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PREFACE

The fundamental concepts of computational schemes established in the first vol-
ume are extended to the solution of Euler equations, Parabolized Navier-Stokes
equations, and Navier-Stokes equations, along with treatment of boundary con-
ditions. In addition, chemically reacting flows, unstructured grids, finite volume
schemes, and finite element method at the introductory level are included.

This volume begins with a review of the basic concepts which is presented in
Chapter 10. Subsequently, the transformation of the equations of fluid motion from
physical space to computational space is provided in Chapter 11. This chapter
also includes the linearization of the equations as well as the derivation of the Ja-
cobian matrices. Chapter 12 presents numerical schemes for the solution of the
Euler equations for inviscid flowfields. Specifications of the boundary conditions,
along with illustrated examples, are provided in this chapter. Chapter 13 presents
Parabolized Navier-Stokes (PNS) equations and a numerical algorithm for solution.
The shock fitting procedure is discussed in this chapter as well. The Navier-Stokes
equations and various numerical schemes for solutions are discussed in Chapter 14.
Specification of boundary conditions, derivation of governing equations, and com-
parison of several types of boundary conditions are provided in Chapter 15. An
extension of the governing equations to include the effect of chemistry for hyper-
sonic flowfield computations is included in Chapter 16. To familiarize the reader
with unstructured grids which are used in conjunction with finite volume and finite
element schemes, they are introduced in Chapter 17. It develops some fundamental
coucepts and explores two techniques for generation of unstructured grids in two-
dimensions. Finally, finite volume schemes and finite element method are developed
at the introductory level in Chapters 18 and 19, respectively.

Several computer codes are developed based on the materials presented in this
text. These codes, manuals, and additional examples are presented in the text,
Student Guide to CFD-Volume II.

Finally, our sincere thanks and appreciation are extended to all individuals ac-
knowledged in the preface of the first volume. Thank you all very much for your
friendship and encouragement.

Klaus A. Hoffmann
Steve T. Chiang







Chapter 10

A Review

10.1 Introductory Remarks

The fundamental concepts of computational fluid dynamics were introduced in
the previous chapters. Various aspects of numerical schemes were explored with
regard to simple partial differential equations. In all cases up to Chapter 8, the
investigations were limited to a single equation. In the upcoming chapters the
concepts are extended to systems of equations. Before proceeding further, however,
it is beneficial to review and summarize the content of the previous chapters.

10.2 Classification of Partial Differential Equations

Partial differential equations (PDEs) can be classified into different categories,
where within each category they may be classified further into subcategories. The
numerical procedure used to solve a partial differential equation very much depends
on the classification of the governing equation. A brief review of the classification
of partial differential equations is provided in the following subsections.

10.2.1 Linear and Nonlinear PDEs

(a) Linear PDE: There is no product of the dependent variable and/or product
of its derivatives within the equation.

(b) Nonlinear PDE: The equation contains a product of the dependent variable
and/or a product of the derivatives.
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10.2.2 Classification Based on Characteristics

(I) First-order PDE: Almost all first-order PDEs have real characteristics, and
therefore behave much like hyperbolic equations of second order.

(II) Second-order PDE: A second-order PDE in two independent variables, z and
y, may be expressed in a general form as

&9 8% 3¢ 8¢ ¢ B
ax2+Bax6y+Cay2+D£+E6y+F¢+G—O (10-1)

The equation is classified according to the expression (B? — 4AC) as follows :

A

< 0 — elliptic equation
(32 - 4AC) = () — parabolic equation
> 0 — hyperbolic equation

The following criteria may be stated with regard to each category defined
above:
(a) Elliptic equations
o No real characteristic lines exist
e A disturbance propagates in all directions
e Domain of solution is a closed region

Boundary conditions must be specified on the boundaries of the do-
main

(b) Parabolic equations

Only one characteristic line exists

A disturbance propagates along the characteristic line

Domain of solution is an open region

An initial condition and two boundary conditions are required
(¢) Hyperbolic equations

Two characteristic lines exist

A disturbance propagates along the characteristic lines

Domain of solution is an open region

Two initial conditions along with two boundary conditions are re-
quired
(IIT) System of First-Order PDEs

A system of first-order PDEs may be expressed in a vector form as

oP

od od
"aTHA]'&EHB]—aZ"Lw‘O (10-2)
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where the vector & contains the dependent variables. The system is classified
according to the eigenvalues of coefficient matrices [A] and [B]. If the eigenval-
ues of matrix [A] are all real and distinct, the system is classified as hyperbolic
in ¢ and z. If the eigenvalues of [A] are complex, the system is elliptic in ¢ and
z. Similarly, the system is classified with respect to the independent variables
t and y based on the eigenvalues of matrix [B].

For a steady equivalent of (10-2), given by

P ob
[A]-$+[B]5y—+!p=0 (10-3)

the classification is as follows:

< 0 — elliptic
H<{ =0 — parabolic
> 0 — hyperbolic

where
H=R?-4PQ
and
P=|4l, Q=|B]
For a system composed of two equations, R is given by
R= QG Qag Q3 ag
by by by b

where

[A]z[gllgj} and [B]=[‘g: g:l

System of Second-Order PDEs

The classification of a system of second-order PDEs is facilitated if the second-
order PDEs are reduced to their equivalent first-order PDEs. Subsequently,
the system is classified as previously seen. The procedure could be cumber-
some. For specific details and examples, Section 1.9 should be reviewed.

3 Boundary Conditions

A set of specific information with regard to the dependent variable and/or

its derivative must be specified along the boundaries of the domain. This set of
information is known as the boundary condition and may be categorized as follows.
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(a) The Dirichlet boundary condition: The value of the dependent variable along
the boundary is specified.

(b) The Neumann boundary condition: The normal gradient of the dependent
variable along the boundary is specified.

(¢) The Mixed boundary condition: A combination of the Dirichlet and the Neu-
mann type boundary conditions is specified.

10.4 Finite Difference Equations

The partial derivatives appearing in the differential equations are replaced
by approximate algebraic expressions to provide an equivalent algebraic equation
known as the finite difference equation. Subsequently, the finite difference equation
is solved within a domain which has been discretized into equally spaced grids. Fi-
nite difference equations commonly used for the solution of parabolic, elliptic, and
hyperbolic equations are reviewed in this section.

10.4.1 Parabolic Equations

Various finite difference formulations are reviewed for the one-dimensional
parabolic equations initially and, subsequently, extended to multi-dimensional prob-
lems.

10.4.1.1 One-Space Dimension

The simple diffusion equation is used in this section to review various finite
difference equations. The model equation is given by
du 8%u
o %o
where « is assumed to be a constant and hence a linear equation. To facilitate
the review process, various aspects of each finite difference formulation such as the
order of accuracy, amplification factor, stability requirement, and the corresponding
modified equation are summarized. In the formulations to follow, the diffusion
number is designated by d, which is defined by

At

4= oTagn
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Scheme:

Formulation:

Order:

Amplification Factor:
Stability Requirement:

Modified Equation:

Special Considerations:

FTCS explicit
uttt = + d(ufy, — 2u? +u?,)

O [(at), (Az)]
G =14 2d(cos8 — 1)

1
i<3
%{ = ag—t-fr + [——a”’(At) + —-a(Az) g%‘;
{1 3(At)2— ~ Z-a%(At) (Az)?

