid has a density field given by p = kx,. From the
consideration of the principle of conservation of mass, find the permissible form of velocity field for a
two-dimensional flow (v3 = 0).

loj—(lktel' From the consideration of the principle of conservation of
mass, (a) find the density if it depends only on time ¢, i.e., p = p(f), with p(0) = p,, and (b) find the
density if it depends only on xi, i.e., p = p(x;), with p(xg) = p*.

Consider the velocity field: v =

Given the velocity field v = a(x te; 4 x,te;). From the consideration of the principle of conservation
of mass, determine how the fluid density varies with time if in a spatial description it is a function of
time only.
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(914,‘ 3um
+

OWin _ OEy  OEm Oty
0X,, 0X;

3.56 Show that _
oW A oY, T ox,  ox,

1 . .
, where E;, = 2 ( ) is the strain tensor and

W, L (0w Oun) the rotation t
im — &~ — 1S € rotation tensor.
2\0X,, OX;

3.57 Check whether or not the following distribution of the state of strain satisfies the compatibility condi-

tions:
X1 +X; X X>
El=k| Xi X2+X3 X3 |, k=10"
X> X3 X1+ X3

3.58 Check whether or not the following distribution of the state of strain satisfies the compatibility condi-
tions:

X2 X34+X2 XiXs \
[E] =k | X3 +X3 0 X1 |, k=10"
X1X3 X X3

3.59 Does the displacement field u; = sin X, up :Xsz, u3 = cos X3 correspond to a compatible strain
field?

3.60 Given the strain field E1 = E»; = kXX, k = 10~* and all other E;; = 0. (a) Check the equations of
compatibility for this strain field and (b) by attempting to integrate the strain field, show that there does
not exist a continuous displacement field for this strain field.

1
3.61 Given the following strain components: Eiy = —f(Xa, X3), Exp = E33 = —Xf(Xz7 X3), En=E;3 =
o o
E»; = 0. Show that for the strains to be compatible, f(X,, X3) must be linear in X, and X3.

3.62 In cylindrical coordinates (r, 0, z), consider a differential volume bounded by the three pairs of faces:
r=randr=r+dr;0 =0and 0 = 0+ d0;z = zand z = z 4+ dz. The rate at which mass is flowing
into the volume across the face r = r is given by pv,(rdf)(dz) and similar expressions for the other
faces. By demanding that the net rate of inflow of mass must be equal to the rate of increase of mass
inside the differential volume, obtain the equation of conservation of mass in cylindrical coordinates.
Check your answer with Eq. (3.15.7).

3.63 Given the following deformation in rectangular Cartesian coordinates: x; = 3X3, x, = —X],
x3 = —2X,. Determine (a) the deformation gradient F, (b) the right Cauchy-Green tensor C and the
right stretch tensor U, (c) the left Cauchy-Green tensor B, (d) the rotation tensor R, (e) the Lagrangean
strain tensor E*, (f) the Euler strain tensor e*, (g) the ratio of deformed volume to initial volume, and (h)
the deformed area (magnitude and its normal) for the area whose normal was in the direction of e, and
whose magnitude was unity for the undeformed area.

3.64 Do the previous problem for the following deformation:
X1 = 2X2, Xy = 3X3, X3 :Xl.

3.65 Do Prob. 3.63 for the following deformation:
X1 :Xl, Xy = 3X3, X3 = —2X2.
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3.66

3.67

3.68

3.69

3.70

3.71

3.72
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Do Prob. 3.63 for the following deformation:
X1 = 2X27 Xy = —Xl, X3 = 3X3.

Given x; = X; + 3Xs, xo = X», x3 = X3. Obtain (a) the deformation gradient F and the right
Cauchy-Green tensor C, (b) the eigenvalues and eigenvector of C, (c) the matrix of the stretch
tensor U and U™! with respect to the e;-basis, and (d) the rotation tensor R with respect to the
e;-basis.

Verify that with respect to rectangular Cartesian base vectors, the right stretch tensor U and the rotation
tensor R for the simple shear deformation:

X1 =X +kX5, X=X, x3=2X;z,

are given by: with f = (1 + k2/4)""/?,

f kf /2 0 k2 0
U= |kf/2 (1+K/2)f O, Rl=|-k/2 f 0
0 0 1 0 0 1

Let dXV) = dSlN(l), ax® = dS2N<2) be two material elements at a point P. Show that if 6 denotes
the angle between their respective deformed elements dx!) =dsym and dx® = ds,n, then
cosl = CypNy N/ 212, where N = NiVe,, N® = Ne,, 4 = ds /dS, and 1, = dsy /dS,.

Given the following right Cauchy-Green deformation tensor at a point

9 0 0
C]=1[0 4 0
0 0 036

(a) Find the stretch for the material elements that were in the direction of e;, e, and e3.

(b) Find the stretch for the material element that was in the direction of e; + e,.

(¢c) Find cos 0, where 0 is the angle between dx and dx® and where dX") =4S 1€ and
ax® = dS,e, deform into dx"") = ds;m and dx® = ds,n.

Given the following large shear deformation:
x=X1+Xo, n=X;, x=X.

(a) Find the stretch tensor U (hint: use the formula given in Prob. 3.68) and verify that U> = C, the
right Cauchy-Green deformation tensor.

(b) What is the stretch for the element that was in the direction e,?

(¢) Find the stretch for an element that was in the direction of e; + e,.

(d) What is the angle between the deformed elements of dS,e; and dS,e;?

Given the following large shear deformation:
X1 :Xl -i-2X27 X2 =X2, X3 :X3.

(a) Find the stretch tensor U (hint: use the formula given in Prob. 3.68) and verify that U? = C, the
right Cauchy-Green deformation tensor.

(b) What is the stretch for the element that was in the direction e,?

(¢) Find the stretch for an element that was in the direction of e; + e,.

(d) What is the angle between the deformed elements of dS;e; and dS,e;?
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0Aj,
3.73 Show that for any tensor A(X;, Xa, X3), %det A = (detA) (A’l)nj 8XJ .
m m

3.74 Show that if TU = 0, where the eigenvalues of the real and symmetric tensor U are all positive (non-
zero), then T = 0.

- 2 . 2 . 2
3.75 Derive Eq. (3.29.21), that is, Bgy = (@) N ( rdo > . (, ae> |

or, m 0z,

. . or\ [ 0z or 0z or\ [ 0z
3.76 Derive Eq (32923), 1.€., Brz = <8Tb> (87‘0> + (m) (m) + (8_20) (a—zo)

3.77 From r, =r1o(r, 0, z, 1), 0, = 0,(r, 0, z, 1), zo = zo(r, 0, z, t), derive the components of B~' with
respect to the basis at x.

3.78 Derive Eq. (3.2947), that is, Cyg = (-2 2+ rog 2+ o\’
. q. (3.29.47), S, Lo.0, = r00, ro00, 00

. or or ro0 \ (roo 0z 0z
379 Derive B: (3:29:49), Cuo, = (i’0890> (a_”o) " <’ﬁ0890> (a’ﬂo) " (1’0890) (8_”0>

3.80 Derive the components of C~! with respect to the bases at the reference position X.

3.81 Derive components of B with respect to the basis {e,, ey, e,} at x for the pathline equations given by
r=r(X,Y,Z,1),0=0X,Y,Z, 1), z=z(X, Y, Z, 1).

3.82 Derive the components of B~! with respect to the basis {e,, ey, €.} at x for the pathline equations given
by X=X(r,0,z,1),Y=Y(r, 0, z, 1), Z=Z(r, 0, z, 1).

3.83 Verify that (a) the components of B with respect to {e,, e, €.} can be obtained from [FF"| and (b) the
component of C, with respect to {ef?, ey, e;’} can be obtained from [FTF] , where [F] is the matrix of the
two-point deformation gradient tensor given in Eq. (3.29.12).

3.84 Givenr =r,, 0 =0, + kz,, z = z,. (a) Obtain the components of the left Cauchy-Green tensor B, with
respect to the basis at the current configuration (r, 0, z). (b) Obtain the components of the right
Cauchy-Green tensor C with respect to the basis at the reference configuration.

3.85 Given r = (2aX + b)l/ > 0=Y/a, z=Z, where (r, 0, z) are cylindrical coordinates for the current
configuration and (X, Y, Z) are rectangular coordinates for the reference configuration. (a) Obtain
the components of [B] with respect to the basis at the current configuration and (b) calculate the change
of volume.

3.86 Given r =r(X), 0 =g(Y), z=h(Z), where (r, 0, z) and (X, Y, Z) are cylindrical and rectangular
Cartesian coordinates with respect to the current and the reference configuration respectively. Obtain
the components of the right Cauchy-Green tensor C with respect to the basis at the reference
configuration.



CHAPTER

Stress and Integral Formulations
of General Principles

In the previous chapter, we considered the purely kinematic description of the motion of a continuum without
any consideration of the forces that cause the motion and deformation. In this chapter, we consider a means of
describing the forces in the interior of a body idealized as a continuum. It is generally accepted that matter is
formed of molecules, which in turn consist of atoms and subatomic particles. Therefore, the internal forces in
real matter are those between these particles. In the classical continuum theory where matter is assumed to be
continuously distributed, the forces acting at every point inside a body are introduced through the concept of
body forces and surface forces. Body forces are those that act throughout a volume (e.g., gravity, electrostatic
force) by a long-range interaction with matter or charges at a distance. Surface forces are those that act on a
surface (real or imagined), separating parts of the body. We assume that it is adequate to describe the surface
forces at a point on a surface through the definition of a stress vector, discussed in Section 4.1, which pays
no attention to the curvature of the surface at the point. Such an assumption is known as Cauchy’s stress
principle and is one of the basic axioms of classical continuum mechanics.

STRESS VECTOR

AA AF
n
W
F2

FIGURE 4.1-1

Let us consider a body depicted in Figure 4.1-1. Imagine a plane such as S, which passes through an arbitrary
internal point P and which has a unit normal vector n. The plane cuts the body into two portions. One portion

Copyright © 2010, Elsevier Ltd. All rights reserved.
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lies on the side of the arrow of n (designated by II in the figure) and the other portion on the tail of n (desig-
nated by I). Considering portion I as a free body, there will be on plane S a resultant force AF acting on a
small area AA containing P. We define the stress vector (acting from II to I) at the point P on the plane S
as the limit of the ratio AF/AA as AA — 0. That is, with t, denoting the stress vector,

F
ta = lim —. @.1.1)

If portion II is considered as a free body, then by Newton’s law of action and reaction, we shall have a
stress vector (acting from I to II) t_, at the same point on the same plane equal and opposite to that given
by Eq. (4.1.1). That is,

th = —t_p. 4.1.2)

The subscript —n for t (i.e., t_,) indicates that outward normal for the portion II is in the negative
direction of n.
Next, let S be a surface (instead of a plane) passing the point P. Let AF be the resultant force on a small
area AS on the surface S. The Cauchy stress vector at P on S is defined as
AF
t= lim —. 4.1.3
ASITO AS ( )
We now state the following principle, known as the Cauchy’s stress principle: The stress vector at any
given place and time has a common value on all parts of material having a common tangent plane at P
and lying on the same side of it. In other words, if n is the unit outward normal (i.e., a vector of unit length
pointing outward, away from the material) to the tangent plane, then

t=t(x,z,n), 4.1.4)

where the scalar ¢ denotes time.
In the following section, we show from Newton’s second law that this dependence of the Cauchy’s stress
vector on the outward normal vector n can be expressed as

t = T(x,)n, (4.1.5)

where T is a linear transformation.

STRESS TENSOR

According to Eq. (4.1.4), the stress vector on a plane passing through a given spatial point x at a given time
t depends only on the unit normal vector n to the plane. Thus, let T be the transformation such that

t, = Tn. (4.2.1)

We wish to show that this transformation is linear. Let a small tetrahedron be isolated from the body with
the point P as one of its vertices (see Figure 4.2-1). The size of the tetrahedron will ultimately be made to
approach zero volume so that, in the limit, the inclined plane will pass through the point P. The outward normal
to the face PAB is —e;. Thus, the stress vector on this face is denoted by t_, and the force on the face is t_¢, AA;,
where AA; is the area of PAB. Similarly, the force acting on PBC, PAC and the inclined face ABC are
t_e,AAy, t_o,AAsz, and t, AA,, respectively. Thus, from Newton’s second law written for the tetrahedron, we have

ZF =t ¢ (AA)) + t e, (AAy) +t ¢, (AA3) + taAA, = ma. 4.2.2)
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X2

X3

FIGURE 4.2-1

Since the mass m = (density)(volume) and the volume of the tetrahedron is proportional to the product
of three infinitesimal lengths (in fact, the volume equals (1/6)Ax;Ax,Ax3), when the size of the tetrahe-
dron approaches zero, the right-hand side of Eq. (4.2.2) will approach zero faster than the terms on the
left, where the stress vectors are multiplied by areas, the product of two infinitesimal lengths. Thus, in
the limit, the acceleration term drops out exactly from Eq. (4.2.2). (We note that any body force, e.g.,
weight, that is acting will be of the same order of magnitude as that of the acceleration term and will also
drop out.) Thus,

D F =t ¢, (AA)) 4ty (Ady) + t e, (AA3) + taAA, = 0. (4.2.3)
Let the unit normal vector of the inclined plane ABC be
n = nje; + nyer + nzes. “4.2.4)

The areas AA,, AA, and AAj;, being the projections of AA, on the coordinate planes, are related to
AA, by

AAy = mAA,, AAy = mAA,, AAs = n3AA,. 4.2.5)
Using Eq. (4.2.5), Eq. (4.2.3) becomes
toen +toe,ny +t g ns +t, =0. 4.2.6)
But from the law of the action and reaction,
e = —te, too =—tg, t_¢ =—t, “4.2.7)
therefore, Eq. (4.2.6) becomes
ta = nite, + naote, + nate,. 4.2.8)
Now, using Eq. (4.2.4) and Eq. (4.2.8), Eq. (4.2.1) becomes
T(nie; + nye; + nzes) = nyTe; + nyTe, + n3Te;. “4.2.9)
That is, the transformation T, defined by
t, = Tn, (4.2.10)

is a linear transformation. It is called the stress tensor or the Cauchy stress tensor.
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COMPONENTS OF STRESS TENSOR

According to Eq. (4.2.10) of the previous section, the stress vectors te, on the three coordinate planes (the
e;-planes) are related to the stress tensor T by

te, =Te;, t,, =Tey, t,, =Tes. “4.3.1)
By the definition of the components of a tensor [see Eq. (2.7.2)], we have
Te; = Tyien. (4.3.2)
Thus,

te, = Tiie; + Ta€; 4 T3je3,
tez =Tie; + Tyne, + Txnes, (4.3.3)
te, = T13€; + Tozep + T33e3.

Since t,, is the stress vector acting on the plane whose outward normal is ey, it is clear from the first equation
of Eq. (4.3.3) that Ty, is its normal component and T,; and T3, are its tangential components. Similarly, 75, is
the normal component on the e,-plane and T}, and T3, are the tangential components on the same plane, and
SO on.

We note that for each stress component T, the second index j indicates the plane on which the stress com-
ponent acts and the first index indicates the direction of the component; e.g., T, is the stress component in the
direction of e; acting on the plane whose outward normal is in the direction of e,. We also note that
the positive normal stresses are also known as tensile stresses, and negative normal stresses are known as
compressive stresses. Tangential stresses are also known as shearing stresses. Both T,; and T3, are shearing
stress components acting on the same plane (the e;-plane). Thus, the resultant shearing stress on this plane
is given by

T = T21e2 + T3163. (434)

The magnitude of this shearing stress is given by

IT1| = /T3, + T%. (4.3.5)

Similarly, on e,-plane,
Ty = Tpe; + Txes, (4.3.6)
and on e;-plane,
73 = T13e; + T3es. 4.3.7)
From t = Tn, the components of t are related to those of T and n by the equation
4 = Tyn;, 4.3.8)
or, in a form more convenient for computation,
[t] = [T][n]. (4.3.9)

Thus, it is clear that if the matrix of T is known, the stress vector t on any inclined plane is uniquely determined
from Eq. (4.3.9). In other words, the state of stress at a point is completely characterized by the stress tensor T.
Also, since T is a second-order tensor, any one matrix of T determines the other matrices of T (see Section 2.18).
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We should also note that some authors use the convention t = T"n so that t,, = T;;¢;. Under that conven-
tion, for example, T, and T,3 are tangential components of the stress vector on the plane whose normal is e,,
and so on. These differences in meaning regarding the nondiagonal elements of T disappear if the stress
tensor is symmetric.

SYMMETRY OF STRESS TENSOR: PRINCIPLE OF MOMENT OF MOMENTUM

By the use of the moment of momentum equation for a differential element, we shall now show that the stress
tensor is generally a symmetric tensor.* Consider the free body diagram of a differential parallelepiped
isolated from a body, as shown in Figure 4.4-1. Let us find the moment of all the forces about an axis passing
through the center point A and parallel to the x3-axis:

> (Mp); = To1 (Axz)(Ax3)(Axy /2) 4 (Ta1 + AT1)(Axz)(Ax3)(Ax; /2) @4
— Tia(Ax)) (Axvs) (Axa/2) + (Tia + AT1o) (Axy ) (Axs) (Axa /2). -

In writing Eq. (4.4.1), we have assumed the absence of body moments. Dropping the terms containing
small quantities of higher order, we obtain

> (Ma); = (Ta1 — Tiz)(Ax1)(Ax) (Axs). (4.4.2)

T22 +AT22
T2 +ATqp

T11 AXZ A Tﬂ +AT11
Tat Ax; Ty + ATy

FIGURE 4.4-1

Now, whether the element is in static equilibrium or not,

D (Ma); = I3 = 0. (4.4.3)

This is because the angular acceleration term, /33, is proportional to the moment of inertia /33, which is given
by (1/12)(density)Ax; AxAx3[(Ax;)* + (Ax,)*] and is therefore a small quantity of higher order compared
with the term (T21—T12)(AX|)(AXQ)(AX3). Thus,

D (Ma); = (Ta1 — Tiz)(Ax1)(Ax) (Axs) = 0. (4.4.4)

*See Prob. 4.29 for a case in which the stress tensor is not symmetric.
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With similar derivations for the moments about the other two axes, we have
Ty =Ty, Tiz=T3, Tx="Ts. (4.4.5)

These equations state that the stress tensor is symmetric, i.e., T = TT. Therefore, there are only six
independent stress components.

Example 4.4.1
The state of stress at a certain point is T = —pl, where pis a scalar. Show that there is no shearing stress on any plane
containing this point.

Solution
The stress vector on any plane passing through the point with normal n is

t,=Tn= —pin = —pn.

Therefore, it is normal to the plane. This simple stress state is called a hydrostatic state of stress.

Example 4.4.2
With reference to a rectangular Cartesian coordinate system, the matrix of a state of stress at a certain point in a body
is given by
2 4 3
M= [4 0 O | MPa.
3 0 -1

(@) Find the stress vector and the magnitude of the normal stress on a plane that passes through the point and is
parallel to the plane x; + 2x + 2x3 — 6 = 0.

1 (e1 —ep), find T,.

(b) If e =2 (2e1 +2e; + e5) and e} -

Solution
(@) The plane x; + 2x + 2x3 — 6 =0 has a unit normal given by

1
n= §(91 + 2e) + 2e3).

The stress vector is obtained from Eq. (4.3.9) as
2 4 3 1 1
3 0 -1 2

t :%(1691 + 4e, + e3) MPa.

) = Tin] =

Wl =

or

The magnitude of the normal stress is, with T, = Ty

Tn:t~n:é(16+8+2) = 2.89 MPa.
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(b) To find the primed components of the stress tensor, we have

2 4 3 v
T,=e]-Te,= 3\/_[2 2 1] g 8 O1 _01 :ﬁzl,%/wpa.
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Example 4.4.3
The distribution of stress inside a body is given by the matrix
—p+p8y 0 0
0 0 —p+p8y

where p, p, and g are constants. Figure 4.4-2(a) shows a rectangular block inside the body.

(a) What is the distribution of the stress vector on the six faces of the block?
(b) Find the total resultant force acting on the face y = 0 and x = 0.

Solution
(@) Fromt = Tn, we have
Onx=0, [n]=[-1 0 0], M =[p-pey 0 0 ]
Onx=a, [n]=[+1 0 0], f{=[-p+pgy O o
Ony=0, [=[0 -1 0], =] O p o
Ony=0b, [n=[0 +1 O], [j=[ O —p+pgb o
Onz=0, [n]=[0 O -1}, =] O 0 p—p8yl,
Onz=c¢, [n=[0 0 +1], tj=] O 0 - p+pgy].

The distribution of the stress vector on four faces of the cube is shown in Figure 4.4-2(b).

y
d p-pgb
a L
' a
: b p-Pgy b F—\PPIY
e ;o
(a) (b)

FIGURE 4.4-2
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(b) On the face y = 0, the resultant force is

F, = JtdA = (deA)eg = paces.
On the face x = O, the resultant force is
F, = U (p— pgy)dA} e = “pdA -8 [ydA} er.
The second integral can be evaluated directly by replacing dA by cdy and integrating from y = O to y = b. Or,

since [ydA is the first moment of the face area about the z-axis, it is therefore equal to the product of the centroidal
distance and the total area. Thus,

2
F, = {pbcfpgb c}el.

2

PRINCIPAL STRESSES

From Section 2.23, we know that for any real symmetric stress tensor, there exist at least three mutually per-
pendicular principal directions (the eigenvectors of T). The planes having these directions as their normals are
known as the principal planes. On these planes, the stress vector is normal to the plane (i.e., no shearing
stresses) and the normal stresses are known as the principal stresses. Thus, the principal stresses (eigen-
values of T) include the maximum and the minimum values of normal stresses among all planes passing
through a given point.

The principal stresses are to be obtained from the characteristic equation of T, which may be written:

PBoLl24+hLi—15=0, 4.5.1)
where

Iy =Ty + Ty +Tss,

T T T T T T

L= | 1o n T3 n Tn| 4.5.2)
Ty Tx T31 Ts3 Ty, T3

13 = det T7

are the three principal scalar invariants of the stress tensor. For the computations of these principal directions,
refer to Section 2.22.

MAXIMUM SHEARING STRESSES

In this section, we show that the maximum shearing stress is equal to one-half the difference between the
maximum and the minimum principal stresses and acts on the plane that bisects the right angle between
the plane of maximum principal stress and the plane of minimum principal stress.
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Let e;, e, and e3 be the principal directions of T and let T|, T, and T3 be the principal stresses.
If n = nje; + nye; + n3es is the unit normal to a plane, the components of the stress vector on the plane is

given by
h T 0 0 ni Tn
Ll =10 T, O n | =T |, 4.6.1)
3 0 0 Ts ns Tsns

t= n|T1e1 + n2T2e2 + i’l3T3(337 (462)

ie.,

and the normal stress on the same plane is given by

T, =n-t=niT, + niT, + niTs. (4.6.3)

FIGURE 4.6-1

Thus, if T denotes the magnitude of the total shearing stress on the plane, we have (see Figure 4.6-1)
Ty = |t - T}, (4.6.4)
ie.,
T2 = T2 + T203 + T3 — (Tyn} + Tors + Tand)’. 4.6.5)

For a given set of values of (T}, T, T3), we would like to find the maximum value of shearing stress T
and the plane(s), described by (n, n, n3), on which it acts. Looking at Eq. (4.6.5), it is clear that working
with T2 is easier than working with T,. For known values of (T, Ty, T3), Eq. (4.6.5) states that T2 is a
function of ny, n, and ns, i.e.,

T2 = f(ny, ny, n3). (4.6.6)

)

We wish to find the triples (ny, n,, n3) for which the value of the function f is a maximum, subject to the
constraint that

nt 4+ +ny = 1. (4.6.7)

Once the maximum value of Tf is obtained, the maximum value of T is also obtained. We also note that

when (ny, n, n3) = (£1,0,0), or (0,%£1,0), or (0,0,+£1), Eq. (4.6.5) gives T, = 0. This is simply because
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these are principal planes on which the shearing stress is zero. Clearly, Ty = 0 is the minimum value for the
function in Eq. (4.6.5).
Taking the total derivative of the function in Eq. (4.6.6), we obtain, for stationary values of Tf,

T2 T2 T2
dr? = g—nidn] + g—n;dnz + g—n;dm =0. (4.6.8)

If dny,dn; and dns can vary independently of one another, then Eq. (4.6.8) gives the familiar condition for
the determination of the triple (ny, ny, n3) for the stationary value of TSZ,

2 2 2

= = =0. 4.6.
6”11 ’ 8712 ’ 8}’!3 ( 69)

But dn;,dn; and dnz cannot vary independently. Indeed, taking the total derivative of Eq. (4.6.7), i.e.,
n? +ns +n3 = 1, we obtain

nldm + }’lzdnz + I’l3dﬂ3 =0. (4.6.10)

Comparing Eq. (4.6.10) with Eq. (4.6.8), we arrive at the following equations:

oT? oT? oT?
S =4 —2 =1 S = Ans. 4.6.11
8”1 ny, anz ny, 8”3 n3 ( )

The three equations in Eq. (4.6.11), together with the equation n? + n3 + n3 = 1 [i.e., Eq. (4.6.7)], are four
equations for the determination of the four unknowns n, n,, n3 and A. The multiplier A is known as the
Lagrange multiplier, and this method of determining the stationary value of a function subject to a constraint
is known as the Lagrange multiplier method.

Using Eq. (4.6.5), we have, from Eqgs. (4.6.11),

2m [T} = 2(Tyn} + Tony + Tsn3) Ty | = mi 2, (4.6.12)
2my [Ty — 2(Tyn} + Tons + Tsm3) To] = mad, (4.6.13)
2n3[T5 — 2(T1n} + Tany + Tan3) T3] = n3d. (4.6.14)

The four nonlinear algebraic equations, Egs. (4.6.12), (4.6.13), (4.6.14), and (4.6.7), for the four unknowns
(ny, na, ns, if have many sets of solution for a given set of values of (T, T, T3). Corresponding to each
set of solution, the stationary value T2, on the plane whose normal is given by (n;, n2, n3), can be obtained
from Eq. (4.6.5), i.e.,

2
T = Tin + Tsm + Tsm — (Tanj + Toms + Tsn3) ™.

Among the stationary values will be the maximum and the minimum values of 72. Table 4.1 summarizes
the solutions. (See Appendix 4.1 for details.)

We note that (ny, np,0) and (—n;, —ny,0) represent the same plane. On the other hand, (n;, n2,0) and
(n1,—n,,0) are two distinct planes that are perpendicular to each other. Thus, although there are mathemati-
cally 18 sets of roots, there are only nine distinct planes.

"The value of the Lagrangean multiplier 4 does not have any significance and can be simply ignored once the solutions to the system
of equations are obtained.
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Table 4.1 Stationary Values of T2 and the Corresponding Planes

(m, mp, n3), n=nie; + nye; + nzes, Stationary
(e1, e, e3) Are Principal Directions The Plane Value of T2
(1,0,0) and (-1,0,0), i.e., n = +e; e;-plane 0
(0,1,0)and (0,-1,0) i.e., n = +ep e>-plane

(0,0,1)and (0,0,—1) i.e., n = te3 esz-plane

(1/v/2)(1,1,0) and (1/v/2)(-1,-1,0) The plane bisects e;-plane and e,-plane in the T —T\?
ie, n==+(1/v2)(e; +e) first and third quadrant 2
(1/v/2)(1,-1, 0)and (1/v2)(~1,1,0) The plane bisects e;-plane and e,-plane in the N -T2\

ie., n==+(1/vV2)(e; —ey)

(1/v/2)(1,0,1) and (1/v2)(-1,0,-1) The plane bisects e;-plane and es-plane in the
ie., n==+(1/vV2)(e; +es3) first and third quadrant

(1/v2)(1,0,-1)and (1/v2)(-1,0,1)

second and fourth quadrant

The plane bisects ej-plane and es-plane in the

e, n==(1/v2)(e; —e3) second and fourth quadrant 2
(1/2)(0,1,1)and (1/2)(0,—-1,-1) The plane bisects ex-plane and es-plane in the T, — T3\?
e, n==+(1/v2)(es +e3) first and third quadrant 2
(1/v/2)(0,1,-1) and (1/v/2)(0,-1, 1) The plane bisects e,-plane and es-plane in the T, — T3\°

|~ |~~~ — | O 0
= |
[N
Iy ot
N N BN NG IO I~
N

e, n==+(1/v2)(e; —e3)

second and fourth quadrant

Three of the planes are the principal planes, on each of which the shearing stress is zero (as it should be),
which is the minimum value of the magnitude of shearing stress. The other six planes in general have nonzero
shearing stresses. We also note from the third column of the table that those two planes that are perpendicular
to each other have the same magnitude of shearing stresses. This is because the stress tensor is symmetric.
The values of TS2 given in the third column are the stationary values TSZ, of which zero is the minimum.
The maximum value of Tf is the maximum of the values in the third column. Thus, the maximum magnitude
of shearing stress is given by the maximum of the following three values:

T —To| |1 —T5] |To—T5
2 ’ 2 ’ 2

. (4.6.15)

In other words,

(Tﬂ)max — (Tn )min

(T5) max = 5 , (4.6.16)

where (T)),,. and (T),),,;, are the largest and the smallest normal stresses, respectively. The two mutually
perpendicular planes, on which this maximum shearing stress acts, bisect the planes of the largest and the
smallest normal stress.

It can also be shown that on the plane of maximum shearing stress, the normal stress is

(Tn)max + (Tﬂ)min

T, = >

(4.6.17)
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If two of the principal stresses are equal, say, ) = T, # T3, then, in addition to the solutions listed in the
table, infinitely many other solutions can be obtained by rotating e; and e, axes about the e; axis. Their
stationary values of T, however, remain the same as those before the rotation. Finally, if 7| = T, = T3, then
there is zero shearing stress on all the planes.

Example 4.6.1

If the state of stress is such that the components T3, To3 and Ts3 are equal to zero, it is called a state of plane stress.
(a) For this state of plane stress, find the principal values and the corresponding principal directions. (b) Determine
the maximum shearing stress.

Solution
(a) For the stress matrix

Th T O
M=|Ta T2 0f, (4.6.18)
0 0O O
the characteristic equation is
22— (i1 + Tao)h+ (T Too — T5)] = 0. (4.6.19)

Therefore, A = O is an eigenvalue and its corresponding eigenvector is obviously n = e3. The remaining
eigenvalues are

o (Ti+T2)+ \/(Tu — Tp)? +4T%
= . (4.6.20)
T 2
To find the corresponding eigenvectors, we set (T,] — /15,‘/')/7/' = 0 and obtain, for either A = T7 or T5,
(1 —=2)m + T2me =0
Tiom 4+ (T2 =) =0 (4.6.21)

(0—A)ns =0

The last equation gives ns =0. Letn = cos 0 e; + sin 0 e, (see Figure 4.6-2); then, from the first of Eq. (4.6.21),
we have

T
tan@:ng n-s

(4.6.22)
m T2

X2

X4

FIGURE 4.6-2
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(b) Since the third eigenvalue T3 is zero, the maximum shearing stress will be the greatest of the following three
values:

Ti — T2)* +4T2
_ \/( 11 ;2) 12 (4.6.23)

[n
2 )

h—T

and 5

2]
2 b

Example 4.6.2
Do the previous example for the following state of stress: T;, = To; = 1000 MPa. All other Tj are zero.

Solution
From Eq. (4.6.20), we have

4(1000)°
no_ VA0 600 s
T 2

Corresponding to the maximum normal stress 73 = 1000 MPa, Eq. (4.6.22) gives

0 — 1000 . o
tan 91:—W1+1, I.e., 61—45 s
and corresponding to the minimum normal stress 7, = —1000 MPa (i.e., maximum compressive stress),
_ 0—(-1000) . _ o
tan 0, = 500 = -1, ie., 0; = —45°.
The maximum shearing stress is given by
(Ts)max = 1000 — (~1000) 5—1000) = 1000 MPa,

which acts on the plane bisecting the planes of maximum and minimum normal stress, i.e., it acts on the e;-plane
and the e,-plane.

Example 4.6.3

100 O 0
Given[T]=| O 100 O | MPa, Determine the maximum shearing stress and the planes on which it acts.
0 0 500
Solution
Here we have T; = T, = 100 MPa, T3 = 500 MPa. Thus, the maximum shearing stress is
Ts = M = 200 MPa.

The planes on which it acts include not only the four planes (e; + eg)/\/§ and (e + e3)/\/§ but also any plane

1 1 .
(nlel + mep, + —e3), where nf + n§ + = = 1. In other words, these planes are tangent to the conical surface of

e 2

the right circular cone, with es as its axis and with an angle of 45° between the generatrix and the axis.
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EQUATIONS OF MOTION: PRINCIPLE OF LINEAR MOMENTUM

In this section, we derive the differential equations of motion for any continuum in motion. The basic
postulate is that each particle of the continuum must satisfy Newton’s law of motion.

Figure 4.7-1 shows the stress vectors that act on the six faces of a small rectangular element isolated from
the continuum in the neighborhood of the position designated by x;.

Let B = B,e; be the body force (such as weight) per unit mass, p be the mass density at x;, and a be
the acceleration of a particle currently at the position x; then Newton’s law of motion takes the form, valid
in rectangular Cartesian coordinate systems,

{te| (.X] + AX], X2, X3) +t,e|()€|, X2, X3)}(AX2AX3) —+ {tez(xl, X2 +AX2, X3) +t,e2(X1, X2, X3)}(AX1AX3)

@)
H{te, (x1, X2, X3 + Axz) + t_e, (x1, X2, X3) }(Ax1AX2) + pBAX;Ax2Axs = (pAx1AxaAxs)a.
Since t_¢, = —tg,,
t Ai —t R
te, (11 + Axy, 22, x3) + g (11, 12, 33) = { a0 A, "2’;3() o (1, %2, X3)}Ax|. (ii)
1
Similarly,
te, (X1, X2 + Axz, X3) — te, (x1, X2, X
{te, (X1, X2 + Axa, x3) + t_e, (x1, X2, x3)} = { e (1, X2 + Ax ijcz (¥, X2 M)}sz, etc. (iii)
Thus, Eq. (i) becomes
te, (v1 + Axy, X2, X3) — te (X1, X2, X3) n te, (X1, X2 + Axg, x3) — e, (X1, X2, X3)
Axy Axy
(4.7.1)
t , Axz) — t, ,
+{ e (X1, X2, X3 + Axz) — te, (X1, X2, X3)} + B = pa.
AX3
te, (X1, Xo + AXp, X3) | Leg (X1, Xo, Xg)
te, (X1 +AXy, Xo, X3)
te, (X1, X2, X3)
X
)2\ te, (X1, Xo, X3)
X3 X tey (X1, Xo, X3 + AXg)
FIGURE 4.7-1
Letting Ax; — 0, we obtain from the preceding equation,
ot, ot ot ot
o = “ 4 pB=pa or —2+ pBje; = paje;. 4.7.2)

ox;  Oxp 0Ox3 0x;
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Since t,, = Te; = T;je;, we have (noting that all e; are of fixed directions in Cartesian coordinates)

T}
—l]e,- + pBl-e,- = pa;e;. (473)
Ox;
In invariant form, the preceding equation is
divT + pB = pa, 4.7.4)
and in Cartesian component form
T
i+ B, = pa. 4.7.5)
8xj

These are the equations that must be satisfied for any continuum in motion, whether it is a solid or a fluid.
They are called Cauchy’s equations of motion. If the acceleration vanishes, then Eq. (4.7.5) reduces to the
static equilibrium equation:

Ty

Z0 4 pB; = 0. (4.7.6)
('9xj

Example 4.7.1
In the absence of body forces, does the following stress distribution satisfy the equations of equilibrium? In these
equations v is a constant.

2 2 2 2 2 2
T = X5 + V(Xl — X2)7 T = —2vx1 X, T = X7+ V(X2 - Xl)’

T3 =Ti3=0, T3= V(X12 +X22).

Solution
We have
oTy 90Ty 0T  0Ts
B R T R T = R, NSV ) —
X 0x + Oxo + 0x3 4 v +0=0,
(9T2j 8T21 87—22 8T23
A== === 2 0=0
% X 2%, + 9%, VXo + 2vXo + )
and

0Tz; 0Tz 0Tz 0Tz3
— e e 22— 0404+0=0.
0x; ox 0Xo + 0X3 +O+

Therefore, the given stress distribution does satisfy the equilibrium equations.

Example 4.7.2
Write the equations of motion for the case where the stress components have the form T; = —pd;, where

p = p(x1, X2, X3,1).

Solution
For the given T,
oy _ _9ps __0p

o5 o on
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Therefore, from Eq. (4.7.6), we have

ap B
_8_)(/+pB' = paj, (4.7.7)
or
—Vp + pB = pa. (4.7.8)

EQUATIONS OF MOTION IN CYLINDRICAL AND SPHERICAL COORDINATES

In Chapter 2, we presented the components of div T in cylindrical and in spherical coordinates. Using those
formulas [Egs. (2.34.8) to (2.34.10) and Egs. (2.35.33) to (2.35.35)], we have the following equations of
motion (see also Prob. 4.36).

Cylindrical coordinates:

8T,~,~ l aTrQ T, — Too 8Trz

o Tra0 T 5 T TPB=ran (4.8.1)
0Ty, 10Ty  Trg+Tp | 0Ty, _
a—’+’—w + ’ + ? + pB() = pay, (4.8.2)
oT,, 10T,y 0T, T,
@y 2 =T L 0B = oa.. 4.8.
ar r 80+82+r+p‘ pa: (4.8.3)

For symmetric stress tensors, 1,9 + Ty, = 27,9 in Eq. (4.8.2).
Spherical coordinates:

19(°T,) 1 O(T, sin 0) L 3Ty Too+ Ty
2 or rsin 0 a0 rsin@ O¢ -

—+ ,()B,‘ = pa,, (4.8.4)

1 8(r3 Ty, 1 9(Tyg sin 0 1 0T T —To — T, t 0
= (r°Tor) (Top sin 0) 06 0 0 : ¢ CO + pBy = pay, 48.5)

or + rsin 6 00 rsinf 0¢

B or 7 sin 0 o0 rsin0 d¢ 7

1 9(rTy, 1 O(Tpysin0 1 0T Typ — Ty + Tyg cot 0
(" To) (T4 sin 0) o0 Tro =Tor+Topcot® | o 0 (4.8.6)

For symmetric stress tensors, 7,9 — Ty, = 0 and T, — T¢, = O in the preceding equations.

Example 4.8.1
The stress field for the problem of an infinite elastic space loaded by a concentrated force at the origin (the Kelvin
problem) is given by the following stress distribution in cylindrical coordinates:

z 3rz Az z 37
T,,—A<ﬁ—ﬁ>, T()(J:ﬁy TZZ__A(E_._W)’

r 3rz°
Trz:_A 7+ﬁ 5

R3 TFH = TZH = 07
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where R? = r? + z2 and A is a constant related to the load. Verify that the given distribution of stress is in equilibrium
in the absence of body forces.

Solution
5 5 o _OR r OR =z
From R¢ = rc 4+ z¢, we obtain — = —=, — = —.
or R 0z R
Thus,

B R

aT,,_A( 3z9R 6rz 15/'22%)

~3z0R 3zr 6rz 15r3z
ar ’

Rar RE T RE or

T” — Tg@ . 3rz
- = (ﬁ)

8sz——A( 3roR 6rz 15r220R)7A<3zr 6rz 15rz3>

B R R

oz "Rz TR R oz

The left-hand side of Eq. (4.8.1) becomes

A(?ﬂ_%+l5r3z 3rz+g_6£+15rz3> :A( 151z 15rz{r2+22})

e A A~ I R B TR

15rz 151z
= (‘ " W) =0

In other words, the r-equation of equilibrium is satisfied. Since T,y = Ty, = 0 and Ty is independent of 0, the

second equation of equilibrium is also satisfied. The third equation of equilibrium can be similarly verified
(see Prob. 4.37).

BOUNDARY CONDITION FOR THE STRESS TENSOR

If on the boundary of some body there are applied distributive forces, we call them surface tractions. We wish
to find the relation between the surface tractions and the stress field that is defined within the body.

FIGURE 4.9-1
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If we consider an infinitesimal tetrahedron cut from the boundary of a body with its inclined face
coinciding with the plane tangent to the boundary face (Figure 4.9-1), then, as in Section 4.1, we obtain

t—Tn, 4.9.1)

where n is the unit outward normal vector to the boundary, T is the stress tensor evaluated at the boundary,
and t is the force vector per unit area on the boundary. Equation (4.9.1) is called the stress boundary condi-
tion. The special case of t = 0 is known as the traction-free condition.

Example 4.9.1
Given the following stress field in a thick-wall elastic cylinder:
B B
Trr:A*Frja THH:A*Z, TrH:Trz:Tf)z:Tzz:Oa

where A and B are constants. (a) Verify that the given state of stress satisfies the equations of equilibrium in the
absence of body forces. (b) Find the stress vector on a cylindrical surface r = a, and (c) if the surface traction on
the inner surface r = r; is a uniform pressure p; and the outer surface r = r, is free of surface traction, find the
constant A and B.

Solution
(@) With T,y = T, = Ty, = T, = 0 and Ty depending only on r, we only need to check the r-equation of equi-
librium. We have

87—” 16Tr0 Trr - 7—00 8Trz o 2B 2B o
ar "7 o0 Tty a0t +0=0

Thus, all equations of equilibrium are satisfied.

(b) The unit outward normal vector to a cylindrical surface at r = ais n = e,. Thus, the stress vector on this
surface is given by

t T, 0 0771 T
Z'{) = 0 T()() 0 0| = 0 5
i 0 O 0J1Lo 0

B
t="T,e,+0e+0Oe, = (A +?>e,‘
(c) The boundary conditions are:

Atr=r,, T,=0 and at r=r, T, =—p.
Thus,

B B
— = _p A+ —=0.
A+r,2 pi and +r§ 0
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The preceding two equations give

2 2,2
pifi __hifi'tg

TR 27 - 2 27
s =1 s =1

and the state of stress is given by

Example 4.9.2

It is known that the equilibrium stress field in an elastic spherical shell under the action of external and internal
pressure in the absence of body forces is of the form

2B B
Trr:A_r—37 Top = T¢¢=A+r—3, Trog= Ty = Top = 0.

(a) Verify that the stress field satisfies the equations of equilibrium in the absence of body forces.

(b) Find the stress vector on a spherical surface r = a.

(c) Determine the constants A and B if the inner surface of the shell is subject to a uniform pressure p; and the
outer surface is free of surface traction.

Solution
(a) With

,ZT”:ArZ,@7 Lo _2A,%8

Too+ Tgy 2A 2B
r EE(IQT’{) r +r77 TF('):Tr(/):O and ———— =—

rrA
the left-hand side of the r-equation of equilibrium [see Eq. (4.8.4)] is

la(rZ Trr) 1 9(Tysin0) 1 9Ty Too+ Ty
e or rsin 0 00 rsin@ o0¢ r

2A 2B 2A 2B
= (—+—4) +0+0— (—+—4) =0,
r r r r

i.e., the requation of equilibrium is satisfied. The other two equations can be similarly verified (see

Prob. 4.40).
(b) The unit outward normal vector to the spherical surface r = ais n = e,. Thus, the stress vector on this surface
is given by
t T, O 0 1 T
h|l =10 Ty O Of=10|,
ty 0 0 Ty 0 0
i.e.,

t=T,e +Oey+ Oey = (A — 22—5) e,.
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(c) The boundary conditions are
Atr=r,, T,=0 and at r=r, T,=—p.
Thus,

A—Zr—fzo and A—§:—p,.
o]

The preceding two equations give

. prR __pirrs
e M Aoy

The state of stress is

PIOLA KIRCHHOFF STRESS TENSORS

Cauchy stress tensor is defined in Section 4.2 based on the differential area at the current position. Stress
tensors based on the undeformed area can also be defined. They are known as the first and second Piola-
Kirchhoff stress tensors. It is useful to be familiar with them not only because they appear in many works
on continuum mechanics but also because one particular tensor may be more suitable in a particular problem.

For example, there may be situations in which it is more convenient to formulate equations of motion (or
equilibrium) with respect to the reference configuration instead of the current configuration. In this case, the
use of the first Piola-Kirchhoff stress tensor results in the equations that are of the same form as the familiar
Cauchy equations of motion (see Section 4.11). As another example, in finite deformations, depending on
whether D (the rate of deformation) or DF/Dt (F being the deformation gradient) or DE*/Dt (E* being
Lagrangian deformation tensor) are used, the calculation of stress power (the rate at which work is done to
change the volume and shape of a particle of unit volume) is most conveniently obtained using the Cauchy
stress tensor, the first Piola-Kirchhoff stress tensor, or the second Piola-Kirchhoff stress tensor, respectively
(see Section 4.13).

Also, in Example 5.57.3 of Chapter 5, we will see that T = f(C), where T is Cauchy’s stress tensor and C
is the right Cauchy-Green deformation tensor, is not an acceptable form of constitutive equation. On the other
hand, T = f(C) is acceptable, where T is the second Piola-Kirchhoff stress tensor.

Let dA, and dA be the same differential material area at the reference time ¢, and the current time ¢,
respectively. We may refer to dA, as the undeformed area and dA as the deformed area. These two areas
in general have different orientations. We let the unit normal to the undeformed area be n, and to the
deformed area be n. We may consider each area as a vector having a magnitude and a direction. For example,
dA, = dAyn, and dA = dAn. Let df be the force acting on the deformed area dA = dAn. In Section 4.1, we
defined the Cauchy stress vector t and the associated Cauchy stress tensor T based on the deformed area
dA = dAn, that is,

df = tdA, (4.10.1)
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and
t=Tn. (4.10.2)

In this section, we define two other pairs of (pseudo) stress vectors and tensors, based on the undeformed
area dA, = dA,n,.
(A) The first Piola-Kirchhoff stress tensor. Let

df = t,dA,. (4.10.3)

The stress vector t,, defined by the preceding equation, is a pseudo-stress vector in that, being based on the
undeformed area, it does not describe the actual intensity of the force df, which acts on the deformed area
dA = dAn. We note that t, has the same direction as the Cauchy stress vector t.

The first Piola-Kirchhoff stress tensor (also known as the Lagrangian stress tensor) is a linear transforma-
tion T, such that

t, = Ton,. (4.10.4)

The relation between the first Piola-Kirchhoff stress tensor and the Cauchy stress tensor can be obtained as
follows: From

df = tdA = t,dA,, (4.10.5)

we have

dA
o= ()¢ 4.10.
t (dAO)t (4.10.6)

Using Eq. (4.10.2) and Eq. (4.10.4), Eq. (4.10.6) becomes

_ (dA\. _ T(dAn)
Ton, = (dAO>Tn =g (4.10.7)

In Section 3.27, we obtained the relation between dA, = dAy,n, and dA = dAn as

dAn = dA,J (F~")n,. (4.10.8)
where J = |detF|. Thus,
Ton, = JT(F)'n,. (4.10.9)

The preceding equation is to be true for all n,; therefore,

T, =JTF )T, (4.10.10)
and

1
T= 7TOFT. (4.10.11)

These are the desired relationships. In Cartesian component form, we have

(To)y = JTimF (4.10.12)

Jjm>?
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and

1
Ty = 5 (To)iFio (4.10.13)

When Cartesian coordinates are used for both the reference and the current configuration,

A X,
Yoand Rl =

Fim = ==
"X, "

We note that the first Piola-Kirchhoff stress tensor is in general not symmetric.
(B) The second Piola-Kirchhoff stress tensor. Let

df = tdA,, (4.10.14)
where
df = Fdf. (4.10.15)

In Eq. (4.10.15), df is the (pseudo) differential force that transforms, under the deformation gradient F,
into the (actual) differential force df at the deformed position; thus, the pseudo-vector t is in general in a dif-
ferent direction than that of the Cauchy stress vector t.

The second Piola-Kirchhoff stress tensor is a linear transformation T such that

t = Tn,, (4.10.16)

where we recall that n, is the unit normal to the undeformed area. From Egs. (4.10.14), (4.10.15), and
(4.10.16), we have

df = FTn,dA,. (4.10.17)
We also have [see Egs. (4.10.3) and (4.10.4)]
df = tydA, = TonodA,. (4.10.18)
Comparing Eq. (4.10.17) with Eq. (4.10.18), we have
Tn, = F~'Tyn,. (4.10.19)
Again, this is to be valid for all n,; therefore,
T=F'T,. (4.10.20)

Equation (4.10.20) gives the relationship between the first Piola-Kirchhoff stress tensor T, and the second
Piola-Kirchhoff stress tensor T. The relationship between the second Piola-Kirchhoff stress tensor and the
Cauchy stress tensor can be obtained from Eqgs. (4.10.10) and (4.10.20). We have

T=JF'TF )" where J = |det F|. (4.10.21)

We note that the second Piola-Kirchhoff stress tensor is a symmetric tensor if the Cauchy stress tensor is a
symmetric one.
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Example 4.10.1
The deformed configuration of a body is described by

X1 = 4X1, Xo = —%Xz.‘ X3 = ——Xg.

If the Cauchy stress tensor for this body is

100 0 0
M=|0 0 ofmpa
0 00

(@) What is the corresponding first Piola-Kirchhoff stress tensor?
(b) What is the corresponding second Piola-Kirchhoff stress tensor?

Solution
(a) From Eq. (i), we have

4 0 0 1/4 0 O

Fl=|0 -1/2 0 |, FY1=|0 -2 0|, detF=1.
0 0 -1/2 0 0O -2

Thus, the first Piola-Kirchhoff stress tensor is, from Egs. (4.10.10), (ii), and (iii)

100 0 0][1/4 O O 25 0 0
[To](l)[TH(F_l)T][O 0 O}[O -2 O}[O 00

6 o0oo0oj[O0O O -2 0 0 O

(b) From Egs. (4.10.20) and (iv),

i 1/4 0 07[25 0 0O 25/4 0 0
[T]:[Fl][To}:[O -2 oHo 0 o}:[ 0 00

(ii)

(iii)

(iv)

(v)

Example 4.10.2
The equilibrium configuration of a body is described by

1 1
X1 :le, Xo = _§X37 X3 = 4X2
If the Cauchy stress tensor for this body is
0 0 O
M=1]0 0 O | MPa.
0 0 100

(@) What is the corresponding first Piola-Kirchhoff stress tensor?
(b) What is the corresponding second Piola-Kirchhoff stress tensor?

(ii)
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(c) Calculate the pseudo-stress vector associated with the first Piola-Kirchhoff stress tensor on the es-plane in the
deformed state.

(d) Calculate the pseudo-stress vector associated with the second Piola-Kirchhoff stress tensor on the es-plane in
the deformed state.

Solution
From Eq. (i), we have

12 0 0 2 0 0
[F] = { 0 0 —1/2} and [Fl= {o 0 1/4], detF =1. (i)
0 4 0 0 -2 0

(a) The first Piola-Kirchhoff stress tensor is, from Eqs. (4.10.10), (ii), and (iii)

00 O 2 0 O 0O 0 O
[To] = (D[T] [(F’l)T} = [O 0O O } [O 0 2} = {O 0 O] MPa. (iv)
0O 0 100J10 1/4 O 0 25 0
(b) The second Piola-Kirchhoff stress tensor is, from Egs. (4.10.20) and (iv),
. 2 0 0 0O 0 O 0 0 0
M =F" T = {o 0 1/4] [o 0 o} = [o 25/4 o] MPa. (v)
0O -2 0 0 25 0 O 0 O

(c) For a unit area in the deformed state in the es direction, its undeformed area dA.n, is given by
[see Eq. (3.27.12)]:

dAsn, = mF n. (vi)
Using Eq. (iii) in Eq. (vi), we have, with n = e3,
1/2 0O 0770 0
don) = [ 5 o 4] M _ H i
0 -1/2 of[1 0
That is,
no=e, and dA,=4. (viii)

Thus, the stress vector associated with the first Piola-Kirchhoff stress tensor is
0O 0O 0770 0
[to] = [To] [no] = [O 0 O] 1|=1|0|MPa (ix)
0 25 0]10 25

That is, t, = 25e3 MPa. We note that this vector is in the same direction as the Cauchy stress vector; its mag-
nitude is one fourth of that of the Cauchy stress vector because the undeformed area is four times that of the
deformed area.

(d) The stress vector associated with the second Piola-Kirchhoff stress tensor is

0 0 07[0 0
1] = [T] in = [o 25/4 o} {1] = [25/4} MPa. ()
o o ollo 0

That is, t = (25/4)e, MPa. We see that this pseudo-stress vector is in a different direction from that of the
Cauchy stress vector.
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Example 4.10.3
Given the following identity for any tensor function A(X1, X2, X3) (see Prob. 3.73):

0A),

9 |
mdetA = (detA)(A), X, (4.10.22)
Show that for the deformation gradient tensor F
o (F,
o (7> 0, (4.10.23)
0x; N
where i, = =, x; = X;(X1, X2, X3,t),J =detF > 0.
X
Solution
0 (Fn\ _10Fm_Fnd) _10FndX 1 (0x) 0J 0K
o\ J | Jox  J2Ox JOX, 9x J2\0Xn | 0X, 0%
0]
_10Rnd%y 1o 00 1 #xy \ox, 1 0J
TJOX, 0x L2 "aX,  J\9XedXm | Ox  J2OXn
Now, from the given identity Eq. (4.10.22), with A=F, (A™}),, = (F ), = %i”, we have
1
o) _ N0, _ 0%, 0P i
Xm " 0X 0Xm T Ox; OXmOXn'
Thus,
O (Fn\ _1( &Fx N 1ox( &5 | _g (i)
ox\J ) J\OXOXn) Oxg  JOx \OXnOXa) T

EQUATIONS OF MOTION WRITTEN WITH RESPECT TO THE REFERENCE
CONFIGURATION

In Section 4.7, we derive the equations of motion in terms of the Cauchy stress tensor as follows:

aT;
o+ PBi = pai, @.11.1)
Xj

divT 4+ pB =pa or

where T is the Cauchy stress tensor, B is the body force per unit mass, a is the acceleration, and p is the
density in the deformed state. Here the partial derivative 0T;;/0x; is with respect to the spatial coordinates x;.
In this section we show that the equations of motion written in terms of the first Piola-Kirchhoff stress
tensor have the same form as those written in terms of Cauchy stress tensor. That is,
a(T,),
DivT, + p,B =p,a or % + p.Bi = pyai. 4.11.2)

m

We note, however, here X; are the material coordinates and p, is the density at the reference state.
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To derive Eq. (4.11.2), we use Eq. (4.10.13), i.e.,
1

T = 7 (To);uFjm where J = detF, @)
to obtain
8T’/ _ i (TO)imF/m — ha(TO)inz i@ _ F/la(TO)im 5
Bx_,» - (9)(/ J - J (9)(/ + (TO)im ax,- J - J 3)(/' ’ (11)
where we have used the result of the previous example (Example 4.10.3) that 8_7 = 0. Now,
Xj
8Tl:/ F/”l 0( )rm . 1 a)C/ 0( )zm 8X 15 0(T0)1m (111)
o J  dx,  JOX, X, o J ™M X,
Thus,
1O(T,).
8)(_, J 8Xj
T..
Using the preceding equation in the Cauchy equations of motion, i.e., 3 Y i, We obtain
X
MJr (p)B: = (Jp)ai V)
oX; ’ "
Now, dV = (det F)dV, [see Eq. (3.28.3)]; therefore,
po = (det F)p =Jp, (vi)
and Eq. (v) becomes
T,);;
(avx,?lj + poBi = poai. (vii)

STRESS POWER

Referring to the infinitesimal rectangular parallelepiped of Figure 4.12-1 (which is the same as Figure 4.7-1,
repeated here for convenience), the rate at which work is done by the stress vectors t_e, and te, on the pair of
faces having —e; and e, as their respective normal is

(tel ! v)x1+dx'1-, X2, X3 + (t*el ! V)xl‘ X2, X3:| diydxs = [(tel ' V)xl-%—ci\'], X2, X3 (tel ’ V)xl‘ X2, X3:| dxydxs

- )
- {i te,-v)d)q] dordes = 20 gy

8x1( 8)(1

where we have used the result that te-v=Te;-v= e TTy = e;- Tjvie; = Tjvi(e;-e;) = Tyv; and
dxidxadxz = dV. Similarly, the rate at which work is done by the stress vectors on the other two pairs
of faces are (’”’)dV (’3‘ )dV Including the rate of work done by the body forces, which is
(pBdV) v = pB; v,dV the total rate of work done on the particle is

0 oT;; ov; Dv; v; ..
P= oy (viTy) + prvi} dv = {vf( ax,'-/ + pB,-) + Ty B }dv {pvl Dr + Ty pm }dV (ii)
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te, (X1, Xo + Ay, X3) | teg (X1, X2, Xa)

X2

)\ te, (X1, Xo, X3)
X te, (X1, Xo, X3+ AXg)

X3

FIGURE 4.12-1

D
Now, Dr (pdV) = 0 (conservation of mass principle); therefore,

2

DVl' D Viv; D Vivi D A% D
iy = dV—< ):—( dv):— dm’) = Z (KE).
PYipy P\ ) T\ 2 ? pi\ 5 ) = p; (KE) (it

where (KE) is the kinetic energy. We can now write

p-2 (KE) + P,av, (4.12.1)
Dt
where
pyo=1, 2 (TTVV) (4.12.2)
s — Lij 6}&/ - . A2,
Since
ov; 1 ov; ;i 1 ov; v; 1 v  0Ov;
Tl--—l:— Tl—l T,—I = = T,—l T,—] :—T," - - :T,“D,"7 412
! Ox; 2( /8xj+ ! 8xj) 2( ! 8xj+ ! 8xi) 2 j(axj+8xi) 7 ( 3)

in terms of the symmetric stress tensor T and the rate of deformation tensor D, the stress power is
P, = T;D; = tr(TD). (4.12.4)

The stress power P represents the rate at which work is done to change the volume and shape of a particle
of unit volume.

STRESS POWER IN TERMS OF THE PIOLA-KIRCHHOFF STRESS TENSORS

In the previous section, we obtained the stress power in terms of the Cauchy stress tensor T and the rate
of deformation tensor D [Eq. (4.12.4)]. In this section we obtain the stress power (a) in terms of the
first Piola-Kirchhoff stress tensor T, and the deformation gradient F and (b) in terms of the second Piola-
Kirchhoff stress tensor T and the Lagrangian deformation tensor E*. The pairs (T, D), (T,, F) and (T, E*)
are sometimes known as the conjugate pairs.
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(a) In Section 3.12 we obtained [see Eq. (3.12.6)]

gdx = (Vxv)dx. (4.13.1)

Since dx = FdX [see Eq. (3.18.3)], Eq. (4.13.1) becomes

Dopax =¥ x - VyvFdX. (4.13.2)
Dt Dt
This equation is to be true for all dX, thus
DF
5y = (VxvF, (4.13.3)
or
_DF__,
(Vav) =5 F (4.13.4)
Now, from Egs. (4.12.2) and (4.13.4), we have
Py =tr (TTD—FF“). (4.13.5)
Dt

Since the Cauchy stress tensor T is related to the first Piola-Kirchhoff stress tensor T, by the equation
1
T= mTOFT, [Eq. (4.10.11)], therefore,
_ 1 v DF
Po= gt (FTO o F > (4.13.6)
Using the identity tr (ABCD) = tr(BCDA) = tr (CDAB) and the relation det F = p_/p, we have

P (Y 2 DEy
P, = o tr (TO Dt) = tr <(T°)if Dr ) 4.13.7)

(b) The Cauchy stress tensor T is related to the second Piola-Kirchhoff stress tensor T by the equation
1 -
T = ——FTF" [see Eq. (4.10.21)], therefore,

det F
_ _ T _ 1 T
Py =1w(TD) = —— tr (FTF'D) = ——— tr (TF'DF). (4.13.8)
We now show that
DE"\ .

( o ) — F'DF. (4.13.9)

We had [see Eq. (3.24.3)]
ds* = dS* + 2dX -E*dX, (4.13.10)

therefore,

D, DE"
— ds® = 2dX - X. 4.13.11
Dy =2d (Dt)d (4.13.11)



4.14 Rate of Heat Flow into a Differential Element by Conduction 183

But we also had [see Eq. (3.13.11)]
gdsz = 2dx -Ddx = 2FdX -DFdX = 2dX -F'DFdX. (4.13.12)

Comparing Eq. (4.13.11) with Eq. (4.13.12), we obtain

(DDF; ) = F'DF. (4.13.13)

Using Eq. (4.13.13), Eq. (4.13.8) becomes

1 _DE"\ o [~DE*
P, = T =L . 4.13.14
detFr( Dt> p0r< Dt) (4.13.14)

RATE OF HEAT FLOW INTO A DIFFERENTIAL ELEMENT BY CONDUCTION

Let q be a vector whose magnitude gives the rate of heat flow across a unit area by conduction and whose
direction gives the direction of the heat flow; then the net heat flow by conduction Q. into a differential
element can be computed as follows:

Referring to the infinitesimal rectangular parallelepiped of Figure 4.12-1, the net rate at which heat
flows into the element across the pair of faces with e; and —e; as their outward normal vectors is

9 94, .
(@€ + (@001, | diads = L? (@ el)dxl}dxzd)g <8—Idx1)dx2dx3. (i)

Including the contributions from the other two pairs of faces, the total net rate of heat inflow by conduc-
tion into the element is

0q1 0q> g3  (Oq1 [ Oqx | Oqs ..
(8 ldxl)dxde3 (8)(2 dxz) dxydx3 (8)(3 dxs |dxydx, = o, + s + s dxdxydxs. (ii)

That is,

0, — (%4 94 94
‘< 8}6] 8x2 (9)63

)dV = —(divq)aV, (4.14.1)

where dV is the differential volume of the element.

Example 4.14.1
Using the Fourier heat conduction law

q=-xVeO, (4.14.2)

where @ is the temperature and « is the coefficient of thermal conductivity, find the equation governing the steady-
state temperature distribution in a heat-conducting body.
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Solution
Using Eq. (4.14.1), we obtain, the net rate of heat inflow per unit volume at a point in the body as

(9 (20, 0 (.08, o (00
8X1 8X1 8)@ 8X2 8X3 8X3

For a steady-state temperature distribution in the body, there should be no net rate of heat flow (either in
or out) at every point in the body. Therefore, the governing equation is

0 00 0 00 0 00

For constant x, the preceding equation reduces to the Laplace equation:

9’0 90 50
0=—5+—>+—=5=0. 4.14.4
v 0x3 + Ox2 + Ox3 ( )

ENERGY EQUATION

Consider a particle with a differential volume dV at position x at time ¢. Let U denote its internal energy,
KE its kinetic energy, Q. the net rate of heat inflow by conduction from its surroundings, Qy the heat supply
(rate of heat input due, e.g., to radiation), and P the rate of work done on the particle by body forces and sur-
face forces. Then, in the absence of other forms of energy input, the fundamental postulate of conservation of
energy states that the rate of increase of internal and kinetic energy for a particle equals the work done on the
material plus heat input through conduction across its boundary surface and heat supply throughout its vol-
ume. That is,

D
o (U +KE)=P+0Qc+0s, (4.15.1)
. . .. D ov; 0qi
where (D/Dt) is material derivative, P = D (KE) +Tj o, —dVand Q, = —a—dV [See Egs. (4.12.1), (4.12.2),
and (4.14.1)]. Thus, f
DU 0 0q;
o = ,jafdvfad‘/‘#Qs. (4.15.2)

If we let u be the internal energy per unit mass, then

DU D
B = pdV)—pdV— (4.15.3)

D
where we have used the conservation of mass equation D (pdV) = 0. The energy equation then becomes

Du ov;  0q;
U, % 4.15.4
P b i 9% O + pq ( )

where g, is heat supply per unit mass. In direct notation, the preceding equation reads

D
pD—L; = tr(TD) — divq + pgs. (4.15.5)
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ENTROPY INEQUALITY

Let n(x,t) denote the entropy per unit mass for the continuum. Then the entropy in a particle of volume dV is
pndV, where p is density. The rate of increase of entropy following the particle as it is moving is

D _ Dn D - Dn

D (pndV) = pdv Dr + Uy (pdV) = pdV Dr’ (4.16.1)
where we have used the equation (D/Dt)(pdV) = 0 in accordance with the conservation of mass principle.
Thus, per unit volume, the rate of increase of entropy is given by p(Dn/Dt). The entropy inequality law states
that the rate of increase of entropy in a particle is always greater than or equal to the entropy inflow across
its boundary surface plus entropy supply throughout the volume. That is,

Dn . /q 04
> 2
0 ; le( ) + , (4.16.2)

where O is absolute temperature, q is heat flux vector, and ¢, is heat supply.

Example 4.16.1

The temperature at x; = 0 of a body is kept at a constant ®; and that at x; = L is kept at a constant ®,. (a) Using the
Fourier heat conduction law q = —xV®, where k is a constant, find the temperature distribution. (b) Show that k
must be positive in order to satisfy the entropy inequality law.

Solution
(@) This is a one-dimensional steady-state temperature problem. The equation governing the temperature distri-
bution is given by [see Eq. (4.14.4)]:

e
a2 4.16.3
dax? ( )
Thus,
@:wmr@l_ w16
(b) With DF? — 0and gs= 0, the inequality [Eq. (4.16.2)] becomes
d |1 de d [1/de
0=~ {@( Kc/nﬂ “dx {@ (dxlﬂ (4.16.5)
Now,
LA [L(dey] _ |1 (d’® 1 (dey? _7Ki6_®2
da [@\adxa/)]  T|@\ad ] e*\da) |  “e?\ox)’
Therefore, we have
2
vo:(50) =0 (4.16.6)
02 \0x
Thus,
©20, (4.16.7)

and heat flows from high temperature to low temperature.
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ENTROPY INEQUALITY IN TERMS OF THE HELMHOLTZ ENERGY FUNCTION

The Helmholtz energy per unit mass A is defined by the equation
A=u—0n, 4.17.1)

where u and 7 are internal energy per unit mass and entropy per unit mass, respectively, and ® is ab-
solute temperature. From Eq. (4.17.1), u = A+ ®n, so that the energy equation, [Eq. (4.15.4)], i.e.,
Du _ 0v; 0Og;

— =T;——— , can be written as
p Di ij ax oy, + pgs

D77 . DA DO 3 6v,- 8q,-
PO D = ‘(PE“"E) gy o @172
D
and the entropy inequality, [Eq. (4.16.2)], i.e., pﬁ? > —div (%) + %, can be written as
Dn 9 (qi
PO, > ~O 5 (6> + pgs. (4.17.3)

Using Eq. (4.17.2), the inequality Eq. (4.17.3) becomes

_(,PA, ), PO\ i Oai . Oai 4id®
P Dt P Dt Y ij ox; pds = ox; O Ox; Pds-
That is,
DA DO q: 0O

—(p= =) +T;D; —EZ=>0 4.17.4
(th+anZ)+ Ut A=Y ( )

. . v
where D;; are components of the rate of deformation tensor and we have used the equation T} s T;;iD; for

X

symmetric tensor T;;. Equation (4.17.4) is the entropy law in terms of the Helmholtz energy function.

Example 4.17.1
In linear thermo-elasticity, one assumes that the Helmholtz function depends on the infinitesimal strain Ej; and
absolute temperature ®. That is,

A= A(E;,©). (4.17.5)
Derive the relationship between the stress tensor and the Helmholtz energy function.
Solution
From Eq. (4.17.5), we have
DA_ 0ADE; 0ADO
Dt 0F; Dt " 9O Dt~

For small strain DEU‘_EB %+% _1 %+% NE %+% = D;
"Dt 2Dt\oX, ' oX) 2\oX " oX) 2\ox ox) "

(4.17.6)
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DA 0A 0A DO

= Dj—r 4.17.4
Thus, DF = Dj 9E, +8® DE’ and the inequality ( ) becomes
0A 0A D® g 00
( 8E,/+ TU)D (p%-kpn)ﬁ—@a—x/_o. (4177)

This inequality must be satisfied for whatever values of D; and DD® It follows that

0A 0A g; 0O
= ) = = 1= > 17.
( paE/]% T,/) 0, < a®+pry) 0 and ©0x 0. (4.17.8)
That is,
0A
T == (4.17.9)
if PaE/j
n= 7%’ (4.17.10)
and
g, 00
- ZZ=>0. 17.
G)0)(/70 (4.17.11)

The first equation states that the stress is derivable from a potential function; the last inequality states that heat
must flow from high temperature to low temperature.

INTEGRAL FORMULATIONS OF THE GENERAL PRINCIPLES OF MECHANICS

In Section 3.15 of Chapter 3 and in Sections 4.4, 4.7, 4.15, and 4.16 of the current chapter, the field equations
expressing the principles of conservation of mass, moment of momentum, linear momentum, energy, and
the entropy inequality were derived using a differential element approach, and each of them was derived
whenever the relevant tensors (e.g., the rate of deformation tensor, the Cauchy stress tensors, and so on)
had been defined. In this section, all these principles are presented together and derived using the integral
formulation by considering an arbitrary fixed part of the material. In the form of differential equations, the
principles are sometimes referred to as local principles. In the form of integrals, they are known as global
principles. Under the assumption of smoothness of functions involved, the two forms are completely equiva-
lent, and in fact the requirement that the global theorem is to be valid for each and every part of the contin-
uum results in the same differential form of the principles, as shown in this section. The purpose of this
section is simply to provide an alternate approach to the formulation of the field equations and to group all
the field equations for a continuum in one section for easy reference. We begin by deriving the conservation
of mass equation by following a fixed part of the material.

(I) The conservation of mass principle states that the rate of increase of mass in a fixed part of a material is
always zero. That is, the material derivative of the mass in any fixed part of the material is zero:

D
fJ pdV = 0. 4.18.1)
Dt Vm
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In the preceding equation, p denotes density and V,, denotes the material volume that moves with the
material. Now,

D D Dp Ddv
— dV = —(pdV)| = —dV — | =0. 4.18.2
D’Jvmp Jvm:vL {Df v )} Jv( [D’ My } ( )

In the preceding equation, V.. denotes the so-called control volume, which instantaneously coincides with
the material volume V,,. In Section 3.13, we had [see Eq. (3.13.14)]

1 D 6\1,' o
WE V= —aXi =divv. (4'183)
Thus, Eq. (4.18.2) becomes
Dp .. _ o _
Jv, (Dt + pdiv V> dV=0 or Jla. <8t + dlv(pv))dV =0. (4.18.4)

Equation (4.18.4) must be valid for all V,, therefore, the integrand must be zero. That is,

Dp o dp . _
E—i—pdlvvfo or E+ div(pv) = 0. (4.18.5)
This is the same as Eq. (3.15.4).

To derive the other four principles by considering a fixed part of a material, we will need the divergence

theorem, which we state as follows without proof:

a .
J div VdV:J v-ndS or J ﬁdvzj vinids, (4.18.6)
ox;
Ve Se Ve U4 Se
. T
divTdV = | TndS or iay = | Tynav. 4.18.7)
Ve 5. v, Ox; S

For a discussion of this theorem, refer to the first two sections of Chapter 7.

In the preceding equations, v and T are vector and tensor, respectively; n is a unit outward normal vector,
and V. and S. denote control volume and the corresponding control surface. We note that using the divergence
theorem, the second equation in Eq. (4.18.4) becomes

QJ pdV = —J (pv-n)ds, (4.18.8)
V., S,

ot
which states that the rate of increase of mass inside a control volume must be equal the rate at which the mass
enters the control volume. Eq. (4.18.8) is often used as the starting point to derive Eq. (4.18.5) by using the
divergence theorem.
(II) The principle of linear momentum states that the forces acting on a fixed part of a material must equal
the rate of change of linear momentum of the part:

D
—J pvdV = J tdsS + J pBdV = J TndS + J pBdV, (4.18.9)
Dt )y, s, V. s, V.

where t, T, B and v are stress vector, stress tensor, body force per unit mass and velocity, respectively. Now

D D D Dv Dv
— dV = — dV)| = — (pdV —pdV| = —odV 4.18.10
DvampV Jv", [D’ (v )} Jv,,,=v {VD’ (pdV) + D’ ] Jv( D" ( )

where (D/Dt)(pdV) = 0 in accordance with the principle of conservation of mass.
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Using the divergence theorem, the right side of Eq. (4.18.9) becomes

J divTdV + J pBdV,
V. V.

so that Eq. (4.18.9) becomes

D
J {pj‘;—divT—pB}dV:O. 4.18.11)
Ve

This equation is to be valid for all V,, therefore,

pg:divT+pB. (4.18.12)

This is the same as Eq. (4.7.4).
(IIT) The principle of moment of momentum states that the moments about a fixed point of all the forces
acting on a fixed part of a material must equal the rate of change of moment of momentum of the part about

the same point:

xxdeV:J

(x x Tn)dS +J X x pBdV, (4.18.13)
Se

Ve

o)
— xxpvdV:JxxtdS+J
Dt }y, S, 2

where x is the position vector. Again, since (D/Dt)(pdV) = 0, the left side of Eq. (4.18.13) becomes

D D b
Ejvmx x pvdV = Jvm:v( [E (x x deV)} = Jv(. |:v x pvdV + x X E(pvdv)}

(4.18.14)
D Dv Dv
= — (pdV —pdV | = —pdV.
JV( [XXVDI(’O ) X X Dr” } JV(xx Dr”
Since x x Tn = eig,jkx,(Tn) ¢ = €i&iiXjTimny,, by using the divergence theorem we obtain
0¢iinXi Tiom
J x x TndS = efJ (685 Tion ) nndlS = eiJ ST gy, (4.18.15)
S, S, v, Oxy
Now, 0x;/0xy = Oim; therefore,
a'i' T m aT'm
J x X TndS = e,-J Mdv = J e,'S,','/{X/'—de +j e,-s,-,-ka,-dV
N v, O v P O v (4.18.16)
= [y, x x divTaV + [, e;ejTydV.
Thus, Eq. (4.18.13) becomes
Dv .
J X X —pdV = J x X (divT + pB)dV + J eigiiTigdV (4.18.17)
V. Dt V. V.

or

D .
J X X (p—v — divT — pB) dv + J e TydV = 0. (4.18.18)
Ve Dt v.
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D

But the linear momentum equation gives p—v —divT — pB =0. Thus, Eq. (4.18.18) becomes
Dt

fv('e,’EijkajdV =0, so that

8ijlchj =0. (41819)
From which we arrive at the symmetry of stress tensor. That is,
T, — T = 0, T — Tz = 0, T3 — T3 = 0. (41820)

This same result was obtained in Section 4.4.

(IV) The conservation of energy principle states that the rate of increase of kinetic energy and internal
energy in a fixed part of a material must equal the sum of the rate of work by surface and body forces, rate
of heat inflow across the boundary, and heat supply within:

D 2
fJ (pﬁv + pu)dV = J (t-v)dS +J pB-vdV — J (q-n)ds + J pgsdv, (4.18.21)
Dt )y \ 2 s, v, s, v,

where u is the internal energy per unit mass, q the heat flux vector, and g, the heat supply per unit mass. We
note that with n being an outward unit normal vector, (—q-n) represents rate of heat inflow. Again,
(D/Dt)(pdV) = 0; therefore, the left side becomes

DJ L dV—J D (v N pav (4.18.22)
Dt Vmp 2 v v (Dt \ 2 “)par o
Now,
J t-vds = J Tn-vdS = J n-T'vds = J div(T™v)av, (4.18.23)
Se Se S V.
Tiv;  OT; j A
div (TTv) = % = aax/,- v + Tﬁ% = (divT)-v + tr(TTVv), (4.18.24)

and f; q-ndS = [, (div q)dV, therefore, Eq. (4.18.21) becomes

D 2
[ P s (Vj + ”) dv = J [(div T + pB) - v + tr(TTVV) — div q + pg,]dV. (4.18.25)
JV, Vv,

But (div T + pB)-v = p(Dv/Dt)-v = (1/2)p(Dv?*/Dt), therefore, Eq. (4.18.25) becomes

D
J 0 F’:dv = [ [tr(TTVV) — div q + pgy]dV. (4.18.26)
v, v,

For this equation to be valid for all V., we must have

D
pD—L: = w(TVV) — div q + pgs. (4.18.27)

This is the same as Eq. (4.15.4).

(V) The entropy inequality states that the rate of increase of entropy in a fixed part of a material is not less
than the influx of entropy, q/®, across the surface of the part plus the entropy supply within the volume:
BJpndVZ - J%mdS—i— [@dv, (4.18.28)

Dt (€]
Vi Ve
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where 7 is the entropy per unit mass, and other symbols have the same meanings as before. Now, again,
(D/Dt)(pdV) = 0, therefore,

D Dn
— dV = —pdV. 4.18.29
D JVmpn L Dr” ( )

Using the divergence theorem, we have fs( (q/0) - ndS = fv( div(q/0®)dV; thus, the inequality (4.18.29)
becomes

Dn . (4 PYgs
> = —dV 4.18.
J‘V(bp th Jv( le( )dV + JV( dav, (4.18.30)
so that
Dn . (4 Pds
—_— > = — ) + . do.
th div (G)) (€] (4.18.31)

This is the same as Eq. (4.16.2).

We remark that later, in Chapter 7, we revisit the derivations of the integral form of the principles with
emphasis on Reynold’s transport theorem and its applications to obtain the approximate solutions of engineer-
ing problems using the concept of moving as well as fixed control volumes.

DETERMINATION OF MAXIMUM SHEARING STRESS AND THE
PLANES ON WHICH IT ACTS

This appendix gives the details of solving the following system of four nonlinear algebraic equations in
ni, no, nz and A:

2y [TT = 2(Tynf + Ton + T3m3)Ti] = ni A, 6
2my[T5 = 2(Tynt + Tomy + T3m3) o] = md, (ii)
2n3[T5 = 2(Tyn} + Tons + T3n3) T3] = nad, (iii)

n?+n§+n§:1. @iv)

These are Egs. (4.6.12), (4.6.13), (4.6.14), and (4.6.7) in Section 4.6 for the determination of the maximum
shearing stress and the plane(s) on which it acts. This system of equations determines all stationary values
of TS2 from Eq. (4.6.5), which is repeated here:

T2 = T2 + T2n2 + T2 — (Tyn? + Tords + Tand). )

From the stationary values of T2, the maximum and the minimum values of T are obtained. The following are
the details:

1. Case I Ty =T, = T5; = T. In this case, Egs. (i), (ii), and (iii) reduce to the following three equations:

2mT?> =ml, —=2mT?=mnl, —2m3T%=n;l

These equations show that (i), (ii), and (iii) are satisfied for arbitrary values of (nj,n,n3) with
4= —=2T% and n? + n3 + n3 = 1. Eq. (v) gives T2 = 0 for this case. This is to be expected because with
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Ty =T, = T, every plane is a principal plane having zero shearing stress on it. In this case, 72 = 0
is both the maximum and the minimum value of TS2 and of T,. We note that although we get a
value for the Lagrangian multiplier 4 = —2T?, it does not have any significance and can be simply
ignored.

2. Case II: Only two of the T;s are the same.
@ If T\ =T, #T3,

Equation (i) becomes 2n, [—Tf +2(T, — T3)T1n§] =nii. (vi)
Equation (ii) becomes 2n;, [—Tf +2(T) — T3)T1n§] = m. (vii)
Equation (iii) becomes 2n3 (T3 — 2T\ T3 + (2T1T3 — 2T3)n3| = n3/. (viii)

From the preceding three equations, we see that if n3 = 0, any (n1,72,0) with n3 +n} =11is a
solution with A = —2T12 and Tf =0 [from Eq. (v)]. We note that all these planes are principal
planes, including (1, 0, 0) and (0, 1, 0).

If n3 # 0, in addition to the obvious solution (0,0, £1), there are also solutions from the fol-
lowing [see Eqs. (vi) and (viii)]:

2[=T} +2(Ty — T5)Tyn3) = 2[T5 — 211 T3 + (211 T3 — 2T3)n3] = A
Rearranging the preceding equation, we have
[2(T1 — Tg)T] I’l%] = |:(T1 — T3)2 + Z(T] — Tx)Tgng],

which leads to

203 = 1,
and
2 (T T3 (T —T5)
12 =131 ) + 130 (11— ) 4 7o)’ = DTS (o T
Thus, if T} = T, # T3, the solutions are

(n1, n2,0), any ny,ny satisfying n? +n3 = 1,T> = 0, (ix)

and

(i —T3)° (T, —T3)°
(nl,nz,j:\/l/2>, any ny, n, satisfyingn%+n§+1/2=l, sz y) = y) . x)
(b) If T, = T3 # T}, the solutions are
0, ny, n3), for any ny, n3 satisfying n+n2=1and T?> =0 on those planes. (x1)
2 3 K

<:|: 1/2, nz,n3>, for any ny, n3 satisfying 1/2 + n% + n = 1 and

T,—T))? (T:—T))? (xif)
TSZ:( 2 7] ) :( 3 2 ) on those planes.
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(¢) If T3 =T, # T, the solutions are

(n1,0,n3), for any ny, ny satisfying 2 +n3 = 1 and T> = 0 on those planes, (xiii)
<n1,i 1/2,n3>, for any ny,n3 satisfying n? +1/2 +n3 = 1 and

T;— Ty  (T) —T,)? (xiv)
T?:( 3 7 2) :( ! y) 2) on those planes.

. Case III: All three T; are distinct. In this case, at least one of the three ny, ny, n3 must be zero. To show
this, we first assume that neither n; nor n, are zero; then Egs. (i) and (ii) give

2[T7 = 2(Thnj + Tan3 + T3n3)Th| = 2[T5 — 2(Tin} + Tanj + Tsn3)T»] = 4,
thus,

T7 — 15 = 2(Tin} + Tonj + T3n3) (Ty — T).
Since T # T»,
Ty + T, = 2(Tin; + Tanj + T3n3).

If n5 is also not zero, then we also have

Ty + T3 =2(Tinj + Tany + T3n3) and T, + T3 = 2(Tyn; + Tanj + T3nj).
In other words,

T\ +T, =T +T; =T, +T;.

from which we see that T = T, = T3, which contradicts the assumption that all three 7; are distinct.
Therefore, if all three T;s are distinct, at least one of the three ;s must be zero. If two of the n;s are zero,
we obviously have the following three cases:

@) (m,np,n3) = (£1,0,0), 2 = =277, T = 0. (xv)
(b) (n1,n2,n3) = (0,£1,0), 2 = =272, T, = 0. (xvi)
(¢) (n1,n2,n3) = (0,0, £1), 2 = =273, T, = 0. (xvii)

If only nj is zero, then Egs. (i) and (ii) give
2[17 — 2(Tyn} + Tom3) Ty = 2[T5 — 2(Thn} + Tn3)T»] = 4,
or
T7 —T5 = 2(Tim; + Ton3) (T1 — T2).
Since Ty # T» and n? + n} = 1, the preceding equation becomes
Ty + T, = 2(Tin + Tany) = 2[T1nj + To(1 — n7)].

Thus,

Ty — Ty =2n}(Ty —T,) or 1=2n.
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Therefore, n; = £4/1/2 and np = +1/1/2, i.e.,

2
(d) (n1,n0,n3) = +£(1/v/2,4+1//2,0), T> = @. (xviii)
Similarly, we also have
2
(e) (n1,m,n3) = £(1/v/2,0,£1/V2), T> = @. (xix)
2
(F) (1, n2m3) = (0, 1/v/2, £1/v/32), T :@A (xx)

PROBLEMS FOR CHAPTER 4

4.1 The state of stress at a certain point in a body is given by

123
[T}[2 4 5} MPa.
35 0l,

On each of the coordinate planes (with normal in e;, e,, ez directions), (a) what is the normal stress?
(b) What is the total shearing stress?

4.2 The state of stress at a certain point in a body is given by

(a) Find the stress vector at a point on the plane whose normal is in the direction of 2e; + 2e; + es.
(b) Determine the magnitude of the normal and shearing stresses on this plane.

4.3 Do the previous problem for a plane passing through the point and parallel to the plane
X1 — 2x + 3x3 = 4.

4.4 The stress distribution in a certain body is given by

0 100x;  —100x,
[T] = | 100x, 0 0 MPa.
—100x, 0 0

Find the stress vector acting on a plane that passes through the point (1 /2,7/3/2, 3) and is tangent to the
circular cylindrical surface x7 +x3 = 1 at that point.

4.5 Given Ty = 1 MPa, Ty, = —1 MPa, and all other T;; = 0 at a point in a continuum.
(a) Show that the only plane on which the stress vector is zero is the plane with normal stress in the e;
direction.
(b) Give three planes on which no normal stress is acting.
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4.6 For the following state of stress:
10 50 =50
] = [ 50 0 0 ] MPa.
=50 O 0

Find T, and T';, where e is in the direction of e, + 2e, + 3e; and e’ is in the direction of
e +e —es.

4.7 Consider the following stress distribution:

X2 [)’ 0
[T}—[/ﬁ 0 0},
0 0 0

where o and f§ are constants.
(a) Determine and sketch the distribution of the stress vector acting on the square in the x; = 0 plane
with vertices located at (0,1, 1), (0,—1,1), (0,1,—1), and (0,—1,—1).
(b) Find the total resultant force and moment about the origin of the stress vectors acting on the square
of part (a).
4.8 Do the previous problem if the stress distribution is given by T}, = ox3 and all other T;; = 0.
4.9 Do Prob. 4.7 for the stress distribution Ty = o, T1, = T>; = X3 and all other T;; = 0.

4.10 Consider the following stress distribution for a circular cylindrical bar:

0 —0X3 0Xp
[T] = | —0X3 0 0
Xy 0 0

(a) What is the distribution of the stress vector on the surfaces defined by (i) the lateral surface
13 +x% =4, (ii) the end face x; = 0, and (iii) the end face x; = [?
(b) Find the total resultant force and moment on the end face x; = L.

4.11 An elliptical bar with lateral surface defined by x3 + 2x3 = 1 has the following stress distribution:

0 —2X3 X2
[T] = —2)(3 0 0
X2 0 0

(a) Show that the stress vector at any point (x, x2, x3) on the lateral surface is zero.

(b) Find the resultant force, and resultant moment, about the origin O of the stress vector on the left end
face x; = 0.

Note:

2 T [ > T
x5dA = —— and X3dA = ——.
J a2 )7 82
4.12 For any stress state T we define the deviatoric stress S to be S = T — (Ty/3)L, where Ty is the first
invariant of the stress tensor T.
(a) Show that the first invariant of the deviatoric stress vanishes.
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(b) Evaluate S for the stress tensor:

6 5 -2
T]=100] 5 3 4 |kPa.
2 4 9

(c) Show that the principal directions of the stress tensor coincide with those of the deviatoric stress tensor.

4.13 An octahedral stress plane is one whose normal makes equal angles with each of the principal axes of stress.
(a) How many independent octahedral planes are there at each point?
(b) Show that the normal stress on an octahedral plane is given by one-third the first stress invariant.
(c) Show that the shearing stress on the octahedral plane is given by
,71/2

1
To=3 (T =T + (T~ T5) + (T3 = T0)°|

where T, T,, T3 are principal values of the stress tensor.

4.14 (a) Let m and n be two unit vectors that define two planes M and N that pass through a point P. For an
arbitrary state of stress defined at the point P, show that the component of the stress vector t, in the
n direction is equal to the component of the stress vector t, in the m direction.
(b) If m = e; and n = e,, what do the results of (a) reduce to?

4.15 Let m be a unit vector that defines a plane M passing through a point P. Show that the stress vector on
any plane that contains the stress traction t;, lies in the M plane.

4.16 Let t,, and t, be stress vectors on planes defined by the unit vector m and n, respectively, and pass
through the point P. Show that if k is a unit vector that determines a plane that contains t,,, and t,, then
tx is perpendicular to m and n.

4.17 Given the function f(x,y) = 4 — x> — y?, find the maximum value of f subjected to the constraint that
xX+y=2

4.18 True or false:
(i) Symmetry of stress tensor is not valid if the body has an angular acceleration.
(ii) On the plane of maximum normal stress, the shearing stress is always zero.

4.19 True or false:
(i) On the plane of maximum shearing stress, the normal stress is always zero.
(ii) A plane with its normal in the direction of e; + 2e, — 2e; has a stress vector t = 50e;+
100e, — 100e3 MPa. 1t is a principal plane.

4.20 Why can the following two matrices not represent the same stress tensor?

100 200 40 40 100 60
200 O 0 | MPa | 100 100 O | MPa.
40 0 =50 60 0 20

4.21 Given:

0 100 0
[T]=|100 0 0| MPa.
0 0 0
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(a) Find the magnitude of shearing stress on the plane whose normal is in the direction of e; + e;.
(b) Find the maximum and minimum normal stresses and the planes on which they act.
(c) Find the maximum shearing stress and the plane on which it acts.

4.22 Show that the equation for the normal stress on the plane of maximum shearing stress is

(Tn)max + (T”)min
2

T, =

4.23 The stress components at a point are given by Ty = 100 MPa, T, = 300 MPa, T3z = 400 MPa,
T, =Ti3=Ty3=0.
(a) Find the maximum shearing stress and the planes on which they act.
(b) Find the normal stress on these planes.
(c) Are there any plane(s) on which the normal stress is 500 MPa?

4.24 The principal values of a stress tensor T are Ty = 10 MPa, T, = —10 MPa, and T3 = 30 MPa. If the

matrix of the stress is given by
Tn 0 0
M=]0 1 2 |x10MPa,

0 2 T3
find the values of T;; and Txs.
4.25 If the state of stress at a point is
300 0 0
M=] 0 -200 0 |kPa,
0 0 400

find (a) the magnitude of the shearing stress on the plane whose normal is in the direction of
(2e; + 2e; + e3) and (b) the maximum shearing stress.

4.26 Given:

1 4 0
[T]:[4 1 0| MPa.
00 1

(a) Find the stress vector on the plane whose normal is in the direction of e; + e;.

(b) Find the normal stress on the same plane.

(c) Find the magnitude of the shearing stress on the same plane.

(d) Find the maximum shearing stress and the planes on which this maximum shearing stress acts.

4.27 The stress state in which the only nonvanishing stress components are a single pair of shearing stresses
is called simple shear. Take T\, = T5; = 7 and all other T;; = 0.
(a) Find the principal values and principal directions of this stress state.
(b) Find the maximum shearing stress and the planes on which it acts.

4.28 The stress state in which only the three normal stress components do not vanish is called a triaxial state
of stress. Take Ty = oy, T, = 03, T33 = o3 with 6; > 6, > o3 and all other T;; = 0. Find the maxi-
mum shearing stress and the plane on which it acts.
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4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36
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Show that the symmetry of the stress tensor is not valid if there are body moments per unit volume, as in
the case of a polarized anisotropic dielectric solid.

Given the following stress distribution:
X1 +x2 T]Q(X], XQ) 0
[T] = le(xl, XQ) X1 — 2)(2 0 s
0 0 X2

find T, so that the stress distribution is in equilibrium with zero body force and so that the stress vector
on the plane x; = 1 is given by t = (1 +xz2)e; + (5 — x2)es.

Consider the following stress tensor:

X2 —X3 0

M=a|—-x 0 —x].

0 —x2 T3
Find an expression for 733 such that the stress tensor satisfies the equations of equilibrium in the pres-
ence of the body force B = —ges;, where g is a constant.
In the absence of body forces, the equilibrium stress distribution for a certain body is

T, = AX27 T, =T, = X1, Ty, = Bx; + CX27 T%% = (Tll + Tzz)/27 all other T,'j =0.

Also, the boundary plane x; — x, = 0 for the body is free of stress. (a) Find the value of C and (b) deter-
mine the value of A and B.

In the absence of body forces, do the following stress components satisfy the equations of equilibrium?
To = o[+ (5 - 2)]. Ta=a[d +v( —2)]. Tw=ar(d+3).
Tio =Ty = 2ovxixp, Ti3=T3 =0, To3=Txn=0.

Repeat the previous problem for the stress distribution:

X1+x 2x—xp O
T =0|2xy—x2 x1—=3x 0].
0 0 X1

Suppose that the stress distribution has the form (called a plane stress state)

Tii(x1, x2) Tia(xi, x2) 0
[T] = T12(X1, Xz) T22(X1, Xz) 0f.
0

0 0

(a) If the state of stress is in equilibrium, can the body forces be dependent on x3?

(b) Demonstrate that if we introduce a function ¢(x;, x;) such that T, = 8290 / ax%, Ty = 8230/
Ox? and Typ = — 0%/ 0x10x,, then the equations of equilibrium are satisfied in the absence of body
forces for any ((x;, x) that is continuous up to the third derivatives.

In cylindrical coordinates (r, 0, z), consider a differential volume of material bounded by the three pairs of
faces:r =randr=r+dr; 0 =0and 0 = 0 + d0; and z = z and z = z + dz. Derive the r and 0 equa-
tions of motion in cylindrical coordinates and compare the equations with those given in Section 4.8.
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4.37 Verify that the following stress field satisfies the z-equation of equilibrium in the absence of body forces:

z  3rz Az z 37 ro 3rz?
T,=A PR ) Too =R T..=-A E+F , T,=-A E+F , To=T,4=0.

where R? = 1% + 2%
4.38 Given the following stress field in cylindrical coordinates:

3Pzr? 3Pz 3Pz 2 2 9
Tr}'zfﬁy Tzzzfﬁ7 Tr‘zzfﬁv T00:T1'0:Tz():07 R =r"+z°.

Verify that the state of stress satisfies the equations of equilibrium in the absence of body forces.

4.39 For the stress field given in Example 4.9.1, determine the constants A and B if the inner cylindrical wall
is subjected to a uniform pressure p; and the outer cylindrical wall is subjected to a uniform pressure p,,.

4.40 Verify that Egs. (4.8.4) to (4.8.6) are satisfied by the equilibrium stress field given in Example 4.9.2 in
the absence of body forces.

4.41 In Example 4.9.2, if the spherical shell is subjected to an inner pressure p; and an outer pressure p,,
determine the constant A and B.

4.42 The equilibrium configuration of a body is described by

)C]:]6X1, Xzi—%Xz, X3:—%X3
and the Cauchy stress tensor is given by Ty; = 1000 MPa., and all other T;; = 0.
(a) Calculate the first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the
plane whose undeformed plane is the e;-plane.
(b) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the
same plane.

4.43 Can the following equations represent a physically acceptable deformation of a body? Give reason(s).

1 1
X1 = —EXl, Xy = §X37 X3 = —4X2.

4.44 The deformation of a body is described by
X1 :4-)(17 )62:—(1/4))(27 X3 :—(1/4)X3

(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the
deformed area of the e;-face of the cube?

(b) If the Cauchy stress tensor is given by Ty = 100 MPa, and all other T;; = 0, calculate the first
Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the plane whose unde-
formed plane is the e;-plane.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the
plane whose undeformed plane is the e;-plane. Also calculate the pseudo-differential force for the
same plane.

4.45 The deformation of a body is described by

X1 =X +kX3, =X, x3=2X;.



200 CHAPTER 4 Stress and Integral Formulations of General Principles

(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the
deformed area of the e; face of the cube?

(b) If the Cauchy stress tensor is given by T, = T5; = 100 MPa, and all other T;; = 0, calculate the
first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the plane whose
undeformed plane is the e;-plane and compare it with the Cauchy stress vector in the deformed state.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the
plane whose undeformed plane is the e;-plane. Also calculate the pseudo-differential force for the
same plane.

4.46 The deformation of a body is described by
X1 =2X1, x2=2X2, X3 =2X3

(a) For a unit cube with sides along the coordinate axes, what is its deformed volume? What is the
deformed area of the e; face of the cube?
(b) If the Cauchy stress tensor is given by

100 O 0
0 100 O | Mpa,
0 0 100

calculate the first Piola-Kirchhoff stress tensor and the corresponding pseudo-stress vector for the
plane whose undeformed plane is the e;-plane and compare it with the Cauchy stress vector on
its deformed plane.

(c) Calculate the second Piola-Kirchhoff tensor and the corresponding pseudo-stress vector for the
plane whose undeformed plane is the e;-plane. Also calculate the pseudo-differential force for the
same plane.



CHAPTER

The Elastic Solid

So far we have studied the kinematics of deformation, the description of the state of stress, and five basic
principles of continuum physics (see Section 4.18): the principle of conservation of mass, the principle of
linear momentum, the principle of moment of momentum, the principle of conservation of energy and the
entropy inequality. All these relations are valid for every continuum; indeed, no mention was made of any
material in the derivations.

However, these equations are not sufficient to describe the response of a specific material due to a given
loading. We know from experience that under the same loading conditions, the response of steel is different
from that of water. Furthermore, for a given material, it varies with different loading conditions. For example,
for moderate loadings the deformation in steel caused by the application of loads disappears with the removal
of the loads. This aspect of the material behavior is known as elasticity. Beyond a certain level of loading,
there will be permanent deformations or even fracture exhibiting behavior quite different from that of
elasticity.

In this chapter, we shall study idealized materials that model the elastic behavior of real solids. The con-
stitutive equations for an isotropic linearly elastic model and some selected methods of solutions to boundary
value problems in elasticity, including plane stress and plane strain solutions, as well as solutions by potential
functions, are presented in Part A, followed by the formulations of the constitutive equations for anisotropic
linearly elastic models in Part B and some examples of the incompressible isotropic nonlinearly elastic model
in Part C.

MECHANICAL PROPERTIES

We want to establish some appreciation of the mechanical behavior of solid materials. To do this, we perform
some thought experiments modeled after real laboratory experiments.

Suppose that from a block of material we cut out a slender cylindrical test specimen of cross-sectional
area A. The bar is now statically tensed by an axially applied load P, and the elongation A¢, over
some axial gage length ¢, is measured. A typical plot of tensile force against elongation is shown in
Figure 5.1-1. Within the linear portion OA (called the proportional range), if the load is reduced to zero
(i.e., unloading), then the line OA is retraced back to O and the specimen has exhibited an elasticity.
Applying a load that is greater than A and then unloading, we typically traverse OABC and find that
there is a “permanent elongation” OC. Reapplication of the load from C indicates elastic behavior
with the same slope as OA but with an increased proportional limit. The material is said to have
work-hardened.

Copyright © 2010, Elsevier Ltd. All rights reserved.
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e e ]

FIGURE 5.1-1

The load-elongation diagram in Figure 5.1-1 depends on the cross-section of the specimen and the axial
gage length £. To have a representation of material behavior that is independent of specimen size and vari-
ables introduced by the experimental setup, we may plot the stress ¢ = P/A,, where A, is the undeformed
area of the cross-section versus the axial strain &, = A¢/{, as shown in Figure 5.1-2. In this way, the test
results appear in a form that is not dependent on the specimen dimensions. The slope of the line OA will
therefore be a material coefficient that is called the Young’s modulus (or modulus of elasticity). We denote
this modulus by Ey, that is,

E =2, (.1.1)
€
P
6= P/A, .

[
A —d ¢
4

P

0 g=AL/C

FIGURE 5.1-2

The numerical value of Ey for steel is around 207 GPa (30 x 10° psi). This means that for a steel bar of
cross-sectional area 32.3 cm? (5 in.%) that carries a load of 667,000 N (150,000 lbs), the axial strain is
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_667000/(32.3 x 10°*) 102
- 207 x 10° T

’a

As expected, the strains in the linear elastic range of metals are quite small, and we can, therefore, use the
infinitesimal strain theory to describe the deformation of metals.

In the tension test, we can also measure change in the lateral dimension. If the bar is of circular cross-
section with an initial diameter d, it will remain, for certain idealized metal, circular, decreasing in diameter
as the tensile load is increased. Letting ¢, be the lateral strain (equal to Ad/d), we find that the ratio —e /e, is a
constant if the strains are small. We call this constant Poisson’s ratio and denote it by v. A typical value of v
for steel is 0.3.

So far we have only been considering a single specimen out of the block of material. It is conceivable that
the modulus of elasticity Ey as well as Poisson’s ratio v may depend on the orientation of the specimen rela-
tive to the block. In this case, the material is said to be anisotropic with respect to its elastic properties. Aniso-
tropic properties are usually exhibited by materials with a definite internal structure, such as wood or a rolled
steel plate, or composite materials and many biological tissues. If the specimens, cut at different orientations
at a sufficiently small neighborhood, show the same stress-strain diagram, we can conclude that the material
is isotropic with respect to its elastic properties in that neighborhood.

In addition to a possible dependence on orientation of the elastic properties, we may also find that they
may vary from one neighborhood to the other. In this case, we call the material inhomogeneous. If there is
no change in the test results for specimens at different neighborhoods, we say the material is
homogeneous.

Previously we stated that the circular cross-section of a bar can remain circular in the tension test. This is
true when the material is homogeneous and isotropic with respect to its elastic properties.

Other characteristic tests with an elastic material are also possible. In one case, we may be interested in
the change of volume of a block of material under hydrostatic stress o for which the stress state is

Ty = 69y (5.1.2)

In a suitable experiment, we measure the relation between o, the applied stress, and e, the change in vol-
ume per initial volume [also known as dilatation; see Eq. (3.10.2)]. For an elastic material, a linear relation
exists for small e, and we define the bulk modulus k as

[

k= (5.1.3)

e
A typical value of k for steel is 138 GPa (20 x 10° psi).

A torsion experiment yields another elastic constant. For example, we may subject a cylindrical steel bar
of circular cross-section of radius r to a twisting moment M, along the cylinder axis. The bar has a length ¢
and will twist by an angle 6 upon the application of the moment M,. A linear relation between the angle of
twist 6 and the applied moment M, will be obtained for small 8. We define a shear modulus u as

ML

=L 1.4
I8 0 (5.1.4)

where [, = ot /2 (the polar area second moment). A typical value of u for steel is 76 GPa (11 x 10° psi).

For an anisotropic elastic solid, the values of these material coefficients (or material constants) depend on
the orientation of the specimen prepared from the block of material. Inasmuch as there are infinitely many
orientations possible, an important and interesting question is how many coefficients are required to define
completely the mechanical behavior of a particular elastic solid. We answer this question in the following sec-
tion for a linearly elastic solid.
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LINEARLY ELASTIC SOLID

Within certain limits, the experiments cited in Section 5.1 have the following features in common:

1. The relation between the applied loading and a quantity measuring the deformation is linear.
2. The rate of load application does not have an effect.

3. Upon removal of the loading, the deformations disappear completely.

4. The deformations are very small.

Characteristics 1-4 are now used to formulate the constitutive equation of an ideal material, the linearly elas-
tic or Hookean elastic solid. The constitutive equation relates the stress to relevant quantities of deformation.
In this case, deformations are small and the rate of load application has no effect. We therefore can write

T = T(E) (5.2.1)

where T is the Cauchy stress tensor and E is the infinitesimal strain tensor, with T(0) = 0. If, in addition, the
function is to be linear, then we have, in component form,

Ti=CunEu+Chunko+.......... + Cri33Es3,
Tp=ConEn+CopEp+...oooon 0. + Ci233E33,
........................................ (5.2.2)
T3 = CynEn +CyhnEp+oooeoannt + C3333E33.
The preceding nine equations can be written compactly as
Ty = CiuE. (5.23)

Since T; and E;; are components of second-order tensors, from the quotient rule discussed in Section 2.19, we
know that Cjj; are components of a fourth-order tensor, here known as the elasticity tensor. The values of
these components with respect to the primed basis e/ and the unprimed basis e; are related by the transforma-
tion law (see Section 2.19)

lﬁ'k[ = Qmi anQr‘stlCmn)'s~ (524)

If the body is homogeneous, that is, the mechanical properties are the same for every particle in the body,
then C;j; are independent of position. We shall be concerned only with homogeneous bodies. There are 81
coefficients in Eq. (5.2.2). However, since E;; = Ej;, we can always combine the sum of the two terms, such
as C1112E12 + Ci121E21, into one term, (Cyy112 + Ci121)E12, so that (Cy112 4+ Ci121) becomes one independent
coefficient. Equivalently, we can simply take Cjjj2 = Cyj2;. Thus, due to the symmetry of the strain tensor,
we have

Ciii = Cijii- (5.2.5)

The preceding equations reduce the number of independent C;j; from 81 to 54. We shall consider only the
case where the stress tensor is symmetric, i.e.,

T =T;. (5.2.6)
As a consequence,

Cii = Ciina- (5.2.7)
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The preceding equations further reduce the number of independent coefficients by 18. Thus, we have, for
the general case of a linearly elastic body, a maximum of 36 material coefficients.

Furthermore, we assume that the concept of “elasticity” is associated with the existence of a stored energy
function U(E;;), also known as the strain energy function, which is a positive definite function of the strain
components such that

ou
Ty = =—.
7 8 EI]

(5.2.8)

With such an assumption [the motivation for Eq. (5.2.8) is given in Example 5.2.1], it can be shown (see
Example 5.2.2) that
Cijit = Cuij- (5.2.9)

Equations (5.2.9) reduce the number of elastic coefficients from 36 to 21.

Example 5.2.1
(a) In the infinitesimal theory of elasticity, both the displacement components and the components of displace-
ment gradient are assumed to be very small. Show that under these assumptions, the rate of deformation ten-
sor D can be approximated by DE /Dt, where E is the infinitesimal strain tensor.

(b) Show that if Tjis given the T; = CywEw [Eq. (5.2.3)], then the rate of work done by the stress components to
change the volume and shape of a material volume is given by

DU
Ps = i (5.2.10)
where U is the strain energy function defined by Eq. (5.2.8).
Solution
(a) From 2E; = (Qu;/0X; + du;/0X;), we have
DEy 0 Du; 0 Dy 0v; = 0
Dt —0X; Dt ~ oX; Dt 09X, 0X’ ©2.11)
Since x; = x;(X1, X2, X3, 1), we can obtain
ovi 0v; 0V, Xy = OV OXm
— o= — . 2.12
X "X 0%y DX Oy OX; (©.2.12)
Now, from x,, = X, + un, Where u,, is the infinitesimal displacement components, we have
OXm , Ol OXm , OUpm
8_)(,75m’+ ax and X =0 + % (56.2.13)
Thus, neglecting small quantities of higher order, we have
DEj 9vi 9v; 9vio Ov o OV 0vi_ .
2 ot~ ox " ox, 76xm5m’+6xm5m' =% o = 2D;. (5.2.14)
That is,
DE; _ D;. (5.2.15)

Dt



206

CHAPTER 5 The Elastic Solid

(b) In Section 4.12, we derived the formula for computing the stress power, that is, the rate of work done by the

stress components to change the volume and shape of a material volume as [see Eq. (4.12.4)]

Ps = T;Dj. (5.2.16)
Using Eq. (5.2.15), we have
DE;
Ps=Tj Dt (5.2.17)

Now, if Ty = 0U/OE; [Eq. (5.2.8)], then

U DE; ou (8/:‘,-) <8U) DU
po——— N _Z= (2= = (== -, (5.2.18)
’ 85‘/’ Dt 35/’1 ot Xi=fixed ot Xi=fixed Dt

That is, with the assumption given by Eq. (5.2.8), the rate at which the strain energy increases is
completely determined by Ps, the rate at which the stress components are doing work to change the
volume and shape. Thus, if Psis zero, then the strain energy remains a constant (i.e., stored). This result
provides the motivation for assuming the existence of a positive definite energy function* through
Eq. (5.2.8).

Example 5.2.2
Show that if T;; = 0U/OEj for a linearly elastic solid, (a) the components of the elastic tensor satisfies the condition
Cixi = Cuijs (5.2.19)
and (b) the strain energy function U is given by
1 1
U=5Tjkj =5 Cinkjtu. (5.2.20)

Solution
(a) For a linearly elastic solid, Tj = Cj Ex, therefore,

oTj
a—E,Us = Cjis. (5.2.21)
Thus, from Eq. (5.2.8), i.e., Tj = 0U/9E;, we have
o°U U
Cirs = m = m = Csj, (5.2.22)
therefore,
Cixr = Cyiy (5.2.23)

*In this chapter we define the concept of elasticity without considering any thermodynamic effects. In thermo-elastic theory, the
strain energy function is identified with the internal energy function in isothermal motions and with the Helmholtz free energy func-
tion in isentropic motions.
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(b) From T; = 0U/OE;, we have

TdE; = g—éj/jdﬂj = du, (5.2.24)
ie.,
dU = CyEdEj. (5.2.25)
Changing the dummy indices, we obtain
adu = CuyEjdEy. (5.2.26)
But Cj = Cjjis; therefore,
dU = CyyEjdEy. (5.2.27)

Adding Egs. (5.2.25) and (5.2.27), we obtain
2dU = Cjyy(EwdEj + EjdEq) = Cid (EjEw),

from which we obtain

1
U = 5 CiuEyEi (5.2.28)

In the following, we first show that if the material is isotropic, then the number of independent coefficients
reduces to only 2. Later, in Part B, the constitutive equations for anisotropic elastic solid involving 13 coeffi-
cients (monoclinic elastic solid), nine coefficients (orthotropic elastic solid), and five coefficients (trans-
versely isotropic solid) will be discussed.

ISOTROPIC LINEARLY ELASTIC SOLID

ISOTROPIC LINEARLY ELASTIC SOLID

A material is said to be isotropic if its mechanical properties can be described without reference to directions.
When this is not true, the material is said to be anisotropic. Many structural metals such as steel and alumi-
num can be regarded as isotropic without appreciable error.

We had, for a linearly elastic solid, with respect to the e; basis,

Tyj = CiwEn, (5.3.1)
and with respect to the e/ basis,
Ti//' = Ci,jklElil‘ (5.3.2)

If the material is isotropic, then the components of the elasticity tensor must remain the same, regardless
of how the rectangular basis is rotated and reflected. That is,

C,-//-k, = Ciju, (5.3.3)
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under all orthogonal transformations of basis. A tensor having the same components with respect to every
orthonormal basis is known as an isotropic tensor. For example, the identity tensor I is obviously an isotropic
tensor since its components J,; are the same for any Cartesian basis. Indeed, it can be proved (see Prob. 5.2)
that except for a scalar multiple, the identity tensor J;; is the only isotropic second-order tensor. From this iso-
tropic second-order tensor J,;; we can form the following three isotropic fourth-order tensors (see product rules
in Section 2.19):

Ajt = 6;j0, By = 0idy  and  Hyyy = 0ydj. (5.34)

In Part B of this chapter, we shall give the detail reductions of the general C;j, to the isotropic C;;,. Here,
as a shortcut to the isotropic case, we shall express the elasticity tensor C;, in terms of Ay, By, and Hjy.
That is,

Cija = Miju + 0Bty + PHijia, (53.5)
where A, o and f§ are constants. Using Eqgs. (5.3.4) and (5.3.5), Eq. (5.3.1) becomes
T;j = CijuEn = A9;j0uExn + 00iudyEy + PoidjEn. (5.3.6)
Thus,
Tyj = 2Eud;; + (o + B)Ey;, (5.3.7)
or, denoting (« + f§) by 2u, we have
Tij = Jedij + 2uEj;, (5.3.8)
where
e = Ey, (5.3.9)

denotes the dilatation. In direct notation, Eq. (5.3.8) reads

T = Jel + 24E. (5.3.10)

In long form, Eq. (5.3.8) or (5.3.10) reads
Tiy = AEn + Ex + Es3) + 2uEs 1, (5.3.11)
Tyy = ME1y + Exy + Es3) + 2uEn, (5.3.12)
Ts3 = A(E\1 + Ex + E33) + 2uE33, (5.3.13)
Ty, = 2uE, (5.3.14)
T3 = 2uE s, (5.3.15)
Toy = 2uEqs. (5.3.16)

Equation (5.3.8) or (5.3.10) are the constitutive equations for an isotropic linearly elastic solid. The two
material constants 4 and p are known as Lame’s coefficients or Lame’s constants. Since E;; are dimensionless,
4 and p are of the same dimension as the stress tensor, force per unit area. For a given real material, the values
of Lamé’s constants are to be determined from suitable experiments. We shall have more to say about this
later.
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Example 5.3.1
(a) For an isotropic Hookean material, show that the principal directions of stress and strain coincide and (b) find a
relation between the principal values of stress and strain.

Solution
(a) Let n; be an eigenvector of the strain tensor E (i.e., Eny = E;ny). Then, by Hooke’s law, Eq. (5.3.10), we have

Tn; = 2uEn; + Jelny = (2uf; + Ze)ny.
Therefore, ny is also an eigenvector of the tensor T.
(b) Let £, E5, E3 be the eigenvalues of E; then e = £7 + E» + £3 and Egs. (5.3.11), (5.3.12), and (5.3.13) give

T1 = 2/1E1 —+ A(E1 + Eg —+ Eg),
To = 2uky + /l(E1 + B+ E3),
T3 = 2ukEs + /L(El + E, + E3)

Example 5.3.2
For an isotropic material, (a) find a relation between the first invariants of stress and strain, and (b) use the result of
part (a) to invert Hooke’s law so that strain is a function of stress.

Solution
(a) By contracting the indices in Eq. (5.3.8), [i.e., adding Egs. (5.3.11), (5.3.12), and (5.3.13)], we obtain
Tk = Cu+ 32) B = (2u+ 32)e. (5.3.17)
(b) With
T

Eqg. (5.3.10) can be inverted to be

1 v
E=—-T-————1 5.3.19
21 2u(2p+34) ( )

YOUNG’S MODULUS, POISSON’S RATIO, SHEAR MODULUS, AND
BULK MODULUS

Equation (5.3.8) expresses the stress components in terms of the strain components. This equation can be
inverted, as was done in Example 5.3.2, to give

1 A

Ei=—|T;————
T 2u Y 34+ 2u

Tidy |- (5.4.1)
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We also have, from Eq. (5.3.18),

1

If the state of stress is such that only one normal stress component is not zero, we call it a uniaxial stress state.
The uniaxial stress state is a good approximation of the actual state of stress in the cylindrical bar used in the
tensile test described in Section 5.1. If we take the axial direction to be in the e, direction, the only nonzero
stress component is T; then Eq. (5.4.1) gives

1 A A4u
En=—|Th——2 1| =—2"E 1, 543
1 2#{ L YR 11} TR (5.4.3)
1 A / A
Eyn=Ep=—|0—7-—-T|=———7+—7—T1=—+—E, 5.4.4
33 =Ep 2#{ 3+ 11} ORI R (5.4.4)
and

The ratio Ty,/E;, corresponding to the ratio g/e, of the tensile test described in Section 5.1, is Young’s
modulus or the modulus of elasticity Ey. Thus, from Eq. (5.4.3),

(34 +2pu)

E
Y it

(5.4.6)

The ratio —E,,/E;; and —E53/E; corresponding to the ratio —e /¢, of the same tensile test is Poisson’s
ratio, denoted by v. Thus, from Eq. (5.4.4),

A
=—. 5.4.7
" T2 1 p) G47
Using Egs. (5.4.6) and (5.4.7), we can write Eq. (5.4.1) in the conventional engineering form
1
Ey = T [T11 — v(T2 + T33)], (5:4.8)
Y
1
Ey = o (T2 — v(T33 + T11)], (5.4.9)
Y
1
E33 = F [T33 — V(T11 + Tzz)], (5410)
Y
1
Ep=—Thp, (5.4.11)
2u
1
Ey3 =T, (5.4.12)
2p
1
Ey; = — Tas. (5.4.13)
2u

Even though there are three material constants in Egs. (5.4.8) to (5.4.13), it is important to remember that
only two of them are independent for an isotropic material. In fact, by eliminating A from Egs. (5.4.6) and
(5.4.7), we have the important relation:
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Tt (5.4.14)
Using this relation, we can also write Eq. (5.4.1) as
1 <
E,'/' = —_= [(1 + V)T,:/' — VTkkO,'/} . (5415)

Ey

If the state of stress is such that only one pair of shear stresses is not zero, it is called a simple shear stress
state. The state of stress may be described by T1, = T»; = 7, and Eq. (5.4.11) gives

T
Ep=E=-—. (5.4.16)
2p
Defining the shear modulus G as the ratio of the shearing stress t in simple shear to the small decrease in
angle between elements that are initially in the e; and e, directions, we have

T

= 4.1
2E» (5417)

Comparing Eq. (5.4.17) with Eq. (5.4.16), we see that the Lamé’s constant u is also the shear modulus G.
A third stress state, called the hydrostatic state of stress, is defined by the stress tensor T = ¢l In this
case, Eq. (5.4.2) gives

o 30
S 2u+34°

(5.4.18)

As mentioned in Section 5.1, the bulk modulus k is defined as the ratio of the hydrostatic normal stress ¢
to the unit volume change. We have

k=—=""T"C 42 (5.4.19)
e 3

From Egs. (5.4.6), (5.4.7), (5.4.14), and (5.4.19), we see that the Lamé’s constants, Young’s modulus, the
shear modulus, Poisson’s ratio, and the bulk modulus are all interrelated. Only two of them are independent
for an isotropic, linearly elastic material. Table 5.1 expresses the various elastic constants in terms of two
basic pairs. Table 5.2 gives some typical values for some common materials.

Example 5.4.1

A material is called incompressible if there is no change of volume under any and all states of stresses. Show that for
an incompressible isotropic linearly elastic solid with finite Young's modulus Ey, (a) Poisson’s ratio v=1/2, (b) the
shear modulus p=Ey/3, and (¢c) k— 0o, L — oo and k — 1 =2u/3.

Solution
(a) From Eq. (5.4.15),

1 1
Ei= (1497 3vTul == (1 - 2T, (5.4.20)
Ey EY

Now, E; is the change of volume per unit volume (the dilatation) and T; is the sum of the normal stresses.
Thus, if the material is incompressible, then v = 1/2.
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_Ey Ey 1 3 . -
(h) v= 2—# — 1, therefore, Z =1 +§ =% from which pu =

Ey
~.

(c) For the hydrostatic state of stress T; = ad;, Ty = 30, Eq. (5.4.20) becomes

For an incompressible solid, v — 1/2; thus, k — oco. Now, k = A +23—'u; therefore, A — co. But k — 4 =
which is a finite quantity.

3(1 - 2v)

E
4 :EE/{.
e

(5.4.21)

2u
3 ’

Table 5.1 Conversion of Constants for an Isotropic Elastic Solid
A s Ey v k
AR p u (37 + 2u) - 1+2,
T itn 224 p) 3
A v ] A1 —2v) AL +v)(1—2v) , ALl +v)
2v y 3y
3(k—2) Ok(k — 1) A
Ak /. _— k
' 8 2 (Bk—1) (Bk—1)
u(Ey —2p) Ey BEy
, E T E ——1 —
HoEr 3u—Ey g v 2u 3@u-Ey)
2uy 2u(l+v)
’ 2u(l ik Sl IR0
m v 1-2v) s u(l+v) Y 31-2v)
2 Oku 3k —2u
, k k—= k
. 34 K Bk +p) 6k +2u
VEy Ey EY
Ey, _ — E -—
nv A1 —2v 2(1 +v) Y v 3(1—2v)
3(kEy — 3K? _
E, k (KEy ) 3kEy £, ,_ Bk—Ey) P
(Ey — 9k) (9k — Ey) 6k
3kv 3k(1 —2v)
k _ 3k(1-2 k
v T+ 2(1+) (1-2v) v
Ey u(4, Ey)Ey
A, E / A Ey)* E ————1 ’
. Hk E) v 210 EY) 3Bui Er) — B]
u(i.Ey) = {43@ — B+ (3 — B+ 8m}/4.
Note: (1) Asv — 1/2,k — oo, A—o0,u — Ey/3, (2) it is generally accepted that compressive hydrostatic stress state will not lead to an
increase in volume, therefore, v <1/2, (3) for isotropic materials whose transverse strain is negative when subjected to the action of
simple extension, the Poisson’s ratio is: 0 < v < 1/2 and (4) for the so-called auxetic materials, the transverse strain is positive while
under simple extension, the Poisson’s ratio is negative. Thus, for an isotropic material, in general, —1 < v < 1/2. For a discussion of the
lower limit of —1, see Section 5.52 in Part B of this Chapter.
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Table 5.2 Elastic Constants for Isotropic Solids at Room Temperature®

Modulus of Shear Lame ’s
Elasticity, Modulus, constant, Bulk Modulus
Ey GPa Poisson’s p GPa A GPa k GPa
Material Composition (10° psi) ratio, v (108 psi) (10° psi) (108 psi)
Aluminum Pure and 68.2-78.5 0.32-0.34 25.5-26.53 46.2-62.7 63.4-80.6
alloy (9.9-11.4) (3.7-3.85) (6.7-9.1) (9.2-11.7)
Brass 60-70% Cu, 99.9-109.6 0.33-0.36 36.5-41.3 73.0-103.4 97.1-130.9
40-30% Zn (14.5-15.9) (56.3-6.0) (10.6-15.0) (14.1-19.0)
Copper 117-124 0.33-0.36 40.0-46.2 85.4-130.9 112.3-148.1
(17-18) (5.8-6.7) (12.4-19.0) (16.3-21.5)
Cast iron 2.7-3.6% C 90-145 0.21-0.30 35.8-56.5 26.9-83.4 51.0-121.3
(13-21) (5.2-8.2) (3.9-12.1) (7.4-17.6)
Steel Carbon and 193-220 0.26-0.29 75.8-82.0 82.7-117.8 133.0-172.3
low alloy (28-32) (11.0-11.9) (12.0-17.1) (19.3-25.0)
Stainless 18% Cr, 193-207 0.3 73.0 (10.6) 111.6-119.2 160.5-168.1
Steel 8% Ni (28-30) (16.2-17.3) (23.2-24.4)
Titanium Pure and 106.1-114.4 0.34 41.3 (6.0) 84.1-90.9 111.6-118.5
alloy (15.4-16.6) (12.2-13.2) (16.2-17.2)
Glass Various 49.6-79.2 0.21-0.27 26.2-32.4 15.2-36.5 32.4-579
(7.2-11.5) (3.8-4.7) (2.2-5.3) (4.7-8.4)
Rubber 0.00076- 0.50 0.00028- oo* oo*
0.00413 0.00138
(0.00011- (0.00004-
0.00060) 0.00020)

*As v approaches 0.5, the ratio k/Ey and A/u — oo. The actual value of k and A for some rubbers may be close to the values of steel.

TPartly from “an Introduction to the Mechanics of Solids,” S.H. Crandall and N.C Dahl (Eds.), McGraw-Hill, 1959.

EQUATIONS OF THE INFINITESIMAL THEORY OF ELASTICITY

In Section 4.7, we derived the Cauchy’s equation of motion [see Eq. (4.7.5)], to be satisfied by the stress field
in any continuum:
Ty

pa; = pB; + —

S
o (5.5.1)

where p is the density, a; the acceleration component, pB; the component of body force per unit volume, and
T;; the Cauchy stress components. All terms in the equation are quantities associated with a particle that is
currently at the position (xy, x5, X3).
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We shall consider only the case of small motions, that is, motions such that every particle is always in a
small neighborhood of the natural state. More specifically, if X; denotes the position in the natural state of a
typical particle, we assume that

x;i = X, (5.5.2)
and that the magnitude of the components of the displacement gradient Ju;/0x; is also very small. From
x1=X1+u, x=X,4+u, x3=X;3+u;s, (5.5.3)
we have the velocity components related to the displacement components by

Dx; Ou; Oou; u; Ou;
vi=——=(—" e T 5.5.4
" Dr <8t )Hixed Mo T o, o (5:54)
where v; are the small velocity components associated with the small displacement components. Neglecting
the small quantities of higher order, we obtain the velocity components as

au,‘
e (81‘ )x,—fixed7 02
and the acceleration component as
0214,'
“= (6’2 )x,—ﬁxed' 636
Furthermore, the differential volume dV is related to the initial volume dV,, by the equation (see Section
3.10)
dV = (14 Ey)dV,, (5.5.7)
therefore, the densities are related by
p=(1+Euw) "'p,~ (1 - Ex)p,, (55.8)
where we have used the binomial theorem. Again, neglecting small quantities of higher order, we have
82141
pai=Po <W> x,vffixed. (559)
Thus, Eq. (5.5.1) becomes
25 "
Oui _ g T (5.5.10)

Poge = PP gy,

In Eq. (5.5.10), all displacement components are regarded as functions of the spatial coordinates x;,
and the equations simply state that for infinitesimal motions, there is no need to make the distinction
between the spatial coordinates x; and the material coordinates X;. In the following sections in Parts A
and B of this chapter, all displacement components will be expressed as functions of the spatial
coordinates.

A displacement field u; (x1, x5, X3, t) is said to describe a possible motion in an elastic medium with small
deformation if it satisfies Eq. (5.5.10). When a displacement field u; (x1, x,, x3, ) is given, to make sure that it
is a possible motion, we can first compute the strain field E;; from Eq. (3.7.16), i.e.,
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- 1 814,‘ 814/'
Ey=>5 ((%Jra_)q)? (5.5.11)

and then the corresponding elastic stress field T;; from Eq. (5.3.8), i.e.,
T,’j = 2651-]- + 2,blE,] (5512)

Then the substitution of u; and T}; into Eq. (5.5.10) will verify whether or not the given motion is possible. Alterna-
tively, one can substitute directly the displacement field into the Navier’s equations, to be derived in the next section
for the same purpose. If the motion is found to be possible, the surface tractions (i.e., stress vectors on the surface of
the body) on the boundary of the body needed to maintain the motion are given by Eq. (4.9.1), i.e.,

On the other hand, if the boundary conditions are prescribed, then, in order that u; be the solution to the
problem, it must meet the prescribed conditions on the boundary, whether they are displacement conditions or
surface traction conditions.

NAVIER EQUATIONS OF MOTION FOR ELASTIC MEDIUM

In this section, we combine Egs. (5.5.10), (5.5.11), and (5.5.12) to obtain the equations of motion in terms of
the displacement components only. These equations are known as Navier’s equations of motion. First, from
Egs. (5.5.11) and (5.5.12), we have

Ou; O
Tj = jed; + 2uE;; = Jedy+ u (a—” + a—)’j’) (5.6.1)
Thus,
Ty . Oe &u; Ou;
8_Xj o )8_)@5“ * # (8xj8xj + 8xj8x,« ’ (562)
Now,
de . Oe Ou 0 (Oup\  Oe
8_x_,» LT and Ox;0x; oy (8x,) T o (5.6.3)
therefore, the equation of motion, Eq. (5.5.10), becomes
82 e 8214,«
Poga = PoBi+ (At 1) 5 ox TH R (5.6.4)
In long form, Eq. (5.6.4) reads
Ou, e > PP
B A — .6.
Pogp = PBI+ L+ 15—+ (8x1+6x2 az)ul, (5.6.5)
’uy e P22
Poap =p,B2+ (4 + H)af + (87(1_‘—87)(2 + g 3) 25 (5.6.6)
0%u3 de 2 R P
Posy = PoB3+ (A+u)s—+ ( + 5=+ )Me, 5.6.7)
or Ox3 oxt  Ox3 0N}
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where
8ui 6u1 8142 8143
== 44 5.6.8
8x,» 8x1 + 6)(2 + aX3 ( )
In invariant form, the Navier equations of motion take the form
u
Pogp = p,B + (24 1)Ve + uV2u, (5.6.9)
where
e =div u. (5.6.10)
Example 5.6.1

Given the displacement field u; = vy (x1, t), U» = u3 = 0, obtain the equation that must be satisfied by u; so that it is
a possible motion for an isotropic linearly elastic solid in the absence of body forces.

Solution
From the Navier equation (5.6.5), we have
> u de  u o (ou Pu 20
P = T T > =t g (ax) e —(i+2)8 . (5.6.11)
Thus,
8 %51 28 U
or T g (5.6.12)
where
L= Gl (5.6.13)
Po

Equation (5.6.12) is known as the simple wave equation.

NAVIER EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES

Using the expressions for E and V?u derived for cylindrical and spherical coordinates in Section 3.7 and in
Part D of Chapter 2, we can obtain Hooke’s law and Navier’s equations in these two coordinates as

follows:
Cylindrical coordinates. With (u,, ug, u,) denoting the displacements in (r, 8, z) directions, Hooke’s laws
are
_ Ou, _ 1 0uy _ Ou,
T, =le+2u o Tog = Ae +2u ( 20 + >7 T.,=2le+2u % (5.7.1)

_ lau, 8140 Uy _ Bug lau _ % B_M
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where

_ Ou,  uy lau(; ou,

Or + r +r%+5’

e

and Navier’s equations of motion are

&u, Oe % n l@zu,. n &u, . 10u, 2 0uy u,
ot 290> 02  ror oo 2|

Po or = paBl' + (;L+H)E+H

0214(;
Pogp = PoBo +

(Gtple [Py 1 Puy Pug 10u  20u u
- 00 ot r2opr o022 ror 2o |’
Ou. Pu,  10Pu. Pu. 18_14}

——=p,B.+ (A + )%—F 5t 373 T s -
Po g = PoP= Wo: " or Troe a2 o
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(5.7.3)

(5.7.4)

(5.7.5)

(5.7.6)

Spherical coordinates. With (u,, uy, uy) denoting the displacement components in (r, 0, ¢) directions,

Hooke’s laws are

Ou,
T, = e —|—2,u§7

R 1 0u, U,
Tg@ = /L€+2M(;a—90+7)7

Tyy = ie+2u(rsilne%’$ b: uecrot(?)’
]

Tyy = M(rsiln()%lg—uq&crm@—r%%)’
Tor = M(rsiIHQ?)—l:z;_‘_aauj _M’_,d))7

where

o ou, n 2u, n 1 duy 1 Ouy ugcotl
T o r  r 90  rsin0 d¢ ro

and Navier’s equations of motion are

& u, e of1a,,
POW—PoBz-+(ﬂ+H)5+H{E<r—25(r Mr))

+71 92 siHG% + ] %— 2 g(u sin9)—72 %
r2sin 090 90 | " r7sin0 9> r2sin0o0 " r2sin0 0 [

(5.7.7)

(5.7.8)

(5.7.9)

(5.7.10)

(5.7.11)

(5.7.12)

(5.7.13)

(5.7.14)
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10 [ ,0u 10 1 0 . 1 Q*uy 20u 2coth Oug
+ ”{ (725 ( 7)) 290 <smea—<“9““">) Tt og T o0 smoog (O

ug (A +p) Oe
Po o = PoBo + rsin® o¢

1 0 [ ,0uy 10 1 0 . 1 Quy 2 Ou,  2cot0 Quy
SO %) 2 22 Hot (5716
+ 'u{ﬂ or (l Br) + 200 (sin989 (19 sm@)) +}’2 sin20 9¢p> +r2 sin 0 O¢ +1‘2 sin 0 O¢ ( )

PRINCIPLE OF SUPERPOSITION

Let u( ) and u( ) be two possible displacement fields corresponding to two body force fields B(l) and B( ). Let

T,-(j ) and T( be the corresponding stress fields. Then

(1)
0u 0 . OT}
= p,B; J 5.8.1
pO atz po 1 + 6_X/ b ( )
()
Puf’ @ , 9T
=p B; — 8.2
Po—pa = PBIT + o, (5.8.2)
Adding the preceding two equations, we get
& m, @ W p@Y) o 0 () @
pow (u,' + u; ) =Po (Bz +Bz > + 5‘(] <Tij + Tij ) (5.8.3)

It is clear from the linearity of the strain-displacement relationship, Eq. (5.5.11) and the Hooke’s law

Eq. (5.5.12), that Tfjl) +Tl§2) is the stress field corresponding to the displacement field ul(l) +u§2>. Thus
(1) @)
+ u;

by TV 4 T< ) and the surface traction needed to maintain the total motion is given by t,m + tl@ = Tlgl)n ;i + Tsz>nj

is also a possible motion under the body force field Bfl) + sz). The corresponding stress field is given

ThlS is the prmciple of superposition. One application of this principle is that in a given problem, we often assume
that the body force is absent, having in mind that its effect, if not negligible, can always be obtained separately and
then superimposed onto the solution for the case of vanishing body forces.

PLANE ELASTIC WAVES

PLANE IRROTATIONAL WAVES

In this section and the following three sections, we present some simple but important elastodynamic
problems using the model of isotropic linearly elastic material.
Consider the motion

2
W = esin 7”(x1 ), w=0, w=0, (5.9.1)
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representing an infinite train of sinusoidal plane waves. In this motion, every particle executes simple har-
monic oscillations of small amplitude ¢ around its natural state, the motion being always parallel to the e,
direction. All particles on a plane perpendicular to e; are at the same phase of the harmonic motion at any
one time [i.e., the same value of (27/€)(x; — c.t)]. A particle that at time ¢ is at x; + dx; acquires at 7 + dt
the same phase of motion of the particle that is at x; at time ¢, if (x; +dx;) — cp (¢t + dt) = x; — cit, ie.,
dxy/dt = cp. Thus, ¢; is known as the phase velocity (the velocity with which the sinusoidal disturbance of
wavelength ¢ is moving in the e; direction). Since the motion of every particle is parallel to the direction
of the propagation of wave, it is a longitudinal wave.

We shall now obtain the phase velocity of this wave by demanding that the displacement field satisfy the
equations of motion, in the form of either p,(9%u;/0r*) = OT;/Ox; [see Eq. (5.5.10)] or the Navier equations
(5.6.4). To use Eq. (5.5.10), we first obtain the strain components, which are

2n 2n
Ey = 8(7) CcoS 7(X1 — CLI)7 Ey, =E);; =E|p =E;3=E3;;3=0. (5.9.2)

The dilatation e = Ey; is given by

2 2
e=Ep+0+0=Ey :3(7”) cos 7”(x1 — ), (5.9.3)
and the nonzero stress components are
2 2
T = (/l + 2,u)E11 = (/L + 2,[1)? (772:) cos %(}Cl — CLt)7 (5.9.4)
Ty =T33 = JEy;.

Substituting T;; and u; into Eq. (5.5.10) [Egs. (5.5.11) and (5.5.12) are trivially satisfied], we have

21\ 2 , . 2m . 21\ 2 . 2n
—pot| ) cLsin— (x1 —crt) = = (A +2u)e — ) sin 7()(1 —crt), (5.9.5)
from which we obtain the phase velocity c; as
A42um\ 2
oL = < Jpr “) : (5.9.6)

As a particle oscillates, its volume changes harmonically [see Eq. (5.9.3)]. Thus, the wave is known as a
dilatational wave. On the other hand, the spin tensor W = (Vu)? is clearly zero (Vu is symmetric); therefore,
the wave is also known as an irrotational wave.

From Eq. (5.9.6), we see that for the plane wave discussed, the phase velocity ¢; depends only on the
material properties and not on the wave length £. Thus, any disturbance represented by the superposition
of any number of one-dimensional plane irrotational wave trains of different wavelengths propagates
without changing the form of the disturbance, with the velocity equal to the phase velocity c¢;. In fact,
we have seen in Example 5.6.1 that any irrotational disturbance given by u; = u(xy,t),up =u3 =0, is a
possible motion in the absence of body forces, provided that u(x,, ) is a solution of the simple wave
equation

Pu  , 0

W = CL@' (59.7)
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It can be easily verified (see Prob. 5.20) that for any function f, the displacement u=Ff{s), where
s = x) % ¢t satisfies the above wave equation. Thus, disturbances of any form given by f (s) propagate with-
out changing their forms with wave speed c;. In other words, the phase velocity is also the rate of propagation
of a finite train of waves or of any arbitrary disturbance into an undisturbed region.

Example 5.9.1
For a material half-space that lies to the right of the plane x; =0, consider the displacement field:

.2 2 .
th = osin 771()(1 — ¢ t) + pcos 7n(x1 —ch). (i)

(a) Determine the constants «, f3, the wave length ¢, and the surface tractions on the plane x; =0 if the applied
displacement on the plane x; =0 is given by u = b(sin wt)e;.

(b) Determine the constants o and f3, the wave length ¢, and the displacements on the plane x; =0 if the applied
surface traction on the plane x; =0 is given by t = fsinwte;.

Solution
The given displacement field is the superposition of two longitudinal elastic waves having the same velocity of propa-
gation ¢, in the positive x; direction and is therefore a possible elastic solution.

(a) To satisfy the displacement boundary condition, one sets

u1(0,t) = bsinwt, (ii)
thus,
—a sin (Z”CJ) + Bcos (2”0“) = bsinwt. (iii)
l €
Since this relation must be satisfied for all time ¢, we have
2
ﬁ:O, O(:—b7 527[76[7 (|V)
(0]
and the elastic wave has the form
up = —bsin 2()(1 —cit). v)
CL

Note that the wavelength ¢ is inversely proportional to the forcing frequency w. That is, the higher the forcing
frequency, the smaller the wavelength of the elastic wave.
Since t=T(—e;) = —(T11€1 + To1€2 + T31€3) = —T11€1; We have, on x; =0

t=—(2+2u)(0u1/0x), o €1 = (4 +2u)(bo/ci) coswt e;. (vi)
(b) To satisfy the traction boundary condition on x; =0, one requires that
t=T(—e;) = —T116; = (fsinwl)e;. (vii)

That is, at x; =0, T1; = —fsinwt, T1o = T13 = 0. For the assumed displacement field, we have

. 2 2 .2
—fsinwt = ()»+2u)7n o COS %qt—i—ﬁsm %qt . (viii)
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To satisfy this relation for all time t, we have

—f 4 2nC; .
OC_O7 ﬁ_()+2#)<z)7 w = 12 ) (|X)
and the resulting wave has the form
=T o D x4 - cut) (x)
YOt owe o

We note that not only the wavelength but the amplitude of the resulting wave is inversely proportional to the forcing
frequency.
The corresponding displacement component u; on the surface x; =0 is given by

u = ﬁ cos wt. (xi)
PLANE EQUIVOLUMINAL WAVES
Consider the motion
=0, wup=c¢sin 2—;()(1 —crt), uz=0. (5.10.1)

This infinite train of plane harmonic wave differs from that discussed in Section 5.9 in that it is a transverse
wave. The particle motion is parallel to the e, direction, whereas the disturbance is propagating in the e,
direction. For this motion, the only nonzero strain components are

e [2n 2n
Epn=FE = 5 <7) Cos (7> (X] — CTI‘)7 (5102)

and the only nonzero stress components are

2 2
Ty, = Toy = pe (7”) cos (7”) (x1 — crt). (5.10.3)
Substituting T'j, and u, in the equation of motion,
(9T21 82u2
— L —p = 5.10.4
oy Poar ( )

we obtain the phase velocity cr as

o= (5.10.5)
Po

Since the dilatation e is zero at all times, the motion is known as an equivoluminal wave. 1t is also called a
shear wave. Here again, the phase velocity c¢7 is independent of the wavelength ¢, so it again has the addi-
tional significance of being the wave velocity of a finite train of equivoluminal waves or of any arbitrary equi-
voluminal disturbance into an undisturbed region.
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The ratio of the two phase velocities ¢; and cr is

c (24—2#)1/2
cr n '

Since A = 2uv/(1 — 2v), the ratio is found to depend only on v, in fact

a 21— 1/2_ . | 1/2
e | 1=2v - 1—2v ’

(5.10.6)

(5.10.7)

For steel, with v = 0.3, ¢, /cr = 1/7/2 = 1.87. We note that since v < 1/2, ¢, is always greater than cr.

Example 5.10.1
Consider a displacement field:

.2 2
Up = aSIn %(Xl — CTT) +ﬁCOS TR(X1 — C7'ZL)7 U = us =0

for a material half-space that lies to the right of the plane x; =0.

(a) Determine «, f, ¢, and u(0, ?) if the applied surface traction on x; =0 is t = ( sin wt)es.
(b) Determine o, ff and ¢, and t(0, ?) if the applied displacement on x; =0 is u = (bsin wt)e;.

Solution
(a) The only nonzero stress components are

ou 2n 2n 2n\ . 2z
Tio = Tor = 2uF1p = =2 = ﬂ(—) Ccos 7()(1 —crt) — ﬂu(7> sin 7()(1 —crb).

o T
On the boundary x; =0, outward normal, n=—ej, t = T(—e;) = —T»1€y; thus,

—Tgl(o, f)ez = (fSiI’] wf)EQ,

so that
2n 2n 2n\ . 2n )
—ou <7> cos 7(crz‘) — Bu (7) sin 7(crz‘) = fsinwt.
Thus,
2=0, ﬁf—£7 :217:07
2nu w
and

u(0,t) = 7% coswtep.

(b) The boundary condition (0, t) = bsinwt gives

277:(,‘7'
w

=0, a=-b, (=

, U =—bsin g()q —crb).
Cr

(i)

(ii)

(iii)

(iv)

(vii)
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The only nonzero stress components are

ot 12— (9 cos (27 i,
T = To1 =2ukp = ,uaX1 = bﬂ(CT) Ccos ( 7 ) (Xl CTZ')7 (viii)
thus,
w .
t(0,t) = —Tr1e2 = Bu (c—) cos wtes. (ix)
T

Example 5.10.2
Consider the displacement field:

2 .
U3 = o COS PXo COS 7”()(1 —ct), uy=uw=0. (i)

(a) Show that this is an equivoluminal motion.

(b) From the equation of motion, determine the phase velocity c in terms of p, ¢, p,, and u (assuming no body
forces).

(c) This displacement field is used to describe a type of wave guide that is bounded by the plane x> =+h. Find
the phase velocity c if these planes are traction free.

Solution
(a) Since

. _ 8u1 8u2 8u3 _ o .
dlvu_axl+8X2+8X3_O+O+O_O, (i)

thus there is no change of volume at any time.
(b) For convenience, let k = 2n/¢ and w = kc = 2nc/¢; then
Uz = 0.COS pXp Cos(kx; — wt), (iii)
where k is known as the wave number and w is the circular frequency. The only nonzero stresses are given by
(note: th = up, =0)
8U3 . .
Tiz=T3 = W = apk[— cos pxp sin(kx; — wt)], (iv)
1
and
ou .
Toz =T = ya—; = aup[— sin px cos(kx; — wt))]. (v)
2
The substitution of the stress components into the third equation of motion yields (the first two equations are
trivially satisfied)

02 us

OTy  OT: _
. 22— (uk® + pup?) (—us) = Popp = pow?(—Us). (vi)

(9X1 8x2 a
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Therefore, with ¢2 = u/p,,
K+ p? = (w/cr)’. (vii)

Since k =2xn/¢, and w = 2rc/¢, therefore

7o\ 2
c_cr[(ﬁ) +1

(c) To satisfy the traction free boundary condition at x, = +h, we require that

1/2
) (viii)

t=+4Te, = :E(Tlgel + Tooes + 7—3293) =+T3e3=0 at x ==h, (ix)
therefore,
(T32)y,=n = £p pasin phcos (kx — wt) = 0. (x)

For this relation to be satisfied for all x; and t, we must have sin ph = 0. Thus,

_m

p - h )

Each value of n determines a possible displacement field. The phase velocity ¢ corresponding to each of these
displacement field (called a mode) is given by

c=c nt\® +1
~T\2n
This result indicates that these equivoluminal waves inside the traction-free boundaries, x, = +h. propagate

with speeds c greater than the speed cr of a plane equivoluminal wave of infinite extent. Note that when
p =0, c = cr as expected.

n=0,1,2.... (xi)

1/2
(xii)

Example 5.10.3
An infinite train of plane harmonic waves propagates in the direction of the unit vector e,. Express the displacement
field in vector form for (a) a longitudinal wave and (b) a transverse wave.

Solution

Let x be the position vector of any point on a plane whose normal is e, and whose distance from the origin is d
(Figure 5.10-1). Then x - e, = d. Thus, so that the particles on the plane will be at the same phase of the harmonic
oscillation at any one time, the argument of sine (or cosine) must be of the form (27/¢)(x - e, — ct — 1), where iy is an
arbitrary constant.

(a) For longitudinal waves, u is parallel to e,; thus
- [2=
u=¢sin 7(x -ep—ct—mn)len. (5.10.8)
In particular, if e,=e,

up = esin {27“()(1 —cit— 71)}7 Up =tz =0. (5.10.9)
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FIGURE 5.10-1

(b) For transverse waves, u is perpendicular to e,. Let e; be a unit vector perpendicular to e,. Then
. [2r
u=z¢sin 7(xlenfcrtfn) e;. (5.10.10)
The plane of e;and e, is known as the plane of polarization. In particular, if e, = ey, and e; = e,, then

u = O, U = £sin 277'5()(1 —crt— 7}), Uz = 0. (5.10.11)

Example 5.10.4
In Figure 5.10-2, all three unit vectors, e, e, and e, lie in the x1x plane. Express the displacement components,
with respect to the x; coordinates, of plane harmonic waves for:

(a) A transverse wave of amplitude &;, wave length ¢; polarized in the x;x, plane and propagating in the direction
of e,

(b) A transverse wave of amplitude ¢,, wave length ¢, polarized in the x; x> plane and propagating in the direction
of e,

(c) A longitudinal wave of amplitude &3, wave length £3 propagating in the direction of e,

X2

FIGURE 5.10-2
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Solution
(a) Referring to Figure 5.10-2, we have

e, = Sinaje; — CoSu1€y, X-€p = X1SiNoy —X2COSary, € = E(cosarer + sinoger). (i)
Thus, using the results of Example 5.10.3, we have

up = (cosaq)er sin[(2r/€1)(xysinoy — X cos oy — 1t — )],
Up = (sinay)ersin[(2r/€1)(xy sinap — xp cos oy — crt —ny)], (i)
Uz = O7

where we have chosen the plus sign in the expression for e;.

(b) We have
e, = Sinape; + CoSopey, X-e€p = X;SiNap + X2 COSap, €, = (COSupe; — Sinogey). (iii)
Therefore,
up = (cosap)epsin[(2r/l) (X1 Sinap 4+ Xp COS0p — CTE— 15)],
Up = —(sinap)ex sin [(2n/L2) (X1 Sinap + Xp COSap — Crt — 15)], (iv)
Uz = 0.
(c) We have
e, = Sinaze; + CoSuzey, X- e, = X SiNaz + Xp COS u3. (v)
Therefore,
up = (sinas)essin[(2r/€3)(x1 Sinas 4+ X2 cos oz — ¢t — n3)],
Up = (cosaz)essin [(2m/€3)(x1 Sinog + Xp COS o3 — €1t — n3)], (vi)
uz3 =0.

REFLECTION OF PLANE ELASTIC WAVES

In Figure 5.11-1, the plane x, = 0 is the free boundary of an elastic medium, occupying the lower half-space
X, > 0. We wish to study how an incident plane wave is reflected by the boundary. Consider an incident trans-
verse wave of wavelength ¢, polarized in the plane of incident with an incident angle ¢ (see Figure 5.11-1).

Xq

Reflected
Longitudinal
_ Reflected

Incident Transverse

Transverse X2

FIGURE 5.11-1
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Since x, = 0 is a free boundary, the surface traction on the plane is zero at all times. Thus, the boundary will
generate reflection waves in such a way that when they are superposed on the incident wave, the stress vector
on the boundary vanishes at all times.

Let us superpose on the incident transverse wave two reflection waves (see Figure 5.11-1), one transverse,
the other longitudinal, both oscillating in the plane of incidence. The reason for superposing not only a
reflected transverse wave but also a longitudinal one is that if only one is superposed, the stress-free condition
on the boundary in general cannot be met, as will become obvious in the following derivation.

Let u; denote the displacement components of the superposition of the three waves; then, from the results
of Example 5.10.4, we have

= (cosay)e; sing; + (cosaz)es sinp, + (sinaz)es sin s,

Uy (
up, = (sinoy)e; sing; — (sinoy)es sing, + (cosaz)es sin s, (5.11.1)
us 07

where

2n . 2n .
$1="7" (xpsinoy —xpcosoy —cpt — 1), P, = e (xy sinop + xp cosop — cpt — 1),
1 2

(5.11.2)
2n .
Y3 = [—(Xl sinos +xp cosasz — cpt — 13).
3
On the free boundary (x, =0), where n = —e,, the condition t =0 leads to Te, =0, i.e.,
Ty, =Ty =T5 =0. (5.11.3)

Using Hooke’s law and noting that u3 =0 and u, does not depend on x3, we easily see that the condition
T5, =0 is automatically satisfied. The other two conditions, in terms of displacement components, are

Ti2/u=0u/0x; +0uy/0x; =0 on x, =0, (5.11.4)

Ty = (A4 2u)(Oup /0x3) + AOu; /Ox; =0 on  x, =0. (5.11.5)

From Eq. (5.11.1) and Eq. (5.11.2), we can obtain

T € £ &

—2 2L cos g, (sin2ay — cosay) + = cos py(cos 2oy — sin o) + — cos @y sin 203 = 0, (5.11.6)
2rp € %) 43

Tn & . & . & 2 _

—= = ——pusin20; cos v, — — psin 20, cos @, + — (4 + 2ucos “az) cos p; = 0. (5.11.7)
2n €1 52 [3 N

The preceding two equations, i.e., Eq. (5.11.6) and Eq. (5.11.7), are to be valid at x, =0 for whatever
values of x; and #; therefore, we must have

COS | = COS(p, = Cos(p3 atxy = 0. (5.11.8)
That is, at x, =0,

Y| =, £2pn = @3 £2gn, p and q are integers. (5.11.9)
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Thus, from Eq. (5.11.2), we have

2 2 2
[—”(xl sinoy — cpt — 1) = g—”(x1 sinay — et — 1)) = f—”(x1 sinas — cpt — 1), (5.11.10)
1 2 3

where 1, =1, — (£pl2) and 03 = 13 — (£q{3).
Equation (5.11.10) can be satisfied for whatever values of x; and ¢ only if

sin o sin o sin o c c c
Thus, with
1_a_ (“_2“)1/27 (5.11.12)
n T u
we have
=20, nly=4~€, oy =0, nsinoz=sino;, n=mn, n1m;=n1n. (5.11.13)

That is, the reflected transverse wave has the same wavelength as that of the incident transverse wave and the
angle of reflection is the same as the incident angle, the longitudinal wave has a different wave length and a
different reflection angle depending on the so-called refraction index n given by Eq. (5.11.12). It can be easily
shown that

12 12
E_L:(“rz“) :{2(1 ”)] . (5.11.14)

1 ¢
n o cr u 1—2v

With cos ¢; dropped out, the boundary conditions Egs. (5.11.6) and (5.11.7) now become, in view of
Eqgs. (5.11.13),

e1(—cos 201) + &( cos 201 ) + e3n(sin203) = 0, (5.11.15)
. . 1
&1 sin 20y + & sin 20 — &3 p cos2u; = 0. (5.11.16)

These two equations uniquely determine the amplitudes of the reflected waves in terms of the incident ampli-
tude. In fact,

cos? 20y — n? sin 24 sin 203 nsin 4o
& = > — - g1, & = 5 5 . er. (5.11.17)
cos? 20 + n? sin 201 sin 203 cos? 20 + n? sin 20 sin 203

Thus, the problem of the reflection of a transverse wave polarized in the plane of incidence is solved. We
mention that if the incident transverse wave is polarized normal to the plane of incidence, no longitudinal
component occurs (see Prob. 5.33). Also, when an incident longitudinal wave is reflected, in addition to
the regularly reflected longitudinal wave, there is a transverse wave polarized in the plane of incidence.

The equation nsinos = sina; in Eq. (5.11.13) is analogous to Snell’s law in optics, except here we have
reflection instead of refraction. If sina; > n, then sinoz > 1 and there is no longitudinal reflected wave, but
rather, waves of a more complicated nature will be generated. The angle o; = sin~'n is called the critical
angle.
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VIBRATION OF AN INFINITE PLATE

Consider an infinite plate bounded by the planes x; =0 and x; = ¢. The faces of these planes may have either
a prescribed motion or a prescribed surface traction.

The presence of these two boundaries indicates the possibility of a vibration (a standing wave). We begin
by assuming the vibration to be of the form

up :M](.Xl,l), up = uz = 0. (5.12.1)

In the absence of body forces, the Navier equation in x; direction requires that

&u &u A+2

2 1 1 H

‘ . A+ 2 5.12.2
‘L o o’ ‘r P ( )

A steady-state vibration solution to this equation is of the form
u; = (Acoskxy + Bsinkx;)(C coscpkt + D sin ckt), (5.12.3)

where the constant A, B, C, D and k are determined by the boundary conditions (see Example 5.12.1). This
vibration mode is sometimes termed a thickness stretch vibration because the plate is being stretched through-
out its thickness. It is analogous to acoustic vibration of organ pipes and to the longitudinal vibration of slen-
der rods.

Another vibration mode can be obtained by assuming the displacement field

uzzuz(xl,l), uy =uz = 0. (5.124)
In this case, in the absence of body forces, the Navier equation in the x, direction requires that

2 2
20 w1 (5.12.5)

C = —5 cr
T 2 2 3
o2 o P

and the solution is of the same form as in the previous case. Again, the constants A, B, C, D, and k are deter-
mined by the boundary conditions (see Example 5.12.2). This vibration is termed thickness shear and it is
analogous to a vibrating string.

Example 5.12.1
(a) Find the thickness-stretch vibration of a plate, where the left face (x; =0) is subjected to a forced displacement
u = (« cos wt)e; and the right face x; =¢ is fixed. (b) Determine the values of w that give resonance.

Solution
(a) Using Eq. (5.12.3) and the boundary condition u(0, ) = (« cos wt)e;, we have

acoswt = uy(0,t) = ACcos c kt + ADsin ¢ kt. (i)

Therefore,

AC=0, k=2 D=0 (ii)
CL
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The second boundary condition u(¢,t) = 0 gives

O=u(tt) =

Therefore,

and the vibration is given by

ui(xy,t) = ol cos

(oc cos ot + BCsin w—f) cos wt. (iii)
CL CL
BC = —a.cos w—f, (iv)
CL
WXy 1 . WX
—_— sin —=| cos wt. (v)

o tan(wl/c) c

(b) Resonance is indicated by unbounded displacements. This occurs for forcing frequencies corresponding to

tan(wt/c) = 0, that is, when

Example 5.12.2
(a) Find the thickness-shear vibration of an infinite plate that has an applied surface traction t = —( cos wt)e, on the
plane x; =0 and is fixed at the plane x; =¢. (b) Determine the resonance frequencies.

Solution
(a) On the plane x; =0, n=—ey, thus,

t= 7Tel = 7(7—1191 —+ T21e2 —+ T3193) = 7(/)7 CcoSs wf)EQ. (i)

Therefore, on x; =0,

T12|X1:0 = ficos wt. (i)

This shearing stress forces a vibration of the form

Up = (Acos kxy + Bsin kx;)(Ccos crkt + Dsincrkt), w = uz =0. (iii)

Using Hooke's law, we have

T2l 0 = ﬂg%f - = pcoswt. (iv)
That is,
g cos wt = kBC cos crkt + kBD sin crkt. (v)
Thus,
k=2 p—o, Bc=tor (vi)
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The boundary condition uy(¢,t) = O gives

0= (ACcos ot + per sin %) cos wt. (vii)
Ccr wu Ccr
Thus,
AC = ——ﬁcrtanw—f, (viii)
wu Ccr
and
Up (X1, b) =&(sin w—xlftanw—f cos w—xl> cos ot. (ix)
U Cr Cr Ccr
wfl .
(b) Resonance occurs for tanc— = o0, that is,
T
. nmcr .
=50 n=13,5.... (x)

We remark that these values of w correspond to free vibration natural frequencies with one face traction-free and
one face fixed.

SIMPLE EXTENSION, TORSION, AND PURE BENDING

In the following few sections, we present some examples of simple three-dimensional elastostatic problems.
We begin by considering the problem of simple extension. Again, in all these problems, we assume small
deformations so that there is no need to make a distinction between the spatial and the material coordinates
in the equations of equilibrium and in the boundary conditions.

SIMPLE EXTENSION

A cylindrical bar of arbitrary cross-section (Figure 5.13-1) is under the action of equal and opposite normal
traction ¢ distributed uniformly at its two end faces. Its lateral surface is free from any surface traction and
body forces are assumed to be absent.

o

X2

Hittte
Hipitite

FIGURE 5.13-1
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Intuitively, one expects that the state of stress at any point will depend neither on the length of the bar nor
on its lateral dimension. In other words, the state of stress in the bar is expected to be the same everywhere.
Guided by the boundary conditions that on the plane x; =0 and x| =¢, T, =0, T, =713, =0 and on any
X, = constant plane tangent to the lateral surface, T,; = T, = T>3 = 0, it seems reasonable to assume that
for the whole bar

Ty=o0, Tn=Tp=To=T;3="T3=0. (5.13.1)

We now proceed to verify that this state of stress is indeed the solution to our problem. We need to verify
that (i) all the equations of equilibrium are satisfied, (ii) all the boundary conditions are satisfied, and
(iii) there exists a displacement field that corresponds to the assumed stress field.

Regarding (i), since all stress components are either constant or zero, the equations of equilibrium
are clearly satisfied in the absence of body forces. Regarding (ii), there are three boundary surfaces. On the
two end faces, the boundary conditions are clearly satisfied: 71, = ¢, T1» = 0 and Ty3 = 0. On the lateral
surface, the unit outward normal does not have an e; component, that is, n = Oe; 4 ne; + nses, so that

t=Tn= nz(TEz) + n3(Te3) = n2(0) + n3 (0) =0. (5.13.2)
That is, the traction-free condition on the lateral surface is also satisfied. Regarding (iii), from Hooke’s law,
we have
Ev =~ [Ty = v(Tys +T53)] ==, Esp = —[Top = w(Ts + 1) = =22 — E
n=g 2+ 133 g =g U= 33 11 Ey 33, (5.13.3)

Epp =E;3 =Ex=0.

That is, all strain components are constants; therefore the equations of compatibility are automatically satis-
fied. In fact, it is easily verified that the following single-valued continuous displacement field corresponds to

the preceding strain field:
uy = (E%I)xl, Uy = —V<Eiy))(2, us = —v (E;—.'—y)x} (5134)

Of course, any rigid body displacement field can be added to the preceding without affecting the strain and
stress field of the problem. (Also see the following example.)

Example 5.13.1
Obtain the displacement functions by integrating the strain-displacement relations for the strain components given in
Egs. (5.13.3).

Solution
O /ox1 =a/Ey, Oun/OX = —va/Ey, Ous/Ox3 = —va/Ey gives:

i = (o/Ev)x1+ filxe,x3), te=—(vo/Ey)xe +f(x1,X3), U= —(va/Ey)xs+ (X1, X), (i)
where f1(X2, X3), (X1, x3) and f3(x1, X) are integration functions. Substituting (i) into the equations:

O /0% + O /Ox1 =0, 9Ouy/Ox3+0u3/0xy =0 and Jup/dx3 + duz/dx, =0,
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we obtain
0fi (X2, X3)/0Xo = —0h (X1, X3)/0X1 = 81(X3),
0f (X2, X3)/0X3 = —0B(X1,X2)/0X1 = 82(X2), (i)
0b(x1,X3)/0x3 = —0f(x1, %)/ OX = g3(x1),

where g(x1), g(x2), g(x3) are integration functions. Integrations of (ii) give

h=a(e)xe+8ls) and h=g0e)xs+8(x%), (iii)
—h=g03)x+8(x), and hH =g (x)x +8g(x), (iv)
—h=gMX)x+8() and —f =g (xi)x + g(x). \

From (iii),
gi(xa)=aixs+ b, L)=ax+b, @xs)=bx+c, g(x)=bx+cs. (vi)
From (iv) and (vi),
&(x) =—aixi+bs, gx)=—-bixi+cs, —g(x)=bsxs+cs. (vii)
From (v), (vi), and (vii),
a1=0, ) =bxi+c, gx)=Dbx+cs (viii)
Thus,
h=bixo+baxs+C2, h=bsxs—bixi+c3, FH=-bxi—bsxo— s (ix)
So that

= (6/Ey)x1 4+ bixo + boxs + ¢z,
Up = —(va/Ey)Xo + b3xs — bixy + cs, (x)
Uz = —(va/Ey)xs — boxy — baxo — Ca.

It can be easily verified that
U = biXxo+boxs+Co, o=Dbsxs—bixi+C3, Us=—boxi—b3xo—Cy

describes a rigid body motion (its Vu is antisymmetric).

If the constant cross-sectional area of the prismatic bar is A, the surface traction ¢ on either end face gives
rise to a resultant force of magnitude

P = oA, (5.13.5)
passing through the centroid of the area A. In terms of P and A, the stress components in the bar are given by
P/A 0 0
M =| 0 0 0f. (5.13.6)
0 00

Since the matrix is diagonal, we know from Chapter 2 that the principal stresses are (P/A, 0, 0). Thus, the
maximum normal stress is

(Tw)max = P/A, (5.13.7)
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acting on normal cross-sectional planes, and the maximum shearing stress is

(Ts)max = (1/2)(P/A), (5.13.8)

acting on planes making 45° with the normal cross-sectional plane.
Let the undeformed length of the bar be ¢, and let A¢ be its elongation. Then E;; = A¢/¢. From
E]] = O'/Ey = P/AEy, we have

_P?

Al =—. 13.
¢ AE, (5.13.9)

Also, if d is the undeformed length of a line in the transverse direction, its elongation Ad is given by:

Ad =P (5.13.10)
AEy
The minus sign indicates the expected contraction of the lateral dimension for a bar under tension.

In reality, when a bar is pulled by equal and opposite resultant forces through the centroids of the end
faces, the exact nature of the distribution of the normal stresses on either end face is, more often than not,
either unknown or not uniformly distributed. The question naturally arises: Under what conditions can an
elastic solution such as the one we just obtained for simple extension be applicable to real problems?
The answer to the question is given by the so-called Saint-Venant’s principle, which can be stated as

follows:

If some distribution of forces acting on a portion of the surface of a body is replaced by a different distri-
bution of forces acting on the same portion of the body, then the effects of the two different distributions
on the parts of the body sufficiently far removed from the region of application of the forces are essentially
the same, provided that the two distribution of forces have the same resultant force and the same resultant
couple.

By invoking St. Venant’s principle, we may regard the solution we just obtained for “simple extension”
gives a valid description of the state of stress in a slender bar except on regions close to the end faces,
provided the resultant force on either end passes through the centroid of the cross-sectional area. We further
remark that inasmuch as the deviation from the solution is limited to the region near the end faces, the elon-
gation formula for the bar is considered reliable for slender bars. The elongation formula has important appli-
cation in the so-called statically indeterminate problems involving slender bars.

TORSION OF A CIRCULAR CYLINDER

Let us consider the elastic deformation of a cylindrical bar of circular cross-section (of radius a and length ¢),
twisted by equal and opposite end moments M, (Figure 5.14-1). We choose the xj-axis to coincide with the
axis of the cylinder and the left and right faces to correspond to the plane x; =0 and x; = ¢, respectively.

By the rotational symmetry of the problem, it is reasonable to assume that the motion of each cross-sec-
tional plane, caused by the end moments, is a rigid body rotation about the x;-axis. This kind of motion is
similar to that of a stack of coins in which each coin is rotated by a slightly different angle than that of the
previous coin. It is the purpose of this section to demonstrate that this assumption of the deformation field
leads to an exact solution for torsion of a circular bar, within the linear theory of elasticity.
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X1

X3

FIGURE 5.14-1

Denoting the small rotation angle at section x; by the function a(x;), we evaluate the corresponding
displacement field as

u=(xe;) xr=(xe;) x (x1e] +x2€; + x3€3) = ot(x2€3 — x3€3). (5.14.1)
That is,
uy =0, uy=—oxz, Uuz=ax. (5.14.2)
The nonzero strain components are

1  da 1  da

Ep=Ey=—=x35—, Ez=FE31 ==xp— 5.14.3
12 21 3 &, o 31=5% s ( )
and the nonzero stress components are
do do
To=Tn=—ws——, Tiz=T3=pwo—_—. (5.14.4)
dxy dx;

To determine whether this is a possible state of stress in the absence of body forces, we check the equi-
librium equation 0T;;/0x; = 0. The i = 1 equation is identically satisfied (0 = 0). From the second and third
equation, we have

d*o d?o
S P S 5.14.5
HX3 dx% ) Hx2 dX% ( )
Thus,
d
Ea = o/ = constant. (5.14.6)
1

That is, the equations of equilibrium demand that the increment in angular rotation, do/dx;, be a constant.
This constant, here denoted by o/, is known as the twist per unit length or simply as unit twist.
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Next, we check the boundary conditions. On the lateral surface (see Figure 5.14-2), the unit normal vector
is given by n = (1/a)(x2e, + x3e3); therefore, the surface traction on the lateral surface is

110 Ta T 0 1 [%2T2 +x3T3
tj=[Tnj==~|Ta 0 0| x|=- 0 : (5.14.7)
Yl 0 0 X3 a 0
But XT3 + x3T13 = u(—x2x30" + xpx30") = 0. Thus, on the lateral surface
t=0. (5.14.8)

On the right end face x; = ¢, n = e;,t = Te; = T, e; + T3 e3. That is,

t= ,UO(,(—X382 +x2e3), (5149)
and on the left end face x; = 0,
t= 7/10(’(7)(382 +X2€3). (5.14.10)
X2
n
X3
FIGURE 5.14-2

Thus, the stress field given by Eq. (5.14.4) is that inside a circular bar, which is subjected to surface trac-
tions on the left and right end faces in accordance with Egs. (5.14.9) and (5.14.10), and with its lateral surface
free from any surface traction.

We now demonstrate that the surface tractions on the end faces are equivalent to equal and opposite twist-
ing moments on these faces. Indeed, on the faces x; = ¢, the components of the resultant force are given (see
Figure 5.14-3) by

R, = JT“dA =0, Ry = JTZldA = —yoc’J)@dA =0, Ry= JT31dA = ya’szdA =0, (5.14.11)
and the components of the resultant moment are given by
M, = J(x2T31 —x3T51)dA = ua’J (3 +x3)dA = po'l,, Mr =M; =0. (5.14.12)
That is, the resulting moment is

M = pa'l,e; where 1, = J (x% +x§)dA. (5.14.13)
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X2
To
T a
dA
X3 (0]

FIGURE 5.14-3

Since the direction of M is in the direction of the axis of the bar, the moment is a twisting couple. We shall
denote its magnitude by

M

M, =ul,0' or o =—.
= Wp ul,

(5.14.14)
The resultant moment on the left end face x; =0 is clearly M = —ua'l, e, a moment equal in magnitude and
opposite in direction to that on the right end face so that indeed, the bar is in equilibrium, under a twisting
action. We recall that

I, = J (43 +x3)dA = na*/2 (5.14.15)
is the polar second moment of the circular cross-section.
In terms of the twisting couple M,, the stress tensor is
i 0 _ Mz Mxp1
][’ ][’
M,X3
1] T, 0 0 (5.14.16)
M
i 0 0
[/7

In reality, when a bar is twisted, the twisting moments are known, but the exact distribution of the applied forces
giving rise to the moments is rarely, if ever, known. However, for a slender circular bar, the stress distribution inside
the bar is given by Eq. (5.14.16) except in regions near the ends of the bar in accordance with St. Venant’s principle,
and the formula for calculating the twisting angle per unit length is considered reliable for a slender bar. The twist-
ing angle formula is important for statically indeterminate problems involving slender bars.

Example 5.14.1
For a circular bar of radius a in torsion, (a) find the magnitude and location of the greatest normal and shearing
stresses throughout the bar, and (b) find the principal direction at a point on the surface of the bar.
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Solution
(a) We first evaluate the principal stresses as a function of position by solving the characteristic equation

M\ 2
2B (/—f) (x5 +x2) =0.
p
Thus, the principal values at any point are
M, M,
=0, and A:i/—t(x22+x32)1/2 :i/—tr7
p P

where ris the distance from the axis of the bar. Therefore, the maximum and the minimum normal stress are
Mir/l, and —M;r/l,, respectively. The magnitude of the maximum shearing stress is then also given by

M;r/1,. Clearly, for the whole bar, the greatest normal and shearing stresses occur on the boundary where
r = a. That is,

M
(T”)max = (TS)max = T:a (51417)

(b) For the principal value 4 = M:a/l, at a representative point on the boundary (x;, O, a), the equations for
determining eigenvectors are

M, M, M,
. ranl _ tan2:O7 _ tan3:0.
Ip Ip Ip

Thus, ny=—n», n3= 0, and the eigenvector is given by

n= (\@/2) (e1 — e2). (5.14.18)

This normal vector determines a plane perpendicular to the lateral surface at (x1, O, a) and making a 45° angle
with the xj-axis. Frequently, a crack along a helix inclined at 45° to the axis of a circular cylinder under torsion is
observed. This is especially true for brittle materials such as cast iron or bone.

Example 5.14.2

Consider the angle of twist for a circular cylinder under torsion to be a function x; and ¢, i.e., « = a(xy, 1). (a) Obtain
the differential equation that o must satisfy for it to be a possible motion in the absence of body force. (b) What are the
boundary conditions if the plane x; =0 is fixed and the plane x; =¢ is free of surface tractions.

Solution
(a) From the displacements:
=0, u=—alx,t)x, U3=oa(x,t)x,
we find the nonzero stress components to be

Oa Oa
Tio = Toy =2uEpp = —xs—, T3 = T3 = 2ubi3 = wo—.
12 21 HE12 H38X17 13 31 HE13 = U 28)(1
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Both the x»- and the x3-equations of motion lead to

2Pe_Pa 5w
Tox2 o’ 6

(b) The boundary conditions are

TORSION OF A NONCIRCULAR CYLINDER: ST. VENANT'S PROBLEM

For cross-sections other than circular, the simple displacement field of Section 5.14 will not satisfy the trac-
tion-free lateral surface boundary condition. We will show that in order to satisfy this boundary condition,
the cross-sections will not remain plane. We begin by assuming a displacement field that still corresponds
to small rotations of cross-sections described by a function «(x;), but in addition, allows for axial displace-
ments u; = p(x2,x3), describing warping of the cross-sectional plane. Our displacement field now has the
form

up = p(x2,x3), up = —o(x))x3, uz=ox))x,. (5.15.1)

The corresponding nonzero stresses are given by

do 0
Ty, =Ty =2uE;, = leszr.an
X2
5.15.2)
do 0 (
T3 = T3 = 2ukE; =pn - +Hagp
X3

Both the x,- and the xs;-equation of equilibrium, i.e., 9T,;/0x; = 0 and 0T31/0x; = 0, lead to the same
result as in the circular cross-section case, that the angle of twist per unit length of the bar is a constant.
That is,

d
4% _ constant = o', (5.15.3)
dxl

The x;-equation of equilibrium 9T /0x, + 0T 2/0x; + 0T 3/0x3 = 0 requires that the warping function
satisfies the Laplace equation

2 2
6@6@0

2
Vie= O3 +6x3

(5.15.4)

We now compute the surface traction on the lateral surface. Since the bar is of constant cross-section, the
unit normal does not have an x; component. That is, n = nye, + nze3 so that
0 T T 0 Tiony + Tiang
M=Mn=|T, 0 0| |m]|= 0 . (5.15.5)
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That is,

dp Op
t= "(— Y Ixa
|:,uo€ ( nax3 + n3X2) +u (6)(2 ny + o n3> :I €] (5.15.6)

= ulo'(—naxz + m3x2) + (Vo) - njey.

We require that the lateral surface be traction free, i.e., t = 0, so that on the boundary, the warping func-
tion o must satisfy the condition o'(—nax3 + n3x2) + (V) - n = 0; that is,
dy
on
Egs. (5.15.4) and (5.15.7) define the so-called St-Venant’s torsion problem.

(V) - n = a'(nyx3 — n3xy) or =o' (nox3 — n3xz). (5.15.7)

TORSION OF ELLIPTICAL BAR

Let the boundary of an elliptical cylinder be defined by

2
fx2,x3) :x—%+x—3_

St (5.16.1)
The unit normal vector is given by
V2 e, B2 e 2

n=—= |Vf| = ‘Vf‘ |:a262 b2e3] _a2b2|Vf| [b X2y +a )C3e3]. (5.16.2)

From Egs. (5.15.7) and (5.16.2), we obtain
(2—;02) bPx; + (88—;03) x5 = o'xox3 (b2 — az). (5.16.3)

Now consider the following warping function:

= Axax3. (5.16.4)

This warping function clearly satisfies the Laplace equation, Eq. (5.15.4). Substituting this function in
Eq. (5.16.3), we obtain

b2 _ aZ
A=ao (az — b2)' (5.16.5)
b* — a*
Thus, the warping function ¢ = o’ <2+bz> Xpx3 solves the problem of torsion of an elliptical bar. The non-
a
Zero stress components are given by
2ud® 2ub?
T21 = T12 = — <L12H7_'_b2)06,)(37 T31 = T13 = (aZMW)OC,X} (5166)

This distribution of stresses gives rise to a surface traction on the end face x; = £ as

2uo’

t="Tre; +T3€3 = (m

) [—a’x3e; + bxzes). (5.16.7)
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The components of the resultant force and resultant moment on this end face can be easily found to be

Ri=Ry=Ry =M, = M; =0, (5.16.8)
M, = | (T Todd =2 12 [2aa v 02 [2aa| = 2% (21 + b 5.16.9
17.()(2 31 —x3Ta1) el C B +07 | x; 7az—+b2(a 0+ b’l). (5.16.9)

We see that there is no resultant force; there is only a couple with the couple vector along x-axis, the axis of the
bar. Clearly, an equal and opposite couple acts on the left end face x; =0 so that the bar is under torsion.
For the elliptical cross-section, I, = nb’a /4 and I;3 = na’h /4. Thus, from Eq. (5.16.9), the angle of twist
per unit length is given by
, M(a®+b?)

where we have denoted M; by M,. In terms of M,, the nonzero stress components are

2M X3 2M X2

T=Ty=—"—"7>, Tiz=Ty="7" (5.16.11)
nab na

The magnitude of shear stress on the cross-sectional plane is given by

—2M x5\’ 2Mxy\ 2 XM\ (3 X 1/2
TSZ\/< nab? ) +<77:a3b) “\wan )\t ) (5.16.12)

Example 5.16.1

For an elliptical bar in torsion, (a) find the magnitude of the maximum normal and shearing stress at any point of the
bar. (b) Find the variation of shear stress on a cross-sectional plane along a radial line xo = kxs. (c) Find the shear
stress at the boundary on the cross-sectional plane and show that the largest shear stress occurs at the end of the
minor axis of the ellipse.

Solution
(a) For the stress tensor:

0 T T3
M=1|T, O 0
Tiz O 0

where T15 and Ty3 are given by Eq. (5.16.11), the characteristic equation is

2MN\2[x2 2
3, t 2 3|
5 o 1/2
The roots are A =0, and A = i% (§+%) . Thus,
oM, [x2  x2\?
(Tn)max = (Ts)max: naé (a_i+b_i) . (5.16.14)

Comparing this equation with Eq. (5.16.12), we see that the shearing stress at every point on a cross-section
is the local maximum shear stress.
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(b) Along a radial line x» = kxs3, where k is the slope of the radial line

(5.16.15)

L2 (e 8NT oM i 1
ST mab\ & ' pA rab Va* ' b

That is, the shear stress on a cross-section varies linearly along the radial distance. The largest shear stress for
every radial line occurs at the boundary.

(c) Along the boundary, x3/a® + x5/b° = 1 so that x5 = a*(1 — x5 /b?), thus

2M;

= [ - (P - )8 (5.16.16)

Let b > a, then the largest shear stress occurs at x3 = 0 and x = a, the end point of the minor axis with

2M;

(Ts)max = 25~ (5.16.17)
At x, = 0 and x3 = b, the end point of the major axis,
2M;
s= P2 (5.16.18)

The ratio of the shear stress at the end point of the minor axis to that at the end point of the major axis is b/a.
Of course, for a circle, the shear stress is constant on the boundary.

PRANDTL’S FORMULATION OF THE TORSION PROBLEM
Let

0 oy
T, =— T3 =—— 11 other T;; = 0. 5.17.1
=5y B P all other Tj; ( )

The function Y(x,, x3) is known as Prandtl’s stress function. The only equation of equilibrium that needs to be

checked is the x;-equation: 9T,/0x, + 0T3/0x3 = 0. Substituting the above stress components into it, we
obtain

ooy 0oy

— = 172
8)(2 8)(3 8)(3 8x2 (5 7 )

Thus, the equations of equilibrium are satisfied for any arbitrary function of 1/(x;, x3), so long as it is contin-
uous to the second derivative. However, not every y/(x,, x3) gives rise to compatible strain components. To
derive the condition for compatible strain field, we can either use the compatibility equations derived in
Chapter 3 (see Prob. 5.55) or make use of the relation between the stress function y/(x,, x3) and the warping
function ¢(x,, x3) defined for the displacement field in the last section. Prandtl’s stress function is related to
the warping function by

0 do 0 0 do 9
f—l//:—wcg—ﬁ-ﬂ—(p T13:——{/:W2_.+“_S0’
Ox» dx, Ox3

T, = 5.17.3
27 0 Moy ( )
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from which we have

Py do 8¢ 0y do P
= —— — == — . 174
Ox_% 'udxl N8x38x2 and 8x§ ”dxl M8XZ8X3 (5 7 )
Thus,
2 2
Vi = 9 I/Z/ +8 4 = —2ua’. (5.17.5)
0x3

Equation (5.17.5) not only ensures that the compatibility conditions are satisfied, it also provides a rela-
tionship between the stress function and the angle of twist per unit length o’ = dor/dx;. Eq. (5.17.5) is known
as the Poisson Equation.

To derive the boundary condition for y/, we let the lateral surface be described by

f(x2,x3) = constant, (5.17.6)
then, the normal to the lateral surface is
Vi1 (8f of )
=——= b+ ——e3 |. 5.17.7
MViACSE G177

The boundary condition Tj>n, + T13n3 = 0 [see Eq. (5.15.5)] becomes

owoF oo Oy Jox) (@ /o)
tndn anon 0 % Gy jan) (@) G179

That is, Vi is parallel to Vf. Since Vf is perpendicular to the surface f(x,,x3) = constant, so is Vi, which is
also perpendicular to ¥ (x,,x3) = constant. Thus,

Y = C on the boundary. (5.17.9)

Without loss of generality, we can choose the constant C to be zero. Thus, in summary, in Prandtl’s formula-
tion, the torsion problem is reduced to

2 2
9 lp + % = —2ue’  with boundary condition = 0. (5.17.10)
8x3 Ox
The twisting moment is given by:
_ _ oY Oy J IYx2)  O(Yx3)
M, = J(XZT:‘H X3T21)dA = J ()Lz o + X3 8X3 dA = o +— 6}( 2!// (5.17.11)
X3

X2

FIGURE 5.17-1
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Now,

d
o) )y ‘ [Ja V) dvz} dxs,
6r2

where x, = a(x3) and x, = b(x3) are the two end points (on the boundary) along a constant x3 line, and x; =¢
and x3 =d are the two extreme boundary points for the region of integration (see Figure 5.17-1). Thus, since
Y =0 on the boundary, we have

b
(Y x X =b

J.(aTzﬁdxz = lﬁXz Xi —a= lp(b)b — [p(a)a = O7
so that

Ja(l// )dA =0 and similarly Ja(wx3)dA =0. (5.17.12)

6}(2 8)(3
Thus,
M’:deA' (5.17.13)

Example 5.17.1
Consider the stress function y = B(xZ + x5 — a°). Show that it solves the torsion problem for a circular cylinder of
radius a.

Solution
On the boundary, r?=x3+x% = a?, thus, ¥ =0. To satisfy the Poisson equation (5.17.10), we substitute
¥ = B(x + x2 — &%) in Eq. (5.17.10) and obtain

o o
B =G P).
Now, using Eq. (5.17.13), we obtain

s 2 2 ’ na' '
= JZ!//O’A = —uo L (r —a )27rrdr:,uoc (7) = po'l,.

Example 5.17.2
Show that the shearing stress at any point on a cross-section is tangent to the y = constant curve passing through
that point and that the magnitude of the shearing stress is equal to the magnitude of |Vi/|.

Solution
From v (x2, x3) = C, we have

oy oy
z,//_ dszr(9 dx3 =0 or “ 9%/ ox

dX2

oy %:(d)@) .
C
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o Tz = —%, we obtain

Now, using the definition of stress function, Eq. (5.17.1), Ti» = R Ey
3 2

Ts _ (%)
T12 C/X2 1//:(3-

Thus, the vector Ts = Tioe, + Ti3e3 is tangent to the curve W (x2, x3) = C. Furthermore,

2 2
IV |? = (%> + (%> =Ta+Th=TZ

0X2 (9X3

We also note that |Vi| = |0y /On| where n is in the normal direction to  (x2, x3) = C.

Example 5.17.3

Show that the boundary value problem for determining the membrane elevation h(x,, x3) in the x; direction (see
Figure 5.17-2), relative to that of the fixed boundary of the membrane, due to a uniform pressure p exerted on the
lower side of the membrane is

X3 ox3

p
S

with h = 0 on the boundary, where S is the uniform tensile force per unit length exerted by the boundary on the
membrane. The weight of the membrane is neglected.

X4

FIGURE 5.17-2

Solution
Due to the pressure acting on the membrane, a differential rectangular element of the membrane with sides dx, and
dxs is subjected to three net forces in the x; (upward) direction.

(i) The resultant force due to pressure: pdx.dxs, (ii) the net force due to the membrane tensile force S on the pair
of the rectangular membrane sides dxs, given by (assume small slopes for the membrane curve):

oh oh 0 oOh d%h
*(Sd)@) 07)(2 + (Sng) (67)(2 + 67)(267)(2 dXQ) - 567)(22 C/X3d)(27

h
and (iii) the net force on the pair of sides of length dx,, given by S% dxodXs.
3
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Equilibrium of this element requires that the sum of these forces must be zero. That is

gj(g + gig = ’g with  h = 0 on the boundary. (5.17.14)

We see that the boundary value problem for the membrane elevation h(x,, x3) is the same as that for the stress
function y(xx, x3) if p/Sis replaced with 2pud’.

The analogy between h(xs, x3) and (x>, X3) provides a convenient way to visualize the distribution of the stress
function. For example, the curves of constant elevation h in a membrane are analogous to the curves of constant
stress function y and the location of the largest slope in a membrane provides information on the location of the max-
imum shearing stress. The constant elevation curves and the location of the maximum slope for a membrane can
often be visualized without actually solving the boundary value problem. The analogy has also been used to experi-
mentally determine the stresses in cylindrical bars of various cross-sectional shape under torsion.