Scheme:
Formulation:

Order:

Amplification Factor:
Stability Requirement:

Modified Equation:

Special Considerations:

DuFort-Frankel explicit

1-2d 2d
nt+l __ n-1
W= Trodn 1T e

0 [(Atf, (Az)?, (i‘_;)']
G =

[2d cos 8 % (1 — 4d*Sin%6)#]

(udy +ud,y)

1+2d 2d
Unconditionally stable

1 At
oo 2]
[——as(At)2 1y 60a(Az)4

+25(A)]g::u+

Requires two sets of data to proceed
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Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

Laasonen implicit
dult! — (14 2d)ul*! + dul | = u?
o), (az)’]
1
1 + 2d(1 — Cosf)
Unconditionally stable

G =

—a——g [ Q2(AL) + — a(Az)]g‘ﬁ
+[—a3(At)2+
+§6—0a(Az)‘] 3; Y. ..

Requires solution of a tridiagonal system

L (At) (Az)?

Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

Crank-Nicolson implicit
1 1
Edu?ﬁl —(1+dyuit +; du?i’f = 5'“?+1

+ (d - Lyuf - -2-du;‘_1
0 [(at)*, (Az)]

G = 1 —d(1 — Cosb)
"~ 1+ d(1 — Cosé)
Unconditionally stable

B = olt + [fro0aa| B2

+ [Eaﬁ(mt)2 + 3600(A:c) ]

Requires solution of a tridiagonal system
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10.4.1.2 Multi-Space Dimensions

The review of multi-dimensional problems will be limited to two-space dimen-
sions. The procedure to three-space dimensions is similar. However, it is cautioned
that the extension may not be trivial, and certain formulations which may have
been unconditionally stable in two-space dimensions may become only condition-
ally stable in three-space dimensions. The model equation used is the diffusion
equation in two-space dimensions given by

Ou —a ( + Bzu)
ot 8y?

Scheme: FTCS explicit

Formulation: uif! =l 4 de(uyy; — 2uly + Ul ) 4 dy ( Ui 441
—2u; +ul;_ 1)

Order: o [(At) , (Az)?, (Ay)z]

1
Stability Requirement: (d; +d;) < =

Scheme: ADI
Formulation: (%d,) :’jﬁ, +(1+d. )u"+"' ( ,) u?:ﬁ,-
1 1.\ .
(§dy) Ui + (1 —dy)ul; + (2 Uj 51
1
and ( ) wif+ (L4 dyufy’ - (zdv) uifh
1 ntl
( ) '"':+1.1 -+ (1 .1:) n+! + (2 ) uijlfj
Order: [(At) ) (A.’L‘) ] (Ay) ]

(1 —d:(1 — Cos,)] [1 — d,(1 — Cosb,)]
[1 +d=(1 — Cos;)] [1 + dy(1 — Costy)]
Stability Requirement: Unconditionally stable

Amplification Factor: G =
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Scheme: Fractional step
Formulation: d,u:':{‘:, (1+2d )u"+§ +d u:'+1’J
= —dgufy; + (2d; — V)ug; — dul |
and dy“?jh 1+ 2d,,)u"+1 + dv“?,;rll
d’/u:':fl + (24, - 1)’~‘"+"t dyu?; Y
Order: o0 [(ar), (Az)*, (Ay)7]

Stability Requirement: Unconditionally stable

10.4.2 Elliptic Equations

The model equation utilized to represent various finite difference equations is
the Poisson equation expressed in two-space dimensions given by

u  Bu

- 42— =0

ort = oy?

Only iterative schemes which are usually the most efficient schemes to solve elliptic
equations are reviewed in this section. In the formulations to follow, the ratio of

stepsizes is designated by 3, i.e., 8 = -ﬁ%
Scheme: Point Gauss-Seidel (PGS)
F lation: k+1 _ 1 k+1 2 k+1
'ormulation: u 5(_1'_‘_—ﬂ2)['+1a+u- yt+ 0 (,.;,Jrl-%u.,‘J 1)]
Order: o [(Aa:) , (Ay) ]
Scheme: Line Gauss-Seidel (LGS)
Formulation:
(z direction) wlhy = 20+ B + ullly = —Brulin — Brui
Order: O[(Az)’, (Ay)z]
Modified Equation: 32 Uy g’y" ( )2T _ —(A pZu it
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Scheme:

Formulation:

Order:

Special Considerations:

Point Successive Over-Relaxation (PSOR)

k
)

+f82 ( z,J+1 + ufjll)]

O[(az)*, (Ay)]

uift = (1 —wyu, +

The range of relaxation parameter is 1 < w < 2

Scheme:

Formulation:
(z direction)

Special Considerations:

Line Successive Over-Relaxation (LSOR)

wuf“ -2(1+ ) uf + wuf;

= —(1-w)[2(1+ 4% u.,, wp? (“‘,j+1 + "u 1)

The range of relaxation parameter is 1 < w < 2

Scheme: ADI
1
Formulation: ff{f, ~-2(1+ H)u f’ + f:f‘:j = -g? ( Ui + uf:’l)
k
and ﬁzuf}-ll —2(1 +ﬁ2) o Fu f,ﬂl = u-:ﬁ; ufjll,j
Scheme: ADI with relaxation parameter
Formulation: w uffﬁ, -2(1+ ;@2)1123-Li +w uf:f:",-
k 1
=—(1-w) 201+ ) uf; —wp? (ufa-ﬂ + u,-jfl)
and  wBuf}l — 201+ Al +w Al
k+ k+}
== (=) 2a+au - (ulf +ul)
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10.4.3 Hyperbolic Equations

Investigation of various finite difference equations is easily accomplished with
regard to linear hyperbolic equations. Subsequently, the conclusions may be ex-
tended to nonlinear hyperbolic equations. With that in mind, the review of the
formulations is performed sequentially in two parts.

10.4.3.1 Linear Equations

The wave equation given by ou ou

E=—aa—x, a>0

is used to review linear hyperbolic equations. Note that the speed of sound, a, in
the equation above is assumed to be a constant and, hence, a linear equation. The
parameter, aAt/Az, defined as the Courant number and designated by ¢, will be
used in the formulations to follow.

Scheme: First upwind differencing
Formulation: ultl = ol — c(ud —ul,)
Order: O [(At), (Az)]

Amplification Factor:

Stability Requirement:

Modified Equation:

G =1-c(1 - Cos8)—i(cSin8)

c<1
2

ou .0 1 d*u
-BT = —Ga% + -2*0.A.T(1 —_ C)—a?

1 2re 2 8u
- EG(A:B) (2¢* — 3c+ 1)6:1:3 +...

Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Lax

1 1
uft! = 3 (udy, +uly) — 2¢ (ufyy — w—y)

G = Cosf — i(cSin6)

c<1
ou_ Ou .l 1 Fu
%= o+ q000) (3-<) 5

1 9 &u
+§a(Ax) (1—02)5;’3'*'.
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i1

Scheme:

Formulation:

Order:

Anmplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

Midpoint Leapfrog

n-1 __

n+l _
(N = Uy

(U~ ufy)

of(aty, (Az)?|

G=+ [1 — ¢*Sin? 0]* — 1(cSin §)

c<l1
Su _ 8 1 BFu
#—*GB%—EG(AI)z (1-—-62) —6;5'*'

Requires two sets of data for the solution
to proceed

Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Lax-Wendroff

n+1l
Uy

1
= ‘u,:‘ - EC(UP.*.I - u?—-l)
1
+ 56 (Ul — 207 +uly)
0 [(at)?, (Azy’]

G =1-c(1~-Cosh) —i(cSiné)

c<l1
Bu . ou 1 Fu
% = —a¥ — za(Aq)? (1-¢) o~

1 3 d*u
—ga(Az) c(l—c’)@-l—...
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Scheme: BTCS implicit
Formulation: %cu?*ll uftl — %c ulfl = -]
Order: o[y, (az)’]
. . . _ 1-1i(cSin#®)
Amplification Factor: =17 & (Gn?0)
Stability Requirement: None
. s Su _ . Ou a? 9_2__
Modified Equation: ot = —egs + (At) 52
I 2 . 1.3 2] &u
[ﬁa(A:c) + 3a Aty T4+ ...
Scheme: Crank-Nicolson
Formulation: -‘licu:‘,:'ll — Pt - ic ultf = c(u}'+1 —ul,)
Order: o [(At)2 , (Ax)zl
. . 1 - 0.5i(cSin#)
tor: =
Amplification Factor G 1705 (cSind)
Stability Requirement: None
: sone Ju du _ 1 2 1,5\ &u
Modified Equation: 8t = %9z ~ g% (Ax) (1 -+ 3¢ ) 3

Scheme:
Formulation:

and
Order:

Stability Requirement:

Lax-Wendroff
ntj 1 n n n
Yy T3 (uler +u) c(ui+1 —u™)

o[(at)*, (Az)’]

c<1
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Scheme: MacCormack
Formulation: ul = uf —c(ul,, —ul)
and Wt = 2l o — o — )]
Order: ol(An?, (Azy
Stability Requirement: c<l1

10.4.3.2 Nonlinear Equations

The inviscid Burgers equation is used to review various schemes for the solution
of hyperbolic equations. Recall that the model equation is given by

where E = Ju?. Now, the Courant number is defined as ¢ = ult/Ax.

Scheme: Lax
. ntl _ 1 At

Formulation: U] = (u.H_1 +ul,y) — 3 Ao (EXy — ELY)
Order: O[(At), (Ax)?
Amplification Factor: G = Cos8 — i(cSinf)

s . At
Stability Requirement: Ium —| <1

Az

Scheme: Lax-Wendroff

i . 1 At At
Formulation: ult! = 4f — 2 Az (B —EL )+ = (Am)

[(ufyy + uf) (ERy — E7) — (6} +ul,) (B — EP))

Amplification Factor: G =1—2¢*(1 — Cosf) — 2i(cSiné)

At
Stability Requirement: |uumx Az <1
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Scheme: MacCormack
. . . At
Formulation: uf =uf - = (Bl — EY)
1 At
st S P *_ ___(Ef - E*
and ul 5 [u‘ + u; Az (E; E"_l)]
Order: o((Ar?, (Azy

10.5 Stability Analysis

The error introduced in the finite difference equations due to the truncation of
the higher order terms in the Taylor series expansion may grow unbounded, pro-
ducing an unstable solution. The control of errors within the solution is of primary
concern for any numerical scheme. To establish the necessary requirements, a sta-
bility analysis must be performed. Among various methods available for stability
analysis are: (1) The discrete perturbation stability analysis, (2) The von Neu-
mann (or Fourier) stability analysis, and (3) The matrix method. It should be
noted that direct stability analysis of a nonlinear, multi-dimensional, coupled sys-
tem of equations is usually cumbersome. In most cases, expressions are proposed
which are based on the stability analysis of simple model equations complimented
and reinforced by numerical experimentation. Thus, one encounters the suggested
stability requirement for a particular scheme which resembles those of simple model
equations, but includes some modifications based on numerical experimentations.

To review the limitations and conclusions provided from the von Neumann sta-
bility analysis, the summary stated in Chapter 4 is repeated at this point.

1. The von Neumann stability analysis can be applied to linear equations only.

2. The influence of the boundary conditions on the stability of the solution is
not included.

3. For ascalar PDE which is approximated by a two-level FDE, the mathematical
requirement is imposed on the amplification factor G as follows:

(a) if G is real, then |G| < 1
(b) if G is complex, then |G|? < 1, where |G|* = GG
4. For a scalar PDE which is approximated by a three-level FDE, the ampli-

fication factor is a matrix. In this case, the requirement is imposed on the
eigenvalues of G as follows:
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(a) if A is real, then |A| <1
(b) if A is complex, then |A]2 < 1

5. The method can be easily extended to multi-dimensional problems.

6. The procedure can be used for stability analysis of a system of linear PDEs.
The requirement is imposed on the largest eigenvalue of the amplification
matrix.

7. Benchmark values for the stability of unsteady one-dimensional problems may
be established as follows:

(a) For most explicit formulations:

I. Courant number, ¢<1

II. Diffusion number, d< %

ITII. Cell Reynolds number, Re. < (2/c)
(b) For implicit formulation, most are unconditionally stable.

8. For multi-dimensional problems with equal grid spacing in all spatial direc-
tions, the stated benchmark values are adjusted usually by dividing them by
the number of spatial dimensions.

9. On occasions where the amplification factor is a difficult expression to analyze,
graphical solution along with some numerical experimentation will facilitate
the analysis.

10.6 Error Analysis

The truncation of terms in the approximation of a partial derivative could
begin from an odd-order or an even-order derivative term. For example, one may
approximate a first-order derivative by either

Ou _uin—w , (Az) u + (Az)? 8%u +

bz Az T ol ezt am T

(10-4)
or

@ Uy — Ui + (Az)? B%u

oz~ 2Ax 3 93 T
The approximation (10-4) may be truncated and expressed as

(10-5)

du S
- Ar + O(Ax)
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where the dominant (or leading) error term includes a second-order derivative, i.e.,
even. The second expression given by (10-5) is written as

Ju Uiyl — Ui

ou _ 2
or 2Azx +0(Az)

where the dominant error term now includes an odd derivative. The behavior
of error associated with finite difference equations is strongly influenced by the
dominant error term. To clarify the types of error introduced to the finite difference
equations, a convective dominated equation, where physical viscosity is absent,
will be used. Thus, consider the wave equation and two different finite difference
equations given by

Ut = o — ouf - o) (10-6)
and

“?H = "?_1 - C(“?H —uj,) (10-7)

The FDEs are recognized as the first upwind differencing scheme and the mid-
point leapfrog method. To identify the dominant error term of an FDE, the modified
equation must be investigated. The corresponding modified equations for the FDEs
given by (10-6) and (10-7) are, respectively:

ou _ Bu 1 Pu 1 2 Bu
o = 95, + 3{An)(1 - )7 ~ za(Az) (2¢ - 3c+1) st (10-8)
and ou  Bu 1 &
E = —a% + EQ(AJ:)Q (02 - 1) 5}3‘2 +... (10—9)

Observe that the dominant error terms in Equations (10-8) and (10-9) include
second-order derivative and third-order derivative, respectively. Recall that, from a
physical point of view, a second-order derivative is associated with diffusion. Indeed,
the coefficient of the second-order derivative in Equation (10-8) is known as the nu-
merical viscosity. Thus, it is obvious that the error associated with Equation (10-8)
is dissipative and, hence, it is called dissipation error. On the other hand, an FDE
scheme, where its corresponding modified equation possesses an odd-order deriva-
tive as the lead term in error, is associated with oscillations within the solution.
Such an error is called dispersion error.