TORSION OF A RECTANGULAR BAR

Let the cross-section be defined by —a < x, < a and —b < x3 < b. We seek a solution of the stress function
Y (x,, x3) satisfying the boundary value problem defined by Eq. (5.17.10). That is,

Yy Py
— = —2puo’ 5.18.1
o + o Mo, ( )
with boundary conditions
Yy =0 at x;=4a and x3 = +b. (5.18.2)

Due to symmetry of the problem, the stress function yr(x,, x3) will clearly be an even function of x, and x3.
Thus, we let

o]

Z ,(x3)[ cos (nmx, /2a)). (5.18.3)

This choice of \/ clearly satisfies the boundary condition y = 0 at x, = £a. Substituting the preceding equa-
tion in Eq. (5.18.1), we obtain

(—1/2pa) i [cos (nmxy /2a)] [sz,,()@)/dx% - (nn/2a)2F,,(X3)} =1. (5.18.4)

n=13,5

It can be obtained from Fourier analysis that
Z (4/nm)(—1) "V cos (nmxy/20)], —a<x, <a. (5.18.3)
n=13,5
Comparing the preceding two equations, we have
d*F, /d — (nm/2a)’F, = (—2u0)(4/nm)(—1)"" V72, (5.18.6)

from which

F, = A sinh(nmx3/2a) + B cosh (nmx3 /2a) + (2pe’) (16a2/n3n3)(—1)<”71)/2. (5.18.7)
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For F, to be an even function of x3, the constant A must be zero. The boundary condition that yy =0 at
x3 == b then gives:

B cosh (nmb/2a) + (32ue'a® /n*n®) (—1)" V2 = 0. (5.18.8)

With B determined from the preceding equation, we have

F,= (32,uc<’a2/7r3n3)(71)("7”/2{1 — cosh (nmx3/2a)/cosh (nmb/2a)}. (5.18.9)
Thus,
Rua'a®\ K1 (n—-1)/2 cosh (nmx3 /2a) nmx)
= — (-1 l——— —_—. .18.1
v ( I H;S}F (=1) cosh (nmh/2a) 2 (5.18.10)

The stress components are given by Eq. (5.17.1). We leave it as an exercise (Prob. 5.56) to show that the max-
imum shearing stress occurs at the midpoint of the longer sides, given by (assuming b > a):

l6ua'a\ & 1
T e ) b>a >18.11
( A)max Hoa ( 2 )HZ (}12 cosh (nnb/za)) - ( :

=135

and the relation between the twisting moment M, and the twisting angle per unit length o is given by (see
Prob. 5.57):

M, = %ya’(Za)3(2b) {1 - (13—52) g 3 nis (tanh'?f)} (5.18.12)

n=1235

For a very narrow rectangle (b/a — oo, cosh (nnb/2a) — oo, tanh (nmb/2a) — 1), we have

1
(1) — 200'a, M, — 3100 (20)*(20) (1 - 0.630%). (5.18.13)

PURE BENDING OF A BEAM

A beam is a bar acted on by forces in an axial plane, which chiefly causes bending of the bar. When a beam or
portion of a beam is acted on by end couples only, it is said to be in pure bending or simple bending. We shall
consider the case of a cylindrical bar of arbitrary cross-section that is in pure bending.

Figure 5.19-1 shows a bar of uniform cross-section. We choose the x; axis to pass through the cross-sec-
tional centroids and let x; =0 and x; = £ correspond to the left and the right faces of the bar, respectively.

,\
=
o

X1

-

X3 X3

FIGURE 5.19-1
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For the pure bending problem, we seek the state of stress that corresponds to a traction-free
lateral surface and a distribution of normal surface tractions on the end faces that is equivalent to a bend-
ing couple Mp = M,e; + M3e; on the right face and a bending couple M; = —Mpy on the left end face.
(We note that the M, is absent because it corresponds to a twisting couple.) Guided by the state of stress
associated with simple extension, we tentatively assume that 7;; is the only nonzero stress com-

ponents.
To satisfy equilibrium in the absence of body forces, we must have
Ty,
—= 5.19.1
o ( )
That is, T;; = Ti1(x2, x3). The corresponding strains are
T T
En=—r, En=Eyp=-v_", Ep=E;3=E;=0. (5.19.2)
Ey EY

Since we have begun with an assumption on the state of stress, we much check whether these strains are com-
patible. Substituting the strains into the compatibility equations [Egs. (3.16.7) to (3.16.12)], we obtain

82T1 1 alel 82Tl 1
-0, —0, - 5.19.3
0x3 0x3 O0x,0x3 ( )
which can be satisfied only if 77, is a linear function of the form
T =o+ ,B)Cz + Px3. (5.19.4)

We shall take o = 0 because it corresponds to the state of stress in simple extension, which we already
considered earlier. With &« = 0, let us evaluate the surface traction on the boundaries of the bar.

On the lateral surface, the normal vector does not have a component in the e; direction, i.e.,
n = n,e, + nses. As a consequence,

Ty 0 010
(=Tm=|0 0 0| [n|=]00
0 0 0f |ns

This is what it should be for pure bending.
On the right end face, x; = ¢, n = ey, so that

t:Te1 = Tne]. (5195)

This distribution of surface tractions gives rise to zero resultant force, as shown here:
R] :JT|1dA:ﬁJX2dA+yJX3dA:0, R2 :Rg:O7

where the integrals in the equation for R; are the first moments about a centroidal axis, which, by the defini-
tion of centroidal axis, are zero. With the resultant force being zero, the resultant is a couple
Mg = Me; + Mses at x; = £ (the right face) with

M, = J)@T”dA = ﬁszxgdA + ngdA = Bls + yln, (5.19.6)
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M3 = — JXZTIIdA = —[f [,‘C%dA — }'nyc’:;dA = —ﬁ133 — ’}']23 (5.19.7)
where

Ly = Jx2x3dA, I = Jx_%dA, Iy = Jx’;’dA (5.19.8)

are the second moments of the area. There is an equal and opposite couple on the left face.

We now assume, without any loss of generality, that we have chosen the x, and x5 axes to coincide with
the principal axes of the cross-sectional area. Then the product of second moment /53 = 0. In this case, from
Egs. (5.19.6) and (5.19.7), we have

My M

- L op=2 5.19.9
I ! I ( )
so the only nonzero stress component is given by [see Eq. (5.19.4)]
M M;x
Ty =2 32 (5.19.10)
I I3

The stress component T, is known as the flexural stress.
To investigate the nature of deformation due to bending moments, for simplicity we let M3 = 0. The strain
components are then

E, = Ey =FE33 = — Ep=E;3 =Ey;=0. (519]1)

IzzE;'7
Using strain-displacement relations, 2E;; = Ou;/0x; + Ou;/0x;, Eqs. (5.19.11) can be integrated (we are
assured that this is possible since the strains are compatible) to give the following displacement field:

o + opx3 +
uy = X1X3 — 03X + 02X3 + 04,
Eyly

VMZ
Uy = — ; XoX3 + 03X — 01 X3 + U5, (5.19.12)

vl

My o, 2
Uz = — T [xi —v(x3 — x%ﬂ — G2X| + o1 X2 + e,

where o; are constants. The terms that involve a,, i.e.,
U] = —03Xy + 0oX3 + 0lg, Uy = 03X] — 0 1X3 + 05, U3 = —0X] + 01X + g (5.19.13)

describe a rigid body displacement field (Vu is antisymmetric).

Example 5.19.1

A beam is bent by end couples Mg = Mes at x; = £and M, = —Mgrat x; =0. The e; axis is perpendicular to the paper
and pointing outward. The origin of the coordinate axes is at the centroid of the left end section with x; axis passing
through the centroids of all the cross-sections to the right; xo and xs axes are the principal axes, with positive x3
axis pointing downward. The beam is subjected to the following constraints: (i) The origin is fixed, (ii) (Qus/dx) =0
at the origin and (iii) the centroid at the right end section can only move horizontally in x; — direction. (a) Obtain
the displacement field and show that every plane cross-section remains a plane after bending and (b) obtain the
deformed shape of the centroidal line of the beam, regarded as the deflection of the beam.
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Solution
(a) From Egs. (5.19.12), we have:
(i) At (O, O, 0), u =l = Uz = 0. ThUS, Og = 05 = Og = 0.
(i) At (0O, 0, 0), dus/dxo = 0. Thus, oy = 0.
(i) At (¢,0,0), up = us = 0. Thus, a3 = 0,00 = —M¢€/(2Ey Ip).

The displacement field is

U= MX3 _ﬁ

YT E 2|

U, = 7ﬂX2X3, (51914)
Eylo

For a cross-section x; = ¢,

M ¢
w=p (“é)“ (5.19.15)

Thus, every plane cross-section remains a plane after bending. It simply rotates an angle given by

dU1 M €
0 ~ tan Q_d—)@_%(c—g. (5.19.16)

In particular, the cross-section at the midspan (¢ = ¢/2) remains vertical, whereas the section at x; =0
rotates an angle of —M¢/(Ey l») (clockwise) and the section at x; = ¢, of M¢/(Ey ;) (counter-clockwise).

(b) For the centroidal axis x» = x3 = 0, from the third equation in Eq. (5.19.14), we have

s — MX1
> 2Evhn

(- x). (5.19.17)

This is conventionally taken as the deflection curve for the beam.

PLANE STRESS AND PLANE STRAIN SOLUTIONS

PLANE STRAIN SOLUTIONS

Consider a cylindrical body or a prismatic bar that has a uniform cross-section with its normal in the axial
direction, which we take to be the x5 axis. The cross-sections are perpendicular to the lateral surface and par-
allel to the x;x, plane. On its lateral surfaces, the surface tractions are also uniform with respect to the axial
direction and have no axial (i.e., x3) components. Its two end faces (e.g., x3 = =+b) are prevented from axial
displacements but are free to move in other directions (e.g., constrained by frictionless planes). Under these
conditions, the body is in a state of plane strain. That is,

E3z=FEp3 =E3=0, E;=E;(x,x), En=Exn(,x), Ep=En(x;,x). (5.20.1)
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For this state of strain, the nonzero stress components are
Ty =Tu(x,x), T =Tnlx,x), Tio=Tal,x) =T, (5.20.2)
and from Hooke’s law, 0 = (1/Ey)[T33 — v(T11 + T2)], we have
T3z =v(Tn +T2). (5.20.3)

We see that although the strain components exist only with reference to the x,x, plane, the state of stress
in general includes a nonzero Ts3(x;, x»). In fact, this component of stress is needed to maintain zero axial
strain, and in general, removal of this axial stress from the end faces will not only result in axial deformation
but also alter the stress and strain field in the bar, except when Ts; is a linear function of x; and x,, in which
case it can be removed entirely from the bar without affecting the other stress components, although the strain
field will be affected (see Example 5.20.1). However, if the cylinder is long (in x3-direction), then by
St. Venant’s principle, the stress field in regions far from the end faces, due to 733 acting alone on the end
faces, can be obtained by replacing the surface traction with an equivalent force system, which allows for
easy calculations of the stress field. For example, if the resultant of T33(x;, x;) on the end face is a force
P passing through the centroid of the cross-section, then the effect of the axial traction 753 is simply that
of a uniform axial stress P/A in regions far from the end faces. In this case the axial traction on the end faces
can be simply removed from the end faces without affecting the in-plane stress components T, T, and T}»;
only T33(x;, x») in the bar needs to be modified. This is true in general. Thus, as far as in-plane stress com-
ponents are concerned (i.e., Ty, 75, and T,), the plane strain solution is good for two kinds of problems: (a) a
cylinder whose end faces are constrained from axial displacements, in this case, T3 = v(Ty; + T»2) through-
out the bar, and in this case, the solution is exact, and (b) a long cylinder whose end faces are free from sur-
face traction; in this case, the axial stress T3z # v(T1; + T22), but its approximate values can be obtained
using St. Venant’s principle and the principle of superposition.* The two problems have the same in-plane
stress components in reference to the x;x, plane. These in-plane stresses are what we are concerned with in
this so-called plane strain solutions.

We should note that plane strain problems can also be defined as those whose displacement field is

uy = u(x1,%2), Uy =up(x1,x2), w3z =0 (ora constant). (5.20.4)

We now consider a static stress field associated with a plane strain problem. In the absence of body forces,
the equilibrium equations reduce to

L il == = .20.
Bxl + 8)(2 07 8x1 + 8x2 07 8x3 0 (5 05)
Because T33 depends only on (xy, x3), the last equation in Eq. (5.20.5) is trivially satisfied. It can be
easily verified that the other two equations of equilibrium in Eq. (5.20.5) are satisfied for the stress com-
ponents calculated from the following equations for any scalar function ¢(x;, x,), known as the Airy
stress function:
Po Po Po

Thw=—%, Tpn=-— Ty =—%. 5.20.6
11 ax% ’ 12 6x1 aXQ ’ 22 ax% ( )

*Superposing v(T11 + T»2) with the stress, obtained via the St. Venant principle, due to normal surface traction of —v(T; + T22) on
the end faces.
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However, not all stress components obtained this way are acceptable as possible elastic solutions, because
the strain components derived from them may not be compatible; that is, there may not exist displacement
components that correspond to the strain components. To ensure the compatibility of the strain components,
we first obtain the strain components in terms of ¢ as follows:

1 1 0? 0?
E = E[Tll =T +v(Ty +Tn)}] = B [(1 D 99 —v(1+v) 80}
Y Y X

0x3 ox?
Exn = 1 [Ta — v{v(T11 +T) + T11}] = 1 (1 _ Vz) @ —v(1+ v)aip (5.20.7)
Ey Ey ox3 x|’
Epy = —(1+)T —fi(1+v)ﬂ Eiy=Ey =Ez3 =0
12—EY 12 = EY 8x18x27 13 — £23 — £33 = Y.

For plane strain problems, the only compatibility equation that is not automatically satisfied is

OPE\ | OEyp  OEp

= . .20.
0x3 + Ox? 0x10x (5.20.8)
Substitution of Egs. (5.20.7) into Eq. (5.20.8) results in (see Prob. 5.61)
o o o
4
Vo = ot 2 oo T ad = (5.20.9)

Any function ¢(x, x,) that satisfies this biharmonic equation, Eq. (5.20.9), generates a possible elasto-
static solution. It can also be easily obtained that

? 9 Fp O o
Th4Tn) =ty 2% =0 5.20.10
<(9x1 o2 2)( o T) = A + ol + ocod ( )

which may be written as

V3(Ty 4+ Tpn) =0 where V2= a_2+a_2 (5.20.11)
1 2 T\ o)’ o

Example 5.20.1
Consider the following state of stress in a cylindrical body with x3 axis normal to its cross-sections:

00 0
M=1]0 0 0 . (5.20.12)
0 0 T33(X1,X2)

Show that the most general form of T33(x1,X»), which gives rise to a possible state of stress in the body in the
absence of body force, is

Ts3(X1, %) = ax1 + Bxz + 7. (5.20.13)
Solution
The strain components are
Ta3(x1, X, Ta3(x1, X,
£y = %) 33551’ 2 £y B 733(;’ ) (5.20.14)
y Y
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Substituting the preceding into the compatibility equations (Section 3.16), we obtain

2 2 2
0 T§3 _o, @ T§3 _o, XT= _g (5.20.15)
R)% X3 0x10x%

Thus, for the given stress tensor to be a possible elastic state of stress, Ts3(x1, X2) must be a linear function of
X1 and xo. That is,

Tas = axy + PXo + 7. (5.20.16)

From this result, we see that if a cylindrical body is loaded on its end faces by equal and opposite
normal traction distribution T35, which is a linear function of x; and x,, then the stress field inside
the body is given by the same 733 throughout the whole body, with no other stress components
(this includes the case of simple extension where T33 = ¢, considered in Section 5.13 and the case of pure
bending considered in Section 5.19). On the other hand, if the normal traction on the end faces is not a linear
function of x; and x,, then the stress distribution inside the body is not given by Eq. (5.20.12).

RECTANGULAR BEAM BENT BY END COUPLES

Consider a rectangular beam whose length is defined by x; = 0 and x; = ¢, whose height by x, = +//2, and
whose width by x3 = +b/2. Let us try the following Airy stress function ¢ for this beam:

©=ox (5.21.1)

Clearly, this function satisfies the biharmonic equation, Eq. (5.20.9), so that it will generate a possible
elastic solution. Substituting Eq. (5.21.1) into Egs. (5.20.6), we obtain

P P 0%
ThWw=—5=6 Ty =— =0 =—=0. 5.21.2
1 o oxy, T om0 T2 o ( )
(a) If the beam is constrained by frictionless walls at x3 = 4b/2, then

T35 = v(T11 + T) = 6vous, (5.21.3)

and the stresses in the beam are given by

6OCX2 0 0
m=|0 o o0 |. (5.21.4)
0 0 6voxy

On the end faces x; = 0 and x; = ¢, the surface tractions are given by t = —6ax,e; and t = 6oxse,

respectively. These surface tractions are clearly equivalent to equal and opposite bending couples at
x; = 0and x; = £. In fact, the magnitude of the bending moment is given by
h/2

M= 6ocJ x2(x2bdxy) = abh® /2, (5.21.5)
—h/2
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so that in terms of M, the nonzero stress components are

2M 12M
W-ny Ts; = Vﬁxr (5.21.6)

T|| = 6(ZX2 =

(b) If the beam is unconstrained at x3 = +b/2, we need to remove the surface traction Ts3 at x3 = £b/2
from the beam. This is done by applying on the end faces x3 = £b/2 in the problem of part (a), a sur-
face traction T33 = —v(12M/bh*)x,. Being linear in x,, the effect of this surface traction is simply a
stress field, where Ts3 = —v(12M/bh?)x, is the only nonzero stress component (see Example 5.20.1).

Thus, we have, for the beam that is free to move in the width x3 — direction,

M)Cz
Th = (m)xz = §7 all other Tj; = 0. (5.21.7)

This is the same result that we obtained earlier in Section 5.19. We note that the x, axis here
corresponds to the x3 axis in that section.

PLANE STRESS PROBLEM

Consider a very thin disc or plate, circular or otherwise, its faces perpendicular to the x3-axis, its lateral sur-
face (often referred to as the edge of the disc) subjected to tractions that are (or may be considered to be, since
the disc is thin) independent of x5 (i.e., uniform in the thin axial direction) and its two end faces are free from
any surface traction. Then the disc is approximately in a state of plane stress. That is,

Tyi(x1,x2) Tia(xr,x2) 0O
[T] = T]z(X],XZ) T22(X17)C2) 0]. (5221)
0 0 0

This assumption is based on the fact that, on the two end faces T13 = T>3 = T33 = 0, so that within the
disc, it being very thin, these components of stress will also be very close to zero. That the plane stress assump-
tion, in general, does not lead to a possible elastic solution (except in special cases) will be shown here by estab-
lishing that Eq. (5.22.1) in general does not satisfy all the compatibility equations. However, it can be shown
that the errors committed in the stress components in Eq. (5.22.1) are of the order of &%, where ¢ is some dimen-
sionless thickness of the plate, such as the ratio of the thickness to the radius, so that it is a good approximation
for thin plates (see Timoshenko and Goodier, Theory of Elasticity, third edition, McGraw-Hill, pp. 274-276).

The equations of equilibrium can be assured if we again introduce the Airy stress function, which is
repeated here:

Py P Py

9 ry=-2¥ 7,-2¢ 5202
o3 12 B0 0xs 2 ( )

Ti1 =
11 ax%

Corresponding to this state of plane stress, the strain components are

1 1 [P P 1 1 [d% %
Evy=— (T —vTyp) = — | =2 —y =~ Epy = —(Toy — Ty ) = — | —2 — y =~
= Ey( 1) Ey (8}(% ! ot )’ 2 Ey( 2 =) Ey \ 022 V(?x%

v v [Pp Py 1 1 P
33 Ey( 11+ T) E (6}(5 + o |0 v Ey( + )Tz By 0x10x,

(5.22.3)

(1+v)

E;3 =Ep=0.
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In order that these strains are compatible, they must satisfy the six compatibility equations derived in Section
3.16. The consequences are:

1. Equation (3.16.7) leads to

8430 8499 04<p
xp T Oxion; * ol 0 (5.22.4)

(see Prob. 5.62).
2. Equations (3.16.8), (3.16.9), and (3.16.12) lead to

OPEss 0%Es; an 0?E3;
axlf o Gx% Ox10x2

=0. (5.22.5)

Thus, E33 must be a linear function of x; and x,. Since E33 = —(v/Ey)(T11 + Tx); T11 + T2, must be a
linear function of x; and x.

3. The other two equations are identically satisfied.

Thus, a plane stress solution, in reference to (xq, x), is in general not a possible state of stress in a cylin-
drical/prismatic body (with cross-sections perpendicular to the x3-axis). However, (a) if (T}, + T») is a linear
function of x; and x,, then the plane stress is a possible state of stress for a body of any width (in x3 direction)
and (b) if (T, + T»,) is not a linear function of x; and x,, then the state of plane stress can be regarded as a
good approximate solution if the body is very thin (in x5 direction), the errors are of the order of &2, where ¢ is
some dimensionless thickness of the disc/plate.

CANTILEVER BEAM WITH END LOAD

Consider a rectangular beam, whose cross-section is defined by —4/2 < x; < h/2 and —b/2 < x3 < b/2 and
whose length, by 0 < x; < £, with the origin of the coordinates located at the center of the left cross-section
x; = 0 (Figure 5.23-1). Let us try the following Airy stress function ¢ for this beam.

p= ocxlxg + Bx1xs. (5.23.1)
Clearly, this satisfies the biharmonic equation Eq. (5.20.9). The in-plane stresses are
0? Pp Pp

)
Th=—5=6 Ty=-—"2=0, Tp=-— = —f —3oxl. 5.23.2
11 8)% X 1X2, 22 8)(% ) 12 0102 B oxXy ( )
X2 Xo
b/2|b/2 e
h/2 h/2
X3 X4
h/2 h/2
|
P

FIGURE 5.23-1
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On the boundary planes x, = +/4/2, we demand that they are traction-free. Thus,

3ah?
t= T(j:ez) = i(leel + Tzzez)‘n:ih/z = i(*ﬁ - T)el =0, (5.23.3)
from which we have
32
p=—4 (5.23.4)
4
On the boundary plane x; = O, the surface traction is given by
3
t=—Te = —(Tye; + Taer), _o = (B+3ux3)e; = Z“ (—h? +4x3)e,. (5.23.5)
That is, there is a parabolic distribution of shear stress on the end face x; = 0. Let the resultant of this dis-
tribution be denoted by —Pe, (the minus sign indicates downward force, as shown in Figure 5.23-1); then
3oh? h/2 3oh? bh?
L JdA+3aJ Bbdny) = [ =220 (bh) + 302 (5.23.6)
4 i 4 12
Thus,
bh? 2P 3P
P=|— =— d =——. 5.23.7
(2)“’ 2= wd B=mon (5:23.7)
In terms of P, the in-plane stress components are
12P P P\ (K
Ty = —X1X = — Ty = Tp=(=](=- 23
1= =T, T 0, T (2]) (4 X2>7 (5.23.8)

where I = bi® /12 is the second moment of the cross-section. If the beam is in a plane strain condition, there
will be normal compressive stresses on the boundary x3 = £b/2 whose magnitude is given by

12P
T33 = V(T11 + Tzz) = v—3x1x2. (5239)
bh
That is,
T, Tz O Eyy En O
M= |Tn Tnn 0|, [El=|En Exn 0], (5.23.10)
0 0 Tsx 0 0 0

where the nonzero stress components are given by Eqgs. (5.23.8) and (5.23.9). The nonzero strain compo-
nents are

1
E, = Ey [T“(l — V2) — V(l + V)TZZL

1
En:Ef[Tzz(uvZ) —v(1+ )Ty, (5.23.11)
Y

1
Eip =—(1 Ti.
12 Ey( + )T,

This plane strain solution, Eq. (5.23.10), is valid for the beam with any width b.
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Since T5; in Eq. (5.23.9) is not a linear function of x; and x,, it cannot be simply removed from Eq.
(5.23.10) to give a plane stress solution without affecting the other stress components (see Example
5.20.1). However, if the beam is very thin (i.e., very small b compared with the other dimensions), then a
good approximate solution for the beam is

Ty, Tz O Eyn Epn O
M= |Tn Tn 0|, [El=|Es En 0 |, (5.23.12)
0 0 0 0 0 Es

where the nonzero stress components are given by Eq. (5.23.8) and the nonzero strain components are

E|| =%(TH 7VT22), E22=EL(T22*\)T11), EIZZ%(I+V)T]2, (52313)
Y Y Y
and E33 = —(v/Ey)(T11 + T22). The strain Es3 is of no interest since the plate is very thin and the compati-
bility conditions involving E3; are not satisfied.
In the following example, we discuss the displacement field for this beam and prescribe the following dis-
placement boundary condition for the right end of the beam:

6142

aXI =0, at (Xl,XQ) = (5,0)

Uy = Uy =

These displacement boundary conditions demand that, at the right end of the beam, the centroidal plane

X, = 0 is perpendicular to the wall while fixed at the wall. These conditions correspond partially to the con-
dition of a complete fixed wall.

Example 5.23.1
(a) For the cantilever beam discussed in this section, verify that the in-plane displacement field for the beam in
plane stress condition is given by the following:

2
Px¢xo vPx3 Px; Pxo[h
- A L
Y= oE T T6E ) eul T2 \2) TRt

(i

(b) If we demand that, at the point (x1,x2) = (¢,0), u1 = b = dupr/dx; = 0, obtain the deflection curve for the
beam, i.e., obtain uy(x1,0).

Solution
(a) For plane stress condition, we have

Px1 X2 £ i ( vPX1 X0
Eyl 27F, Eyl

4y (i

1
E11=E*(T11*VT22) Too —vI1) = —
y
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From the given displacement field, i.e., Eq. (i), we obtain

_ % _ Pxq xo _ % _ vPX1 X0
U=ox T Bl T ox Eyl
2 2 2
oup Ol 1) Pxp  vPxs Pxs P [h
Fio — e I 2 T
2= (ax2+ax1) 2{2Ey/+2Ey/ oul topi\2] Th (i)

2
L1 _%_ﬁ_bl __Pe P (n) _ (P hj_xzz ,
21 2E/1 2EI dul T aui\ 2 4ui ) \ 4

Comparing Egs. (iii) with Egs. (ii), we see that the given displacement field is indeed the in-plane displace-
ment field for the beam.

We remark that the displacement w; is not a linear function of x, for any cross-section (x; = constant);
therefore, a cross-sectional plane does not remain a plane after bending. Also, we note that us cannot be
found (does not exist), because under the plane stress assumption, the compatibility conditions involving
£33 are not satisfied.

0U2

(b) From u»(¢,0) =0 and 8—([ 0) =0, we have
X1
Pe3 Pe?
6Ey/ b1€+03 0 and —Tyl—bl—o,

thus, by = —P£?/(2Eyl), c3 = —Pt3/(3Ey1), and the deflection curve is

P PPx P8

L00,0) = —er it SR T T3E,

(iv)

P 3
At the free end, the deflection is w»(0,0) = _re a very well-known result in elementary strength of

. 3Ey/
materials.

SIMPLY SUPPORTED BEAM UNDER UNIFORM LOAD

Consider a rectangular beam, its length defined by —¢ < x; < ¢, its height by —d < x, < d, and its width by
—b < x3 < b. The origin of the coordinates is at the center of the beam. Let us try the following Airy stress
function ¢ for this beam,

¢ = Boxi + Bixixs + Boxj + Byxixs + Baxs. (5.24.1)
Substituting the preceding equation in the biharmonic equation, we get

oy o o
AL
o " Cadad ol

=0+ 24B3x; + 120B4x, = 0 so that By = *B3/5.
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Thus,
¢ = Box} + Bixixa + Boxs + B3 (xix3 — 13/5). (5.24.2)
The stress components are
Ty = 0*p/0x3 = 6Box; + B3 (6x%x2 — 4)(%)7
Ty = 8%p/Ox3 = 2B, + 2B1x3 + 2B313, (5.24.3)
Tiy = —8p/0x10xy = —2B1x) — 6B3x1 3.

Let the bottom of the beam be free of any traction. That is, at x, = —d, Tj» = T2, = 0. Then
2B, —2Bid —2B3d®> =0 and —2Bjx; —6Bsx;d> =0, sothat B, = —3d’B;, B, = —2Bsd". (5.24.4)

Let the top face of the beam be under a uniform compressive load —p. That is, at x, = +d, T, = 0,
T>, = —p, then, 2B, + 2B;d + 2B3d® = —p.
Thus,

3
By =L lz_é, o=

S (5.24.5)

ENIIS ]

On the left and right end faces, we will impose the conditions that the surface tractions on each face are
equivalent to a vertical resultant force only, with no resultant force in the direction normal to the faces, i.e.,
the x;-direction and no resultant couple. These are known as the weak conditions for the beam, which is free
from normal stresses at x; = £ [i.e., (Tn)xl: +¢ = 0]. For a beam with large £ /d (a long beam), the stresses
obtained under the weak conditions are the same as those under the conditions (711), _., = 0, except near the
end faces in accordance with the St. Venant’s principle.

Equation (5.24.3) shows that T, is an odd function of x,; therefore, ﬁ 4 T11(2b)dx, = 0. That is, the
resultant force is zero on both ends. We now impose the condition that there are no resultant couples, either.
That is, we require that ff 4 T11x2dx; = 0. Now,

d d
‘ Ty1x2dxy = [ 68225 + B (63725 — 4x3)] s @2
J-a J—a e
3 2 8
Thus,
_ By 5 2\ _ 14 2 2
By=—= (50 = 2d) = — 1575 (56 — o). (5.24.6)
Using Eq. (5.24.5) and (5.24.6), we have
3p p
T =—500 (56 —2d%)x, + 37 (6x1x2 — 4x3),
3p 3p
Tip = 5% = 50, (5.24.7)
3
Ty, = —pxz + in
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SLENDER BAR UNDER CONCENTRATED FORCES AND ST. VENANT'S
PRINCIPLE
Consider a thin bar defined by —¢ < x; < ¢, —¢ <x; < ¢, —b < x3 < b (Figure 5.25-1) where ¢/¢ and b/
are very small. The bar is acted on by equal and opposite compressive concentrated load P at the long ends
x; = €. We wish to determine the stress distribution inside the bar and to demonstrate the validity of
St. Venant’s principle.

X2

—_— - - - - - — — — - - = — — — — — — -————— X}

FIGURE 5.25-1

A concentrated line compressive force P (per unit length in x5 direction) at x, = 0 on the planes
x; = £€ can be described as Ty;(%£,0) = —Po(0), where Ty = Ty;(x1,x;) and J(xp) is the Dirac
function, having the dimension of reciprocal length. Now, d(x,) can be expressed as a Fourier Cosine
series as

o(x2) =

1 1 &
% + *Zcos /lmxz] ,  JIm=mnjc, (5.25.1)
¢ ot
so that

—P(S(Xz) = —

P P& .
2t Z COS A2 | - (5.25.2)
m=1

Thus, we look for solutions of the Airy stress function ¢(xj,x;) in the form of

P o
p=- EA% + Zgom(xl) COS AmXa, Am =mm/c, (5.25.3)
m=1
so that
82tp P > 2
7, =2%__P S, Aty 5254
1 o 5 ;Amwm (x1) €OS Az ( )

The function ¢,,(x2) will now be determined so that the biharmonic equation is satisfied. Substituting
Egs. (5.25.3) into the biharmonic equation, we get

= d? d* .
v4§0 = Z{;Lfn(pm - 21’51 d;02m + d;am} cos A,xz = 0.
1 1

m=1
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Thus, A, — 242 ddﬁpzm + & dﬁm = 0. The solution of this ordinary differential equation that is an even
function of xy, is easily obtalned to be
@ (x1) = By cosh J,,x1 + Byxy sinh 4,,x;. (5.25.5)
Thus,
w= fc x5 + Z Bj cosh Ayx| + Boxy sinh A1) €OS ApXa, Ay = mm/c. (5.25.6)

m=1

The stress components generated by this Airy stress function are

0? P XX, , \
T = 0_):5 =5 mz::lffn(B] cosh ,x; 4+ Box; sinh A,,x1) cos A,xa, (5.25.7)
P S 2 . 5
Ty = Fri Z{Bl/{m cosh Zpxi + BaAn(2 cosh Lyxy + Apxy sinh /lmxl)} COS AmXa, (5.25.8)
X m=1
o0
T = 8x18xz Z Am){B1m sinh A,x1 4 Ba( sinh Aux1 + ApXy cosh Ay,x1)} sin Apx;. (5.25.9)

=1

On the boundaries x; = +¢, there are compressive line concentrated forces P applied at x, = 0 but oth-
erwise free from any other surface tractions. Thus, we demand

(le)-w:ﬂ = 0 = B4y sinh 4, + B(sinh 2,,€ + Z,,€ cosh 1,,€), (5.25.10)
and
P o ¢]
(T”)X]:ﬂ = —Pi(xy) = — 5~ Z/lfn(B] cosh A, 4+ By€ sinh 1,,€) cos Aux;. (5.25.11)
m=1
Now [see Eq. (5.25.2)],
—Po(x) = ———— Z COS AmXa.
Thus,
) . P
B cosh A, + B>C sinh /,,{ = T (5.25.12)
C m

Equations (5.25.10) and (5.25.12) give, with /,, = mn/c,

B, — (2P> (sinh 2, € + A€ cosh A,€) C By— (2P> /1( sinh A,,¢ (5.25.13)

¢ ) 22{sinh 22l + 2ul} ¢ ) Ton(SI0 2200l + 20)

The surface tractions on the boundaries x, = +c (top and bottom surfaces in the preceding figure) can be
obtained from Eq. (5.25.9) as

(Th2) 1 =0, (5.25.14)
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and

(T22) e = Y _{B1/, c0sh JyX1 + ByJn(2 cOsh dpxy + Ay sinh A1) }(—1)". (5.25.15)

m=1

We see from Eq. (5.25.15) that there are equal and opposite normal tractions 75, acting on the faces
Xy = ¢ and x, = —c. However, if ¢/¢ — 0 (that is, the bar is very thin in the x, direction), then these
surface tractions (i.e., T5,) can be simply removed from the bar to give the state of stress inside the thin
bar that is free from surface traction on these two faces and with 7,, = 0 throughout the whole bar. We
have also assumed that b/¢ — 0 (that is, the bar is also very thin in the x3 direction) so that we also have
T3 = 0 throughout the whole bar for the case where there is no surface traction on x3 = +b. Thus, for a
slender bar (thin in both x, and x3 directions) with only equal and opposite compressive forces P acting
on its long end faces, there is only one stress component T, inside the bar given by Eq. (5.25.7) and
(5.25.13). That is:

P 2PE {(sinh Am€ + Am€ cosh Ly, €) cosh Ayxy — Apxy sinh A,,€ sinh 2,

Ty =—— — =
1 2 ¢ sinh 2,0 + 2/,,€

m=1

}cos AmX2. (5.25.16)

The first term P/2c¢ is the uniform compressive stress describing the compressive force P divided by
the cross-section area (recall that P is per unit length in the x3 direction); the second term modified this
uniform distribution. We see that for x; =0 (the midsection of the slender bar), this second term
becomes

2P K [ (sinh A€ + Ayt cosh 2,€)
c sinh 24,,,€ + 22,,¢

m=1

} COS Apxs. (5.25.17)

(sinh A,,€ + A€ cosh 4,,€) Aml

(sinh 2/,€ + 2/0} 2 sinh il
the bar), the distribution of T, is uniform for a very slender bar. Numerical calculations will show that for
small value of x; /¢ (i.e., for sections that are far from the loaded ends), the contribution from the second term
will be small and the distribution of T;; will be essentially uniform, in agreement with St. Venant’s
principle.

As At = mn(€/c) — oo, — 0, that is, at x; = 0 (the midsection of

CONVERSION FOR STRAINS BETWEEN PLANE STRAIN AND PLANE
STRESS SOLUTIONS

In terms of shear modulus and Poisson ratio, the strain components are, for the plane strain solution,

1 1 T2
Eyy=—|(1—-v)T{ —T Ey=—|(1=v)Tyn —T Ep =— 5.26.1
11 2 ( V)T —v 22}7 22 21 {( V)T —v 11}7 12 20 ( )
and for the plane stress solution:
Ey=———[T — Ty, En= ! [Ty — V1], E _Tn (5.26.2)
— v s = — 9 = . . .
11 2[1.(1 V) 11 22 22 2[1.(1 V) 22 11 12 2/1
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In the preceding equations, p is the shear modulus and to facilitate the conversion, we have used v and v
for the same Poisson ratio in the two sets of equations (v for plane strain and v for plane stress).

1
If we letv = v —,thenl —v=1-— S and Eqgs. (5.26.1) are converted to Egs. (5.26.2). That
1+v 1+ 1+9v +Vv

is, by replacing the Poisson ratio v in plane strain solution with v/(1 4 v), the strains are converted to those in
the plane stress solution.

v
Il—v 1—v
Egs. (5.26.1). That is, by replacing the Poisson ratio v in the plane stress solution with v/(1 — v), the strains
are converted to those in the plane strain solution.

On the other hand, if we let v = %, thenl +v=1+ and Eqgs. (5.26.2) are converted to
—v

Example 5.26.1
Given that the displacement components in a plane strain solution are given by

Uy = Ei |: a —b—rv)A —B(14v)r+2B(1—=v—=2*)rinr+2C(1—v— 2v2)r:| ,
Y
(i)

Find (u,, up) in the plane stress solution in terms of u and v and in terms of £y and v.

Solution
Ey = 2u(1 + v); therefore,

_ 1 (I1+v)A 9 9
ur = ) { - —B(l+v)r+2B(1—v—=2v)rinr+2C(1 —v—2v)r
L 7575r+25(172v)r|n r+20(1 —2v)r (i)
2u r
4Br0 o 2Bro
Up = 72#(14—\))(17‘)) M (17)
2v 1—v y 1
Replacing v W|th , 1—-2v becomes 1 — =_——and 1-v becomes 1 — = —: therefore, the
I+v 1+v 1+v 14y
components in plane stress solution should be
U — 1 A 1- 1—vr
T 2u r 1+ 1+v
(iii)
_ Ei [ A(lr*”) — B+ v)r+2B(1 —v)rinr+2(1 v)r} .
y

U_ZBrQ 1 4Bro ()
Tu I+ B
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TWO-DIMENSIONAL PROBLEMS IN POLAR COORDINATES

The equations of equilibrium in polar coordinates are (see Section 4.8)

l@(rTrr) N l@Tr(} _ M .
o or r oo  r

.2
L0(r°To)  10Tw _ (5.27.2)

(5.27.1)

2 or r 00

It can be easily verified (see Prob. 5.70) that the preceding equations of equilibrium are identically satis-
fied if

90 (5.27.3)

Tw=-F5+5=—=, Tow=—-5, Tw=—4
ror 2 9e* 0= 32 0 or

C1op | 10% P 0 (1 8<p)
where ¢(r,0) is the Airy stress function in polar coordinates. Of course, Eqs. (5.27.3) can be obtained
from the Airy stress function defined in Cartesian coordinates via coordinate transformations
(see Prob. 5.71).

We have shown in Sections 5.20 and 5.22 that for the in-plane strain components to be compatible, the
Airy stress function must satisfy the biharmonic equation

82 82 aZSO 82<p
ViVe=5+-5|l=5+-%)=0. 5274
2 (ax%*axz) (ax%*ax%) G219
In polar coordinates,
»* 1o 1 &
2
(L TN _(lo 1o ) 27.
v (8xf+0x%) <r ar+r2 802+8r2) (5:27.5)

Thus, we have the biharmonic equation in polar coordinates:
10 10 P\[10p 1Pp 0
R AT I (et Al Nl ) ) 5.27.6
(r or + 2 90> + 8}’2) (r or + 2 90* + 01‘2) ( )
The in-plane strain components are as follows:
(A) For the plane strain solution,

1 1
Ey =g [(1 = V)T, —v(1 +v)Tog],  Eop = o (1 =v)Tgo —v(1 4+ V)T,

Y Y
5.27.7
L) (5:21.7)
=g T
(B) For the plane stress solution,
By = [T —vTwl, Eao = —[Top—T,],  Evo =97, (5.27.8)
= Ey r Vigg], 00 — Ey 00 Vipy|, r0 — Ey rf- el
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STRESS DISTRIBUTION SYMMETRICAL ABOUT AN AXIS

Let the axis of symmetry be the z-axis. We consider the case where the stress components are symmetrical
about the z-axis so that they depend only on r and T,y = 0. That is,

T,-,~ = T,-,-(I’)7 TH(-) = T(M(l‘), T,-(-) =0. (5281)
In terms of the Airy stress function, we have
_ _ap _
Ty==—, Top= pEl T,p =0, (5.28.2)
and the biharmonic equation becomes
Voo (L 1) (Lo Loy (5.28.3)
=\ Trar)\a? i) T -

The general solution for this ordinary differential equation (the Euler equation) can easily be found to be

@o=Alnr+Br*Inr+Cr? +D, (5.28.4)
from which, we have
ldp A
T, _?E_r_2+3(1 +2Inr)+2C,
Lo A (5.28.5)
T(—)(-) :W: —r—2+B(3+21nr) 4’26‘7

DISPLACEMENTS FOR SYMMETRICAL STRESS DISTRIBUTION IN PLANE
STRESS SOLUTION

From the strain-displacement relations, we have

ou, 1
Err = or = Ey (Trr - VT(')('))
(5.29.1)
1 |A
= — [2(1 +v)+B(1 =3v)+2B(1l —v)Inr+2C(1 — V):I ,
Ey r
10ug  u,
Ep = ’—W ,— = E_ (T(%) - VTrr)
(5.29.2)
1 A
—[ (1—5—\))2—1—(3—v)B—|-ZB(1—v)lnr—&—Z(l—V)C}7
Ey r
1/10u, Oup up Ty
Egy=—|-—F+———| =—=0. 29,
L) (r 00  or I') 2u 0 (5.29.3)
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Integration of Eq. (5.29.1) gives

1

— f?(l )+ 2B(1—v)rinr— (1 4+ )Br +2C(1 — v)r| +£(0). (5.29.4)
Y

Uy

Equations (5.29.2) and (5.29.4) then give

Oug  4Br
it —£(0). (5.29.5)
Integration of the preceding equation gives
4Br0
up = E’ - J F(0)d0 + g(r), (5.29.6)
Y

where g(r) is the integration function. Using Egs. (5.29.4), (5.29.6), and (5.29.3), we have

10u,  Oug _up _1df  dg lj &) _
r 00 + or r rd9+dr + r F(0)d0 =0 (529.7)

Thus,
4 — o) — 8 _
20T Jf (0)d0 = g(r) —r—> =D, (5.29.8)
from which we have
a*f d’g
s +f(0) =0 and 2= 0. (5.29.9)
The solution of the first equation in Eq. (5.29.9) is
f(0) =Hsin0 + Gceos0, (5.29.10)
from which
Jf(@)d@i—HCOSH-FGSiHH-i-N, (5.29.11)
and
df /dé + Jf(@)d@ =Hcos0 —Gsinl —Hcos0 +Gsin0+N =N. (5.29.12)

Comparing this with Eq. (5.29.8), we get D=N. The solution of the second equation in
Eq. (5.29.9) is

g(r) =Fr+K, (5.29.13)
from which we have g(r) — rdg/dr = K. Thus, from Eq. (5.29.8), K = D = N. That is,

g(r)=Fr+N and Jf(@)d@ = —Hcos0 +Gsin0 + N. (5.29.14)
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Finally, using Eq. (5.29.10) in Eq. (5.29.4) and Eq. (5.29.14) in Eq. (5.29.6), we have

A
(I4+v)+2B(1 —=v)rinr — (1 +v)Br+2C(1 —v)r

U =— |——
Ey | r (5.29.15)
+ Hsin0 + Gcos 0.
4Br0
up = E’ + HcosO — Gsinf + Fr, (5.29.16)
Y

where H, G and F are constants. We note that the terms involving H, G and F represent rigid body
displacements as can be easily verified by calculating their Vu. Excluding the rigid body displacements,
we have

1 A
U = - ——(14v)+2B(1 —=v)rinr — (1 +v)Br+2C(1 —v)r|, (5.29.17)
Y r
4Bro
wy = ——. (5.29.18)
Ey

THICK-WALLED CIRCULAR CYLINDER UNDER INTERNAL AND EXTERNAL
PRESSURE

Consider a circular cylinder subjected to the action of an internal pressure p; and an external pressure p,. The
boundary conditions for the two-dimensional problem (plane strain or plane stress) are

T, =-pi atr=a,

Trr = —Po atr = b. (5301)

The stress field will clearly be symmetrical with respect to the z axis; therefore, we expect the stress compo-
nents to be given by Eq. (5.28.5) and the displacement field to be given by Eqgs. (5.29.17) and (5.29.18). Equa-
tion (5.29.18) states that up = 4Brf/Ey, which is a multivalued function within the domain of the problem,
taking on different values at the same point (e.g., 0 = 0 and = 2x for the same point). Therefore, the con-
stant B in Egs. (5.28.5) must be zero. Thus,

A A
T, = ;7 +2C, Ty =— ﬁ +2C, T, =0. (5.30.2)

Applying the boundary conditions Egs. (5.30.1), we easily obtain

(_pi +p0)a2b2 _piaz +p0b2
A= = 5.30.3
(b —a?) 7’ 2(a® — b?) ’ ( )
so that
S o R B W Ui
" '(bz/az) -1 °1— (a%/b?)’
(5.30.4)

(B?/r?) +1 1+ (a*/r?)

Too = pi B d) -1 Po— @)
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We note that if only the internal pressure p; is acting, T,, is always a compressive stress and Ty is always a
tensile stress.

For the plane stress solution, the displacement field is given by Eq. (5.29.17) with the constant A and C
given by Egs. (5.30.3) and B=0. For the plane strain solution, the displacements are given by Eq.
(5.29.17), with the Poisson ratio v replaced by v/(1 — v) (see Section 5.26).

Example 5.30.1
Consider a thick-walled cylinder subjected to the action of external pressure p, only. If the outer radius is much, much
larger than the inner radius, what is the stress field?

Solution
From Eq. (5.30.4) with p; = O, we have

1—(a%/r?) 1+ (a?/r?)
T = —pom> Top = —pom> Tro=0. (5.30.5)
If a/b — O, then we have
a? a°
T =—Po (1 - 2)7 Too = *Po(l +ﬁ)7 T9=0. (5.30.6)
PURE BENDING OF A CURVED BEAM

Figure 5.31-1 shows a curved beam whose boundary surfaces are given by r = a, r = b, 0 + a and
z = £h/2. The boundary surfaces r = a, r = b and z = £h/2 are traction-free. Assuming the dimension

h to be very small compared with the other dimensions, we wish to obtain a plane stress solution for this
curved beam under the action of equal and opposite bending couples on the faces 6 = + a.

FIGURE 5.31-1
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The state of stress is expected to be axisymmetric about the z-axis. Thus, from Section 5.28, we have

A A
T,.,.=—2+B(1+21nr)+zc, T00=——2+B(3+21nr)+2C, T, =0. (5.31.1)
r r

Applying the boundary conditions T,.(a) = T,(b) = 0, we have
A A
Oza—2+B(1+21na)+2C, 0:ﬁ+B(1+21nb)+2C. (5.31.2)

On the face 0 = «, there is a distribution of normal stress Tyy given in Egs. (5.31.1). The resultant of this
distribution of stress is given by

b b

:h{r(éz—t—B(l—b—Zlnr)—o—ZC)} . (5.31.3)
T

a

b A
R = J Toohdr = h {— +B(r+2rinr) + 2Cr}
-

a a

In view of Eq. (5.31.2), we have
R=0. (5.314)

Thus, the resultant of the distribution of the normal stress can at most be a couple. Let the moment of this
couple per unit width be M, as shown in Figure 5.31-1; then

b b A b b
-M = J Toordr = — J —dr + BJ [2r + (r+ 2rlnr))dr + ZCJ rdr. (5.31.5)

a a a a

Integrating, we have [Note: d(r?Inr) = 2rlnr + r]
M = Aln (b/a) — B(b* — a*) — B(b*Inb — a®Ina) — C(b* — a°). (5.31.6)
From Eqgs. (5.31.2), we can obtain
B(b? —a*) = —2B(b*Inb — a*Ina) — 2C(b* — d?). (5.31.7)
Thus, Eq. (5.31.6) can be written
M:Aln§+B(b21nbfa21na)+C(b27a2). (5.31.8)

Solving Egs. (5.31.2) and (5.31.8) for A, B and C, we obtain

4M b 2M M
A=——aV’'ln-, B=-"—-(b*-a’), C=—[p"—a +2(b’Inb—a’lna)], (5.31.9)
a N N
where
N = (b* — a*)* — 4a*b*[In (b/a))*. (5.31.10)
Finally,
aM [a*h* b, 1, a
T, = N (r—zaner lnEJra ln; )
531.11)
4M [ —d*? b - (
Top = —— a—ln—+b21n'—+a21ng+b2—a2 ,
N r2 a b r
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INITIAL STRESS IN A WELDED RING

A ring (inner radius a and outer radius b), initially stress free, is cut and a very small wedge of material was
removed. A bending moment is then applied to the ring to bring the two cut sections together and welded.
The stress generated in the ring can be obtained as follows: Let =0 and 0 =2n—o be the two cut
sections, where o is a very small angle. Without loss of generality, we can assume that the section at 0 =0 is
fixed. When the two sections are brought together, the displacement uy of the particles in the section at
0=2n—o is given by ug=ro, where r is the radial distance from the center of the ring. Using
Eq. (5.29.18), we obtain

(Ue)gg,, ~ B ren) (5.32.1)
Ey
Thus,
= @. (5.322)
8n
The bending moment at every section can be obtained from the second equation in Eq. (5.31.9), i.e.,
2M .,
B=——(b"—a"). Thus,
N
- NOCEY
M=~ (5.32.3)

where N is given by Eq. (5.31.10). With M so obtained, the stresses are given by Egs. (5.31.11). We remark
that at each section of the welded ring, due to axisymmetry, the shear force must be zero and as a conse-
quence, the axial force is also zero so that the ring is in the state of pure bending.

AIRY STRESS FUNCTION ¢ = f(r) cos n@ AND ¢ = f(r) sin n

Substituting the function ¢ = f(r) cosnf (or ¢ = f(r)sinnf) into the biharmonic equation, we obtain (see

Prob. 5.73)
> 1d n*\/[/d¥ 1df n*,
(m*m‘r—z) (ﬁ*?@‘ﬁf) =0 (5.33.1)

For n # 0 and n # 1, the preceding ordinary differential equation has four independent solutions for f (see
Prob. 5.74):

P2 (5.33.2)

so that for each n there are eight independent solutions for ¢ in the form of: ¢ =f(r)cosnf and
© =f(r)sinnf

r*2cosn, r~"2cosnl, r"cosnl, r"cosn0, (533.3)
" 2sinn0, r~"*2sinn0, r*sinnd, r"sinnd. o
Therefore, we may write, in general
© = (C"2 + Cor™"*2 4 C3r™ + C4r™") cos nl (5.33.4)

+ (C1r"™2 + Cor ™2 4 C3r" + Cyr™") sin nd).
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However, for n = 0, the preceding equation reduces to C;r> + C3r°. Additional independent solutions can

d
be obtained from (d_(p> . For example,
n

n—0
{% (r"** cos n@)} » = [(r""*Inr) cos n — r""*0sin no] o = lnr, (5.33.5)
and
{% (r"**sin nﬂ)] = [(""*Inr) sinnd + r"**0 cos n0],_ = r*0. (5.33.6)
Similarly,
[ (r cosn@] = Inr, (5.33.7)
n=0
{ " sin n0) } =0. (5.33.8)
=0
Thus, we can write, in general, for n = 0 (omitting the constant term which does not lead to any
stresses),
o=Ar? + At Inr+ AsInr + A0 + Asr?0. (5.33.9)

Forn = 1, r~"*2 = " = r and the list in Eq. (5.33.3) reduce

rPcosO, rcosl, r'cos®, rPsinf, rsinf, r'sind. (5.33.10)
. .. . . . d
Again, additional independent solutions can be obtained from (d_<,0> :
n n—1
d —n+2 :
on (r cos n@) = —rlnrcos® — rfsin0,
d n=1
} (5.33.11)
d .
o (r" cos n0) =rlnrcosf — r0sin0.
dn=1
d —n+2 :
- (r sin n6) = —rInrsin 0 4 r0 cos n0,
d n=1
- (5.33.12)
d . .
— (r"sinn = rlnrsin rfcos 0.
[ y (" 0) 1 0+ rfcos0
n
d n=1
Thus, we have four additional independent solutions for ¢. That is,
rinrcosf, rOsin@, rinrsinf, rOcos6. (5.33.13)
Therefore, for n = 1, we can write, in general,
B> +BorInr +Bsr + B cos 0 + Bsr0 sin 0
= (Bur’ o Barlnr o Bar + Bar ) ¥ (5.33.14)

+ (Byr? + Byrnr + Bsr + Byr~') sin0 — Bsr cos 0.
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The stresses are for ¢ = Ar? 4+ Aor? Inr + Az Inr 4 A40 + Asr?0,

e
—5 =24, + Ay(2Inr + 3) — A3 + 2450,

To) =
00 o
o [ 10¢ _
Too=-5 (F%) = Ay — As, (5.33.15)
1 16°
T, = 9p 107 = (24; 4+ A2) 4+ 24, In7 + Ayr~2 4 2450.

o T 90?

For ¢ = (B17® + ByrInr + Bsr + Byr~') cos 0 + Bsr0sin 0,
1% 10p B, _By 2
Tw‘irizw ;57 2Bll +7_2r73 C059+;B5C030,

ot

0 [1op) By _Bs) .
T = ~5 (7%) = (2311 +7_2r_3) sin 0.

For ¢ = (B1r* + BorInr + Bsr + B4r 1) sin 0 — Bsr0 cos 0,

> B, B
Top = 5o <6B1r + 24 25‘) cos 0, (5.33.16)
r r

10 1 6? _ B _ 2
i WAl (2311‘ L2 234;-3> sin 0 + = Bs sin 0,
r r

T, == —
T ror + 2 9>
2
Tog =g—f= (6Blr+321+234r3> sin 6, (5.33.17)
r r
0 [10p) _ 1 .
Trp = “ar (}‘@) =- (231r+32;— 2B4r ) cos 0.
For ¢ = (C1r""2 4 Cor "2 + C3r" + C4r ") cosnl), n > 2,
10% 18¢ |[Cir'{(n+2)—n*} +Cor"{(-n+2) —n*}
Trr 2o Tror | 4c 22} — Cyr ) cos no),
31 n—n 4l n+n }
2 Cin+2)(n+1)r"+ (—n+2)(—n+1)Cor™
Too :Lf: 1 ) 72 ( I o )Cor cos nf, (5.33.18)
Or +Csn(n— 1)r"* — Can(—n — 1)r "
ro— 9 (199 _ [Ciln+Dr" +Col=n+ Dr" + Caln = )27 o
= "o \rao) " +Cy(—n — 1)r2 e
sin n6, and

For ¢ = (C17""2 4 Cor "2 + C3r" + C4r ") sinnf, n > 2, replace C; with C;, cosn0 with

sinnf with —cos nf in the preceding equations.
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Example 5.33.1
Given the boundary conditions for a circular cylinder with an inner radius a and an outer radius b as follows:

Ty = g c0s20, Ty= —% sin20, atr=b, (5.33.19)
T,=0, Typ=0, atr=a. (5.33.20)
Find the in-plane stress field for (i) any a and b and (ii) the case where b/a — oc.

Solution
Consider ¢ = f(r)cos 20. From Eg. (5.33.18). With n = 2, we have

P 2 4
Top = =5 = (1201/' +203+6C4f )(305297

or?
__0[100) _ 02002 6 ) si
Tro = a7 (r 89) = (6C1r° —2Cr =4 2C3 — 6C4r~*) sin 20, (5.33.21)
1%  1dp 2 4
T”:EW 7E:—(4cgr +2C3 + 6C4r~*) cos 20.

Applying boundary conditions Eq. (5.33.19) and (5.33.20), we have

4Cob2 +2C3 +6C4b™* = —6/2,

6C1b%2 —2C,b2 +2C5 —6Csb* = —ag/2,
208724 C3+3C4a* =0,

3C18%2 — a2+ C3—3Ca*=0.

(i) The solutions for the constants from the preceding four equations are

o \ (36b72a% —36b*a*) b2 a\ (—-12b76a° + 12)a?
G = . G=17

12 N 4 N ’
(5.33.22)
oo [ (9a*b™* — 12b75° + 3) R (-3a*b~*+3)a*
T2 N R U~ B VAR
where
N = (-24b7°2° — 24b~?a” + 607 %a° + 36b 2" + 6). (5.33.23)
(i) As b/a — oo,
T\ 2 L _(° (% #

€L —0, C— (2)a .G (4), Ca (4)a 7 (5.33.24)

¢ 422 3a* o 3a*
Trr = <§> (1 — r—2+r—4> COSs 20, T(-)(') = - (5) (l +7) (e 207
(5.33.25)
o 3a* 22\
To = — (2) (1 Sy +—r2 ) sin 20.
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Example 5.33.2
For ¢ = (C1r™?2 + Cor=™2 + C3r" + C4r~") sin no, find the stresses for n = 2.

Solution
2

Toop = % = [1261/’2 + 263 + 6é4f74] sin 20,

o (10 . - - -
To=—5 (78—9;) = —[6C1r? — 2Cor? — 2C5 — 6Car™] cos 20,
1 0% 10p

T =g T ror

[~4Cor=2 —2C3 — 6Car*] sin no.

The preceding equations are obtained from Eq. (5.33.18) by replacing C; with C;, cos n0 with sin n6, and sin n
with —cos nf in the equations.

STRESS CONCENTRATION DUE TO A SMALL CIRCULAR HOLE IN A PLATE
UNDER TENSION

Figure 5.34-1 shows a plate with a small circular hole of radius a subjected to the actions of uniform tensile
stress o on the edge faces perpendicular to the x; direction. Let us consider the region between two concentric
circles: r=a and r =b. The surface r =a is traction free, i.e.,

T,=0 and T,y=0 atr=a. (5.34.1)

If b is much larger than a, then the effect of the small hole will be negligible on points lying on the surface
r=> so that the state of stress at r=>5 for a/b — 0 will be that due to the uniaxial tensile stress ¢ in the
absence of the hole. In Cartesian coordinates, the state of stress is simply T, = ¢ with all other ¢;;=0. In
polar coordinates, this same state of stress has the following nonzero stress components:

T, — % +% c0s20, Ty — % - % cos20, T, = —% sin 20). (5.34.2)

Equations (5.34.2) can be obtained from the equation [T], ., = Q[T {e1, &} [Q] Where the tensor Q rotates

{e;, e;} into {e,, ey} and by using the identities cos?0 = (1 + cos20)/2, sin?0 = (1 — cos26)/2, and
sin260 = 2 sin 0 cos 0. Thus, we have

T, = % +% 0820, T,y — —% sin20, atr—b. (5.34.3)

The solution we are looking for must satisfy both the boundary conditions given in Egs. (5.34.1) and
(5.34.3). We shall obtain the solution by superposing the following two solutions:
1. The solution that satisfies the following boundary conditions:

T,=0, Ty=0 atr=a and T, = z

5 Tro=0 atr=> and (5.34.4)

2. The solution that satisfies the following boundary conditions:

T, =0, Ty=0 atr=a and T, = % c0s20, T,y = —% sin20 atr = b. (5.34.5)
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FIGURE 5.34-1

The solution that satisfies Eq. (5.34.4) is given by Eq. (5.30.6) for the thick-walled cylinder with
po=—0/2 and a/b — O:

g a2 g Cl2
Ty =35 (1 - 72)7 Top =7 (1 + 72)’ Ty =0. (5.34.6)

The solution that satisfies Eq. (5.34.5) is given by Eq. (5.33.25) in Example 5.33.1:

o 4a*>  3a* o 3a*
T,.,. = (z) (1 — ’—2 +’—4) Cos 29, T00 = — (5) (1 +r—4> CoS 20,
o 3a* 247\ .
T,-() = — <2> (l — I‘T + I”2> sin 20.

Combining Egs. (5.34.6) and (5.34.7), we obtain

o a* o 3a*  4d?
Trr :E (1 —r—z) +§ <1+I‘_4_)‘_2) COSZG7

o 3a*  24*\ |
Ty = —5 (1 — }‘_4 +r_2> Sin 2(‘), (5348)

o a o 3a*
T06_5<1+r_2 —E 1+r_4 COS29.

Putting r =a in the preceding equations, we obtain the stresses on the inner circle:

(5.34.7)

T,=0, Tp=0, Tp=0—20cos20. (5.34.9)

We see, therefore, at 0 = /2 (point m in Figure 5.34-1) and at 0 = 37/2 (point n in the same figure),
Top=30. This tensile stress is three times the uniform stress ¢ in the absence of the hole. This is referred
to as the stress concentration due to the presence of the small hole.
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STRESS CONCENTRATION DUE TO A SMALL CIRCULAR HOLE IN A PLATE
UNDER PURE SHEAR

Figure 5.35-1 shows a plate with a small circular hole of radius a subjected to the actions of pure shear t. Let
us consider the region between two concentric circles: r =a and r = b. The surface r = a is traction free, i.e.,

T, = Tr() =0 atr=a. (5351)

If b is much larger than a, then the effect of the small hole will be negligible on points lying on the surface
r="b so that the state of stress at =5 for a/b — 0 will be that due to the pure shear 7 in the absence of the
hole. In Cartesian coordinates, the state of stress is simply given by Tj» = T>; = 1, with all other T;;=0.
Using the equation [T}y, ., = Q[T {1, -} [Q] Where the tensor Q rotates {e;, e} into {e,, e}, we can
obtain, for this same state of stress, the components in polar coordinates. They are

T, =tsin20, Ty = —7tsin20, T,y = tcos20. (5.352)
-
~ - = ~
7 N
4 N\
T
’ \
/ 2a \
1 n \
T | t Xq
\ o !
\ ) m / l
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FIGURE 5.35-1

Thus, the boundary conditions for our problem are
T,=0 and T,y=0 atr=a,
. (5.35.3)
T, =7tsin20, T,y =r1tcos20 atr=5b— co.

In view of the form of the boundary condition at » = b — oo, we look for possible states of stress in the
form of f(r) sin 20 and f(r) cos 20. In Example 5.33.2, we used the Airy stress function,

@ = (Cir* + Cy + C31? + Cyr?) sin 20), (5.35.4)

to generate the following stress components:

) _
¥ ~ 2 ~ 6Cy| .
T()() = W = |:12C11 + ZC% + I”_4:| S 297
_ 0 [10p) _ ~ 2 C> - 6Cy4
Ty = ~or (}09) = - [6C11 - erz-ﬁ- 2C3 — —a | cos 20, (5.35.5)

182@ 18@ 462 = 664 .
Trr_r_zw+;5_ _i‘__2C3__ sin 20.
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To satisfy the boundary conditions at » = b — oo [see Egs. (5.35.3)], we must have
C,=0 and 2C; = —1.
Thus,

The boundary conditions at r =a require that
2C, 6Cs
@ @

from which we have

Finally,
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(5.35.6)

(5.35.7)

(5.35.8)

(5.35.9)

(5.35.10)

SIMPLE RADIAL DISTRIBUTION OF STRESSES IN A WEDGE LOADED
AT THE APEX

Consider a wedge (Figure 5.36-1), defined by 0 = +¢,0 < r < oo, where the two faces of the wedge 0 = +a
are traction free except at the apex r =0, where there is a concentrated load F = Pe;, where e, is pointing to

the right. Then the boundary conditions for the problem are

Top=Tp=0 atl==xar#0,

and

(T, sin 0 + T, cos 0)rd0 = 0.

—o

J (T,ycos0 — T,y sin0)rd0 = —P, J

(5.36.1)

(5.36.2)
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FIGURE 5.36-1

Consider the following Airy stress function [see Egs. (5.33.16) and (5.33.17) in Section 5.33]:
0 = Bsr0sin 0 + Bsrf cos 0. (5.36.3)

The stress components are
10 10% 1

T,-,- = ; ar r—ZW = ; (235 coS 9 — 23_5 sin 0),
5 o (1o (5.36.4)
L —_2 22 =
To=%2=0 To="% <r 60) 0

The stress distribution is purely radial, so the four boundary conditions in Egs. (5.36.1) are automatically
satisfied. The second condition in Egs. (5.36.2) becomes simply

(T, sin 0)rd0 = ‘ (Bs sin 20)d0 — 2Bs J (sin?0)a0
o y - (5.36.5)
= —2Bs J (sin?0)d0 = 0.

(oL

J—o

Thus, Bs = 0. The first condition in Eq. (5.36.2) then gives

2Bs J cos20d0 = —P, (5.36.6)
from which Bs = —P /(20 + sin 2a) and the stress distribution is given by
2P cos 0
T, =— . Tp=Ty=0. 5.36.7
200+ sin 200 1 00 0 ( )

CONCENTRATED LINE LOAD ON A 2-D HALF-SPACE: THE FLAMONT
PROBLEM

In the wedge problem of the previous section, if we take o to be m/2, then we have a two-dimensional
half-space, loaded with a concentrated line compressive load P at the origin on the surface, and the stress
distribution is given by [see Eqgs. (5.36.7)]

2P\ cos@
T, =— (?> Pt Tog =T, = 0. (5.37.1)
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It can be easily verified (see Prob. 5.77) that the displacement field is

P
U = _n_Ey{(l —v)0sinf + 21nrcos 0},

P (5.37.2)
uy = T{(l +v)sinf +2Inrsinf — (1 — v)0cos 0}.
Ly

ELASTOSTATIC PROBLEMS SOLVED WITH POTENTIAL
FUNCTIONS

FUNDAMENTAL POTENTIAL FUNCTIONS FOR ELASTOSTATIC PROBLEMS

Consider the following displacement function for an elastic medium:

1 0
i=¥Yi-— ¥, + @ 5.38.1
Ui i 4(1—V)(9X,'(xn n+ )a ( )
where W; = W;(x1,x,,x3) are components of a vector function, ® = ®(xy,x,,x3) is a scalar function, and v is
the Poisson’s ratio of the elastic medium. Substituting the preceding equation into the Navier equation that
follows (where B; denotes body force per unit volume),

uw  Oe Pu;

o, Bi =0, 5.38.2
T—2von  Monay (5.38.2)
we obtain (see Prob. 5.79)
2 oV, 5 OV2D B
) (xn g~ (L) = ) 4B, = 0. (5.38.3)

It can be easily shown (see Example 5.38.1) that Eq. (5.38.3) is identically satisfied by the equations

vy, = B g =B (5.38.4)
1 1
In the absence of body forces, Egs. (5.38.4) become
VY, =0, VO=0. (5.38.5)

Thus, any functions ® = ®(x1,x2,x3) and ¥; = W¥;(x1,x2,x3) that satisfy Eqgs. (5.38.4) [or Egs. (5.38.5)] pro-
vide a solution for an elastostatic problem through the displacement field given by Eq. (5.38.1).
In direct notations, Eqgs. (5.38.1) and (5.38.4) read, respectively,

1

and

‘B
x> (5.38.7)

VY = —E, V0 =

U
These functions ® and ¥; in the representation of the displacement field are known as the fundamental
potentials for elastostatic problems. The advantage of casting the elastostatic problem in terms of these
potential functions is that the solutions of Eqgs. (5.38.5) [or (5.38.4)] are simpler to obtain than those of
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the three displacement functions in Eq. (5.38.2). Special cases of the representation such as ¥ =0 or ® = 0 have
been well known and some of them are included in the examples that follow. We note that the representation
given by Eq. (5.38.6) is complete in the sense that all elastostatic problems can be represented by it.

An alternate form of the preceding equation is (see Prob. 5.78):

2uu = —4(1 — V) + V(X - i + ), (5.38.8)
where
- * R
= T _v)‘P, ¢ 2(1—\1)(1)' (5.38.9)
In the absence of body forces,
Vi =0, Vi=0. (5.38.10)

Example 5.38.1
Show that Eq. (5.38.3) is identically satisfied by

V¥, = —B;/u and V0 = xB;/u.

Solution
We have
0 o, 0 (B _ 0 g O (%Br\ _Bo (%) _B
avalpn_c’)x,( #)_O and c’)x,vq)_ax,( i )_u<(9x,)_u'
Therefore,
B u 8V2‘Pn_ B oW V2D N 1 B Bi
2(1_2V)<x,7 U T e R B e Rr L R0 () I
8=t qa-ay+13P 4B -—B+B -0
i = 2(1— 2v) 1 P = i i =Y.

Thus, V2¥,; = —B;/u and V2® = x;B;/u provide a sufficient condition for Eq. (5.38.3) to be satisfied.

In what follows, we use Eq. (5.38.8), i.e.,

2pu = —4(1 =)+ V(x - ¢ + ¢),

for the representation and shall always assume that there are no body forces, so that both the vector function s
and the scalar function ¢ satisfy the Laplace equations.

V=0 V=0

Example 5.38.2
Consider the following potential functions in Cartesian rectangular coordinates:

¢:O, ¢:¢(X17X27X3)1 where v2¢:O

Obtain the displacements, dilatation, strains, and stresses in terms of ¢.
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Solution
With 2uu = —4(1 = V) + V(X - g + §) = V¢,

9¢

Displacement: 2uu; = 8—)(, (5.38.11)
. - (ou Oy ¢
Dilatation: 2ue = 2uE; = P4 _ V2h =0 (5.38.13)
.”7‘11”7(9&8)(/7 =u. -00.
82
Stresses: Tj = 2uf; = oxox (5.38.14)
Example 5.38.3
Consider the following potential functions in cylindrical coordinates:
v =1y(r,2)e;, ¢=0, where V2 =0. (5.38.15)
Show that these functions generate the following displacements, dilatation, and stresses:
(a) Displacement:
_ oy _ oy _
2uly = Z 50 2uuy, = (=3 +4dv)y —l—ZE, up = 0. (5.38.16)
(b) Dilatation:
2ef—2(1—2)% (5.38.17)
ue = v 97" .33.
(c) Stress:
] oy 0y oY >’y oy
T,,—ZWfZ\Jg, TOO—Fsz\)E, TZZ—Zﬁfz(].*V)E, (53818)
o 7]
T, = Zar—gz —(1- 2v)a—‘/r’, Top = Tpy = 0. (5.38.19)
Solution

(@) With x = re, + ze;, i = e, x - = 21,
ozy ozy O {z%

et —te,=z7-"e
ar &t a7 & rt1%%;

Vzy = or

+ 'ﬁ}eb
See Eq. (2.34.4).
Thus, Eqg. (5.38.8) gives
2uu = —4(1 =)+ V(x- ) = zaa—fer + {z%—i—k (-3+ 41’)[#}62.
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(b) The strain components are [see Eq. (3.37.20)]

3Ur_ 62111 - Ur_Zalp
2uE, = 2/1 ar ZW7 2,UE()() = 2/1* = FE (5.38.20)
ou, oy Py oy oy l//
2uEz; =2u 5 {(—3 +4v)— o +z ﬁ+5 —-2(1—-2v)— 57 +7— 572 (5.38.21)
_ (040U g QY O
2uE;, —u(ar + E)Z) =—(1-2v) ar +2z 9707 (5.38.22)
Erg =0 = Eg. (5.38.23)
The dilatation is given by
1 Py zoy oy v
e = Err+ E()() + EZZ —Z{ZW‘F?W* 2(]. —2v )874»2@} (5.38.24)

A simpler form for e can be obtained if we make use of the fact that y satisfies the Laplace equation, i.e.,

Py 1oy Py

orr " ror 072 =0 (5.38.25)
so that
oo (1=20)0y (5.38.26)
u 0z
(c) To calculate the stress components, we first obtain
2w oy
-2~ 2%
Then, using the strains obtained in (b), we obtain
2w oy 0y 2w oy zoy
T,f—1_2ve+2/JEf— 2V7+Za2, T()()—l 5 €+2/,LE()(1—72V Z+I’0l’
2wy B oy oY 0%y B oy Py
To =g 5,0+ ke = =2+ {2” B R Sl P e
0
T, = 2uk,, = [—(1 s )a—‘/’+zar—g’4 Too = Ty =O.
Example 5.38.4
Consider the following potential functions in cylindrical coordinates:
Oy 2
= 5, ¢ =(1—-2v)p, where Vp(r,z) =0. (5.38.27)

Show that these functions generate the following displacements v, dilatation e, and stresses Tj:

(a) Displacements:
(D% Op P Oy
2uu = ( S (-2 )ar>e'+ ( St (—2+2v) E)ez. (5.38.28)



(b) Dilatation:

o (=200
u  0z2°
(c) Stresses:
) Py 8 z &y 8 19p
Tn= =252t 2570, Y 1 =250, Tw=1g5,+2y (aﬂ) o
Py Fo o)
TZZ:ZE—W, T/Z:ZW, Tr(-):T(;Z:O.
Solution
(a) The displacement vector is given by [see Eq. (2.34.4)]
Ao Ao
2uu=—4(1 =+ V(X- P+ ¢) = (1—va z—+(1—2)

—4(1—v)(?;0ez+ (z{%ﬁt )er+ z—

(5.38.29)

(5.38.30)

(5.38.31)
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so that

1 By Py P 9 (1 —2v)0%p
e——{fz(ﬁ>+zaz3 (172\1) 7 (].72\))@}—7 PR

. . .2
(c) To obtain the stresses, we first obtain %e = -2v g f Then we have

2uv & By P By P 2v0p
o= gy €t 2hEr =~ o 2+ (L= 20 = 2 4 o+ g

2 3 2
To= M oy ouE, - 2va—“”+<za“0 (1—2)6—) [T T

1-2v 072 072 073 972’

2w B 8 z &y 19p z &y Py 10y
Too =15, 6+ 2mbp = —2vgz+ <Faraz+(1_2 Near | T rarez T e Trar

19
Ty =2puk, = Z% Trg=To; =0.

Example 5.38.5
Consider the following potential functions in spherical coordinates (R, 5, 0) for spherical symmetry problems:

¥ =yRer, ¢=0¢(R), (5.38.32)

where

V2 =0 and Vg =0. (5.38.33)
That is, [see Egs. (2.35.37) and (2.35.40)]
2 2
M-i—gd(b =0 and (M+ 20y 2l//> =

dr2 " RdR — orRZ TROR  R? (5.38.34)

Obtain displacements, dilatation, and stresses, in spherical coordinates, generated by the given potential functions. We
note that the spherical coordinates (R, f8, 0) here corresponds to the spherical coordinates (r, 0, ¢) in Section 2.35.
Solution
It can be obtained (see Prob. 5.80):

(a) Displacements: m d
2uup = (Rﬁ+ (=34 4v)y + ﬁ) Uy = ug = 0. (5.38.35)

(b) Dilatation:

(5.38.36)

o= L2 2
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(c) Stresses:

B dy Y P
Trr = (2v=4) gp + @ =M p+ e
1o~ iy d¥  3Y 1d¢
o= Too = {(QV VR TR RdR}’

T[g@ = Try = TR[; =0.
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(5.38.37)

(5.38.38)

Example 5.38.6

Consider the following potential functions for axisymmetric problems:

W=0. $=¢(r.2)= (R,

B), V24 =V’$=0,

(5.38.39)

where (r, 0, 2) and (R, f, 0) are cylindrical and spherical coordinates, respectively, with z as the axis of symmetry. As
in the previous example, the spherical coordinates (R, f8, 0) here correspond to the spherical coordinates (r, 0, ¢) in
Section 2.35. Obtain displacements, dilatation, and stresses generated by the given potential functions in cylindrical

and spherical coordinates.

Solution
It can be obtained (see Prob. 5.81):
In cylindrical coordinates:

(a) Displacements:

7] 0
2yur:8—(f, Uy =0, 2uuzfa—(j
(b) Dilatation:
e=0.
(c) Stresses:
) 19¢ ¢ 9¢
Tff_ﬁa TW_FE’ Tzz—ﬁ, Trz—ﬁ,
In spherical coordinates:
(a) Displacements: . N
2,LLUR = %, Up = O7 2/1[1/; = l%
oR ROp
(b) Dilatation:
e=0.
(c) Stresses:
B2 1({10% 08¢ 1 {0 cotpod
TRR:Wv Tﬁ/j:R(Ra‘[F+aR ; Toa=§ R R 98

_— 2 10¢
FF=R\0poR  ROPB

), TR(): Tg/gzo.

R

op

Tr() = 7-rz =0.

)

(5.38.40)

(5.38.41)

(5.38.42)

(5.38.43)

(5.38.44)

(5.38.45)
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Example 5.38.7
Consider the following potential functions in spherical coordinates (R, 8, 0), for axisymmetric problems:

¥ =y(R,pe, ¢=0, where V2§ =0. (5.38.46)

Obtain displacements, dilatation, and stresses in spherical coordinates, generated by the given potential
functions.
Solution

It can be obtained (see Prob. 5.82):

(a) Displacements:

2uup = {Rg—t{;— (3- 4v)1p}cos B, 2uup= {(3 dv)sinf+ cosﬁa—l[z} (5.38.47)
(b) Dilatation:
o (1—=2v) 8¢ sin oy
e=-— . ( [3 o aﬁ) (5.38.48)
(c) Stresses
B oy Py 2vsinBoy
T,;~R_72(1fv)cosﬁ8 +RcosﬁaR2 R 9§
oy L sinpay  cosBdPy
Tgp = (1—2v) cosﬁa—R+ (2- 2»)78_[)’ R of (5.38.49)
3 Y oY
T99 = (1 _2‘))% COSﬁ-F I:(ZV— ].)Slnﬁ—"w Taﬂ
_ 20—y Y &y oY
Trp = —— cos ff— 6 + cosﬁaﬁaR—i— sinf(1 —2v)—5 3R (5.38.50)
Tro = Top = 0.

Example 5.38.8
Determine the constants A and B in the following potential functions so that they describe a uniform tensile field of
intensity S where the only nonzero stress is T,,=S:

2
W= y(r.2)e, = Bze,, (r,2) = A<22 - %) (5.38.51)
Solution
Combining the results of Example 5.38.3 and Example 5.38.6, we have
2
T = {72 Wy ar‘f} T (Z—f) — 2B A (5.38.52)

B oy zoy 184)
Too = {72 9z tr ror } tr ror —(2vB+A), (5:38.53)
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Too=—=2(1 =) S 4 20—+ 2 = —2(1 — v) B+ 2A, (5.38.54)

0 & F
Ty = —(1—2v)a—‘f+zargz +az—;’r—0., Tig = Tz = 0. (5.38.55)

Let the uniform tension be parallel to the z direction with an intensity of S; then
T.=S=-2(1-v)B+2A, T, =Ty=2B+A=0. (5.38.56)

Solving the preceding equations, we have

vS N
A=ty B=30oy (5.38.57)
Thus,
2 2
o > T\ _ S ) I S
¢(i,z)—A<z 2)—7(1_’_”(2 2), VY (z) =Bz = 72(14_”2. (5.38.58)

In spherical coordinates (R, 3, 0), where 6 is the longitude angle and f is the angle between e, and eg, the
functions in Eq. (5.38.58) become (note: z = Rcos f§,r = Rsin f):

(R, p) = AR (3 cos?f—1) = 2(1V7iv)Rz(3 cos?f — 1), (5.38.59)
U (R,B) = BRcosff = — jﬁcisvﬂ) . (5.38.60)

The stresses in spherical coordinates can be obtained by using the results of Examples 5.38.6 and 5.38.7
and Eq. (5.38.56),

Y oy 2 0 ?
TRR:_z(l—v)cos/)’a—Z+Rcos a—RléJr vj;nﬁaléJ“aRf (5.38.61)

= —2B(1 —2v)cos?f + 3Acos?B — (2Bv + A) = —2B(1 — 2v) cos 2§ + 3A cos 2,

TR/;:fM sp lercosﬁ call +sinﬂ(12)alp+<82¢ 18(25)

R ap 9BOR R R\ 9poR ~ROp

(5.38.62)

= {%—B-‘r(l —ZV)B+}%(—6AR+3AR)}COS[)’sin[)’

= {—-3A+2B(1 —2v)} cos fsin f5.

Example 5.38.9
(a) Given 4)1 [22° — (x* + y?)] and ¢, = R~3¢; in rectangular Cartesian coordinates, show that V2¢, = 0 and
Vi, =
(b) Express the ¢'s in spherical coordinates ¢(R, B, 0).
(c) For c}ﬁ = ¢, what are the stresses in spherical coordinates?
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Solution

2 2 2
T T 6 5 5.4

(@) V¢, = o Tt -

022

0 50 ] - -
—aj}: R a¢21 - 10x 8¢1R T —5¢ R +35¢1x°R 77,

P, 58 ¢ 01 7 -7 2p-9
a3 =R" A — 10y 8yR 5¢1R™" +35¢1y°R,

P _ 50 01 7 -7 2 -9
8227"? W_IOZER —5¢1R™" +35¢1z°R™".

Thus,

Veh, = 10 X%er%#;“r Za¢1 R~ +20¢,R~’

= [-10(—=2x2 — 2y? + 42%) + 20(22% — x*> — y?)]R~7 = 0.

(b) Since r = Rsin 3,z = Rcos f5, therefore,

¢, = (27% — r?) = R?(2cos?p — sin?p) = R?(3cos?p — 1),

¢, = R3(3cos?p—1).

(c) Using the results of Example 5.38.6, for ¢ = ¢, = R—3(3cos?p — 1), we have

-@o

82

Trr = =12R5(3cos?p — 1),

|—IQ0
3

&
d
b  cotpad

- .
¢ 1 84’) = 24R5cos fisin B,
oRT R B

Try = (,B&R R op

Too =

Tl

Tgp = 5

=l

Rop?  OR

) = -3R>(5cos?f - 1),

1 (199 34’) - {_§(1 + 7c032ﬁ)R*4}4

(5.38.63)

(5.38.64)

(5.38.65)

(5.38.66)

(5.38.67)

Example 5.38.10

In cylindrical coordinates (r, 0, 2), let z* = z + it be a complex variable with i = v/—1. Consider the potential function:

©=710g(R* +7°) — R, R2=r>+2?2

(a) Show that
V2p =0.

(5.38.68)

(5.38.69)
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(b)
| dp n/2 for r <t,
mil == =
0z sin~(t/r) forr>t.
z=0

1 ‘ , (5.38.70)
82 T or r < t,
z=0 0 for r > t.
Solution

(a) From R*2 = r? + z*2 we have

OR'_ 2 ORI 0 R 47) == [(2/R) +1] = /R

oz R’ ar R 0z TRtz
Thus,
Do R 7\ c e 9 1
az**log(R +Z7) + (W) —Wflog(R + 7, 572 = R
9o _ z Gy
or YR +2z* R*|  R:+4z’
Po 1 [ r 1 R*(R* + z) — 2
arZ - R* + z* R*(R* +Z*)2 - R* + z* R*(R¥ +Z*)
o 1 7+ Rz
T R4z RH(R )
That is,
FPo_ 1z
o2 R4z R
Thus,
Py 10p z* 1 1 1 z* 1
2 U lop Jp _ L___ L (L L
V= Y i a2 T Rty Rtz R R*+z*(R*+1)+R* 0.
(b) At
. 2 _ 2, 2 2 g Op  9p N
z=0, Z*=it, R“=r"+z=r"—-t, —= =log(vVr? — 2 +it).
0z 0z*
Now,

for r > t, Iog(\/r2 — 24 /f) = logr+ jo,0 = tan~! (z‘/\/r2 — z‘z) = sin~Y(t/r),

and for r < t, log <Vr2 — 2+ /z‘) = log (/’\/ 2 —r24 /z‘) = log (\/t2 —r24 z‘) +i(n/2).
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2 for r <t,
Thus, at z=0, Im(ai) = n/ B
0z sin~I(t/r) forr>t.
(c) At
R Po P 1 1 1
- _2: *2:_*: = .
0z 0z R \/rz + (lt)Z \/rz _f
Thus, for
& 1
r>t, Im@—lm r2—t2:o7
and for
2
ret, Moo V1
072 2_r2 2_r2
That is,
2 —# forr<t
im(222) = V2 —r? 7
072
0 for r > t.

KELVIN PROBLEM: CONCENTRATED FORCE AT THE INTERIOR OF AN
INFINITE ELASTIC SPACE

Consider the following potential functions in cylindrical coordinates (r, 0, z):

¥ =y(rz)e.=(A/R)e., ¢=0, R*=r*+7 (5.39.1)
Using the results obtained in Example 5.38.3, we easily obtain the displacements and the stresses as (see
Prob. 5.84)

B %_7 rz B _ (_3+4v),é
2uu, =z o AR3 , up=0, 2uu,=A [7R Sk (5.39.2)
L L A P S A i 5393
=i T TA P Dt ] (3399

_z0Y a9y z
To ==~ 20 = A2y - 1)(13), (5.39.4)
Oy oy 323 z

TZZ—ZW—Z(I—»)E_A{F-F(I—2v)<ﬁ>}, (5.39.5)

2 . 2
T, = —(1—2v) aa'f + zgr(;/’z —A {(1 — ) Q—S) + (3’—2)} , Tg=Ty. =0. (5.39.6)
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We now show that the stress field given above is that in an elastic infinite space under the action of a con-

centrated force F = F e, at the origin if the constant A in the preceding equations is chosen to be
F.

A—__ 5.39.7

8n(l —v) ( )

Consider a spherical volume of the medium with the origin at its center (Figure 5.39-1). Let the radius of

the sphere be R,. The stress vector acting on the spherical surface of the volume is given by t =Tn, where n

is the outward normal to the surface. The sphere is symmetrical about the z-axis; therefore, the normal

vector depends only on o, the angle with which the normal make with the z-axis on every rz plane. That is

(see Figure 5.39-1),

FIGURE 5.39-1
. To Zo 2 2 2
n = since, + cosae, = R—er + R—ez, R, =r1; +z;. (5.39.8)
Thus,
t}‘ Tf‘r‘ 0 TI‘Z r()/RO T?'I‘("O/RO) + TI‘Z (ZO/RO)
tgp| =10 Tep O 0 = 0 . (5.39.9)
[z Tzr O Tzz ZO/RO Tzl‘(rO/RO) + TZZ (ZO/RO)

Substituting the stresses, we obtain

_ (1 —2v)z, 3)‘(2)20 To (I =2v)r, 31‘Oz§ Zo 310z,
t,._fA{(Tf ) o) w) AR (5.39.10)
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(1 =2v)ro  3roz2\ 7o 322 (1-2v)z) 2z (1—-2v) 322
t,=Al ——"— ) =4+ Al 2+ —— | =A —2 5. 5.39.11
: < U T V- B ) R R (5:39.11)

Let us now calculate the resultant of these stress vector distributions on the spherical surface. We first note
that due to axisymmetry of ¢,, the resultant force in the r direction is clearly zero. The resultant force in the z
direction is given by

m (1—-2v) 322

o

i (1 =2v)r, 22 1y
=2A 4+ 392 " 14
g L:o Ry "RR,(“

= 2AnJ {(1 —2v)sino + 3 cos *asino }do
=0

= 2An[—cos o — (1 — 2v) cos o] ; = 2Am[2(2 — 2v)] = 8An(1 — v). (5.39.12)
That is,
F'. =8An(1 —v). (5.39.13)

It is important to note that this resultant force, arising from the stress vector on the spherical surface, is
independent of the radius of the sphere chosen. Thus, this resultant force remains exactly the same even when
the sphere is infinitesimally small. In other words, this resultant force, acting on a sphere of any diameter, is
balanced by a concentrated force F, at the origin. That is,

F,+F,=0 or F,=-F',=-8An(1-v), (5.39.14)

from which we have
F,
A=——7——. 5.39.15
8n(1 —v) ( )
In summary, the stress field for an elastic infinite space, subjected to a concentrated force of F =Fe, at
the origin, is given by

F. z 3k F. (1-=2v)z
Th=g7—\U0="2)5——=0¢, To=gF 753> 39.1
871 =) {( RS } [ s (5.39.16)
B F. (1-2v)z 37 B F. 3rz2 (1 —=2v)r
T = =5t =w) { i *ﬁ} T = —W{F+T 7 63917
Twg =Ty =0. (5.39.18)

and the displacement field is

S L (%), w=0 w= F._[G=d), = (5.39.19)
T leun(1—vy &) TN T a1\ R RS 7
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BOUSSINESQ PROBLEM: NORMAL CONCENTRATED LOAD ON AN ELASTIC
HALF-SPACE

First, let us consider the function
o=Cln(R+z), R*=r"+7. (5.40.1)

The following can be easily obtained:

dp__C r 10p__C Po_fz__1 @
o (R+z)R> ror RR+z)> o2 “\R® RR+2)J’ !
do  C z C Pp  Cz Do  Cr ..
% mTG )R @R e R w
Py 321 Py 3rz Py 1 32 "
or0r C(F - ﬁ) T ik (zT) =R (ﬁ - IT) ~ (i)
Clearly, V2p(r,z) = V2In (R +z) = 0.
Now, let us consider the following potential functions:
dp
=Te,, = (1-2v)p, where
v =t A (5.40.2)
p=Cln(R+z), R?>=r*+22.
From the results of Example 5.38.4 and Egs. (i), (i) and (iii), we can obtain (see Prob. 5.86)
B rz (1=2v)r B 2 2(1—v)
2uu, = C {—F + R+2) E} , 2uu, =—-C {RS + R , (5.40.3)
r,—cl? (=], —c-ml-ii L L _c (5.40.4)
o R5 R(R"FZ) ’ 00 = R3 R(R+Z) ’ zz — RS bl . o
3rz?
T, = CF’ T,o =Ty, =0. (5.40.5)

We see that at z=0, T,,=T,, =0, except at the origin. Thus, for a half-space z > 0, there is no surface
traction on the surface z =0 except at the origin. We shall show that at the origin there is a concentrated force
F in the z-direction. Let us denote this force by

F=F.e.. (5.40.6)

We can obtain F, by considering the equilibrium of a very large circular disk (r — oo) of thickness /4 with
origin at the top center of the disk. If this F, turns out to be independent of 4, then the stress field is that for
a half-space under the action of a concentration force at the origin of the half-space. This is the so-called
Boussinesq problem.

Since T,, — 0 at r — oo [see Eq. (5.40.5)], there is no contribution from 7, at the circular ring at large r
(see Figure 5.40-1); therefore,

F,+ (T..),_,(2mr)dr = 0. (5.40.7)
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—
|
|
|
AN I /
\\ l /
V4
FIGURE 5.40-1
Thus,
F.—— r@ (T..)._, (2mr)dr = —6Cnh3j = —6Cnh®| - (r + ) N
z — ZZ)z=h (r2 N h2)5/2 3 ":0.
That is,
1
= —6Cnh’ < 3 h3> = —2Cm. (5.40.8)
From which,
F.
C=-—-=. (5.40.9)
2n

Equation (5.40.9) shows that indeed F, is independent of 2. We also note that due to axisymmetry of the
stresses, the force at the origin has only the axial component F,. In summary, the stress field in the Boussinesq

problem is
F. |3z (1-2v) F.(1-2v) z 1
T,,,,:—; _— , Tyy=——— ‘¢ — 4+ ,
2n { RS RR+2) o 2n R TRER+2)

(5.40.10)
R
2 RS’
F.3rz%
T. = _EF7 Tyo =To. = 07 (54011)

and the displacement field is

- _ - 2 _
uy = 1= (’_Z_w’_) u = 12 (Z L2 V)), (5.40.12)
: 4,u7r
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Example 5.40.1

For the Boussinesq problem, (a) obtain the displacement components in rectangular Cartesian components and

(b) obtain the stress components in rectangular Cartesian components.