10.7 Grid Generation-Structured Grids

Finite difference equations are most efficiently solved in a rectangular domain
(for 2-D applications and an equivalent hexahedral domain for 3-D applications)

i
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with equal grid spacings. Unfortunately, the majority of physical domains encoun-
tered are nonrectangular in shape. Thus, it is necessary to transform the nonrect-
angular physical domain to a rectangular computational domain where grid points
are distributed at equal spacings. It is also important to note that the transforma-
tion allows the alignment of one of the coordinates along the body, thus facilitating
the implementation of the boundary conditions. The objective of grid generation
is then to identify the location of the grid points in the computational domain and
the location of the corresponding grid points in the physical space. Furthermore,
the metrics and Jacobian of transformation which are required for the solution of
flow equations are computed within the grid generation routine.

Typically, grid generation schemes may be categorized as algebraic methods or
differential methods. In the latter case, the scheme is based on the solution of a set of
PDEs and may be subcategorized as either an elliptic, parabolic, or hyperbolic grid
generation. Either category of grid generation scheme should include the following
considerations.

1. A mapping which guarantees one-to-one correspondence ensuring grid lines of
the same family do not cross each other;

2. Smoothness of the grid distribution;
3. Orthogonality or near orthogonality of the grid lines;
4. Options for grid clustering,.

A brief summary of the advantages and disadvantages of each method is provided
below.

1. Algebraic grids
The advantages of this category of grid generators are:
(a) They are very fast computationally;

(b) Metrics may be evaluated analytically, thus avoiding numerical errors;

(¢} The ability to cluster grid points in different regions can be easily imple-
mented.

The disadvantages are:

(a) Discontinuities at a boundary may propagate into the interior region
which could lead to errors due to sudden changes in the metrics;

(b) Smoothness and skewness may be difficult to control.

2. Elliptic grids

The advantages of this class of grid generators are:
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(a) Will provide smooth grid point distribution, i.e., if a boundary disconti-
nuity point exists, it will be smoothed out in the interior domain;

(b) Numerous options for grid clustering and surface orthogonality are avail-
able;

(¢) Method can be extended to 3-D problems.

The disadvantages of the method are:
(a) Computation time is large (compared to algebraic methods or hyperbolic
grid generators);

(b) Specification of the forcing functions P and @ (or the constants used in
these functions) is not easy;

(¢) Metrics must be computed numerically.

3. Hyperbolic grids
The advantages of hyperbolic grid generators are:

(a) The grid system is orthogonal in two dimensions;

(b) Since a marching scheme is used for the solution of the system, compu-
tationally they are much faster compared to elliptic systems;

(c) Grid line spacing may be controlled by the cell area or arc-length func-
tions.

The disadvantages are:

(a) Boundary discontinuity may be propagated into the interior domain;

(b) Specifying the cell-area or arc-length functions must be handled carefully.
A bad selection of these functions easily leads to undesirable grid systems.

Finally, the metrics and Jacobian of tranformation are given by the following
expressions.

1. Two dimensions

&= Juyy

Nz = —Jye

Ty = Jxg
where 1
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2. Three dimensions
& = J(unze ~ yezy)

& = J(xcam — zp2g)
& = J(zpyc — zcyn)
e = J(Ycze — yezc)
Ty = J(Teze — z¢z)
M = J(Zcye — Teye)
G = J(yez — ynze)
S = J(zn2e — Tez)
G — J(Teyy — Tnle)
&=~ (& + yrky + 2.8,)
T = —(Zrll + Yrtly + 2:73)

G = —(z¢ + y'rCy + szz)
where

7296n,9 _ 1
Nz, y,2)  ze(ynze — Yezm) — To(Uezc — yeze) + 2c(Vezn — Uo2e)

10.8 Transformation of the Equations From the
Physical Space to Computational Space

The partial derivatives expressed in the physical space are related to the partial
derivatives in the computational space by the following relations:

Baf-_—aa;'*'&g%‘*""ka%‘*'(t%

&3%+n=3%+4:;§%

The Navier-Stokes equations in a flux vector form may be expressed in the
physical space by

0Q OE OF 8G 0OE, OF, &G,
_8?+E+B_y+az_3a:+6y+ﬁz

can be transformed to the computational space and expressed by
8Q OE oF oG _8E, A 8F, &G,
FZ T I Tl T ey
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where
_Q
°=7
E=(Q+6E+6F+6C)
F= %(7}!@ + n:E + 0 F + 1.G)
T=2(GQ+GE+GF +40)

1
Ew = 7(§=E" + gyFu + 'szu)
— 1
Fv = j(anu + nyFu + leGu)

av = %(CzEu + Cva + CzGu)

The inviscid and viscous Jacobian matrices which are produced in the process
of linearization of the equations are given in Chapter 11 for the Navier-Stokes,
Thin-Layer Navier-Stokes, Euler, and Parabolized Navier-8tokes equations.
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Transformation of the Equations
of Fluid Motion from Physical Space
to Computational Space

11.1 Introductory Remarks

To enhance the efficiency and accuracy of a numerical scheme and to simplify
implementation of boundary conditions, a transformation from physical space to
computational space is performed. This transformation allows clustering of grid
points in regions where flow variables undergo high gradients and grid point motion
when required. The computational domain is a rectangular shape which is divided
into an equally spaced grid system. In order to solve the governing equations of
motion in the computational space, a transformation of the equations from physical
space into computational space is required. Any assumption on the simplification of
the equations of motion is imposed on the transformed equations. For example, to
reduce computational time and required storage, the full Navier-Stokes equations
may be simplified by neglecting the circumferential and streamwise gradient of
stresses, while retaining only the normal gradient of the stresses. The resulting
equations are known as the Thin-Layer Navier-Stokes equations. The reduction of
equations is performed on the transformed equations.

This chapter investigates generalized coordinate transformation of the govern-
ing equations of fluid motion expressed in the Cartesian coordinate system (z, y,
z) from physical space to computational space (¢, 1, ¢). Various formulations of
the equations which are discussed include full Navier-Stokes (NS), Euler, Thin-
Layer Navier-Stokes (TLNS), and Parabolized Navier-Stokes (PNS) equations. A
summary of the assumptions which are imposed in the reduction process of the
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equations is presented. The formulations include three-dimensional flows as well as
two-dimensional planar or axisymmetric flow fields.

In order to include the capability for shock capturing, the equations of motion
are written in conservative form. Any set of equations is then approximated by finite
difference formulation, which is solved in the rectangular grid system. Furthermore,
in the linearization process Jacobian matrices are produced, which are included in
this chapter.

This chapter summarizes the equations of fluid motion in computational space
and presents them in concise and orderly manner. Thus, the objectives of this
chapter are summarized as follows:

(1) Define the metrics and the Jacobian of transformation;

(2) Express the equations of fluid motion in a generalized coordinate
system for NS, TLNS, Euler, and PNS equations; and

(3) Derive the Jacobian matrices for each set of equations which are
used in various numerical algorithms.

11.2 Generalized Coordinate Transformation

The equations of motion are transformed from the physical space (z, y, 2) to
the computational space (£, 1, ¢) by the following relations: '

T o=t (11-1)
£ = £ty 2) (11-2)
n = n(tz,v,2) (11-3)
¢ = ((t=zy,2) (11-4)

The chain rule of partial differentiation provides the following expressions for
the Cartesian derivatives:

gt— = ;+§t3£+m; +C‘ac (11-5)
e (11-6)
2 = gt e (11-7)
% = & £+nz8 +C;§C (11-8)
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11.2.1 Equations for the Metrics

From Equations (11-5) through (11-8), it is obvious that the value of the metrics &,
Nty Gty &y Ny Coy &gy Mys Gy €y M2, and ¢, must be provided in some fashion. In most
cases the analytical determination of the metrics is not possible and, therefore, they
must be computed numerically. Since the stepsizes in the computational domain
are equally spaced, ¢, z,, 2, etc., can be computed by various finite difference
approximations. Thus, if the metrics appearing in Equations (11-5) through (11-8)
can be expressed in terms of these derivatives, the numerical computation of metrics
is completed. To obtain such relations, the following differential expressions are
considered:

ot ot ot ot
dt = —- — — —
6,,_dr—i- 6£d€+ Bndn+ BCdC
But according to (11-1),
ot
> = 1 and
ot ot ot
—_— e = o = h
B¢ an ac 0 thus
dt. = dr (11-9)
Similarly,
dr = z.d1 + zed€ + zodn + zod( (11-10)
dy = y.dr+ yedf + y,dn + yed¢ (11-11)
dz = 2dr+ zdf + zdn + z.d¢ (11-12)
Equations (11-9) through (11-12) are expressed in a matrix form as
dt 1 0 0 0 dr
dz Ty Tg Ty X d¢
= 11-13
dy Yr Ue Un ¥ dn (11-13)
dz F I, d¢
Reversing the role of the independent variables,
dr = dt (11-14)
df = &dt+ &dx+ Edy + €,dz (11-15)
dn = ndt+ ndz + ndy + n.dz (11-186)

d¢ = Gt + Gdz + Gdy + Codz (11-17)
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which are expressed as

dr 1 0 O 0 dt
il-leebillE)
ac ¢ G G G dz
Comparing Equations (11-13) and (11-18), one concludes that
1 0 0 0 1 0 0 0717
& & & & _ | Tr T Iy I¢
% N T 7 Yo Ye Un I
¢ & G G Zr oz oz %
From which,
& = J(ynz — yozm) (11-19)
& = J(xezy — To2) (11-20)
& = J@gy — zcm) (11-21)
e = J(ycze — yeze) (11-22)
n = J(zeze — xcze) (11-23)
ne = J(Tcye — Teve) (11-24)
G = J(Yean — n2) (11-25)
G = J(xnze — Tezn) (11-26)
¢ = J(Teyy — ToYe) (11-27)
& = ~(z:& +y&y + 2E) (11-28)
= (T + YeTy + 27:) (11-29)
G = —(@C&+uly + 20G) (11-30)

After substitution of Equations (11-19) through (11-27) into Equations (11-28),
(11-29), and (11-30),

& = Jlzr(yezy — yozg) + yo{zezc — Zezy) + 20 (Tcyn — Tn¥Ye)] (11-31)
m = Jlze(yez — voze) + yr(zeze — Teze) + zo(meye — zeye)]  (11-32)

G = Jizynze — Yezn) + Ur(Tetn — Tnze) + 2:(Tule — Tewn))  (11-33)
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where J is the Jacobian of transformation defined by

72 96mQ _ 1
Oz, y,2)  Telynze — yezm) — Tolveze — Yeze) + Tc(Yezn — Ynze)

(11-34)

11.3 Nondimensionalization of the Equations of Fluid
Motion

Equations of fluid motion may be nondimensionalized to achieve certain ob-
Jectives. For one, it would provide conditions upon which dynamic and energetic
similarity may be obtained for geometrically similar situations. Second, the so-
lution of such equations would usually provide values within limits between zero
and one. Generally a characteristic dimension, such as the chord of an airfoil or
the length of a vehicle, is selected to nondimensionalize the independent spatial
variables. Freestream conditions are used to nondimensionalize the dependent vari-
ables. Among many choices available, the following will be used in this and in the
subsequent chapters:

tu z /] z
+ _ I7o® . _ ¥ + _ J . _ %
t - L ? T L ’ y .L ] Y/ L
. - M U iU W
o= Hoo U U v o w Ugo
* p * T * p . €
= - T = — = e, = —
? P’ To '’ Pty P ul,
The nondimensional parameters are defined as:
L
Reynolds number: Rey, = Poolico
Hoo
Prandti number: Pr= E’;CH

Using the nondimensional variables defined above, the equations of fuid motion
in the Cartesian coordinate system are expressed as:
1. Continuity:
ap' 3 ¥ 6 R 6 | R
=+ 4 7 - = 11-
at.+az.(pu)+6y,(pv)+az,(pw) 0 (11-35)

2. X-component of the momentum equation:

a - a ., #2 * 0 £ b8 2 Wk 4\
3 W)+ (P'u +p)+ay.(puv)+az,(puw)—

0
3.7:* )+ a " ( =y)+ a .( z) (11"36)
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For a Newtonian fluid,