Solution

(a) With vy =0,
U — U cOs 0 — Fz [recosbz (1—2v)rcos6) _ F, [xz (1-2v)x
o T 4un | R3 (R+2) R | 4un\R® (R+2) R’
= sing — Fz [rsinbz (1—2v)rsin0) £ [yz (1-2v)y
y= T 4un |\ R3 (R+z) R | dun\R® (R+2)R
U, = f2 (2 — .

dun R3 R

R2—x24y24 72,

(b) From

T Ty Ta cos) —sinf O T, O T, cosf® sin0
Tw Ty Ty|=]sind cos@ O|| O Tp O —sin0 cos0

TZX sz 7_ZZ O O 1 TZf O 7_ZZ O O
we have (see Prob. 5.87 for details)

Tx = T;rCOS20 + TypSin20

3 X%z F(1-2v)z (1 -2v)F, 1_&_ X?
) —

T2 R5 T 2aR® 27R(R+z
Ty = Tysin? 04 Tygcos? 0

3Rz R(l-2vz (1-2vF {1_y_2 y2 }

21 RS 2nR3  27R(R+2) R? R(R+2)
F, 3rz F, 3xz°
Ty = T,;cos0 = _ZW cosf = oL R
. F; 3yz
Ty, =T,sin0 = TS5 R
B ,  F3xyz | F(1-2v) 2 z w4
Ty = (T — Tog)sinOcos 0 = 5. RS + o RR+z) R3)(RZ—22)
__F3vz R(1-2v) L 1) xv
S on \R2(R+2) R¥) (R+2)
3
= F,3z

2n RS
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DISTRIBUTIVE NORMAL LOAD ON THE SURFACE OF AN ELASTIC
HALF-SPACE

From the solution of the Boussinesq problem in Cartesian coordinates (Example 5.40.1), the solution to the
problem of a distributive normal load acting on the surface of an elastic half-space can be obtained by the
method of superposition. Let g(x, y) denote the normal load per unit area on the surface. The contribution
from the differential load ¢(x’,y")dx'dy’ at (x’,y’,0), to the vertical displacement u. (see Figure 5.41-1), is

[ —0 2
du; = qzt;,?,) {2(1 -+ (ZR/z ) }dX’dyC R?=(x—x)+(-y)+(E-0". (5.41.1)
Thus,
1 q(x’,y") q(x',y")
"= {2(1 - V)J T dx'dy’ + zZJ = dx'dy’ }. (5.41.2)
H g(x.)
\:\{-—_:1!/‘ X
\ I
\ ]
\ |
\ /
\\\ X'/
, \\\\ ////
y4
FIGURE 5.41-1
Similarly,
_ 37 q(x",y")
T.. = _EJ o dx'dy’. (5.41.3)

Example 5.41.1
Obtain the variation of u, along the z -axis for the case where the normal load on the surface is uniform with intensity

G, and the loaded area is a circle of radius r, with its center at the origin (see Figure 5.41-2).

Solution
Using Eq. (5.41.2), we have

(i)

R 2p ) RA

(= (1, ., 2Ji , ,7qo(1fv)Jr’dr’ qoz2[r’dr’
UZ_—2/17T JR/2nrdr +4H7TZ R,32nrc/r _7#
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X
V4
FIGURE 5.41-2
where R”? = r’? + 72 and R'dR’ = r'dr'. Thus,
G(l=v) [, g2? [RO dr’ 5 o .
=" 7 R R = .
v Ju .zd +2/1.z R2’ 0 fot2 (i)
That is,
Go(1 —v) ( I ) GoZ° GoZ
Uy =——> re4+z2 -z - ——+—-—". (5.41.4)
‘ p ° ou/rZ+ 22 2
In particular, at the center of the loaded area, z=0,
1—
uy = P =Vl (5.41.5)

HOLLOW SPHERE SUBJECTED TO UNIFORM INTERNAL AND EXTERNAL
PRESSURE

In spherical coordinates (R, 3, 0), where f is the angle between e, and e and 0 is the longitude angle, con-
sider the following potential functions for spherical symmetric problems:

A
¥ = BRer, ¢ = R A and B are constants. (5.42.1)

From Example 5.38.5, we have the following nonzero stress components:

dy v d* A
Tprr =23 2=v)—+2v—1)—— =-2(1 B+2— 422
w=-2{ -+ =g sohd =20 p 2, (5422
_ _ dy 3y 1d¢ _ A
Tgg =Ty = {(2\/ 1) R + R Rar (™= 2(1 + V)B ik (5.42.3)
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and the following displacement components:

d
Y = ROY 1 (=34 4v)y+ 90~ 2(2v 1) BR

dR

dé A
-5

u/;=u0:0.

(5.42.4)

Let the internal and external uniform pressure be denoted by p; and p,, respectively, then the boundary

conditions are

Trg = —p; at internal radius R = R;, (5.42.5)
and
Trg = —po at external radius R = R,. (5.42.6)
Thus,
2A 2A
21+ B+ =—pi,  —2(1+V)B+ 5 = —po, (5.42.7)
R; R3
from which we have
3p3 3_p3
i PoRy — Rip;
2A = (—p; Lo 21 B="—"2——— 5.42.8
<p1+po)Rng? (1+v) R R (5.42.8)
If p;=0, then
PR3 PoRIR3N 1
Top = Lfo__ (PoRiRo N 1 5.42.9
g (o) w (0429
PoR3 PoRIR3\ 1
Tog =Tps = 2 Lo ) — 5.42.10
R sy (R? —R}) 2R3 ( )

SPHERICAL HOLE IN A TENSILE FIELD

We want to obtain the stress field in an elastic medium with a spherical hole of radius R = a at the origin with
T..,=Se, far away from the hole (see Figure 5.43-1).

In spherical coordinates, a uniform tensile field with 7,, = Se, is given by the potentials [see Egs. (5.38.59)
and (5.38.60) in Example 5.38.8]:

’
S S
] —t
] .
- e % —
- e, . “
——— -
| s

FIGURE 5.43-1
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SR cos f8
Y=
vSR?

2(1+4v)

¢ = (3cos?f —1). (5.43.1)

Corresponding to which, the stresses are [see Eqgs. (5.38.61) and (5.38.62)]:

RR = — — 2v) cos + cos“f, RE = 1— =+ — Zv)ycospsinp,
T’ 2B(1 -2 2B+ 3Acos?B, T'x 3A+2B(1 -2 Bsin B

o, (5.43.2)

where

(5.43.3)

We look for a disturbed field that vanishes at large distance but that eliminates the stress vector due
to Eq. (5.43.2) on the surface of the spherical hole. The following potentials generate stresses that vanish
at R — oo:

é=¢R, f)=CiR>3(Bcos?f—1)/2+CoR™", = DR *cos fe.. (5.43.4)

It is easy to verify that the three functions R~!, R=2 cos f and R—3(3 cos?ff — 1) all satisfy the Laplace
equation. The stresses generated by them are (see Probs. 5.89 and 5.90)

Trr = 6CIR™>(3cos?f — 1) +2C,R™> +2(5 — v)D;R 3 cos 2 — 2D |vR 3, (5.43.5)
fﬁR = 12C,R > cos fisin ff + 2D R73(1 4 v) cos B sin 8, (5.43.6)
Tro = 0. (5.43.7)

Combining the uniform field Eq. (5.43.2) with the preceding disturbed field, we have

Trr = [<2B(1 — 2v) + 3A + 18C;R 5 4 2D,R3(5 — v)] cos 2

(5.43.8)

—6C1R™5 +2C,R™3 — 2vD\R 3,
Trp = [—3A +2B(1—2v) + 12C,R™ + 2D|R’3(1 + v)} cos f$sin 8, (5.43.9)
Tro = 0. (5.43.10)

We now apply the boundary condition that, on the surface of the spherical cavity, the stress vector is zero.
That is, at R =a, we demand that

(Trr)g—q = (Trp) p—y = (Tr0)g—q = O. (5.43.11)
These conditions lead to
34 —2B(1 — 2v) + 18C1a=> + 2D1a3(5 — v) = 0,

—6C1a=> +2Cra3 —2vDya 3 =0, (5.43.12)
—3A4+2B(1 —2v) + 12Cya™> +2D1a3(1 +v) =0,
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where A and B are given in Eq. (5.43.3). Solving the preceding three equations for the unknowns C,, C, and
D, we have

Sa’ Sa(6 — 5v) 58a
= == "/ Di=——"_ 5.43.13
2T 27=5v) 0 TN T 2(7—5v) ( )

From the preceding results, one can obtain the maximum tensile stress

35(9 — 5v)

(T/}/{)max = m at ﬁ = 7T/2 and R =a. (54314)

INDENTATION BY A RIGID FLAT-ENDED SMOOTH INDENTER ON AN ELASTIC
HALF-SPACE

Let the half-space be defined by z > 0 and let a be the radius of the indenter. The boundary conditions for this
problem are as follows (see Figure 5.44-1):
At z=0, the vertical displacement is a constant within the indenter end, i.e.,

u, =w, forr<a, (5.44.1)
and there is zero stress vector outside the indenter, i.e.,
T..=T,=Ty,=0 forr>a. (5.44.2)

In the following we show that the potential functions lead to a displacement field and a stress field that
satisfy the preceding conditions:

= (G—F) e., ¢=(1—-2)F, (5.44.3)
0z
where
F=1Imy(r, z), r, z) = Al log(R" + ") — R"],
* o *) *so( ) = A[z'log( ) —R’] (5.44.4)
R?=r2472 =z+4it
jp
V4
\ WO
2a r
FIGURE 5.44-1
From Example 5.38.4, we have, for the potential functions given in Eq. (5.44.3),
0’F OF OPF  OF F
2#“:*2@“(‘(—24'2\))57 T2272¥—¥7 ,‘272W7 ngfo. (5.44.5)



5.44 Indentation by a Rigid Flat-Ended Smooth Indenter on an Elastic Half-Space 301

Thus, on z=0
OF O*F
ZI,LL{Z = —2(1 - V) (5)7 TZZ = — (¥)7 T,AZ = T{-)Z =0. (544.6)

Now, from F = Im ¢(r,z), we have

OF 0 o 0p(rz)  OPF 9Pp(r,z)
E—&Im o(r,z) =Im % g - mM—aa - (5.44.7)
Thus, for the ¢(r, z) given in Eq. (5.44.4), we have (see Example 5.38.10), on z=0,
B Oy -~ n/2 forr <t
2uu;|,_g = —2(1 — v)Im <E> o —2A(1—-v) sin1(t/r) forr > 1. (5.44.8)
and
A
2 -
T.|,_,=—Im (‘:;_f) —|V/r_, for r < 1, (5.44.9)
“/=0 g for r > t.
Now, if we identify the parameter ¢ as the radius a, then we have
w, = —M, T.. = A , forr<a. (5.44.10)
2u 22— 2
With w, denoting the depth of penetration, i.e., u,=w, for r < a, [see Eq. (5.44.1)], we have
_ 2Uw,
A= 0 (5.44.11)
Therefore, the normal stress distribution under the flat-ended indenter is
2uw, 1 X
T, =— TNk for r < a. (5.44.12)
The total load exerted by the indenter on the half-space is given by
“ 4w, J ¢ rdr 4uwoa
P=—| T,Q2nr)dr = = . 5.44.13
[, ratomnar = 2% | = (419
Thus, in terms of the total load P, the depth of penetration is given by
wo = PA=Y) (5.44.14)
4pa
the normal stress under the flat-ended indenter is given by
7 - _ P 1 for 1 < (5.44.15)
L= A orr <a, 44,
and the vertical displacement of the surface outside the indenter is given by [see Eq. (5.44.8)]
S 2we oy P(I=v) )
u; = — = sin (afr)= e sin""(a/r), forr>a. (5.44.16)
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INDENTATION BY A SMOOTH RIGID SPHERE ON AN
ELASTIC HALF-SPACE

We begin by first discussing the general case of an axisymmetric indenter. Let the half-space be defined by
z > 0 and let the profile of the rigid indenter be defined by w, + w(r). Due to axisymmetry, the area of
contact between the elastic space and the rigid indenter is a circle of radius a, whose magnitude depends
on the indenter load P. The boundary conditions for this problem are as follows:

At z=0, the vertical displacement is given by

u, =wo +w(r) forr<a, (5.45.1)
and there is zero stress vector outside the indenter, i.e.,
T.=T,.=Tp.=0 forr>a. (5.45.2)

In the following we show that the potential functions lead to a displacement field and a stress field that
satisfy the preceding conditions:

OF
where
F=1Imo(r,z), ¢= J f(0) [ log(R" +2) — R at, (5.45.4)

R?=r2+72 7= zo+ it.
In Example 5.38.10, we obtained that if ¢(r,z) = A[z'log(R" +z*) — R"], then
1

/2 for r <t 2 _ for r
Im (8—§0) = / and Im (8_f) = 2 _ 2 orr<t
0z ). sin~'(t/r) forr >t 0z ). 0 for r > 1.
Thus, for ¢ = J ([ log(R" +z) — R"]dt, we have
Forr > a,
Im (a—“”> = [ F(£)sin 1 (¢/r)dt. (5.45.5)
0z =0 Jr=0
For r < a,
Im (aﬁ) _ J £(£) sin~! (t/r)dt+J (/2)f (), (5.45.6)
0z =0 =0 t=r
or, since
sin ~!(t/r) = (n/2) — cos ~(t/r), (5.45.7)

Eq. (5.45.6) can also be written as
Forr <a,

Im(g—f)zzoz(nﬂ)r f(t)dthr f(t)cos ~\(z/r)dt. (5.45.8)

t=0 t=0
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We also have:

For r > a,
m(2f) j (0)f (H)dt = 0 (5.45.9)
o) =)0 =0. 45.
For r < a,
82 T a 1 a f(t)
I = 0 tdt+J {77} tdtsz { : }dt. 5.45.10
m(azz) Jz:()( y) t=r ?— 2 S0 = W —12 { )
Thus, similar to the case for a flat indenter:
For r > a,
2|y = —2(1 — v)1m<890> =201 v)J F(t)sin =\ (¢/r)dr, (5.45.11)
) 0z =0
For r < a,

2pu;|,_o = —2(1 - v)lm(%—f)
z=0

’ 7_ (5.45.12)
—_z(l_v)[’z‘J f(t)dz—j 1) cos (1/1)}

t=0 t=0

From this equation, we have, with the profile of the indenter given by w =w, + w(r), the following integral
equation for the determination of the function f{(r):
(1 _ V) b4 a T 1
> f(yde— | f(t)cos " (¢/r)de|. (5.45.13)
u

t=0 t=0

W, + wr(r) = —

The normal stress inside the contact region is given by

& “ f0) !
T, = —Im(a 2) = Jt:r { o ,.2}dt for r < a, (5.45.14)
so that the total load exerted by the indenter on the elastic half-space is given by
P= J (=T.2),_ 2nrdr = —ZnJ r{J M}dr. (5.45.15)
o . o = VI —r?
Interchanging the order of differentiation, we have
a ! rdr a
P= —2nJ £ J — \ar= —2nJ i (¢)dt. (5.45.16)
=0 r=0 V12 — 12 =0

It can be verified (see Appendix 5A.1) that for a given w,, + w(r), the solution to the unknown f{#) in the inte-
gral equation Eq. (5.45.13) is given by

2u  1d (" aw rdr
—B = B — A45.1
f(t)=Bdé(a—1)+ (= Wridt),odr VE—72" (5.45.17)

where the Dirac function d(a — f) is zero except at t =a, when it becomes unbounded in such a way that the
integral [*,d(a —f)dt = 1.
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Example 5.45.1
Use the equation derived in this section to solve the flat-ended indenter problem of the previous section.

Solution
For a flat-ended indenter, dw/dr = 0, so that from Eq. (5.45.17), we have

f(t) = Bo(a—t), (5.45.18)

where a, the contact radius, is the radius of the flat-ended indenter. With f(t) given by the preceding equation,
Eqg. (5.45.13) becomes
(1-v)B

Wo = — FJ (a— tydt — J o(a—t)cos~L(t/r)at|. (5.45.19)
u 2 )izo t=0

The first integral within the bracket is unity. The second integral is zero because d(a—t)=0 for
r<a,cost(a/a) = cos}(1) =0, so that [_,d(a—t)cos~L(t/r)dt =0 for all r < a. Thus, Eq. (5.45.19) gives
Wo = —(1 —v)Bn/2y, so that

_ 2uw,
B=— A (5.45.20)
Now, from Eq. (5.45.16),
a duw, (° dua
P:—anJ t5(a — t)dt = J t5(a — tydt = 12y, (5.45.21)
] AP e R
from which we obtain the same penetration depth as given in Eq. (5.44.14) of the previous section.
_PA-v)
W, = aa (5.45.22)
Also, from Egs. (5.45.14), (5.45.18), (5.45.20) and (5.45.22), the normal stress within the contact region r < a'is
given by:
9 dla—t) B P
T, = B[ dt = — . (5.45.23)
“ Jr V2 = 12 Va2 —r? 2nava? — r?

The same result was obtained in the last section.

We now discuss the case of a smooth rigid spherical indenter. Referring to Figure 5.45-1, the vertical surface
displacement within the contact region is given by:

w(r) =w, — R — (R* = )" =w, —R+R(1 — r*/R*)", (5.45.24)

where R is the radius of the sphere and r is the cylindrical coordinate. We shall assume that the contact region
is small so that /R < 1; then

2 1/2 2
(1713) Nl (5.45.25)
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V4
FIGURE 5.45-1
so that
2
u(r) =w, R (5.45.26)
Thus [see Eq. (5.45.1)], we have
r? dw r
Equation (5.45.17) then gives:
2u  1d [ r3dr
=B —1) — —— . 452
) =Bola =) =g tdtJrZO\/,z_—rz (5:43.28)
By letting r =1 cos 0, we can easily obtain
t 3 7. 0 3
J rdr —;3J cos30d0 = 2. (5.45.29)
=0 V2 — 12 O0=n/2 3
Thus,
4u
f()=Bdla—1)—% (5.45.30)

-

The contact normal stress is then given by [see Eq. (5.45.14)]

“ 40! } r d(a —t)dr 4u r tdr
T.. = dt=B — . 5.45.31
- Jt:r { 2 —r? J=r V2 =12 R(L=v)n ) V2 — 2 ( )

The first integral in the right-hand side gives

Br ola—t)dt B
— VE—12 a2 =2

where the parameter a is the contact radius between the spherical indenter and the elastic half-space, which is
still to be determined as a function of the load P. At » = a, the indenter separates smoothly from the half-space
in such a way that the normal stress at this point is zero. (This is different from the case of a flat-ended
indenter, where the surface has a sharp curvature at the separation point.) Thus, B =0 and we have

(5.45.32)

4p

flo) = *mh (5.45.33)
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so that Eq. (5.45.31) becomes

¢ a a2 — 2
T.— M J dr M [ o 1‘2] __wa -t (5.45.34)
R(1—-v) )mp /2 — 12 R(1—-v)n t=r R(1—v)n
To find the radius of contact in terms of the indenter load P, we use Eq. (5.45.16) to obtain
a 8” J~a , 8[1613
P=727'c‘[ fOdt=—r—| Pdt=-— (5.45.35)
=0 7 R(1—v) )i 3R(1—v)
so that
3(1 —v)PR
o =3 VPR (5.45.36)
8u

To find the vertical displacement outside the contact region, we have, for r > a, [see Eq. (4.45.11)]

u, = — 2(12; ) J; (o) sin = (¢/r)dt = Rin f:o tsin "1 (¢/r)dt. (5.45.37)

By letting sin @ = ¢/r, we can obtain

P o sin ! (a/r)
u, = 1% <%) {9 sin 20 — g + 5111220} for r > a. (5.45.38)

o

In particular, at the separation point, » =a, we have

2

2 /m 281 a
= (2 =222 ar=a 45.
e Rn<2 4> R4 2k 771 (5.45.39)
2
;
Now, from u,(r) = w, — R we obtain the total penetration to be
2 2 2 2
W =w(a) + L =4 4 ¢ (5.45.40)

TRORTE R

In summary, in terms of the indenter load P and the radius of the rigid smooth sphere R, we have

3(1—v)PR]'?
Radius of contact: a = {%} . (5.45.41)
u
A — 2
Contact normal stress: T,, = —M. (5.45.42)
R(1—v)n

SOLUTION OF THE INTEGRAL EQUATION IN SECTION 5.45

In this appendix we will verify that for a given function w, + w(r), the solution to the integral equation

(1%) E Jaf(t)dt - Jrf(t) cos ! (t/r)dt (0

o o

wo +w(r) = —
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is
110 = Bo(a — ) + 50 (i)
where
N 2d ("dw ridr
AR vt 2

To begin, we first note that fot d(a —t)dt =1 and [ 6(a — t)dt = 0. Thus, using Eq. (ii), the terms inside
the bracket of Eq. (i) become

E R J g(t)dt] - J g(t) cos (1)) (iv)

Now, from Eq. (iii), we can show that

w(r) = J g(t) cos ~(z/r)dt. )

o

Indeed, from this equation, i.e., Eq. (v), we have

. (vi)
= f (z)£ ! dt
B o 8 I\ — ¢
Thus,
" odw Py i " t 1 r2dr .
——= 1) - .
Jr:o dr V t2 — 7'2 Jr:() |:Jo g( ) r 7'2 — tz dl:l t2 — 1'2 (Vll)
Interchanging the order of integration, we have (see Figure 5A.1)
" odw  Pdr J”:’ ;o U’:’ rdr ]
= tg(t —_—|dt. (viii)
JI":() dr V2 —r? t'=0 g( ) r=t' V1?2 — l"zv 2 —r2

-

t

FIGURE 5A.1
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Now,
x=r
14 rdr 1J*” dx L O s n .
_— — — —_—_—_ — —— 1 R = —.
, . 2 K 2 2 2 412
rer VI2 =12V =12 2V —tE —x 2 2t . 2
Therefore, from Eq. (viii), we have
todw  rdr ! olr!
t)dt'
[ i R ®)
so that
d (" dw rdr n nt )
— — =t =—g(1).
4 A= =G0 s
Thus,
(1) = 2.d J dw rdr
§ ﬂldt dr [2 _ I"2 ’

which is Eq. (iii).
We now return to the terms inside the bracket of Eq. (i) [i.e., Eq. (iv)]. In view of the equation
= | g(t) cos ~'(t/r)dt, those terms become

7 (TR u ) .
{EB-FE(I =) Lg(t)dt] T 7V)w()), (xii)

so that Eq. (i) becomes
g U =vmy T £)dt + (xiii)
Wo +w(r) = o 5 L g(1) w(r), xiii

from which we get

B— 2 ’+Er (1)t (xiv)
TRy e R N R b Y

In other words, with B given by the preceding equation, the function

n 2d J dw ridr

fo)y=Bo(a—1t) + g(r) where g(t) = Tl Ry r—

satisfies the integral equation

Wo +w(r) = _(=v) B rf(t)dt - J‘rf(t)<cos ! ’E) dt}.
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We note that in certain applications, the constant B must be zero, in which case, w, cannot be arbitrarily
prescribed but must be given by the following equation [see Eq. (xiv)]:

W, = — g E g(t)dr. (xv)

4
For example, for a spherical indenter, we had g(¢) = fR—t [see Eq. (5.45.30) and Eq. (ii)]; thus,
T
(¢ 2 a* .
Wo =35 L g(t)dr = R L tdt = i (xvi)

which is Eq. (5.45.40).

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.1-5.8

5.1 Show that the null vector is the only isotropic vector. (Hint: Assume that a is an isotropic vector and use
a simple change of basis to equate the primed and the unprimed components.)

5.2 Show that the most general isotropic second-order tensor is of the form of oI, where o is a scalar and I is
the identity tensor.

5.3 For an isotropic linearly elastic body, (a) verify the ¢ = u(4,Ey) as given in Table 5.1 and (b) obtain the
value of y as Ey/4 — 0.

5.4 From A= vEy/[(1+v)(1 —2v)],A=2uv/(1 —2v), and k = A(1 +v)/3v, obtain p = u(Ey,v) and
k= k(u,v).
5.5 Show that for an incompressible material (v — 1/2), that
(@) pu=Ey/3, 2 — 00, k— oo, but k — 1 =(2/3)p.
(b) T =2uE + (Ti/3)I, where Ty, is constitutively indeterminate.
5.6 Given A,'j/d = 5ij5k1 and Bijkl = 5ik5jl,
(a) Obtain Alljk and Blljk'
(b) Identify those Ay that are different from B .

5.7 Show that for an anisotropic linearly elastic material, the principal directions of stress and strain are in
general not coincident.

5.8 The Lamé constants are A = 119.2 GPa(17.3 x 10° psi), u = 79.2 GPa(11.5 x 10° psi).
Find Young’s modulus, Poisson’s ratio, and the bulk modulus.

5.9 Given Young’s modulus Ey = 103 GPa, Poisson’s ratio v. = 0.34. Find the Lamé constants / and u.
Also find the bulk modulus.

5.10 Given Young’s modulus Ey = 193 GPa, shear modulus y = 76 GPa. Find Poisson’s ratio v, Lamé’s
constant 4, and the bulk modulus k.

5.11 If the components of strain at a point of structural steel are
Ei1 =36x10"° E»n=40x10"% E3; =25x 1075,
En=12x10"°% E»=0, E;=30x107°.

find the stress components.
4 =119.2 GPa(17.3 x 10° psi), u = 79.2 GPa(11.5 x 10° psi).
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5.12

5.13

5.14

5.15

5.16
5.17

5.18

5.19

CHAPTER 5 The Elastic Solid

Do the previous problem if the strain components are

Ei; =100 x 1078, Ey = —200 x 107%, E33 =100 x 107™%, E;p = —100 x 107™%, E»3 =0, E;3 = 0.

An isotropic elastic body (Ey = 207 GPa, i = 79.2 GPa) has a uniform state of stress given by

100 40 60
40 =200 O
60 0 200

1] = MPa.

(a) What are the strain components?
(b) What is the total change of volume for a five-centimeter cube of the material?

An isotropic elastic sphere (Ey = 207 GPa, u = 79.2 GPa) of 5 cm radius is under the uniform stress

6 2 0
field: [T]= |2 —3 0 |MPa. Find the change of volume for the sphere.
0 0 O

Given a motion x; = X| + k(X; + X2), x2 = X2 + k(X1 — X2), show that for a function f(a,b) = ab,
af(-xlv)CZ) — af(XlaXZ)
8){1 8X1

Do the previous problem for f(a,b) = a®> + b>.

(@) f(x1,x2) = f(X1,X2) + O(k),

+ O(k), where O(k) — 0 as k — 0.

Given the following displacement field in an isotropic linearly elastic solid:
uy = kX3X2, uy = kX3Xy1, us = k(X3 —X3), k=10"*
(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible
equilibrium stress field?
Given the following displacement field in an isotropic linearly elastic solid:
uy = kXoXs, up = kX1 X3, us = kXX, k=107%.

(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible
equilibrium stress field?

Given the following displacement field in an isotropic linearly elastic solid:
uy = sz}(»q7 Uy = kX1X3, uz = k(X1X2 +X§), k= 1074

(a) Find the stress components, and (b) in the absence of body forces, is the state of stress a possible
equilibrium stress field?

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.9-5.12 (A.1)

5.20

5.21
5.22

Show that for any function f (s), the displacement u; = f(s) where s = x; &£ ¢, satisfies the wave equa-
tion 9%u; /O = c3(0%uy /Ox?).

Calculate the ratio of the phase velocities ¢ /cr for the following Poisson’s ratios: 1/3, 0.49, and 0.499.

Assume a displacement field that depends only on x, and ¢, i.e., u; = u;(x,, t). Obtain the differential
equations that u;(x,, f) must satisfy to be a possible motion in the absence of body forces.
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5.23 Consider a linearly elastic medium. Assume the following form for the displacement field:
u; = g[sin f(x3 — ct) + asin f(x3 + ct)], uy =uz =0.

(a) What is the nature of this elastic wave (longitudinal, transverse, direction of propagation)?

(b) Find the strains and stresses, and determine under what condition(s) the equations of motion are
satisfied in the absence of body forces.

(c) Suppose that there is a boundary at x3 =0 that is traction free. Under what condition(s) will the
above motion satisfy this boundary condition for all time?

(d) Suppose that there is a boundary at x3 =< that is also traction free. What further conditions will be
imposed on the above motion to satisfy this boundary condition for all time?

5.24 Do the previous problem (Prob. 5.23) if the boundary x3 =0 is fixed (no motion) and x; = ¢ is traction
free.

5.25 Do Prob. 5.23 if the boundaries x3 =0 and x; = ¢ are both rigidly fixed (no motion).
5.26 Do Prob. 5.23 if the assumed displacement field is of the form:

uz = g[sin f(xz — ct) + asin f(xs + )], u; =up =0.

5.27 Do the previous problem, Prob. 5.26, if the boundary x3 =0 is fixed (no motion) and x3 = ¢ is traction
free (t=0).

5.28 Do Prob. 5.26 if the boundaries x3 =0 and x; = ¢ are both rigidly fixed.

5.29 Consider the displacement field: u; = u;(x,x2,x3,7). In the absence of body forces,
(a) obtain the governing equation for u; for the case where the motion is equivoluminal.
(b) obtain the governing equation for the dilatation e for the case where the motion is irrotational:
8ui/8xj = (91/{]'/8)(,'.

5.30 (a) Write a displacement field for an infinite train of longitudinal waves propagating in the direction of
3e; + 4e;. (b) Write a displacement field for an infinite train of transverse waves propagating in the
direction of 3e; + 4e, and polarized in the x;x, plane.

5.31 Solve for ¢, and ¢; in terms of ¢; from the following two algebra equations:

&2(cos20) + e3n(sin203) = & cos 20 (1)
& sin 20y — (e3/n)(cos20y) = —g; sin 20 (i)

5.32 A transverse elastic wave of amplitude ¢; incidents on a traction-free plane boundary. If the Poisson’s
ratio v = 1/3, determine the amplitudes and angles of reflection of the reflected waves for the following
two incident angles: (a) oy =0 and (b) o; = 15°.

5.33 Referring to Figure 5.11.1, consider a transverse elastic wave incident on a traction-free plane surface
(x,=0) with an angle of incident «; with the x,-axis and polarized normal to x;x;, the plane of inci-
dence. Show that the boundary condition at x, =0 can be satisfied with only a reflected transverse wave
that is similarly polarized. What is the relation of the amplitudes, wavelengths, and direction of propa-
gation of the incident and reflected wave?

5.34 Do the problem of Section 5.11 (Reflection of Plane Elastic Waves, Figure 5.11-1) for the case where
the boundary x, =0 is fixed.
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5.35

5.36
5.37

5.38

5.39

5.40

541
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A longitudinal elastic wave is incident on a fixed boundary x, =0 with an incident angle of o; with the
X, axis (similar to Figure 5.11-1). Show that in general there are two reflected waves, one longitudinal
and the other transverse (also polarized in the incident plane x;x;). Also, find the amplitude ratio of
reflected to incident elastic waves.

Do the previous problem (Prob. 5.35) for the case where x, =0 is a traction-free boundary.

Verify that the thickness stretch vibration given by Eq. (5.12.3), i.e., u; = (Acoskx; + Bsinkx;)
(C cos cpkt + Dsincpkt), does satisfy the longitudinal wave equation 0%u; /9> = c3(9%u; /0x3).

(a) Find the thickness-stretch vibration of a plate, where the left face (x; =0) is subjected to a forced
displacement u = (o cos wt)e; and the right face x; = ¢ is free to move. (b) Determine the values
of w that give resonance.

(a) Find the thickness stretch vibration if the x; =0 face is being forced by a traction t = (ff cos wi)e;
and the right-hand face x; = ¢ is fixed. (b) Find the resonance frequencies.

(a) Find the thickness-shear vibration if the left-hand face x; =0 has a forced displacement
u = (xcos wt)es and the right-hand face x; = ¢ is fixed. (b) Find the resonance frequencies.

(a) Find the thickness-shear vibration if the left-hand face x;=0 has a forced displacement
u=o(coswre, +sinwte;) and the right-hand face x; = ¢ is fixed, and (b) find the resonance
frequencies.

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.13-5.19 (A.2)

5.42

5.43

A cast-iron bar, 200 cm long and 4 c¢m in diameter, is pulled by equal and opposite axial force P at its
ends. (a) Find the maximum normal and shearing stresses if P = 90,000 N. (b) Find the total elongation
and lateral contraction (Ey = 103 GPa,v = 0.3).

A composite bar, formed by welding two slender bars of equal length and equal cross-sectional area, is
loaded by an axial load P as shown in Figure P5.1. If Young’s moduli of the two portions are
Eg,l) and E§,2), find how the applied force is distributed between the two halves.

——r

FIGURE P5.1

5.44

A bar of cross-sectional area A is stretched by a tensile force P at each end. (a) Determine the normal
and shearing stresses on a plane with a normal vector that makes an angle « with the axis of the bar.
(b) For what value of « are the normal and shearing stresses equal? (c) If the load carrying capacity
of the bar is based on the shearing stress on the plane defined by o =0, to be less than t,, what is
the maximum allowable load P?
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5.45 A cylindrical bar that has its lateral surface constrained so that there can be no lateral expansion is
then loaded with an axial compressive stress 71y = —o. (a) Find T,, and T33 in terms of ¢ and the
Poisson’s ratio v, and (b) show that the effective Young’s modulus (Ey)eﬁ =Ty /Ey is given by
(Ey)eﬁv =(1—-v)/(1=2v—20?).

5.46 Let the state of stress in a tension specimen be T|; = ¢, with all other T;;= 0. (a) Find the components
of the deviatoric stress defined by T® = T — (1/3)TyIL (b) Find the principal scalar invariants of T°.

5.47 A circular cylindrical bar of length ¢ hangs vertically under gravity force from the ceiling. Let the x;
axis coincide with the axis of the bar and point downward, and let the point (x1,x,x3) = (0,0,0) be
fixed at the ceiling. (a) Verify that the following stress field satisfies the equations of equilibrium in
the presence of the gravity force: Ty; = pg(¢ —x;), all other T;;=0, and (b) verify that the boundary
conditions of zero surface traction on the lateral surface and the lower end face are satisfied, and
(c) obtained the resultant force of the surface traction at the upper end face.

5.48 A circular steel shaft is subjected to twisting couples of 2700 Nm. The allowable tensile stress is
0.124 GPa. If the allowable shearing stress is 0.6 times the allowable tensile stress, what is the mini-
mum allowable diameter?

5.49 In Figure P5.2, a twisting torque M, is applied to the rigid disc A. Find the twisting moments transmitted
to the circular shafts on either side of the disc.

My

A

FIGURE P5.2

5.50 What needs to be changed in the solution for torsion of a solid circular bar, obtained in Section 5.14, to
be valid for torsion of a hollow circular bar with inner radius a and outer radius 5?

5.51 A circular bar of radius r, is under the action of axial tensile load P and twisting couples of magnitude
M,. (a) Determine the stress throughout the bar. (b) Find the maximum normal and shearing stress.

5.52 Compare the twisting torque that can be transmitted by a shaft with an elliptical cross-section having
a major diameter equal to twice the minor diameter with a shaft of circular cross-section having a
diameter equal to the major diameter of the elliptical shaft. Both shafts are of the same material. Also
compare the unit twist (i.e., twist angle per unit length) under the same twisting moment. Assume that
the maximum twisting moment that can be transmitted is controlled by the maximum shearing
stress.

5.53 Repeat the previous problem except that the circular shaft has a diameter equal to the minor diameter of
the elliptical shaft.
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5.54
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Consider torsion of a cylindrical bar with an equilateral triangular cross-section as shown in
Figure P5.3. (a) Show that a warping function ¢ = C (3x% X3 — xg) generates an equilibrium stress field.
(b) Determine the constant C so as to satisfy the traction-free boundary condition on the lateral surface
X, =a. With C so obtained, verify that the other two lateral surfaces are also traction free. (c) Evaluate
the shear stress at the corners and along the line x3 =0. (d) Along the line x; =0, where does the great-
est shear stress occur?

X3

]

(—2a,0) (a,0)

FIGURE P5.3

5.55

5.56

5.57

5.58

5.59

5.60

Show from the compatibility equations that the Prandtl stress function  (x,,x3) for torsion problem
2 82
must satisfy the equation l + 671/2/ = constant.
Given that the Prandtl stress function for a rectangular bar in torsion is given by
32,uo'/a = 1 (n=1)/2 cosh(nmx; /2a) nmx;
(= | = 2 A
v = ( )”21: n’ cosh(nnb/2a) 4

35

The cross-section is defined by —a < xp < a and — b < x3 < b. Assume b > q, (a) find the maximum

shearing stress, and (b) find the maximum normal stress and the plane on which it acts. To derive

2

=1
Eq. (5.18.11) for the maximum shearing stress, use Z_z =3

135

Obtain the relationship between the twisting moment M, and the twist angle per unit length o’ for a rec-

1 U
t lar b der t Note: 1 .=
angular bar under torsion. Note: +3 -|-54+ 9
In pure bending of a bar, let M, = Me, + M3e; = —Mg, where e, and e; are not along the principal

axes, show that the flexural stress 7 is given by

M>lrs + M3l M>l33 + M3lo3

T =— X X3.
! (I33l2p — I23) : (Is31 — Ir3) ’
M»yx vMox
From the strain components for pure bending, E; :I%’ Ey =FE3;3 = — 7 2E3’ Epn=FE; =
E>3 = 0, obtain the displacement field. 2EY 25y
In pure bending of a bar, let M, = M,e, + Mze; = —Mg, where e, and ej are along the principal axes;

show that the neutral axis (that is, the axis on the cross-section where the flexural stress T, is zero) is,
in general, not parallel to the couple vectors.
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PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.20-5.37 (A.3)
5.61 For the plane strain problem, derive the biharmonic equation for the Airy stress function.
5.62 For the plane stress problem, derive the biharmonic equation for the Airy stress function.

5.63 Consider the Airy stress function ¢ = otlx% + orx1X2 + 063)(%. (a) Verify that it satisfies the biharmonic
equation. (b) Determine the in-plane stresses T4, T1, and T5,. (c) Determine and sketch the tractions
on the four rectangular boundaries x; = 0, x; = b, x, =0, x, = c. (d) As a plane strain solution, deter-
mine T3, T»3, T35 and all the strain components. (e) As a plane stress solution, determine T3, T53, T33
and all the strain components.

5.64 Consider the Airy stress function ¢ = cxx%xz. (a) Verify that it satisfies the biharmonic equation.
(b) Determine the in-plane stresses T, 71, and T5,. (c) Determine and sketch the tractions on the four
rectangular boundaries x; = 0, x; = b, x, =0, x, = c. (d) As a plane strain solution, determine 73,
T»3, T33 and all the strain components. (¢) As a plane stress solution, determine T3, T53, T33 and all
the strain components.

5.65 Consider the Airy stress function ¢ = a(x] — x3). (a) Verify that it satisfies the biharmonic equation.

(b) Determine the in-plane stresses 771, 71, and T5,. (c) Determine and sketch the tractions on the four
rectangular boundaries x; = 0, x; = b, x, =0, x, = ¢. (d) As a plane strain solution, determine T3,
T3, T35 and all the strain components. (e) As a plane stress solution, determine T3, T»3, T53 and all
the strain components.

5.66 Consider the Airy stress function ¢ = ox;x3 + x1x3. (a) Verify that it satisfies the biharmonic equation.
(b) Determine the in-plane stresses T, T1, and T5;. (c) Determine the condition necessary for the trac-
tion at x, = ¢ to vanish, and (d) determine the tractions on the remaining boundaries x; =0, x; = b and
Xo = 0.

5.67 Obtain the in-plane displacement components for the plane stress solution for the cantilever beam from
the following strain-displacement relations:

ouy  Pxixp Ouy vPx1x2 P h? 2
Ey — b _ A2 e YR E,— V(2 _2)
R T Evl 0 2T \qu)\a ™"

5.68 (a) Let the Airy stress function be of the form ¢ = f(x,) cos e

fx) is:

. Show that the most general form of

f(x2) = Cy cosh Ayxa + Ca sinh Ayxa + Caxz cosh Jyxz + Caxa sinh Ayx;.

X
Ly

(b) Is the answer the same if ¢ = f(x7) sin m

5.69 Consider a rectangular bar defined by —¢ < x; < ¢, —c <x; <¢,—b < x3 < b, where b/l is very
small. At the boundaries x, = *£c, the bar is acted on by equal and opposite cosine normal stress
Ay, cos Ayxy, where 4, = mn/€ (per unit length in x5 direction). (a) Obtain the in-plane stresses inside
the bar. (b) Find the surface tractions at x; = &=£. Under what conditions can these surface tractions be
removed without affecting T, and T, (except near x; = ££)? How would T;; be affected by the
removal. Hint: Assume ¢ = f(x;)cos A,x;, where 4, = mn/{ and use the results of the previous
problem.
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5.70

5.71

5.72

5.73

5.74

5.75

5.76

5.77

CHAPTER 5 The Elastic Solid

Verify that the equations of equilibrium in polar coordinates are satisfied by

C1op | 10% ) 0 (10yp
= e = =5 Gan)
10 1 0?
Obtain T,, = il + = f from the transformation law
ror r2) 90
T Tw| | cosO@ sin0| [Ty Tia|| cosO —sin0
Tor Too| | —sin@ cosO||Try T || sin@ cos@
P P e
dT)h=—,Tno=—% and Tjp = ————.
and fu o3’ 2 ox? and fi 0x10x,

Obtain the displacement field for the plane strain solution of the axisymmetric stress distribution from
that for the plane stress solution obtained in Section 5.28.

Let the Airy stress function be ¢ = f(r) sinn0; find the differential equation for f(r). Is this the same
ODE for f(r) if p = f(r) cos n6?

Obtain the four independent solutions for the following equation:
&P 1d ®\[(df 1df n?
(ﬁ*???) (ﬁﬁa*?f) =0

Evaluate

d n d n o
{% (r" cos nG)} " {dn (r" sin n@)} i
d

d
—n+2 n
{_dn (r cos nH)] and {_dn (r" cos n())}

n=1 n=1

In the Flamont problem (Section 5.37), if the concentrated line load F, acting at the origin on the surface
of a 2-D half-space (defined by —n/2 < 6 < n/2), is tangent to the surface (0 = n/2), show that

2F\ sin6
T, =— <_) i y Tog =T = 0.
v r
Verify that the displacement field for the Flamont problem under a normal force P is given by
U, = —L{(l —v)fsinf +2Inrcosf}, uy= L{(l +v)sinf+2Inrsinf — (1 —v)fcos b},
nEy nEy

The 2-D half-space is defined by —n/2 < 6 < n/2.

PROBLEMS FOR CHAPTER 5, PART A, SECTIONS 5.38-5.46 (A.4)

5.78

5.79

Show that Eq. (5.38.6), ie., u=%—{1/[4(1 —=v)]}V(x-¥ +®) can also be written as:
2un = —4(1 = V) + V(x - + ¢) where ¥ = —=2(1 —v)if/u,® = =2(1 —v)¢/ .
1 0

Show that with u; = ¥; — ma—xl (x, ¥, + @), the Navier equations become
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2 2
. @
__# )(xnavql—(l—4v)v2‘l’f+av

B; =0.
2(1 —2v Ox,- (9)(,‘ ) + 0

5.80 Consider the potential functions given in Eq. (5.38.32) (see Example 5.38.5), i.e.,

_d* 2d¢

¥ =1y(R)eg, ¢=d¢(R), where Vzd)fﬁ R

>y 24y 2y
0 and Viy= (dR2 TRar " w)* "

Show that these functions generate the following displacements, dilatation and stresses as given in
Eqgs. (5.38.35) to (5.38.38):

(a) Displacements: 2uug = Rd\ /dR + (=3 +4v)Y +d¢/dR, ug=ug =0.

(b) Dilatation: e = —[(1 — 2v)/u|[dV /dR + 24 /R].

(c) Stresses: Trg = (2v — 4)dy /dR + (2 — 4v) Y /R + d*p/dR>.

T/g/; = T()o = 7{(2V — l)dl///dR + 3IP/R — (l/R)d¢/dR}

5.81 Consider the potential functions given in Eq. (5.38.39) (see Example 5.38.6), i.e.,

=0, ¢=0¢(rz)=¢R,p), V¢=V¢p=0 where (r,0,z)and (R,0,p)

are cylindrical and spherical coordinates, respectively, with z as the axis of symmetry, 6 the longitudinal
angle, and f the angle between z-axis and eg. Show that these functions generate the following dis-
placements, dilatation, and stresses as given in Egs. (5.38.40) to (5.38.45):

In cylindrical coordinates:

(a) Displacements: 2uu, = 0¢/0r,up = 0, 2uu, = ¢ /0z.

(b) Dilatation: ¢ =0.

(¢) T,y = ?¢/or*, Tog = (1/r)0/0r, T., = 0*¢ /0%, E,g = Eg, =0, T,, = 0*¢/0roz.

In spherical coordinates: . .

(d) Displacements: 2uug = 0¢/OR, ug =0, 2uug = (1/R)0¢/0p.
(e) Dilatation: e =0.

(f) Stresses:

Trr = P /OR2,  Tgp = (1/R*)*P/OF* + (1/R)Dd/OR,
Tro=Tog =0, Too = (1/R)O$/OR + (cot B/R*)0ep /0P,
Ty = (1/R)P*¢/IBOR — (1/R*)0/OP.

5.82 For the potential functions given in Eq. (5.38.46) (see Example 5.38.7), i.e.,

= l//(R7ﬁ)ezu (/):07

where V2 Y = 0, show that these functions generate the following displacements u;, dilatation e, and the
stresses T; (in spherical coordinates) as given in Egs. (5.38.47) to (5.38.50):
(a) Displacements:

2uup = —{(3 —4v)yy —ROY /OR}cos B, 2uug ={(3 —4v)y sinf + cos foy OB}, ug=0.

(b) Dilatation:
2ue = —(2 — 4v)[cos Oy /OR — (sin B/R)Oy /Op].
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5.83

5.84

5.85

5.86

5.87

5.88

5.89
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(c) Stresses:
Trr = —[2(1 — v) cos B3y /OR — R cos f0* s JOR* — (2vsin §/R)Dv /0.
Tpp = —[(2v — 1) cos fOy /OR — (2 — 2v)(sin B/R)DY /OB — (cos B/R)O* Y /Op’].
Top = —{(2v — 1) cos By /OR — [(2v — 1) sin  + 1/ sin flOy /RIP}
Trg = —[2(1 — v) cos By /ROP — cos B>y JOPAR — sin f(1 — 2v)AY /OR)
Tro = Top = 0.

Show that (1/R) is a harmonic function (i.e., it satisfies the Laplace equation V*(1/R) = 0), where R is
the radial distance from the origin.

In Kelvin’s problem, we used the potential function ¢ = ye,, where in cylindrical coordinates,
Y =A/R, R?>=r*+ 72 Using the results in Example 5.38.6, obtain the stresses.

Show that for ¢ = Cln (R + z), where R?> = r? + 22,
Pip)or = C{z/R® — 1/R(R +2)]}.
Given the following potential functions:
= (0p/0z)e., ¢=(1-2v)p where ¢=CIn (R+2),R*=r’+
From the results of Example 3.38.4 and Egs. (i), (ii), and (iii) of Section 5.40, obtain

T, = C{(3r%z/R) — (1 — 2v)/[R(R + )]},
Too=C(1 —2v){—z/R* + 1/[R(R + 2)] },
T. =3C2 /R, T,, = 3Crz*/R°.

The stresses in the Boussinesq problem in cylindrical coordinates are given by

F. |32 (1-2v) F(-2] = 1
T =—529"7%5 — v Top=———F5—" — o,
2r | R° R(R+2) 2n R3 R(R+72)

F.37 F. 3rz?
Tzz = 7%?7 Trz = 7%?7 Tl‘() = T{)z =0.

Obtain the stresses in rectangular Cartesian coordinates.

Obtain the variation of T, along the z-axis for the case where the normal load on the surface is uniform
with intensity ¢,, and the loaded area is a circle of radius r, with its center at the origin.

For the potential function y = D;R~2cos  e., where (R, f3, 0) are the spherical coordinates with 8 as
the angle between e, and eg, obtain the following stresses.

Trg = 2(5 — v)DiR > cos?f — 2D\vR™>,  Tgr = 2D1R (1 + v) cos B sin f.
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5.90 For the potential function
¢ =dR.p)=Ci[R>Beos*f —1)/2] + R,

where (R, f§, 6) are the spherical coordinates with f§ as the azimuthal angle, obtain the following
stresses:

Trg = 6C\R>(3cos?B — 1) +2CoR™3,  Tgr = 12C1R ™ cos fsin f.

ANISOTROPIC LINEARLY ELASTIC SOLID

CONSTITUTIVE EQUATIONS FOR AN ANISOTROPIC LINEARLY ELASTIC SOLID

In Section 5.2, we concluded that due to the symmetry of the strain and the stress tensors E;; and T}, respec-
tively, and the assumption that there exists a strain energy function U given by T = (1/2)C;juE;;Eu, the
most general anisotropic linearly elastic solid requires 21 elastic constants for its description. We can
write the stress-strain relation for this general case in the following matrix notation (where
Cim = Cijit, Cijt = Cjit» Cijur = Craif):

[T ] [Cin Cuzz Cuzzs Cizs Cuz Cune] [ Eun ]

Ty Cuzz Coxn Cuzz Cax Cun Con Exn

T33 _ Cuss Cu3z Cazz Cozzz Cizss Cioss E33 _ (5.46.1)
T3 Cuz Cans Cuz Cazoz Cizzz Crons 2E>;

T Cuizs Ci2 Cizzz Cizz Ciziz Coons 2F3,

L T2 ] LCuiz Ciz Ciz Cizas Ciziz Crn]  L2E12 ]

The indices in Eq. (5.46.1) are quite cumbersome, but they emphasize the tensorial character of the tensors T,
E and C. Eq. (5.46.1) is often written in the following “contracted form,” in which the indices are simplified,
or “contracted.”

[T [Cii C2 Ci3 Ciy Ci5 Cis| [E1]
T, Cip Cxn Cp Cyu Cis Cy E,
T3 _ Ciz Coz C33 Ciy (i35 Csg E; . (5.46.2)
T, Ciy Cy Ciy Cy Cy5 Cye Ey4
Ts Cis Cyxs C3s Cy5 Css Cse Es
L Ts | LCi6 Cx Cs6 Cas Css Cesl LEs|
We note that Eq. (5.46.2) can also be written in indicial notation as
T, =CyE i=1, 2...6. (5.46.3)

However, it must be emphasized that the C;;’s are not components of a second-order tensor and T;’s are not
those of a vector.

The symmetric matrix [C] is known as the stiffness matrix for the elastic solid. In the notation of
Eq. (5.46.2), the strain energy U is given by
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Cn Cnp Ci Cu Ci5 Ci E;
Cpp Cpn Cpn Cy C Cx E>
Ciz Cy Cyiz Cyy Cis5 Cx E;
Cuy Coy Ci Cy Cus Cye E,
Cis Cxs C35 C45 Css Csg Es
Cis Cx C3zs Css Css Ces Es

1
U=5E Er Ey Ey Es K] (5.46.4)

We require that the strain energy U be a positive definite function of the strain components. That is, it is zero
if and only if all strain components are zero; otherwise, it is positive. Thus, the stiffness matrix is said to be a
positive definite matrix that has among its properties (see the following example): (1) All diagonal elements
are positive, i.e., C;; > 0 (no sum on i for i=1,2, ... 6); (2) the determinant of [C] is positive, i.e., det C>0;
and (3) its inverse [S] = [C] ' exists and is also symmetric and positive definite (see Example 5.46.1.) The
matrix [S] is known as the compliance matrix.

As mentioned at the beginning of this chapter, the assumption of the existence of a strain energy function
is motivated by the concept of elasticity, which implies that all strain states of an elastic body requires posi-
tive work to be done on it and the work is completely used to increase the strain energy of the body.

Example 5.46.1
Show that for the matrix [C] defined in Eq. (5.46.2), (a) all the diagonal elements are positive, i.e., C; > 0 (nosumon i
fori=1,2,...6), (b) not only the matrix [C] is positive definite, but all the submatrices
C Ci, C
Cn G Co (o3 S
; , | G2 G Co3 |, etc.
Co Cx» Cz Cz3
Ciz Cx3 Cs3

are positive definite, (c) the determinant of a positive definite matrix is positive, and (d) the inverses of all positive defi-
nite matrices are also positive definite.

Solution
(a) Consider first the case where only £; is nonzero, all other £;=0; then the strain energy is U = CllEf/Z. Now
U > 0; therefore Ci; > 0. Similarly, if we consider the case where only E, is nonzero, then U = 022522/2 SO
that Coo > 0, etc. Thus, all diagonal elements are positive, i.e., C; > 0 (no sum on jfor j = 1,2,...6) with
respect to any basis.

(b) Consider the case where only E; and £ are nonzero, then

Ch C E
2U=[F £)] {CE c;ﬂ {Ej>o.

That is, the submatrix of [C] shown in the preceding equation is positive definite. Next, consider the case
where only E, and £z are nonzero; then
Co Cx } { Eo }
2U=[E E: > 0.
[E2 £l {023 Cz| | B3
That is, the submatrix of [C] shown in the preceding equation is positive definite. All such submatrices can be
shown to be positive definite in a similar manner.

(c) If a positive definite matrix [C] is not invertible, then there must be a nonzero column matrix [x] such that
[CIix]=[0]; therefore, [x]"[C][x] = O, which contradicts the assumption that [C] is positive definite. Thus, the
determinant of a positive definite matrix is nonzero, its inverse exists. Since the eigenvalues of the real sym-
metric matrix [C] are the positive diagonal elements of a diagonal matrix, the determinant of [C] is positive.
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(d) Consider [b]1=IC] [a], where [a] is arbitrary. Let [S] denote the inverse of [C], then
[b]" [S] [0] = [b]" [C™"] [b] = [a]" [C] [C] " [C] [a] = [a]" [C] [a] > O.
That is, [bI"[SI[b] > O so that [S] is also positive definite.

PLANE OF MATERIAL SYMMETRY

Let S; be a plane whose normal is in the direction of e;. The transformation
e[ =—¢, e ==¢, e =e;s (5.47.1)

describes a reflection with respect to the plane S;. This transformation can be more conveniently represented
by the tensor Q in the equation

e/ = Qe;, (5.47.2)
where
-1 0 0
Ql=[Q]=|0 1 0]. (5.47.3)
0 0 1

If the constitutive relations for a material, written with respect to the {e;} basis, remain the same under the
transformation [Q,], then we say that the plane S, is a plane of material symmetry for that material. For a lin-
early elastic material, material symmetry with respect to the S; plane requires that the components of C;j;, in
the equation

Ty = CijuEn, (5.47.4)
be exactly the same as C l:’ﬂd in the equation

Ti//' = Ci,jklElilf (5.47.5)
under the transformation Eqs. (5.47.2) and (5.47.3). That is,

Cly = Ci- (5.47.6)

When this is the case, restrictions are imposed on the components of the elasticity tensor, thereby reducing the
number of independent components. Let us first demonstrate this kind of reduction using a simpler example,
relating the thermal strain with the rise in temperature in the following.

Example 5.47.1
Consider a homogeneous continuum undergoing a uniform temperature change given by A9 = 0 — 0,. Let the relation
between the thermal strain e; and A0 be given by

ej = o(A0),

where o is the thermal expansion coefficient tensor. (a) If the plane S; defined in Eq. (5.47.1) is a plane of symmetry
for the thermal expansion property of the material, what restriction must be placed on the components of ;2 (b) If the
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plane S, and Ss, whose normal vectors are in the direction of e, and ez, respectively, are also planes of symmetry,
what are the additional restrictions? In this case, the material is said to be orthotropic with respect to thermal expan-
sion. (c) If every plane perpendicular to the Sz plane is a plane of symmetry, what are the additional restrictions? In
this case, the material is said to be thermally transversely isotropic with es as its axis of symmetry. (d) If both e; and es
are axes of transverse isotropy, how many constants are needed to describe the thermal expansion behavior of the
material?

Solution
(a) Using the transformation law [see Eq. (2.18.5), Section 2.18, Chapter 2],

o) = Q" [o] [@], (0
we obtain, with [Q;] given by Eq. (5.47.3),

-1 0 O] {1 a2 13 -1 00 011 o2 —013
[OC] I = 0 1 0 021 Op2 023 0 1 0= —0o] Oloo o3 . (ii)
0 O 1] [ws1 a3 o033 0 01 —o3] 03 033

The requirement that [«] = [¢]" under [Q;] results in the following restrictions:
ap=-01p =0, a1 =-0p =0, oz=-m3=0, oz =—03 =0. (iii)

Thus, only five coefficients are needed to describe the thermo-expansion behavior if there is one plane of
symmetry:

(b) Corresponding to the S, plane,

1 0 0 a1 O 0
[@Q]=]0 -1 0Of,sothatfe]’=| 0 o —an3]|. \
0O 0 1 0 —ozm  as3

The requirement that [«] = [¢]” under Qy, results in the following additional restrictions:
0p3 = 030 = 0. (vi)

Thus, only three coefficients are needed to describe the thermo-expansion behavior if there are two mutually
orthogonal planes of symmetry. That is, for orthotropic thermal material,

o1 0 0
@)= 0 oax O . (vii)
0 0 o33
If the S5 is also a plane of symmetry, then
1 0 0 211 0 0
@=10 1 O and [o]=1| 0 oy O |[. (viii)

0 0 -1 O 0 a3
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Thus, no further reduction takes place. That is, the symmetry with respect to S; and S, planes automatically
ensures the symmetry with respect to the Ss plane.

(c) All planes that are perpendicular to the Sz plane have their normal vectors parallel to the planes formed by e;
and e,. Let

e] = cos fe; + sinPep, e) = —sinfe; + cosPey, e; =es. (ix)

First we note that the e;-plane corresponds to f =0 and the e,-plane corresponds to g =90° so that symme-
try with respect to the transformation given in Eq. (ix) includes orthotropic symmetry. Thus,

cosfp sinp O a7 O O cosfi —sinp O
[¢)] = | —sinp cosp O 0 ap O sinf cosp O], (x)
0 0 1 0 O os3 0 0 1

so that we have

ofy = 011 COS 2P + ap SIN2P, by = 011 SIN2P + 0190 COS 2P, 0f = 33, o)
o], = oy = —a11SINBCOs f+azpsinfcosf, aj3 =0, aj3 =0, a; =0, al, =0. .

Now, in addition, any S plane is a plane symmetry; therefore [see part (a)], «], = O so that
o1l = 022 (xii)

Thus, only two coefficients are needed to describe the thermal behavior of a transversely isotropic thermal
material.

(d) Finally, if the material is also transversely isotropic, with e; as its axis of symmetry; then
ooy = 033, (xiii)
so that
011 = Oop = 033, (xiv)

and the material is isotropic with respect to thermal expansion, with only one coefficient needed for its descrip-
tion. This is the common case in elementary physics.

CONSTITUTIVE EQUATION FOR A MONOCLINIC LINEARLY ELASTIC SOLID

If a linearly elastic solid has one plane of material symmetry, it is called a monoclinic material. We shall
demonstrate that for such a material, there are 13 independent elasticity coefficients.
Let e; be normal to the plane of material symmetry S;. Then by definition, under the change of basis

e[ =—¢|, e ==¢), e =e;3 (5.48.1)
the components of the fourth-order elasticity tensor remain unchanged, i.e.,

Ci = Cia. (5.48.2)
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Now Cl;-k, = 01i01jOrOsiCrmnrs [see Section 2.19]; therefore, under Eq. (5.48.1),
Cijk[ = QmianQer.&‘lCmnrsa (5483)
where

011 =-1, QO»n=03 =1, and all other Q,:,' =0. (5.48.4)

From Egs. (5.48.3) and (5.48.4), we have
Ciina = 0m @ Qr1Q2Coms = 011011011022C1112 + 0+ 0+ ... +0 = (=1’ (+1)C1112 = —Ciina. (5.48.5)
Thus
Cire =0. (5.48.6)

Indeed, one can easily see that all Cyj; with an odd number of the subscript 1 are zero. That is, among the 21
independent coefficients, the following eight are zero:

Cii2 = Ci113 = Cra22 = C1223 = C1233 = Ci1322 = C1323 = C1333 = 0, (5.48.7)

so that the constitutive equations have only 13 nonzero independent coefficients. Thus, the stress strain laws
for a monoclinic elastic solid having the x,x; plane as the plane of symmetry are

T Cin Cnz Cns Cuxs O 0 Ey
T2 Ciz2 Cap Cpzz Cppz O 0 Ex
T C C C C 0 0 E
3] _ [Cus Coxp Casy Coss B | (5.48.8)
Tas Ciis Conz Cypaz Cpz O 0 2Ey
T3 0 0 0 0 Cuiiz Con 2E3;
T 0 0 0 0 Cupi Con 2E,
In contracted notation, the stiffness matrix is given by
Ci Cnn Ci3 Cu O 0
Cp Cp Cpn Cy O 0
C C C C 0 0
] = 13 Cuz Ci3 Cyn (5.48.9)

o

Ciy Cyy C3yy Cy O
0 0 0 0 Css Csg
0 0 0 0 Cs¢ Cgg

The coefficients in the stiffness matrix C must satisfy the conditions that each diagonal element
Cii >0 (nosumoni, fori=1,2...6) and the determinant of every submatrix whose diagonal elements
are diagonal elements of the matrix C is positive definite (see Section 5.46).

CONSTITUTIVE EQUATION FOR AN ORTHOTROPIC LINEARLY ELASTIC SOLID

If a linearly elastic solid has two mutually perpendicular planes of material symmetry, say, S; plane with unit
normal e; and S, plane with unit normal e,, then automatically the S5 plane with unit normal e5 is also a plane
of material symmetry. The material is called an orthotropic elastic material. We shall demonstrate that
for such a material, there are only nine independent elastic coefficients. For this solid, the coefficients
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C;jry now must be invariant with respect to the transformation given by Eq. (5.48.1) of Section 5.48 as well as

the following transformation:

e[ =e;, € =—¢€, e =e. (5.49.1)

Thus, among the 13 Cj;, that appear in Eq. (5.48.9), those which have an odd number of the subscript 2 must
also be zero. For example,

Ci123 = 01 01012053C s = 01101102033C1123 + 0+ 0+ ...0 = (1)*(=1)(1)Ci123,

)
= —Cy123 = 0.
Co223 = 0120100205 Coirs = 0220202033C2023 + 0+ 0+ ... +0 = (1) (1)Can3, (i)
= —Cxn3 =0.
Thus,
Cr123 = Cyo03 = Cp333 = C213 = 0. (5.49.2)
Therefore, there are now only nine independent coefficients and the constitutive equations become
Ty Cin Cuzz Crzz 0 0 0 Ey
1> Cizz Caxn Co3s 0 0 0 Ex
T3 | _ | Ciszs Cosz Cazzz O 0 0 E33
To3; - 0 0 0 Cr323 0 0 2E3 (5.49.3)
T51 0 0 0 0 Ci313 0 2E3,
T 0 0 0 0 0 Ci212 2E
Or, in contracted notation, the stiffness matrix is given by
Ciy Cpp Ci3 0 0 0
Cip Cnp Cy O 0 0
- Ciz Cyp Cs3 0 0 0
C]= 0 0 0 Cu 0 L (5.494)
0 0 0 0 Css O
0 0 0 0 0 Ce

where again, each diagonal element C; >0 (nosumoni) for i=1, 2,...6 and the determinant
of every submatrix whose diagonal elements are diagonal elements of the matrix C is positive definite.
That is,

Cxn Cxn

Cll C12 Cll C13
det
e[ Cn Cx

>0, det >0, det
Ca sz} e|:C31 Css} ’ e{

} >0 and det[C] >0 (5.49.5)

CONSTITUTIVE EQUATION FOR A TRANSVERSELY ISOTROPIC LINEARLY
ELASTIC MATERIAL

If there exists a plane, say, S3-plane, such that every plane perpendicular to it is a plane of symmetry, then the
material is called a transversely isotropic material. The S;-plane is called the plane of isotropy and its normal
direction e is the axis of transverse isotropy.

Let {e;, e;} and {e], e,} be two sets of orthonormal bases lying on the S5 plane where e{ makes an angle
of f with the e;-axis. We have

e/ = cosfe; + sinfe,, e, = —sinfe; + cosfe,, €5 =e;. (5.50.1)
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That is,
Qu =cosf, Oy =sinf, Qun=-—sinf, QOn=cosf, 03 =03»=0 0On=1 (5.50.2)

Now, every f in Eq. (5.50.2) defines an orthonormal basis (e{, e}, e}) with respect to which the material is
orthotropic. Thus for every f3, we have, from the results of the previous section,

i _ ! _ ! _ ! _ ! _ ! _ ! _ !
C1112 - C1113 - C1222 - C1223 - C1233 - C1322 - C1323 - C1333’ (5 50 3)
_ ! _ ! _ ! _ ! _ b
- C1123 - C2223 - C2333 - C1213 =0

including at =0,

C =C =C =C =C =C =C = Ci333,
112 113 1222 1223 1233 1322 1323 1333 (5.50.4)
= Cr123 = Cpp3 = Ca333 = C1213 = 0.

Next, from Eq. (5.50.2), we have

Claz = Om1Q30:203Coinrs = Om1033012033C 33 = Om1 Qr2Cm3i3
= 011012C1313 + 011022C1323 + 21012C2313 + 021022C2323 (5.50.5)
= 011012C1313 + 021022C2323.

That is,

Cl3p3 = cos fsin f(—Ciz13 + Caz3). (5.50.6)

But, from Eq. (5.50.3), C{5,; = 0; therefore,
Ci313 = Ca33. (5.50.7)
Similar, C{,;; = 0 leads to (see Prob. 5.96)

Ci133 = Co33. (5.50.8)

Furthermore, since Q> = —Qi2 =sinf, Q11 = 0» =cosf, 031 =03 =0, 033 =1 and Ciin = Cou1,
Ci212 = C2121 = Ci221 = Ca112, Cii12 = Cia22 = 0, we have

C1,112 = leinerQsZCmm's = QIIQIZ

[01101:1C1111 — (11022 — 021021)Criz2 — 2(011022 — 021021)C 1212 — 021021 Coo20] (5-50.9)
Thus, C{,;, = 0 gives
cos2BCyi — (Coszﬂ _ Sinzﬁ)Clm _ 2(cos2ﬁ _ Sinzﬁ)sz — Sin?fCapm = 0. (5.50.10)
Similarly, we can obtain from the equation C;,,, = 0 (see Prob. 5.97) that
sin*fCunt + (e0s*f — sin”B)Crizz +2(cos”f — sin*B)C1ziz — cos*pC = 0. (5.50.11)

Adding Egs. (5.50.10) and (5.50.11), or by taking § =m/4 in either equation, we obtain

Cii = Con. (5.50.12)
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We note that the results expressed in Eqgs. (5.50.7), (5.50.8), and (5.50.12) are quite self-evident in that,
with e; as the axis of transverse symmetry, there is no distinction between the e; basis and the e, basis.
Finally, subtracting Eq. (5.50.10) from (5.50.11), we have

(Ci111 —2C1122 —4Ci212 + Com2) = 0. (5.50.13)
Thus,

1
Con = 3 (Ciint — Cri). (5.50.14)

Equations (5.50.12) and (5.50.14) can also be obtained from Egs. (5.50.10) and (5.50.11) by taking ff =n/
2 in these equations.

Thus, the number of independent coefficients reduces to five and we have, for a transversely isotropic
elastic solid with the axis of symmetry in the e; direction, the following stress strain law:

T Cin Cnz2 Cnzz O 0 0 Ey
T Ciuz Cun Cuss 0 0 0 Ey
Tz | | Cusz Cizs Cizz O 0 0 Es3
T3 - 0 0 0 Ci313 0 0 2E»; |’ (5.50.15)
T51 0 0 0 0 Ci313 0 2E3,
T2 0 0 0 0 0 (1/2)(Ciini — Ciiz) 2E1,
and in contracted notation, the stiffness matrix is
C;y Cip Cp3 0 0 0
Cp Cip Cz3 O 0 0
. Ciz Ci3 Cs3 0 0 0
€] = 0 0 0 Cu 0 0 (5.50.16)
0 0 0 0 Cu 0
0 0 0 0 0 (1/2)(Cy—Cpn)
The elements of the stiffness matrix satisfy the condition
Ci1>0, C33>0, Cyu>0, C;p—Cpp>0,
[C Cn ) 5 Cn Cis 5
det :C“—C12>0, det :C11C33—C13>0,
1C2 Cn Ci3 Cs
- (5.50.17)
Cni Cn Cp

det|Cip, C1 Ci3| = C%1C33 + 2C12C%3 — 2C11C%3 — C33C%2 > 0.
Ciz Ci Cs

CONSTITUTIVE EQUATION FOR AN ISOTROPIC LINEARLY ELASTIC SOLID

The stress-strain equations given in the last section are for a transversely isotropic elastic solid whose axis of

transverse isotropy is in the e; direction. If, in addition, e, is also an axis of transverse isotropy, then clearly,
we have

Cr2 =C333=Ciiii, Ciizz =Crizs, Ci3is3 = Ciaiz = (Ciint — Cuin2) /2. (5.51.1)
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Or, in contracted notation
Cp=Ci=Cy, Cno=Cps, Cu=(CH—-Cn)/2 (5.51.2)

There are now only two independent coefficients and the stress strain law is

Ty Cu Cn Cn 0 0 0 En
Ty Cp Cn Cn 0 0 0 Ey
Tz | _ [Cr2 C2 Cn 0 0 0 Es3
Tl |0 0 0 (Cii—Cp)/2 0 0 2y | (5:51.3)
Ty 0 0 0 0 (Ch—Cn)/2 0 2E3,
T 0 0 0 0 0 (Cii—Cn)/2 2E)
where
Cii >0, Cy—Cp>0, C} —C},>0, Cj +2C},—3CCi,>0. (5.51.4)
The elements C;; are related to the Lamé’s constants 4 and u as follows:
Cii=A+2u, Cnp=24 (Cin—Cp)=2u (5.51.5)

ENGINEERING CONSTANTS FOR AN ISOTROPIC LINEARLY ELASTIC SOLID

Since the stiffness matrix is positive definite, the stress-strain law can be inverted to give the strain compo-
nents in terms of the stress components. They can be written in the following form:

E11 1/Ey —V/Ey —V/Ey 0 0 0 T11
E22 —V/Ey 1/Ey —V/Ey 0 0 0 T22
E33 o —V/Ey —V/Ey I/Ey 0 0 0 T33
265 | | 0 0 0 1/G 0 0 Ty | (5:52.1)
2E53 0 0 0 0 1/G 0 T3
21 0 0 0 0 0 1/G i

whereas we already know from Section 5.4, Ey is Young’s modulus, v is Poisson’s ratio, and G is the shear
modulus, and

E
G=—"". 5.52.2
2(1+v) (5.52.2)
The compliance matrix is positive definite. Therefore, the diagonal elements and the submatrices are all posi-
tive; that is,

Ey >0, G>0, (5.52.3)
1/E —v/E
det[—v//gy 1\}/EYY} = (1/Ey)* (1 =) > 0, (5.52.4)

—V/Ey 1/EY —V/EY
—V/Ey —V/Ey I/Ey

= (1/Ey)*(1 =23 — 312) (5.52.5)

1/Ey —v/Ey —v/Ey
det[ }
= (1/Ey)’ (1 = 2v)(1 +v)* > 0.

Egs. (5.52.4) and (5.52.5) state that
“1<v<1/2. (5.52.6)
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ENGINEERING CONSTANTS FOR A TRANSVERSELY ISOTROPIC LINEARLY
ELASTIC SOLID

For a transversely isotropic elastic solid, the symmetric stiffness matrix with five independent coefficients
can be inverted to give a symmetric compliance matrix, also with five independent constants. The strain-
stress equations can be written in the following form for the case where e3 is the axis of transverse
isotropy:

Ep 1/E, —v/E1  —v31/E;3 0 0 0 Tn
Ezz —V21/E1 1/E1 —V31/E3 0 0 0 T22
E — E; —vi3/E 1/E 0 T
3| _ vis/Er  —vi3/E /E3 0 0 33 (5.53.1)
2E5;3 0 0 0 1/Gi3 0 0 T
2E3, 0 0 0 0 1/Gs 0 T
2E,, 0 0 0 0 0 1/Gp Ti
The relations between C;; and the engineering constants can be obtained to be (see Prob. 5.99)
Ei 1 —v}(Ei/Es)] E  [1—v3(Es/Ey)]
Cy = , Cpn=Ci, Ci3= , 5.53.2
11 (1+V21) D 22 11 33 (] +V21) D ( )
Ey(va1 + V3, E1/E3) v31E}
12 T+ vo)D 13 D 23 ( )
where
D =1—vy — 2V} (Ei/E3), (5.53.4)
and
Cis =Gz, (Ci —Cpn)/2=Gr. (5.53.5)
From Eq. (5.53.2), it can be obtained (see Prob. 5.100) that
E;
Gp=———. 5.53.6
12 20+ va1) ( )
The compliance matrix is symmetric, so we have
v31/E3 = vi3/E). (5.53.7)

We note that, with Eqs. (5.53.6) and (5.53.7), there are only five independent constants in the compliance
matrix. They are E|, E3, G2, G3, and v;3. The meaning of these constants will be clear from the following
consideration:

(a) If Ts3 is the only nonzero stress component, then
E3; =Ty /Es, vy = —En/Ex = —En/Es. ()
Thus, E5 is the Young’s modulus in the e3 direction (the direction of the axis of transverse isotropy),

and v3; is the Poisson’s ratio for the transverse strain in the x; or x, direction when stressed in the x3
direction.
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(b) If T, is the only nonzero stress component, then

(o)

Ey=Tn/E\, va=—Exn/Ey and vi3z=—Es/E, (ii)
and if T, is the only nonzero stress component, then
Ex =Txn/Ei, v21 = —En/Exn and vi3 =—FE33/Ep. (iii)

Thus, E; is the Young’s modulus in the e; and e, directions (indeed, any direction perpendicular to the
axis of transverse isotropy); v, is the Poisson’s ratio for the transverse strain in the x, direction when
stressed in the x; direction, which is also the Poisson’s ratio for the transverse strain in the x; direction
when stressed in the x, direction; and v,5 is the Poisson’s ratio for the strain in the e; direction when
stressed in a direction in the plane of isotropy.

From T12 = 2G12E12, T23 = 2G13E23, T31 = 2G13E31, we see that G12 is the shear modulus in the
Xx1x, plane (the plane of transverse isotropy) and G3 is the shear modulus in planes perpendicular
to the plane of transverse isotropy.

From the meaning of Ey, v,;, and G1,, we see clearly why Eq. (5.53.6) is of the same form as that of the
relation among Young’s modulus, shear modulus, and Poisson’s ratio for an isotropic solid.
Since the compliance matrix is positive definite,

E >0, E3>0, G,>0, G;3>0, (5.53.8)
1/E —v1 /E 1 .
detLVQ/I/El 12/11;4 1} :ﬁ(l —v3;) >0, e, —1<wvy <, (5.53.9)
1
I/Ey  —vy/Es| _ 1 2 B . : _Es
det{im/}s3 1/Es =L 1 V31E3 >0, ie.,v3 <E1 or vizvy < 1. (5.53.10)
The last inequality is obtained by using Eq. (5.53.7), i.e., v3;/E3 = vi3/E|. We also have
q y y g kq
1/Er  —va/Er —v31/E;3
1 [ Er ) [ Ex 2
det —V21/E1 1/E1 —V31/E3 = E2_E3 1-— 2v21v31 E_3 — 2\131 E} V21
1
—v31/Es  —v31/Es  1/E; (5.53.11)
1 , [E
:E%E3 1—2\)31 E — V21 (1+V21)>0
Since (1 + v,1) > 0, we have
2 (En
1 —2v3, E_z > vy or 1 —2v3viz > vy, (5.53.12)

ENGINEERING CONSTANTS FOR AN ORTHOTROPIC LINEARLY

ELASTIC SOLID

For an orthotropic elastic solid, the symmetric stiffness matrix with nine independent coefficients can be
inverted to give a symmetric compliance matrix, also with nine independent constants. The strain-stress equa-
tions can be written
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Ey [ 1/E, —vo/E;  —v31/E;3 0 0 0 Ty,

E22 *V]z/E] 1/E2 *V32/E3 0 0 0 T22

Es3 —vi3/Ey  —v3/E,  1/E3 0 0 0 T3
_ (5.54.1)

2F>3 0 0 0 1/Gas 0 0 T>;

2E3, 0 0 0 0 1/Gy 0 Ty,

26, | o 0 0 0 0 1/Gn]| [T
where

Va1 /Ey = vio/E1, vi1/Ez =vi3/E1, vn/E3 =vy/E;. (5.54.2)

The meaning of the constants in the compliance matrix can be obtained in the same way as in the
previous section for the transversely isotropic solid. Thus, E;, E, and E; are the Young’s modulus in
the e, e, and e; directions, respectively; G,3, G3; and G, are shear modulus in the x,x3, x;x3 and xx,
planes, respectively, and v;; is Poisson’s ratio for transverse strain in the j-direction when stressed in
the i-direction.

The relationship between C;; and the engineering constants are given by (see Prob. 5.101):

I —va3v3 I —v3vi3 1 —vipvag
_ - 2 =_ << 5.54.3
Cn EEA 2 EEA Cs3 E\EA ( )
Cpn= (va1 +v31v23), Ci3 = ! (v31 + va1v32)
2= EEA Va1 +v31v23), Crs = EyEA V3 T ran),
| (5.54.4)
Cy = m(%z + va1via),
where
[1 —2vi3v21v3p — Vi3V31 — V23V32 — Va1 Vi2)
A= 5.54.5
E\E>E; (5.54.5)
and
Cuyy = Goz, Css =Gz, Ces = Gpa. (5.54.6)

For the compliance matrix, being positive definite, its diagonal elements and the submatrices are all posi-
tive; therefore, we have the following restrictions (see Prob. 5.102):

E, > 0, E, > O7 E; >0, Gy > 0, G3 > 07 G, > 0. (5.54.7)
E, E, E;3 E, E, Es
V3, <E v, <5 v, <5 V3, <5 Vi <5 V3, <E (5.54.8)

and

1 —2vi3va1v32 — Vi3var — v23va2 — v21viz > 0. (5.54.9)
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ENGINEERING CONSTANTS FOR A MONOCLINIC LINEARLY ELASTIC SOLID

For a monoclinic elastic solid, the symmetric stiffness matrix with 13 independent coefficients can be inverted
to give a symmetric compliance matrix, also with 13 independent constants. The compliance matrix for the
case where the e; plane is the plane of symmetric can be written as follows:

Ep I/Ey  —va/Ex —va1/Es 14, /Gs 0 0 Ty
Exn —vi2/Ey 1/E; —v32/E3  14/Ga 0 0 T»n
Es; | _ | —vis/Er —vs/Ex 1/E5  m3/Gs 0 0 T3 (5.55.1)
2Ex; Mma/Er Ma/Ex mu/Es 1/Gy 0 0 T3 o
2E31 0 0 0 0 1/G5 ,u(,S/GG T31
2E12 0 0 0 0 /J56/G5 1/G6 T12
The symmetry of the compliance matrix requires that
va1/Ex = vio/E1, va1/E3 =vi3/E1, v /Es = vy /Ea, (5.55.2)
Ma/Er = 41/Ga,  May/E2 =4 /Gay, M3a/Es =43/Gs,  pise/Gs = pes/ G- o
With Egs. (5.55.2), there are only 13 independent constants in Eq. (5.55.1):
Ey, Ea, E3, Ga, Gs, Gg, Via, V13, V23, T4y Tas N34 and fisg.
If only Ty, is nonzero, then the strain-stress law gives
T E E
Ey = Efllla Viz = _E%?7 viz = _E%j’ 2By = nuuEn, (5.53.3)
and if only T, is nonzero, then the strain-stress law gives
T E E
E22 = Eizz, Vo1 = —E—;;, Vo3 = —E%, 2E23 = ’f]24E227 etc. (5544)

Thus, Ey, E, and E3 are Young’s modulus in the x;, x, and x3 directions, respectively, and again, v;; is Pois-
son’s ratio for transverse strain in the j-direction when stressed in the i direction. We note also that for a
monoclinic elastic solid with the e;-plane as its plane of symmetry, a uniaxial stress in the x;-direction or
X,-direction produces a shear strain in the x,x3 plane also, with 7); as the coupling coefficients.

If only Ty, =T,; are nonzero, then

T
T12 = 2G6E12 and 2E31 = Ugs g, (5555)
6
and if only T3 =T5; are nonzero, then
_ T
T13 = 2G5E13 and 2E12 = /156G—. (5556)
5

Thus, Gg is the shear modulus in the x;x, plane and G5 is the shear modulus in the x;x3 plane. Note also that
the shear stresses in the x;x, plane produce, in addition to shear strain in the x;x, plane but also shear strain in
the x,x3 plane, and vice versa, with p; as the coupling coefficients.

Finally, if only T3 =T3, are nonzero, then

T T T
E1 =y Gij Eyp = sz—zj, Ezs = n43G—2j, Toy = 2G4Exs. (5.55.7)

We see that G4 is the shear modulus in the x,x53 plane, and the shear stress in this plane produces normal
strains in the three coordinate directions, with 7;; as the normal stress-shear stress coupling coefficients.
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Obviously, due to the positive definiteness of the compliance matrix, all the Young’s moduli and the shear
moduli are positive. Other restrictions regarding the engineering constants can be obtained in the same way as
in the previous sections.

PROBLEMS FOR PART B

5.91 Demonstrate that if only E, and E5 are nonzero, then Eq. (5.46.4) becomes

Cy C E
wete e @ ) (2]

5.92 Demonstrate that if only £, and E5 are nonzero, then Eq. (5.46.4) becomes

Cu C E
2U = [E, Es) {Ci C;} {E;}

5.93 Write stress strain laws for a monoclinic elastic solid in contracted notation whose plane of symmetry
is the x1x, plane.

5.94 Write stress strain laws for a monoclinic elastic solid in contracted notation whose plane of symmetry
is the x;x5; plane.

5.95 For transversely isotropic solid with e as the axis of transversely isotropy, show from the transforma-
tion law Ci’,»kl = 0miQ1jQQsiConnrs that C{;; = 0 (see Section 5.50).

5.96 Show that for a transversely isotropic elastic material with e; as the axis of transverse isotropy,
C1133 = C133, by demanding that each Sg plane is a plane of material symmetry (see Section 5.50).

5.97 Show that for a transversely isotropic elastic material with e; as the axis of transverse isotropy (see
Section 5.50).

(Sin ﬁ)zclln + (COS ﬁ)z — (sin ﬁ)z} C1122 +2 [( Ccos ﬁ)z — (sin [3)2} C1212 — (COS ﬁ)2C2222 =0.

5.98 In Section 5.50, we obtained the reduction in the elastic coefficients for a transversely isotropic
elastic solid by demanding that each Sy plane is a plane of material symmetry. We can also obtain
the same reduction by demanding the Ci’jk, be the same for all 5. Use this procedure to obtain the result:
Cii33=Cr33.

5.99 Invert the compliance matrix for a transversely isotropic elastic solid to obtain the relationship
between Cj; and the engineering constants. That is, verify Egs. (5.53.2) and (5.53.3) by inverting the
following matrix:

I/Ey  —va/Er —va1/E3
A= | —va/Er  1/Er  —vai/E3|.
—vi3/Er —vi3/Er  1/E;3

5.100 Obtain Eq. (5.53.6) from Egs. (5.53.2) and (5.53.3).

5.101 Invert the compliance matrix for an orthotropic elastic solid to obtain the relationship between C;; and
the engineering constants.
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5.102 Obtain the restriction given in Eq. (5.54.8) for engineering constants for an orthotropic elastic solid.

5.103 Write down all the restrictions for the engineering constants for a monoclinic solid in determinant form
(no need to expand the determinants).

ISOTROPIC ELASTIC SOLID UNDER LARGE DEFORMATION

CHANGE OF FRAME

In classical mechanics, an observer is defined as a rigid body with a clock. In the theory of continuum mechan-
ics, an observer is often referred to as a frame. One then speaks of “a change of frame” to mean the transforma-
tion between the pair {x, ¢} in one frame to the pair {x*, #*} of a different frame, where x is the position vector
of a material point as observed by the unstarred frame, x* is that observed by the starred frame, and ¢ is time,
which, in classical mechanics, may be taken to be the same (or differ by a constant) for the two frames. Since
the two frames are rigid bodies, the most general change of frame is given by [see Eq. (3.6.4)]

x* = ¢(f) + Q(f) (X — X,), (5.56.1)

where c¢(f) represents the relative displacement of the base point x,, Q(¢) is a time-dependent orthogonal
tensor, representing a rotation and possibly a reflection. The reflection is included to allow for the
observers to use different-handed coordinate systems. If one assumes that all observers use the same handed
system, the general orthogonal tensor Q(¢) in the preceding equation can be replaced by a proper orthogonal
tensor.

It is important to note that a change of frame is different from a change of coordinate system. Each frame
can perform any number of coordinate transformations within itself, whereas a transformation between two
frames is given by Eq. (5.56.1).

The distance between two material points is called a frame-indifference scalar (or objective scalar)
because it is the same for any two observers. On the other hand, the speed of a material point obviously
depends on the observers as the observers in general move relative to each other. The speed is therefore
not frame-independent (nonobjective). We see, therefore, that though a scalar is by definition coordinate-
invariant, it is not necessarily frame-independent (or frame-invariant).

The position vector and the velocity vector of a material point are obviously dependent on the observers.
They are examples of vectors that are not frame indifferent. On the other hand, the vector connecting two
material points and the relative velocity of two material points are examples of frame-indifferent
vectors.

Let the position vector of two material points be X;, X, in the unstarred frame and XT, X; in the starred
frame; then we have, from Eq. (5.56.1),

X, =¢(t) + QN (X1 —Xo), X5 = ¢(t) +Q(t) (X2 — Xo)- (5.56.2)
Thus,
X; — X, = Q()(x1 — x2), (5.56.3)
or
b* = Q(1)b, (5.56.4)

where b* and b denote the same vector connecting the two material points. Vectors obeying Eq. (5.56.4) in a
change of frame given by Eq. (5.56.1) are called objective (or indifferent) vectors.
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Let T be a tensor that transforms a frame-indifferent vector b into a frame-indifferent vector c, i.e.,
c=Tb (5.56.5)
and let T* be the same tensor as observed by the starred frame, then
c* = T*b*. (5.56.6)
Since b and ¢ are objective vectors, ¢* =Qc and b* =Qb, so that
¢* = Qc = QTb = QTQ b*. (5.56.7)
That is, T*b* = QTQTb*. Since this is to be true for all b*, we have
T* = QTQ". (5.56.8)

Tensors obeying Eq. (5.56.8) in a change of frame [described by Eq. (5.56.1)] are called objective tensors.
In summary, objective (or frame-indifferent) scalars, vectors, and tensors are those that obey the following
transformation law in a change of frame x* = ¢(¢) + Q(¢)(x — X,):

Objective scalar: o* = o
Objective vector: b* = Q(7)b
Objective tensor: T* = Q(1)TQT(¢)

Example 5.56.1
Show that (a) dx is an objective vector and (b) ds = |dx| is an objective scalar.

Solution
(@) From Eg. (5.56.1), x* = ¢(t) + Q(t)(x — Xo), we have
X" 4+ dx" =c(f) + Qf)(x + dx — xo), (5.56.9)
therefore,
ax* = Q(t)dx, (5.56.10)

so that dx is an objective vector.

(b) From Eq. (5.56.10)
(ds7)* = dx” - ox" = Q(1)dx - Q(t)dx = dx - Q'Qdx = dx - dx = (ds)’. (5.56.11)

That is, ds* = ds so that ds is an objective scalar.

Example 5.56.2
Show that in a change of frame, (a) the velocity vector v transforms in accordance with the following equation and is
therefore nonobjective:

Vi = Q(HV + Q1) (X — Xo) + &), (5.56.12)
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and (b) the velocity gradient transforms in accordance with the following equation and is also nonobjective:

ViV = Q(H)(VV)Q (1) + QQ'. (5.56.13)
Solution
(a) From Eq. (5.56.1)
% = ¢(1) + Q) (x — Xo) + Q(H)v. (5.56.14)
That is,
Vi = Q(HV + (1) + Q(H) (X — Xo). (5.56.15)

This is not the transformation law for an objective vector; therefore, the velocity vector is nonobjective.
(b) From Eq. (5.56.15), we have
V(X" 4 dX, ) = QUOV(X + dX, 1) + &(1) + Q(E) (X + dX — X, (5.56.16)
and
V(X5 1) = Q(E)V(X, ) + E(1) + Q) (X — Xo). (5.56.17)

Subtraction of the preceding two equations gives

(V*v)dx* = Q(t)(Vv)dx + Q(t)dx. (5.56.18)
But dx* = Q(f)dx; therefore,
[(V*v*)Q(f) —Q(t)(VV) — Q(r)] dx = 0. (5.56.19)
Thus,
Vv =Q(W)Q +QQ'. (5.56.20)

Example 5.56.3
Show that in a change of frame, the deformation gradient F transforms according to the equation

F' = Q(t)F. (5.56.21)
Solution
We have, for the starred frame,
ax* = F*aXr, (5.56.22)
and for the unstarred frame,
dx = FadX. (5.56.23)

In a change of frame, dx and dx* are related by Eq. (5.56.10), that is, dx* = Q(f)dx, thus,
Q(t)dx = F*aX* (5.56.24)
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Using Eq. (5.56.23), we have
Q(r)FdX = F*dX*. (5.56.25)

Now, both dX and dX* denote the same material element at the fixed reference time z,,; therefore, without
loss of generality, we can take Q(#,) = I, so that dX = dX*, and we arrive at Eq. (5.56.21).

Example 5.56.4
Derive the transformation law for (a) the right Cauchy-Green deformation tensor and (b) the left Cauchy-Green
deformation tensor.

Solution
(a) The right Cauchy-Green tensor C is related to the deformation gradient F by

C=F'F. (5.56.26)
Thus, from the results of the last example,
c' = (F)'F = (QF)'QF = F'Q'QF = F'F. (5.56.27)
That is,
c'=C. (5.56.28)

Equation (5.56.28) states that the right Cauchy-Green tensor C is nonobjective.
(b) The left Cauchy-Green tensor B is related to the deformation gradient F by

B=FF". (5.56.29)
Thus,
B' = F'F' = QF(QF)" = QFF'Q". (5.56.30)
That is,
B' = Q(1)BQ(t)". (5.56.31)

Equation (5.56.31) states that the left Cauchy-Green tensor is objective (frame-independent).

We note that it can be easily proved that the inverse of an objective tensor is also objective (see Prob. 5.104) and
that the identity tensor is obviously objective. Thus, both the left Cauchy-Green deformation tensor B and the Eulerian
strain tensore = (1 — B’l)/2 are objective, whereas the right Cauchy-Green deformation tensor C and the Lagrangian
strain tensor E = (C — 1)/2 are nonobjective.