* 1 * au' - * o'
Tog Rew 2u ppr + A"V V] (11-37)
. . 1 [, 0u  ov
Tw T Tz T Re s (ay' + ax')] (11-38)
. ., _ 1 [, 0w ou
Tzz = Tz = Reoo -bu' (635' + Hz2* )] (11'39)
3. Y-component of the momentum equation:
a 5 _ ¥ a *_&_ & a *_ % * 6 ¥ *
g () + g P+ 5o (0 )+ g (M) =
. o .9 .
ey (72y) + v () + 7 (7y2) (11-40)
where
* _ 1 ,3'0' * e -ty
Ty = Rew [Zu By +A'V V] (11-41)
. . 1 .ot ow'
T = Ty =R [u, ( Fn + By )] (11-42)
and 7;, is given by (11-38).
4. Z-component of the momentum equation:
a td * 6 L * 8 * ¥ * a L] L *
a0 P+ g (VW) + 5 (00 + 5 (Pt 4 ) =
9 . 8 oy, 9 .
@ (Tu) + a_y.. (Tyz) + 'é';;' (722) (11'43)
where
S I PV T (11-44)
ze }te°° I az,

and 7;, and 7,, are given by Equations (11-39) and (11-42), respectively.
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5. Energy:
6 . & a *_ ¥ _¥ ¥ _ ¥ a *_k_% * &
ar e+ 35 (puet+pu)+ay* (p've; +p'v*) +
a * *_* * ¥ a & __¥  _% ¥ _* *
9z* (p w e, +pw ) = oz* [’U Tez T U Try +w Tez — QJ:] + (11'45)
¥ _* . % * 4 . 3 & __¥ . _* __% *
oy [u'ry, +v'1y, + w7y, — q5] + 55 [u*rs, +v'ry, + w'ry, — ]
where
. ”# 8T
= = T RexPr(y—1) M2 8z (11-46)
. [l:* aTt
9 RexoPr{y—1) M2 8y (11-47)
. p oT*
= — 114
% RewPr (v~ 1) MZ 0z (11-48)

The nondimensional equations of fluid motion may be expressed in a flux vector

fi :
orm a8 6@ OB OF 9G* 0B, OF 3G
otr ' Bx* Oy 82z  Oxt Byt ' 9z
where - -
pi
ptu#
Q# — p‘vt
ptw#
| P'er |
[ prut ] K
pru +p' Tix
Et — ptutvt (11_51) E; — T::y
prutw’ %
| (p"ef + ptiu” | | utrn vt Hwhtr, — g
[ prut ] [0
pllf,v'ul T;:
F'=| pv' +p* (11-53) F =1,
p#vtw# T;z
| (p'et +p" )0 | u'Tye Uty W'y, — g

(11-49)

(11-50)

(11-52)

(11-54)
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[ plw. i 0
p.w‘u‘ T;I
G'=| pw'v* (11-55) G, =| 12, (11-56)
p‘wtn + p‘ T;z
| (p'ef +p")w* | | u'T Ui, Wiy, — g |

({2}

The notation which is used to designate nondimensional quantities will be
dropped for the remainder of this chapter and those following. Thus, all the equa-
tions will be in nondimensional form unless otherwise specified.

11.4 Navier-Stokes Equations

The equations of fluid motion in complete form which include the conservation
of mass, conservation of momentum and conservation of energy are referred to as
the Navier-Stokes equations. The nondimensional Navier-Stokes equations given in
the previous section in the Cartesian coordinate system are now transformed to the
computational space by the following. Due to similarity of the left- and right-hand
sides of Equation (11-49), the mathematical details are carried out for the left-hand
side (LHS) of Equation (11-49) only. Equation (11-49), which is repeated here for
convenience, is:

0Q O8FE OF 080G OE, 0F, + oG,

Bt T Tyt 0 Ty oz

The Cartesian derivatives are replaced by Equations (11-5) through (11-8) to
yield:

_ Q 3Q Q oQ 6E
oF aF G aG 8G
C: aC +£,, 3% + 7y a + ¢ = ¢ + & — ag +<:, a (11-57)

It is recognized that this equation is no longer in a conservative form. To recast
the equation in a conservative form, some manipulation must be performed. To do
so, Equation (11-57) is first divided by J, and then a combination of terms which
sums up to zero is added. In the following, only four terms are considered to show
the required mathematical steps. The conclusion is then extended to the remaining
terms. The first four terms of Equation (11-57) divided by J and with the added
zeros shown as the brackets are
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BQ 1

13Q Q 1 Q i} d.,1
ALY R T [95(7)‘695(7)]

ja gt

§ & 9 m e
tlog-og &) fom®-olm)

+leg&-ag &)

which may be rearranged as

1 8Q & 0Q
[J 81'+Q8'r( )] [J 6£+Q6£( )]

e 0Q a n ¢ 0Q
¥ [ﬂr%a‘?)} [J %t ’]

Qg g &l M2 (11-58)

%)

The terms in the first four brackets may be combined, and by substitution of
expressions (11-31) through (11-34) into the last bracket, it can be shown that it is
zero. Therefore, expression (11-58) is combined as

9. Q 8 .Q 8, Q  98,Q
3 (7 e &)+ o (=) + ¢ ()

Extending this conclusion to the remaining terms of Equation (11-57) results in
the following expression:

a .Q
LHS = ——(3)+ ag(stJ)+6 (m—= )+3C(CeJ)+

0, E d , E é F a, F
'(:32 &)+ B (n==) + 3 (G5)+ 5 &)+ an () +
g F a .G d G a ,.G
3¢ G5+ B €5+ an (m=) + 3 (€5) (11-59)

The RHS of Equation (11-49) is reformulated in a similar fashion, and therefore

§
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(11-49) is written as

D)t [F6Q+EE+EF +60)] +

33 [5 @+ B+ nF +n.6)| + 5 2 5@+ B+ GF+ G0
_ 8% [5 (6B + &R+ 66| + 3,, [5 Bt m P 4G+
5‘95 E (C:Eo+ G Fu + C,Gu)]

The terms in this equation are redefined such that it may be written as

6Q dE OF 060G _OF, 4 OF, {_3(:',,

ot ot tac T e T T A (11-60)
where
Q= % (11-61)
E = 7 (6.Q + &E + & F + £.G) (11-62)
F= % (nQ + - E + n, F + n,G) (11-63)
= 7(ctQ+c,E+c,,F+ G:G) (11-64)
Ev = > (6Bt §F +6G) (11-65)
F, = -}— (nzEv + myFy + 1:GW) (11-66)
% (GEy + G Fo + GGu) (11-67)

The viscous shear stresses given by Equations (11-37), (11-38), (11-39), (11-
41), (11-42) and (11-44) with Stoke’s hypothesis (A = —24) in the transformed
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computational space are:

4 2
Tezx = Ef:“ [5(5:“6 + Nztiy + Czug) — 5(511”5 + g + Gg) (11-68)
2
v 4 2
Tyy = -R-a [5 (&yve + myvn + Gue) — E(fzuf + nrug + Cug) (11-69)

2
— 36w+ maw, + )]
po[4 2
Tezs = 55— [" (Ezwf + n.wy, + Czw() - —(Ezuf + Nzuy + Cqu) (1]‘-70)
Rey, 13 3
2
- 5(5;:”5 + Uy + Cy”()]
Toy = Tyz = R—g: (Eyue + Myuy + Gue + Eve + N2Up + Gz V¢) (11-71)
Tar = Tor = o (Getig + Mty + Gtig + et + e + Gowg)  (11-72)
00

Tyz = Toy = Riew (€20 + M2vy + Gug + §we + My + Gu) (11-73)

where the heat conduction terms in the computational space are:

- _ p ]
“ = T PrRen(y—na &t T+ 6T (11-74)
- _ 1 )
@y = Pr Reoo (7 — 1) M2, &Te + Ty + GT1¢) (11-75)
¢ = £ (&Tx + 1T, + GTY) (11-76)

" PrReo(y-1) M2

11.4.1 Linearization

In order to numerically solve Equation (11-60), a linearization procedure is
introduced, and all flux vectors are expressed in terms of the flux vector Q. The
procedure was previously described in Chapter 8; however, due to its importance,
it is reemphasized in this section.
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Consider the following Taylor series expansion:

EMtl = E™ 4 ‘Z—‘fm + 0(AT)? (11-77)

In order to rewrite E/8t in terms of the gradient of flux vector Q, recall that
E= f(Qafh‘Ez’Ey’gz)

The chain-rule of differentiation yields the following relation:

oE _0E 0Q O 0  OF d&  OE 0  OF 0
dr 8Q 8r ' 08¢ Or ' 0t Or ag, or O 0

(11-78)

For many applications, the grid is independent of time, and therefore time gra-

dients of the metrics are zero. Hence, for a time independent grid system, Equa-

tion (11-78) is reduced to _ o
8E JFE 08Q
— TR e— — 11'
o ~ 90 or (11-79)

This equation is substituted into Equation (11-77) to yield:

dE 8Q

Ert! E“—!~6Qa

ATt + O(AT)* (11-80)

The partial derivative 8Q/0r is approximated by a first-order backward difference
expression as _
8_Q Qn+1

Or AT
Substitution of this equation into Equation (11-80) yields:

Q"+0(A ) = AQ+O(A )

g =y 9F [AQ + O(A'r)] AT + O(AT)?

aQ
or
EMl=En 4 %@' AQ + O(AT)? (11-81)

If a time dependent grid system is used, the additional terms which appeared
in Equation (11-78) would be included in Equation (11-81) as well. In either case,
terms such as 8E/8Q and similar terms related to flux vectors F, G, E,, F,, and G,
will always appear in the linearization process. They are defined as the Jacobian
matrices, which are the focus of the next section.

For steady-state problems such as Parabolized Navier-Stokes equations, the lin-
earization process is similar. In that case, the Taylor series is expanded with respect
to the streamwise space coordinate (marching direction). A detailed mathematical
approach is shown in Chapter 13.
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11.4.2 Inviscid and Viscous Jacobian Matrices

To linearize Equation (11-60), the following and similar approximations are
employed: _
nt1 'R oE 2 2
E™ = K"+ —= AQ+ O(AT)
oQ
where 8E/9Q is defined as the flux Jacobian matrix. The remaining flux Jacobian
matrices are 8F/8Q and 8G/AQ. The viscous Jacobian matrices are dE,/8Q,
0F,/8Q, and 8G,/8Q. Since flux vectors Q and E are 5 x 1 vectors, each one of
the Jacobian matrices are 5 x 5 (for three-dimensional problems). The derivations
of the Jacobians are considered next. In the following derivations we will assume
perfect gas; therefore, the equation of state is expressed as
p = pe(y—1).
The inviscid Jacobian dE/9Q is

@ . B(E'h E_‘% ?37 Eh E_ﬂ
6Q h 3(Q11 QZ) Q3’ Q41 Q5)

[ 0E,  8E,  8E, 8E, OB
oG 83, Qs 3G, Qs
8E, OE, @8E, OE, OF,
oG 9%, Qs 8Q, 905

- | 95 o9& 0B, OB, 0k (11-82)

I 8Q2 0Qs Qs 0Qs
OF, OF, OF, OEy; OE,
oG 8, 8Q; B, Qs
OFE;s OFs OE;s 8Es OF;
oG  8Q; Qs Q. Qs |

In order to determine the elements of matrix (11-82), the flux vectors E, F, and G
are expressed in terms of the components of vector @ according to
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[ Q
pu Q2 1 Q2 2 2
+{(y-1 [ — (> QA ;Q__
wier | |2 o2 @+ G+ )
Q3
E.___ 2
puv 45 (11-83a)
puw Q204
(pex + 1) @
[ \PCt T p)u
] [’YQS————I&+&+Q4]Q2
| 7 @ et
Qs
pv @:2Qs
pu @
— 2 Q3 Q 1
F=| pvi+p Q. +r-1) [Q 2(Q2 g? ‘Q_i)] (11-83b)
prw QSQA
(e + Q
pec+ P ha- 152 @ B 2] &
% a*a**ﬂl
[ Q4
pw Q204
pwu QQ1
3Q4
G =
pwv Q1 (11-83c)
pw+p Q4 + (v 1)[ Qs
o) -1 ]
| (pe: + p)w i Q QQ QQI
| [QS“T(Q o 4)] 2
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Recall that, from Equation (11-62),

By = S[6Qi + &5+ & F + £G)) (11-84)

With the components E,, F}, and G, from Equations (11-83a), (11-83b), and (11-
83c), (11-84) may be written as

— 1
E = j[fth +&:Q2 + §,Qs + £.Q4) (11-85)
Now the first element of (11-82) is determined as

8E‘1 — a{%[Eth + ‘fo2 + EyQS + Efol]}
ETa} %}

_ D+ 6Q+ 605+ 6Q0) _
Q1

The remaining elements of the first row are

& (11-86)

OE, _ B, 0E,
an —€I ] aQS - 6!/ 3 3Q4 —fz ]
and % =0.

0Qs

The elements of the second, third, fourth, and fifth rows are determined in a
similar fashion. The resulting inviscid Jacobians are:
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2
0] b

. |
}
& & 3 “ ¢, 0
- Rﬁm«.: + mec + .MN.SV mn + mnﬁm - QV.R n.e.: - AQ - :mu.c £u— AQ - va.ﬂs AQ - Huﬁh
&[5 D+ P+ 0h)] |+ (Gu+ o+ )
— v{&u + §v + £w) &v— (v —1u &E+&02—-w &Lv—{v—-1)§uw (v - 1)
+ &, mT — D+ 02+ SJ_ + (bzu + v + Ew)
- w(fzu+ v + {w) fxw — (v — 1)su Luw— (v —1év L+ E(2-7w (v - 1)
+é ms =1+t si + (eu+ Gv + &)
1 1 1
(bzu+ & + Ew) [—7e & Ts —30=1 14 Ts —30r=1) & Ts —5(r=1) &t
+ (v ++ SJ_ (W +v* + EJ_ (W + v+ SJ_ (W +0*+ Eﬁ 7 lEau + &v + Esw)
- AQ - Hv Hmnc + &3 — AQ - : _mn.: +év il - AQ - C _”mu.:. + &
+ &wlu + {w]v + &wlw
(1 1.87)
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(88-11)
I
| |
m[m7h + afm®l 4 n ?ﬁb + “
{
0+ o] (1~ 4) — | a7 (1 =) = | o% 4 (1—4) = |
(0% + &% + n=U} L FB + 0+ n) T«S + 0+ ) T«S +4+0) 7«3 +a+ a0 1-4) +
vl (- Sm - ﬁ\_ 24! (- sm - JL (- SM - JL =y 2] (@7 + 0% + n7L)
4
(%l + 0% + %) + ?s +a+ )1 - sm_ W4
Wy — L) m(k —g) U+ atU(] — &) — ™ n(] — L) — ol (%l + a® + n*U)m —
Z
(n7h + a® + nl) + ?s + .04 21— SL i+
(1 — L) a(1 - L) —a®h a(k ~g)% + nU(] — L) — a®l (2l + a®™ + n*l)a —
(% + o™ + n7h) + TNS +,0+ u:vﬁ - Sw I+
U1 — L) o (1 — L) —n2l a®l(y — L) — nl n(L — )% + 4 (m*h + o™ + n7l)n —
0 L Ay & W