It can be shown (see Prob. 5.107) that in a change of frame, the material derivative of an objective tensor T trans-
forms in accordance with the equation

T = Qra'(H) + Q(H)TQ' (1) + Q1) TA'. (5.56.32)

Thus, the material time derivative of an objective tensor is, in general, nonobjective.
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CONSTITUTIVE EQUATION FOR AN ELASTIC MEDIUM UNDER LARGE
DEFORMATION

As in the case of the infinitesimal theory of an elastic body, the constitutive equation relates the state of stress
to the state of deformation. However, in the case of finite deformation, there are different finite deformation
tensors (left Cauchy-Green tensor B, right Cauchy-Green tensor C, Lagrangian strain tensor E, etc.) and dif-
ferent stress tensors (Cauchy stress tensors and the two Piola-Kirchhoff stress tensors) defined in Chapters 3
and 4, respectively. It is not immediately clear what stress tensor is to be related to what deformation tensor.
For example, if one assumes that T = T(C), where T is Cauchy stress tensor and C is the right Cauchy-Green
tensor, then it can be shown (see Example 5.57.2) that this is not an acceptable form of constitutive equation,
because the law will not be frame-indifferent. On the other hand, if one assumes T =T(B), then this law is
acceptable in that it is independent of observers, but it is limited to isotropic material only (see Example
5.57.4).

The requirement that a constitutive equation must be invariant under the transformation Eq. (5.56.1)
(i.e., in a change of frame), is known as the principle of material indifference. In applying this principle,
we shall insist that force and, therefore, the Cauchy stress tensor be frame-indifferent. That is, in a change
of frame,

T = QTQ". (5.57.1)

Example 5.57.1 T
Show that (a) in a change of frame, the first Piola-Kirchhoff stress tensor, defined by T, = JT(F—l) , J = |detF|,
transforms in accordance with the equation

T, = Q(H)To. (5.57.2)

- T
(b) In a change of frame, the second Piola-Kirchhoff stress tensor, defined by T = _/F’1T<F’1> , transforms in accor-
dance with the equation

%

T=T. (5.57.3)
Solution
(a) From Eq. (5.56.21), we have, in a change of frame, F* = Q(t)F. Thus,
J* = |det F*| = |det [Q(t)F]| = |[detQ(t)][detF]| = J. (5.57.4)

Also, T* = QTQ'; thus,
T, =T (F 1 =Ja1Q'[(QF)']" = JaTQ" (F'Q")’
—Jara’'q(F )’ = /aT(F )" = /T(F!)" = aT,.
(b) The derivation is similar to (a) (see Prob. 5.110).
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Example 5.57.2

Assume that for some elastic medium, the Cauchy stress T is proportional to the right Cauchy-Green tensor C.
Show that this assumption does not result in a frame-indifferent constitutive equation and is therefore not
acceptable.

Solution
The assumption states that for the starred frame,

T =a«C", (5.57.5)
and for the unstarred frame,
T=4aC, (5.57.6)

where we note that since the same material is considered by the two frames, the proportional constant must be the
same. Now, from Egs. (5.57.1) and (5.56.28), we have

T"=QTQ" and C'=C,
thus Eq. (5.57.5) becomes
QTQ' =«C =T. (5.57.7)

The only T for the preceding equation to be true is T = al. Thus, Eq. (5.57.6) is not an acceptable constitutive
equation.

More generally, if we assume that the Cauchy stress is a function of the right Cauchy-Green tensor, then for the
starred frame T* = f(C*) and for the unstarred frame T = f(C), where fis the same function for both frames because it
is for the same material. Again, in a change of frame, QTQ' = f(C) =T. That is, again, T=f(C) is not acceptable.

Example 5.57.3
Assume that the second Piola-Kirchhoff stress tensor T is a function of the right Cauchy-Green deformation tensor C.
Show that it is an acceptable constitutive equation.

Solution
We have, according to the assumption,

T =f(C), (5.57.8)
and

T =f(C), (5.57.9)

where we demand that both frames (the starred and the unstarred) h~ave the same function f for the same material.
Now, in a change of frame, the second Piola-Kirchhoff stress tensor, T = |(det F)|F ' T(F!)", is transformed as [see
Eqg. (56.57.3) and Prob. 5.1101:
T =T (5.57.10)
Therefore, in a change of frame, the equation T = f(C*) does transform into T = f(C), which shows that the
assumption is acceptable. In fact, it can be shown that Eq. (5.57.8) is the most general constitutive equation for
an anisotropic elastic solid (see Prob. 5.111).
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Example 5.57.4
Show that T=1f(B), where T is the Cauchy stress tensor and B is the left Cauchy-Green deformation tensor, is an
acceptable constitutive law for an isotropic elastic solid.

Solution
For the starred frame
T =1f(B"), (56.57.11)
and for the unstarred frame,
T =1(B), (6.57.12)
where both frames have the same function f. In a change of frame, from Egs. (5.57.1) and (5.56.31), we have
T"=QTQ" and B* =QBQ". (5.57.13)
Thus,
QrQ’ = f(QBQT>. (5.57.14)

That is, in order that the equation T=1f(B) be acceptable as a constitutive law, it must satisfy the condition given
by the preceding equation, Eq. (5.57.14). In matrix form, Egs. (5.57.12) and (5.57.14) are [T] = [f(B)] and
[Q][T][Q]" = [f([Q][B][Q]")], respectively. Now if we view these two matrix equations as those corresponding to
changes of rectangular Cartesian bases, then we come to the conclusion that the constitutive equation, given by
Eq. (5.57.12), describes an isotropic material because both matrix equations have the same function f for any [Q].
We note that Eq. (5.57.14) can also be written as

Qf(B)Q" = f(QBQT). (5.57.15)

A function f satisfying the preceding equation is known as an isotropic function.
A special case of the preceding constitutive equation is given by

T=0B, (5.57.16)

where o is a constant. Eq. (5.57.16) describes a so-called Hookean solid.

CONSTITUTIVE EQUATION FOR AN ISOTROPIC ELASTIC MEDIUM

From the examples in the last section, we see that the assumption that T =f(B), where T is the Cauchy stress
and B is the left Cauchy-Green deformation tensor, leads to the constitutive equation for an isotropic elastic
medium under large deformation and the function f(B) is an isotropic function satisfying the condition
[Eq. (5.57.15)].

It can be proved that in three-dimensional space, the most general isotropic function can be represented by
the following equation (see Appendix 5C.1):

f(B) = aol + a|B + a,B?, (5.58.1)

where a,, a; and a, are scalar functions of the principal scalar invariants of the tensor B, so that the general
constitutive equation for an isotropic elastic solid under large deformation is given by

T = a,] + @B + a,B%. (5.58.2)
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Since a tensor satisfies its own characteristic equation (see Example 5.58.1), we have
B’ — I,B* + LB — L1 =0, (5.58.3)
where [, I, and I5 are the principal scalar invariants of the tensor B. From Eq. (5.58.3), we have
B’=IB-DLI+5LB " (5.58.4)
Substituting Eq. (5.58.4) into Eq. (5.58.2), we obtain
T=¢JI+¢oB+p,B ! (5.58.5)

where ¢,, ¢1 and ¢, are scalar functions of the principal scalar invariants of the tensor B. This is the alternate
form of the constitutive equation for an isotropic elastic solid under large deformations.

Example 5.58.1
Derive the Cayley-Hamilton Theorem, Eq. (5.58.3).

Solution
Since B is real and symmetric, there always exist three eigenvalues corresponding to three mutually perpendicular
eigenvector directions (see Section 2.23). The eigenvalue 4, satisfies the characteristic equation:

)/3 - /1;‘72 + /2/1!‘ - /3 = 07 = 17 27 3. (5586)
The preceding three equations can be written in a matrix form as
n 0 073 1 0 07 [4 0 0] 100 000
O 4o 0| —h|{O 4 O +h[{O0 4 O|-K|O 1 O|=]0 0 Of. (5.58.7)
0O 0 I3 0 0 I3 |0 0 i3] 0

Now the matrix

i 0 0
0 J O
0 0 /s

is the matrix for the tensor B using its eigenvectors as the Cartesian rectangular basis. Thus, Eq. (5.58.7) has the
following invariant form given by Eq. (5.58.3), i.e.,

B3 — 1B + LB — K1 =0.

Equation (5.58.2), or equivalently, Eq. (5.58.5), is the most general constitutive equation for an isotropic
elastic solid under large deformation.

If the material is incompressible, then the constitutive equation is indeterminate to an arbitrary hydrostatic
pressure and the constitutive equation becomes

T=—pl+¢B+p,B7, (5.58.8)

where ; and ¢, are functions of the principal scalar invariants of B, /;, and I, (/3 =1 for an incompressible
solid). If the functions ¢; and ¢, are derived from a potential function A of /; and /5, such that

0A 0A
P = 2,00—[1 and ¢, = —2p0—[2, (5.58.9)
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then

A A
T:—pI—O—Zpg—]lB—Zpg—]zB’l. (5.58.10)

Such a solid is known as an incompressible hyperelastic isotropic solid. A well-known constitutive equa-
tion for such a solid is given by the following:

T:—pI+u(%+ﬁ)B—u(%—ﬁ)B’l7 (5.58.11)
where u > 0, — 1/2 < § < 1/2. This constitutive equation defines the Mooney-Rivlin theory for rubber (see

Encyclopedia of Physics, ed. S. Flugge, Vol. I1I/3, Springer-Verlag, 1965, p. 349). The strain energy function
corresponding to this constitutive equation is given by

pA(B) = 51 K% + /3) (I —3)+ G _ /3) (I — 3)} (5.58.12)

SIMPLE EXTENSION OF AN INCOMPRESSIBLE ISOTROPIC ELASTIC SOLID

A rectangular bar of an incompressible isotropic elastic solid is pulled in the x; direction. At equilibrium, the
ratio of the deformed length to the undeformed length (the stretch) is A, in the x; direction and Z, in the trans-
verse direction. Thus, the equilibrium configuration is given by

X1 = ;lel, Xy = 22){2, X3 = )u2X3, /11)% = 1, (5591)

where the condition ilﬂé = 1 describes the isochoric condition (i.e., no change in volume).
The matrices of the left Cauchy-Green deformation tensor and its inverse are given by

20 0 1220 0
Bl=|0 2 of, B'=|o0 12 o | (5.59.2)
0 0 4 0 0 1/
From the constitutive equation T = —pI + ¢, B + ©,B™!, the nonzero stress components are obtained to be
Ti=-p+oiii+9/i, To=Ts=—p+ei;+p/i (5.59.3)

Since these stress components are constants, the equations of equilibrium in the absence of body forces are
clearly satisfied. Also, from the boundary conditions that on the faces x, = +b, T»» = 0 and on the faces
x3 = %c, Tz3 = 0, we obtain that everywhere in the rectangular bar,

Ty =T33 = 0. (5.59.4)
Thus, from Eq. (5.59.3), since ilﬂé =1, we have
P =ik + /05 = e/ + i (5.59.5)

Therefore, the normal stress T, needed to stretch the incompressible bar (which is laterally unconfined) in
the x; direction for an amount given by the stretch 4y, is given by

Ty = (A7 — UMy + (127 = 21) oy = (21 = 1/ 1) (@1 — 2/ 2). (5.59.6)
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SIMPLE SHEAR OF AN INCOMPRESSIBLE ISOTROPIC ELASTIC
RECTANGULAR BLOCK

The state of simple shear deformation is defined by the following equations relating the spatial coordinates x;

to the material coordinates X;:

x1=X1+KX;, x=X3 x3=X;.

The deformed configuration of the rectangular block is shown in plane view in Figure 5.60-1, where one
sees that the constant K is the amount of shear. The left Cauchy-Green tensor and its inverse are given by

1 K 0][1 0 0 1+K* K 0O
B]=[FF'|=]|0 1 O[|K 1 O0|=| K 1 0f. (5.60.1)
0 0 1 0 0 1 0 0 1
1 -K 0
B '=|-K 1+K*> 0 (5.60.2)
0 0 1
The principal scalar invariants are
L=3+K? L=3+K* L=1 (5.60.3)
Xo
k
C B
o A X
FIGURE 5.60-1
Thus, from Eq. (5.58.8),
Tu=-p+(1+K)p+¢), Tn=-p+o+(1+K)p, Tn=-pto +¢, (5.604)
T =K(py — ), Tiz=Ts=0.
Let
P=—pteo +e (5.60.5)
then
Tyw=—P+ ¢ K* Tn=-P+pK? Ti=-P, Tp=K(p —p), (5.60.6)
T3 =Ty =0,

where ; and ¢, are functions of K2
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The stress components are constants; therefore, the equations of equilibrium in the absence of body forces
are clearly satisfied. If the boundary X3 = x3 = constant plane is free of stress, then P =0 so that

Th=¢ K, Tn=pK, T3=0 Tn=K(p —¢,), Ti3z=Ty3=0, (5.60.7)

where (p, — ¢,) is sometimes called the generalized shear modulus in the particular undistorted state used as
the reference. It is an even function of K, the amount of shear. The surface traction needed to maintain this
simple shear state of deformation is as follows.

On the top face in Figure 5.60-1, there is a normal stress, Ty = K 2 and a shear stress,
T1» = K(p; — p,). On the bottom face, there is an equal and opposite surface traction to that on the top face.
On the right face, which, at equilibrium, is no longer perpendicular to the x;-axis but has a unit normal

given by
€ — Kez
n= , 5.60.8
VTR (5.60.8)

therefore, the surface traction on this deformed plane is given by

1 o, K? K(oy —¢5)

. . 1
] = [Tlin] = V1+K? K(py —2) P.K? {_K}
(5.60.9)
K v, K
CVI+EK? 991_(14‘[(2)%92].

Thus, the normal stress on this plane is

K2
Li=tn=—1—p9 (o1 — 2+K)g,], (5.60.10)

and the shear stress on this plane is, with unit tangent vector given by,

Ke| + e
= , (5.60.11)
T VIEK?
K
L=t e=1pn—0) (5.60.12)

We see from the preceding equations that in addition to shear stresses, normal stresses are needed to main-
tain the simple shear state of deformation. We also note that

T — Ty = KTy, (5.60.13)

This is a universal relation, independent of the coefficients ¢; of the material.

BENDING OF AN INCOMPRESSIBLE ISOTROPIC RECTANGULAR BAR

It is easy to verify that the deformation of a rectangular bar into a curved bar as shown in Figure 5.61-1 can be
described by the following equations:

r=QuX+ P 0=cY, z=2, a=1/c

where (X, Y, Z) are Cartesian material coordinates and (r, 0, z) are cylindrical spatial coordinates. Indeed,
the boundary planes X = *a deform into cylindrical surfaces r = /F2aa + B and the boundary planes
Y = b deform into the planes 0 = *cbh.
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FIGURE 5.61-1

The left Cauchy-Green tensor B corresponding to this deformation field can be calculated using Egs.
(3.29.59) to Eq. (3.29.64) in Chapter 3 (see Prob. 5.112):

«2/r2 0 0 2/ 0 0
Bl=| 0 & 0o|l=| 0 /2 0f. (5.61.1)
0 0 1 0 0 1

The inverse of B can be obtained to be

r2/a? 0 0 e 0 0
B'=| 0 1/ 0o|l=| 0 2/ 0f. (5.61.2)
0 0 1 0 0 1
The principal scalar invariants of B are
2 2
Lh=S+5+1=hL, L=dc=1 (5.61.3)
r o

We shall use the constitutive equation for a hyperelastic solid for this problem. From Eq. (5.58.10), with A
replacing pA since p is a constant, we have

OA o? A r? OA r? OA o?
Tp=-p+t2e——-2 Tog=—-p+2e0—m——2—" 61.4
P + 5)11 1‘2 812 0(2 00 P + 811 0(2 612 1‘2 (5 )
0A 0A
T.=-p+2——2"" Ty=T.=Ty.=0, 5615
2 p+ al, an, 0 0. ( )
where the function A = A(ly, ) is a function of r alone.
The equations of equilibrium in the absence of body forces are [see Eqgs. (4.8.1) to (4.8.3)]
Tr‘r' Tr‘r' - T T Tzz
oy % — o, M 9T=_ (5.61.6)

or r 90 9z
From the second equation in Eq. (5.61.4) and the second equation in Eq. (5.61.6), we have dp/90 = 0. Also,
the first equation in Eq. (5.61.5) and the third equation in Eq. (5.61.6) give dp/dz = 0. Thus,

p =p(r). (5.61.7)
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Now it is a simple matter to verify that

dA  OAdl, OAdl 202 2r\ [OA OA T, — Teo
ke e Y P i) i) [ A 6.61.8
dr 6[1 dr (912 dr ( 3 O(z (9[1 + 612 r ’ ( )
therefore, the r equation of equilibrium becomes
dar,, dA
dm 42 _ 5.61.9
dr  dr ’ ( )
so that
T, =A(r) +K. (5.61.10)
Using the preceding equation and the r equation of equilibrium again, we have
dT,, d (”Trr ) d (’ ‘A)
Too=r 4T, = =2 k. 61.11
o =1 dr + dr dr + (56 )
The boundary conditions are
T, (r1) = T,(r2) = 0. (5.61.12)
Thus,
A(r)+K=0 and A(r)+K=0, (5.61.13)
from which we have
A(r1) = A(r). (5.61.14)
Recalling that
062 ’.2
A=A, L) where Iy =5 =—+—+1, (5.61.15)
I o
we have
062 I‘% 0(2 ’.2
S+L+1=5+-2+1 5.61.16
rero@+ r§+c<2+ ’ ( )
from which we can obtain
o =rir. (5.61.15)

For given values of r; and r,, Eq. (5.61.16) allows us to obtain ¢ and f§ from the equations r; = \/—2aa + f§
and r, = v/20a + P so that a = (r3 — r{)/(4e) and B = (1} +1r3) /2.

Using Eq. (5.61.11), the normal force per unit width (in z direction) on the end planes 6 = +cb in the
deformed state is given by

J Topdr = [ (d(d’:‘) + K) dr = [rH{A(r) + K} = 0, (5.61.17)

where we have used the boundary conditions Egs. (5.61.13). Thus, on these end planes, there are no net resultant
forces, only equal and opposite couples. Let M denote the flexural couple per unit width, then

2 2 d(rA , 2 Kir? ’
M:J 1Topdr :J <r g )+Kr) dr = [PA(N)]; —J rA(r)dr + {—; }
. - r "

; " (5.61.18)

1 K 2 K 2
= 3A(r2) — 3A(n) — [ rA()dr + =2 =L

Jry
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That is,

M=

STRS

(=2 - r rA(r)dr. (5.61.19)

1‘1

In arriving at the preceding equation, we used Egs. (5.61.13).

TORSION AND TENSION OF AN INCOMPRESSIBLE ISOTROPIC SOLID
CYLINDER

Consider the following equilibrium configuration for a circular cylinder:
r=M4R, 0=O+KZ z=/2Z, =1, (5.62.1)

where (r, 0, z) are the spatial coordinates and (R, ®, Z) are the material coordinates for a material point,
and Z; and A5 are stretches for elements that were in the radial and axial direction, respectively. The equation
}fig = 1 indicates that there is no change in volume [see /5 in Eq. (5.62.3)].

The left Cauchy-Green deformation tensor B and its inverse can be obtained from Eq. (3.29.19) to
Eq. (3.29.24) (note: r, =R, 0, = O, z, = Z in those equations) as (see Prob. 5.113)

12
4 0 0 120 0

Bl =|0 2+2K* rKiz|, B'=| 0 1/2 —Kr . (5.62.2)
0 FK)L3 )VZ‘ 0 —Kr ).? =+ ;&,,2[(2

The principal scalar invariants of B are (note: if)g =1):

2 1
I, = =+ K403, Lh=205+ = (1+23r°K?), L=2125=1 (5.62.3)
»3 3

Since I;’s are functions of r only, ,’s are functions of » only.
Now, from the constitutive equation T = —pI + ¢, B + 302B’1, we have

Ty =—p+o 22+ % = p+ %‘ + 0y, (5.62.4)
1 "3
1 ,
Top = —p + 1 (23 +°K?) + % =-p+e <Z + "2K2) +¢ol3, (5.62.5)
: ]
1
T.. = —p+ 125+ 00 (0] + 1K) = —p + ¢, 5 + % (7 + r21<2) , (5.62.6)
3 3
_ ¥2
Ty, = KAzr (cpl — T) , (5.62.7)
13
T.=Tyy=0. (5628)

The equations of equilibrium in the absence of body forces are

aTl'l‘ Trr - T
+ 00 _ 07

aT(]()_ aTz:_
o Ty R

(5.62.9)



348 CHAPTER 5 The Elastic Solid

dp Op
Thus, — = — = 0, so that
%90 " a2
p =p(r). (5.62.10)
From the r equation of equilibrium, we have
T _ Tyg — T (5.62.11)
dr

The total normal force on a cross-section plane is given by
N = J T..2nrdr. (5.62.12)

To evaluate the preceding integral, we first need to eliminate p from the equation for 7.. This can be done in
the following way.

Let
T.= —P + Tz, T, = -+ T, T()() = —p + Too, (56213)
where
1 . 1
Ty = ﬂ + a3, Teo = @y (— + r2K2) + o3, Tn= <p1}u§ + L <— + r2K2>. (5.62.14)
3 23 3\ 43

Then we have, from Eq. (5.62.13),

2T,, = —217 + 21, = (Trr - Tr‘r) + (TOO - 7700) + 2t =T + Tog — Tr — Too + 272 (5.62.15)
dT,. 1drT,
Using Eq. (5.62.11), we can write T, + Tog = 2T, + (Tog — Tp) = 2T, + 1 P rd ; thus,
r rodr
or, =14 (FPTy) — T — 00 + 27 (5.62.16)
rdr

Substituting the preceding equation in Eq. (5.62.12), we have

d
o (rzT,,r)dr + nJ (2t,; — T — Tpo)rdr. (5.62.17)
”

o

N = J ’ 2T..mrdr = nJ ’

o o

Applying the boundary condition 7,,(r,) = 0, the first integral in the right-hand side is zero; therefore,

N= nJ " (21 — Ty — Tog)rdr. (5.62.18)

o

1 2
20, — Ty — Tgp = 2(;@ - /1—3) (% - %) - (4,91 - ;’jz)rzl(z. (5.62.19)

1 I'o "0 2
N =2n ().§ - —) J (g&, - ﬁ) rdr — nK2J (cpl - ﬁ) Pdr. (5.62.20)
}~3 o A3 o A3

Since r = AR and A}/3 = 1 [see Eq. (5.62.1)], rdr = 2} RdR = RdR/}5; therefore,

IRV K> (" 2
N =2n (13 - 3) J (cpl - %)RdR - ”—ZJ (gal - %)R%z& (5.62.21)
/L.3 o 3 13 o 3

Now Eqgs. (5.62.14) give

Thus,
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where R, = r,/A;. Similarly, the twisting moment can be obtained to be

27K (*
r (apl —~ ﬁ) dr = Z_ (<p1 - ﬁ) R3dR. (5.62.22)
3 Jo

To
M = J rTo.2mrdr = 2nK 3 [
Jo /‘L?

o

In the preceding equations for M and N, ¢; and ¢, are functions of /; and I, and are therefore functions
of R.
If the angle of twist K is very small, then

2 1
Nt bR 2s+os, (5.62.23)
3

A3

which are independent of R. As a consequence, ; and ¢, are independent of R, and the integrals in
Eq. (5.62.21) and (5.62.22) can be integrated to give

N = nR? </13 — %) (Lpl - ﬁ) +0(K?), (5.62.24)
23 3
and
KnR* © )
M= ° —-2), 5.62.25
25 (‘pl I3 ( )

We see, therefore, that if the bar is prevented from extension or contraction (i.e., A3 = 1), then twisting of the

bar with an angle of twisting K approaching zero gives rise to a small axial force N, which approaches zero

with K2. On the other hand, if the bar is free from axial force (i.e., N =0), then as K approaches zero, there is

an axial stretch 5 such that (13 — 1) approaches zero with K. Thus, when a circular bar is twisted with an

infinitesimal angle of twist, the axial stretch is negligible, as was shown earlier in the infinitesimal theory.
From Eq. (5.62.24) and (5.62.25), we can obtain for K—0

M R N

=2—". 5.62.26
K= 21 P20

Eq. (5.62.26) is known as Rivlin’s universal relation. This equation gives, for a small twisting angle, the tor-
sion stiffness as a function of A3, the stretch in the axial direction. We see, therefore, that the torsion stiffness
can be obtained from a simple-extension experiment that measures N as a function of the axial stretch A3.

REPRESENTATION OF ISOTROPIC TENSOR-VALUED FUNCTIONS

Let S = F(T) be such that for every orthogonal tensor Q,

QsQ" =F(QTQ"). @

The function F(T) is said to be an isotropic function. Here in this appendix, we show that the most general
form of F(T) is

F(T) = ao(l;) + a1 (I)T + ax (I;) T?, (ii)
or

F(T) = fo(I;) + AiI)T + A(I)T~". (iii)
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We will prove the preceding statement in several steps:

1.

First, we show that the principal directions of T are also principal directions of S:

Let e; be a principal direction of T. Since T is symmetric, the principal directions {e;, e,, e} form
an orthonormal basis with respect to which the matrix of T is diagonal. Let Q; be a reflection about a
plane normal to ey, i.e., Q,;e; = —ey, then

-1 0 O
QJ=]0 1 0 . >iv)
0 0 1 (1, &, e}
Thus,
-1 0 o7y O Of[-1 0 O T, 0 O
QIMQ"=|0 1 o||o 7» o||]0 1 0|=|0 T» 0]=[T] )
0 0 1 0 0 T3 0 0 1 0 0 T;
That is, Q,TQ] = T. Now, by Eq. (i), Q,;SQ = F(T) = S, so that Q,;S = SQ,. Therefore,
leel = SQlel = —Sel. (Vi)

The only vectors transformed by the reflection Q; into their opposite are the multiples of e;; therefore,
Se; = p,e;. That is, e; is a principal direction of S. Clearly, then, every principal direction of T is a
principal direction of S.

Next we show that for all orthogonal tensors Q, QTQ" have the same set of eigenvalues as that
of T.

Let / be an eigenvalue of T. Then Tn = /n, so that (QTQ")(Qn) = QTn = A(Qn). Thus, 7 is
also an eigenvalue of QTQ". Also, if (QTQ")m = /m, then T(Q"m) = A(Q"m). That is, if 1 is
an eigenvalue of QTQ", then it is also an eigenvalue for T. Thus, all QTQ" have the same set of
eigenvalues (11, J2, 43) of T, and all QSQ" have the same set of eigenvalues (y;, iy, i3) of S.
Now QSQ" = F(QTQ"); therefore, the eigenvalues (1;, 42, 23) completely determine (ut;, fty, fi3)
In other words,

= ﬂ] ()~17 j'27 )“3)7 Ho = /12(}“17 ;“27 )~3)7 Uz = ﬂ3(;Ll7 ;“2> )~3)' (Vll)

If (A, 42, A3) are distinct, then one can always find
ao(A1, A2, 23),  a1(d1, 72, 23) and az(dy, Ao, 23),
such that
W = ao+aii + az)n%»
W = do + ajdy + azﬂé, (viii)

Hy =do +a1d3 + aﬂé
because the determinant
1 a2
1 Jy 25| = —A)(d—23)(A3 — A1) #0. (ix)

1 2 3
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4. Eq. (viii) can be written in matrix form as

wm 0 0 1 00 i 0 0 A0 0
0 uw, 0|=a|0 1 Of+a |0 A O0|+a|0 22 0]. x)
0 0 u 0 0 1 0 23 0 0 73

Now, since the eigenvectors of T coincide with the eigenvectors of S. Therefore, using the eigenvec-
tors as an orthonormal basis, the preceding matrix equation becomes

S

S= ao(/li)l +a ()\.[)T + ag(/l,«)Tz. (Xl)

In the preceding equation, the eigenvalues /; are determined from A*> — I,/? + I,/ — I3 = 0, the char-
acteristic equation of T, where {Iy, I, Iz} are the principal scalar invariants of T; therefore,
2i = Ai(ly, I, I3). Thus, Eq. (xi) can be written

S = bo(I;)I + by (I;)T + by (I;) T2 (xii)

5. If the characteristic equation for the tensor T has a repeated root A, = A3 # 41, then the eigenvector
corresponding A, is also an eigenvector for S with eigenvalue p; = fi; (41, 42), and every eigenvector
(infinitely many) for the repeated root 1, is also an eigenvector for S, with one eigenvalue
Uy = i1, (A1, Z2). Thus,

= o1, o) Fai(hy, A2)dr and  py = ao(Ai, 42) +ai(di, A2)hs, (xiii)
and as a consequence,
S = b0(11)1+b|([,)T (XiV)

6. If Ay = /1, = 13 = 4, then every direction is an eigenvector for T with eigenvalue 1; therefore, every
direction is an eigenvector for S with eigenvalue u. Thus, g = a,(4), a function of A. As a
consequence,

S =f,(I)L (xv)

PROBLEMS FOR PART C

5.104 Show that if a tensor is objective, then its inverse is also objective.
5.105 Show that the rate of deformation tensor D = {Vv + (VV)T} /2 is objective. (See Example 5.56.2.)

5.106 Show that in a change of frame, the spin tensor W = [VV - (VV)T} / 2 transforms in accordance with
the equation W* = Q(/)WQ" (1) + QQ". (See Example 5.56.2.)

5.107 Show that in a change of frame, the material derivative of an ob_jgctive tensor T transforms in accor-
dance with the equation T* = QTQ"(¢) + Q()TQ"(r) + Q(t)TQ ', where a super-dot indicates mate-
rial derivative. Thus the material derivative of an objective tensor T is nonobjective.

5.108 The second Rivlin-Ericksen tensor is defined by A= A +A (YY) + (Vv)'A;, where
A; =DA,/DT and A; = 2D = Vv + (Vv)". Show that A, is objective. (See Prob. 5.105 and Exam-
ple 5.56.2.)
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The Jaumann derivative of a second-order objective tensor T is T + TW — WT, where W is the spin
tensor. Show that the Jaumann derivative of T is objective. (See Prob. 5.106 and Prob. 5.107.)

The second Piola-Kirchhoff stress tensor T is related to the first Piola-Kirchhoff stress tensor T, by the
formula T =F~'T,, or to the Cauchy stress tensor T by T = (det F)F'T(F )", Show that, in a
change of frame, T* = T. (See Example 5.56.3 and Example 5.57.1.)

Starting from the constitutive assumption that T = H(F) and T* = H(F*), where T is Cauchy
stress and F is deformation gradient, show that in order that the assumption be independent of ob-
servers, H(F) must transform in accordance with the equation QTQ" = H(QF). Choose Q = RT
to obtain T = RH(U)R™, where R is the rotation tensor associated with F and U is the right stretch
tensor. Show that T = h(U), where h = (det U)U"'H(U)U™!. C = U?; therefore, we may write
T = f(C).

From r = (20x 4+ ﬁ)l/ 2 0=cY, z=2Z, where o = 1/c, obtain the right Cauchy-Green deformation
tensor B. Hint: Use formulas given in Chapter 3.

From r = /1R, 0 = ® + KZ, z = A3Z, where )f/b = 1, obtain the right Cauchy-Green deformation
tensor B. Hint: Use formulas given in Section 3.29, Chapter 3.



CHAPTER

Newtonian Viscous Fluid

Substances such as water and air are examples of fluids. Mechanically speaking, they are different from a
piece of steel or concrete in that they are unable to sustain shearing stresses without continuously deforming.
For example, if water or air is placed between two parallel plates with, say, one of the plates fixed and the
other plate applying a shearing stress, it will deform indefinitely with time if the shearing stress is not
removed. Also, in the presence of gravity, the fact that water at rest always conforms to the shape of its con-
tainer is a demonstration of its inability to sustain shearing stress at rest.

Based on this notion of fluidity, we define a fluid to be a class of idealized materials which, when in rigid
body motion (including the state of rest), cannot sustain any shearing stress. Water is also an example of a
fluid that is referred to as a liquid which undergoes negligible density changes under a wide range of loads,
whereas air is a fluid that is referred to as a gas which does otherwise. This aspect of behavior is generalized
into the concept of incompressible and compressible fluids. However, under certain conditions (low Mach
number flow), air can be treated as incompressible, and under other conditions (e.g., the propagation of the
acoustic waves), water has to be treated as compressible.

In this chapter, we study a special model of fluid which has the property that the stress associated with the
motion depends linearly on the instantaneous value of the rate of deformation. This model of fluid is known
as a Newtonian fluid or linearly viscous fluid, which has been found to describe adequately the mechanical
behavior of many real fluids under a wide range of situations. However, some fluids, such as polymeric solu-
tions, require a more general model (non-Newtonian fluids) for an adequate description. Non-Newtonian fluid
models are discussed in Chapter 8.

FLUIDS

Based on the notion of fluidity discussed in the previous paragraphs, we define a fluid to be a class of
idealized materials that, when in rigid body motions (including the state of rest), cannot sustain any shearing
stresses. In other words, when a fluid is in a rigid body motion, the stress vector on any plane at any point
is normal to the plane. That is, for any n,

Tn = /n. (6.1.1)

It is easy to show from Eq. (6.1.1) that the magnitude of the stress vector 4 is the same for every plane
passing through a given point. In fact, let n; and n, be normal vectors to any two such planes; then we have

Tn; =Ain; and Tn, = Aon,. 6.1.2)

Copyright © 2010, Elsevier Ltd. All rights reserved.
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Thus,
n - Tny —ny-Tny = (4, — A1) ng - my. (6.1.3)
Since n, - Tn; =n; - TTn, and T is symmetric (T = T7), the left side of Eq. (6.1.3) is zero. Thus,
(A2—=A1)n;-my =0. (6.1.4)
Since n; and n, are any two vectors,
= la. (6.1.5)

In other words, on all planes passing through a point, not only are there no shearing stresses, but also the nor-
mal stresses are all the same. We shall denote this normal stress by —p. Thus,

T=—pl (6.1.6)
Or, in component form,

The scalar p is the magnitude of the compressive normal stress and is known as the hydrostatic pressure.

COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS

What one generally calls a “liquid” such as water or mercury has the property that its density essentially
remains unchanged under a wide range of pressures. Idealizing this property, we define an incompressible
fluid to be one for which the density of every particle remains the same at all times, regardless of the state
of stress. That is, for an incompressible fluid,

Dp
br_ o 2.1
Di 6.2.1)
It then follows from the equation of conservation of mass, Eq. (3.15.3),
Dp vy
— —=0 6.2.2
Dr P o ( )
that for an incompressible fluid,
avk
K 2.
O, 0, (6.2.3)
or
divv =0. (6.2.4)

All incompressible fluids need not have a spatially uniform density (e.g., salt water with nonuniform salt
concentration with depth may be modeled as a nonhomogeneous fluid). If the density is also uniform, it is
referred to as a homogeneous fluid, for which p is constant everywhere.

Substances such as air and vapors that change their density appreciably with pressure are often treated as
compressible fluids. Of course, it is not hard to see that there are situations in which water has to be regarded
as compressible and air may be regarded as incompressible. However, for theoretical studies, it is convenient
to regard the incompressible and compressible fluids as two distinct kinds of fluids.
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EQUATIONS OF HYDROSTATICS

The equations of equilibrium in terms of stresses are [see Eq. (4.7.6)]

Ox;

+pB; =0, (6.3.1)

where B; are components of body forces per unit mass. With

Tjj = —pdy, (6.3.2)
Eq. (6.3.1) becomes

op

oy, = PB (6.3.3)
or

Vp = pB. (6.3.4)

In the case where B; are components of the weight per unit mass, if we let the positive x3-axis point ver-
tically downward, we have

B =0, B,=0, B3=g, (6.3.5)
so that

5)p:0 8p:0 dp

go=0. =0 P=pg (6.3.6)

Equations (6.3.6) state that p is a function of x3 alone, and the pressure difference between any two points,
say, point 2 and point 1 in the liquid, is simply

P2 —p1 = pgh, (6.3.7)

where 4 is the depth of point 2 relative to point 1. Thus, the static pressure in the liquid depends only on the
depth. It is the same for all particles that are on the same horizontal plane within the same liquid.

If the fluid is in a state of rigid body motion (rate of deformation = 0), then Tj; is still given by Eq. (6.3.2),
but the right-hand side of Eq. (6.3.1) is equal to pa;, where a; are the acceleration components of the fluid,
which moves like a rigid body, so that the governing equation is now given by

p

8x,~

Example 6.3.1

A cylindrical body of radius r, length ¢, and weight W is tied by a rope to the bottom of a container that is filled
with a liquid of density p. If the density of the body pg is less than that of the liquid, find the tension in the rope
(Figure 6.3-1).

Solution
Let p, and py be the pressure at the upper and the bottom surfaces of the cylinder, respectively. Let T be the tension
in the rope. Then the equilibrium of the cylindrical body requires that

po(nr?) — pu(nr?) =W - T =0.
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=
Pu
p 4
= py

FIGURE 6.3-1

That is,
T =m(py—pu) = W.
Now, from Eq. (6.3.7),
(o — pu) = P&,
therefore,
T =nr?pgl — W = nr*tg(p — pg).
We note that mr?£pg is the buoyancy force which is equal to the weight of the liquid displaced by the body.

Example 6.3.2
A tank containing a homogeneous fluid moves horizontally to the right with a constant acceleration a (Figure 6.3-2).
(a) Find the angle 0 of the inclination of the free surface and (b) find the pressure at any point P inside the fluid.

X4
—a
FIGURE 6.3-2
Solution
(@) Witha; =a, a»=a3 =0, By = B, =0, and B3 = g, the equations of motion, Eq. (6.3.8) becomes
pa:—g—fl, O:—g—)z, 0:—86—)Z+pg. (i)

Integration of the preceding equations give

p = —pax) + pgxs + C. (ii)
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To determine the integration constant ¢, we note that on any point on the free surface, the pressure is equal to
the ambient pressure p,. Let the origin of the coordinate axes (fixed respect to the earth) be location at a point
on the free surface at the instant of interest; then

C=po. (iii)
Thus, the pressure inside the fluid at any point (x1, X, X3) is given by
p = —paxi + p8X3 + Po. (iv)

To find the equation for the free surface where the pressure is p,, we substitute p = p, in Eq. (iv) and obtain

a
X3 = —X. (v)
3 gl

Thus, the free surface is a plane with an angle of inclination given by

tan@:%zi. (vi)
axy g

(b) Referring to Figure 6.3-2, we have (x3 — h)/x; = tan6; thus,
X3 = Xl(a/g) + h7

therefore,

Xia .
p = —paxi + pg (h + i?) + po = pgh + po, (vii)

i.e., the pressure at any point inside the fluid depends only on the depth h of that point from the free surface
directly above it and the pressure at the free surface.

NEWTONIAN FLUIDS

When a shear stress is applied to an elastic solid, it deforms from its initial configuration and reaches an equi-
librium state with a nonzero shear deformation; the deformation will disappear when the shear stress is
removed. When a shear stress is applied to a layer of fluid (such as water, alcohol, mercury, or air), it will
deform from its initial configuration and eventually reach a steady state where the fluid continuously deforms
with a nonzero rate of shear, as long as the shear stress is applied. When the shear stress is removed, the fluid
will simply remain at the deformed state obtained prior to the removal of the shear stress. Thus, the state of
shear stress for a fluid in shearing motion is independent of shear deformation but is dependent on the rate of
shear. For such fluids, no shear stress is needed to maintain a given amount of shear deformation, but a defi-
nite amount of shear stress is needed to maintain a constant rate of shear deformation.

Since the state of stress for a fluid under rigid body motion (including rest) is given by an isotropic tensor,
in dealing with a fluid in general motion it is natural to decompose the stress tensor into two parts:

Ty = —poy + T}, (6.4.1)



358 CHAPTER 6 Newtonian Viscous Fluid

where T,-} depend only on the rate of deformation in such a way that they are zero when the fluid is under rigid
body motion or rest (i.e., zero rate of deformation) and p is a scalar whose value is not to depend explicitly on
the rate of deformation.

We now define a class of idealized materials called Newtonian fluids as follows:

1. For every material point, the values Tl-} at any time ¢ depend linearly on the components of the rate of
deformation tensor Dj; at that time and not on any other kinematical quantities (such as higher rates of
deformation). The rate of deformation is related to the velocity gradient by

1 8\1,' 6\)/
D=1 (a_xj n 8_)@) . (6.4.2)

2. The fluid is isotropic with respect to any reference configuration.

Following the same arguments made in connection with the isotropic linear elastic material, we obtain
that for a Newtonian fluid (also known as a linearly viscous fluid) the most general form of Ti; is, with
A =Dy + Dy + D33 = Dy,

T} = JAS; + 2uD;. (6.43)

where 4 and u are material constants (different from those of an elastic body) having the dimension of
(Force)(time)/ (length)z. The stress tensor T,-} is known as the viscous stress tensor. Thus, the total stress

tensor is
Tij = —pd;; + AN + 2uDjj, (6.4.4)
ie.,
Tyw=-p+iA+2uDy, Tn=-—p+IA+2uDy, T3 =—p-+ AA+2uDs;, (6.4.5)
and
Ty =2uDyp, T3 =2uD13, Ta =2uDo3. (6.4.6)

The scalar p in the preceding equation is called the pressure. As shown in Egs. (6.4.5), the pressure p is in
general not the total compressive normal stress on a plane. As a fluid theory, it is only necessary to remember
that the isotropic tensor (—pé,-j) is that part of T}; that does not depend explicitly on the rate of deformation.

INTERPRETATION OF £ AND

Consider the shear flow given by the velocity field
Vi = V](Xz), V) = 0, V3 = 0. (651)

For this flow,

1d
Diy=Dy=Dy=D;3=Dyy=0 and D =-—1 (6.5.2)
2d)cz

so that

Tw=Tn=T53=-p, Tiz=T3=0 (6.5.3)
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and

dv
Ty = ’ud_x; (6.5.4)

Thus, u is the proportionality constant relating the shearing stress to the rate of decrease of the angle
between two mutually perpendicular material lines Ax; and Ax; (see Section 3.13). It is called the first coef-
ficient of viscosity, or simply viscosity.

From Eq. (6.4.3), we have, for a general velocity field,

1 2u
=Th=(1+= A, 5.
3 L ( + 3) ; (6.5.5)

where A = Dj; is the rate of change of volume (or rate of dilatation). Thus (/1 + 2?”) is the proportionality con-
stant relating the viscous mean normal stress (Tiﬁ» / 3) to the rate of change of volume A. It is known as the
second coefficient of viscosity, or the bulk viscosity.

The mean normal stress is given by

1 2

“Ti=—p+ 2+ (6.5.6)
3 3

We see that in general, p is not the mean normal stress unless either A is zero (e.g., in flows of an incompress-
ible fluid) or the bulk viscosity (4 + 2u/3) is zero. The assumption that the bulk viscosity is zero for a com-
pressible fluid is known as the Stokes assumption.

INCOMPRESSIBLE NEWTONIAN FLUID

For an incompressible fluid, A = D;; =0 at all times. Thus the constitutive equation for such a fluid
becomes

T,j = _péij + ZND[/'. (661)
From this equation, we have T;; = —3p + 2uD;; = —3p. That is,
T;
= .6.2
P=7 (6.6.2)

Therefore, for an incompressible viscous fluid, the pressure p has the meaning of mean normal stress. The
value of p does not depend explicitly on any kinematic quantities; its value is indeterminate as far as the
fluid’s mechanical behavior is concerned. In other words, since the fluid is incompressible, one can superpose
any uniform pressure to the fluid without affecting its mechanical response. Thus, the pressure in an incom-
pressible fluid is often known constitutively as the indeterminate pressure. Of course, in any given problem
with prescribed boundary condition(s) for the pressure, the pressure field is determinate.

Since
_ 1 Bvi (9\/,
ij = E (8_)(] + a_X,) y (663)

where v; are the velocity components, the constitutive equations can be written:

o

av,- ov;
Ty = —pdj + (a—x + 8_;]) : (6.6.4)
j i
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In component form:

0 0 ov
Th=—p+2uar, To=-pt+2uss, Tu=—p+2usr, (6.6.5)
ox1 Oxp 0x3
and
Bvl 8V2 Bv] (C)Vg aVQ 8V3
T =ul—+—-— Ti; = — Ty; = ul —+—-—). 6.6.6
12 K (c’)xz + (‘:)Xl)7 13 M<BX3 + ((“))ﬂ)’ z H(8X3 + 8X2) ( )
Example 6.6.1

Show that for an incompressible fluid,

ol op v,
ox 8x,-+“axjaxj' (6.6.7)

Solution
For an incompressible fluid,

Ty = —poy + u 204 24
1= PO R gy Tax )
therefore,

oT,__op, | Py #y oo Fv Py
ax,  ox T Moaxax  Moxox — ox  Moxox  Moxox

Now, interchanging the order of differentiation in the last term of the preceding equation and noting that for an
incompressible fluid dv;/0x; = O, we have
2., :
v _ 9 (%) =0.

ox0x;  Ox \Ox

Thus,
aT; ap 2v;

o~ ox  Moxox

NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS

Navier-Stokes equations are equations of motion written in terms of the velocity components of the fluid. The
equations of motion in terms of the stress components are given by [see Eq. (4.7.5), Chapter 4].

ov; ov; T}
—_— ) —— = —-— B,‘. . 1
p ( ot K 8)Cj) ax]' Tt 6.7.1)
Substituting the constitutive equation [Eq. (6.6.4)] into the preceding equation, we obtain (see Example
6.6.1)
ov; ovi\ ap v,
p (5 +v ax,) = pB; — o HH . (6.7.2)
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In component form,

ovy oy ovy ovy ap Pvy 0*vy  OPwy
Sy 2y, Py ) = By — 2 ST 6.7.3
P(6t+vl +vao—+vs ) PR =5 + (8x1+8x%+8x§ ; (6.7.3)

19) 62\72 82\/2 62\)2
- 22yt 6.74
r2+u(8x%+8x%+3x§>7 ( )

8\/3 8\/3 81/3 6173 _ Gp 82\/3 82\/3 82\13
p( ot T Ox, M Ox, +s 8)@) =B Ox3 th ot Ox3  0x3 ) 675
Or, in invariant form,
ov )
P\ + (Vv)v s = pB — Vp + uV?v. (6.7.6)

These are known as the Navier-Stokes equations of motion for incompressible Newtonian fluids. There are

four unknown functions, vy, v,, v3, and p, in the three equations [Egs. (6.7.3) to (6.7.5)]. The fourth equation
is supplied by the continuity equation

Oovy  0Ovy Ovs
) M _ o 6.7.7
8)61 8x2 aX3 ’ ( )
which, in variant form, is
divv =0. (6.7.8)

Example 6.7.1

If all particles have their velocity vectors parallel to a fixed direction, the flow is said to be a parallel flow or a unidirec-
tional flow. Show that for parallel flows of an incompressible Newtonian fluid the total normal compressive stress at
any point on any plane parallel to and perpendicular to the direction of flow is the pressure p.

Solution
Let the direction of the flow be the xj-axis, then v» = v3 = 0 and from the equation of continuity,

6V1
6)(1

Thus, the velocity field for the parallel flow is
v =%, X3, 1), =0, v =0.
For this flow,

8vz -

Therefore, from Eq. (6.6.5),
N1=Tn=T3=-




362 CHAPTER 6 Newtonian Viscous Fluid

Example 6.7.2

Figure 6.7-1 shows a unidirectional flow in the x; direction. Let the z-axis point vertically upward (i.e., opposite the
direction of gravity) from some reference plane. The piezometric head h at any point inside the flow is defined by
the equation

pg

Show that h is a constant for all points on any given plane that is perpendicular to the flow.

Solution
With the flow in the x; direction, with respect to a Cartesian coordinates (x;, X2, x3) we have v, = v3 = 0. From Egs.
(6.7.4) and (6.7.5), we have

ap ap .
pB2 787)(2_0’ p53 - a O (l)

(9X3 -

FIGURE 6.7-1

With e, denoting the unit vector in the direction of positive z-axis, the body force per unit mass is given by

B=-ge, (i

so that
B, =B-e;=—g(e;-e). (iii)

Let r be the position vector for a particle in the fluid with

r = x1e1 + X0€5 + X3€3. (iv)
Then
z=¢e;-t= (e, -e1)x + (e, €)X + (e, €3)xs, )
so that
0z (e, - e). (vi)
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From Eq. (iii), we have

0z 0gz N
B, =—g(e; &) =— 0_)(2:_0;1' (vii)
Thus, from the first equation of Eq. (i), we have
0gz Op
_pa_XZ_a_XZ,o. (viii)
That is,
i(£+z) =0. (ix)
Ox2 \pg
Similarly, one can show that
9 (£ + z) =0. (x)
Ox3 \pg

Thus, the piezometric head h depends only on x;. That is, h is the same for any point lying in the plane x;= con-
stant, which is a plane perpendicular to the unidirectional flow.

Example 6.7.3

For the unidirectional flow shown in Figure 6.7-2, find the pressure at point A as a function of p, (atmospheric pres-
sure), p (density of the fluid), h (depth of the fluid in the direction perpendicular to the flow), and 6 (the angle of incli-
nation of the flow).

FIGURE 6.7-2

Solution
From the result of the previous example, the piezometric heads of point A and point B are the same. Since point B is
on the free surface, its pressure is the atmospheric pressure; thus,

Pa Ps Pa
A= =" 7
pg g P pg P

Thus,
pa = Pa+ p8(Zs — z4) = pa + (pgh) cos 0.
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NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS IN CYLINDRICAL
AND SPHERICAL COORDINATES

Cylindrical Coordinates

With (v,, v, v,) denoting the velocity components in (r, 0, z) directions, and the equations for Vv pre-
sented in Chapter 2 for cylindrical coordinates, the Navier-Stokes equation for an incompressible fluid can
be obtained as follows (see Problem 6.17):

%+V8V"+E % —_v +v %7_1@_1_3
o Tor r\oo 0 9z por

(6.8.1)
p [Ozv,. ic’)zvr v, 10v, 20w v,}

Tpla? 2o T a2 T rar 200 2

aV() 8\1() 4] aV() 8\2() o 1 ap
54’\’;45‘9‘7 (Wﬁ-\/r) +v,—=——=+By

or? +r72 o0* + 072 +;ﬁ+r2 o0 2

Iz |:82\19 1 0%y vy 10w zf)v,. Vo
0

} (6.8.2)

Ov: Qs vo O v 10p
o Tor T ra0 " Co: T poe

6.8.3
7 v, lazvz v, 10v, ( )
p | Or? + 2 90> + 0z2 + ror|’

The equation of continuity takes the form

1 ) la\’g a\’z

Spherical Coordinates

With (v,., v, v¢) denoting the velocity components in (r, 0, ¢) directions, and the equations for Vv pre-
sented in Chapter 2 for spherical coordinates, the Navier-Stokes equation for an incompressible fluid can
be obtained as follows (see Problem 6.18):
o109
r <_a_ <"2”")>
(6.8.5)

+ ! g sinO% + ! @— 2 g(v sin 0) — 2 %
12 sin 090 90 ) 2 sinf0094* r2sin000 " 72sin 0 0¢ |’

) 5 V2 42
ov, +v, v, x_grf?vr n \.(7, ov, 3 ( ) 0) _ _l@ VB4 It
ot Or r 00 rsinf0¢ r p Or p
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Ovy Ovg vy [ Ovy Vg oy 1 ap
o Vrar T (ae vl i | ag Ve cos? 00+B"+
(6.8.6)
Iz l 2 ‘2% g 1 0 1 @ 20v, 200t90v¢
p (,.2) [ar (' o | T a6\ smea ) )| Y0 T o0 im0 99 |0
6v¢, 6vd, 7 8v¢ Vo Ov Vo 1
o o T 0 Trano | ag TS0t vecos =2 smea¢
(6.8.7)
10 v 10 1 2 Ov,  2cotl dvy
B ,2_¢ - 0 ¢ r
+ ¢+p 2 or (I 61‘) +r280 (sm080( Ve sin )) +1 51n20 64) +I 2 5in 0 O +1 51n03gb:|
The equation of continuity takes the form
10, 19 1 dvy
2 or (=) trsing sin 0 90 (vo sin 0) + rsinf dp (6.8.8)

BOUNDARY CONDITIONS

On arigid boundary, we shall impose the nonslip condition (also known as the adherence condition), i.e., the fluid
layer next to a rigid surface moves with that surface; in particular, if the surface is at rest, the velocity of the fluid
at the surface is zero. The nonslip condition is well supported by experiments for practically all fluids, including
those that do not wet the surface (e.g., mercury) and non-Newtonian fluids (e.g., most polymeric fluids).

STREAMLINE, PATHLINE, STEADY, UNSTEADY, LAMINAR,
AND TURBULENT FLOW

Streamline

A streamline at time ¢ is a curve for which the tangent at every point has the direction of the instantaneous
velocity vector of the particle at the point. Experimentally, streamlines on the surface of a fluid are often
obtained by sprinkling it with reflecting particles and making a short-time exposure photograph of the surface.
Each reflecting particle produces a short line on the photograph, approximating the tangent to a streamline.
Mathematically, streamlines can be obtained from the velocity field v(x, ¢) as follows.

Let x = x(s) be the parametric equation for the streamline at time 7, which passes through a given point X,.
Clearly, the vector dx/ds at any given s is tangent to the curve at that s, and an s can always be chosen so that
dx/ds = v. If we let s = 0 correspond to the position X,, then, for a given velocity field v(x, ¢), the streamline
that passes through the point X, can be determined from the following differential system:

% —v(x, 1), (6.10.1)
with

x(0) = X,. (6.10.2)
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Example 6.10.1
Given the velocity field

v = " Vo =kxo, vz3=0, (i)

find the streamline that passes through the point (a;, a., as) at time t.

Solution
With respect to the Cartesian coordinates (x1, X2, X3), we have, from Egs. (6.10.1) and (6.10.2),

dX1 - kX1 C/X2 N dX3

U Ttatt s g O g
and
x1(0) =a1, x(0)=a, x3(0)=as. (iii)
Thus,
X1 S Xo S X3
J@:kj ds_ J@:kjds, J%=o. (iv)
a X1 ol +at a X2 0 a X3
Integrating the preceding equations, we obtain
_ ks _ Ks -~
X1 = ai exp{m}, Xp = dre™”, X3 =as. (v)

Equations (v) give the desired streamline equations.

Pathline

A pathline is the path traversed by a fluid particle. To photograph a pathline, it is necessary to use long time
exposure of a reflecting particle. Mathematically, the pathline of a particle that was at X at time #, can be
obtained from the velocity field v(x, ¢) as follows: Let x = x(¢) be the pathline; then

% =v(x,1), (6.10.3)
with
x(1) = X. (6.10.4)

Example 6.10.2
For the velocity field of the previous example, find the pathline for a particle that was at (X;, Xo, X3) at time .

Solution

We have, according to Egs. (6.10.3) and (6.10.4),
dX1 - kX1 C/X2 B dX3 B .
@ Tttt ot e g0 ®



6.10 Streamline, Pathline, Steady, Unsteady, Laminar, and Turbulent Flow 367

and
x1(l) =X, x(b)=X, x(b)=X. (if)
Thus,
X1 t Xo t
J @:kj a_ J %:kj dt, X =K. )
X X1 t ]. + Oﬁt Xo X2 t
Thus,
k .
Inx —InX; = ;[In(l +oat) —In(l+ab)], Inxo—InXo=k(t—1), x=2Xs, (iv)
so that
(1+ “f)r/a K(t—t
x1 = X D Y- W Ul Dy v
1 1{(1 Fab) ¢ 2 , X3 3 (v)

Steady and Unsteady Flow

A flow is called steady if at every fixed location nothing changes with time. Otherwise, the flow is called
unsteady. It is important to note, however, that in a steady flow, the velocity, acceleration, temperature,
etc. of a given fluid particle in general change with time. In other words, let ¥ be any dependent variable;
then, in a steady flow, (0W/0r) = 0, but DW/Dr is in general not zero. For example, the steady flow
given by the velocity field

x—fixed

v = kxl, V) = *sz, V3 = 0
has a nonzero acceleration field given by

_ DV]
" Dt

DV2

= =k? =0.
Di X2, a3

a) = k2X|, as

We remark that for steady flows, a pathline is also a streamline, and vice versa.

Laminar and Turbulent Flow

A laminar flow is a very orderly flow in which the fluid particles move in smooth layers, or laminae, sliding
over particles in adjacent laminae without mixing with them. Such flows are generally realized at slow speed.
For the case of water (viscosity p and density p) flowing through a tube of circular cross-section of diameter d
with an average velocity v, it was found by Reynolds, who observed the thin filaments of dye in the tube,
that when the dimensionless parameter Ny (now known as the Reynolds number), defined by

_ vmpd
N b

N (6.10.5)

is less than a certain value (approximately 2100), the thin filament of dye was maintained intact throughout
the tube, forming a straight line parallel to the axis of the tube. Any accidental disturbances were rapidly
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obliterated. As the Reynolds number is increased, the flow becomes increasingly sensitive to small pertur-
bations until a stage is reached wherein the dye filament breaks and diffuses through the flowing water.
This phenomenon of irregular intermingling of fluid particle in the flow is termed turbulence. In the case
of a pipe flow, the upper limit of the Reynolds number, beyond which the flow is turbulent, is indeterminate.
Depending on the experimental setup and the initial quietness of the fluid, this upper limit can be as high
as 100,000.

In the following sections, we restrict ourselves to the study of laminar flows of an incompressible Newto-
nian fluid only. It is therefore to be understood that the solutions presented are valid only within certain limits
of some parameter (such as the Reynolds number) governing the stability of the flow.

PLANE COUETTE FLOW

Vo

l—Q —]

FIGURE 6.11-1

The steady unidirectional flow, under zero pressure gradients in the flow direction, of an incompressible vis-
cous fluid between two horizontal plates of infinite extent, one fixed and the other moving in its own plane
with a constant velocity v, is known as the plane Couette flow (Figure 6.11-1). Let x; be the direction of
the flow; then v, = v3 = 0. It follows from the continuity equation that v; cannot depend on x;. Let x;x, plane
be the plane of flow; then the velocity field for the plane Couette flow is of the form

vi=v(x), wn=0 v3;=0. (6.11.1)

From the Navier-Stokes equation and the boundary conditions v(0) = 0 and v(d) = vy, it can be easily
obtained that

V() = 2. 6.11.2)

PLANE POISEUILLE FLOW

The plane Poiseuille flow is the two-dimensional steady unidirectional flow between two fixed plates of infi-
nite extent. Let x;x, be the plane of flow with x; in the direction of the flow; then the velocity field is of the
form

vi=v(x2), v =0, v;=0. 6.12.1)

Let us first consider the case where gravity is neglected. We shall show later that the presence of gravity
does not at all affect the flow field; it only modifies the pressure field.
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In the absence of body forces, the Navier-Stokes equations, Egs. (6.7.3) to (6.7.5), yield

p_
8)61_de%’ 8x2_ ’ 8X3_ ’

(6.12.2)

From the second and third equations of Eq. (6.12.2), we see that the pressure p cannot depend on x, and
x3. If we differentiate the first equation with respect to x|, and noting that the right-hand side is a function of
X, only, we obtain

Lo (6.12.3)

% Xq
= b

FIGURE 6.12-1

Thus,

dp

—— = a constant, (6.12.4)
dx1

i.e., in a plane Poiseuille flow, the pressure gradient is a constant along the flow direction. This pressure gra-
dient is the driving force for the flow. Let

—=—q, (6.12.5)

so that a positive o corresponds to the case where the pressure decreases along the flow direction. Going back
to the first equation in Eq. (6.12.2), we now have

d*v
— = —a. 6.12.6
I3 a2 o ( )
Integrating the preceding equation twice, we get
oxa
u = 772+sz +D. (6.12.7)

The integration constants C and D are to be determined from the boundary conditions
v(—b) = v(+b) = 0. (6.12.8)
They are C = 0 and D = ab?/2; thus,

V() = % (B2 —22). (6.12.9)
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Equation (6.12.9) shows that the profile is a parabola, with a maximum velocity at the mid-channel given by

Vmax = ~— b2, (6.12.10)
2p
The flow volume per unit time per unit width (in the x3 direction) passing any cross-section can be
obtained by integration:

b 3
0-— J vy = 2 <&) (6.12.11)
—b Hn 3
The average velocity is
Q0 ab
=—=——. 6.12.12
VST 13 ( )

We shall now prove that in the presence of gravity and independent of the inclination of the channel, the
Poiseuille flow always has the parabolic velocity profile given by Eq. (6.12.9).
Let k be the unit vector pointing upward in the vertical direction; then the body force is

B = —gk, (6.12.13)
and the components of the body force in the x;, x», and x3 directions are
By =—g(e;-k), By=—g(ex-k), B3=—g(es-k). (6.12.14)

Let r be the position vector of a fluid particle so that

r =xje; + xze + xzes3, (6.12.15)
and let y be the vertical coordinate. Then
y:r-k:xl(el‘k)+x2(e2-k)+X3(e3-k)7 (6.12.16)
and
Jy _ Jy _ dy _
pr (er- k), p (e2- k), p (e3- k). (6.12.17)
Equations (6.12.17) and (6.12.14) then give
B Ay _ ady _ Oy
B, = g@xl’ By = gax27 B; = g8x3' (6.12.18)
The Navier-Stokes equations
op d*v op ap
[)Bl—a—m—"ﬂﬁfo, sz—(‘i—‘(z—O7 ,033—8—)(3—0, (61219)

then become

I(p + pgy) :u@ op+psy) _
Oox1 Oxy ’ 0x) ’

A(p + pgy)
6X3

=0. (6.12.20)

These equations are the same as Eq. (6.12.2) except that the pressure p is replaced by p + pgy. From these
equations, one clearly will obtain the same parabolic velocity profile, except that the driving force in this case
is the gradient of p + pgy in the flow direction instead of simply the gradient of p.
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HAGEN-POISEUILLE FLOW

The so-called Hagen-Poiseuille flow is a steady unidirectional axisymmetric flow in a circular cylinder. Thus,
we look for the velocity field in cylindrical coordinates in the following form:

vy=0, vg=0, v,=v(r). (6.13.1)

For whatever v(r), the velocity field given by Eq. (6.13.1) obviously satisfies the equation of continuity
[Eq. (6.8.4)]:

10vy  Ov.

) + Y0 + o 0. (6.13.2)

1
art

,
|

—

FIGURE 6.13-1

In the absence of body forces, the Navier-Stokes equations, in cylindrical coordinates for the velocity field
of Egs. (6.13.1), are from Egs. (6.8.1) to (6.8.3).

o g . [1d(d
o 0= 20° 0= 8z+'urdr rdr . (6.13.3)

From the preceding equations, we see clearly that p depends only on z and

0=

d*p
2_o. 134
=0 (6.13.4)
Thus, dp/dz is a constant. Let
__d
a=—, (6.13.5)
then
o 1d [ dv
SR ( puid .13.
woordr (’ dr) (6.13.6)
Integration of the preceding equation gives
ar?
v=——+4+blnr+ec. (6.13.7)
4u

Since v must be bounded in the flow region, the integration constant » must be zero. Now the nonslip condi-
tion on the cylindrical wall demands that

v=0 at r=d/2, (6.13.8)
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where d is the diameter of the pipe. Thus, ¢ = («/u)(d?/16) and
o (d®
v—@<zfz ) (6.13.9)

The preceding equation states that the velocity over the cross-section is distributed in the form of a parab-
oloid. The maximum velocity is at r = 0; its value is

ad?

max = —— - 6.13.10
v Tou ( )
The mean velocity is
1 od? Vmax
V=-r-——— | vdA =—= . 6.13.11
= ) == (131D
and the volume flow rate is
nd®\ _  and*
0- ( ‘ )v - T (6.13.12)

where o = —dp/dz [see Eq. (6.13.5)]. As is in the case of a plane Poiseuille flow, if the effect of gravity is
included, the velocity profile in the pipe remains the same as that given by Eq. (6.13.9); however, the driving
force now is the gradient of (p 4+ pgy), where y is the vertical height measured from some reference datum.

PLANE COUETTE FLOW OF TWO LAYERS OF INCOMPRESSIBLE
VISCOUS FLUIDS

Let the viscosity and the density of the top layer be u; and p,, respectively, and those of the bottom layer be
U, and p,, respectively. Let x; be the direction of flow, and let x, = 0 be the interface between the two layers.
We look for steady unidirectional flows of the two layers between the infinite plates x, = +b; and x, = —b;.
The plate x, = —b, is fixed and the plate x, = +b; is moving on its own plane with velocity v,. The pressure
gradient in the flow direction is assumed to be zero (Figure 6.14-1).

X2

Yo

'
M1, Pq #1 %
1 Ua, P2 liz
g9
FIGURE 6.14-1
Let the velocity distribution in the top layer be
W =10 (), W =V =0, (6.14.1)

and that in the bottom layer be

v(lz) —® (x2), v;2) _ v(32> —0. (6.14.2)
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The equation of continuity is clearly satisfied for each layer. The Navier-Stokes equations give

Layer 1: 0=y %, = —ag;) —p8 0=-— 3;7;) , (6.14.3)
Layer 2: 0= ,uz%, 0= f%‘p—;z) —pr8, 0=-— 0(;;(2) . (6.14.4)
Integrations of the preceding equations give
v = A, + By, pV = —pexy +Cy, (6.14.5)
and
v = Ay + By, p? = —prgxy + Co. (6.14.6)
The boundary condition on the bottom fixed plate is
v =0 at x=-b. (6.14.7)
The boundary condition on the top moving plate is
v =v, at x = +by. (6.14.8)
The interfacial conditions between the two layers are
v =y at x =0, (6.14.9)
and
t, =—t7 or TWe,=TPe, at x,=0. (6.14.10)

Equation (6.14.9) states that there is no slip between the two layers, and Eq. (6.14.10) states that the stress
vector on layer 1 is equal and opposite to that on layer 2 in accordance with Newton’s third law. In terms of
stress components, Eq. (6.14.10) becomes

T =19 1) =10 1 =1 at x,=0. (6.14.11)

That is, these stress components must be continuous across the fluid interface in accordance with Newton’s
third law. Now

av() av®
') = 1, e T? = g ¥ =0, T¥ =0, (6.14.12)

and
Ty = —p, 1Y = —p. (6.14.13)
Thus, we have

av) dv®
H sz = H sz

Using the boundary conditions, Eqgs. (6.14.7), (6.14.8), (6.14.9), and (6.14.14), we obtain

2)

and p(l> :p( at x, =0. (6.14.14)

By, = Ayby, By =v,—Aib;, By =B, wA = wA;. (6.14.15)
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Equations (6.14.15) are four equations for the four unknowns, A;, A, By, and B;; these can be easily
obtained to be

b b
Al _ HUrVo 7Bl _ (lulvo 2) A, = HUiVo B, — 2141 Vo (6.14.16)

y 412 y D2 .
(b2 + myby) (tt1b2 + 12b1) (t1b2 + 1oby) (t1b2 + ppby)

Thus, the velocity distributions are

b b
V(ll) _ (a2 + 2)Vo7 v(zl) _ v(31) —0 and v(12) _ (X2 4 g 2)"0’ »,(22) _ VQZ) —0. (6.14.7)

(tab1 + pyb2) (tab1 + pyb2)
Finally, the condition p(1> = p(2> at x, = 0 gives C; = C, = p,, so that

P = —pigrs +po,  p? = —prgrs + po (6.14.18)

where p, is the pressure at the interface, which is a prescribed value.

COUETTE FLOW

The laminar steady two-dimensional flow of an incompressible viscous fluid between two coaxial infinitely
long cylinders caused by the rotation of either one or both cylinders with constant angular velocities is known
as Couette flow.

For this flow, we look for the velocity field in the following form in cylindrical coordinates:

v,=0, vg=v(r), v,=0. (6.15.1)
This velocity field obviously satisfies the equation of continuity for any v(r) [Eq. (6.8.4)],

12 1% v,

Tor (rve) + 50 T = (6.15.2)

In the absence of body forces and taking into account the rotational symmetry of the flow (i.e., nothing depends
on ), we have, from the Navier-Stokes equation in 6 direction, Eq. (6.8.2) for the two-dimensional flow,

&Pv ldv v

) ;E_r_z:(), (6.15.3)
The general solution for the preceding equation is
v=art B (6.15.4)
,
Qz &

P
<)

FIGURE 6.15-1
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Let r; and r, denote the radii of the inner and outer cylinders, respectively; Q; and €, their respective
angular velocities (Figure 6.15-1). Then the boundary conditions are

v(r) =nQ, v() =nQ. (6.15.5)
Equations (6.15.4) and (6.15.5) give
B B
rnQ =Ari+—, n=Arn+—, (6.15.6)
r r
so that
QJ,Q 2 .2,2979
a="2200 g :7'1'2(2 — 2 (6.15.7)
7'2 — rl 1‘2 — I'l
and
! NP
Vo=V = (rz 1‘2) (erz — erl)r — 7’(92 —-Q)|, v,=v,=0. (6.15.8)
2~

It can be easily obtained that the torques per unit length of the cylinder which must be applied to the cylin-
ders to maintain the flow are given by
drprir3(Q — Q)

2_ 2 )
r;—r

M=+e. (6.15.9)
where the plus sign is for the outer wall and the minus sign is for the inner wall. We note that when Q; = Q;,
the flow is that of a rigid body rotation with constant angular velocity; there is no viscous stress on either
cylinder.

FLOW NEAR AN OSCILLATING PLANE

Let us consider the following unsteady parallel flow near an oscillating plane:
vi =v(x2,1), vn=0, v3;=0. (6.16.1)

Omitting body forces and assuming a constant pressure field, the only nontrivial Navier-Stokes equation is

v v
— = U—. 6.16.2
Pa = H o2 ( )
It can be easily verified that
v =ae P cos (wr — fxs +¢), (6.16.3)

satisfies the preceding equation if

B=/po/2u (6.16.4)
From Eq. (6.16.3), the fluid velocity at x, = 0 is (see Figure 6.16-1)

v =acos (wf + ¢). (6.16.5)
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X2

plate Xq

R e S oo
a cos (wt+e)

FIGURE 6.16-1

Thus, the solution Eq. (6.16.3), together with (6.16.4), represents the velocity field of an infinite extent of lig-
uid lying in the region x, > 0 and bounded by a plate at x, = 0, which executes simple harmonic oscillations
of amplitude @ and circular frequency w. It represents a transverse wave of wavelength 27/f, propagating
inward from the boundary with a phase velocity w/f but with rapidly diminishing amplitude—the falling
off within a wavelength being in the ratio e 2" (=1/535). Thus, we see that the influence of viscosity extends
only to a short distance from the plate performing rapid oscillation of small amplitude a.

DISSIPATION FUNCTIONS FOR NEWTONIAN FLUIDS

The rate of work done P by the stress vectors and the body forces on a material particle of a continuum was
derived in Chapter 4 as [see Eq. (4.12.1)]

D
P = (KE)+PdV. (6.17.1)

The first term of the preceding equation is the rate of change of kinetic energy (K.E.), and the second term
P,dV is the rate of work done to change the volume and shape of the particle of volume dV. Here P, denotes
this rate of change per unit volume, which is also known as stress working, or stress power. In terms of the
stress components and the velocity gradient, the stress power is given by

ov;
P, =T,

Ay 6.17.2
& 6.172)

In this section, we compute the stress power in terms of D;;, the components of the rate of deformation tensor
for a Newtonian fluid.

Incompressible Newtonian Fluid

We have
T;= —pé,y + Ti}, (6.17.3)
thus,
Ov; ov; Ov;
7, Vi i Vi 6.17.4
J an p@xi v 8)(/‘ ( )
For incompressible fluid, dv;/dx; = 0; therefore,
8 i 8 i a i
Tyt = 1758 = 2Dy 2 = 2Dy (Dy; + Wiy) = 2uDyD (6.17.5)

Yoy o
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where we recall Wj; (the spin tensor) is the antisymmetric part of dv;/0x; and D;jW;; = 0. Thus,
P, = 2uDyDy; = 2u(DY, + D3, + D33 + 2D7, + 2D7; + 2D3;). (6.17.6)

This is work per unit volume done to change the shape, and this part of the work accumulates with time,
regardless of how D;; vary with time (P; is always positive and is zero only for rigid body motions where
D;; = 0). Thus, the function

®;c = 2uDDy; = 2uu(D7, + D3, + D35 + 2D7, + 2D15 + 2D3,) (6.17.7)

is known as the dissipation function for an incompressible Newtonian fluid. It represents the rate at which
work is converted into heat.

Newtonian Compressible Fluid

For this case, we have, with A denoting dv;/0x;,

Tu@ = (=pdy + 200y + 2uDy) i _ —pA + AN’ + Bjye = —pA + D, (6.17.8)
Ox; Ox;
where
® = A(Dy1 + D + D33)” + ®pye (6.17.9)

is the dissipation function for a compressible Newtonian fluid. We leave it as an exercise (see Problem 6.43)
to show that the dissipation function ® can be written

2
o= (;, n %‘) (D11 + Do + D33)?

) (6.17.10)
+ TM {(Du —Dx)* + (D11 — D33)* + (D2 — D33)2] +4u(D7, + Dis + D3;).

Example 6.17.1
For the simple shearing flow with

Vi = /(Xz7 Vo = V3 = O,

find the rate at which work is converted into heat if the liquid inside the plates is water with
n=2x10"Ib-s/ft’(0.958 mPa-s) and k = 1s1.

Solution

Since the only nonzero component of the rate of deformation tensor is
Dip = k/2,

therefore, from Eq. (6.17.7),

Djne = 4uD%, = pk? = 2 x 107°(1) = 2 x 107°(ft- Ib) /(£ - 5) [0.958 x 1073 (N-m)/(m®- s)].
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ENERGY EQUATION FOR A NEWTONIAN FLUID

In Section 4.15 of Chapter 4, we derived the energy equation for a continuum to be [see Eq. (4.15.4)]
pr-=Tims — o+ s, (6.18.1)
/

where u is the internal energy per unit mass, p is density, g; is the component of heat flux vector, and ¢ is the
heat supply due to external sources.
If the only heat flow taking place is that due to conduction governed by Fourier’s law q = —kV®, where
@ is the temperature, then Eq. (6.18.1) becomes, assuming a constant coefficient of thermoconductivity «,
Du __ Ov; e

th - l‘j(()ixj+ K(?xjax_,- '

(6.18.2)

For an incompressible Newtonian fluid, if it is assumed that the internal energy per unit mass is given

by c®, where c is the specific heat, then Eq. (6.18.2) becomes
DO foC)
pc E = (D,'m» + Km, (6183)

where, from Eq. (6.17.7), ®;c = 2u(D}, + D3, + D% + 2D%, + 2D}, + 2D%;) representing the heat gener-
ated through viscous forces.

There are many situations in which the heat generated through viscous action is very small compared with
that arising from the heat conduction from the boundaries, in which case, Eq. (6.18.3) simplifies to

bo_, 7o
Dt - 8)(/6/\']'7

(6.18.4)

where o« = k/pc is known as the thermal diffusivity.

Example 6.18.1
The plane Couette flow is given by the following velocity distribution

Vi = ng, Vo = O, V3 = 0.
If the temperature at the lower plate is kept at ®, and the upper plate at ®,, find the steady-state temperature
distribution.

Solution
We seek a temperature distribution that depends only on x». From Eq. (6.18.3), we have, since Dy, = k/2,

d?e
2
O = ﬂk + KTXZZ‘
Thus,
e uk?

)

2
axs K
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from which

uk? 0,-0, ukd
O=—Fcot\Tg T )etr®

VORTICITY VECTOR

We recall from Chapter 3, Section 3.13, that the antisymmetric part of the velocity gradient (Vv) is defined as
the spin tensor W [see Eq. (3.13.3)]. Being antisymmetric, the tensor W is equivalent to a vector @ in the
sense that Wx = w X x (see Sections 2.21 and 3.14). In fact [see Eq. (3.14.2)],

= —(Wye + Wsies + Wies). (6.19.1)
Since [see Eq. (3.12.6)],

D
— (dx) = (Vv)dx = Ddx + Wdx = Ddx + @ x dx, (6.19.2)
Dt

the vector e is the angular velocity vector of that part of the motion, representing the rigid body rotation in
the infinitesimal neighborhood of a material point. Furthermore, we will show that @ is the angular velocity
vector of the principal axes of the rate of deformation tensor D. That is, we will show that if n is a unit vector
in a principal direction of D, then

D
F? — Wn=xn. (6.19.3)

Let dx be a material element in the direction of n at time #; we have

_dx

= .19.4
n I (6.19.4)

where ds is the length of dx. Taking the material derivative of the preceding equation, we have

Dn D [dx 1 /D 1 /D
Dr =~ D ($) = (de> 2 (Eds> dx. (6.19.5)
But, from Eq. (3.13.12) of Chapter 3,

! <D ds) =n-Dn. (6.19.6)
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Using Egs. (6.19.2), (6.19.4), and (6.19.6), Eq. (6.19.5) becomes

%:(D—|—W)n—(n-Dn)n:Wn+Dn—(n-Dn)n. (6.19.7)

Now, since Dn = An and n- Dn = /, therefore, Dn — (n- Dn) n = 0 so that Eq. (6.19.7) becomes

D
“n_ Whn,
Dt
which is Eq. (6.19.3), and which states that the material elements that are in the principal directions of D
rotate with angular velocity @ while at the same time changing their lengths.

In rectangular coordinates,

o 1 8V3 8v2 1 avl 8\13 1 sz 8\11
w_i(ﬁ_xz_a_)g)el+§((3_X3_8_xl)e2+§(8_xl_8_x2)e3' (6198)
Conventionally, the factor ' is dropped and one defines the so-called vorticity vector ¢,
_ o 8\/3 (9\/2 8\/1 8V3 8v2 8\/1
¢ =20 = ( o 8)(3)61 + ( o aXI)ez + ( s 8x2) es. (6.19.9)

The tensor 2W (where W is the spin tensor) is known as the vorticity tensor.
In indicial notation, the Cartesian components of ¢ are

(9\//(
(= ik (6.19.10)
or, equivalently,
Bvi (?Vj
Vi Vi _gc, 19.11
oxj  Ox; Shijck (©.19.11)
and in direct notation,
¢ =curlv. (6.19.12)
In cylindrical coordinates (r, 0, z),
_ 10v, 0wy v, Ov, dvg vg 10v,
and in spherical coordinates (r, 0, ¢),
c= v¢cot0+1%_ l vy e i 1 %_18(1‘1}4,) e
r r d0  rsin0 ¢ rsind¢p r Or
(6.19.14)

19(rvg) 10v,
+ {I_ or  r oo }e(;).
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Example 6.19.1
Find the vorticity vector for the simple shearing flow:

Vi = ng, Vo = O7 Vo = 0.

Solution
We have
L (P 0w g (2w 0w G AN
S1= 8X2 8X3 ro2 = an 8X1 ’ 3T 8X1 (9X2 a
Thus,
¢ = —kes.

We see that the angular velocity vector (=¢/2) is normal to the x; x, plane, and the minus sign simply means that
the spinning is clockwise, looking from the positive side of xs.

Example 6.19.2
Find the distribution of the vorticity vector in the Couette flow discussed in Section 6.15.

Solution
With v, = v, =0 and

vop = Ar+ B/r,

it is clear that the only nonzero vorticity component is in the z direction. From Eq. (6.19.13),

- d 7] 7] B

B

Thus (see Section 6.15),

2 2

¢ 7292@ -7

5Z — r2_r2 .
2 1

IRROTATIONAL FLOW

If the vorticity vector (or equivalently, the vorticity tensor) corresponding to a velocity field is zero in some
region and for some time interval, the flow is called irrotational in that region and in that time interval.

Let o(x1,x2,x3,t) be a scalar function and let the velocity components be derived from ¢ according to the
following equations:

%2 do o, 0%

oo
- , Mm=——— vy =—— zr
Ox; 2 Oxy : Oxy

_8x,7

vy = = ie, vi=

(6.20.1)
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Then the vorticity components are all zero. Indeed,

s e Do | o
1= 8XQ 6X3 - 8X26X3 8)(36/\’2 -

(6.20.2)

and similarly, {, = {3 = 0. That is, any scalar function ((x;, x,,x3) defines an irrotational flow field through
Egs. (6.20.1). Obviously, not all arbitrary functions ¢ of x;,x,,x3 and ¢ will give rise to velocity fields that are
physically possible. For one thing, the equation of continuity, expressing the principle of conservation of
mass, must be satisfied. For an incompressible fluid, the equation of continuity reads:

8vi o
o 0. (6.20.3)

Combining Eq. (6.20.1) with Eq. (6.20.3), we obtain the Laplacian equation for ¢:

2
o
8xj6xj

(6.20.4)

In the next two sections, we discuss the conditions under which irrotational flows are dynamically possible
for an inviscid fluid and a viscous fluid.

IRROTATIONAL FLOW OF AN INVISCID INCOMPRESSIBLE FLUID
OF HOMOGENEOUS DENSITY

An inviscid fluid is defined by the constitutive equation
T; = —poy, (6.21.1)

obtained by setting the viscosity u = 0 in the constitutive equation for a Newtonian viscous fluid.
The equations of motion for an inviscid fluid are

;i ovi\ _ Op _
p(E”’aT,-) — P B, (6.21.2)

Equation (6.21.2) is known as the Euler’s equation of motion. We now show that irrotational flows are
always dynamically possible for an inviscid, incompressible fluid with homogeneous density, provided that
the body forces are conservative, that is, they are derivable from a potential by the formulas

B, = —g—fj. (6.21.3)
For example, in the case of gravity force, with the x3-axis pointing vertically upward,
Q = gx3, (6.21.4)
so that
B, =0, B,=0, B;=-—g. (6.21.5)

Using Eq. (6.21.3) and noting that p = constant for a homogeneous fluid, Eq. (6.21.2) can be written as

ov; dvi; 0 (p
E”fan‘a_x,.(;m)' (621.6)
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For an irrotational flow,

8\),' _ 8v,-
3 o (6.21.7)
so that
dv; oy 10 _18\/2
V"a—xj_vfa_xf_ia_xf ("/"1) T 20y’ (6.21.8)
where v2 = v} +v3 +13 is the square of the speed. Therefore, Eq. (6.21.6) becomes
0 dp Vv p B
a—x[_(—a—ﬁ—?—i—;—l—Q =0. (6.21.9)
Thus,
dp v p B
_E_Q_?_F;_;_Q,f(t) (6.21.10)
If the flow is also steady, then we have
2
%+%+Q:C:constant. (6.21.11)

Equation (6.21.10) and the special case Eq. (6.21.11) are known as the Bernoulli’s equations. In addition to
being a very useful formula in problems where the effect of viscosity can be neglected, the preceding derivation
of the formula shows that irrotational flows are always dynamically possible under the conditions stated earlier
(constant density and conservative body forces). Under those conditions, for whatever function ¢, so long as
v; = —0¢/0x; and V2 = 0, the dynamic equations of motion can always be integrated to give Bernoulli’s equa-
tion, from which the pressure distribution is obtained, corresponding to which the equations of motion are satisfied.

Example 6.21.1

Given ¢ = xf' — 3x1x22. (a) Show that ¢ satisfies the Laplace equation. (b) Find the irrotational velocity field. (c) Find
the pressure distribution for an incompressible homogeneous fluid, if Q = gx3 and p = p, at (0,0,0), and (d) if the
plane x, = 0 is a solid boundary, find the tangential component of velocity on the plane.

Solution
Py Pp &y
L T T _6x —6x =0.
(a) ox? + Xz + X2 = oa
Op Oy
(b) vlzfa—)(l:73x12+3x22, vzzfa—XZ:@qu, 3 = 0.

(c) At(0,0,0),v; =0,vo =0,v3 =0, p = p,, Q2 = 0; therefore, from the Bernoulli's equation, Eq. (6.21.11), C = po/p.
p Po

2
Thus, %+;+Q:? so that p = p, —g(vl2 +V3) — pgxs, of p= Py —g [9(x22 —x12)2 +36x12x22} — pgxs.

(d) Ontheplane x, =0, vy = —3X12 , Vo = 0,3 = 0. Now, v» = 0 means that the normal components of velocity
are zero on the plane, which is what it should be if x» = O is a solid fixed boundary. Since v; = —3x12, the tan-
gential components of velocity are not zero on the plane, that is, the fluid slips on the boundary. In inviscid
fluid theory, consistent with the assumption of zero viscosity, the slipping of fluid on a solid boundary is
allowed. The next section further discusses this point.
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Example 6.21.2

A liquid is being drained through a small opening as shown in Figure 6.21-1. Neglect viscosity and assume that the
falling of the free surface is so slow that the flow can be treated as a steady one. Find the exit speed of the liquid jet as
a function of h.

Solution
For a point on the free surface such as the point A, p = po, v ~ 0 and z = h. For a point B on the exiting jet, its
dimension is assumed to be much smaller than h so that z =0 and p = p,. Therefore, from Eq. (6.21.11),

2
V_ + & — & + gh7
2 p p
from which,
v =+/2gh. (6.21.12)
This is the well-known Torricelli’s formula.
V4
A

]}

@

FIGURE 6.21-1

IRROTATIONAL FLOWS AS SOLUTIONS OF NAVIER-STOKES EQUATION

For an incompressible Newtonian fluid, the equations of motion are the Navier-Stokes equations:

ov; Ov; 10p u 8,
Pi Vi 1P K B 221
ot Vi 0x; p Ox; + p Ox;0x; + ® )

For irrotational flow,

Jp
— 6.22.2
v ax, ( )

0%v; 0> [0Op 0 [ Py
—__— [(ZZ)=—_= (=2 ) —o. 22.
8Xj8)€j 8)(1'(9)6}' (8}@) 8/\’,' (8)(]‘(9)(]') 0 (6 3)

so that

where we have made use of Eq. (6.20.4). Therefore, the terms involving viscosity in the Navier-Stokes equa-
tion (6.22.1) drop out in the case of irrotational flows so that the equations take the same form as the Euler’s
equation for an inviscid fluid. Thus, if the viscous fluid has homogeneous density and if the body forces are
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conservative (i.e., B; = 0Q/0x;), the results of the last section show that irrotational flows are also dynami-
cally possible for a viscous fluid. However, in any physical problems, there are always solid boundaries.
A viscous fluid adheres to the boundary so that both the tangential and the normal components of the fluid
velocity at the boundary should be those of the boundary. This means that both velocity components at the
boundary are to be prescribed. For example, if y = 0 is a solid boundary at rest, then we have, at y = 0,
vy = v; = 0 (i.e., tangential components are zero) and v, = 0 (i.e., the normal component is zero). For irrota-
tional flow with potential function ¢, these conditions become ¢ = constant and d¢/dy = 0 at y = 0. But it
is known from the potential theory that in general there does not exist a solution of the Laplace equation
satisfying both ¢ = constant and V- n = dp/0n = 0 (n is normal to the boundary) on the boundary. There-
fore, unless the motion of solid boundaries happens to be consistent with the requirements of irrotationality,
vorticity will be generated on the boundary and diffuse into the flow field in accordance with the vorticity
equations (to be derived in the next section). However, in certain problems under suitable conditions, the vor-
ticity generated by the solid boundaries is confined to a thin layer of fluid in the vicinity of the boundary so
that outside the layer, the flow is irrotational if it originates from a state of irrotationality. We shall have more
to say about this topic in the next two sections.

Example 6.22.1
For the Couette flow of a viscous fluid between two coaxial infinitely long cylinders, how should the ratio of the angular
velocities of the two cylinders be so that the flow is irrotational?

Solution
The only nonzero vorticity component in the Couette flow is (see Example 6.19.2)
Qord —Or?

=N
where Q, denotes the angular velocities. If ng22 - erf =0, the flow is irrotational. Thus,

Qz /'12

—~ ==, 6.22.5

Q1 f22 ( )

It should be noted that even though the viscous terms drop out from the Navier-Stokes equations in the case of

irrotational flow, it does not mean that there is no viscous dissipation in an irrotational flow of a viscous fluid. In fact, so

long as there is a nonzero rate of deformation component, there is viscous dissipation [given by Eq. (6.17.7)] and the
rate of work done to maintain the irrotational flow exactly compensates the viscous dissipation.

VORTICITY TRANSPORT EQUATION FOR INCOMPRESSIBLE VISCOUS FLUID
WITH A CONSTANT DENSITY

In this section, we derive the equation governing the vorticity vector for an incompressible homogeneous
(p = constant) viscous fluid. Assuming that the body force is derivable from a potential Q, i.e.,
B; = —0Q/0x;, the Navier-Stokes equation can be written

(9v,- Gv,- 0 p 02\71-
—+v; =— -+ Q 6.23.1
a oy T oy (P " ) "V oway ( )
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where v = u/p = kinematic viscosity. The vorticity components are given by

Cm = Emni % . (6.23.2)
ox,

It can be shown (see the following example) that in terms of vorticity components (,,, the Navier-Stokes
equation takes the form of

D{,, Oy, e
D an T anay 623.3)
or, in direct notation,
D
Z5 _ (Vv)g + V3. (6.23.4)
Dt
Example 6.23.1
Show:
0y _ A
(@) emni o, % 0 and e XX 0 for any A(x).
. . ) ovi,  0OVp
(b) For an incompressible fluid, emn,spj,a—)(n{p =~ lhe
ov;ov;, Oy,
(c) ﬁmnla_xna—x/ = - ox, Cn-
v 2
(@) Lo O T (e (6233,

Dt~ ax, " TV ok

Solution
(a) Changing the dummy index from nto /i and / to n, we obtain

T ox, 0% " Ox 0xn " OX Oy
Therefore,
9%, OX;
Similarly,
9°A A

Grmni XX Grmin oXOX,
(b) Since emniepji = Ompdnj — Omionp (see Prob. 2.12),

av; . N7 av; oV, av,
gmnigpj/aiX;Cp = (5mp5nj - bmjonp) (97)(2447 = ai)égm - T)(f:CI’I = - (97)(1:

Cm

where we have used the equation % = 0 for an incompressible fluid.

J)
av; 0v
(c) From (’)_x,/ _8_x/,- = —eylx [see Eq. (6.19.11)], we have

v, 0, .oy

2T il = epil o
ax ox, T ax PSP
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Multiplying this last equation by &= oy, , we have

OXn'
. 8\/,8v,7 v 9y e 6\//, = 8\//6\/,4_‘g vguavjz
mni 8Xn 6)(/ Emni 8Xn Ix X; mni©pif (9 mni 8 (9 mni©pji 8xﬂ Sp-

Using the results in (a) and (b), we have
o DY O
Mox, 0x; T Oxg
v . 7
) on the equation %—k v,g—)‘z: —(% (’O Q) —H);(9 X we get

p OOV 9 ov_ . A he 9 0?v;
ke O M oy T ax, M el ™ oy Oxj0;”

{p-

) 0
(d) Operating (smm o,

2

where A = (§+ Q) and emp; 38:94 =0 [see result in part (a)l. Thus, we have
/’J I

9 v e f)\/jav,+ v, o2 v,
at\"m ox, ) T EM ox, X Grmni /6xn8xj 8)(,8)9 Grmni X, )

Now, using the result in part (c), the preceding equation becomes

o (. v _%Hvi LoowN _ 9 (0w
At \"™" ox, T T o "M ox,)  oxox U oxa )

Therefore,

Ny Oy OV, Pl
ot P T ax, o T axax

which is Eq. (6.23.3), or Eq. (6.23.4).

387

Example 6.23.2
Reduce from Eq. (6.23.4) the vorticity transport equation for the case of two-dimensional flows.

Solution
Let the velocity field be

vi = vi(xi, X, t), Vo =Va(x1,X,t), w=0.

Then

_ (9 92\ o (20 _0%\g, (D2 OV, (02 OVi\, ¢
- 0x, 0x3 ! oxs  0x 2 oxy  0x 3T ox;  Ox 3T
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Also,
ov1/ox1 On/dx O 0 0
[(VV)g] = | Ow/dx1 Ow/dx, O 0[=10].
0 0 0] L& 0

Thus, Eqg. (6.23.4) reduces to the scalar equation

DG _ oo
=2 = W2, (6.23.5)

CONCEPT OF A BOUNDARY LAYER

In this section we describe, qualitatively, the concept of the viscous boundary layer by means of an analogy.
In Example 6.23.2, we derived the vorticity equation for two-dimensional flows of an incompressible viscous
fluid to be the following:

Ps o2y
Dr AVAlS (6.24.1)

where ( is the only nonzero vorticity component for the 2-D flow and v is kinematic viscosity.

In Section 6.18 we saw that, if the heat generated through viscous dissipation is neglected, the equation
governing the temperature distribution in the flow field due to heat conduction through the boundaries of a
hot body is given by [see Eq. (6.18.4)]

DO

- = 2
Dr aV-0, (6.24.2)

where @ is temperature and o, the thermal diffusivity, is related to conductivity x, density p, and specific heat
per unit mass ¢ by the formula o = x/pc.

Now suppose that we have the problem of a uniform stream flowing past a hot body whose temperature in
general varies along the boundary. Let the temperature at large distance from the body be ®; then, defining
® =0 —0,, we have

DO’

T AYAO (6.24.3)

where @' = 0 at x> + y> — oo. On the other hand, the distribution of vorticity around the body is governed by

D¢ )
— =V 6.24.4
o= "V6 ( )

with { = 0 at x> + y*> — oo. Comparing the preceding two equations, we see that the distribution of vorticity
in the flow field, due to its diffusion from the boundary, where it is generated, is much like that of temperature
due to the diffusion of heat from the boundary of the hot body.

Now, it is intuitively clear that in the case of the temperature distribution, the influence of the hot temper-
ature of the body in the field depends on the speed of the stream. At very low speed, conduction dominates
over the convection of heat so that its influence will extend deep into the fluid in all directions, as shown by
the curve C in Figure 6.24-1; whereas at high speed, the heat is convected away by the fluid so rapidly that
the region affected by the hot body will be confined to a thin layer in the immediate neighborhood of the body
and a tail of heated fluid behind it, as shown by the curve C, in the same figure.
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FIGURE 6.24-1

Analogously, the influence of viscosity, which is responsible for the generation of vorticity on the boundary,
depends on the speed U, far upstream. At low speed, the influence will be deep into the field in all directions so
that essentially the whole flow field has vorticity. On the other hand, at high speed, the effect of viscosity is
confined in a thin layer (known as a boundary layer) near the body and behind it. Outside the layer, the flow
is essentially irrotational. This concept enables one to solve a fluid flow problem by dividing the flow region
into an irrotational external flow region and a viscous boundary layer. Such a method simplifies considerably
the complexity of the mathematical problem involving the full Navier-Stokes equations. We shall not go into
the methods of solution and of the matching of the regions, since they belong to the boundary layer theory.

COMPRESSIBLE NEWTONIAN FLUID

For a compressible fluid to be consistent with the state of stress corresponding to the state of rest and to be con-
sistent with the definition that p is not to depend explicitly on any kinematic quantities when in motion, we shall
regard p as having the same value as the thermodynamic equilibrium pressure. That is, for a particular density p
and temperature ©, the pressure p is assumed to be determined by the equilibrium equation of state

p=p(p,0). (6.25.1)

For example, for an ideal gas, p = Rp®, where R is the gas constant. Thus,

T;j = —p(p, ©)0;; + AAO;; + 2uDy;, (6.25.2)
and
T;i/3 = —p + kA, (6.25.3)
where A is the rate of dilatation given by
A= % (6.25.4)
0x;
and k is bulk viscosity given by
k=7+(2/3)u (6.25.5)

We see that in general all stress components, including the normal stress components, depend on the
motion through the terms involving the rate of deformation. In particular, the mean normal stress Tj;/3
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depends not only on p but also on the rate of dilatation. However, if either the bulk viscosity & is zero or the

rate of dilatation is zero (e.g., incompressible fluid), then the mean normal stress is the same as p. The

assumption that k = 0 is known as the Stokes assumption, which is known to be valid for monatomic gases.
In terms of u and k, the constitutive equation can be written

2
Tj = —po;j — g/"Aéij +2uDjj + kAS;; (6.25.6)

and the equations of motion become (assuming constant y and k)

Dv; ap n 0 an 82\/,' 0 an
L= _pB——+— (< — k== ]. .25.
p Dt p 8)(,' + 3 (9)(,‘ (8Xj * K 8xj8xj * k@xf 8xj (6 > 7)

We also have the equation of continuity [see Eq. (3.15.3)]

Dp ;i
s 25.
D TP o, 0 (6.25.8)

and the energy equation [see Eq. (6.18.2)]

Du __ Ov; B&C)

e =Ti B Tk S (6.25.9)
where the internal energy u# depends on p and O,
u=u(p,®). (6.25.10)
For example, for ideal gas, with ¢, denoting specific heat at constant volume,
u=rc0. (6.25.11)

Equations (6.25.1), (6.25.7), (6.25.8), (6.25.9), and (6.25.10) form a system of seven scalar equations for
the seven unknowns vy, vy, v3,p, p, ®, and u.

ENERGY EQUATION IN TERMS OF ENTHALPY

Enthalpy per unit mass is defined as

h=u+L. (6.26.1)
p
The stagnation enthalpy is defined by the equation
V2
ho =h+—. (6.26.2)

2

It can be shown (see Example 6.26.1) that in terms of 4,, the energy equation becomes (in the absence of
body forces B; and heat supply ¢;)

Dh, Op O /.,
=—+4+—(Tlvi—gq;), .26.
Dt 0z+axj< i q’) (6.26.3)

where Tl-} is the viscous stress tensor (in Tj; = —pd;; + Tij’-) and ¢; the heat flux vector.
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Example 6.26.1
Show that:

1017 D (p ap 6p
@ —pge P (;) Vigx = ot

U Dv; dp D (p L0V 0q; oTy
(b) pE-FpV/E—E—PE(; + 7

”8_)(/_8_)(,- va/ assuming no heat source, i.e., gs = 0,
or, (/%) aq  ap

(c) p nr = o " on T or
Solution
T
(b) From the energy equation p 1;;/ TU% - %’(: [see Eq. (6.18.1)] and the equation of motion p %Z

[see Eq. (4.7.5)], we have

!
Du Dv, (. 0v dg aT; N0V 9g; 3(—D5u+ Ta‘)
AR Dt_(’/c’?x/ ax) oy ( p5”+T'J'>a)g o T oy

V'%_U:<—p@_ vap) ,8V,' 8(7/ Va—TU/
Xj

8v, ,6V/ (9(]/ ap
Poxt iy ~ax Vo

V= i )
ax X Tox, ox ' ox

Now, using the result in (a), we have

Du va, op D (p) ,0vi 0q; oTj

Por TP ot P

o

@ o202y D (e ) 2 p 2 (P Yy 00y D (Y, D
ot ~ P 2) = PDr o2 ) Pt T Poi\p) TP Dt

Now, using the result in (b), we have

/ Vil
Tox,  ox * " ox;

Dh, _0p 0% _dq OT] Dh, _dp
Por = ot

Tax ox " ox PDr ot T ax
which is Eq. (6.26.3).

aT;
0x;

Example 6.26.2

Show that for steady flows of an inviscid, non-heat-conducting fluid, if the flow originates from a homogeneous state,

then (a)

V2
h+ 5= constant,

(6.26.4)
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and (b) if the fluid is an ideal gas, then

2
PP + v constant, (6.26.5)
y —1p 2

where y = ¢,/cy, the ratio of specific heat.

Solution
(a) Since the flow is steady, dp/dt = 0. Since the fluid is inviscid and non-heat-conducting, T,j =0and g, =0.
Thus, the energy equation (6.26.3) reduces to

Dhy

= 0. (6.26.6)

In other words, h, is a constant for each particle. But since the flow originates from a homogeneous state,

2 2
hy = h+V—:B+ u+v—:constant (6.26.7)
2 p 2

in the whole flow field.

(b) For an ideal gas, p = pRO®,u=c¢,0 and R = ¢, — ¢, therefore,

UZB( ! ) (6.26.8)
p\r—1
and
\ 2
ho:B T +V—=constant. (6.26.9)
p\r—1 2

ACOUSTIC WAVE

The propagation of sound can be approximated by considering the propagation of infinitesimal disturbances
in a compressible inviscid fluid. For an inviscid fluid, neglecting body forces, the equations of motion are

ov; ov; 10p
Zt =7 27.1
ot i an pax,» 6.27.1)

Let us suppose that the fluid is initially at rest with
vi=0, p=p, P=Dpo. (6.27.2)
Now suppose that the fluid is perturbed from rest such that
vi=v!(%,0), p=p,+p(X1), p=po+p(x1). (6.27.3)
Substituting Eqs. (6.27.3) into Eq. (6.27.1), we obtain

o, o] 1 op'

i - P 274
o o po(L+p'/py) Ox; ©279
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Since we assumed infinitesimal disturbances, the terms v/ (9v//dx;) are negligible compared to dv/ /0t and
0’ /p, is negligible compared to 1; thus, we obtain the linearized equations of motion

ot p,Ox; o
In a similar manner, we consider the mass conservation equation
ap’ 00 ov!
22y 1 ! L—0 6.27.6
o TV aXj+po( +0'/po) o, ( )
and obtain the linearized equation
o} 1 9p’
—t=———. 6.27.7
Ox; Po ot ( )

Differentiating Eq. (6.27.5) with respect to x; and Eq. (6.27.7) with respect to ¢, we eliminate the velocity
to obtain

a2p/ - azp/
ox;Ox; 0

(6.27.8)

We further assume that the flow is barotropic, i.e., the pressure depends explicitly on density only. That is,
p = p(p). Expanding p = p(p) in a Taylor series about the rest value of pressure p,, we have

d
P =Po+ (d—p) (p—py)+---s (6.27.9)
P/ py

Neglecting the higher-order terms, we have

dj

p=cp.ct= <—p> . (6.27.10)
dp/,,
Thus, for a barotropic flow,
azp/ 82p/ azp/ 82,0/

2 2
= d = . 6.27.11
“anox,  of M “avax o ( )

These equations are exactly analogous (for one-dimensional waves) to the elastic wave equations of Chapter
5. Thus, we conclude that the pressure and density disturbances will propagate with a speed

co = /(dp/dp), . We call ¢, the speed of sound at stagnation; the local speed of sound is defined to be
c= 4| (6.27.12)

When the isentropic relation of p and p is used, i.e.,
p=PBp, (6.27.13)

where f3 is a constant and 7 is the ratio of specific heats, the speed of sound becomes

c= /L (6.27.14)
p
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Example 6.27.1
For simplicity, let p, p, and v; denote disturbances (instead of p’, p" and v/).

(a) Write an expression for a harmonic plane acoustic wave propagating in the e; direction.
(b) Find the velocity disturbance v;.
(c) Compare dv;/0t to the neglected v;(dv;/0x;).

Solution
(@) p=c¢sin {2771 (X — cot)} .

(b) Using Eq. (6.27.5), we have

o 1 0p e (20 2n
aa__-Zr__ (2 Pix) — eyt
ot~ padn po(é’)cos{f“1 C‘”}’

thus, the velocity disturbance is

e . [2n
= — — b |.
v ocs sin {g (X1 — ¢ )}

(c) For the one-dimensional case, we have the following ratio of amplitudes:

vavl |V|(2ns)
1(3_)(17 ! fpoco 7@
on| e emy o
ot po \ ¢

Thus, the approximation is best when the disturbance has velocity that is much smaller than the speed of sound.

Example 6.27.2
Two fluids have a plane interface at x; = 0. Consider a plane acoustic wave that is normally incident on the interface
and determine the amplitudes of the reflected and transmitted waves.

Solution
Let the fluid properties to the left of the interface (x; < O) be denoted by p; and ¢; and to the right (x; > 0) by p,
and c,.

Now let the incident pressure wave propagate to the right be given by
- [2= .
p; = ¢ sin 7()(1 —at)|, (xx>0). (i)
I
This pressure wave results in a reflected wave
. [2n ,
DPr = &g SiN g—(xl +cab)|, (x<0), (ii)
R
and a transmitted wave

pr =ersin {? (X — czt)}, (x1 >0). (iii)
T
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On the interface x; = O, the pressure on the left fluid exerted by the right fluid is given by (p, + pR)\XFO, whereas

the pressure on the right fluid exerted by the left fluid is (pr)

e

(b1 + Pr)x =0 = (PT)]5,0-

Thus, Egs. (i), (ii), and (iii) give

27[(,‘11' . 27[(,‘21'
n er sin .
T

£/ Sin

This equation will be satisfied at all times if
b =4LCr = (Cl/Cg)fT

and

& — &R =E&T.

_o- By Newton’s third law, we must have

(iv)

(v)

(vi)

(vii)

In addition, we require that the normal velocity be continuous at all times on the interface x; =0 so that

(avl/at)xlzo is also continuous. Thus, by using Eq. (6.27.5),
(o) Lo oy (o)
o )yeo P1L\OX1 X1 ), o P2 \OX /)0
Substituting for the pressures, we obtain
1 .
_(ﬂ+8_R> :i(a_f).
p1 \&  €r p2 \Cr

Combining Egs. (vi), (vii), and (ix), we obtain

oy = [ 2 }8/ - {(9101/»0202) - 1}8/
L+ (p1c1/pac2) L+ (p1c1/pac2)

Note that for the special case p;c = poC

ET = ¢y, ER = 0.

(viii)

(ix)

(x)

(xi)

The product pc is referred to as the fluid impedance. This result shows that if the impedances match, there is no

reflection.

IRROTATIONAL, BAROTROPIC FLOWS OF AN INVISCID
COMPRESSIBLE FLUID

Consider an irrotational flow field given by

(6.28.1)
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To satisfy the mass conservation principle, we must have

op op\op 0 [ 0
GO (G ARG (i ) ) 282
5t+( 3?9‘) 3Xf+p3xj( 339‘) 0 (6:282)

The equations of motion for an inviscid fluid are the Euler equations

ov; ov; 190p

ALV VA Ay ) 6.28.3
ot + Vi an pax,- + ( )

We assume that the flow is barotropic, that is, the pressure is an explicit function of density only (such as in
isentropic or isothermal flow). Thus, in barotropic flow,

p=p(p) and p=p(p). (6.28.4)
Now
0 1 |4 1 dp 10p
£(020)- (3] 2-3
Therefore, for barotropic flows of an inviscid fluid under conservative body forces (i.e., B; = —9Q/0x;), the
equations of motion can be written:
Ov; d; 0 dp
= (J L Q). (6.28.6)

Comparing Eq. (6.28.6) with Eq. (6.21.6), we see immediately that under the conditions stated, irrotational
flows are again always dynamically possible. In fact, the integration of Eq. (6.28.6) (in exactly the same way
as was done in Section 6.21) gives the following Bernoulli equation:

ap [dp V? B
—E"!‘J?-I-?'i‘g—f(t)v (6.28.7)
which, for steady flow, becomes
d, 2
}71) + % + Q = constant. (6.28.8)

For most problems in gas dynamics, the body force is small compared with other forces and is often
neglected. We then have

d 2
J—p + Y _ constant. (6.28.9)
p 2

Example 6.28.1
Show that for steady isentropic irrotational flows of an inviscid compressible fluid (body forces neglected)

2
LB + V_ — constant. (6.28.10)
y—1p 2

Solution
For an isentropic flow p = fp?, dp = Byp’~'dp so that

dp sz Pl v
—=py d = py = —.
Jp Pr| o™ d ﬁv—l y—1p
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Thus, the Bernoulli equation [Eq. (6.28.9)] becomes

2
Yy p VvV

—+ — = constant.
’/—1P+2

We note that this is the same result as that obtained in Example 6.26.2 [Eq. (6.26.5)] by the use of the energy
equation. In other words, under the conditions stated (inviscid, non-heat-conducting, initial homogeneous state),
the Bernoulli equation and the energy equation are the same.

Example 6.28.2
Let p, denote the pressure at zero speed (called the stagnation pressure). Show that for isentropic steady flow
(p/p" = constant) of an ideal gas,

1 2171
pozp[1+§(v_1)(5> } , (6.28.11)

where c is the local speed of sound.

Solution
Since (see previous example)
2
) p LV 7 Do
—+ = = constant = —
y—1p 2 7= 1pg

, and %= %[see Eq. (6.27.14),

therefore,

e el GRS CIORS B I

Thus,
P\ I V_Z"ﬁ
(5)=[z0-0g]

which is Eq. (6.28.11).

Example 6.28.3
Obtain the following relations:
2
po=p+t¥ (6.28.12)
for a small Mach number, defined as

M=—. (6.28.13)

Solution
The binomial expansion of Eq. (6.28.11) gives, for small v/c,

PR e RS E(Co I
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Now
J__r _°r
¢z (yp/p) P
Therefore, for a small Mach number M, we have
pv?

pO:p"—ia

which is Eq. (6.28.12).
We note that this equation is the same as that for an incompressible fluid. In other words, for steady isentropic
flow, the fluid may be considered incompressible if the Mach number is small.

ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE FLUID

In this section, we discuss some internal flow problems of a compressible fluid. The fluid will be assumed to
be an ideal gas. The flow will be assumed to be one-dimensional in the sense that the pressure, temperature,
density, velocity, and so on are uniform over any cross-section of the channel or duct in which the fluid is
flowing. The flow will also be assumed to be steady and adiabatic.

In steady flow, the rate of mass flow is constant for all cross-sections. With A denoting the variable cross-
sectional area, p the density, and v the velocity, we have

pAv = constant. (6.29.1)

Taking the total derivative of the preceding equation, we get

(Av)dp + (pv)dA + (pA)dv = 0. (6.29.2)
That is,
dp dA d
@w i . (6.29.3)
p A v

In the following example, we show that for steady isentropic flow of an ideal gas in one dimension, we have
dA dv
—=—(M*-1), 6.29.4
A ( ) (6.29.4)

where M is the Mach number. Eq. (6.29.4) is known as the Hugoniot equation.

Example 6.29.1
Derive the Hugoniot equation.

Solution
From Eq. (6.28.9), i.e.,

2
J@ + v constant, (6.29.5)
p 2
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we obtain
1
vdv+@:0: vdv+—@dp. (i)
p pdp
> _dp
The speed of sound ¢“ = e therefore,

P dp vav ,
—=——. (i)

p c

Using Eq. (6.29.3) and the preceding equation, we have

dA vdv dv av, -
77F_777(M -1), (iii)

which is Eq. (6.29.4).

From the Hugoniot equation, we see that for subsonic flows (M < 1), an increase in area produces a
decrease in velocity, just as in the case of an incompressible fluid. On the other hand, for supersonic flow
(M > 1), an increase in area produces an increase in velocity. Furthermore, the critical velocity (M = 1)
can only be obtained at the smallest cross-sectional area where dA = 0.

STEADY FLOW OF A COMPRESSIBLE FLUID EXITING A LARGE TANK
THROUGH A NOZZLE

We consider the adiabatic flow of an ideal gas exiting a large tank (inside which the pressure p; and the den-
sity p, remain essentially unchanged) through two types of exit nozzles: (a) a convergent nozzle and (b) a
convergent-divergent nozzle. The surrounding pressure of the exit jet is pg < p.

The Case of a Divergent Nozzle

Application of the energy equation [Eq. (6.28.10)], using the conditions inside the tank and at the section 2 of

the exit jet, gives
2

A S ) S (6.30.1)
2 y—1p, v—1p
where p;, p, and v, are pressure, density, and velocity at section 2 of the exit jet. Thus
2
Rl (1 _&12). (6.30.2)
y—1p; P2 P1

For adiabatic flow,

P2 1y P
(; ) _P (6.30.3)
1 P

Using the preceding equation, we can eliminate p, from Eq. (6.30.2) and obtain

2 i
PPy (%2) . (6.30.4)
7 =1p 1
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vyi=0 @

2 :

P1 \é\
—

FIGURE 6.30-1

The rate of mass flow dm/dt exiting the tank is (with A, denoting the cross-sectional area at section 2)

dm 1y
D Mypyvs = A2 P2 vy = 4, <f7—2) piva. (6.30.5)
dt P1 1

2
Using Eq. (6.30.2) in the preceding equation, we get v; = Py (1 — &12>
7 =1p P21

. ey 12
d 2 2 (41
m _ 12 (12) _ (&) , (6.30.6)
dt -1 p1 p1

For given py, p; and A,, dm/dt depends on p, /p;. We see from the preceding equation that dm/dt = 0 when
p2/p1 = 1 asexpected. It also shows dm/dt = 0 when p, = 0. This last root is not acceptable; we show below that
for a convergent nozzle, the pressure p,, at the exit section 2 inside the jet, can never be less than a critical value p,.

Let us calculate the maximum value of dm/dt. Taking the derivative of (dm/df) with respect to p,/p; and

setting it to zero, we get (see Prob. 6.58) )
D2 2\
—=(— . 6.30.7
()~ () 6307

The preceding equation gives the critical value p. for a given value of p;. At this value of p,/p;, it can be
obtained

v% = y(%) = speed of sound at section 2 of the exit jet. (6.30.8)
2

That is, for a given p;, when the pressure p, at the exit section (section 2 in the figure) reaches the critical
value given by Eq. (6.30.7), the speed at that section reaches the speed of sound. Now, the pressure at section
2 can never be less than the critical value because otherwise the flow will become supersonic at section 2,
which is impossible in view of the conclusion reached in the last section, that to have M = 1, dA must be zero
and to have M > 1, dA must be increasing (divergent nozzle). Thus, for the case of a convergent nozzle, p;
can never be less than pg, the pressure surrounding the exit jet. When pg > p., p» = pr, and when
Pr < P¢y P2 = Pe- The rate of mass flow is,

. vt 1) /5] 1/2
dm 2 V2T N ()
f > ey :A —_— — — — 5 6309
OLPR = Per 0 2L_1(P1P1)} 3 0 ( )
and for pr < p.,
- , —1)71/2

dm 2y 1/2 9 \2/6-1) 5\ 0#D/G-1)
= A, | - — = tant. 6.30.10
o ZL_l@.pl)} i i constan (630.10)
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The Case of a Convergent-Divergent Nozzle

Normal Shock
p1 \

FIGURE 6.30-2

In this case, we take section 2 to be at the throat where dA = 0. From the results in (a), we know that the flow
in the convergent part of the nozzle is always subsonic, regardless of the receiver pressure pp(<p;). The
flow in the diverging passage is subsonic for a certain range of pg/p; (curves a and b in Figure 6.30-2). There
is a value of py at which the flow at the throat is sonic; the flow corresponding to this case is known as choked
flow (curve c). Further reductions of pg cannot affect the condition at the throat and produce no change in
flow rate. There is one receiver pressure, pr, for which the flow can expand isentropically to pg (the solid
curve e). If the receiver pressure is between ¢ and e, such as d, the flow following the throat for a short dis-
tance will be supersonic. This is then followed by a discontinuity in pressure (compression shock), and flow
becomes subsonic for the remaining distance to the exit. If the receiver pressure is below that indicated by e in
the figure, a series of expansion waves and oblique shock waves occur outside the nozzle.

STEADY LAMINAR FLOW OF A NEWTONIAN FLUID IN A THIN ELASTIC
TUBE: AN APPLICATION TO PRESSURE-FLOW RELATION IN A PULMONARY
BLOOD VESSEL

In Section 6.13, we obtain the relation between the volume flow rate Q and the pressure gradient for the

Hagen Poiseuille flow as
dp\ nd* dp\ mr
—_ (£ = (X)) 311
Q (dz) 128 (dz) 8u (631.1)

Thus,

d 8 8
PY__°Lo or rHdp=—0d. (6.31.2)
dz nrt T
This formula is for flow of a viscous fluid in a rigid cylindrical tube, where the radius of the tube is indepen-
dent of the pressure, which decreases in the flow direction. For an elastic tube, however, the radius depends
on the pressure so that upstream radii will be larger than downstream radii. That is, it will be a function of z.
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Let r, be the uniform radius of a thin elastic tube at zero fluid pressure. The average local circumferential
strain of the thin tube is given by

Epp = —2 (6.31.3)

o

and for a thin tube, the local hoop stress Tyy can be calculated from the formula
T =", (6.31.4)

where ¢ is the wall thickness, which is assumed to be very small (that is, 7/r < 1). We note that when r = r,,
Epp =0 and p = 0. Now, by Hooke’s law,

Ep=—= ;7 (6.31.5)

where Ey is the Young’s modulus. Thus,

,_ =5 (6.31.6)
from which we have
T'op -
r=r, (1 — [Ey) . (6.31.7)
Substituting Eq. (6.31.7) in Eq. (6.31.2), we obtain
p(L) r'op - L 8#
.‘p(o) (1 - tEy) dp = — L ot 0. (6.31.8)
Thus
rim‘Ey r,p(0) -3 rop(L) -3
0= 244l (1 — Ey ) — (1 —W) . (6.31.9)

Unlike the case of a rigid uniform tube where Q is directly proportional to [p(0) — p(L)], here it depends
on p(0) and p(L) in a nonlinear manner given in Eq. (6.31.9).

Example 6.31.1
Obtain the pressure-flow relation for a deformable thin tube where the pressure-radius relationship is known to be
given by

r= ro+ocg. (6.31.10)

This relation is known to be a good representation of the pulmonary blood vessel (see Fung, Biodynamics: Circu-
lation, Springer-Verlag, 1984, and the references therein). In the preceding equation, r, is the radius when the trans-
mural pressure (pressure across the wall) is zero and o is a compliance constant.
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Solution
Using Eq. (6.30.10), we have

o _dpar_2ar
dz  drdz odz

Thus, from Eq. (6.31.2), we have

2dr 8
odz wrd

Integrating the preceding equation, we have

) L
J rrdr = fJ 4Mde,
T

from which we obtain

200uQ

T

r(0) = r(L) = L. (6.31.11)

We see that the volume flow rate varies with the difference of the fifth power of the tube radius at the entry section
(z = 0) minus that at the exit section (z = L).

Using Eq. (6.30.10), i.e., r=ry + cxg we get

{rfwwr— {rfwﬁr S LN

5 5 (6.31.12)

This is the pressure-flow relationship.

PROBLEMS FOR CHAPTER 6

6.1 In Figure P6.1, the gate AB is rectangular with width » = 60 cm and length L = 4 m. The gate is hinged
at the upper edge A. Neglecting the weight of the gate, find the reactional force at B. Take the specific
weight of water to be 9800 N /m* and neglect friction.

FIGURE P6.1

6.2 The gate AB in Figure P6.2 is 5 m long and 3 m wide. Neglecting the weight of the gate, compute the
water level & for which the gate will start to fall. Take the specific weight of water to be 9800 N /m>.
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20,000 N

||||<

we

60°\\ B

FIGURE P6.2

6.3 The liquid in the U-tube shown in Figure P6.3 is in equilibrium. Find /4, as a function of
P1s P2, P3, M1 and h3. The liquids are immiscible.

Py N hg

+—

FIGURE P6.3

6.4 In Figure P6.4, the weight Wy is supported by the weight W, via the liquid in the container. The area under
Wk is twice that under Wy. Find Wk in terms of Wy, p,, p,, AL, and i (p, < p, and assume no mixing).

(7]

FIGURE P6.4
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6.5 Referring to Figure P6.5, the radius and length of the cylinder are r and L, respectively. The specific
weight of the liquid is 7. (a) Find the buoyancy force on the cylinder, and (b) find the resultant force
on the cylindrical surface due to the water pressure. The centroid of a semicircular area is 4r/37 from
the diameter.

Av4

FIGURE P6.5

6.6 A glass of water moves vertically upward with a constant acceleration a. Find the pressure at a point
whose depth from the surface of the water is 4. Take the atmospheric pressure to be p,,.

6.7 A glass of water shown in Figure P6.6 moves with a constant acceleration « in the direction shown. (a)
Show that the free surface is a plane and find its angle of inclination, and (b) find the pressure at the
point A. Take the atmospheric pressure to be p,.

FIGURE P6.6

6.8 The slender U-tube shown in Figure P6.7 moves horizontally to the right with an acceleration a. Deter-

mine the relation among a, £ and A.
]
—a.
—t

FIGURE P6.7
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6.9

6.10
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A liquid in a container rotates with a constant angular velocity w about a vertical axis. Show that the
free surface is a paraboloid given by z = (r>w?)/2g, where the origin is on the axis of rotation and z
is measured upward from the lowest point of the free surface.

The slender U-tube rotates with an angular velocity @ about the vertical axis shown in Figure P6.8. Find
the relation among 0A(= hy — hy), w, | and r;.

)
(
Y |

FIGURE P6.8

6.11

6.12

6.13

6.14

6.15

6.16
6.17

6.18

For minor altitude differences, the atmosphere can be assumed to have constant temperature. Find the
pressure and density distribution for this case. The pressure p, density p, and absolute temperature ®
are related by the ideal gas law p = pRO.

In astrophysical applications, an atmosphere having the relation between the density p and the pressure
p given by p/p, = (p/p,)", where p, and p, are some reference pressure and density, is known as a
polytropic atmosphere. Find the distribution of pressure and density in a polytropic atmosphere.

Given the following velocity field for a Newtonian liquid with viscosity p = 0.982 mPa.s
(2.05 x 107 Ib x s/ft*): vi = —c(x; +x2), v2=c(x2 —x1), v =0, c = 1 s~'. For a plane whose
normal is in the e; direction, (a) find the excess of the total normal compressive stress over the pressure
p, and (b) find the magnitude of the shearing stress.

For a steady parallel flow of an incompressible linearly viscous fluid, if we take the flow direction to be
e3, (a) show that the velocity field is of the form v; = 0, v, = 0, and v3 = v(x1,x2). (b) If v(x1,x2) = kxp,
find the normal and shear stresses on the plane whose normal is in the direction of e, + e3 in terms of vis-
cosity u and pressure p, and (c) on what planes are the total normal stresses given by p?

Given the following velocity field for a Newtonian incompressible fluid with a viscosity u = 0.96 mPa.s:
Vv = k(x% — x%), vy = —2kx1xp, v3 =0, k=1 s~ im~L. At the point (1,2,1)m and on the plane whose
normal is in the direction of e, (a) find the excess of the total normal compressive stress over the pressure
p, and (b) find the magnitude of the shearing stress.

Do Prob. 6.15 except that the plane has a normal in the direction 3e; + 4e;.

Using the results of Section 2.34, Chapter 2, and the constitutive equations for the Newtonian viscous
fluid, verify the Navier-Stokes equation in the r-direction in cylindrical coordinates, Eq. (6.8.1).

Using the results of Section 2.35, Chapter 2, and the constitutive equations for the Newtonian viscous
fluid, verify Navier-Stokes equation in the r-direction in spherical coordinates, Eq. (6.8.5).
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6.19 Show that for a steady flow, the streamline containing a point P coincides with the pathline for a parti-
cle that passes through the point P at some time ¢.

6.20 Given the two-dimensional velocity field v; = kxjx2/(1 + kxaf), vo = 0. (a) Find the streamline at
time ¢, which passes through the spatial point (o, ), and (b) find the pathline equation x = x(¢) for
a particle that is at (X;,X;) at time #,.

6.21 Given the two-dimensional flow v; = kx,, v, = 0. (a) Obtain the streamline passing through the point
(01,02). (b) Obtain the pathline for the particle that is at (X;,X,) at + = 0, including the time history
of the particle along the pathline.

6.22 Do Prob. 6.21 for the following velocity field: vi = wx,, v, = —wx;.

6.23 Given the following velocity field in polar coordinates (r, 0):
v, =Q/Q2nar), vp=0.

(a) Obtain the streamline passing through the point (r,, 6,), and (b) obtain the pathline for the particle
that is at (R, ®) at ¢ = 0, including the time history of the particle along the pathline.

6.24 Do Prob. 6.23 for the following velocity field in polar coordinates (r,0): v, = 0,vg = C/r.
6.25 From the Navier-Stokes equations, obtain Eq. (6.11.2) for the velocity distribution of the plane Couette flow.

6.26 For the plane Couette flow, if in addition to the movement of the upper plate there is also an applied
negative pressure gradient dp/0x, obtain the velocity distribution. Also obtain the volume flow rate
per unit width.

6.27 Obtain the steady unidirectional flow of an incompressible viscous fluid layer of uniform depth d flow-
ing down an inclined plane, which makes an angle 0 with the horizontal.

6.28 A layer of water (pg = 62.4 Ib/ft?) flows down an inclined plane (0 = 30°) with a uniform thickness of
0.1 ft. Assuming the flow to be laminar, what is the pressure at any point on the inclined plane? Take
the atmospheric pressure to be zero.

6.29 Two layers of liquids with viscosities u; and pu,, densities p; and p,, respectively, and with equal depths
b flow steadily between two fixed horizontal parallel plates. Find the velocity distribution for this steady
unidirectional flow.

6.30 For the Couette flow of Section 6.15, (a) obtain the shear stress at any point inside the fluid, (b) obtain
the shear stress on the outer and inner cylinder, and (c) obtain the torque that must be applied to the
cylinders to maintain the flow.

6.31 Verify the equation f* = pw/2u for the oscillating problem of Section 6.16.

6.32 Consider the flow of an incompressible viscous fluid through the annular space between two concentric
horizontal cylinders. The radii are a and b. (a) Find the flow field if there is no variation of pressure in
the axial direction and if the inner and the outer cylinders have axial velocities v, and v;, respectively,
and (b) find the flow field if there is a pressure gradient in the axial direction and both cylinders are
fixed. Take body forces to be zero.

6.33 Show that for the velocity field: v, = v(y,z), v, = v. = 0, the Navier-Stokes equations, with B = 0,

*v 0 14
reduce to a—y; 6_2‘2} = ;d_i = f = constant.
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6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43
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Given the velocity field in the form v, = v = A(y?/a® + z2/b*) + B, vy = v, = 0. Find A and B for the
steady laminar flow of a Newtonian fluid in a pipe having an elliptical cross-section given by
y?/a* + z2/b* = 1. Assume no body forces, and use the governing equation obtained in the previous
problem.

Given the velocity field in the form of

b b b
L =A — 3y —— -V3y——|+B, vy=v,=0.
(o) (V- G5) (- - gg) +e me
Find A and B for the steady laminar flow of a Newtonian fluid in a pipe having an equilateral triangular

cross-section defined by the planes
b b b
+—=0, z4+V3y——=0, z—V3y——=0.
TasT T TV AT STV TR

Assume no body forces, and use the governing equation obtained in Prob. 6.33.

For the steady-state, time-dependent parallel flow of water (density p = 10° kg/m3, viscosity
p=10"3 Ns/m?) near an oscillating plate, calculate the wave length for = 2 cps.

The space between two concentric spherical shells is filled with an incompressible Newtonian fluid. The
inner shell (radius r;) is fixed; the outer shell (radius r,) rotates with an angular velocity Q about a diam-
eter. Find the velocity distribution. Assume the flow to be laminar without secondary flow.

Consider the following velocity field in cylindrical coordinates for an incompressible fluid:
vV, = v(r)7 Vg = 0, v, = 0.

(a) Show that v, = A/r, where A is a constant, so that the equation of conservation of mass is satisfied.
(b) If the rate of mass flow through the circular cylindrical surface of radius » and unit length (in
z-direction) is Q,,, determine the constant A in terms of Q,,.

Given the following velocity field in cylindrical coordinates for an incompressible fluid:
v, =v(r,0), vg =0, v, = 0. Show that (a) v, =f(60)/r, where f(6) is any function of 6, and (b) in
the absence of body forces,

d*f of? [ ku

W+4f+7+k:0’ p= 2ﬂr—2+ﬁ+c, k and C are constants.
Consider the steady two-dimensional channel flow of an incompressible Newtonian fluid under the
action of an applied negative pressure gradient dp/dxi, as well as the movement of the top plate with
velocity v, in its own plane (see Prob. 6.26). Determine the temperature distribution for this flow due to
viscous dissipation when both plates are maintained at the same fixed temperature 6,. Assume constant
physical properties.

Determine the temperature distribution in the plane Poiseuille flow where the bottom plate is kept at a
constant temperature ®; and the top plate at ®,. Include the heat generated by viscous dissipation.

Determine the temperature distribution in the steady laminar flow between two coaxial cylinders
(Couette flow) if the temperatures at the inner and the outer cylinders are kept at the same fixed tem-
perature ©,.

Show that the dissipation function for a compressible fluid can be written as that given in Eq. (6.17.10).
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6.44 Given the velocity field of a linearly viscous fluid: v; = kx;, v, = —kx,, v3 = 0. (a) Show that the
velocity field is irrotational. (b) Find the stress tensor. (c) Find the acceleration field. (d) Show that
the velocity field satisfies the Navier-Stokes equations by finding the pressure distribution directly from
the equations. Neglect body forces. Take p = p, at the origin. (¢) Use the Bernoulli equation to find the
pressure distribution. (f) Find the rate of dissipation of mechanical energy into heat. (g) If x, =0 1is a
fixed boundary, what condition is not satisfied by the velocity field?

6.45 Do Prob. 6.44 for the following velocity field: v = k(x% — x%), vy = —2kx1xp, v3 = 0.
6.46 Obtain the vorticity vector for the plane Poiseuille flow.
6.47 Obtain the vorticity vector for the Hagen-Poiseuille flow.

6.48 For a two-dimensional flow of an incompressible fluid, we can express the velocity components in
terms of a scalar function  (known as the Lagrange stream function) by the relations

0 0 . . . . .

vy = a—w, vy = _8_lp' (a) Show that the equation of conservation of mass is automatically satisfied
y X

for any y/(x,y) that has continuous second partial derivatives. (b) Show that for two-dimensional flow
of an incompressible fluid, iy = constants are streamlines. (c) If the velocity field is irrotational, then
v; = —0¢/0x;. Show that the curves of constant velocity potential ¢ = constant and the streamline
= constant are orthogonal to each other. (d) Obtain the only nonzero vorticity component in terms of .
2

6.49 Show that = V,y (1 ) represents a two-dimensional irrotational flow of an inviscid fluid.

X+ 2

6.50 Referring to Figure P6.9, compute the maximum possible flow of water. Take the atmospheric pressure
to be 93.1 kPa., the specific weight of water 9810 N /m?, and the vapor pressure 17.2 kPa. Assume the
fluid to be inviscid. Find the length ¢ for this rate of discharge.

10cm dia
o
-

3m

1)<

it

FIGURE P6.9

6.51 Water flows upward through a vertical pipeline that tapers from cross-sectional area A; to area A, in a
distance of A. If the pressure at the beginning and end of the constriction are p; and p,, respectively,
determine the flow rate Q in terms of p,A;,As,p1,p> and h. Assume the fluid to be inviscid.
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6.52

6.53

6.54

6.55

6.56

6.57

6.58
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Verify that the equation of conservation of mass is automatically satisfied if the velocity components in
cylindrical coordinates are given by

__ 1w 1wy
Vrp = 91’827 z*prar7 0 =Y,

where the density p is a constant and  is any function of r and z having continuous second partial
derivatives.

From the constitutive equation for a compressible fluid, derive the equation

Dv; Op ud [0 0v; 0 (0v;
=pBi ——+-— == —=).
P Dt p Bx,- + 3 6)6,' (6)6]' tH 8Xja)€j + k(’)x,- E)xj

Show that for a one-dimensional, steady, adiabatic flow of an ideal gas, the ratio of temperature @;/®,
at sections 1 and 2 is given by

1
o 1 +5(~,v — 1)M?
e . 1
1+ 3 (y— M3
where 7 is the ratio of specific heat, and M; and M, are local Mach numbers at section 1 and section
2 respectively.

Show that for a compressible fluid in isothermal flow with no external work,

dM? dv
= =2
M2 v

where M is the Mach number. (Assume perfect gas.)

Show that for a perfect gas flowing through a duct of constant cross-sectional area at constant tempera-
d 1 dM?
ture, @ __ ———. (Use the results of the last problem.)
p 2 M?
For the flow of a compressible inviscid fluid around a thin body in a uniform stream of speed V,,
in the x; direction, we let the velocity potential be ¢ = —V,(x; + ), where ¢, is assumed to
be very small. Show that for steady flow, the equation governing ¢, is, with M, =V,/c,,
P +32<P1 9, _
ox}  ox3  OxF

(1-31)

o

0.

For a one-dimensional steady flow of a compressible fluid through a convergent channel, obtain the crit-
ical pressure and the corresponding velocity. That is, verify Egs. (6.30.7) and (6.30.8).



CHAPTER

The Reynolds Transport Theorem
and Applications

In Chapters 3 and 4, the field equations expressing the principles of conservation of mass, linear momentum,
moment of momentum, energy, and entropy inequality were derived by the consideration of differential ele-
ments in the continuum (Sections 3.15, 4.7, 4.4, 4.15 and 4.16) and by the consideration of an arbitrary fixed
part of the continuum (Section 4.18). In the form of differential equations, the principles are sometimes
referred to as local principles. In the form of integrals, they are known as global principles. Under the
assumption of smoothness of functions involved, the two forms are completely equivalent, and in fact the
requirement that the global theorem be valid for each and every part of the continuum results in the differen-
tial form of the balanced equations, which was demonstrated in Section 4.18; indeed, in that section, the pur-
pose is simply to provide an alternate approach to the formulation of the field equations and to group all the
field equations for a continuum into one section for easy reference.

In this chapter, we revisit the derivations of the integral form of the principles with emphasis on the Rey-
nolds transport theorem and its applications to obtain the approximate solutions of engineering problems
using the concept of control volumes, moving as well as fixed. A small portion of this chapter is a repeat
of Section 4.18, which perhaps is desirable from the point of view of pedagogy. Furthermore, in the deriva-
tions used in Section 4.18, it is assumed that the readers are familiar with the divergence theorem; we refer
those readers who are not familiar with the theorem to the present chapter, wherein the divergence theorem
will be introduced through a generalization of Green’s theorem (a two-dimensional divergence theorem),
the proof of which is given in detail. A detailed discussion of the distinction between integrals over a control
volume and integrals over a material volume is also given before the derivation of the Reynolds transport
theorem.

GREEN’S THEOREM

Let P(x,y), OP/Ox and OP /Oy be continuous functions of x and y in a closed region R bounded by the closed
curve C. Let n = n.e, + nye, be the unit outward normal of C. Then Green’s theorem states that

J a—PdA :J Pdy :J Pn.ds (7.1.1)
g Ox c c
and
J 9P = ,J Pdx = J Pnyds, (7.1.2)
g Oy c c

Copyright © 2010, Elsevier Ltd. All rights reserved.
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FIGURE 7.1-1

where the subscript C denotes the line integral around the closed curve C in the counterclockwise direction
and s is the arc length measured along the boundary curve in the counterclockwise direction. For the proof,
let us assume for simplicity that the region R is such that every straight line through an interior point and par-
allel to either axis cuts the boundary in exactly two points. Figure 7.1-1 shows one such region. Let a and b be
the least and the greatest values of y on C (point G and H in the figure). Let x = x(y) and x = x,(y) be the

equations for the boundaries HAG and GBH, respectively. Then

b
oP =0) op
[ Zar- { [ adx] &

a

Now,
) op x(y)
| Srdr=rln| = Plat)y] - Pia().l.
xi(y) OX ()
Thus,
b b
oP
A= Pl (y),yldy — | Plx1(y),yldy = | Pdy— | Pdy.
R a a GBH GAH
Since
J Pdy = — J Pdy,
GAH HAG
then

opP

J —dA = J Pdy + J de:Jde.
R ax
GBH HAG c

(7.1.3)

(7.1.4)

(7.1.5)

(7.1.6)

(7.1.7)
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Let x = x(s) and y = y(s) be the parametric equations for the boundary curve. Then dy/ds = n, so that

J g—idA = [ Pn.ds. (7.1.8)
R Je

Eq. (7.1.2) can be proven in a similar manner.

Example 7.1.1
For P(x,y) = xy?, evaluate JoP(x,y)nxds along the closed path OABC (Figure 7.1-2). Also evaluate the area integral

%dA. Compare the results.

Jr O
Solution
We have
Jm&mm$=J A®%®%+J w%nw+} m%m%+[ (0)y?(~1)ds
C OA AB BC co
y
h
ofb—p —
FIGURE 7.1-2
That is,

h 3
J P(x,y)nm’s:J byzdy:m.
¢ 0 3

On the other hand,
P h bh?
—_dA= J y2dA = J y2bdy = —,
JR ox R 0 3
and we see

J Pnyds :J %dA,
c R ox
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DIVERGENCE THEOREM

Let v =v;(x1,x2)e; + v2(x1,x2)e; be a vector field. Applying Egs. (7.1.1) and (7.1.2) to v; and v, and adding,
we have

o 8\/1 8\)2
Jc(vlnl + vanp)ds = L (8_)61 + 8_r2) dA. (7.2.1)

In indicial notation, Eq. (7.2.1) reads

J vinds = J %dA, (7.2.2)
C R OX;
and in invariant notation,
J V- nds = J (div v)dA. (7.2.3)
C R

The following generalization not only appears natural but can indeed be proven (we omit the proof):

ov;
vindS = J —Lav. (7.2.4)
L jj vaxj
Or, in invariant notation,
J v-ndS = [ (div v)dV, (7.2.5)
S JV

where S is a surface forming the complete boundary of a bounded closed region R in space and n is the out-
ward unit normal of S. Equation (7.2.5) is known as the divergence theorem (or the Gauss theorem). The the-
orem is valid if the components of v are continuous and have continuous first partial derivatives in R. It is also
valid under less restrictive conditions on the derivatives. In Eq. (7.2.5), if we replace v with av, where o is a
scalar function, we have

J av-ndS = J (div av)dV. (7.2.6)
s v

Next, if we replace v; with T;; in Eq. (7.2.4), where T;; are components of a tensor T, then we have

OT;;
T;indS = [ —av. (7.2.7)
L jj y Ox;
Or, in invariant notation,
J TndS = J (div T)dV. (7.2.8)
s 4

Equation (7.2.8) is the divergence theorem for a tensor field. It is obvious that for tensor fields of higher
order, Eq. (7.2.8) is also valid, provided the Cartesian components of div T are defined to be 0T, s /] Ox;.
For example,

- OTy,
JT,»jknde:J 5 Eav. (7.2.9)
N v OXg
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Example 7.2.1
Let T be a stress tensor field and let S be a closed surface. Show that the resultant force f of the distributive forces on
Sis given by

- J (divT)aV. (7.2.10)
%

Solution
We have

fo J £, (7.2.11)
s
where t is the stress vector. Now t = Tn; therefore, from the divergence theorem, we have
f:J tdS:J TndS:J div TaV
s s %
or, in indicial notation,

f= J %d\/. (7.2.12)
v OXj

Example 7.2.2
Referring to Example 7.2.1, also show that the resultant moment m about a fixed point O of the distributive forces on
Sis given by

m=| [xx (divT)+2t"]av, (7.2.13)
JV

where x is the position vector of the particle with volume dV, relative to the fixed point O, and t* is the axial (or dual)
vector of the antisymmetric part of T (see Section 2.21).

Solution
We have
m= va x tdS. (7.2.14)
Let m; be the component of m; then
m; = LS/J‘kX/l‘de = LS//kX/ TkppdS. (7.2.15)

Using the divergence theorem, Eq. (7.2.4), we have

my = ‘ D ey Tip)dV. (7.2.16)
Jv 0xp
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Now

0 ox; 0T Ty
— (eiXi Tin) = i | =L Tip + X —2 | = ejpc| 61p Tip + X —2
0Xp (?”kxf kP ) bik ((’)Xp ko % (’)xp) FW( o Tho X Oxp>

aTk 8Tk
= &k (ka +X BT;) = —eig Ty + &/kX/anp-
Noting that —e;; T are the components of 2t* (i.e., twice the dual vector of the antisymmetric part of T) [see

Eq. (2.21.4)], and &jx; %Tkp are components of (x x div T), we have

Xp

m:JxxtdS:j [x x (divT) +2t"]aV.
S v

Example 7.2.3
Referring to Example 7.2.1, show that the total power P (rate of work done) by the stress vector on S is given by
P:J t~vdS:J [(div T)~v+tr<TTVv)]dV, (7.2.17)
S v
where v is the velocity field.
Solution
The power is given by
P J t.vds — J Tn - vas. (7.2.18)
S S

Now Tn-v = n- T'v (definition of the transpose of a tensor), and using the divergence theorem,

p_ J.s"' (T'v)as = Jvdiv<ﬂv) av.
Now

oTv; 0Ty v
w1y =2 2% 9%, Y gy T K
d|v<T v> = ox ~ ox v+ T % (divT) v+tr<TVv)4
Thus,

P Lt vdS = JV (v Ty v tr (Tow) |av,

which is Eq. (7.2.17).
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INTEGRALS OVER A CONTROL VOLUME AND INTEGRALS OVER
A MATERIAL VOLUME

Consider first a one-dimensional problem in which the motion of a continuum, in Cartesian coordinates,
is given by

x=xX,1), y=Y, z=2 (7.3.1)
and the density field is given by
o =p(x,1). (7.3.2)
The integral
x2
m(z,x<1>,x<2>> :J p(x, H)Adx, (13.3)
x(D

with fixed values of x'" and x® is an integral over a fixed control volume; it gives the total mass at time

¢ within the spatially fixed cylindrical volume of constant cross-sectional area A and bounded by the end faces
x = x1 and x = x?)

Let X(l), X be the material coordinates for the particles, which, at time ¢z, are at P and x(z), respectively,
ie., x =3(XW, ) and x? = %(X®,r). Then the integral
£(x2 1)
M(t, x<1>,x<2>) = } p(x, )Adx, (134)
AW 1)

with its integration limits functions of time (in accordance with the motion of the material particles that at
time 7 are at x'" and x(z)), is an integral over a material volume; it gives the total mass at time ¢ of that part
of the material that is instantaneously (at time f) coincidental with that inside the fixed boundary surface con-
sidered in Eq. (7.3.3). Obviously, at time ¢, both integrals, i.e., Eqs. (7.3.3) and (7.3.4), have the same value.
At other times, say at ¢ + dt, however, they have different values. Indeed,
om |0
o~ o,

ex(2

p(x, t)Adx} , (1.3.5)

(1)
x x(D x(2) —fixed

is different from

D £(x@r)
:EL ; p(x,1)Adx. (7.3.6)

(xM0)

oM [o (fx®)
e

il o(x, t)Adx}
JAXD.) X(1) X® —fixed
We note that Om/0t in Eq. (7.3.5) gives the rate at which mass is increasing inside the fixed control volume
bounded by the cylindrical lateral surface and the end faces x = x'" and x = x®, whereas 9M/0t in Eq. (7.3.6)
gives the rate of increase of the mass of that part of the material that at time ¢ is coincidental with that in the
fixed control volume. They should obviously be different. In fact, the principle of conservation of mass
demands that the mass within a material volume should remain a constant, whereas the mass within the fixed
control volume in general changes with time.
The preceding example serves to illustrate the two types of volume integrals that we employ in the follow-
ing sections. We use V.. to indicate a fixed control volume and V,, to indicate a material volume. That is, for
any tensor T (including a scalar), the integral
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J T(x,1)dV
Ve
is over the fixed control volume V., and the rate of change of this integral is denoted by

13}
P .[V(T(x, Hdv,

whereas the integral
[ T(x,1)dV,
Vi

is over the material volume and the rate of change of this integral is denoted by

D

— | T(x,5)dV.
D,jvm (x,1)

THE REYNOLDS TRANSPORT THEOREM

Let T(x, f) be a given scalar or tensor function of spatial coordinates (xj,x;,x3) and time ¢. Examples of
T(x, t) are density p(x, 1), linear momentum p(Xx, 7)v(X, t), and angular momentum r x p(X,7)v(X, ).

Let fv (x,1)dV be an integral of T(x, ) over a material volume V,,. As discussed in the last section, the
material volume V,. consists of the same material particles at all times and therefore has time-dependent
boundary S,, due to the movement of the material.

We wish to evaluate the rate of change of such integrals (e.g., the rate of change of mass, of linear
momentum, and so on of a material volume) and to relate them to physical laws (such as the conservation
of mass, balance of linear momentum, and the like).

The Reynolds transport theorem states that

_‘ Rk J . t)dv+‘ T(v-m)ds, (7.4.1)
V. ot s
um g .
or
D DT .
D JV MT(X, Ndv = L (D—t + T div v) av, (7.4.2)

where V. is the control volume (fixed in space) that instantaneously coincides with the material volume V,,
(moving with the continuum), S. is the boundary surface of V., and n is the outward unit normal vector.
We note that the notation D/Dt in front of the integral at the left-hand side of Egs. (7.4.1) and (7.4.2) empha-
sizes that the boundary surface of the integral moves with the material and we are calculating the rate of
change by following the movements of the material.

The Reynolds theorem can be derived in the following two ways:

(a) We have

QJ T(x, 1)V = J [2 (TdV)] - J D—TdV +J 2@ (7.43)
Vit V=V, v. D v, Dt



(b)
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Since [see Eq. (3.13.14)]

Eq. (7.4.3) becomes Eq. (7.4.2). That is,

D [ (DT
— T(x,t)dV = —+ T di dv.
Dt Jme (X7 ) JV{- <Dt * v V>

In Cartesian coordinates, the preceding equation reads,

D . [ DT,:,‘ 3 8vk - aTz’j OT,'/'V]{
DIJVMT,,(X, ndv = JV‘ { o T <axk)}‘”’* JV( { o o )|

Now, from the Gauss theorem, Eq. (7.2.9), we have

O(T;ivi
J o) J Tyvinds.
v an K
Thus,
D 8T,(X l)
—| Tx,nav=| —L=2Lav T;vimds.
Dt Jvmm 5%, Jv, ot * L‘. VKT
In invariant notation, we have
D oT
—J Tdv = J —dV—i—J T(v - n)dS.
Dtly,. v, Ot s,

This is Eq. (7.4.1).

Alternatively, we can derive Eq. (7.4.2) in the following way. Since [see Eq. (3.28.3)]
dV = (det F)dV,,

where F is the deformation gradient and dV,, is the volume at the reference state,
J T(x,1)dV = J T(x,t)(det F)dV,,
Vi Vo

thus,

Now, from Egs. (7.4.7) and (7.4.4), we have

D(detF) 1 (de): 1

Dr av,\Dt av,

(div v)dV = (div v)(det F),
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(7.4.4)

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)
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therefore, Eq. (7.4.9) becomes

D | DT . [ (DT .
D J T(x,1)dV = J {E + T(div V):| det FdV, = ‘ {E + T(div V):| dv,
Vin Ve Ve

which is Eq. (7.4.2).
From Egs. (7.4.1) and (7.4.2), we also have

IT(x,1) [ (DT .
J oAV + JT(V n)ds = J (Dt T div V>dV. (7.4.11)
v, S, Ve

THE PRINCIPLE OF CONSERVATION OF MASS

The global principle of conservation of mass states that the total mass of a fixed part of a material should
remain constant at all times. That is,

D
Ejvmp(x 1dv = 0. (7.5.1)

Using Reynolds transport theorem Eq. (7.4.1), we obtain
[ Qp(x, 1) = —J p(v - n)ds, (7.5.2)
v, Ot s,
or
7]
—J p(x,1)dV = —J p(v-n)ds. (7.5.3)
ot )y, s,

This equation states that the time rate at which mass is increasing inside a control volume = the mass
influx (i.e., net rate of mass inflow) through the control surface. Using Eq. (7.2.6), we have

J p(v-m)dS = [ (div pv)dV, (7.5.9)
S JV
thus, Eq. (7.5.2) can be written as
ap .
J {7 + div (pv)} dv =0. (7.5.5)
v, L Ot

This equation is to be valid for all V; therefore, we must have

o +div (pv) =0, (7.5.6)
ot

or
% + pdivv = 0. (7.5.7)

Eq. (7.5.6) or Eq. (7.5.7) is the same equation of continuity derived in Section 3.15.
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Example 7.5.1
Given the motion
X1 =(1+O€t)X1, Xo = Xo, X3 = X3 (i)
and the density field
_ Po _ i
P=17 at(po = constant). (ii)

(a) Obtain the velocity field.

(b) Check that the equation of continuity is satisfied.

(c) Compute the total mass and the rate of increase of mass inside a cylindrical control volume of cross-sectional
area A and having as its end faces the plane x; = 1 and x; = 3.

(d) Compute the net rate of inflow of mass into the control volume of part (c).

(e) Find the total mass at time t of the material that at the reference time (¢ = 0) was in the control volume of (c).

(f) Compute the total linear momentum for the fixed part of material considered in part (e).

Solution
(a)
_Dxy ! B B
Vl_ﬁ_“xl_hrat’ =0, w=0. (iii)
(b) Using (ii) and (iii),
Dp . _Op ap o op, ox] P o« .
R il T P P AL G e, A G IRy G R R (iv)
(c) The total mass inside the control volume at time tis
X1 =3 x1=3
_ _ h _ ! Po _ 2Apo
mit) = Jp(X, BV = L:l p(x, )dV = L:l Lo Ao = 2P V)

Ve

and the rate at which the mass is increasing inside the control volume at time tis

om _ 2aAp,

A (vi)
ot (1 +at)? v

The negative sign means that the mass is decreasing.

(d) Since v, = v3 =0, there is neither inflow nor outflow through the lateral surface of the control volume.
Through the end face x; = 1, the rate of inflow (mass influx) is

(pAV),, 1 = porA/(1 + at)’. (vii)
On the other hand, the mass outflux through the end face x; = 3 is

(PAV),_s = 3p2A/ (1 + at)’. (vii)
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Thus, the net mass influx is
om _ 2p,0A (i)
ot (1+at)®’

which is the same as Eq. (vi).

(e) The particles that were at x; = 1 and x; = 3 when t = O have the material coordinates X; = 1 and X; = 3,
respectively. Thus, the total mass at time tis

Y J~X1:3(l+ozz‘) Po o Apo
X1:(1+a<f) 1 =+ O(t ]. —+ O(f

[B(1 +at) — (1 4+ at)] = 2Ap,. (x)

We see that this time-dependent integral turns out to be independent of time. This is because the chosen
density and velocity fields satisfy the equation of continuity so that the total mass of a fixed part of material
is indeed a constant.

(f) Total linear momentum is, since vo = v3 = 0,

x1=3(1+at) A 3(1+at)
P:J oy Adxe; :AJ
(1+at)

xpdx;e; = 4Ap,oe;. (xi)
xi=(1+at) (1 +at)? ’

The fact that P is also a constant is accidental. The given motion happens to be acceleration-less, which
corresponds to no net force acting on the material volume. In general, the linear momentum for a fixed part of
material is a function of time.

THE PRINCIPLE OF LINEAR MOMENTUM

The global principle of linear momentum states that the total force (surface and body forces) acting on any
fixed part of material is equal to the rate of change of linear momentum of the part. That is, with p denoting
density, v velocity, t stress vector, and B body force per unit mass, the principle states

D
J tdsS + J pBdV = — ‘ pvdV. (7.6.1)
S v, Dt )y,

¢ m

Now, using the Reynolds transport theorem Eq. (7.4.1), Eq. (7.6.1) can be written as

J tds + J pBdV = J Y 4y + J pv(V - n)dS. (7.6.2)
S v, v, Ot Se

In words, Eq. (7.6.2) states that:
Total force exerted on a fixed part of a material instantaneously in a control volume V. = time rate of

change of total linear momentum inside the control volume + net outflux of linear momentum through the
control surface S..

Equation (7.6.2) is very useful for obtaining approximate results in many engineering problems.
Using Eq. (7.4.11), Eq. (7.6.2) can also be written as

J {D(” V) 4 pv(div v)dV} - J tds +J pBAV. (7.6.3)
V. Dt S Ve



7.6 The Principle of Linear Momentum 423

But

D(pv) Dp Dv . Dv
_ — —(pd - 7.6.4
pi ~ oVt = dvIVE e (7.64)

where we have made use of the conservation of mass equation Dp /Dt + pdiv v = 0; therefore, Eq. (7.6.3)
becomes

- \ .
J oY av = J tds + J pBaV. (1.6.5)
v, Dt S, v,
Since
J tds = ‘ Tnds = ‘ div TdV, (7.6.6)
s, Js. Jv.
we have
D
J (p—v —divT — pB> dv =0, (7.6.7)
V. Dt

from which the following field equation of motion is obtained:

Dv

Dy = div T+ pB. (7.6.8)

p

This is the same equation of motion derived in Chapter 4 (see Section 4.7).

We can also obtain the equation of motion in the reference state as follows: Let p,, dS,, and dV,, denote
the density, surface area, and volume, respectively, at the reference time 7, for the differential material having
p, dS, and dV at time ¢; then the conservation of mass principle gives

PodVo = pdV, (7.6.9)

and the definition of the stress vector t,, associated with the first Piola-Kirchhoff stress tensor T, gives
[see Eq. (4.10.6)]

t,dS, = tdS. (7.6.10)

Now, using Egs. (7.6.9) and (7.6.10), Eq. (7.6.5) can be transformed to the reference configuration. That is,

Dv
—dVy, = t.dS
jv“po Dt ° L ¢ O+Jv

o

pBdV, = J

TonydS, + J poBdV,. (7.6.11)
So

Vo

In the preceding equation, everything is a function of the material coordinates X; and ¢, T, is the first
Piola-Kirchhoff stress tensor, and n,, is the outward normal. Using the divergence theorem for the stress tensor
term, Eq. (7.6.11) becomes

J PNV, = J Div TodV, + J p.BdVo, (1.6.12)
Vo V,

v,
where, in Cartesian coordinates,

Div T, = [a(To),.j/axj] e. (7.6.13)
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From Eq. (7.6.12), we obtain

Dv

Dr = Div T, + p, B. (7.6.14)

Po

This is the same equation derived in Chapter 4, Eq. (4.11.2).

Example 7.6.1
A homogeneous rope of total length ¢ and total mass m slides down from the corner of a smooth table. Find the
motion of the rope and tension at the corner.

(Vor—t  — £-x —

A | N

FIGURE 7.6-1

Solution
Let x denote the portion of rope that has slid down the corner at time . Then the portion that remains on the table at
time tis £ — x. Consider the control volume shown as (V;), in Figure 7.6-1. The momentum in the horizontal direction

. . m . . rm ..
inside the control volume at any time tis, with x denoting dx/df, 7 (¢ — x)x, and the net momentum outflux is [YX]X.

Thus, if T denotes the tension at the corner point of the rope at time t, we have

T d[m

-2 7(5—)())'(] +;X2:%(—X)X+$(f—x))?+mk2, 0

l

(£ — X)X, (ii

as expected.
On the other hand, by considering the control volume (V;), (see Figure 7.6-1), the momentum in the downward
direction is (m/€)xx and the momentum influx in the same direction is [(m/£)x]x. Thus,

e ()= () -
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ie.,
m m ..
—T+?xg f?xx.
From Egs. (ii) and (iv), we have
m . m .
7(€—x)x_7xg— 7 X%
ie.,
. 8
—2x=0.
X—3x

The general solution of Eq. (vi) is

X = wap[(@) 1‘] + Cgexp[(— g/t’) t].

If the rope starts at rest with an initial overhang of x,, we have

=25 fol (VY] o] -(vT) ]}

The tension at the corner is given by

425

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

We note that the motion can also be obtained by considering the whole rope as a system. In fact, the total linear

momentum of the rope at any time tis

~|3

; m._.
(€ —x)xe; + 7 ez

Its rate of change is

Zle—x0x = #)er + 7 (i + ez,

(x)

(xi)

and the total resultant force on the rope is (m/€)xg e>. Thus, equating the force to the rate of change of momentum

for the whole rope, we obtain
(t—x)k—x*=0
and
- .2
XX+ X° = gx.

Eliminating x° from the preceding two equations, we arrive at Eq. (vi) again.

(xii)

(xiii)
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Example 7.6.2

Figure 7.6-2 shows a steady jet of water impinging onto a curved vane in a tangential direction. Neglect the effect of
weight and assume that the flow at the upstream region, section A, as well as at the downstream region, section B, is
a parallel flow with a uniform speed v,. Find the resultant force (over that due to the atmospheric pressure) exerted on
the vane by the jet. The volume flow rate is Q.

FIGURE 7.6-2

Solution

Let us take as a control volume that portion of the jet bounded by the planes at Aand B. Since the flow at A is assumed to
be a parallel flow of uniform speed, the stress vector on the plane A is normal to the plane with a magnitude equal to the
atmospheric pressure, which we take to be zero. The same is true on the plane B. Thus, the only force acting on the
material in the control volume is that from the vane to the jet. Let F be the resultant of these forces. Since the flow is
steady, the rate of increase of momentum inside the control volume is zero. The rate of out flow of linear momentum
across Bis pQuy(cos fe; + sin Oey) and the rate of inflow of linear momentum across A is pQv,e;. Thus,

F = pQ[v(cos 0 — 1)e; + v, sin Oey].

The force on the vane by the jet is equal and opposite to that given above.

Example 7.6.3

For a boundary layer flow of water over a flat plate, if the velocity profile of the horizontal components at the leading
and the trailing edges of the plate, respectively, are assumed to be those shown in Figure 7.6-3, find the shear force
acting on the fluid by the plate. Assume that the flow is steady and that the pressure is uniform in the whole flow field.

S
<

B ________ -_- -
js =4
Vy = ay/d

FIGURE 7.6-3
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Solution

Consider the control volume ABCD. Since the pressure is assumed to be uniform and since the flow outside the
boundary layer ¢ is essentially uniform in horizontal velocity components (in x direction) with very small vertical veloc-
ity components (so that the shearing stress on BC is negligible), the net force on the control volume is the shearing
force from the plate. Denoting this force (per unit width in z direct ion) Fe;, we have, from the momentum principle,
F = net outflux of x momentum through ABCD. Thus,

)

F chl(pwn)dS: —J

0 [¢]

(3 — —
apyay + | apias+ [ (2)o(%F)ay+ [ s (0
BC ip
where & denotes the uniform horizontal velocity of the upstream flow and the uniform horizontal velocity component
beyond the boundary layer at the trailing edge, v; and v, are the horizontal and vertical velocity components of the
fluid particles, respectively, and ¢ is the thickness of the boundary layer. Thus,

' ) ,
F=—pi?s+ EJ‘ pvzc/S—i—&. (ii)
Jac 3
From the principle of conservation of mass, we have
5 5 5
J pngSfJ pUderJ p%dyzo, (iii)
BC o} o 0
ie.,
[pv2dS:pL757p2L6:p2L5. (iv)
BC
Thus,
u2s  pu®s )
F:—p026+pu Lo A W)

2 3 6

That is, the force per unit width on the fluid by the plate is acting to the left with a magnitude of pi?5/6.

MOVING FRAMES

There are certain problems for which the use of a control volume fixed with respect to a frame moving rela-
tive to an inertial frame is advantageous. For this purpose, we derive the momentum principle valid for a
frame moving relative to an inertial frame.

Let F| and F, be two frames of references. Let r denote the position vector of a differential mass dm in a
continuum relative to F';, and let x denote the position vector relative to F, (see Figure 7.7-1). The velocity of
dm relative to F is

(dr/dt)p, = Vr,, (7.7.1)
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dm

FIGURE 7.7-1

and the velocity relative to F» is

(dx/dt)g, = V,.

Since
r =R, +x,
then
<dr) <dR0) (dx)
_ — + [ = ,
i)~ \dt )p, " \dt),
i.e.,

e dx
VrE, = (VYo F dr FI.

db _(® +wxb
di)p — \dt)p, ’

where w is the angular velocity of F, relative to F. Thus,

dx dx +oxx= (V) +oxx
— =(— w = w
di) . di ) p, P2 ’

Now, for any vector b, we have

and Eq. (7.7.5) becomes

Vi, = (VO)F1 +Vp, + @ X X.

(7.7.2)

(7.7.3)

(7.7.4)

(7.7.5)

(7.7.6)

(7.7.7)

(7.7.8)
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The linear momentum relative to Fy is prl dm and that relative to F is pr2dm. The rates of change of
linear momentum are related in the following way (for simplicity, we drop the subscript of the integrals):

(), o 8) e o e o
i fo 3) e 3), o),

where (a,)y, is the acceleration with respect to the frame F;. Using Eq. (7.7.6) again, we have

D D
(D_I>F1 Jszdm = (D—I)F2 Jszdm + w X Jszdm,

and
(DB’)FI (w X dem) =w X dem +w X J (ll))—j)ﬂdm
=m X dem—o—w X Jvfzdm—i-w X (m X dem)
Thus,
(g)ﬂ JVF,dm = (aO)F1 Jdm + (Z%)Fz JVdem 4+ 2w X vazdm
+ o X dem+w X (w X dem),
Now let F| be an inertial frame. The momentum principle then reads:

D
(D—t) . JVp,dm = JtdS + JdeV,

From Egs. (7.7.12) and (7.7.13), we have

D
<D—t> . JVFz dm = JtdS + JdeV

- {m(ao) + 2w X Jszdm—Hb X [xdm—i—w X (w X dem)],

(7.1.9)

(7.7.10)

(7.7.11)

(7.7.12)

(7.7.13)

(7.7.14)

where m = [dm, (a,) = (a,) F, i the acceleration of the point o with respect to the inertia frame, and

w and w are angular velocity and angular acceleration of the frame 2 relative to the inertia frame.

Eq. (7.7.14) shows that when a moving frame is used to compute momentum and its time rate of change,
the same momentum principle for an inertial frame can be used provided that we include the effect of the

moving frame through the terms inside the bracket in the right-hand side of Eq. (7.7.14).
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A CONTROL VOLUME FIXED WITH RESPECT TO A MOVING FRAME

If a control volume is chosen to be fixed with respect to a frame of reference that moves relative to an inertial
frame with an acceleration a,, an angular velocity w, and angular acceleration @, the momentum equation is
given by Eq. (7.7.14). If we now use the Reynolds transport theorem for the left-hand side of Eq. (7.7.14), we

obtain
0
J £y (pvp,)dV + J pVE, (VE, - m)dS = JtdS + JdeV
\2 S, S, Ve (7.8.1)
{ +2wavF2dm+¢b><dem+w>< (waxdm)}

In particular, if the control volume has only translation (with acceleration = a,,) with respect to the inertial
frame, then we have

0
J o (pVF,)dV + J PVE, (VE, - m)dS = J
v, ot S.

tdS + J pBdV — m(a, ). (7.8.2)
S

v,

THE PRINCIPLE OF MOMENT OF MOMENTUM

The global principle of moment of momentum states that the total moment about a fixed point of surface and
body forces on a fixed part of material is equal to the time rate of change of total moment of momentum of
the part about the same point. That is,

D
—J X X pvdV = J (x x t)dS +J (x x pB)dV, (7.9.1)
Dt )y, s. 2

where x is the position vector for a general particle.
Using the Reynolds transport theorem, Eq. (7.4.2), the left-hand side of the preceding equation,
Eq. (7.9.1), becomes

D D
—J x X pvdV = J —(x x pv)dV +J (x X pv)(div v)dV. (7.9.2)
Df Vi Ve Dt V.
Since
D D D D D
E(xxpv):vxpv+xx (D—lt))v+x pD—‘t’ (Df)v+x pD‘;, (7.9.3)
the sum of the integrands on the right side of Eq. (7.9.2) becomes
Dp . Dv Dv
XX(E-i-pleV)V-l—XXpE— pE' (7.9.4)

Thus,

— ‘ X X pvdV = ‘ (x X p—) dav. (7.9.5)
Jv,
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Also, from Eq. (7.2.13), we have

J‘ (x x t)dS = [ [x x (div T) + 2t*]dV.
S v,

Using Eqgs. (7.9.5) and (7.2.13), Eq. (7.9.1) becomes

D
Jx x {pﬁj—divT—pB}dV—ZJtAdV:O, (7.9.6)
V.

where t* is the axial vector of the antisymmetric part of the stress tensor T. Now the first term in Eq. (7.9.6)
vanishes because of Eq. (7.6.8); therefore, t* = 0 and the symmetry of the stress tensor

T=T1" (7.9.7)
is obtained.

On the other hand, if we use the Reynolds transport theorem, Eq. (7.4.1), for the left-hand side of
Eq. (7.9.1), we obtain

J (x x t)dS + J (x x pB)dV = Jg(x x pv)dV + J (x x pv)(v - m)dS. (7.9.8)
v, V.

That is, the total moment about a fixed point due to surface and body forces acting on the material instanta-
neously inside a control volume = total rate of change of moment of momentum inside the control volume +
total net rate of outflow of moment of momentum across the control surface.

If the control volume is fixed in a moving frame, then the following terms should be added to the left side
of Eq. (7.9.8):

7<dem) X 2y — Jx X (@ x xX)dm — Jx X [@ X (@ x x)]dm — 2Jx X (@ X v)dm, (7.9.9)
where w and @ are absolute angular velocity and acceleration of the moving frame (and of the control

volume), the vector x of dm is measured from an arbitrary chosen point O in the control volume, a, is the
absolute acceleration of point O, and v is the velocity of dm relative to the control volume.

Example 7.9.1
Each sprinkler arm in Figure 7.9-1 discharges a constant volume of water Q per unit time and is free to rotate around
the vertical center axis. Determine its constant speed of rotation.

€ /
e, V/

FIGURE 7.9-1
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Solution

Let V.. be a control volume that rotates with the sprinkler arms. The velocity of water particles relative to the sprinkler is
(Q/A)e; inside the right arm and (Q/A)(—e1) inside the left arm. If p is density, then the total net outflux of moment of
momentum about point O is

2pQ%sin 0r,es. (i)

The moment of momentum about O due to weight is zero. Since the pressure in the water jet is the same as the
atmospheric pressure, taken to be zero gauge pressure, there is no contribution due to surface force on the control vol-
ume. Now, since the control volume is rotating with the sprinkler, we need to add those terms given in Eq. (7.9.9) to the
moments of forces. With x measured from O, the first term in Eq. (7.9.9) is zero. With @ a constant, the second term in
that equation is also zero. With x = x;e; and @ = wses, the third term is also zero. Thus, the only nonzero term is

-2 Jx X (@ x v)dm, (i)

which is the moment due to the Coriolis forces. Now, for the right arm, v = (Q/A)e1; therefore,

X X (@ X V) = xe; x exge = xe xw—Qe —%e (iii)
@ XV) =X X (w3 X 8 | =X X —re=——83.

Thus, the contribution from the fluid in the right arm to the integral in the expression (ii) is

—"Te3| x(pAdx) = —wQprles. (iv)

20Q ("
i

0

Including that due to the left arm, the integral has the value of —Zprroze;;. Therefore, from the moment of
momentum principle for a moving control volume, we have

2p0<§)sin 0r, = —2wQpr?, (v)

from which we have

——(9)=ne (v
o=—(7 P

THE PRINCIPLE OF CONSERVATION OF ENERGY

The principle of conservation of energy states that the time rate of increase of the kinetic energy and internal
energy for a fixed part of material is equal to the sum of the rate of work done by the surface and body forces,
the heat energy entering the boundary surface, and the heat supply throughout the volume. That is, if v
denotes (v - v), u the internal energy per unit mass, q the heat flux vector (i.e., rate of heat flow per unit area
across the boundary surface), and g, the heat supply per unit mass, then the principle states:

D 2
7[ <pl+pu)dV=J (tlv)dS+J pB~vdeJ (q~n)dS+J pqsdv. (7.10.1)
Dty \ 2 s. v s Ve
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The minus sign in the term with (q - n) is due to the convention that n is an outward unit normal vector and
therefore (—q - n) represents inflow.
Again, using the Reynolds transport theorem, Eq. (7.4.2), the left side of the preceding equation becomes

D[ L dv*J D20 (L) divv|av
pe), P\2 7)Y T P\ ) TP T )

(7.10.2)
D (v? V2 Dp . D (v?
= JVL [pﬁt (E + u) + (EJr u) (E+ pdiv V)}dv = JVL {pﬁt (?Jr uﬂdv.
We have previously obtained [see Eq. (7.2.17)]
Jt - vdS = J [(divT) - v+ tr(TTVV)]av,
S, V.,
and the divergence theorem gives [see Eq. (7.2.5)]
Jq -ndS = J (div q)aVv.
Se Ve
Using Eqgs. (7.10.2), (7.2.17), and (7.2.5), Eq. (7.10.1) becomes
D (v? : T .
P\ Hu)dv = [(div T+ pB) - v+ tr(T"Vv) — div q + pg,|dV. (7.10.3)
v, 2
Since
. Dv 1 Dv?
(leT—‘—[)B)'prE'VprE, (7.10.4)
Eq. (7.10.3) becomes
Du T .
pEdv = | [r(TTVv) — div q + pg,|aV. (7.10.5)
% V.
Thus, at every point, we have
Du .
pE = tr(TTVV) —div q + pg;. (7.10.6)
For a symmetric tensor T, this equation can also be written
pDD—I: = tr(TVv) — div q + pg;. (7.10.7)

Eq. (7.10.6) or Eq. (7.10.7) is the energy equation. A slightly different form of Eq. (7.10.7) can be
obtained if we recall that Vv = D + W, where D, the symmetric part of Vv, is the rate of deformation tensor
and W, the antisymmetric part of Vv, is the spin tensor. We have

tr(TVv) = tr(TD + TW) = tr(TD) + tr(TW). (7.10.8)
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But tr(TW) = T;W;; = T;W;; = T;W;; = —T;W;; = 0; therefore, we rediscover the energy equation in the
following form [see Eq. (4.15.4)]:

D
p FI: = tr(TD) — div q + pgs. (7.10.9)

On the other hand, if we use the Reynolds equation in the form of Eq. (7.4.1), we obtain from Eq. (7.10.1)

Jt-VdS+‘pB~vdV—Jq-ndS+‘pqst:

S Ve S Ve

a (v v?
Jp& (5+u>dv+ [p(5+u)(v~n)d5.
v, $

¢ E

(7.10.10)

Equation (7.10.10) states that:

The time rate of work done by surface and body forces in a control volume + rate of heat input across the
boundary surface + heat supply throughout the volume = total rate of increase of internal and kinetic
energy of the material inside the control volume + rate of outflow of the internal and kinetic energy across
the control surface.

Example 7.10.1
A supersonic one-dimensional flow in an insulating duct suffers a normal compression shock. Assuming ideal gas,
find the pressure after the shock in terms of the pressure and velocity before the shock.

P1s P15 V4 P2, P2, V2
N
VC

FIGURE 7.10-1

Solution
For the control volume shown in Figure 7.10-1, we have, for steady flow:

1. Mass outflux = mass influx, that is,

Pr1AVL = poAva, (i)

p1vi = povs 0

2. Force in x direction = net momentum outflux in x direction,

plA — pgA = (pzAVZ)VZ — (plAvl)Vl. (iii)
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Using Eq. (ii), we have
PL— P2 = pa¥s — p1Vi = prvi(v2 — vi). (iv)
. Rate of work done by surface forces = net energy (internal and kinetic) outflux. That is,
PLAVL — P2 A2 = (poAv2) Uz — (p1Avi)Ur + E (p2AV2) V5 _%(plAVI)V% : (v)
For ideal gas [see Eq. (6.26.8), Chapter €],

y_P ( 1 ) (vi)
p\r—1
where y = ¢,/c¢, is the ratio of specific heats. Thus, Eq. (v) becomes

1 1 1 1 .
pLvi — pavo = (P2v2) ()}_71) - (m Vl)(yj) + Epz‘/g *5,01‘/13}7 (vii)
or

y 1 Y 1
(pl Vl) (#) + §p1V13 = (p2 V2) (ﬁ) + §p2 V23. (viii)

vg). (ix)

That s,

In view of Eq. (ii), this equation becomes

Y P 2 7 P2

1
y—1lp 2 1_’/—1/02

1
+5 Vi, (x)

From Egs. (i), (iv), and (x), one can obtain the following quadratic equation for p,/p; in terms of the Mach
number My = (vi/a), & = yp1/p; (see Prob.7.27):

2
p2 2 P2y 2 ((V -1 2) :
=) - = (yMs +1) — —yM; ) =0. (xi)
() ~Grmm oMy g (g

This equation has two roots:

P2 = P, (xii)
and

1 1
D= 1 [2yM2 —(y=D)]p1 or po= . 20,V — (= Dp1]. (xiii)

The second root describes the pressure after the shock in terms of the pressure and velocity before the
shock.
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THE ENTROPY INEQUALITY: THE SECOND LAW OF THERMODYNAMICS

The entropy inequality, also known as the Clausius-Duhem inequality or the second law of thermodynamics,
is given by the following inequality:

| S

[pndVZ—J% ~nds+J%dv, (7.11.1)

o

t O

Vin S Ve

where 7 is the entropy per unit mass; V,, the material volume; S, and V. the control surface and the control
volume, respectively, which are instantaneously coincidental with the surface and the volume of the material;
q is the heat flux vector; ® is the absolute temperature; n is the unit outward vector [thus, (—q - n) is heat
flux into the volume across the surface S.]; and g is the heat supply per unit mass, if any, within the control
volume.

The inequality states that:

The rate of increase of entropy in a fixed part of material is not less than the influx of entropy, q/®, across
the surface of the part + the entropy supply within the volume.

Now

D D D Dn Dn
— dV = —(pndV)| = —(pdV) +—pdV| = —dV 7.11.2
ijvmpn Jvn, {D’ (o )} Jv {an (0dV) 50 } Jv( T ( )

where we have used the conservation of mass equation in the form

1% (pdV) = 0. (7.11.3)

Thus, using Egs. (7.11.2) and (7.2.5), Eq. (7.11.1) can be written:

“Tav > - Dyav + | Eay. AL
Jv[ P Dy dv > JV( d1V< )dV JV( av (7.11.4)

In differential form, we have the following second law of thermodynamics:

Dn . (4 Pds

— > — A1
o ; le( ) + (7.11.5)
T'his is the same entropy equation given in Section 4.16 (Eq. 4.16.2).

We now show that Eq. (7.11.4) can also be written in the following form for material within a fixed con-
trol volume:

P4

9 q
— > — . - =- —=dV. 1.
By Jv(, pndV > L(T;pv ndS Lr ) ndS + Jv(, ) av (7.11.6)
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To do that, since Dp/Dt = —pdiv v (conservation of mass equation), we have
Dn _D(pn)  Dp _D(pn) , D(pn) | ..
i = = d = d —-v-V
Dt Dt Dt Dt + npdiv v Dt +div(npv) — v (np)
13]
= % + div(npv).

Thus, in view of Eq. (7.11.2), we have

D Dn [ d(pn) J .
=z av = | p=lav=| 2 gy d av.
DtJVmpn L{p Dy JV’ 5 + . iv(npv)

Using the divergence theorem for the last integral in the preceding equation, we have

D A(pn)
— dV = ——=dV -ndV.
Dt Jvﬂ,pn J‘VL ot - L(npv "

We now have the alternate form of the entropy inequality:

9(pm) J J q J 045
——=dV > — v-ndS— | — -ndS+ 2av,
JVL. ot S, np . © . ®
or
QJ pndV = —J npv - ndS—J a -ndS+J Pas gy,
o). o s 5. © v. ©

The preceding inequality states that:
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(7.11.7)

(7.11.8)

(7.11.9)

(7.11.10)

(7.11.11)

The rate of increase of entropy for the material within the fixed control volume V. is not less than the
entropy entering the volume due to convection of material and conduction of heat through the control sur-

face S. + entropy supply within the volume.

Example 7.11.1

From the second law of thermodynamics, demonstrate that heat flow through conduction is always in the direction

from high temperature to low temperature.

Solution

Consider a cylinder of fixed continuum insulated on its lateral surface and that undergoes steady heat conduction in

the direction from the left end face at temperature ®; to the right end face at temperature @-.

Let the cross-sectional area of the cylinder be A and the one-dimensional heat flux from left to right be g. With

90)/0t=0,v =0, and gs = 0, the inequality (7.11.11) states that

q q 1 1
> A LA gAl—— ).
28, 8," qA(®1 @2)

Thus, (@i ,@i) <0, or ®, — ®; <O0. In other words, ®; is not less than O».
1 2
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PROBLEMS FOR CHAPTER 7

7.1 Verify the divergence theorem fSV -ndS = fvdiv vdV for the vector field v = 2xe; + ze, by considering
the region bounded by

x=0, x=2, y=0, y=2, z=0, z=2.
7.2 Verify the divergence theorem jSv -ndS = fvdiv vdV for the vector field, which, in cylindrical coordi-
nates, is v = 2re, + ze,, by considering the region bounded by r = 2, z = 0, and z = 4.

7.3 Verify the divergence theorem fSV -ndS = fvdiv vdV for the vector field, which, in spherical coordi-
nates, is v = 2re,, by considering the region bounded by the spherical surface r = 2.

7.4 Show that J"Sx -ndS = 3V, where x is the position vector and V is the volume enclosed by the boundary
surface S.

7.5 (a) Consider the vector field v = @a, where ¢ is a given scalar field and a is an arbitrary constant vector
(independent of position). Using the divergence theorem, prove that jVV<pdV = J"SgpndS . (b) Show that
for any closed surface S, fsndS = 0 where n is normal to the surface.

7.6 A stress field T is in equilibrium with a body force pB. Using the divergence theorem, show that for any
volume V with boundary surface S

J tdS+J pBdV =0,
s v

where t is the stress vector. That is, the total resultant force is equipollent to zero.
£ . . . . . . . * 1 * * sk .
7.7 Let u define an infinitesimal strain field E* = 3 {Vu + (Vu )T] and let T be the symmetric stress

tensor in static equilibrium with a body force pB~" and a surface traction t . Using the divergence the-
orem, verify the following identity (theory of virtual work):

*

J t7 - ukds + J pB” u'dv = J T, E;av.
S \4 \4

7.8 Using the equations of motion and the divergence theorem, verify the following rate of work identity.
Assume the stress tensor to be symmetric.

V2

[ D
t~vdS+‘ pB~VdV:[p—(
Js Jv Jv Dr\2

7.9 Consider the velocity and density fields

)dV + J T;DydV .
|4

vV=oxi€, p= poe_&(t_r(‘)-

(a) Check the equation of mass conservation. (b) Compute the mass and rate of increase of mass in the
cylindrical control volume of cross-section A and bounded by x; = 0 and x; = 3. (c) Compute the net
mass inflow into the control volume of part (b). Does the net mass inflow equal the rate of mass
increase inside the control volume?
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7.10 (a) Check that the following motion:
=X n =X, x =X,

corresponds to the velocity field v = oxe;. (b) For a density field p = poe‘“("’f’), verify that the mass
contained in the material volume that was coincident with the control volume described in (b) of Prob-
lem 7.9, at time ¢,, remains a constant at all times, as it should (conservation of mass). (c) Compute the
total linear momentum for the material volume of part (b). (d) Compute the force acting on the material
volume.

7.11 Do Problem 7.9 for the velocity field v = ax;e; and the density field p = k(p,/x) and for the cylindri-
cal control volume bounded by x; = 1 and x; = 3.

7.12 The center of mass X., of a material volume is defined by the equation
MXem = J xpdV where m = J pdV.
Vi Vi
Demonstrate that the linear momentum principle may be written in the form
J tdS + J pBdV = ma,,,,
s v

where a.,, is the acceleration of the mass center.
7.13 Consider the following velocity field and density field:

X Po
e, =
1—i—ocll p 1+ ot

(a) Compute the total linear momentum and rate of increase of linear momentum in a cylindrical con-
trol volume of cross-sectional area A and bounded by the planes x; = 1 and x; = 3. (b) Compute the net
rate of outflow of linear momentum from the control volume of (a). (¢) Compute the total force on the
material in the control volume. (d) Compute the total kinetic energy and rate of increase of kinetic
energy for the control volume of part (a). (¢) Compute the net rate of outflow of kinetic energy from
the control volume.

7.14 Consider the velocity and density fields: v = axje;, p = poe’“”’t"). For an arbitrary time ¢, consider the
material contained in the cylindrical control volume of cross-sectional area A bounded by x; = 0 and
x1 = 3. (a) Determine the linear momentum and rate of increase of linear momentum in this control vol-
ume. (b) Determine the outflux of linear momentum. (c) Determine the net resultant force that is acting
on the material contained in the control volume.

7.15 Do Problem 7.14 for the same velocity field, v = ax;e;, but with p = kp,/x; and the cylindrical control
volume bounded by x; = 1 and x; = 3.

7.16 Consider the flow field v = k(xe; — ye;) with p = constant. For a control volume defined by
x=0,x=2,y=0,y=2,z=0,z =2, determine the net resultant force and moment about the origin
that are acting on the material contained in this volume.

7.17 For Hagen-Poiseuille flow in a pipe: v =C (1(2) — rz)el. Calculate the momentum flux across a cross-
section. For the same flow rate, if the velocity is assumed to be uniform, what is the momentum flux
across a cross-section? Compare the two results.
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7.18

7.19

7.20

7.21

7.22

CHAPTER 7 The Reynolds Transport Theorem and Applications

Consider a steady flow of an incompressible viscous fluid of density p, flowing up a vertical pipe of
radius R. At the lower section of the pipe, the flow is uniform with a speed v, and a pressure p,. After
flowing upward through a distance ¢, the flow becomes fully developed with a parabolic velocity distri-
bution at the upper section, where the pressure is p,. Obtain an expression for the fluid pressure drop
pi — pu between the two sections in terms of p, R, and the frictional force Fsexerted on the fluid column
from the wall through viscosity.

A pile of chain on a table falls through a hole in the table under the action of gravity. Derive the differ-
ential equation governing the hanging length x. Assume that the pile is large compared with the hanging
portion.

A water jet of 5 cm diameter moves at 12 m/sec, impinging on a curved vane that deflects it 60° from its
original direction. Neglecting the weight, obtain the force exerted by the liquid on the vane (see
Figure 7.6-2).

A horizontal pipeline of 10 cm diameter bends through 90°, and while bending, changes its diameter
to 5 cm. The pressure in the 10 cm pipe is 140 kPa. Estimate the resultant force on the bends when
0.005 m*/sec of water is flowing in the pipeline.

Figure P7.1 shows a steady water jet of area A impinging onto a flat wall. Find the force exerted on the
wall. Neglect weight and viscosity of water.

=
LLLW

FIGURE P7.1

7.23

Frequently in open channel flow, a high-speed flow “jumps” to a low-speed flow with an abrupt rise in
the water surface. This is known as a hydraulic jump. Referring to Figure P7.2, if the flow rate is Q per
unit width, show that when the jump occurs, the relation between y, and y, is given by

y2=—=y1/2+ (y1/2)/1 + (8v}/gy1). Assume that the flow before and after the jump is uniform and

the pressure distribution is hydrostatic.

“ v Yo
Y1 l

|

FIGURE P7.2
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7.24 If the curved vane of Example 7.6.2 moves with a velocity v < v, in the same direction as the oncoming
jet, find the resultant force exerted on the vane by the jet.

7.25 For the half-arm sprinkler shown in Figure P7.3, find the angular speed if Q = 0.566 m?/sec. Neglect

friction.

d=2.54 cm

FIGURE P7.3

7.26 The tank car shown in Figure P7.4 contains water and compressed air regulated to force a water jet out
of the nozzle at a constant rate of Q m>/sec. The diameter of the jet is d cm, and the initial total mass of
the tank car is M,. Neglecting frictional forces, find the velocity of the car as a function of time.

UJ
oNNo)

FIGURE P7.4

7.27 For the one-dimensional problem discussed in Section 7.10, (a) from the continuity equation p;v; =
p2v, and the momentum equation p; — py = p,v3 — p,v1, obtain

(b) From the energy equation . 3 lp_ + Ev =

p =i e (E) Lr=ti (Vj)
2 a% p1\v1 2 a% v%
(c) From the results of (a) and (b), obtain

P\ 2 D2 2 (y—1
2) 2 (149 (22) - I yM?) =o.
(m) v+1( o 1)(P1) v+1( 2 7 1)




CHAPTER

Non-Newtonian Fluids

In Chapter 6, the linear viscous fluid was discussed as an example of a constitutive equation of an idealized
fluid. The mechanical behaviors of many real fluids are adequately described under a wide range of circum-
stances by this constitutive equation, which is referred to as the constitutive equation of Newtonian fluids.
Many other real fluids exhibit behaviors that are not accounted for by the theory of Newtonian fluids. Exam-
ples of such substances include polymeric solutions, paints, and molasses.

For a steady unidirectional laminar flow of water in a circular pipe, the theory of Newtonian fluids gives the
experimentally confirmed result that the volume discharge Q is proportional to the (constant) pressure gradient
|dp/dz| in the axial direction and to the fourth power of the diameter d of the pipe, that is [see Eq. (6.13.12)],

nd*

_ md Jdp
T 128u

dz

0

, (8.0.1)

However, for many polymeric solutions, it has been observed that the preceding equation does not hold. For a
fixed d, the Q vs. |dp/dz| relation is nonlinear as sketched in the Figure 8.0-1.

Q

dp
dz

FIGURE 8.0-1

For a steady laminar flow of water placed between two very long coaxial cylinders of radii r; and r», if the
inner cylinder is at rest while the outer one is rotating with an angular velocity Q, the theory of Newtonian
fluid gives the result, agreeing with experimental observations, that the torque per unit length that must be
applied to the cylinders to maintain the flow is proportional to Q. In fact [see Eq. (6.15.9)],

ArurtriQ
M= )2“%’22 (8.0.2)
2 1

Copyright © 2010, Elsevier Ltd. All rights reserved.
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However, for those fluids that do not obey Eq. (8.0.1), it is found that they do not obey Eq. (8.0.2) either.
Furthermore, for Newtonian fluids such as water in this flow, the normal stress exerted on the outer cylinder
is always larger than that on the inner cylinder due to the effect of centrifugal forces. However, for those
fluids that do not obey Eq. (8.0.1), the compressive normal stress on the inner cylinder can be larger than that
on the outer cylinder. Figure 8.0-2 is a schematic diagram showing a higher fluid level in the center tube than
in the outer tube for a non-Newtonian fluid in spite of the centrifugal forces due to the rotations of the cylin-
ders. Other manifestations of the non-Newtonian behaviors include the ability of the fluids to store elastic
energy and the occurrence of nonzero stress relaxation time.

FIGURE 8.0-2

In this chapter we discuss several constitutive equations that define idealized viscoelastic fluids exhibiting
various characteristics of non-Newtonian behaviors.

PART A: LINEAR VISCOELASTIC FLUID

8.1 LINEAR MAXWELL FLUID

The linear Maxwell fluid is defined by the following constitutive equations:

T=-—pl+8, (8.1.1)
aS
f— =2uD 1.2
S—O—Aat uD, 8.1.2)

where —pl is the isotropic pressure that is constitutively indeterminate due to the incompressibility property
of the fluid; S is called the extra stress, which is related to the rate of deformation D by Eq. (8.1.2); and A and
u are material coefficients.

In the following example, we show, with the help of a mechanical analogy, that the linear Maxwell fluid
possesses elasticity.
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Example 8.1.1

Figure 8.1-1 shows the so-called linear Maxwell element, which consists of a spring (an elastic element) with spring
constant G, connected in series to a viscous dashpot (viscous element) with a damping coefficient n. The elongation ¢
of the Maxwell element can be divided into an elastic portion e, and a viscous portion ¢,), i.e.,

&= 6e+ & (8.1.3)
1
G —

FIGURE 8.1-1

Since the spring and the dashpot are connected in series, the force S in each is the same for all time That s,
S=Gee=n—12. (8.1.4)

Thus,
dee 1dS q % )

Taking the time derivative of Eq. (8.1.3) and using the equations in Eq. (8.1.5), we have
. as de
where
_n
e G (8.1.7)

We note that A has the dimension of time, the physical meaning of which is discussed shortly. Equation (8.1.6) is
of the same form as Eq. (8.1.2). Indeed, both D and de/dt (in the right-hand side of these equations) describe rates of
deformation. Thus, by analogy, we see that the constitutive equation, Eq. (8.1.2), endows the fluid with “elasticity”
through the term A(9S/01).

Let us consider the following experiment performed on the Maxwell element: Starting at time t = O, a constant
force S, is applied to the element. We are interested in how, for t > O, the strain changes with time. This is the so-
called creep experiment. From Eq. (8.1.6), we have, since S'is a constant for t > 0, dS/dt = O for t > 0O so that

de_&

& for t >0, (8.1.8)

which yields

8:§f+80. (8.1.9)
n
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The integration constant ¢, is the instantaneous strain ¢ of the element at t = 0™ from the elastic response of the
spring and is therefore given by So/G. Thus,
S S
e=—t+=. (8.1.10)
n G

We see from Eq. (8.1.10) that under the action of a constant force S, in a creep experiment, the strain of the
Maxwell element first has an instantaneous jump from O to S,/G and then continues to increase with time (i.e., flows)
without limit, with a rate of flow inversely proportional to the viscosity.

We note that there are no contributions to the instantaneous strain from the dashpot because, with ds/dt — oo, an
infinitely large force is required for the dashpot to do that. On the other hand, there are no contributions to the rate of
elongation from the spring because the elastic response is a constant under a constant load.

We may write Eq. (8.1.10) as

e 1 1

§O:Et+azj(t), (8.1.11)

The function J(f) gives the creep history per unit force. It is known as the creep compliance function of the linear
Maxwell element.
In another experiment, the Maxwell element is given a strain ¢, at t = 0, which is then maintained for all time.

We are interested in how the force S changes with time. This is the so-called stress relaxation experiment. From
Eqg. (8.1.6), with de/dt = O for t > O, we have

S—i—/l(ljj—f:O for t>0, (8.1.12)
which yields
S=S.e (8.1.13)

The integration constant S, is the instantaneous force that is required to produce the elastic strain ¢, at t = 0",
That is, S, = Ge,. Thus,

S = Geye V. (8.1.14)

Equation (8.1.14) is the force history for the stress relaxation experiment for the Maxwell element. We may write
Eq. (8.1.14) as

§:G€W:ﬁ€WE¢m. (8.1.15)
& A

The function ¢(1) gives the stress history per unit strain. It is called the stress relaxation function, and the constant
A is known as the relaxation time, which is the time for the force to relax to 1/e of the initial value of S.

It is interesting to consider the limiting cases of the Maxwell element. If G — oo, then the spring element becomes
a rigid bar, and the element no longer possesses elasticity. That is, it is a purely viscous element. In the creep experi-
ment, there will be no instantaneous elongation; the element simply creeps linearly with time [see Eq. (8.1.10)] from
the unstretched initial position. In the stress relaxation experiment, an infinitely large force is needed at t = O to pro-
duce the finite jump in elongation &,. The force is, however, instantaneously returned to zero (i.e., the relaxation time
A =mn/G — 0). We can write the relaxation function for the purely viscous element in the following way:

$(t) = no(t), (8.1.16)
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where 6(t) is known as the Dirac delta function, which may be defined as the derivative of the unit step function H(?),
defined by

0 —oo<t<O
H(t) = { (8.1.17)
1 0<t< oo,
so that
_ dH()
8(t) =~ (8.1.18)
and
t
Jé(z‘)dt: H(b). (8.1.19)
Example 8.1.2

Consider a linear Maxwell fluid, defined by Egs. (8.1.1) and (8.1.2), in steady simple shearing flow: v; = kx,, vo = 13 =0.
Find the stress components.

Solution
Since the given velocity field is steady, all field variables are independent of time. Thus, (9/01)S = 0 and we have

S =2uD.

Thus, the stress field is exactly the same as that of a Newtonian incompressible fluid.

Example 8.1.3
For a Maxwell fluid, consider the stress relaxation experiment with the displacement field given by

u = SOH(Z')XQ, Up = U3 = O7 (i)

where H(1) is the unit step function defined in Eq. (8.1.17). Neglecting inertia effects, (a) obtain the components of
the rate of deformation tensor, (b) obtain Si» at t = 0, and (c) obtain the history of the shear stress Si».

Solution
(a) Differentiating Eq. (i) with respect to time, we get

Vi = Soé(f)Xz, Vo = V3 = O7 (ii)

where §(f) is the Dirac delta function defined in Eq. (8.1.18). The only nonzero rate of deformation is

_]. avl aVZ _Soé(f)
Drz = 2 <6x2 +8)(1) T2

(b) From Eq. (8.1.2), we obtain

aS
Sip+ ;~8—1{2 = peod(1). (iii)
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Integrating the preceding equation from t=0 — eto t = 0 + e, we have
0+e 0+e 9§ O+e
J Slgdz‘+ij 9512 4y ugoj s(t)at. (iv)
O-e O-e ot O-e

The integral on the right-hand side of the preceding equation is equal to unity [see Eq. (8.1.19)]. As e — O,
the first integral on the left side approaches zero, whereas the second integral becomes

[S12(07) = S12(07)].
Since $12(07) = 0, Eq. (iv) gives

S12(01) = “jo . )

For t > 0, 6(f) = 0 so that Eq. (iii) becomes

0S12 )
312+/17—O, t>0. (vi)

The solution of the preceding equation with the initial condition Sj2(0") = ‘u‘fo is
Si2 _ Kt (8.1.20)

& A

This is the same relaxation function we obtained for the spring-dashpot model in Eq. (8.1.15). In arriving at
Eqg. (8.1.15), we made use of the initial condition S, = Ge,, which was obtained from considerations of the
responses of the elastic element. Here, in the present example, the initial condition is obtained by integrating
the differential equation, Eq. (iii), over an infinitesimal time interval (from t = 0~ to t = 0%). By comparing
Eqg. (8.1.20) with Eq. (8.1.15) of the mechanical model, we see that u/A is the equivalent of the spring con-
stant G of the mechanical model. It gives a measure of the elasticity of the linear Maxwell fluid.

Example 8.1.4

A linear Maxwell fluid is confined between two infinitely large parallel plates. The bottom plate is fixed. The top plate
undergoes a one-dimensional oscillation of small amplitude u, in its own plane. Neglecting inertia effects, find the
response of the shear stress.

Solution
The boundary conditions for the displacement components may be written:

iwt

y=h u=ue" u=u=0, (i)

y=0 u=u =u,=0, (ii)

where / = v/—1 and e®! = cos wt + i sin wt. We may take the real part of u, to correspond to our physical problem.
That is, in the physical problem, uy, = U, cos wt.
Consider the following displacement field:

U(y) = ue'(y/h), u,=u,=0. (iii)



8.1 Linear Maxwell Fluid 449

Clearly, this displacement field satisfies the boundary conditions (i) and (ii). The velocity field corresponding to
Eq. (iii) is

V(y) = iouoe®t(y/h), v, = v, =0. (iv)

Thus, the components of the rate of deformation tensor D are

Dm:%m%wﬂum7ammam=o. (v)

This is a homogeneous field, and it corresponds to a homogeneous stress field. In the absence of inertia forces,
every homogeneous stress field satisfies all the momentum equations and is therefore a physically acceptable solu-
tion. Let the homogeneous stress component Si» be given by

Sip = Soe"”’f. (vi)
. , 5812 . . . Uy .
Then the equation Sjo + AW = 2uDip gives (1 + Aiw)S, = ;uwF. That is,
S wo  pio(l-ilo) uiw? Lk (i)
(Uo/P) (1 +idw) (1 +ido)(1l—ilo) 141202 1+ 12w?
Let
So
G = , (8.1.21)
(Uo/h)
then
Sio = G*(up/h)e™. (8.1.22)
The complex variable G* is known as the complex shear modulus, which may be written
G* = G'(w) +iG" (w), (8.1.23)
where the real part of the complex modulus is
72
G'(w) =2 (8.1.24)
(@) 14 22w?
and the imaginary part is
G"(w)=—12 . (8.1.25)
(w) 1 2ok
If we write (u/A) as G, the spring constant in the spring-dashpot model, we have
2 2 2
! . lu (& G /! . lu‘wG
G'(w) = @1 2ar and G'(w) = @2 (8.1.26)

We note that as limiting cases of the Maxwell model, a purely elastic element has u — oo so that G’ = G and
G"” = 0, and a purely viscous element has G — oo so that G’ = 0 and G” = uw. Thus, G’ characterizes the extent
of elasticity of the fluid that is capable of storing elastic energy, whereas G” characterizes the extent of loss of energy
due to viscous dissipation of the fluid. Thus, G’ is called the storage modulus and G” is called the Joss modulus.
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Writing
s 2 2,1/2 G
G* =|G*le”, where |G*|=(G”+G")Y? and tans =G (8.1.27)
we have G*¢®! = |G"1€“t?) 5o that taking the real part of Eq. (8.1.22), we obtain
Sz = (U h)|G*|cos(wt + 5). (8.1.28)

Thus, for a Maxwell fluid, the shear stress response in a sinusoidal oscillatory experiment under the condition that
the inertia effects are negligible is

Uo Uo ) .
Si2 = —|G*|cos(wt + 9) = (— ) —=====c0s(wt + J), (8.1.29)
h (h) V1 +/~LZQ)2

where
tané = 1/(Aw). (8.1.30)

The angle ¢ is known as the phase angle. For a purely elastic material (4 — oo) in a sinusoidal oscillation, the
stress and the strain are oscillating in the same phase (6 = 0), whereas for a purely viscous fluid (1 — 0), the stress
is 90° ahead of the strain.

A GENERALIZED LINEAR MAXWELL FLUID WITH DISCRETE RELAXATION
SPECTRA

A linear Maxwell fluid with N discrete relaxation spectra is defined by the following constitutive equation:

N
S = ZS,, with S, + 2, aast

=2u,D. (8.2.1)

The mechanical analog for this constitutive equation may be represented by N Maxwell elements connected in
parallel. The shear relaxation function is the sum of the N relaxation functions, each with a different relaxa-
tion time /,.:

N
)= taeiti, (8.2.2)
1

n

N

It can be shown that Eq. (8.2.1) is equivalent to the following constitutive equation:

a'D
S+Za,, T S_p D+Zb S (8.23)

We demonstrate this equivalence for the case N = 2 as follows: When N = 2,
S=S,+85,, (8.2.4)

with

0S,
=2i,D and S;+1,—

08
S| +4— o

o = 2u,D. (8.2.5)
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Now
oS | 08 0S, 08 0S, .08, 0S, .
().1 +/L2) o = — o + Ay —= o Azwﬁ-ﬂ.lw 2(#1 +,u2)D S+ 1 274-)1 a @)
and
PSS ., . 0P S, oD 0Si a 08, .
11)~2W:A112W+11/12W=2(/12,111+/11,M2) o )25* ' (i1)
Adding Egs. (i) and (ii), we have
oS oS oD
S+ ()»1 + ),2) E + ),MQW = 2(#1 + ﬂz)D + 2(/12#1 + /11#2) E (iii)
Let
ay = (M +A), ar=7lilay, bo=2(u + ) and by =2(lap + i), (8.2.6)
we have
EJS 82 oD
Similarly, for N = 3, one can obtain the following (see Problem 8.2):
= (11 + /12 + 23), ay; = (/11},2 + /"sz.3 + /13].1), as = /11/122.3, bo = 2(#1 + 2%} + ,u3)7 (828)

by =2[pu (A2 + 43) + o (73 + 21) + 3 (A1 + )], ba =2[ui20ls + wydaldi + pasadal.

INTEGRAL FORM OF THE LINEAR MAXWELL FLUID AND OF THE GENERALIZED
LINEAR MAXWELL FLUID WITH DISCRETE RELAXATION SPECTRA

Consider the following integral form of the constitutive equation:
S=2 Jz ¢(t—t"D(t")dr', (8.3.1)
where
o) = %e"“, (8.3.2)

is the relaxation function for the linear Maxwell fluid.
If we differentiate Eq. (8.3.1) with respect to time ¢, we obtain (note: t appears in both the integrand and
the integration limit; we need to use the Leibnitz rule of differentiation)

J ioc (— %) e D dr' 4 D(z)} = (_ j) Y

IS
S+ 21— =2uD. 8.3.3
+’“6z U ( )

o5 _ 2
ot A

that is,
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Thus, the integral form of the constitutive equation, Eq. (8.3.1), with relaxation function given by
Eq. (8.3.2), is the same as the rate form constitutive equation, Eq. (8.1.2). Of course, Eq. (8.3.1) is nothing
but the solution of the linear nonhomogeneous ordinary differential equation, Eq. (8.1.2) (see Problem 8.6).

It is not difficult to show that the constitutive equation for the generalized linear Maxwell equation with N
discrete relaxation spectra, Eq. (8.2.1), is equivalent to the following integral form:

r

. N
S=2| ¢@t—D@)d' with ¢(r) = Z%e*%. (8.3.4)
o 1 n

—00

A GENERALIZED LINEAR MAXWELL FLUID WITH A CONTINUOUS
RELAXATION SPECTRUM

The linear Maxwell fluid with a continuous relaxation spectrum is defined by the constitutive equation:

S= ZJt ¢t —1"\D(t")dt' with (1) = Jx@e"/*dz. (8.4.1)
—00 0

The function H(1)/Z is the relaxation spectrum. The relaxation function in Eq. (8.4.1) can also be written:

o) = J H(2)e *d n J. (8.4.2)
0

As we shall see later, the linear Maxwell models considered so far are physically acceptable models only if

the motion is such that the components of the relative deformation gradient (i.e., deformation gradient

measured from the configuration at the current time #; see Section 8.6) are small. When this is the case,

the components of rate of deformation tensor D are also small so that [see Eq. (5.2.15), Example 5.2.1]

OE
p~2E 4.
o (8.4.3)
where E is the infinitesimal strain measured with respect to the current configuration.
Substituting the preceding approximation of D in Eq. (8.4.1) and integrating the right-hand side by parts,
we obtain

S= ZJi ot —1") %dl’ =20p(t—tE@)) " —2 Ji E(¢) %;ﬂ)dt’.

The first term in the right-hand side is zero because ¢p(co) = 0 for a fluid and E(¢) = 0 because the defor-
mation is measured relative to the configuration at time ¢. Thus,

¢t —1')

G (8.4.4)

!
S=-2 [ E(t')
J —00
Or, letting t—¢ = s, we can write the preceding equation as

s=0 d $=00 J
S=-2 Lm %E(r —$)ds =2 L:o %E(r — 5)ds. (8.4.5)

Let

(8.4.6)
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Eq. (8.4.5) then becomes

S=2 J:x F(S)E(t — 5)ds. 8.4.7)

S= 2Jt fe—HE( )dt'. (8.4.8)

Equation (8.4.7) or (8.4.8) is the integral form of the constitutive equation for the linear Maxwell fluid
written in terms of the infinitesimal strain tensor E (instead of the rate of deformation tensor D). The function
f(s) in these equations is known as the memory function. The relation between the memory function and the
relaxation function is given by Eq. (8.4.6).

The constitutive equation given by Eq. (8.4.7) or (8.4.8) can be viewed as the superposition of all the
stresses, weighted by the memory function f{s), caused by the deformation of the fluid particle (relative to the
current time) at all past times ( = —oo to the current time f).

For the linear Maxwell fluid with one relaxation time, the memory function is given by

g _d _d M —s/A\ _ [ —s/2
f(s)f%ﬂs)f%(;e ),_?e . (8.4.9)

For the linear Maxwell fluid with discrete relaxation spectra, the memory function is

N
fls) = —Z%e‘” (8.4.10)
n=1"n

and for the Maxwell fluid with a continuous spectrum,
fls) = — J}Lj)e"‘/’“di. (8.4.11)
A
We note that when we write s = ¢ — ', Eq. (8.4.1) becomes

§=2 J $(s)D(z — s)ds. (8.4.12)
0

Example 8.4.1
Obtain the storage modulus G'(w) and the loss modulus G” (w) for the linear Maxwell fluid with a continuous relaxa-
tion spectrum by subjecting the fluid to an oscillatory shearing strain described in Example 8.1.4.

Solution |
From Example 8.1.4, the oscillatory shear component of the rate of deformation tensor is Dyo = (iwu,/2h)e®L Thus,
with Si» = Se! Eq. (8.4.12) gives

S P = —iws
W =iw JO ¢(s)e~'*ds. (8.4.13)
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00

With the relaxation function given by ¢(t) = J (H(z)/x)e~!"dr, the complex shear modulus is

0
G= S _ /wJ Jwefs/fdf e S ds — o J H(®) J e~ (H)igs| gy
(Uo/h) ) !

T
0

] oo H(‘L’) ,L.e—(1+/‘ru))s/r
e

OOJ dr = /wr HE) g,

0o T (14 itw) |o 0o 1+ itw
That is,
; 1w’ H(1) [* wH()
G —JO mdf /"0 md‘[ (8414)
Thus, the storage modulus is
o 2
[ (o) H(x)
G' = Jir(l +20?) T, (8.4.15)
0
and the loss modulus is
, [ _(wo)H()
G = Jr(l T 207) dr. (8.4.16)

0

COMPUTATION OF RELAXATION SPECTRUM AND RELAXATION FUNCTION

Whenever either G'(w) or G”(w) is known (e.g., from experimental measurements), the relaxation spectrum
H (1) can be obtained from either Eq. (8.4.15) or Eq. (8.4.16). It has been found that numerically, it is better
to invert G”(w). The inversion procedure is as follows:

1. From the experimental data of G”(w), use the following formula due to Tanner” as an approximate H(t)
to start the iteration procedure:

2
H(t)| oo/, = ;G//((U[) fori=1andN,
and

2
H(1)|o1j0, = 5 (6" (@i/a) + G () + G"(aey)] fori=2,3,...(N~1),

where, for best results, choose the parameter a so that log a = 0.2.

2. Substitute the H(t) in Eq. (8.4.16) to calculate the new G”(w) using, for example, Simpson’s rule for
numerical calculations. Let this calculated G”(w) be denoted by (G”)...

3. Calculate the difference AG” = (G")gura — (G"ear-

4. Compute the correction AH;:

2
AH; = =AG"(w;) fori=1andN,
n

“Tanner, R. L, J. Appl. Polymer Sci. 12, 1649, 1968.
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and
AH; = 3% [AG" (w;/a) + AG" (w;) + AG" (aw;)] fori=12,3,... (N —1).
5. Obtain the new H(t,):
Hm;w(‘l,',‘) = H(‘C,‘) + AH(‘L’,)

6. Repeat step 2 using the newly obtained H(z;). Continue the iteration process until (G”).,; converges to
(G") gara for a prescribed convergence criterion.

7. After H(t) is obtained, the relaxation function ¢(f) can be obtained from Eq. (8.4.1) by numerical
integration.

Example 8.5.1

Synovial fluid is the fluid in the cavity of the synovial joints. It contains varying amounts of a hyaluronic acid-protein
complex, which has an average molecular weight of about 2 million. This macromolecule forms ellipsoidal three-
dimensional networks that occupy a solvent domain much larger than the volume of the polymer chain itself. This
spatial arrangement endows synovial fluids with non-Newtonian fluid behaviors. Figure 8.5-1 shows the storage
and loss modulus for synovial fluids in three clinical states: (A) young normal human knee sample, (B) old normal
knee sample, and (C) osteoarthritic human knee sample.” Use the procedure described in this section to obtain
the relaxation spectra and the relaxation functions for these fluids.

104
- .
£
= 101 Afg
3
E &
g B{
s 01+ G
.
c{¥
| = | |
01 1.0 10

Frequency (radians/sec)

FIGURE 8.5-1 Experimental curves of G" and G” for three synovial fluids.

Solution
The relaxation spectra and the relaxation functions for the three fluids have been obtained using the procedure

described in this section. Table 8.5.1 shows the results; Figure 8.5-2 shows the calculated relaxation functions for
these fluids.*

TFrom Balazs, E. A., and Gibbs, D. A., Chemistry and Molecular Biology of the Intercellular Matrix, E. A. Balazs (ed.), Vol. 3, Aca-
demic Press, 1970, pp. 1241-1253.

*Lai, W. M., Kuei, S. C., and Mow, V. C., Biorheology 14:229-236, 1977.
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From both the experimental data and the calculated stress relaxation functions, we see that the osteoarthritic fluid

can store less elastic energy and has less relaxation time. That is, compared with the normal fluids, its behaviors are
closer to that of a Newtonian fluid.

Table 8.5.1 Relaxation Spectrum H(z) in N/n7 for Fluids A, B, and C

T 0.025 0.063 0.159 0.400 1.000 2.512 6.329 10.00 15.85

A -3.77 1.01 11.09 7.03 3.36 1.88 0.65 0.21 0.087

B —4.49 5.23 3.94 0.985 1.25 —0.083 0.169 0.128 —0.083

C 31.57 10.74 —-4.15 1.78 0.722 0.282 —0.183 -0.014 0.060
@

-
=1

100

Relaxation Function (N/m2)

101 '
Oos 102

| |
10-1 100 10 t
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FIGURE 8.5-2 Calculated relaxation functions for three human synovial fluids.

NONLINEAR VISCOELASTIC FLUID

CURRENT CONFIGURATION AS REFERENCE CONFIGURATION

Let x be the position vector of a particle at current time #, and let X’ be the position vector of the same particle
at time t. Then the equation

x' =x/(x,7) with x=x/(x,7) (8.6.1)
defines the motion of a continuum using the current time ¢ as the reference time. The subscript ¢ in the
function x/(x, 7) indicates that the current time ¢ is the reference time, and as such x/(x, ) is also a function
of 1.
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For a given velocity field v = v(x, 1), the velocity at position X’ at time 7 is v = v(X’, 7). On the other hand,

for a particular particle (i.e., for fixed x and ), the velocity at time 7 is given by (0x//07), , geq- Thus,
/ _ 0Xf,
v(x',1) = o (8.6.2)

Equation (8.6.2) allows one to obtain the pathline equations from a given velocity field, using the current
time ¢ as the reference time.

Example 8.6.1
Given the velocity field of the steady unidirectional flow:

n=vx), vw=vw=0. (8.6.3)
Describe the motion of the particles by using the current time t as the reference time.

Solution
From the given velocity field, the velocity components at the position (x/, x;, x3) at time <

v =v(x3), Vo=13=0. (i)
Thus, with x’ = x/e;, Eq. (8.6.2) gives

ox{ , ox;  0x5
A i

From 0x;/0t = 0x5/0t = O and the initial conditions x;, = xo, x; = x3 at t = t, we have, at all time ,

(ii)
X3 =X and x5 =xs. (iii)
Now, from 0x] /0t = v(x;) = v(x2), we get

x| = v(x)t + g(x1, X2, X3, 1). (iv)
At T =t x{ = xq, therefore, x; = vix)t + glx1,%2,X3,1), so that

g(x1, %2, X3, 1) = x1 — v(x)t. (v)
Thus,

X =x1+vie)(t—10, X=X, X =Xx. (8.6.4)

RELATIVE DEFORMATION GRADIENT

Let dx and dx’ be the differential vectors representing the same material element at time ¢ and t, respectively.
Then they are related by

dx’ =x/(x +dx,1) — x/(x,7) = (Vx])dx. (8.7.1)
That is,
dx’ = Fdx, (8.7.2)
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where
F, = Vx/. (8.7.3)

The tensor F, is known as the relative deformation gradient. Here, the adjective relative indicates that the
deformation gradient is relative to the configuration at the current time. We note that for 7 = ¢, dx' = dx
so that

F (1) =1 (8.7.4)

In rectangular Cartesian coordinates, with pathline equations given by

xl/ :X{(x17x21x3>7:)7 xz/ :Xé(Xl,Xz,)C:;,T), -X3l :Xg(Xl,XQ,X:;,T), (875)
the matrix of F, (1) is
E)xl 6)(2 8X3
) ox; 0Ox; Oxj
F]=[Vx/] = o Om On |- (8.7.6)
ox; Oxp Oxz

In cylindrical coordinates, with pathline equations given by
r'=r'(r,0,z,7), 0 =0'(r,0,z71), ' =z(r0z71), (8.7.7)

the two point components of F, with respect to {e/,e;, e/} at r and {e,, e, e} at t can be written down easily
from Eq. (3.29.12) of Chapter 3 by noting the difference in the reference times. For example, r = r(r,, 0,, z,, t)
in Section 3.29 corresponds to ¥/ = 7/ (r, 0, z, 7) here in this section:

or r 00 0z

r'o0’ r'o0" r'o00’
[F.] = o ro0 oz | (8.7.8)
or r 00 0z

In spherical coordinates, with pathline equations given by

r=r(r0,¢,7), 0/ =0(r,0,¢,7), ¢ =¢'(r,0,¢,1), (8.7.9)

the two point components of F, with respect to {e,,ej,e;} at v and {e,, €, 4} at  are given by the matrix

o' 1or 1 o7
or r 00 rsin 0 0¢
r'o0’ r' oo’ r o0
[F] = ar r 90 rsin00¢ |- (8.7.10)

r'sin 0'9¢’ r’sin@’ﬁ;# ' sin 0’ O¢’
or r 00  rsinf 0¢
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RELATIVE DEFORMATION TENSORS

The descriptions of the relative deformation tensors (using the current time ¢ as reference time) are similar to
those of the deformation tensors using a fixed reference time (see Chapter 3, Sections 3.18 to 3.29). Indeed,
by polar decomposition theorem (Section 3.21),

F,=RU =V[R, (8.8.1)

where U, and V, are relative right and left stretch tensors, respectively, and R, is the relative rotation tensor.
We note that

F,(1)=U,(t) =V,(t) =R,(r) = L. (8.8.2)
From Eq. (8.8.1), we clearly also have
V,=RUR] and U, =R/VR,. (8.8.3)
The relative right Cauchy-Green deformation tensor C, is defined by
C,=F'F, =UU,. (8.8.4)
The relative left Cauchy-Green deformation tensor B, is defined by
B,=FF =V,\V, (8.8.5)
The tensors C, and B, are related by
B,=R,CR/ and C,=R/BR. (8.8.6)

The tensors C,’1 and B, ! are often encountered in the literature. They are known as the relative Finger
deformation tensor and the relative Piola deformation tensor, respectively.
We note that

C(t)=B,()=C'(1)=B;'(1) =L (8.8.7)

Example 8.8.1
Show that if dx* and dx® are two material elements emanating from a point P at time tand dx'* and dx'® are the
corresponding elements at time 7, then

ax'® . gx'@ = gx). ¢,ax® (8.8.8)
and

dxW . gx@ = gx'@. B 1dX(2). (8.8.9)

Solution
From Eqg. (8.7.2), we have
adx'M . gx’@ = Fdx®. Frax® = axM. FIFfdx(z).
That is,

dx'M . dx'@ = gxV. C,ax@.
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Also, since dx = F;tdx’,
dxM. gx® = Flax'D. Flax@ = ax'@. (F7HTF 1 ax/@ = dx'@ . (Fy(Fy)") ax@,
That is,
dxM . gx@ = ax'V. B; 1ax'®).

Let dx = dse; be a material element at the current time ¢ and dx’ = ds'n be the same material element at
time 7, where e; is a unit base vector in a coordinate system and n is a unit vector in the direction of the
deformed vector. Then Eq. (8.8.8) gives

(ds'/ds)* = e, - Cie; = (C)),,. (8.8.10)

On the other hand, if dx’ = ds’e, is a material element at time t and dx = dsn is the same material element
at the current time ¢, then Eq. (8.8.9) gives

(ds/ds')* = e - B 'e; = (B7'),,. (8.8.11)

The meaning of the other components can also be obtained from Egs. (8.8.8) and (8.8.9).

CALCULATIONS OF THE RELATIVE DEFORMATION TENSOR

Rectangular Coordinates
Let

X =x(xX1,%2,%3,7), Xy = X5(%1,%2,%3,T), X3 =x3(x1,%2,%3,7) (8.9.1)

be the pathline equations. Eqgs. (8.8.4) and (8.7.6) give
(€)= (g_j:')z + (%)z + @%y, (8.9.2)
(Cipy = (22,)2 + (gﬁ)z + <gﬁ)2, (8.9.3)
- ()3 - (912 (29 3

Other components can be similarly written.
The components of C, ! can be obtained using the inverse function of Eq. (8.9.1), i.e.,

x1 =x1(x],x5,%5,7), X2 =x2(x],%5,X3,7), X3 =x3(x],%),%5,T). (8.9.5)

ax\ 2 ax\? ax\?
Sy (P o0 il
(€)= <(9x1’> + (6)(5) + (8)%) ; (8.9.6)

_ 8)@ 2 8X2 2 6X2 2
(C,')zf(a-;) * (672' o) (85D

They are
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_ ox 1 8x2 ox 1 a)Cz ox 1 aXZ
1 _ (L gr had 8 vr2
(e = («%c{) (ax;) ' (%’) (ax;) ' (ax;) (a) ©28

Other components can be similarly written.

Example 8.9.1
Find the relative right Cauchy-Green deformation tensor and its inverse for the velocity field given in Eq. (8.6.3), i.e.,

n=vix), w=1=0. (8.9.9)

Solution
In Example 8.6.1, we obtained the pathline equations for this velocity field to be [Eq. (8.6.4)]:

X =x14+ve)(t—1, X=X, X=X, (8.9.10)
with k = dv/dx,, we have
1 k(zr—1t) O
F]=|0 1 of. (89.11)
0 0 1
Thus,
1 0 O][1 k(z—1t) O 1 k(r—1) 0
Cl=[F"Fl=|kic—=t) 1 0|0 1 ~ 0|=|kir—t) Ka-t’+1 0| (8.9.12)
0 O 1]|0 0 1 0 0 1
The inverse of Eq. (8.6.4) is
x1=x —ve)(t—10, X%=x5 X3=Xx. (8.9.13)
Thus,
1 —k(z—1t) O
[F;l} - lo 1 0], (8.9.14)
0 0 1
1 —k(z—1t) O 1 00 1+ K(x—t)? —k(z—1t) 0
C=F1FY =10 1 Of||~k(z—=t) 1 O|=| —k(z—10) 1 0l. (8.9.15)
0 0 1 0 01 0 0 1
Cylindrical Coordinates
For pathline equations given as
r'=r'(r,0,z,7), 0 =0'(r,0,z,1), z' =z'(r0,z71), (8.9.16)

the components of C; with respect to {e,, ey, e,} at f can be written easily from the equations given in Chapter
3, Section 3.29, for cylindrical coordinates. Attention should be paid, however, that in Section 3.29, (r, 6, z)
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and (r,, 0,, z,) are the coordinates at ¢ and ¢, (where ¢, is the reference time), respectively, whereas in this
section (7, 0, Z/) and (r, 0, z) are the coordinates at t and ¢ (where ¢ is the reference time), respectively.
For example, r = r(r,, 0,, zo, 1) in Section 3.29 corresponds to ¥ = r/(r, 0, z, t) here in this section. Thus,

I\ 2 N 2 2 N 2 2
or ,00 oz’ _ 1 or’ ,00 oz’
L[ for"\ (o' 200" (00 oz (07’

Similarly, with the inverse of Eq. (8.9.16) given by
=r(r',0',2',1), 0=00",0"2" 1), z=:z0"0" 2 1), (8.9.19)

the components of C,” I are given by
o (or\ (1o o\’ [ (ro0N? | (r 90N\ [ 90\
(Ct )rr - (01‘/ + 60 + 02/ ) (Cf)OO - a’,/ + ,./80/ + raz/ (8'9'20)
or 00 1 Or\ (r 00 or 00
—1 _ i 2 o el
(€7 = (arf) ( ar ) * ( Xk ) <r’86/) * (82’) (r82’>7 ele. (8.9.21)

Spherical Coordinates

For pathline equations given as

r=r'(r,0,4,7), 0 =0'(r0,¢,7), ¢ =¢'(r0,¢,1), (8.9.22)

the components of C, with respect to {e,, e, e,} can be written down easily from the equations given in
Chapter 3, Section 3.29, for spherical coordinates. Attention should be paid, however, that in Section 3.29,
(r, 0, ¢) and (ry, 0,, ¢,) are the coordinates at ¢ and t, (where ¢, is the reference time), respectively, whereas
in this section (+/, &', ¢’) and (r, 0, ¢) are the coordinates at T and ¢ (where ¢ is the reference time), respec-
tively. For example, r = r(r,, 0o, ¢, 1) in Section 3.29 corresponds to ¥ = /(r, 0, ¢, ) here in this section.

Thus,
(€),, = (%)2 + <r’3a—€f) (; sin 029 ) (8.9.23)
(Cao =rl2 {(‘%)2 + <r’6a—00,) <; sin 0’ 5;) } (8.9.24)
(€, :% K%—r’,) (Z—FO/) +r' (%3) (%%) + (' sin0')? <8a¢”,> (%‘%I)} etc. (8.9.25)

Similarly, with the inverse of Eq. (8.9.22) given by

r= r(r/7 0,7 (IS/?T)? 0 = 0("’70,7 ()[),7 T)? (i) = qs(r,?o,? qb,7 T)? (8'9'26)
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the components of Cfl are given by

a\? (1 or\? 1 ar\?
,1 o - -
(Cf )rr - (6’,/) + <r/86/) + ()’, Sil’l 0/6¢/) ) (8927)
(oY L (roey ey
(€ oo = [(8,.,) +(r,39, ramoae) | (8.9.28)

or 00 1 or r 00 1 or r 00
-1y _ (O, 9V R N e Z 7
(Cr )"H N <8r/) (l 81‘/) + (1‘/89') (1‘/89’) * (r’ sin 9’8(;5') <r’ sin 9/8¢')' (89:29)

Other components can be written easily following the patterns given in the preceding equations.

HISTORY OF THE RELATIVE DEFORMATION TENSOR AND RIVLIN-ERICKSEN
TENSORS

The tensor C; (x, 7) describes the deformation at time 7 of the element which at time ¢, is at X. Thus, as one
varies T from 1 = —oo to T = ¢ in the function C, (X, 1), one gets the whole history of the deformation, from
infinitely long ago to the present time .

If we assume that we can expand the components of C; in the Taylor series about t = ¢, we have

_ aC, 1 (0*C, )
Cilx,7) = Cilx.0) + (E)I:t(f —0+5 < 7 )r:,(r -0°+... (8.10.1)
Let
_ aC, _ 0*C, - Ve, .
A= (E) L Ay = (812 o Ay = o ) (8.10.2)

Eq. (8.10.1) then becomes

2
Ci(x,7) =1+ (t—1)A; + (T;’) At ... (8.10.3)

The tensors Ay are known as the Rivlin-Ericksen tensors. We see from Eq. (8.10.3) that, provided the Tay-
lor series expansion is valid, the Rivlin-Ericksen tensors Ay’s (N = 1 to co) determine the history of relative
deformation. It should be noted, however, that not all histories of relative deformation can be expanded in the
Taylor series. For example, the stress relaxation test, in which a sudden jump in deformation is imposed on
the fluid, has a history of relative deformation that cannot be represented by a Taylor series.

Example 8.10.1
The relative right Cauchy-Green tensor for the steady unidirectional flow given by the velocity field v; = v(x), v =
v3 = 0 has been found in Example 8.9.1 to be

1 k(z—t) 0
[Cl=|ki(r—t) Kr-t>+1 0],
0 0 1

where k = dv/dx,. Find the Rivlin-Ericksen tensors for this flow.
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Solution
1 k(t—1) 0] 1 00 0O kK O 0O 0 O (r—z‘)z
Cil= | k(z—1) kz(r—t)2+1 0|l=10 1 0f+|k 0 Of|(z—H)+ |0 2k O 5
0 0 1] 0 01 0 0O 0O 0 O
Thus [see Eq. (8.10.3)],
0 kK O 0 0 O 0 0O
A=k 0 0|, [A)J=1]0 2k* 0|, [AN]=1|0 O O| =[0] forallN>3,
0 00 0O 0 O 0 0O
and
T —1)°
€] =1+ [l - ) + (a0
Example 8.10.2
Given an axisymmetric velocity field in cylindrical coordinates:
vv=0, ww=0, v,=v(r). (i)

(a) Obtain the pathline equations using current time ¢ as reference.

(b) Compute the relative deformation tensor C..

(c) Find the Rivlin-Ericksen tensors.
Solution

(a) Let the pathline equations be

r'=r'(r,0,z,7), 0" =0'(r,0,z,7), z'=2'(r,0,z,1). (ii)

Then, from the given velocity field, we have
ar’ ao’ dz’ ,
dr 0, dr 0, dr v(r). (i)

Integration of these equations with the conditions thatatt =t r' = r, 8/ = 6 and z/ = z, we obtain

!

r'=r, /=0 and z'=z4+v(r)(z—-1t). (iv)

(b) Using Egs. (8.9.17), (8.9.18), etc., we obtain, with k(r) = dv/dr,

(Ct), = (%—rr,)z + (r/%—(i,f + (%—Zr,f =140+ (dv/dr)(x—t),
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L[far\* | (,00N\°  (9z\?] 1 2 r?
(Cz‘)()()—rz|:<8(_)> +( 69) +( (_)) - 2[O+(f) +O:| :f2:17
arN? [ ,00"\*  [(02'\?
(cl‘)zz|: Z) +(f E) +(E) =04+0+1=1,
1 00’ 0z"\ (02’
(ct)r()_F (_0>+(W) (%)} —O‘FO%*O—O7

That is,
1+ k(=17 0 k(z—1)
[C]= 0 1 0
k(t —t) 0 1
1 00 0 0 k 2k200(1_t)2
(c) [C]=]0 1 O[{+|0 O Of(zr—=t)+| O O O 5
0 0 1 k 00 0O 0O
thus,

I
465

(v)

(vi)

(vii)

Example 8.10.3
Consider the Couette flow with a velocity field given in cylindrical coordinates as

vv=0, w=v(r), v,=0.

(a) Obtain the pathline equations using current time t as reference.
(b) Compute the relative deformation tensor C,.
(c) Find the Rivlin-Ericksen tensors.
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Solution

(a) Let the pathline equations be
r'=r'(r,0,z,7), 0" =0(r,0,z,7), z' =2'(r,0,2,1), (ii)
then, from the given velocity field, we have
dr’ df)/ , dz’
i 0, v =v(r'), = 0. (iii)

Integration of these equations with the conditions thatatt =t:r' =r, 8’ = 0 and z’ = z we obtain
r'=r, 0’=6+@(17t), 7' =2z (iv)

(b) Using Egs. (8.9.17), (8.9.18), etc., we obtain
ar'\? ,00’ 2 r9z\? v dv/dr 2 av v\? 5
(Cf)rr_(a) +(f W) +(E) —1+(/'|:—r—2+71|(’5—t)) —1+(E—F) (’C—t),

1 [ror\? (00N | (9z'\*
(=22 \a8) *\"a0) *\a0
0

—:—2[O+(r’)2+0] =—=1,

N 2
—) ] =04+0+1=1,

)

=[G+ (2 +

-t G) () () ()] - (- o
= () () () () - (2 (22)] -o

o= [ () () () - (5)(2)]

°’|

=0.
That is,
1+ K(t—1t)7? k(x—t) O J
[c[]—{ k(z—t) 1 of, k:(d—r#)- (v)
0 0 1
(c)
100 0 k 0 2k200(17t)2
CJ=|0 1 0| +|k 0 O|(c=0)+| 0 0 O|~%5—, (vi)
001 000 0 00
thus,
0 k O 2k2 0 0
A]=|k 0 0|, [AJJ=| 0 O Of, [Ay]=0 for N>3, (vii)
0 00 0 00
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Example 8.10.4
Given the velocity field of a sink flow in spherical coordinates:

a
Vv, = 2 =0, v,=0.
(a) Obtain the pathline equations using current time t as reference.
(b) Compute the relative deformation tensor C..

(c) Find the Rivlin-Ericksen tensors.

Solution
(a) Let the pathline equations be
I’,:f/(f76,¢7‘6)7 0/:0,(r701¢77)7 Z,:Z,(I’707¢,T),
then, from the given velocity field, we have
dr’ a do’ de’
o % Y

Integration of these equations with the conditions thatat t =t r’ =r, 6’ = 6 and z’ = z, we obtain

r' =3a(t—1)+r, 0'=0, ¢ =o.

(b) Using Egs. (8.9.23), (8.9.24), (8.9.25), etc., we have

arNZ [ ,00\° [, . od"\° [r\° r
0= () + (%) + (1m0 5) = (%) =
_L[qarNe (00 09N _r? _ [Batt =) + °
mf)ﬁﬁ_?z[(%) + (r %> (r sin 0 50 ) } == 5 7
(6_#)2 . (r’89’>2 . (r’sin 9/a¢/>2 _rPsin?el r?
¢ tol} ¢  r2sinfg 2

00’ SN2 o’
)+ (o) () + s (5) (3)] =0
'\ 2[00\ (00’ . 00"\ (06'\]
(5) 7 (57) (5g) + om0’ (5 )(%H =0

= (C})(,(,,

=7 | (a7)
bl ((E) AN o))
(c) (A), = %} = [451'r4{r3 +3a(t - r)}77/3] =4ar,
= [752] = [-Zat-0+ 2] —-F =@,

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)
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2
Rl = {d cg'fé)"} = [ +3a(t —0)} 7] =28, (xii)
=t =
d2 C 282 _ 282 .
(A2)gy = { éffz)oa} = {_r_2[3a(t—r) + ) 4/3} = (A2) 4 (xiv)
(xv)

(A2);p = (A2),4 = (A2) 49 = 0.

By computing the higher derivatives of the components of C; and evaluating them at t = ¢, one can obtain
As, A, ..., etc. We note that along each radial pathline, the base vectors are fixed.

RIVLIN-ERICKSEN TENSORS IN TERMS OF VELOCITY GRADIENT:
THE RECURSIVE FORMULA

In this section, we show that

A} =2D = Vv + (W), 8.11.1)
DA
A, = Tzl +AL(VV) + (VV)"Ay, (8.11.2)
and
DA
Aot :D—tN—I—AN(VV)—i-(VV)TAN, N=1,23..., (8.11.3)
where Vv is the velocity gradient and D is the rate of deformation tensor.
We have, at any time T,
ds’? = dx’- dx' = dx - Cdx, (8.11.4)
thus [see Eq. (8.10.2)],
D(ds"
(ds7) _ Pds’z} — dx - (%) dx,
Dr 8T x;—fixed aT x;—fixed
DX(ds™) _[&* ] 2*C,
= |>ds’ =dx- d
DTZ aTZ * x;—fixed X (87’-2 ),\f,»ffixed X7
and in general,
DV(ds?) _[dY ] N,
= |—ds’ =dx - dx. 8.11.5
DTN aTN * x;—fixed * (aTN )x,fﬁxed ¥ ( )
Now, at T = ¢,
d  n D *  n D? »N . DY
- = - = — =— 1.
[ar as } xi—fixed Dtds7 {812 as x—fixed  Df? as, o as xi—fixed DV as, ®.11.6)
=t

=t =t
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therefore,

D(ds)*
Dt

D*(ds)*
D2

DN (ds)*
DV

=dx - Adx, = dx - Aydx, =dx - Aydx. (8.11.7)

In Chapter 3, we obtained [Eq. (3.13.11)],

D(ds)*
Dt

1
= 2dx - Ddx, where D =2 [VV n (VV)T] :

thus,

A, = 2D. (8.11.8)

Next, from the first equation in Egs. (8.11.7), we have

D?(ds)*> Dd DA Dd
(ds)” _Dax o vax P toax A, 29X
Dt? Dt Dt Dt

Since (D/Dt)dx = (Vv)dx [see Eq. (3.12.6)],

D (ds)? DA
CalCOR (Vv) A dx + dx - Ttldx +dx - A (Vv)dx.

Comparing this last equation with the second equation in Eqgs. (8.11.7), we have

DA
Ay = Ttl +AL(VY) 4 (VV)"A,. (8.11.9)

Equation (8.11.3) can be similarly derived (see Prob. 8.21).

Example 8.11.1
Using Egs. (8.11.8) and (8.11.9) to obtain the first two Rivlin-Ericksen tensors for the velocity field here in spherical
coordinates:

a4 y=o, vs = 0. (8.11.10)

vy = —
r ,,2

Solution
Using the equations provided in Chapter 2 for spherical coordinates, we obtain

2a/r* 0 0
W= 0 -a/r® 0 (8.11.11)
0 0 -a/r’
and
4a/r’ 0 0
A =[W]+[W]'=| 0 —2a/r o |. (8.11.12)

0 0 —2a/r3
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To use Eqg. (8.11.9), we need to obtain DA{/Dt = 0A1/0t + (VA1)v, where (VA;) is a third-order tensor. Since
8A1/6t: 0 and Vo = Vg = O,

(DAl/Dt)rr = (VAl)rrr Vr,

(DA1/Dt),y = (VA1) g, Vr,

(DA1/Dt) gy = (VA1) gy, Vr, €fC.

Now, from Appendix 8.1, we obtain

(VAl)r¢r = (VAL)y, = (VAl)()(/)r = (VAI)(/)U = (VA1)¢U, =0.

Thus, [DA1/Dt] is diagonal, with diagonal elements given by

DA;\ [ l2a a\ 12z
(ﬁ)ﬂ = (VA Vr = (—r—4> <— r—2> =6 (8.11.13)

DA _ B 6a ay 642 B DA,
(Tt) w (VALoorVr = (r_4) (_ ﬁ) G (Tf) " (8.11.14)

Since both A; and Vv are diagonal, A; (Vv) + (V)T A; is also diagonal and is equal to 2A;(Vv) with diagonal
elements given by

_l6a’ 452

RAL(VV)], === RAL(VY)]gy = [2A1(VW)]y = (8.11.15)
Thus,
r12a° 1 [16a? T [28a° T
e 0 0 - 0 0 - o0 o
6a° 452 252

Bj=| 0 -—=% 0 |+ 0 —& 0 =)0 -— 0 | (8.11.16)

682 452 2a°

o o - o o - o o -

These are the same results as those obtained in an example in the previous section using Eq. (8.10.2).
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RELATION BETWEEN VELOCITY GRADIENT AND DEFORMATION GRADIENT

From
dx’'(t) =x/(x + dx, 1) — x/(x,7) = F,(x, 7)dX, (8.12.1)
we have
2 - ) — ! _ DF/
De dx' =v'(x+dx,7) —v'(x,7) = (Vyv')dx = D dx.
Thus,
DF, _ ,
Dr = VxV' (X, 1), (8.12.2)
from which we have
DF,
E = va(x, f) (812.3)

Using this relation, we can obtain the following relations between the rate of deformation tensor D and the
relative stretch tensor U, as well as the relation between the spin tensor W and the relative rotation tensor R,.
In fact, from the polar decomposition theorem

Fi(x,7) = Ri(x, 7)Ui(x,7), (8.12.4)
we have
DF,(x,7) DR(x,1) DU, (x, 1)
D = Dn Ui(x,7) + R(x, 1) D (8.12.5)

Evaluating the preceding equation at t = ¢ and using Eq. (8.12.3) [note also that U,(x, 1) = R, (x, r) =I], we
obtain

DR DU,
Viv(x, 1) = {Drl} + {Drr} , (8.12.6)
=t =t

where on right-hand side, the first term is antisymmetric and the second term is symmetric. Now, since V,v
(x, f) = D 4+ W and the decomposition is unique (see Chapter 3),

W= {DR’} D= {DU’} . (8.12.7)

Dt Dt

TRANSFORMATION LAW FOR THE RELATIVE DEFORMATION TENSORS
UNDER A CHANGE OF FRAME

The concept of objectivity was discussed in Chapter 5, Section 5.56. We recall that a change of frame, from x
to x*, is defined by the transformation

X =c(f) + Q(f)(X — Xo), (8.13.1)
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and if a tensor A, in the unstarred frame, transforms to A" in the starred frame in accordance with the
relation

A" =Q(nHAQ"(r), (8.13.2)

then the tensor A is said to be objective, or frame indifferent (i.e., independent of observers).
From Eq. (8.13.1), we have [recall X' = x' (x, 7)]

dx’(f) = Q(ndx, dx""(r) = Q(r)dx'(x). (8.13.3)
Since [see Eq. (8.12.1)]
dx'(t) = Fi(x,7)dx and dax" (1) =F,(x",7")dx, (8.13.4)
from Eqs. (8.13.3) and (8.13.4), we have
F;(x",7")ax (1) = Q(v)F,(x, t)dx. (8.13.5)
Now the first equation of Eq. (8.13.3) gives dx = QT(t) dx*(t); therefore Eq. (8.13.5) becomes
F,(x",7") = Q(1)F:(x,7)Q" (). (8.13.6)
This is the transformation law for F, (X, t) under a change of frame. We see that F, (x, 7) is not an objective

tensor.
In the following, we agree that, for simplicity, we write

F: = Ft*(x*,‘c*),Rf = Rf(x*, r*),F, =F,(x,7),R; = Ry(x,7), etc. (8.13.7)
Since F, = R,U; and F,* = R:Uf; therefore, from Eq. (8.13.6), we have
R'U; = Q(r)RUQ"(r).
We can write the preceding equation as
RU; = [Q(RQ" (1] [Q(HUQ" (1],

where Q(7) R,Q"(r) is orthogonal and Q(r) UQ™(¢) is symmetric; therefore, by the uniqueness of the polar
decomposition, we can conclude that

R, =Q(1)RQ'(1) (8.13.8)
and
U = Q(HU.Q"(r). (8.13.9)
Now, from C, = U,U, and C, = U; U}, we easily obtain
¢/ =Q(NCQ" (1), (8.13.10)
and
C'=Q(nC,'Q (1. (8.13.11)

Similarly, we can obtain (see Prob. 8.24)

vV, =Q(1)V.Q"(r), B, =Q(1)BQ'(x), B, '=Q(1)B,'Q'(). (8.13.12)

Equations (8.13.9), (8.13.10), and (8.13.11) show that the right relative stretch tensor U,, the right relative
Cauchy-Green tensor C,, and its inverse C, lare all objective tensors, whereas Eqgs. (8.13.12) show that V,,
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B, and B," are nonobjective. We note that this situation is different from that of the deformation tensors using
a fixed reference configuration (see Section 5.56).
From Egs. (8.12.7) and (8.13.8), we have [note: D/Dt" = D/D7]

v =[] - [freae] | fen{Eer]

DR
Since R,(f) =T and Dtt = W; therefore,

W’ = (dQ/dn)Q" (1) + Q(1)WQ (1), (8.13.13)

which shows, as expected, that the spin tensor is not objective.
Using Eq. (8.13.13), we can show that for any objective tensor T, the following tensor

zl,;—'quTWfWT, (8.13.14)

is an objective tensor (see Prob. 8.22). That is,

S =Q(SQT (). (8.13.15)

Example 8.13.1
The transformation law for Vv in a change of frame was obtained in Chapter 5, Section 5.56, as [Eq. (5.56.20)]:

ViV = Q(H)(VV)Q' (1) 4 (dQ/dH)Q". (8.13.16)
Use Eq. (8.13.16) to obtain the transformation law for the rate of deformation tensor D and the spin tensor W.

Solution
From V* v = QO(VV)Q'() + (dQ/dD QT, we have

(V) =Q(t)(V) Q' (t) + Q(dQ/dt)".

Therefore,
2D = V'V + (Vi) = Q(t){(Vv) + (vV)T}QT(t) +(dQ/dt)Q" + Q(dQ/dt)".
But
(dQ/dt)Q" + Q(dQ/dt)" = (d/dt)(QQ") = (d/dt)(1) = 0. (8.13.17)
Therefore,
D* = Q(t)DQ'(¢). (8.13.18)

That is, the rate of deformation tensor D is objective. Next,
W' = Vv — (Vv = Q(t){(Vv) - (vV)T}QT(t) + (dQ/dH)Q" — Q(dQ/dt)".
But, from Eq. (8.13.17), Q(dQ/dd" = —(dQ/dHQ", therefore,
W = Q()WQ' (1) + (dQ/dh)Q’. (8.13.19)
This is the same as Eq. (8.13.13).
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TRANSFORMATION LAW FOR RIVLIN-ERICKSEN TENSORS UNDER
A CHANGE OF FRAME

From Eq. (8.13.10),

C (1) = Q(C,(1)Q" (1), (8.14.1)
we obtain (note: D/Dr* = D/Dr),
DC; (v) DCy(7) 1
pe = Q)= —Q (), (8.14.2)
and
DC/(1) DNC(7) 1
DN Q() DV Q (1. (8.14.3)
Thus [see Eq. (8.10.2)],
Ay(1) = QAN (NQT (1). (8.14.4)

We see, therefore, that all Ay (N =1, 2 ...) are objective. This is quite to be expected because these ten-
sors characterize the rate and the higher rates of changes of length of material elements which are independent
of the observers.

INCOMPRESSIBLE SIMPLE FLUID

An incompressible simple fluid is an isotropic ideal material with the following constitutive equation
T=—pl+8, (8.15.1)

where S depends on the past histories up to the current time ¢ of the relative deformation tensor C,. In other
words, a simple fluid is defined by

T=—-pIl+H[C/(x,1); —0c0 <1 <1, (8.15.2)

where —oo < 1 < t indicates that the values of the functional H depends on all C, from C, (x, —c0) to
C, (x, ). We note that such a fluid is called “simple” because it depends only on the history of the relative
deformation gradient F, (x, 7) [from which C, (x, 1) is obtained] and not on the histories of the relative higher
deformation gradients [e.g., VF, (x, 1) VVF, (x, t) and so on].

Obviously, the functional H in Eq. (8.15.2) is to be the same for all observers (i.e., H = H). However, it
cannot be arbitrary, because it must satisfy the frame indifference requirement. That is, in a change of frame,

H[C](x",7")] = Q(HIC/(x,7)]Q" (). (8.15.3)

Since C; (x, 7) transforms in a change of frame as

C (x',7") = Q(1)Ci(x,7)Q" (). (8.15.4)
Therefore, the functional H[C, (x, 7); —oco < t <f] must satisfy the condition
H[Q(NCQ"(1)] = Q(HH[C]Q" (7). (8.15.5)

We note that Eq. (8.15.5) also states that the fluid defined by Eq. (8.15.2) is an isotropic fluid.
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Any function or functional that obeys the condition given by Eq. (8.15.5) is known as an isotropic function
or isotropic functional.

The relationship between stress and deformation, given by Eq. (8.15.2), is completely general. In fact, it
includes Newtonian incompressible fluid and Maxwell fluids as special cases. In Part C of this chapter, we
consider a special class of flow, called viscometric flow, using this general form of constitutive equation.
First, however, we discuss some special constitutive equations, some of which have been shown to be approx-
imations to the general constitutive equation given in Eq. (8.15.2) under certain conditions such as slow flow
and/or fading memory. They can also be considered simply as special fluids. For example, a Newtonian
incompressible fluid can be considered either as a special fluid by itself or as an approximation to the general
simple fluid when it has no memory of its past history of deformation and is under slow-flow condition
relative to its relaxation time (which is zero).

SPECIAL SINGLE INTEGRAL-TYPE NONLINEAR CONSTITUTIVE EQUATIONS

In Section 8.4, we saw that the constitutive equation for the linear Maxwell fluid is defined by
S=2 Jf(s)E(t — s)ds, (8.16.1)
0

where E is the infinitesimal strain tensor measured with respect to the configuration at time . It can be shown
that for small deformations (see Example 8.16.2),

C,—-1=1-C,'=2E. (8.16.2)

Thus, the following two nonlinear viscoelastic fluids represent natural generalizations of the linear Maxwell
fluid in that they reduce to Eq. (8.16.1) under small deformation conditions:

S r £($)Clt — 5) — 1ds, (8.16.3)
0
and
S = Jocfz(s) [I—C ' (r—ys)]ds, (8.16.4)
0

where the memory function f;(s) may be given by any one of Egs. (8.4.9), (8.4.10), or (8.4.11).

We note that since C,(t) is an objective tensor; therefore, the constitutive equations defined by
Eq. (8.16.3) and Eq. (8.16.4) are frame indifferent (that is, independent of observers). We note also that if
f1 =/f>1n Eq. (8.16.3) and Eq. (8.16.4), then they describe the same behaviors at small deformation. But they
are two different nonlinear viscoelastic fluids, behaving differently at large deformation, even with f; = f5.
Furthermore, if we treat f;(s) and f>(s) as two different memory functions, Eq. (8.16.3) and Eq. (8.16.4) define
two nonlinear viscoelastic fluids whose behavior at small deformation are also different.

Example 8.16.1
For the nonlinear viscoelastic fluid defined by Eq. (8.16.3), find the stress components when the fluid is under steady
shearing flow defined by the velocity field:

Vi = ng, Vo = V3 = 0. (i)
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Solution
The relative Cauchy-Green deformation tensor corresponding to this flow was obtained in Example 8.9.1 as

1 k(z — 1) 0}

[Ct]={k(f—l‘) KE-t?+1 0 (ii)

0 0 1
Thus,
0 —-ks O
[Ci(t—s)—1]= | —ks K°Ss> O (iii)
0 0 O
From Eqg. (8.16.3),
S11 =813 =53 =533=0, (iv)
Sio = —kJ Sh(s)ds,  Spp = K2 J 1i(s)ds. v)
0 0
We see that for this fluid, the viscosity is given by
n= Slz/k = —J Sfl(S)dS. (vi)
0

We also note that the normal stresses are not equal in the simple shearing flow. In fact,

00

Th=-p+Su=-p, To=—pPp+Sp=-p+ kZJ s*h(s)ds, Tz =—p+ Sz =—p. (vii)
0

We see from the preceding example that for the nonlinear viscoelastic fluid defined by

s = Jfl ()[Ct — s) — T)ds,
0
the shear stress function 1(k) is given by
(k) =S = ka sf1(s)ds, (8.16.5)
0
and the two normal stress functions are given by either
o (k) =S11 — Sy = —k2J Sfi(s)ds, ay(k) =Sy —S33 =k | s*fi(s)ds (8.16.6)
0 Jo
or

(_71 (k) = 322 - S33 = kzj S2f1 (s)ds, 5'2(]() = Sl| — S33 =0. (8167)
0

The shear stress function t(k) and the two normal stress functions (either ¢; and o, or ; and G5)
completely describe the material properties of this nonlinear viscoelastic fluid in the simple shearing flow.



8.16 Special Single Integral-Type Nonlinear Constitutive Equations 477

In Part C, we will show that these three material functions completely describe the material properties of
every simple fluid, of which the present nonlinear fluid is a special case in viscometric flow, of which the
simple shearing flow is a special case. The function

Happ = (k) /K, (8.16.8)
is known as the apparent viscosity function. Similarly, for the nonlinear viscoelastic fluid defined by
Eq. (8.16.4), i.e.,

S = J L) [I=Cl(t—s)]ds, (8.16.9)
0
the shear stress function and the two normal stress functions can be obtained to be (see Prob. 8.23)

Sia(k) = —k EO sh(s)ds, o1(k) = —k* EC $*fr(s)ds, aay(k) =0. (8.16.10)

A special nonlinear viscoelastic fluid defined by Eq. (8.16.4) with a memory function dependent on the
second invariant /, of the tensor C, in the following way:

H(5) =F(s) = —f—ze—s/’l when I, >B?>+3 and fo(s) =0 when I, <B>+3 (8.16.11)
is known as the Tanner and Simmons network model fluid. For this model, the network “breaks” when a scalar

measure of the deformation /, reaches a limiting value of B? + 3, where B is called the strength of the
network.

Example 8.16.2
Show that for small deformation relative to the configuration at the current time ¢t

Ci—I~1-C;!~2E, (8.16.12)
where E is the infinitesimal strain tensor.

Solution
Let u denote the displacement vector measured from the configuration at time . Then

x'(t) = x+u(x, 7).
Thus,
Ft:VX/:l-FVU.
If uis infinitesimal, then
C,=FIF = [l + (Vu)T] I+ (Vu) ~ 1+ 2E, E= {Vu + (Vu)T] /2,
and
C:'l~(1+2E) ' ~1-2E
Thus, for small deformation,

Ci—I1=~2E and 1-C;!~2E.
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Example 8.16.3
Show that any polynomial function of a real symmetric tensor A can be represented by

F(A) =l + AA+ LA™Y (8.16.13)
where f; are real valued functions of the scalar invariants of the symmetric tensor A.
Solution
Let

F(A) = aol + a1A + a.A* + ... ayA". (8.16.14)
Since A satisfies its own characteristic equation:
A° — A’ + LA — K1 =0, (8.16.15)
therefore,

A3 = 1A% — LA — ],

(8.16.16)
A* = A3 — LA? — 3A = [, (LA — LA — I3) — LA? — |3A, etc.

Thus, every AY for N > 3 can be expressed as a sum of A, A2 and | with coefficients being functions of the scalar
invariants of A. Substituting these expressions in Eq. (8.16.14), one obtains

F(A) = bo()l + by (1)A + ba(/)A°. (8.16.17)
Now, from Eq. (8.16.15),
A% = 1A — bl + KA T, (8.16.18)
therefore, Eq. (8.16.17) can be written as
F(A) = () + A (1A + H([HAL (8.16.19)

In the preceding example, we have shown that if F(A) is given by a polynomial, Eq. (8.16.14), then it can be
represented by Eq. (8.16.19). More generally, it was shown in Appendix 5C.1 (the representation theorem of
isotropic functions) of Chapter 5 that every isotropic function F(A) of a symmetric tensor A can be represented
by Eq. (8.16.17) and therefore by Eq. (8.16.19). Now, let us identify A with C, and /; with the scalar invariants
of C, (note: however, I3 = 1 for an incompressible fluid), then the most general representation of F(C,) (which
must be an isotropic function in order to satisfy the condition for frame indifference) may be written:

F(C,) =fi(I1,L)C, + f(I1,1L)C; . (8.16.20)

GENERAL SINGLE INTEGRAL-TYPE NONLINEAR CONSTITUTIVE EQUATIONS

From the discussion given in the end of the previous example (see also Appendix 5C.1 of Chapter 5), we see that
the most general single integral-type nonlinear constitutive equation for an incompressible fluid is defined by

§= rc [fi(s,11,12)Cult = 5) + fo(s, 11, 1) C ! (2 = 9)] ds, (8.17.1)
0

where I, and I, are the first and second principal scalar invariants of C, ' ().
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A special nonlinear viscoelastic fluid, known as the BKZ fluid,® is defined by Eq. (8.17.1) with f; (s, I, I5)
and f5 (s, I, I) given by:

ou ou
fils,1,1) = _26_12 and  fo(s, 11, 1) = 28_11’ (8.17.2)
where the function U (I, I», s) is chosen as
9, Li+h+3 o (LIS
~U =3 fIn= ==+ 24(f &) 111(12 - 15) +é(Iy - 3), (8.17.3)
with
p=B) 2B B+ els) = bs))2. (8.17.4)

ds ’ ds

where ¢(s) is the relaxation function. The function c(s) will be seen to be related to the viscosity at very large
rate of shear.
For simple shearing flow, with v{ = kxp, v = v3 = 0 and T = ¢ — s, we have

1 —ks 0 Ks24+1 ks 0O
Cl=|-ks Ks*+1 0|, [C']= ks 1 0], (8.17.5)
0 0 1 0 0 1
and
s+ 1 ks s +1 0 1 0
_ 122 _ _ 2.2
Lh=kKs+3, hL=|"" ) 0 | 0 1| =3HKS (8.17.6)
Thus,
L4+L+3=9+42%" I +15=Ks+18=1+ 15, (8.17.7)
so that
ou 9B 48(p —¢) ouU 98 48(p — ¢)
- Y _ _ =2 — — ¢ 8.17.8
g oIl ~ 9+2k2s2 K22 +18° Z ol 94+ 2k2s2 K252 + 18 ( )

Now, from S = [ [¢,(s,1,1)C, + ¢, (s,1,1I)C; '|ds and (C,),, = —ks and (C;!), = ks, we obtain the
shear stress function and the apparent viscosity as

OC 953 . Si2 rc 9BS .
S =2k —————+ (s | ds =—=-2 ———— 4 ¢s|ds. 8.17.9
2 L oo |9 Hap = o o2 T (8.17.9)
At a very large rate of shear, k — oo, the viscosity is
00 ) Dod(,' o8] 00 00
Uso = —2| ¢(s)sds=—-2| —sds=—-2|cs| — | cds| =2 cds. (8.17.10)
0 o ds 0 0 0

SBernstein, B., E. A. Kearsley, and L. J. Zappas, Trans. Soc. of Rheology, Vol. VII, 1963, p. 391.
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Example 8.17.1

For synovial fluids, the viscosity at a large rate of shear k is much smaller than that at small k (as much as 10,000
times smaller has been measured); therefore, we can take c(s) = 0 so that f(s) = ¢(s)/2, where ¢(s) is the relaxation
function. (a) Show that for this case, the BKZ model gives the apparent viscosity as

xe ¥
/'tapp = J /—/(T){JWCIX}dT7 (81711)
0 0
where H(z) is the relaxation spectrum, and (b) obtain the apparent viscosities for the three synovial fluids of
Example 8.5.1.
Solution

(@) With c(s) = 0 and B(s) = ¢(s)/2, the second equation in Eq. (8.17.9) becomes

Haeo =~ J o ) v
With ¢(s) = J Hi) e*/"dr, we have d¢/ds = J H() *5/1( %) dr,
=0 =0
so that
- [s¢] 00 s /—[(‘L-) 7§ - 0o o0 S H(T) 7% )
Happ = J [J 1T 2/9)R e dr} ds = J J T 29 e:ds/dt. (i)
s=0 L=0 =0 s=0

Next, let x = s/t, then ds = tdx; we arrive at Eq. (8.17.11).

(b) Using the relaxation spectra H(t) obtained in Example 8.5.1 for the three synovial fluids, numerical integration
of the above equation gives the apparent viscosities as shown in Figure 8.17-1."

1.0

o
[

o
o

o
~

Apparent Viscosity (N-s/m2)

o
S

40 80 120 160 200
Shear Rate (s—1)

FIGURE 8.17-1 Calculated apparent viscosity as a function of rate of shear k(s~!) for the three synovial fluids.

“Lai, Kuei, and Mow, loc. cit.
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DIFFERENTIAL-TYPE CONSTITUTIVE EQUATIONS FOR INCOMPRESSIBLE
FLUIDS

We saw in Section 8.10 that under the assumption that the Taylor series expansion of the history of the defor-
mation tensor C,(x, 1) is justified, the Rivlin-Ericksen tensor Ay, (N = 1, 2 ... 00) determines the history of
C, (x, 7). Thus, we may write Eq. (8.15.2) as

T=—pl+f(A,Ay...Ay..), trA; =0, (8.18.1)

where f(A;, A, ... Ay...) is a function of the Rivlin-Ericksen tensor and trA; = 0 follows from the equation
of conservation of mass for an incompressible fluid.

To satisfy the frame-indifference condition, the function f cannot be arbitrary but must satisfy the relation
that for any orthogonal tensor Q:

Qf(A1,As...Ay...)QT =f(QAQ",QA:Q™... QANQT..)). (8.18.2)

We note, again, that Eq. (8.18.2) makes “isotropy of material property” a part of the definition of a simple
fluid.
The following are special constitutive equations of this type.

Rivlin-Ericksen Incompressible Fluid of Complexity n
T =—pl+f(A, Ay ... Ay). (8.18.3)
In particular, a Rivlin-Ericksen liquid of complexity 2 is given by

T = —pl+ A1 + (AT + (1342 + [4AS + 115 (A1As + A2A))

2 2 2 2 202 242 (8.18.4)
He(A1AS + AjAL) + 17 (ATA2 + A2 A7) + g (ATA; + AJAT),
where uy, i ... wy are scalar material functions of the following scalar invariants:
trA2, trA3, trA,, trAZ, trA3 trA | Ay, trA | A2 trA, A2 trAZ A2 (8.18.5)
We note that if u, = u3 = ... uy = 0 and p; = a constant, Eq. (8.18.4) reduces to the constitutive equation
for a Newtonian liquid with viscosity ;.
Second-Order Fluid
T = —pl+ 1A + 1LAT + 15A,, (8.18.6)

where py, ttp and u3 are material constants. The second-order fluid may be regarded as a special case of the
Rivlin-Ericksen fluid. However, it has also been shown that under the assumption of fading memory, small
deformation, and slow flow, Eq. (8.18.6) provides the second-order approximation, whereas the Newtonian
fluid provides the first-order approximation and the inviscid fluid, the zeroth-order approximation for the
simple fluid.

Example 8.18.1
For a second-order fluid, compute the stress components in a simple shearing flow given by the velocity field:

Vi = ng, Vo = V3 = 0. (8.18.7)
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Solution
From Example 8.10.1, we have for the simple shearing flow
0 kK O 0O 0 O
A]=1|k 0 0|, [A)J=1]0 2k* 0|, Ay=0, N>3. (8.18.8)
0 00 0O 0 O
Now
0O kK 0|[0 kK O k¥ 0 0
(8] = [k 0 0|lk 0 0|=|0 K 0], (8.18.9)
0O 0 O[O0 O O 0O 0 O

therefore, Eq. (8.18.6) gives
hi=-p+ /12/(2, Top = —p+ /12/(2 + 2/13/(2, Tsz=—p, Tip= ptlk, Ti3 = T3 =0. (8.18.10)

We see that because of the presence of us and us, normal stresses, in excess of p on the planes x; = constant and

X> = constant, are necessary to maintain the shearing flow. Furthermore, these normal stress components are not
equal. The normal stress functions are given by

o1(K) = Ti1 — Too = —2p3k?,  02(K) = Too — Tz = piok® + 2pzk®. (8.18.11)

By measuring the normal stress differences and the shearing stress components, the three material constants u4,
Uz and us can be determined.

Example 8.18.2
For the simple shearing flow, compute the stress components for a Rivlin-Ericksen liquid.

Solution
We note that for this flow, Ay = 0 for N > 3; therefore, the stress is the same as that given by Eq. (8.18.4). We have

[0 k O 0 0 0 K 0 0 0 0 O
A= |k O Of, [AJJ=1]0 2k O, [A]=|0 K2 O}, [A3]=|0 4k* 0O,

[0 0 0 0 0 O 0 0 0 0 0 O
[0 2k3 0] 0 00 0 4k* 0

[AlJ[As]= {0 0 Of, [AJA]= |2k 0 0|, [AJAZJ=|0 O Of,
0 0 O] 0 00 0 0 0
[0 0 0] 0 0 0

(AZ)[A) = | 4k° O Of, [Af][A;] = [A][AT] = | O 2k* O,
| 0 0 0] 0 0 0

0 0 0 0 K 0 0 0 0
A2][A3] = [A2][AZ] = |0 4k® Of, A}]=|k® 0 Of, [A]=|0 8k O,
0 0 0 0 0 0 0 0 0
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and
trA2 = 2k2, trA3 =0, trA; = 2k2, trAS =4k, trA3 = 8kS,
trAjA; =0, trA2A; =2k trASA; =0, trAZAS = 4k°.

Thus, from Eq. (8.18.4), we have

0 kK O k 0 0 0O 0 O 0O 0 O
M=-pll+pu |k O O +u| 0 kK O|+pus|0 2k> 0| +us|0 4k* O+
0 0

0 0 0 O 0 0 O 0 0 O
0 2k 0 0 4k° 0 0 0 O 0 0 O

us | 2k3 0 O| +ug|d4k® O O +u; |0 4k* Of +pug|O 8k Of.
0 0 © 0 0 O 0 0 O 0 0 O

where u/s are functions of k2. We note that the shear stress function [t(k) = T, is an odd function of the rate of
shear k, whereas the normal stress functions [67; = T;; — To» and o> = T, — T33] are even functions of k.

OBJECTIVE RATE OF STRESS

The stress tensor is objective [see Chapter 5C, Eq. (5.57.1)]; that is, in a change of frame,

T = Q(TQ"(1). (8.19.1)
Taking material derivative of the preceding equation, we obtain (note: D/Dt" = D/Dr)
DT" _DQuor . oPT o1y or(PQ)
Dr =~ Dr TQ +QDtQ +QT(DI) . (8.19.2)

The preceding equation shows that the material derivative of stress tensor T is not objective.

That the stress rate DT/Dt is not objective is physically quite clear. Consider the case of a time-
independent uniaxial state of stress with respect to the first observer. With respect to this observer, the stress
rate DT/Dt is identically zero. Consider the second observer who rotates with respect to the first observer.
To the second observer, the given stress state is rotating with respect to him and therefore, to him, the stress
rate DT"/Dt" is not zero.

In the following, we present several stress rates at time ¢ that are objective.

Corotational Derivative, Also Known as the Jaumann Derivative
Let us consider the tensor
J(t) =R (7)T(7)R,(7). (8.19.3)
We note that since R,(f) = R} (¢) = L, the tensor J and the tensor T are the same at time ¢. That is,
J(0) =T(). (8.19.4)

However, while DT/Dt¢ is not an objective tensor, we will show that [DJ(t)/Dz].—, is an objective tensor. To
show this, we note that in Section 8.13, we obtain, in a change of frame,

R; = Q(0)R/(1)Q"(1). (8.19.5)
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Y () =R @OT (OR; (7) = [Q(0)R()Q"(1)] ' [Q(=)T(x)Q" ()] [QD)R (1)Q" (1)] = QUIR] (2)T(x)R,()Q" (1)

That is,
J(1) = Q)I(1)Q" (0, (8.19.6)
and
DVJ (1) _ DNJ(x) T -
I: DTN :|1:1 _Q(t) {W} :tQ (t)’ N = 17273 (8197)

That is, the tensor J(t), as well as its material derivatives evaluated at time L is objective. The derivative
[DJ(7)/Dt],—, is known as the corotational derivative and will be denoted by T. That is,

T= {DJ(T)} . (8.19.8)
Dr |,

It is called the corotational derivative because it is the derivative of T at time ¢ as seen by an observer who
rotates with the material element (whose rotation tensor is R). The higher derivatives will be denoted by

T, = [DVI(z)/D"] (8.19.9)

=t’

[1] (1]
where T; = T. These corotational derivatives are also known as the Jaumann derivatives.
We now show

T= %T +T(OW() — W(OT (), (8.19.10)

where W(¢) is the spin tensor of the element.
From Eq. (8.19.3), i.e., J(t) = R} (t)T(7)R,(x), we have

DT(z)
Dt

DJ(r) _ DR/(1)

DR(1)
Dt Dt ’

T(IR,(1) +RT (D) =

R, (1) + R/ (1)T(2)

(8.19.11)

Evaluating the preceding equation at t = ¢ and noting that [see Eq. (8.12.7)]

T T T
{%’ﬂ =W, {%p} =W =W, ad RIG)=R() =1

Eq. (8.19.11) becomes Eq. (8.19.10).

Oldroyd Lower Convected Derivative
Let us consider the tensor
JL(t) = F' (1) T(2)F,(x). (8.19.12)
Again, since F,(t) = F](¢) = L, the tensor J;_ and the tensor T are the same at time ¢. That is,

JL(@t) =T(r). (8.19.13)
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We now show that [DJy (1)/Dt].—, is an objective tensor. To do so, we note that in Section 8.13, we
obtained, in a change of frame,

F, (1) = Q(0)F,(1)Q" (1). (8.19.14)
Thus,
3, (1) = [QF()Q™ (1] [Q()T(1)Q"(1)] [Q(DF(1)Q" (1)] (8.19.15)
= Q(F] (1)T(1)F,(1)Q" (1).
Thus,
JL(1) = Q()IL(1)Q" (), (8.19.16)
and
|:DNJ;‘(T):| — Q) I:DNJL(‘L'):| Q') N=123 $.19.17)
DV |, pv |2\ 1530 -19.

That is, the tensor Ji(7), as well as its material derivatives evaluated at time ¢, is objective. The derivative
[DJ.(7)/Dt],—, is known as the Oldroyd lower convected derivative and will be denoted by T. That is,

. _ [DIL(7)
T= {7} - (8.19.18)

It is called a convected derivative because Oldroyd obtained the derivative by using “convected coordinates,”
that is, coordinates that are embedded in the continuum and thereby deforming and rotating with the con-
tinuum.”” The higher derivatives will be denoted by

- [DNIL(r)
TN:{ DTLN L{ (8.19.19)

In Section 8.12, we derived that [see Eq. (8.12.3)]

{%} = Vv. (8.19.20)
Dt |,
Using this, one can show that (see Prob. 8.25)

T :%+TVv+ (VV)'T. (8.19.21)

Further, since Vv =D + W, Eq. (8.19.21) can also be written as

T=T+TD +DT. (8.19.22)

It can be easily shown (see Prob. 8.29) that the lower convected derivative of the first Rivlin-Ericksen
tensor A; is the second Rivlin-Ericksen tensor A,.

“The “lower convected derivatives” and the “upper convected derivatives” correspond to the derivatives of the covariant compo-
nents and the contravariant components of the tensor, respectively, in a convected coordinate system that is embedded in the contin-
uum and thereby moves and deforms with the continuum. This is the method used by Oldroyd to obtain objective derivatives.
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Oldroyd Upper Convected Derivative

Let us consider the tensor

Ju(r) = F ()T (0)F; T (1). (8.19.23)
Again, as in (A) and (B),
Ju(®) = T(2), (8.19.24)
and the derivatives
DNJL(‘L') o
{ Dol sz N=1,273.... (8.19.25)

can be shown to be objective tensors. These are known as the Oldroyd upper convected derivatives of T,

which will be denoted by T. It can also be derived (see Prob. 8.26) that

i l:DJU(T):| DT
=t

_ T _T_
="y =D T(Vv) — (VV)T=T- (TD + DT). (8.19.26)

The preceding three objective time derivatives are perhaps the most well-known objective derivatives of objec-

tive tensors. There are many others. For example, T + o(TD + DT) are objective rates for the tensor T for any
scalar «, including the corotational rate (« = 0), the Oldroyd lower convected rate (o« = 1), and the Oldroyd
upper convected rate (« = —1). When applied to stress tensors, they are known as objective stress rates.

Example 8.19.1
Given that the state of stress in a body is that of a uniaxial state of stress with

Ti1 =0, allotherT7; =0

where o is a constant. Clearly, the stress rate is zero at all places and at all times. Consider a second observer, repre-
sented by the starred frame, which rotates with an angular velocity w relative the unstarred frame. That is,

X coswt —sinwt O] [x coswt —sinwt 0
x| =|sinot coswt O||x|, [Q=|sinwt coswt O]. (i)
X5 0 0 1] % 0 0 1

For the starred frame, find (a) the time-dependent state of stress, (b) the stress rate, and (c) the corotational
stress rate.

Solution
(@) The time-dependent [T*] is

cos?wt  sinwt/2 0

T =QMQ" =0|sin?wt/2 sinot 0. (ii)
0 0 0
(b)
oT* —2 sin wt cos wt cos?mt 0
{ﬁ} =ow cos?wt 2sinwtcoswt 0. (iii)

0 0 0
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That is, for the * frame, the stress rate is not zero due to its own rotation relative to the unstarred frame. To
obtain a stress rate that is not dependent on the observer’s own rotation, we calculate the corotational stress
rate in (c).

(c) From Eq. (5.56.20), i.e., V*v* = Q(VV)QT +Q@Q", we have, with Vv = 0,

[ —sinwt —coswt O coswt  sinwt 0
[V*v] = [dQ/df][Q" =w | coswt —sinwt O] |-sinwt coswt O
0 0 1 0 0 1 )
- (iv)
0O -1 0
=w|l 0 O
10 0 1
Thus,
‘ 0 -1 0
[W*] _ [v*v*}AHtISyrﬂ —w 1 O O 7 (V)
0O 0O O
so that
2 cos wt sin wt —cos 2wt 0
[T'W] — [W'T'] = 0w —cos 2wt —2coswtsinwt 0. (vi)
0 0 0
Thus, the corotational stress rate is
ﬁ'*] = [DT*/Dt] + [T"W*] — [W'T*] = [0]. (vii)

This is the same stress rate as the first observer.

RATE-TYPE CONSTITUTIVE EQUATIONS

Constitutive equations of the following form are known as rate-type nonlinear constitutive equations:
T=—pl+S, (8.20.1)

and
S+1S+4HS+...=2uD+u,D+... (8.20.2)

where S is extra stress and D is the rate of deformation. The super star or stars in S and D denote some
chosen objective time derivatives or higher derivatives. For example, if the corotational derivative is chosen,
then

s=8-25 sw-ws ad D=D-LL . DW_WD et (8.20.3)
Dt Dt
Equation (8.20.1), together with Eq. (8.20.2), may be regarded as a generalization of the generalized linear
Maxwell fluid defined in Section 8.2. The following are some examples.
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The Convected Maxwell Fluid
The convected Maxwell fluid is defined by the constitutive equation

o o DS
T=-pl+S, S+1iS=2uD, S:E—FSW—WS. (8.20.4)

Example 8.20.1
Obtain the stress components for the convected Maxwell fluid in a simple shearing flow.

Solution
The velocity field for the simple shearing flow is

vi = kxo, Ww=1v3=0. (8.20.5)

For this flow, the rate of deformation and the spin tensors are

0 k/2 0 0 k/2 0
D= |k2 0 of MW=|-k2 0 ol. (8.20.6)
0 0O O 0 0 O
Thus,
=S S O S1 S» S»
[SW] = (k/2)| =S22 Sa1 O, [WS]=(k/2)|-Su1 —S12 —Si3|,
—S3 S31 0 0 0

2581 S11—S» —Sx3
[SW] — WS] = (k/2)| S11— S22 2512 Si3
—S30 S31 0

Since the flow is steady and the rate of deformation is a constant, independent of position, the stress field is also
independent of time and position. Thus, DS/Dt = O so that

o =252 Sn-—S»2 —S53
S =[SW] — [WS] = (k/2) | S11 — S 251, Si3 (8.20.7)
—S32 S31 0
Thus, Eq. (8.20.4) gives the following six equations:
S11— kAS12 =0, Siz+ (k2/2)(S11 — So2) = pk, Si3 — (kA/2)Sp3 =0,
Soo + kAS1o =0, Spz+ (/(/1/2)813 =0, S;3=0.
Thus,
L L S T S S L RN VP S S (8.20.8)
11 1+(k/1)2’ 12 1+(k)~)27 22 1+(ki)27 13 23 33 . .20.
The shear stress function is
uk
©(k) = Si2 (8.20.9)

Tl
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The apparent viscosity is

k u
Kk 1+ (k4)
The normal stress functions are
_ 2uk?J. _ uk?i,
61(k)=711—722:m7 2(k):T22_T33:_1+(ki)2

489

(8.20.10)

(8.20.11)

The Corotational Jeffrey Fluid
The corotational Jeffrey fluid is defined by the constitutive equation
T=_pl+8§, s+/11§:2u<n+/121°)),

where

DS
Dt

DD

S="" 1 SW - WS, IO)=E+DW7WD.

(8.20.12)

(8.20.13)

Example 8.20.2
Obtain the stress components for the corotational Jeffrey fluid in a simple shearing flow.

Solution
From the previous example, we have

o 2812 Su-—-S2 —Sx
S =[0] + [SW] — [WS] = (k/2) | S11 — S22 2512 Si3

—S3 S31 0
Now
, K2 0 0
B=[0j+DW -WD]=| 0 K2 ol
0 0 0

Thus, Eq. (8.20.12) gives

Si1 — ki1 Sio = —uizk?, Sz + (ki1 /2)(S11 — So2) = uk,  Si3 — (k21/2)Sx3 =0,

Soo + ka1 Sz = wiok?,  Spz+ (ki1/2)S13 =0, S33=0.

These equations give

Sip =

I )

1+ 22k
S13 =53 =533=0.

1+ 72k? 1+ 72k?

pk(1+ Ak S _ Hk (31 — 2o) S _ uk(ho — 1)

(8.20.14)

(8.20.15)

(8.20.16)
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Thus, the apparent viscosity is
nk) =—"=—"—73 7" (8.20.17)

and the normal stress functions are

2/1/(2 ()1 — /L2)
1+ 5k2

,uk2 ()»2 — Al)

1+ 202 (8.20.18)

or=T1—-Tn= , 02=Txn—Tx=

The Oldroyd 3-Constant Fluid

The Oldroyd 3-constant model (also known as the Oldroyd fluid A) is defined by the following constitutive
equations:

T=-pI+8, S+/4S=2uD+iD), (8.20.19)

where

§=S-(SD+DS) and D=D—(DD+DD) =D 2D (8.20.20)
are the Oldroyd upper convected derivative of S and D. By considering the simple shearing flow as was done

in the previous two examples, we can obtain the apparent viscosity as

nk) = ST? = i = a constant (8.20.21)

and the normal stress functions as

o] = T11 — T22 = 2,[1,(/11 — /12)/{2, 0y = T22 — T33 =0. (82022)

The Oldroyd 4-Constant Fluid
The Oldroyd 4-constant fluid is defined by the following constitutive equations:

T=-pI+S, S+4S+ p(trS)D =2u(D + 4,D), (8.20.23)
where
§=S—(SD+DS) and D=D—(DD+DD) =D 2D (8.20.24)

are the Oldroyd upper convected derivative of S and D. We note that in this model, an additional term u(tr S)
D is added to the left-hand side. This term is obviously an objective term since both S and D are objective.
The inclusion of this term will make the viscosity of the fluid dependent on the rate of deformation.

By considering the simple shearing flow as was done in the previous models, we can obtain the following
results (see Prob. 8.38):

_ 2,[1/(2(/11 — },2)

S _ Mk(] + )vlﬂokz)
T apgk?)

= 11 other S;; = 0. 8.20.25
Si2 0+ hpk) all other §;; ( )
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Thus, the apparent viscosity is
— & _ :u(l + ;“ZHokz)

k) = = R 8.20.26
O R e T e ( )
and the normal stress functions are
2[1/(2(/11 — /L2)
=Ty —Typ=———->=- =Ty — T35 =0. 8.20.27
a=Tu-Te="grr7 2y, 2=Ta-Ts ( )

VISCOMETRIC FLOW OF AN INCOMPRESSIBLE
SIMPLE FLUID

VISCOMETRIC FLOW

Viscometric flows may be defined as the class of flows that satisfies the following conditions:

1. At all times and at every material point, the history of the relative right Cauchy-Green deformation ten-
sor can be expressed as

(-0’

Ci(t) =T+ (1 —1)A; + As. (8.21.1)

2. There exists an orthonormal basis (n;) with respect to which the only nonzero Rivlin-Ericksen tensors

are given by
0 k£ 0
A= |k 0 0
0 0 0

The orthonormal basis (n;) in general depends on the position of the material element.
The statement given in point 2 is equivalent to the following: There exists an orthonormal basis (n;) with
respect to which

0 0 0
C [Ad=10 2% o . (8.21.2)
0 0 0f,,

{ni}

A; =k(N+NT), Ay =2E°N"N, (8.21.3)
where the matrix of N with respect to (n;) is given by
0 1 0:|
INN=|0 0 o . (8.21.4)
00 0},

In the following examples, we demonstrate that simple shearing flow, plane Poiseuille flow, Poiseuille
flow, and Couette flow are all viscometric flows.

Example 8.21.1
Consider the unidirectional flow with a velocity field given in Cartesian coordinates as

n=vx), w=1=0. (8.21.5)

Show that it is a viscometric flow. We note that the unidirectional flow includes the simple shearing flow and the
plane Poiseuille flow.
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Solution

In Example 8.10.1, we obtained that for this flow, the history of C{(z) is given by Eq. (8.21.1), and the matrix of the two
nonzero Rivlin-Ericksen tensors A; and A, with respect to the rectangular Cartesian basis are given in Eq. (8.21.2),
where k = k(x). Thus, the given unidirectional flows are viscometric flows and the basis (n;), with respect to which
A; and A, have the forms given in Eq. (8.21.2), is clearly {e1, e», es].

Example 8.21.2
Consider the axisymmetric flow with a velocity field given in cylindrical coordinates as

vv=0, w=0, v,=v(r). (8.21.6)
Show that this is a viscometric flow. Find the basis (n;) with respect to which A; and A, have the forms given in
Eg. (8.21.2).
Solution

In Example 8.10.2, we obtained that for this flow, the history of C(t) is given by Eq. (8.21.1), i.e.,

(=)
Ci(r) =14+ (r— DA + 5 A,
and the matrix of the two nonzero Rivlin-Ericksen tensors A; and A, are given by
0 0 k(n 2k?(r) 0 O
A epey=| 0 0 0 ., AJ=| 0 00 : (8.21.7)
k(f) 0 0 {ere0.e,} 0 00 {er.e.e;}
Let
ng=e;, Np =€, N3 =¢y, (8.21.8)

so that (A1)11 = (Al)ZZ, (A1)12 = (Al)Zﬁ (A1)13 = (Al)zg, etc., that iS,

0 k(r) O 0 0 0
Bilinmny = | () 0 0| . [Balipmny = |0 2621 O] . (8.21.9)
0 0 0], 0 0 0y,

Thus, this is viscometric flow for which the basis (n;) is related to the cylindrical basis {e,, ey, e,} by Eq. (8.21.8)
(see Figure 8.21-1).

N3 No

N
VAL

€4

FIGURE 8.21-1
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Example 8.21.3
Consider the Couette flow with a velocity field given in cylindrical coordinates as

vv=0, w=v(r)=ro(), v,=0.

Show that this is a viscometric flow and find the basis {n;} with respect to which A; and A, have the form given in
Eq. (8.21.2).

Solution
For the given velocity field, we obtained in Example 8.10.3
O k(r) O (t— t)2 2k’(r) 0 O
Ct)) (e epeg =M+ (=) [ k() O Of + 0 0 0l (8.21.10)
0 0 O 0 00
where
av v rdw
kN=gr—7=a (8.21.11)
The nonzero Rivlin-Ericksen tensors with respect to {e,, ey, e,} are
O k(r) O 2k2(ry 0 0
[A]=|k(r) O O A2] = 0 00 . (8.21.12)
0 0 0 {erep.es} 0 00 {ere0.e;}
Let {n, ny,, n3} = {ey, e, e}, then
O k(r) O 0 0 0
[A]=|k(r) O O , [A]= 10 2k%(r) O . (8.21.13)
0 0 0 {n1,nz,n3} 0 0 0 {n1,nz,n3}

which have the form given in Eq. (8.21.2).

STRESSES IN VISCOMETRIC FLOW OF AN INCOMPRESSIBLE SIMPLE FLUID

When a simple fluid is in viscometric flow, its history of deformation C,(t) is completely characterized by the
two nonzero Rivlin-Ericksen tensors A; and A,. Thus, the functional in Eq. (8.15.2) becomes simply a func-
tion of A; and A,. That is,

T = —pl+f(A,Ay), (8.22.1)
where the Rivlin-Ericksen tensors A; and A, are expressible as
A; =k(N+NT), A, =2E°N"N, (8.22.2)

where the matrix of N relative to some choice of basis {n;} is

N] = :| . (8.22.3)
{m}

o O O
S O =
o O O
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Furthermore, the objectivity condition, Eq. (8.15.5), is

f(QA1Q",QA2Q") = Q(1)f(A1,A2)Q"(1). (8.22.4)

In the following, we show that with respect to the basis {n;}, T3 = T3; = T3 = T3, = 0 and the normal
stresses are all different from one another.
Let us choose an orthogonal tensor Q such that

1 0 0
Q=0 1 0 , (8.22.5)
00 —1]4,
then,
1 0 0o]fo 1 0]t 0 o 010
QIN]Q=(0 1 o ||0o 0 0|0 1 0|=|0 0 0|=|N], (8.22.6)
00 —1]]0 0 0|0 0 -1 000
and
1 0 070 0o 0o][1 0 0 000
QIIN'N][Q"]=]|0 1 O [|0O 1 O||0 I O |=|0 1 O|=[N"N] (8.22.7)
00 —1/]/0 0 ofl|lo 0o —1 000
That is, for this choice of Q,
QNQ" =N and QNTNQT =N'N. (8.22.8)
Thus, Eq. (8.22.2)
QAIQT =kQ(N+NT)Q" = k(N +NT) = A, (8.22.9)
and
QA,Q" = 2K?QNTNQT = 2NN = A,. (8.22.10)

Now, from Eq. (8.22.1), Eq. (8.22.4), Eq. (8.22.9), and Eq. (8.22.10), for this particular choice of Q,
QTQ" = —pI + Qf (A1, A2)Q" = —pI +f(QAQT,QAQ") = —pI + (A}, Az) (8.22.11)
i.e., for this Q,

QTQ" =T. (8.22.12)

1 0 0 Ty Ty T [1 0 O T T Ti3
Carrying out the matrix multiplication, one obtains
Tn T2 —Ti Ty Ty Tis
1> Ty, —Tyn|=|Tn Tn Ta|.

T3 —Tz» T3 T3 T Tss

Thus,
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The preceding equation leads to

Ti3=T; =To =Ts = 0. (8.22.13)
Since A; and A, depend only on %, the nonzero stress components with respect to the basis {n;} are
T =Sp=1(k), Ti=-p+Suk), Tn=-p+Snk), T=-p+Ssk). (8.22.14)
Defining the normal stress functions by the equations
o1 =T1 —Tr and 0, =Ty — T;s, (8.22.15)
we can write the stress components of a simple fluid in viscometric flows as follows:
Ty =1(k), Tu=Tn+oi(k), Tn=Ts+oyk), Ti3=T3 =Ty ="Ts=0. (8.22.16)

As mentioned earlier in Part B, the function t(k) is called the shear stress function and the functions (k)
and g,(k) are called the normal stress functions. These three functions are known as the viscometric functions.
These functions, when determined from the experiment on one viscometric flow of a simple fluid, determine
completely the properties of the fluid in any other viscometric flow.

It can be shown that (see Prob. 8.39)

©(—k) = —t(k), o1(=k) = 01(k), 02(—k) = 02(K). (8.22.17)
That is, t(k) is an odd function of k, while (k) and o,(k) are even functions of k.
For a Newtonian fluid, such as water, in simple shearing flow, (k) = pk, o; = 0 and o, = 0. For a non-

Newtonian fluid, such as a polymeric solution, for small &, the viscometric functions can be approximated by
a few terms of their Taylor series expansion. Noting that t(k) is an odd function of k, we have

t(k) = uk + k> + ... (8.22.18)
and
a1() = sV + sk + . ek = sPR SR+ (8.22.19)

Since the deviation from Newtonian behavior is of the order of > for 0, and g, but of the order of K for 1,
it is expected that the deviation of the normal stresses will manifest themselves within the range of & in which
the response of shear stress remains essentially the same as that of a Newtonian fluid.

CHANNEL FLOW

We now consider the steady unidirectional flow between two infinite parallel fixed plates. That is,
vi =v(x2), v2=v3=0, (8.23.1)
with
v(£h/2) = 0. (8.23.2)

We saw in Example 8.21.1, that the basis {n;} for which the stress components are given by Eq. (8.22.14) is
the Cartesian basis {e;}. That is, with k(x,) = dv/dx,,

T =Sp=1k), Tu=-p+Suk), Tn=-p+Snlk), Tin=-p+S:uk). (8.23.3)

Substituting the preceding equations in the equations of motion 97;;/0x; = 0 and noting that k depends only
on x,, we get, in the absence of body forces,

d d.
o dr o dn

_ = — = — 8.23.4
axl dX2 ’ (9)(2 dXZ ’ 8)(3 ( )
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Differentiating the preceding three equations with respect to x; and interchanging the order of differentiations,
we get
o _op_ 0o _
6)(1 8)61 6xz 8)(1 8X3 8x1 ’
Thus, dp/Ox, the driving force of the flow, is independent of the coordinates. Let this driving force be
denoted by f, that is,

(8.23.5)

% =/, (8.23.6)
d‘L' (9x1
then we have o —f so that
X2
t(k(x2)) = —fxa, (8.23.7)

where the integration constant is taken to be zero because the flow is symmetric with respect to the plane
X, = 0 [see boundary conditions (8.23.2)]. Inverting Eq. (8.23.7), we have

k= y(=fr2) = =p(fxz), (8.23.8)

where y(s), the inverse function of 7(k), is an odd function because (k) is an odd function. Now k(x,) =
dv/dx,; therefore, the preceding equation gives

dv
— = . .23.
a5 y(fxa) (8.23.9)

Integrating, we get

X

v(x)=— [

7(fea)dxs. (8.23.10)
Jonp2

For a given simple fluid with a known shear stress function t(k), y(S) is also known, the preceding equation
can be integrated to give the velocity distribution in the channel. The volume flux per unit width, Q, is given by

h/2
0= J v(x2)dxy. (8.23.11)
—h/2

Equation (8.23.11) can be written in a form suitable for determining the function y(S) from an experimentally
measured relationship between Q and f. Indeed, integration by parts gives

h/2 h/2 dv h/2 dv
= . - — )dx, = — 0 [ — ) dxy. 8.23.12
Q = xv(x) —h/2 th/z " (dxz) - L/;/z ® (dx2> ? ( )

Using Eq. (8.23.9), we obtain

h/2 1 ofh/2
0= J X9(fxp)dxy = —2J Sy(S)ds. (8.23.13)
—h/2 f S=—fh/2
or
2 (/2
0= —2J Sy(S)dS. (8.23.14)
F* Js=o
Thus,

fh/2 h/2
aj; ;Q = 2%LZO Sy(S)ds = 2{L 0dS + [Sy(S)]s_ A (%h) ~ o}. (8.23.15)
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That is,

w212

S _ 2 9(°0)
) "m
Now, if the variation of Q with the driving force f (the pressure gradient —dp/0x) is measured experimen-

tally, then the right-hand side of the preceding equation is known so that the inverse shear stress function
7(S) can be obtained from the preceding equation.

or

(8.23.17)

Example 8.23.1
For a Newtonian fluid, (a) use Eq. (8.23.10) to calculate the velocity profile in the channel, and (b) use Eq. (8.23.14)
to calculate the volume discharge per unit width across a cross-section of the channel.

Solution
For a Newtonian fluid,
(k) = pk. (8.23.18)
The inverse of this equation is
T S
k=vy(t)=— or y(S)=-—. (8.23.19)
7(7) . ?(S) .
o .
Thus, y(fx) = m and Eq. (8.23.10) gives
& f e f 81" f(x3 I
V(X)) = — () dx. :——J Xo0X :——{—2} :——(—2——)7 (8.23.20)
(x2) an/z )(x2) axa i), e a2l 278
and from Eq. (8.23.14),
o (fh/2 o (M2 /g o (/2 3
Qz—f S SdS:—J S(—)dS:—J $20S = ——. (8.23.21)
2 )s—o "S) 2 )s—o  \u uf? Js—o 12u

These results are, of course, the same as those obtained in Chapter 6 for the plane Poiseuille flow.

COUETTE FLOW

Couette flow is defined as the two-dimensional steady laminar flow between two concentric infinitely long
cylinders that rotate with angular velocities Q; and €,. The velocity field is given by

v, =0, vg=v(r)=ro(r), v,=0. (8.24.1)

In Example 8.21.3, we see that the Couette flow is a viscometric flow, and with {n;, n,, n3} = {ey, e,, e.},
the nonzero Rivlin-Ericksen tensors are given by

[A] =

0 k(r) O 0 0 0
k(r)y 0 0 [A)= |0 2k(r) O , (8.24.2)
0 0 0 0 0 0
{n;,n,n3} {n;,ny,n3}
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where

dv v rdo
AR et 24,
k(r) dr r dr (8.24.3)

Thus, the stress components with respect to {n;, ny, n3} = {ey, e,, e,} are given by (see Section 8.21)

Ty = Sor = t(k), Too = —p +Sep(k), Tn =-—p+S,(k), T..=—p+S=(k), (8.24.4)
and
Ty. =Ty =Ty =T, =0. (8.24.5)
The shear stress function is 7(k) and the normal stress functions are
or=Tp—T,, o02=T,—T.. (8.24.6)

These three functions completely characterize the fluid in any viscometric flow, of which the Couette flow
is one. For a given simple fluid, these three functions are assumed to be known. On the other hand, we may
use any one of the viscometric flows to measure these functions for use with the same fluid in other viscomet-
ric flows.

Let us first assume that we know these functions; then our objective is to find the velocity distribution v(r)
and the stress distribution 7;;(r) in this flow when the externally applied torque M per unit height in the axial
direction is given.

In the absence of body forces, the equations of motion for the Couette flow, where nothing depends on 6, are

dT,, T, —T, dT,y 2T, )
G T T06 o2, 042) —o, —Loy, (8.24.7)
dr r dr r 0z
From the second of the preceding equation, we have
dl,y 2Ty 1d  ,
— 2 (*T,9) = 0,th
dr + r r2dr ¢ 9) us
C
T ==, (8.24.8)
;

where C is the integration constant. The torque per unit height of the cylinders needed to maintain the flow is

given by
M = 2urT,g)r. (8.24.9)
Thus, C = M/2n and
M do
W) =To=5_—5. kr)=r—. (8.24.10)

We wish to find the velocity distribution v(r) from the known shear stress function (k). To do this, we let
S(r) =t(k(r)) and k(r) =(3), (8.24.11)

where 7(S) is the inverse of the function t(k). From Egs. (8.24.10) and (8.24.11), we have

do M

— = =—. 8.24.12
g dr 7(S), 2mr? ( )
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Now
do dodS do M\  do (2§
dr dSdr ds\ wm3)  dS\r)’
thus,
dw do
S)=r—=-25— 8.24.13
"8y =r— 5 ( )
from which we get
_ ()
do = 7S as. (8.24.14)
Integration of the preceding equation gives
M/2mr? ( )
do = — as. 8.24.15
Lzl @ } (23) ( )
M/27R?
That is,
M/2mr? ( )
7(S
_0 = L) 24.1
) 1 25 ds, (3 6)
M /2nR?
and
M/2mR3
AQ=Q) — Q) = — J %d& (8.24.17)
M/27R>

where Q; and Q, are the angular velocity of the inner cylinder (radius R;) and outer cylinder (radius R»). For a
given material function y(S), the applied torque M, the angular velocity of the inner cylinder Q,, and the radii
of the cylinders R; and R,, the preceding equations allow us to calculate Q, and w(r), from which we can
calculate vy(r) = ro(r).

Next, we calculate the normal stresses T, at the two cylindrical surfaces »r = R; and r = R,. From the
r-equation of motion in Eq. (8.24.7), we have, with 6; = Tyy—T,, denoting the normal stress function of
the fluid

Trr
o _ 91 _ e, (8.24.18)
dr r
Integration of the preceding equation gives
T, (r) — T (R)) = J My~ pJ ra’dr. (8.24.19)
R T R,

We now calculate the difference between the compressive normal stress on the outer cylinder (r = R,) and
the inner cylinder (r = R;). That is,

Ry

(=T (R2)] = [T (R1)] = PJ

Ry

Ry o
ro*dr — [ —dr. (8.24.20)

JR, 1
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On the right-hand side of the preceding equation, the first term is always positive, stating that the centrif-
ugal force effects always make the pressure on the outer cylinder larger than that on the inner cylinder. On the
other hand, for a fluid with a positive normal stress function ¢, the second term in the preceding equation is
negative, stating that the contribution to the pressure difference due to the normal stress effect is in the oppo-
site direction to that due to the centrifugal force effect. Indeed, all known polymeric solutions have a positive
o, and in many instances, this normal stress effect actually causes the pressure on the inner cylinder to be
larger than that on the outer cylinder.

We now consider the reverse problem of determining the material function y(S) from a measured
relationship between the torque M needed to maintain the Couette flow and the angular velocity difference
AQ = Q, — Q. Once y(S) is obtained, its inverse then gives the shear stress function 7(S).

From Eq. (8.24.17), that is,

M/2mR}

_ 7(8)
AQ = J S5,

2
M/27R?

we obtain, with S| = M/2nR? and S, = M /2R3,

-~ 5 () - [ () =0~ e

That is,
IAQ
M~ = (S1) = (S2). (8.24.21)
Let
Sy =pS, and T(Sy)=79(S1) — y(BS1), (8.24.22)
then Eq. (8.24.21) becomes
0AQ M
M=), Si= e (8.24.23)

Equation (8.24.23) allows the determination of I'(S;) from experimental results relating AQ with M. To obtain
7(S), we note from I'(S;) = y(S;) — p(BS;); we obtain

L(BS1) = p(BS1) —(B°S1), T(BS1) =p(BS1) —y(BS1).-...

Thus, summing all these equations, we get

N
D T(BS1) = 7(S1) = 7(BS1) + 7(BS1) — 7(B*S1) + 7 (BS1). ... — y(B¥*'$1). (8.24.24)
n=0
Thus,
N
D T(BS1) = 9(S1) = y(BY'S). (8.24.25)
n=0

Since B =5,/S1 =R3/R3 < 1,as N — oo, Y — 0. Thus,

p(S1) =Y _T(B'S1). (8.24.26)
n=0
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From experimentally determined I'(S) [see Eq. (8.24.23)], the preceding equation allows us to obtain y(S)
from which the shear stress function (k) can be obtained [see Eq. (8.24.11)].

If the gap R, — R, is very small, the rate of shear k will essentially be a constant independent of r and is
given by

f = A (8.24.27)
Ry — Ry
Thus, k = (S;) leads to
M\  RAQ
,(m) e (8.24.28)

By measuring the relationship between M and AQ, the preceding equation determines the inverse shear stress
function y(S).

GRADIENT OF SECOND-ORDER TENSOR FOR ORTHOGONAL
COORDINATES

In the following derivations, tensors will be expressed in terms of dyadic products e;e; and e;e;e; of base vec-
tors. That is,

Second-order tensor T: T = T;;e;e; and Te,, = T}, e;.
Third-order tensor M: M = M;;;e;e;e; and Me, = M;;,e;e;.
Polar Coordinates with Basis {e,, ey}
Let
T(r,0) =T,ee + Tpe.eg+ To-epe, + Tooegey. (8A.1)
By definition of VT, we have
dT = VTdr = Mdr, (8A.2)

where M denotes the gradient of T, which is a third-order tensor. In polar coordinates,

dT = Mdr = M(dre, + rd0ey) = dr(Me,) + rd0(Mey). (8A.3)
Now
Me, = M,,.e.e. + M,g-e.eg + Mo, epe. + Myp-epe, (8A4)
Mey = M,pe.e, + M,ppe,eg + My-gepe, + Moggeqey,
therefore,
dT = (M, dr + M,,ord0)e e, + (M, odr + M,gord0)e,eg (8A5)
+ (Mo,rdr 4 Moord0)ege, + (Moo dr + Mogord0)egey.
We also have, from Eq. (8A.1),
dT(r,0) = dT,.ee, + T, (de,)e, + T, e.(de,) + dT geey + T,o(de,)eq + Troe,(dey) BA6)

+ dTyrepe, + Ty (deg)e, + Tyrep(de,) + dTgpepep + Too(deg)eg + Topeo(dey).
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Since
de, = dOey, dey = —dbe,, (BA.7)
Eq. (8A.6) becomes
dT(r,0) = (dT,, — Tp,d0 — T,yd0)e,e, + (dT,g + T,-d0 — Topd0)e ey

(8A.8)
+ (dTo + Ty d0 — Tood0)ege, + (dTpg + Tp-dO + Tr9d0)epey.
Now, from calculus,
ary . 0T
dTy == Vdr + 7 do. (8A.9)
Substituting Eq. (8A.9) into Eq. (8A.8), we have
T, o, oT, o,
dT(I‘, 9) = |: or dr + ( 0 — Ty — ,()) d9:| e.e,. + 8/‘9 r ( (9(‘)9 T, — To()) d9:| €€
(8A.10)
0Ty, 0Ty, T, T,
+ I: 810 dr + ( 8(;) +7T, — T(-)H) d0:| epe, + ( 669 dr + ((3(36 + Ty + T, 5) dO) €pey.
Comparing Eq. (8A.10) with Eq. (8A.5), we have
o - l% _ Tor + T o aTr‘G
M, = M,y = ( 90 , )7 M,y = or
B 13T,6 T, — Too _ 0Ty, _ [10Ty, Ty —Tyy
M9 = S0 T ), Mo, = o Moy,g = <§W+ p >7 (BA.11)
10Ty Ty +T,
Moo, = 00, Mogo = | =72 4 22 Lo .
r r 00 r
Cylindrical Coordinates with Basis {e,, ey, €} and Spherical Coordinates
with Basis {e,, ey, e,k
In general, we can write
de,- = F,-,-kdxjek, (8A.12)

where the values of I';; depend on the particular coordinate system. For example:
For a cylindrical coordinate system:

de, = dOey, dey= —dOe,., de, =0,
therefore,

Igg=1, Tgy =—1, all other F,-j-k =0. (8A.13)
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For a spherical coordinate system:
de, = dOey + sin Odpe,, dey = —dOe, + cos Odpey, dey = —sin Odpe, — cos Odgpey,

therefore, the nonzero I';; are

1",.0(; = 1, FWM’ = sin 9, l"¢¢r = —sin 9, F(M,() = —COSs 9,

Toor = =1, Ty = cos 0 (BA.14)
Let VT denote the gradient of the second-order tensor T; then, by definition,
dT = VTdr = Mdr, (8A.15)
where M = VT is a third-order tensor. In general,
3
dr = " hydxpen, (8A.16)

m=1

where for cylindrical coordinates (r, 0, z), h. = 1, hg = r, h. = 1 and for spherical coordinates (r, 0, ¢), h,. = 1,
hg =1, hy = r sin 0. Thus,

3 3 3
dT =Mdr =M _hydsyen = [hndvn(Mey)] = [hnd,y(Me,)]. (8A.17)

m=1 m=1 m=1

Now, M is a third-order tensor so that Me; is a second-order tensor given by

(Me;) = Mynienen, (8A.18)
therefore,
3 3
dT = "[hndvn(Mey)] = > [huMimdxneie;]. (8A.19)
m=1 =1
From T = Tje;e;, we have
dT = dT;e;e; + Tjde;e; + T;;e;de; = dT;;e;e; + T,de,e; + Te;de;. (8A.20)
With
de, = T ypdxye; = Tgpidxye;, (8A.21)
we have
dT = (dTyj + TyTgpidx, + TigTgpid, ) i€ (8A.22)
Now, from calculus,
dTyj = (9T;j/0x) . (8A.23)

Substituting Eq. (8A.9) into Eq. (8A.8), we have
dT = [(OTyj/0xm + TyTgmi + TigUgmj) dm | €. (8A.24)

Comparing Eq. (8A.10) with Eq. (8A.5), we have

3 3
dT = " [Mywhwdn] =Y (9T;/ 0% + Tyl gmi + Tigl gmy) dim. (8A.25)

m=1 m=1
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Thus,

OT;;

ij

Mijnhy = 7=+ Tyl gmi + Tigl'yj DO sum on m, sum on q.
n

ax, (8A.26)

In the following, the preceding equation is used to obtain the components for the third-order tensor VT for
cylindrical and spherical coordinates.

Cylindrical Coordinates

Table A8.1 (y7) 5 - 2;: + TyTami + Talgmy NO SUM 0N M, SUM on q.
hr=1hg=r,h, =1;T 99 = 1,T99, = —1, all other ' =0.
r 0 z
0 (VT) or = 8;;0 (VT)r(w = %867;9 I ; o (VT) roz — 887;9
? (V) =52 (VM) = 1 = 22 (V7). = 52
0 ' (Vg = % (VTgrg = %% + I _r To (VDo = 887?
‘ (VT)gor = % (VT)goo = %% i J’r_ Tor (VT)gor = %
’ (VT = 2002 (V) = 0y T (V). =0t
? ' (v1),, =20z (Vo =7 oz - 12 (V1) =002
’ (V1) = 202 (VD = 102 4 T2 (VT),y, = 22
? (vT),, = = (VM) = 1 0 (VT),,, = 2z
From Table AS8.1, we can also obtain the divergence of a second-order T as
(divT), = (VT),, + (VT),9 + (VT),,, = a;j"' %ag é" ﬂ + aaTZ” , (8A.27)
(div T)y = (VT)g,, + (VT)ggp + (V). = aan" %% M + %, (8A.28)
(divT), = (VT),, + (VT) g + (VT = Her y 19T0 | Tor | OT:: (8A.29)

= 9r r a0 r 0z

We note that these equations for div T are the same as those obtained in Chapter 2 by using a different method.
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Spherical Coordinates
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oTj
Table A8.2 g7y p — aXfUJr ToLami + TigTgm NO SUM 0N m, sum on g,
m
hr = l,hg = l’,h¢ =rsin G;Frgg = 1,F,¢¢ =sin 9,
Tgpr = —sin0,T 49 = —C0s 0, g, = —1,Tg44 = cos 0 all other 'y = 0.
r (7] (0]
r r T, 187—” _ Tor + Tro 1 07, B (T,;,r + Tw)
or r 00 r rsin @ o¢ r
0 Ty laT,g Trr — Too 1 0Ty B T¢0 + Tnp cot 6
or r o0 r rsinf d¢ r
d) aTNI) laTrqﬁ _ @ 1 (97—,4, i Trr — T¢¢
or r o0 r rsin@ o¢ r
0 r 87—9, laTgr T,r — T(.)g 1 8Tg, _ Td;r cot 0 B M
ar r 00 r rsin0 o¢ r
0 0Ty 10Tg 4 Tro + Tor 1 9Ty (Tyo + Tog) cot 0
ar r 00 r rsin@ d¢ r
¢ 67—04) laT()(p h 1 aT()(;, & (Tge — T¢¢) cot 6
or r 00 r rsin0 o¢ r
¢ r 8T¢r 18T¢r _ @ 1 87',,), n T/«r — T¢¢
or r 00 r rsin@ o¢ r
0 % 18T¢3+& 1 8T¢g E+(Tgo— T¢¢) cot 0
ar r o0 r rsin@ d¢ r
¢ 8T¢¢ laTM, 1 6T¢¢ (Tr,p + T¢r) (T{)(p + T¢()) cot 0
or r 90 rsin@ o¢ r

From Table A8.2, we can also obtain the divergence of a second-order T as:

(le T)p = (VT)rrr + (VT)rQQ + (VT)I¢¢:
. oT,, 10T,y 2T, 1 (C)T,qg Too + T¢(/, T, cot 0
or r 00 r rsinf 0¢ r ro

(div T)y = (VT)g,, + (VT)ggp + (VT) g4y
_ Ty, 13Ty Ty 2Ty 1 9Ty (Tog — Tyg)cot 0

or " r 00 " r " 5 rsin0 d¢ r '

(divT)y = (VT)y, + (VT) 40 + (VT

_ 8T¢,. 13T¢() 2T, 1 C?T(M) Ty (T0¢ + T¢0)Cot 0

o r 00 r rsinf O¢ r 7

(8A.30)

(8A.31)

(8A.32)

We note again that these equations for divT are the same as those obtained in Chapter 2 by using a

different method.
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PROBLEMS FOR CHAPTER 8

8.1

8.2

8.3

84

8.5

8.6

8.7

8.8

8.9

8.10

Show that for an incompressible Newtonian fluid in Couette flow, the pressure at the outer cylinder
(r = R,) is always larger than that at the inner cylinder. That is, obtain

Ro

[_ ( )} [ Tn i ] = pJ l‘(Uz(r)di‘.

R;

Show that the constitutive equation

T=1+17+13, with 1,4+ 4,— —Z,u,,D n=1,2,3

0t
is equivalent to
%t ot oD o*D

=b,D+b b
8t2+a36 oy +28t2’

T+ay = +(12

ot
where

ay = (A + 2o + 43), a0 = (Mida + Jads + A341),a3 = A1 /a3,
bo = 2(uy + iy + 13), b1 = 2[ (A2 + 43) + o (A + 43) + i3 (d2 + A1),
b2 = 2(/11/12].3 + ‘lellljg + ‘Lt3j.1)~2).
Obtain the force-displacement relationship for the Kelvin-Voigt solid, which consists of a dashpot (with

damping coefficient 1) and a spring (with spring constant G) connected in parallel. Also obtain its relax-
ation function.

(a) Obtain the force-displacement relationship for a dashpot (damping coefficient 7,) and a Kelvin-
Voigt solid (damping coefficient 7 and spring constant G; see the previous problem) connected in series.
(b) Obtain its relaxation function.

A linear Maxwell fluid, defined by Eq. (8.1.2), is between two parallel plates that are one unit apart.
Starting from rest, at time ¢ = 0, the top plate is given a displacement u = vt while the bottom plate
remains fixed. Neglect inertia effects, obtain the shear stress history.

Obtain Eq. (8.3.1), i.e., S = 2J" $(t —)D(¢)dr', where ¢(1) = (u/2)e /%, by solving the linear non-
homogeneous ordlnary dlfferentlal equation S + AdS/dt = 2uD.

Show that [*__¢(t — #)J(f')dt’ = t for the linear Maxwell fluid, defined by Eq. (8.1.2), where ¢(t) is the
relaxation function and J(¢) is the creep compliance function.

Obtain the storage modulus and loss modulus for the linear Maxwell fluid with a continuous relaxation
spectrum defined by Eq. (8.4.1), i.e., ¢(¢) = J" [H(A)/)e =1/

Show that for a linear Maxwell fluid, define by S =2 [*__ ¢(r — #)D(¢')dr’, its viscosity  is related to
the relaxation function ¢(¢) and the memory function f(s) by the relation

p= r P(s)ds = — f sf (s)ds

o

Show that the relaxation function for the Jeffrey model [Eq. (8.2.7)] with a, = 0 is given by

o(t) = S12 _ bo Kl — bi) et/ +%5(t)}, 0(r) = Dirac Function.

Yo 2al od1 ()
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8.11 Given the following velocity field: v{ = 0, v, = v(xy), v3 = 0. Obtain (a) the particle pathline equa-
tions using the current time as the reference time, (b) the relative right Cauchy-Green deformation ten-
sor, (c) the Rivlin-Ericksen tensors using the equation C; = I + (1—H)A; + (t—1)* Ay/2 +..., and
(d) the Rivlin-Ericksen tensor A, using the recursive equation [A,] = [DA{/Dtf] + [A{] [VV] +
[Vv]T [A4], etc.

8.12 Given the following velocity field: v = —kx, v, = kx,, v3 = 0. Obtain (a) the particle pathline equations
using the current time as the reference time, (b) the relative right Cauchy-Green deformation tensor, (c) the
Rivlin-Ericksen tensors using the equation C, = I + (t—1)A; + (rft)2 A,/2 + ..., and (d) the Rivlin-
Ericksen tensor A, and Aj using the recursive equation [A;] = [DA/Dt] + [A{] [VV] + [Vv]T [A], etc.

8.13 Given the following velocity field: v{ = kxy, v, = kx,, v3 = —2kx3. Obtain (a) the particle pathline equa-
tions using the current time as the reference time, (b) the relative right Cauchy-Green deformation
tensor, (c) the Rivlin-Ericksen tensors using the equation C, = I 4+ (t—HA; + (1—1) A2 + ...,
and (d) the Rivlin-Ericksen tensor A, and A; using the recursive equation [A;] = [DA/Df] + [A{]
[Vv] + [Vv]' [A}], etc.

8.14 Given the following velocity field: v{ = kx,, v, = kx|, v3 = 0. Obtain (a) the particle pathline equations
using the current time as the reference time, (b) the relative right Cauchy-Green deformation tensor,
(c) the Rivlin-Ericksen tensors using the equation C, = I + (t—1)A; + (t—1)* Ay/2 + ..., and (d) the
Rivlin-Ericksen tensor A, and Aj; using the recursive equation [A,] = [DA/Dt] + [Aq] [VV] +
[Vv]" [A], etc.

8.15 Given the velocity field in cylindrical coordinates: v, = 0, vy = 0, v, = v(r), obtain the second Rivlin-
Ericksen tensors Ay, N = 2, 3, ... using the recursive formula.

8.16 Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the rr0 component of
the third-order tensor VT is given by

1 8Trr Tor +Tro

(VT)I‘I‘() = ; o0 r

8.17 Using the equations given in Appendix 8.1 for cylindrical coordinates, verify that the r06 component of
the third-order tensor VT is given by

o 1 8Tr9 T, — Too
(VT)rHH - ’_ a0 Ea—

-
8.18 Using the equations given in Appendix 8.1 for spherical coordinates, verify that the rr¢p component of
the third-order tensor VT is given by

Lo, (Tt T)
rsin 6 0¢ r

(VT))'rd7 =

8.19 Using the equations given in Appendix 8.1 for spherical coordinates, verify that the ¢p¢p¢p component of
the third-order tensor VT is given by

1 0T44 n T,y + Ty, n (T9¢ + T¢9)c0t 0
rsin 0 O¢ r r '
8.20 Given the velocity field in cylindrical coordinates: v, = 0, vy = v(r), v, = 0, obtain (a) first Rivlin-Erick-
sen tensors Ay, (b) VAj, and (c) second Rivlin-Ericksen tensors A, using the recursive formula.
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8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29
8.30

8.31

8.32

CHAPTER 8 Non-Newtonian Fluids
) . DAy T
Derive Eq. (8.11.3), i.e., Ay, = D + An(VV) + (Vv) Ay.

DT
Let S = EJr TW — WT, where T is an objective tensor and W is the spin tensor. Show that S is
objective, i.e., ST = Q(HSQ"(r).

Obtain the viscosity function and the two normal stress functions for the nonlinear viscoelastic fluid
defined by S = [ fo(s)[I— C; ' ( — s)]ds.

Derive the following transformation laws [Eqgs. (8.13.8) and (8.13.12)] under a change of frame.

V; =Q(r)VQ"(r) and R; =Q(7)RQ" (1.

. D DF %3 o
From T = {M} and {ﬁ] = Vv, show that T = T+TD + DT.
Dt |, Dt | _,

Consider Jy(t) = F, ' (¢)T(z)F, ' (z). Show that (a) {1%51)} is objective and (b) [D JU(T)} -

I[))—f —T(Vv)" = (V»)T =T— (TD + DT).

Given the velocity field of a plane Couette ﬂovg: v = 0, v, = kx;. (a) For a Newtonian fluid, find the
stress field [T] and the corotational stress rate [T]. (b) Consider a change of frame (change of observer)
described by

{)ﬂ _ {cos wt —sin U)t} {xl]’ Q] - {cos wt —sin wt}

sin wt  cos wt X2 sinwt  cos wt

Find [V*], [V*V*], [D*] and [W*]. (c) Find the corotational stress rate for the starred frame. (d) Verify
that the two stress rates are related by the objective tensorial relation.

Given the velocity field: vi = —kxy, v, = kx,, v3 = 0. Obtain (a) the stress field for a second-order fluid
and (b) the corotational derivative of the stress tensor.

Show that the lower convected derivative of A; is A,, i.e., Al = A,.
The Reiner-Rivlin fluid is defined by the constitutive equation
T=-—pl+S, S=¢,(l,5)D+ ¢,(I,15)D?*

where [; are the scalar invariants of D. Obtain the stress components for this fluid in a simple shearing
flow.

N1
The exponential of a tensor A is defined as exp[A] =1+ > —'A”. If A is an objective tensor, is exp[A]
also objective? rn

Why is the following constitutive equation not acceptable? T = —pI + S, S = a(Vv), where v is veloc-
ity and « is a constant.
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8.33 Let da and dA denote the differential area vectors at time 7 and time ¢, respectively. For an incompress-
ible fluid, show that

DVda® p'c,!
{ H :dA-{ 1@} dA = —dA - MydA,
DV | __, DV | __,

where da is the magnitude of da and the tensors My are known as the White-Metzner tensors.

8.34 (a) Verify that the Oldroyd lower convected derivatives of the identity tensor I are the Rivlin-Ericksen
tensors Ay. (b) Verify that the Oldroyd upper derivatives of the identity tensor are the negative White-
Metzner tensors (see Prob. 8.33 for the definition of White-Metzner tensor).

. DT g
8.35 Obtain T = Dr +TVv + (VV)TT, where T is the lower convected derivative of T.

D-S D:S
8.36 Consider the following constitutive equation: S + XE = 2uD, where Dr = §—|—ot(DS + SD) and §

is corotational derivative of S. Obtain the shear stress function and the two normal stress functions
for this fluid.

8.37 Obtain the apparent viscosity and the normal stress functions for the Oldroyd 3-constant fluid [see
Part (C) of Section 8.20].

8.38 Obtain the apparent viscosity and the normal stress functions for the Oldroyd 4-constant fluid [see
Part (D) of Section 8.20].

-1.0 0 010
839 Given[Q]=| 0 1 0 ,INN =10 0 0 , A = kN + N and A, = 2k°N"N. (a) Verify
0 0 1 000

{n;} {ni}
that QA,Q" = —A, and QA,Q" = A,. (b) From T = —pI + f(A,, A,) and Qf(A;, A,)Q" = f(QA,Q",
QA,Q"), show that QT (k)QT = T(—k).
(c) From the results of part (b), show that the viscometric functions have the properties:

S(k) = —S(—k), 01(/{) = O’](—k), 02(/() = O’z(—k).

8.40 For the velocity field given in Example 8.21.2, i.e., v, = 0, vy = 0, v, = v(r), (a) obtain the stress com-
ponents in terms of the shear stress function S(k) and the normal stress functions (k) and ©,(k), where
k = dv/dr; (b) obtain the velocity distribution v(r) = f]R y(fr/2)dr for the Poiseuille flow under a pres-
sure gradient of —f, where 7 is the inverse shear stress function; and (c) obtain the relation

(Rf) 1 9(f0)
7= .

2) TR of
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Answers to Problems

CHAPTER 2

2.1 (b) S;;S; =28, (c) S;iS;i = SiS;; =28, (d) SiSiy = 23, (&) Sum@man = Smn@man = 59.

23 () by =2,by=2,b3=2. (b)s=6.
24 (C) E,‘j = Bm,«C,,,kaj.
81/1 0 8\/1 8v1

. V1
27 i=1 o om o ow L on
R T PR P

210 dy =6, dy = -3, d3 =2.

0 if j#£I
212 Q) Fori=k LS=RS={0 ifj=1I=i

1 if j=1#i
0 0 1
220 B)[T]=| 0 0 —1].

-1 1 0
2.21 (c) T(a+b) = 10e,.
(2 0 —1
222 [T]=|0 1 3 |.
13 0
-1/2 0 1/2
223 [T]=|-1/2 0 1/2
0 0 0
i 0

oS O =
S = O
S

1 0 0
224 () [T]=({0 -1 0f, (b)[T)= .
0 0 1 -1
1 0 0 cos@ O sinf
225 (@) [R]= |0 cos —sin0|, (b)[R]= 0 1 0
|0 sinf cos0 —sinf@ 0 cos 0

1 -2 -2
1
2.26 (b) [T]:g[—z 1 —2], (c) Ta = —(3e; + 2e; + €3).

—2 -2 1

1 -2 =
227 Tj=5|-2 1 -2/

-2 =2 1

Copyright © 2010, Elsevier Ltd. All rights reserved.

].



2

2.28

2.29

2.30

2.31

2.37
2.38
2.39

2.40

242

2.48

2.50
2.55
2.56
2.59
2.60

2.61
2.65

2.67
2.69

2.71

Answers to Problems

(b) n = (e; + e+ e3)/V3.
1 1+2cosf (1 —cos ) —+/3sin6 (1 —cos0)++/3sin0
[T] = 3 (1 —cos 0) + /3 sin 0 (142 cos 0) (1 —cos 0) —+/3sin 0
(1—cos ) —+/3sin® (1 —cos®)++/3sin0 (1 4+2cos )

(b) R* = sin 0E.

1 0 0 1 0 0 1
@ [S]=1]0 —1/vV2 —1/V2|, O[T =[0 —1/v2 1/V2|, @[c=|1/vV2].
0 —1/vV2 1/V2 0 1/vV2 1/V2 5/V2
a=2e.
(b) a = e] +/3e).
T|, =4/5, T|,=—15/V5, Ti =2/5.
0 —5 o
() {T,.j’} — 1) =
2 5 1
(b) Tlijlf/:45» (C)[ ] 2 3 1.
0 0 1
1 35 0 -1 -2
@ [T]=13 5 7[,[T=|1 0 -1, (b)t"=¢e —2e +es.
579 2 1 0
(d) For A=1, n=[oje] + omey — (o) + 02)es]/ /o + o5 + 0.

0 = 120°.

(c)ForA=1,n=+e;. (d)Forl=—1, n=ae +oey, ol +o5=1, (e)0=r.

(a) For 2; = 3, n; = +es. For 4, = —3, ny = +(e; — 2e,)/V/5.

(a) For /; =3, n; = +e. For 1, =4, ny = £(e; + e3)/V2.

For 21 =0, n; = +(e; — ez)/\/i. For 2y = /3 = 2, n = +(ae; + ey + 0ze3), 207 + ac% =1.

(b) At (0,0,0), (do/dr), .. = |V$| =2 in the direction of n = e;.
At (1,0,1),(d¢p/dr),,. = |V¢| = 17 in the direction of n = (2e; + 3e, + 2e3)/V/17.

(@) q = —3k(e; +e), (b) q=—(3ke; + 6key).

max

(a) [VV](LI_’O) =2[I], (b) (Vv)v=2e;, (c)divv=2, curlv=2e;, (d)dv=2ds(e;+e3).
“A/? —B 0
[Vu] = B Al 0
0 0 o0




Answers to Problems

2.72 divu = 3A.

A —2B/r? 0 0
2.73 [Vu] = 0 A+B/r? 0
0 0 A+B/r?

2.77 (divT), = (div T), = (div T), = 0.

CHAPTER 3

3.1 (b) vV = V) = 0, V3 = 0.

kxl
1+ ke’
32 @vi=a, vy=v3=0, a=ay=a3;=0,
(b) 0 = A(at + X,1). DO/Dt = Aa, () 0 = BX,, D8/Dt = 0.

33 ) vi=0,vs=2pXt, v3=0 and a; =0, ay =2pX}, v3 =0,
©vi=0,v= Zﬁx%t, v3;=0 and a; =0, a, = Zﬁx%, az = 0.

34 (b)vi =2pX5t, vi =kXp, v; =0 and a; =2pX3, a2 =0, a3 =0,
©) vi = 2Bt/ (1 + kt)?, vy =k /(1 + kt), v3 =0, ay =23/ (1 +ki)*, ay = a3 = 0.

3.5 (b)Vlzk(S-i-Xl), vw=0,v3=0 and a; =0,a,=0, a3 =0,
©vi=k(s+x))/(1+kt),2=0,v3=0 and a1 =0, a2 =0, a3 =0.

3.6 (b) For (X1,X»,X3) = (1,3,1) and =2, v = —4(3)%(2) = =72, v» = —1, v3 = 0.
(c) For (x1,x2,x3) = (1,3,1) and ¢t=2, v; =-200, v, =—1, v3 =0.

3.7 (a) For (X1,X2,X3) = (1,1,0) and =2, vi =2k, vo =2k, v3 =0.
(b) For (xl,)Cz,)C3) = (1, 70) and =2, v, = 2](/(1 +4k), vy = 0.

38 (At=2—-x1=5x=3,3=0 X =-3X=1, X3=2,
©a =18, a=0,a3=0, d)a =2,a;, =0, a3 =0.

39 (b) a; =0.

3.10 (a) a = —4xe, —4yey, (b) x* 4+ y* = constant = X> + Y2
Or,x=—-Ysin2t+Xcos2t and y=7Y cos?2t+ X sin 2.

311 (@ a=4k (xex +yey), (b)x= Xl y=Ye M. Orxy=XY.
3.12 Material description: a = 2k> (xz + yz) (xeX + yey).

3.14 (b) a; =0, ay = —n*(sin 1) (sin 7 X;), a3 = 0.

315 (b) a= —(a’>V2/4)e;,, DO/Dt = 2ok.

3.16 (b)a= —(a>V2/4)e;,, DO/Dt=0.

3.17 (b) dsi/dS) = (1/V2)\/ (1 +k)* + 1 = ds»/dSs,
cos(n/2 —y) =siny = {—(1+k)> + 1}/{(1 + k)> + 1}.



4 Answers to Problems

(c) For k =1, ds1/dS| = dsy/dS, = +/5/2, siny = =3/5.
For k = 10_2, ds1/dSy = dsp/dS, ~ 1.005, y = —0.0099 rad. (d) 2El/2 = —0.01.

0 0 k/2
3.19 (a) [E] = l 0 k 0 ] (b) 1075 /2.
k/2 0 0

320 Q) E  =5k=5%x10"* Epn=2k=2x10"* 2E; =k=10"*rad.
321 (a) E{, = 107*/3.

3.22 (a) E], = (58/9) x 1074, (b) 2E/, = (32/V/45) x 10~*rad.

323 (@) E{, = (37/25) x 107, (b) 2E/, = (72/25) x 10 *rad.

324 (), =11x107*, L=31x10% IL,=17x10""%

325 1, =0, IL=—-1*, I;=0.

3.26 At (1,0,0), Amax = 3k =3 x 1075,

3.27 (a) A(dV)/dV =0, (b) k; = 2k,.

3.28 (b) At (1,2,1), E{; =k, (c) max elongation = 4k, (d) AV =k.

332 Ejy=a, Exn=c¢, Ep=b—(a+c)/2.

3.33 (@) E;n = —100 x 1075, (b) For A; = 261.8 x 107%,0 = —31.7°, or
n = 0.851e; — 0.525e,. For A, = 38.2 x 107, 0 = 58.3°, or n = 0.525¢; + 0.851e,.

3.34 (a) E;; =0, (b) Prin. strains are 107> in any direction lying on the plane of e; and e;.
335 Eyy=a, Exn=2b+2c—a)/3, Enp=((b-c)/V3.

336 E;; =2x 107 Ep=1x10"° E;=[1/(2V3)] x 107,

337 E;1 =2x1073, E»n=2x1073, E;=0.

0 kx O 0 kxy O
3.38 (a) [D] = | kx, 0 0 y [W] = | —kxp 0 0], (b D(n)(n) = 3k.
0 0 O 0 0 0

339 Dy, = —a(l+k); D}, =(1+k)/2.

3.40 (a) D1y = (mcostcos mxi)/2, Wiy = —Wa = —(mcostcos mxi)/2.
(b) Dyy =0, Dy =0, D} = 7/2.

342 (a) D, = —1/r%, Dgg = 1/r*, other D; =0; [W]=1[0]. (b) D, = —1/r2
0 -1
343 Atr=2,a,=—18,ay=0, (b)[D]= {_1 0 ]

3.44 (a) a, = —(Al‘ ‘i‘B/rz)zSian/l’7 ag = —COoS 0 sin Q(AI’ +B/r2)2/1‘7 ag = 0.
(b) quﬁ = _(38/21'3)Si1'10, D0¢ =0.



3.45
3.49

Answers to Problems

W] = 0.
k=1.

3.50 f=g(0)/r.

3.51
3.53

3.54

3.55
3.60

3.62

3.63

3.64

3.65

3.66

vg = —(k/2)sin 0/ /7.

vi =f(x2), vy =0.

@) p = po(1 + k)%, (b) p = pxo/xi.
p=pee ™

(b) 2kX1 X, = (X2, X3) + g(X1,X3).

{@+vr8—,+ve <@> +vz@}+p<av"+ﬁ+law’+av“’> — 0.

ot or " r \ob oz or " r roo oz
lloo] [9oo] [o 0 1]
®[U=]|0 2 0f, ©[B/=]|0 1 0|, [R=|-1 0 0,
0 0 3 0 0 4 0 -1 0
0 0 0 4/9 0 0 AV
e [E]=1]0 3/2 0 M]=10 0 o0 (g) NG =6, (h) dA = —3e;.
0 0 4 0 0 3/8 0

A
=6, (h) dA =3e,.
0 0 0 AVo
100 100 1 0 0
(b)[U]:[O 2 o] (C)H:[O 9 0} (d)[R]:[O 0 1]
003 00 4 0 -1 0
0 0 0 0 0 0 AV
@ [E]=10 3/2 0|, (D[e]=|0 4/9 0 (@ 4y~ =6
0 0 4 0 0 3/8 °
3

1 00 4 0 0 0 1 0
® U =02 0|, ©B=|01 0|, @[R=|-1 0 0},
0 0 3 00 9 0 0 1
0 0 0 3/8 0 0 AV
@ [E]=10 3/2 0of, O[e]=]0 0 0 ® Ay =6
0 0 4 0 0 4/9 0

(h) dA = 3e,.
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3.67

3.70

3.71

3.72

3.77

3.80

3.81

3.82

3.84

3.85

3.86

Answers to Problems

- o O

1 3
@ [C]= |3 10
0 0

For 2, = 0.0916735,n, = 0.957093e; — 0.289784e,. For A3 = 1,n3 = e3,
3.30277 0 0 0.554704 0.832057 O
(c) [U]ni = 0 0.302774 0|, (d) [U]ei = [0.832057 3.05087 O,
0 0 1 0 0 1
[ 3.050852 —0.832052 O] 0.55470 0.83205 O
, (@) [R]

} . (b) For A; =10.908326,n; = 0.289785e; + 0.957093e,.

U], =

€

—0.832052 0.554701 O —0.83205 0.55470 O |.
0 0 1 0 0 1

(a) 3,2 and 0.6, (b) (ds/dS) =+/13/2, (c) cos @ = 0. No change in angle.
(a) [U]—L % ; 8 _ (b) \/Co =V2 (c)é— 5/2, (d) cos 0 = =
V5 o 0 V5l coUT s YT V2

11 0
(a)[U]:\% 1 3 \of, (b) /Cp = V5, (c)%:\/i (d) cos 0 = —.
00 V2

gt [0\ (FeD0\T L (02 pr (O (reB00\ 520

m =\ or or or) > T 7 \,ro0 ro0

-l o_ or, n 1,005\ [ Or, n 1,00, %

rollo ™ or r00 ) \roo Oz oz )

B (20)(120) L (20 (r0\ . (2

= \ox ) \ox or )\ o oz
ox\ [ 0X oY

-1 _ oA il

By = <8r> <r80> +< r)

0

Sul

1500,
or

1
—_

0 1 0 0
@@ [B]=1]0 1+ (k) k|, ®)[Cl=]0 1 rk .
K rk 1 0 rk 1+ (rk)?
—(a/r)z 0 0
(a) [B] = 0 (r/a)2 0|, (b)detB =1, no change of volume.
Lo 0 1

FE) 0 0
= 0 wP o |
0 0



Answers to Problems

CHAPTER 4

4.1
4.2
4.3

4.4

(a) 1 MPa, 4 MPa, 0 MPa. (b) 3.61 MPa, 5.39 MPa, 5.83 MPa.
(@) t=(1/3)(5e; + 6e; + 5e3). (b) T, =3 MPa, T, = 0.745 MPa.
(a)t=347e; —2.4le;. (b) T, =221 MPa, Ty = 3.60 MPa.

t = 25V/3e; + 25e, — 251/ 3e;.

45 (@A t=e;. (b) n% —n5 = 0, including n = e3, n = (e; + ez)/\/i, n=(e — 62)/\/5.
4.6 T = —6.43 MPa, T|,=18.6 MPa.
4.7 (a) te, = oxpe; + fey.  (b) Fr = Oe; + 4 fer, M, = —(4a/3)es.
4.8 (a)t,, = wde;. (b) Fr = (4/3)e;, M, = 0.
49 (a)t,, = oe; + oxze;. (b) Fr = dae;, M, = —(4a/3)e;.
410 (a) t,, =0, t,, = oxze; — oxges, ty, = —oxzey + axze;.  (b) Fr =0, M, = 8nae;.
411 (b)) Fr =0, M, = —7/ (2\@).
[ 0 500 —ZOO]
412 (atrS=0. (b)[S]=] 500 —300 400 |kPa.
—200 400 300
4.13 (a) 4.
414 (b) T1, =T».
417 frnax = 2.
421 (a) Ty =0. (b) For Ty = 100 MPa, n; = (e; + ez)/\/i For Ty = —100 MPa,
n, = (e — ez)/ﬂ. (©) (Ts);ax = 100 MPa, on the planes e; and e;.
4.23 (a) (T,),,,. = 150 MPa, n = (e; £ e3)/V2, (b) T, =250 MPa.
424 Ts3=1and Ty = 1.
4.25 (a) T, = 800/9 = 88.89 kPa, Ty = 260 kPa,
(b) (Ty), = 300 kPa.
426 (a) t, — (5/\/5) (e1 +e), (b)T,=>5MPa,
(@ (T) o = 5 MPa, i = (1/V2) (e1 +e2),
(T = =3 MPa, 2 = (1/V2) (€1 = €). (Ty)py = 4 MPa, on n = ¢ and n = ¢s.
4.27 (a) For 2 =1, n; = (l/\/i) (e; +e).

For J, = —1, my = (1/\/5) (e1 — ep).

For 3 =0, m =e3. (b) (Ty),x =7, N =¢€;and n = e,.
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4.29
4.30
4.31
4.32

4.36

4.39
441

4.42

4.44

4.45

4.46

Answers to Problems

£

Ty —Tay = My, T3 — T3 = M, and T3 — T3y = M.
(b) Ty = 2x; —x2 + 3.

T3z = (1 + pg/a)xs +f(x1,x2).

@C=-1, O)A=1B=2.

Tor  OTy. Twg 10Teg OTp.
T o T T e T e

+ pBy = pay.

B = (po — f)rzr (rs =17y A= (pir} —pord)/(rg = 17).
A= —(porg —pir})/(ry = 11), B =—~(po—pi)rar}/[2(rs —1})].
1000/16 0 o
(a) [To] = = (1000/16)e,
) [1000/256 0 0
() [T] = 0 0 0|MPa, t=(1000/256)e,
0 00
(@) dV =1/4, dA = (1/16)e,,
100/16 0 0
(b) [T,] = 0 0 0|MPa, t,=(100/16)e;MPa.
0 00
) 100/64 0 0O /100
© [T] = 0 0 0|MPa, t=(100/64)e,MPa, df_<—>e1.
0 00 64

(@dV=dV,=1, dA=e — ke,
—100k 100 0O
) [To)J=| 100 0 0|MPa, t,=100(—ke, +e) MPa, t= 100 (—ke; + )
o 0 O O ) ] 1 2 ) \/l—’——kz 1 2)
) —200k 100 O i )
(© [T]=| 100 0 O|MPa, t=100(—2ke| +ey)MPa, df =100(—2ke; + e).
0 0 0

(a) dV =8dV, = 8. dA = 4e,

400 0 0
() [T=| 0 400 0 |MPa, t,=400e; MPa, t= 100e, MPa.
0 0 400

i 200 0 0 ] ~
© [T]=| 0 200 0 |MPa, =200e; MPa, df =200e,.
0 0 200



Answers to Problems

CHAPTER 5

5.3

54

5.9
5.10

5.11

5.13

5.14
5.17

5.19

5.21
5.24

5.25

5.28

5.30

5.32
5.35

5.38

540

5.42

Ey/A— 0,u— Ey/3.

_ Ey k_2,u(1+v)
oo+ " T30 -2y

2 =81.7GPa (11.8 x 10°psi), u=38.4 GPa (5.56 x 10°psi), k =107.3 GPa (15.6 x 10%psi).

v=027, 1=89.1GPa (12.9 x 10°psi), k = 140 GPa (20.3 x 10°psi).

177 19 475
MT]=|19 184 0 |MPa.
475 0 160

0.483 0.253 0.380

(@ [E]= 0253 —141 0 | x1073,
038 0 1.12

(b) e = 0.193 x 1073, AV = 24.1 x 10 3cn’.

AV =2.96 x 1073.

9

@ Ty =Tyn=T3=0, Tip="Ty =2ukxs, Ti3="Tz = pk(2x;+x2), T3 =Tz = pk(x; —2x3).

X3 X3 uxo
(a) [T] =2k | wes  Axs Xy
peopxr (A4 2u)xs

Forv=1/3, co/er =2; v=049, cy/er =7.14; v =10.499, ¢ /cr =22.4.

©)a=1,
@ p=nn/26),n=1,3,5...

©)a=1,
@ p=nn/t,n=1,2,3...

@ p=nn/t,n=12,3...

4 5 4 5 5
@ ooy =03 =0,e =¢, and (b) az =31.17° & = 0.742¢1,¢3 = 0.503¢;.

(@) uy = %m [2—”f],u2 — % in [2—”4  fler ) = (ﬁ+@ — et - n>.

(b) &3/e; = —sin 20y /cos(a; — 03),€2/€1 = cos(ay + a3)/cos(oy — a3).

WX wf . wx;
(a) uy = ool cos—— + tan— sin—— | cos wt,
CL cL CL

(b) wl/c, = nn/2,n=1,35...
(@) uz = afcos(wx; /er) — cot(wl/cr)sin(wx; /cr)]cos wt,
(b) = nner/ton=1,2,3...

(@) (Ty) = 714 x 10°N, (T}),,.. = 23.7 x 10°N,  (b)d; = 1.39 x 10 m.

max
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5.44

5.46

5.49

5.51

5.53
5.54

5.57

5.60

5.63

5.66

5.67

5.69

5.72

5.74

5.84

5.87

Answers to Problems

(@) T, = o cos® a, Ty = o sin 20/2,
b)) a=n/2,T;,=T,=0, and (ii) « = n/4, T, =T, = /2,
(c) o0 < 21,/sin 2a.

(@ T7, =20/3, T3 =T3;=-0/3, T}, =T};=T5 =0,
®) =0, ©ILb=-¢"/3, I;=2¢"/21.

M, = Mffz/(f] +fz), M, Zsz]/(& -‘rfz).

(Th)ax = [0+ /02 + 4,[321'2]/27 T, =[\/ o>+ 4ﬂ2r2]/2, o =P/A, [=M]/I,.
(a) (Mf)e/[/(Mf)cir = 2’ (b) (x(fll/(x(/'ir = 5/16

(b) C = oc’/6a7 (¢c) Ty, = 0,T13 = 0 at all three corners; along x3 = 0,
Tip = 0,Ti3 = (uo!/2a)(2ax, +x3), (d) Ty = (3a/2)uo at (x2,x3) = (a,0).

e}

M, = (“3) (24)* (2b) [1 e zl tan h"”b]

Neutral axis in the direction of M,e; + (I /133)M3es.

(b) Ty =203, Tip = —0on, Ton =2,

©)x; =0, t=-203e +0me;, x;=>b, t=2u3e —oe,

(A T3 =2v(az +a1), Tiz=Tn=0, Ez=0, Ey=2(1/Ey)[(1—v")oz—v(l+v)oy],
() Tz =0, Ei3=E3=0, E3=-2(v/Ey)(ez+o1), Ey =2(1/Ey)(oz —voy).

(b) Tyy =20y + 6x1x2, Top =0, Tia = —20x; — 33,
(C) o = 73C/2, (d) tx1:0 = 3)(2()(2 — C)ez, txlzh = 3b(2X2 — c)el — 3)(2()(2 — C)ez, txz:0 =0.

Pxix, n vPx3 Px3 n P n\? n
Ui — — (=22 — (=) x—cix2 +cs.
"7 2Ey T6EyT \eud ul)\2) 2T
{=(Amc)cos h A,c}sin h Ayxp + sin h Ayc(Anxa cos h 4,x2)
sin h 2/,,¢ + 22,,¢

(@) Tio = 2A, [ ] sin A,,x1.

A
z {———I—ZB(I —2v)rinr —Br+2C(1 —2v)r} + H sin 0 + G cos 0,
y r

ug = (1/Ey)[4Bro(1 —v)(1 +v)] + H cos 6 — G sin 0 + Fr.

rh 3 andrinr,

)

(1-2v)z 3%z (1 —2v)z (1=2v)r  [3rz?
T = _T+F’ Tw="""% " =% *&)
3 3
T, = st (1- 2v)

F.[3¢%z (1—-2v)z (1-2v) (1—=2v) (1 x? x?
2w | RS R R(R+z)_R(R+z){I_Q(R+z)+ﬁ}]'



Answers to Problems

3

588 T.= LS/Z — 4.
(r2422)
5101 Cyi= (1 ), C Lt e L+ vavm)
. - — V32V = — (Vv Va1 v = (v Vo ,
11 AE2E3 32V23), 12 AE2E3 21 31V23), 13 AE2E3 31 21V32
1 [1 —2vi3varvaa — vi3var — va3vaa — Va1 vi2)
Cy = ., A= '
» = A E (va2 +v31vi2) FEE

5112 B, = (a/r)*, Bgy= (r¢)’, B.=1, By=0, B.=0, By =0.
5113 B, =72, By=B.=0, By=71+(K)’, B.=2723, B.y=By=I K.

CHAPTER 6
6.1 Ry =5.1 x 10°N.
6.2 h=248m.
6.3 hy = (p,h1 — p3h3)/p,.
6.5 (b) Fx =7(2r°L). F, is 2r/3 above the ground. F, is 4r/3n left of the diameter.
6.6 p—p,=p(g+ah.
6.8 h=al/g.
6.10 hy —hy = 0* (17 —13)/(29).
6.12 (A) for n # 1, pt=1/m = p=t/=D[5 — {(n = 1) /n}pg(z — z0)]" "7V,
(B) for n = 1, p = po exp| —pop, /"8 (z — Zo)]'
6.14 (b) T, = uk —p, TS2 =0, (c)any plane (n;,0,n3) and (n;,nz,0).
616 (a) (=T,) —p = 44u/5, (b) T, = 81/5.

1 + kXt
620 (a) x» = o, (b)x; = #X;OX] and x; = X,.

6.22 (a) x] +x3 =of +03, (b) x]+x3 =X} + X3, time history:
x1 = X sin wt + X; cos wt, x; = X, cos wt — X sin wt.

6.23 (a) 0 =0,, (b) 0 =0, time history: 7> = R* + Qt/(n).
6.26 v = (a/2u)(x2d — 23) + voxa/d, Q = ad’/(12u) + vod®/(2d).
6.27 v = pgsin 0(d — x3/2)x,.

2 b _
6.29 M1V<f>a{&_(u>x2bz< H )}
2 2\t e+

(@® — b?) 0y (b’In a — a*In b)
mja) T n(b/a) }

_ldp 2
6.32 (b) v_4,udz [1 +

11
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6.34 A = pa’b*/{2(a* +b*)}, B=—A.
6.36 wave length = v27/10° = 2.51 x 10 m.
6.38 (b) A=0Q,,/(2n).
640 @ — 1 [ (= (d — 2x,) S CotD
) O 12ke2 | d 2u 2 2T
3 4
u Vo oad
D= —— _(24+—=).
O+ 12K0? (d + 2/1)
B2 2 2 B2 -
642 0=-"_icmr+n, c= (") (E)/(mnZ).
Kr? rir? K To
6.44 (b) Ty = —p +2uk, Too = —p — 2pk, Tz3 = —p, Tio =T13 =Tz = 0,
© ay =kx1, a3 =Kx, a3 =0, (d) p=—(p/2)(V] +v3) +por (D) ® =4k’
(h) the nonslip boundary condition at x, = 0 is not satisfied for a viscous fluid.
6.46 Ans. ¢ = —(1/u)(9p/0x1)xz€5.
d d 0? 02
6.48 (c) (—y) (—y> - 1(d)c=— (—f + —f) e..
dx (p=constant dx Y=constant 8)7 Ox
Py Py
49 Z L
6.49 By + p)
651 0 = Aida\/2((p) — p2) — pghl/ [p (4% — A3)].
CHAPTER 7
7.1 JV -ndS = Jdiv vdV = 16.
7.3 Jdiv vdV = Jv -ndS = 64r.
7.9 (b) m =3p,e A, dm/dt = —3op,e I T0A,
711 (b) m = kAp, In3, dm/dt=0.

dpP
7.14 (a) i ?oczApoe’w’"’)el, (b) 9Ap a2e =) (c) F = %Apoocze’“”’")el.

7.15
717

7.19

2
(@) P = 2p kade;, (b) 2kp,Ad®, (c) F = 2kp,Ac’e,.
(pC*nrS/3)er, (mpC?rS/4)e,.

d%x n dx\?
X = X——= - .
& dr? dt



Answers to Problems

7.21 Force from water to the bend is Fy, = 1100e; — 282e,/N.
7.22 pAV: e.

7.24 Force on the vane is Fygne = pA(v, — v)*[(1 — cos 0)e; — sin Oe,].

CHAPTER 8
de
8.3 S:G8+ni, S /ey = GH(t) +10(1).
2 —Gt
8.4 (b) S = WOy Mo )
& (n+mn,) (n+1,)
8.5 Sip = uve(1 —e_[/)‘).
00 2 5 )
H() JoH
8.8G':JL2()/L, G”:J‘“i(;)z
J a1+ Zw?) J a1+ 2 e?)
A=0 A=0
10 0 0 k 0 2% 0 0]
8L () [C]=|0 1 0|+ |k 0 Of(x=n)+ |0 0 0|57, k=dv/dx.
0 0 1 000 0 00
_672/((17{) 0 0
8.12 (b) [C/] = 0 X o =
0 0 1
2 0 0 4 0 0 2 83 0 0 3
t —1
M+(—n| 0 2 0| +] 0 4 0 (72) +] 0 8 o (13,)
0 0 0 0 0 0 0 0 0 '
'ezk(r—z) 0 0 2k 0 0
813 (b)) [Cl=| 0 e 0 =M+Gx-0]|0 2 0
0 0 e H 0 0 —4k

:4/<2 0 0](1_02 8k3 0 0 }(T_z)s

+]1 0 4* 0 3
| O 0 16k 0 0 —64k3 ’

8.14 (a) x'=xjcoshk(t —1) +xasinhk(r —1), x'=x;sinhk(t—1)+xcoshk(t—1),

cos h*{k(t — 1)} + sin h*{k(t — 1)} sin h{2k(z — 1)} 0
®) [C] = sin h{2k(t — 1)} sin h>{k(t — £)} 4+ cos h*{k(t — )} ©
0 0 1
0 2 0 4 0 0 (r— 1 0 8K 0 (r— 1)
=M+ |2 0 O|(z—t)+| 0 4k* 0 7+ 8k 0 0 et
0 0 0 0 0 0 0 0 0

13



14 Answers to Problems

)0 dv v(r)
820 (@) [A]= |k() 0 o0f, k= <Z_—)'
0 0 0 rr
2k
(b) (VAI)H'O = T (VAl)r'OO =0, (VAI),-zo =0, (VAI)Oro =0,
2k
(VAl)oeo = P (VAl)eze =0, (VAl)zre =0, (VAl)zee =0, (VAl)zze =0.
262 0 0
©A,=]10 0 0
0O 0 O
_Siz _ | B o B B
823 p=—r-=- sfh(s)d, o1 =811 —S»n=—k" | sf(s)ds, 02=>5»n—S3=0.
0 0

o 2
8.27 (a) Corotational stress rate is: [T] = [,u(/; —/(jkz} )

© T — e {(cos 2wt)  (sin 2wt) ]’ @ ['i‘*} ~ Q] {ﬂ Q.

(sin 2wt)  (—cos 2wt)

8.28 (b) The corotational derivative of T': pk(v% — v2)I.

0 k/2 0 /4 0 0
8.30 [T] = —p[l] + ¢, (k*/4,0) [k/z 0 0} +¢2(k2/4,0){ 0 K4 0].
0 0 0 0 0 0
8.36 S12:1%7 JlESll—S22:%, 62:S22—S33:—}'Hk;((42)+a), A(k):[l-l—(l—ocz)(/lk)z}

8.37 n(k) =Sin/k=n, oy =Ty—Tn=2uk*(2 —7i2), 01=Tn—T3=0.

S 1 + Jop k>
8.38 77(/‘)2%2%7 o1=Ty —Txn=
0

2/,tk2 (/11 — )vz)

, 0p=Ty —T33=0.
(1 + k) 2 2 — 133

8.40 (a) SZf = ‘E(k), SZZ — S,~,~ = O'l(k), S,~,~ — Sgg = 02(/{), S;9 = S,g =0.
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Note: Page numbers followed by f indicates figures and ¢ indicates tables.

A

Acceleration of particle
in cylindrical coordinates, 77
in rectangular Cartesian coordinates, 76
in spherical coordinates, 78
Acoustic wave, Newtonian fluids
barotropic, 393
fluid impedance, 396
local speed of sound, 394
Adherence condition, 365
Airy stress function, 251, 270-274
Anisotropic linearly elastic solid
constitutive equation
anisotropic linearly elastic solid, 319-321
isotropic linearly elastic solid, 207-209
monoclinic linearly elastic solid, 322-324
orthotropic linearly elastic solid, 324-325
transversely isotropic linearly elastic material, 325-327
engineering constants
isotropic linearly elastic solid, 328
monoclinic linearly elastic solid, 332-333
orthotropic linearly elastic solid, 330-331
transversely isotropic linearly elastic solid, 329-330
material symmetry plane, 321-322
Antisymmetric tensors
definition of, 32
dual vector of, 32-34

Bernoulli’s equations, 383

BKZ model, 480

Boundary layer concepts, 388—389
Bulk modulus, 203, 211

Bulk viscosity, 359

Cc

Cauchy stress tensor see Stress tensor
Cauchy-Green deformation tensor, 337, 476
Cauchy’s equations of motion, 169
Cauchy’s stress principle, 156
Compliance matrix, 320
Compressible newtonian fluid, 389-390
Conservation of energy, 184

principle of, 433-435

supersonic one-dimensional flow, 434

Conservation of mass
linear momentum, 421-422
principle of, 420422
Constitutive equations, 2
anisotropic linearly elastic solid, 319-321
isotropic elastic solid
elastic medium, 338-340
isotropic elastic medium, 340-342
isotropic linearly elastic solid, 207-209
monoclinic linearly elastic solid, 322-324
orthotropic linearly elastic solid, 324-325
transversely isotropic linearly elastic material,
325-327
Continuum mechanics
constitutive equations of, 2
general principles of, 1-2
Continuum theory, 1
Corotational derivative, 483-484
Couette flow, 374-375
Curvilinear coordinates
cylindrical coordinates, 60—61
polar coordinates, 55-59
spherical coordinates, 62—67
Cylindrical coordinates, 504
and spherical coordinates, 170-171

Deformation, kinematics of continuum
change of area, 129-130
change of volume, 131-132
gradient, 419
cylindrical and spherical coordinates, 88
definition, 105-107
rectangular coordinates, 87
stretch and rotation tensors calculation, 112-114
tensor deformation components
cylindrical coordinates, 132—138
spherical coordinates, 139-140
Dilatational waves, 219
Displacement field, 81-82
Dissipation functions, Newtonian fluids
compressible, 377
incompressible, 376-377
stress working, or stress power, 376
Divergence of tensor field, 51-52



514 Index

Divergence theorem H
Cartesian components, 414-415 Hagen-Poiseuille flow, 371-372
stress vector, 415
total power, 416
Dummy index, 3

Helmbholtz energy function, entropy inequality, 186—187

Hookean elastic solid materials see Linearly elastic
solid materials

Hugoniot equation, 399

E Hydrostatic state of stress, 211
Einstein’s summation convention, 3
Elastic solid materials |

homogenous and inhomogenous properties, 203
mechanical properties Identity tensors

bulk modulus, 203 Cartesian components of, 21
load-elongation diagram, 202, 202f definition of, 20

shear modulus, 203
tensile test, 203
Young’s modulus, 202
Elasticity tensor, 204
Elastostatic problems
Boussinesq problem, 293-295

Idealized materials, 2

Incompressible fluids
Navier-Stokes equations
cylindrical coordinates, 364
parallel flow or unidirectional flow, 361
piezometric head, 362-363
spherical coordinates, 364-365
elastic half-space surface plane Couette flow, 372-374
axisymmetric smooth indenter, 302-304, 306-309 vorticity transport equation, 385-388
distributive normal load, 296-297 Incompressible hyperelastic isotropic solid, 342
flat-ended indenter, 304 Incompressible Newtonian fluid, 359-360
rigid flat-ended smooth indenter, 300-301 Incompressible simple fluid, viscometric flow
smooth rigid sphere, 304-306 channel flow
hollow sphere, 297-298 Newtonian fluid, 497
Kelvin problem, 290-291
potential functions, 279-289
spherical hole in tensile field, 298-300
Engineering constants
isotropic linearly elastic solid, 328
monoclinic linearly elastic solid, 332-333

volume flux per unit width, 496
Couette flow

compressive stress, 499-500

material function, 500

velocity and stress distribution, 498

gradient of second-order tensor, 501-505
orthotropic linearly elastic solid, 330-331 stresses, 493-495

transversely isotropic linearly elastic solid, 329-330
Entropy inequality, 435

Helmholtz energy function, 186—187

law, 185
Eulerian description, 72
Eulerian strain tensor, 125-129

Indeterminate pressure, 359
Indicial notation, in tensors
Einstein’s summation convention and dummy indices, 3
free indices, 4
Kronecker delta, 5
manipulations, 7
permutation symbol, 6
Infinitesimal deformation

Euler’s equations, 382

F deformation gradient, 85
Finger deformation tensor, 122—125 displacement gradient, 84—85
First coefficient viscosity, 359 Lagrange strain tensor, 87
First Piola Kirchhoff, 175 right Cauchy-Green deformation tensor, 85-87
First Piola-Kirchhoff and Cauchy stress tensor relations, 175 Infinitesimal rotation tensor, 94-95
Infinitesimal strain tensor
G diagonal elements, 88
Generalized shear modulus, 344 off diagonal elements, 89
Green’s deformation tensor, 114-118 Interpretation of A and p, Newtonian fluid
Green’s theorem first coefficient viscosity, 359
area integral, 413 second coefficient viscosity, 359

boundary curve of, 411-413 stokes assumption, 359



Inviscid incompressible fluid
barotropic flow, 395
isentropic irrotational flows, 397
Mach number, 398
Irrotational flow
inviscid incompressible fluid
Bernoulli’s equations, 383
Euler’s equation of motion, 382
Torricelli’s formula, 384
Navier-Stokes equation solutions, 384-385
Isotropic elastic solid, large deformation
bending of, rectangular bar, 344-347
change of frames
objective scalar, 334
objective tensor, 335
objective vector, 334
constitutive equation
elastic medium, 338-340
isotropic elastic medium, 340-342
simple extension, 342
simple shear deformation, 343
torsion and tension, 347-349
Isotropic linearly elastic solid materials
constitutive equations for, 208
elastostatic problems
Boussinesq problem, 293-295
hollow sphere, 297-298
Kelvin problem, 289-292
potential functions, 279-289
spherical hole in tensile field, 298-300
elastostatic problems, elastic half-space surface

axisymmetric smooth indenter, 302-304, 306-309

distributive normal load, 296-297
rigid flat-ended smooth indenter, 300-301
smooth rigid sphere, 304-306
infinitesimal theory of elasticity, 213-215
isotropic tensor, 207-208
Navier’s equations
cylindrical coordinates, 216217
of motion for elastic medium, 215-216
spherical coordinates, 217-218
plane elastic waves
infinite plate vibration, 229-231
plane equivoluminal waves, 221-225
plane irrotational waves, 218-221
reflection of, 225-228
plane stress and strain solutions
Airy stress function, 251
cantilever beam with end load, 255-258
curved beam bending, 268-269
Flamont problem, 278-279
rectangular beam bent by end couples, 253-254
simple radial distribution, 277-278
simply supported beam, 258-259
slender bar, 260-262

Index

strain conversion, 262-263
strain solutions, 250-253

stress concentration due to small circular hole in plate,

274-2175, 276-277
stress problem, 254-255
symmetrical stress distribution, 265-267
thick-walled circular cylinder, 267-268
two dimensional problems, 264
simple bending of beam, 247-250
definition, 247
flexural stress, 249
simple extension
St. Venant’s principle, 234
three-dimensional elastostatic problems, 231-234
stress components
bulk modulus, 211
hydrostatic state of stress, 211
Lamé’s constants, 208
modulus of elasticity, 210
Poisson’s ratio, 210
shear modulus, 211
simple shear stress state, 211
uniaxial stress state, 210
superposition principle, 218
torsion
of circular cylinder, 234-239
of elliptical bar, 240-242
of noncircular cylinder, 239
Prandtl’s formulation, 242-245
of rectangular bar, 245-247

Isotropic tensor-valued function, 349-351

J

Jaumann derivative, 483—484

K

Kinematics of continuum

acceleration of particle
in cylindrical coordinates, 77
in rectangular Cartesian coordinates, 76
in spherical coordinates, 78
compatibility conditions
infinitesimal strain components, 101-105
rate of deformation components, 105
conservation of mass equation, 99-101

current configuration as reference configuration, 140-141

deformation
change of area, 129-130
change of volume, 131-132
deformation gradient
cylindrical and spherical coordinates, 88
definition, 105-107
rectangular coordinates, 87
stretch and rotation tensors calculation, 112-114

515
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Kinematics of continuum (Continued)
dilatation, 94
displacement field, 81-82
Eulerian strain tensor, 125-129
finite deformation, 107-109
infinitesimal deformation
deformation gradient, 85
displacement gradient, 84—85
Lagrange strain tensor, 87
right Cauchy-Green deformation tensor, 85-87
infinitesimal rotation tensor, 94-95
infinitesimal strain tensor
diagonal elements, 88
off diagonal elements, 89
kinematic equation for rigid body motion, 82-83
Lagrangian strain tensor, 119-122
left Cauchy-Green deformation tensor, 122—125
local rigid body motion, 107
material and spatial descriptions, 72-74
material derivative, 74-76
motions of continuum
description of, 69-72
material coordinates, 70
simple shearing motion, 70-72
polar decomposition theorem, 110-112
positive definite root, 143-145
positive definite symmetric tensors, 144
principal strain, 93
rate of deformation tensor, 96-99
right Cauchy-Green deformation tensor, 114-118
spin tensor and angular velocity vector, 99
strain compatibility, 141-143
tensor deformation components
cylindrical coordinates, 132—138
spherical coordinates
time rate of change of material element, 95-96
Kronecker delta, definition, 5

L

Lagrangean description, 72
Lagrangian strain tensor, 119-122
Lagrangian stress tensor, 175
Lamé’s constants, 208
Linear Maxwell fluid, non-Newtonian fluids
with continuous relaxation spectrum, 452454
creep experiment, 444
with discrete relaxation spectra, 451452
Maxwell element, 444
phase angle, 450
with relaxation spectra, 455456

relaxation spectrum and relaxation function, 454455

shear stress, 448—450
storage and loss modulus, 454
stress field, 445

stress relaxation experiment, 444
synovial fluid, 455
Linear momentum
boundary layer flow, 427
force per unit width, 427
homogeneous rope, 424-426
Piola-Kirchhoff stress tensor, 423
principle of, 168-170, 422-427
total resultant force, 425-426
volume flow rate, 425
Linear viscoelastic fluid, 444
Linearly elastic solid materials, 204
Elasticity tensor, 204
strain energy function, 205
Linearly viscous fluid see Newtonian fluids

M

Material coordinates, 70
Maximum shearing stresses
determination cases
T1=T,#T5, 192
T=T,=T5=T, 191
T=T3#Ty, 192
T3=T,#T,, 193
T; s are distinct, 193
Lagrange multiplier, 164
state of plane stress, 166
Maxwell element, 444
Mechanics, general principles
conservation of energy, 190
conservation of mass, 187—188
divergence theorem, 188
entropy inequality, 186—187
linear momentum, 188
moment of momentum, 189
Modulus of elasticity, 202
Monoclinic material, 322

Navier-Stokes equations, incompressible fluids
cylindrical coordinates, 364
parallel flow or unidirectional flow, 361
piezometric head, 362-363
spherical coordinates, 364-365
Newtonian fluids
acoustic wave
barotropic, 393
fluid impedance, 395
local speed of sound, 394
boundary conditions, 365
compressible and incompressible fluids, 354
Couette flow, 374-375
definition of fluid, 353
dissipation functions
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compressible, 377 differential-type equations, incompressible fluids, 481483
incompressible, 376-377 incompressible simple fluid, 474475
stress working/stress power, 376 single integral-type nonlinear equations, 478-480
energy equation, 378-379 objective rate of stress, 483—487
energy equation enthalpy, 390-392 Oldroyd 3-constant fluid, 490
Hagen-Poiseuille flow, 371-372 Oldroyd 4-constant fluid, 490-491
hydrostatic pressure, 354 Oldroyd derivative
interpretation of A and p lower convected, 484-485
first coefficient viscosity, 359 upper convected, 486487
second coefficient viscosity, 359 rate-type constitutive equations, 487491
stokes assumption, 359 rectangular coordinates, 460—461
inviscid incompressible fluid relative deformation gradient, 457-458
Bernoulli’s equations, 383 relative deformation tensors, 459460
Euler’s equation of motion, 382 Rivlin-Ericksen incompressible fluid of complexity, 481
Torricelli’s formula, 384 Nonslip condition, 365
irrotational flow, 381-382
laminar and turbulent flow, 367-368 0
Navier-Stokes equations, 360-363 Oldroyd derivative, non-Newtonian fluids
oscillating plane, 375-376 lower convected, 484485
pathline, 366-367 upper convected, 486—487
plane Couette flow, 368 Orthogonal tensors, 22-24
plane Poiseuille flow, 368-370 Orthotropic elastic material, 324-325

pressure-flow relation, 401403
rate of deformation, 358

shear stress, 356 P

solutions of navier-stokes equation solutions, 384-385 Permutation symbol, 6

steady and unsteady flow, 367 Piola-Kirchhoff stress tensors, 338, 339, 423-424

steady flow of a compressible fluid deformed configuration, 177
choked flow, 401 equilibrium configuration, 177
convergent-divergent nozzle case, 402 first law, 175
divergent (convergent) nozzle case, 400-401 second law, 176

streamline, 365-366 stress power, 181-183

viscous stress tensor, 358 Plane Couette flow, 368

vorticity vector, 379-381 Plane elastic waves

Non-Newtonian fluids infinite plate vibration, 229-231

linear Maxwell fluid plane equivoluminal waves, 221-225
with continuous relaxation spectrum, 452-454 plane irrotational waves
creep experiment, 445 definition of, 219
with discrete relaxation spectra, 451-452 elastodynamic problems, 218
Maxwell element, 444 reflection of
phase angle, 450 critical angle, 228
with relaxation spectra, 455-456 experimental study, 225-227
relaxation spectrum and relaxation function, 454455 refraction index, 228
storage and loss modulus, 454 Plane Poiseuille flow, 368-370
stress field, 445 Plane stress and strain solutions
stress relaxation experiment, 444 Airy stress function, 251, 270-274
synovial fluid, 455 cantilever beam with end load, 255-258

nonlinear viscoelastic fluid curved beam bending, 268-269
BKZ model, 480 Flamont problem, 278-279
Cauchy-Green deformation tensor, 476 rectangular beam bent by end couples, 253-254
convected Maxwell fluid, 488-489 simple radial distribution, 277-278
corotational derivative, 483-484 simply supported beam, 258-259
corotational Jeffrey fluid, 489—490 slender bar, 260-262
current configuration, 455-457 strain conversion, 262-263

cylindrical coordinates, 461-462 strain solutions, 250-253
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Plane stress and strain solutions (Continued)
stress concentration, small circular hole in plate
under pure shear, 276-277
under tension, 274-275
stress problem
approximations and assumptions, 254-255
consequences of, 255
in welded ring, 270
symmetrical stress distribution
about an axis, 265
in plane stress solution, 265-267
thick-walled circular cylinder, 267-268
two dimensional problems, 264
Poisson’s ratio, 210
Polar decomposition theorem, 109-112
Principal scalar invariants, 40-41
Principal strain, 93

R

Real symmetric tensors
matrix of, 39-40
principal values and principal directions of, 38—39
Recursive formula see Rivlin-Ericksen tensors
Reference description, 72
Relative deformation gradient, 457458
Relative deformation tensor, 460—463
Reynolds number, 367-368
Reynolds transport theorem
conservation of energy
principle of, 433-435
supersonic one-dimensional flow, 434
conservation of mass
linear momentum, 421-422
principle of, 420-422
divergence theorem
Cartesian components, 414—415
stress tensor field, 415
total power, 416
Green'’s theorem, 411-413
area integral, 413
boundary curve of, 411-413
integrals over control and material volumes
density field, 417
material volume and the rate of change, 417418
linear momentum
boundary layer flow, 426
force per unit width, 427
homogeneous rope, 424-426
Piola-Kirchhoff stress tensor, 423
principle of, 422-427
total resultant force, 425426
volume flow rate, 425
moment of momentum
principle of, 430-432

sprinkler arms, 432
moving frames

control volume fixed, 430

momentum principle, 428-430

Rivlin-Ericksen tensors

axisymmetric velocity field, 464-465
BKZ model, 480
Cauchy-Green deformation tensor, 476
convected Maxwell fluid, 488—489
corotational derivative, 483-484
corotational Jeffrey fluid, 489—490
differential-type equations, incompressible fluids, 483-484
incompressible fluid of complexity, 481
incompressible simple fluid, 474475
objective rate of stress, 483—487
Oldroyd 3-constant fluid, 490
Oldroyd 4-constant fluid, 490491
Oldroyd derivative

lower convected, 484—485

upper convected, 486-487
rate-type constitutive equations, 487491
recursive formula, 468470
second-order fluid

simple shearing flow, 482

stress components, 482483
single integral-type nonlinear equations, 475-480
Tanner and Simmons model fluid, 477
transformation law, 471-473
velocity gradient and deformation gradient, 471

Rivlin’s universal relation, 349

S

Scalar function, in tensors

Laplacian of scalar field, 53

scalar field and gradient, 47-50

tensor-valued function, 45-47
Second coefficient viscosity, 359
Second law of thermodynamics see Entropy inequality
Second-order fluid, 481483
Shear modulus, 203, 211
Shear wave, 221
Shearing stresses, 158
Simple extension

isotropic elastic solid under large deformation, 342

isotropic linearly elastic solid materials

St. Venant’s principle, 234
three-dimensional elastostatic problems, 231-234

Simple shear stress state, 211
Single integral-type nonlinear constitutive equations, 475-478
Spatial coordinates, 72
Spatial description, 72
Spherical coordinates, 462-463
Steady flow, compressible fluid

choked flow, 402
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convergent-divergent nozzle case, 402 T
Stiffness matrix

definition, 319-320

positive definite matrix, 320
Strain energy function

definition of, 205

in thermoelastic theory, 206

Tanner and Simmons model fluid, 477
Tensile and compressive stresses, 158
Tensor calculus
divergence of tensor field, 51-52
scalar function
Laplacian of scalar field, 53

Stress and integral formulations scalar field and gradient, 47-50
Cauchy’s equations of motion, 169

Cauchy’s stress principle, 156

tensor-valued function, 45-47
vector function

conservation of energy statement, 184 curl of vector field, 52-53

cylindrical and spherical coordinates, 170-171 Laplacian of vector field, 53-54

determination, maximum shearing stress vector field and gradient, 50-51
T=T,#T3, 192

Tensor deformation components

T\=T=T5=T, 191 cylindrical coordinates, 132-138
To=Ts#T, 192 Tensors
T4=T,£T,, 193

components of, 11

T; s are distinct, 193 curvilinear coordinates

energy equation, 184
entropy inequality
Helmholtz energy function, 186—187
law, 185
equations of motion, reference configuration, 179-180
maximum shearing stresses
Lagrange multiplier, 164 Cartesian components of, 21
state of plane stress, 166 definition of, 20
mechanics, general principles
conservation of energy, 190
conservation of mass, 187—-188
divergence theorem, 188
entropy inequality, 190-191
linear momentum, 188
moment of momentum, 189
principal stresses, 161
principle of linear momentum, 168-170

rate of heat flow, 183184 product of two tensors, 1618

stress power, 180-181 real symmetric tensors
stress tensor, 156—157 matrix of, 39-40

stress vector, 155-156
surface tractions, 171 sum of, 16
Stress power, 180-181 symmetric and antisymmetric tensors, 31-32
Stress tensor trace of, 20
boundary condition for, 171-174
components of, 158-159
hydrostatic state of stress, 160
Piola Kirchhoff equations
deformed configuration, 177
equilibrium configuration, 177
first law, 175
second law, 176
stress power, 181-183

cylindrical coordinates, 60-61

polar coordinates, 55-59

spherical coordinates, 62—-67
dyadic product of vectors, 19-20
eigenvalues and eigenvectors of, 34-38
identity tensor

indicial notation
Einstein’s summation convention and dummy indices, 16
free indices, 4
Kronecker delta, 5
manipulations, 7
permutation symbol, 6
linear transformation, 9
orthogonal tensor, 22-24
principal scalar invariants, 4041

principal values and principal directions of, 38-39

transformation laws
addition rule, 30
multiplication rule, 30
quotient rule, 31
transformation matrix, 24-26
transformed vector components, 14-16
transpose of, 18-19
Torricelli’s formula, 384

‘ Torsion
symmetry of, 159-161 of circular cylinder, 234-239
Stress vector, 155-156 of elliptical bar, 240-242

Symmetric tensors, 31-32, 434

of incompressible isotropic solid cylinder, 347-349
Synovial fluid, 455
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Torsion (Continued)
of noncircular cylinder, 239-240
Prandtl’s formulation, 242-245
of rectangular bar, 245-247
Transformation laws
Cartesian components
of tensor, 27-29
of vector, 2627
Cauchy-Green deformation tensor, 337
relative deformation tensors, 471473
Rivlin-Ericksen tensors, 474
by tensors
addition rule, 30
multiplication rule, 30
quotient rule, 31
Transversely isotropic material, 325
Two-dimensional flows case, vorticity transport equation, 385-388

U

Uniaxial stress state, 210

v

Vector function, in tensors
curl of vector field, 52-53
Laplacian of vector field, 53-54
vector field and gradient, 50-51
Velocity gradient and deformation gradient, 471
Viscometric flow, incompressible simple fluid
channel flow, 493495
Newtonian fluid, 497
volume flux per unit width, 496
Couette flow, 497-501
material function, 500
velocity and stress distribution, 498
gradient of second-order tensor, 501-505
stresses, 493-495
Vorticity vector, 379-381

Y

Young’s modulus, 202, 210