Il
=R
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D ﬁh ﬁe ﬁn 0
= u(lu + G + Gw) G+ (2 —u Gu—(y - 1)Gv Geu—~ (v~ 1)Gw (v = 1)z
+4é ms — 1)@ 407+ e& + (Gu+ G + Gw) |
~ v(u + §v + Gw) Cv— (7= 1)Gu G+G(2-v)p Cv— (v~ 1) (v — 1),
+6 ms — 1 + 0+ u?) + (Gou+ Gv + Gw)
- w(Cu+ nc.c + n.n.Ev Czw ~ AQ - :ﬂuﬂ Gw — A.« - Cﬁuc G+ ﬁuﬁm - Qvﬂc ﬁq‘ = U_.vn.u
+ 630 - D@+ o2+ ) + (Gt G+ )
1 1 1

(Gets+ Gy + Goo) [~ves Glre=50-10 G pre-3a-1 {Gpe-3a-1 for
+ (=1 + %+ Sﬁ (W +o*+ SJ_ (W +0%+ En: (v +02+ EJ_ 7 [Geu + v + Gw)

-(-DGe+gel - (r-1)[Gu+ G- (r=1)Gu+ o

+ wlu + Lw]v + (wlw

A:-mov
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Some of the terms appearing in the Jacobian matrices may be defined such that
they are expressed in a compact form. For example,

U=§+&u+ §u+Lw (11-90a)
V=n+nu+nv+nuw (11-90Db)
W = ¢+ Gu+ v+ Gw (11-90c)

are known as the contravariant velocity components. They represent velocity com-
ponents which are perpendicular to planes of constant £, 7, and ¢, respectively.
Furthermore, define

¢ =1+ vt 4w (11-91)

Before attempting to determine the viscous Jacobians, the viscous flux vectors
must be rearranged by substituting expressions for shear stress and heat conduction
terms. For example, consider the second component of E,, which from Equation
(11-65) is given by '

= 1
E, = 7 (EzEvz + fvaz + szua) (11-92)
From Equations (11-52), (11-54) and (11-56), the following is observed:
Evz = Tzz , Fua = sz y a-nd sz = Ty

Hence, Equation (11-92) may be expressed as

_ 1

Evz = 7 (g.tr"zz + Ey'ra:y + fz'r::z) (11-93)
Now, using the expressions for the shear stresses given by Equations (11-68), (11-71)
and (11-72), Equation (11-93) is rearranged as

_ 1 4 2
By = 5 J{Ez [gu(&ue + Mty + Gug) — Sp(Gyve + Mty

2
+ Gyue) — é’ﬂ(fzwf + Wy + Czw(')] + & [N(&yuf + g +
+ G+ Lt + Tty + czvc)] + 6 [l6e + v +

+ Goug + &xwe + newy + (=“’C)] }
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which is factored as

_ 4 1
B = o {GE+ €+ Duc+ (Gt
1 4 2
(Efxfz)wt' + (5&:77: + &y + Eznz)uﬂ + (Eynx - ngnv)vn +
2 4
(627]: - 56:"1)1”'1 + (56:(: + fycll + E"gz)uf +

(66 — &GN + (ke — SECeduc

All the components of flux vector E, are reformulated accordingly. In addition,
viscous flux vectors F, and G, are modified in a similar fashion, resulting in the
following form of the viscous flux vectors:
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— e — — — — — — — o —— — — —— AL e e e mar A e o ——

301(u?)e + Jaa(v¥)e + 3a3(w?)e + as(uv) + as(vw)e + ar(uw);
+ 'p_,.(_,,,":lma4T§ + 3di (W) + 3d2(v¥)y + 3da(w?)y + dsvuy,

+ dgwuy, + dyuvy + dgwuy + douwy + digvwy, + —m—,,_—llmmT,,
+ zer(u?) + Jea(v?)e + es(w?)e + esvue + eswue + euve

+ egWue + EgUWy + €1V -+ T‘Y—-llme4TC

(11-94)

where, for a perfect gas,

! T=-L [et - %(u2 +v? 4 wz)] (11-95)

Pr(y - 1)MZ2 Pr
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e e o —in o e — o e S e — e e e m—e . —— —— e e — —

1dy (u%)e + 3da(v?)e + 3da(w?)e + dsuve + dsuwe + drvug

+ dgvwe + dowug + diowv + prmrdeTe

+ 16y (w®)y + 3ba(vD)g + bs(w?)y + bs(uv), + be(vw)y + br(uw),
+ it teTn + 3fiu?)e + 3 A7) + 3 fa(w?)

+ fsvuc + fowug + fruve + fewve + fouwe + frovwy

+ mgeonmr Sl

(11-96)
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G, =

ReyJ

T T e M s e e e e e e e e e e e - — S e oy e —

se1(1®)e + Jea(v?)e + Jea(w?)e + esuVg + eguwe + eV
+ egVWe + egWug + elpwvg + W—llwge“Tf + %f 1(w)y

+ 3£y + 3 fs(w?)y + fruv, + Jeuwy, + f?vu'r; + favuy
+ fowu, + frowv, + mﬂﬂ, + 31 (u?)e + 3ea(v?),

+ 3es(w?); + es(uv)e + co(vw)e + erluw); + mrpmedl

(11-97)
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where
a =3+ +E (11-98) ay =&+ 3§ + & (11-99)
as =&+ &+ 3¢ (11-100) as =& +& + &5 (11-101)
a5 = 3£:&, (11-102) as = 36,6 (11-103)
ar = 3&:¢€, (11-104)
by =32+ 72 + 0} (11-105) bo=n2+ 302+ 0} (11-106)
by =n2 +nl+ 30 (11-107) by =n; + g + 0l (11-108)
bs = 3727y (11-109) bs = MM (11-110)
by = §7:0: (11-111)
a=33+¢+¢ (11-112) c=CG+3C+ (11-113)
e =G+ (1-114)  e=@+ G+ ¢ (11-115)
s = 36y (11-116) cs = 3GC (11-117)
cr = 3¢:Cs (11-118)
dy = §&n: +&my + Em: (11-119) dy = &ene + §6my + 6eme (11-120)
dy = &nz + Emy + 36:m: (11-121) dy=&n: + &My +Em (11-122)
ds = &y — 3Em: (11-123) ds = &x1); — 36um: (11-124)
dr = & — 36y (11-125) ds = &yn: — 26l (11-126)
dy = &1z — 3Eam: (11-127) dio = &1y — 36,7 (11-128)
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€ = %sza: +&G +6:C (11-129) er = §2(z + %Ey(y +&C (11-130)

es = &C + &G + 356G (11-131) ea =G+ &G+ 6 (11-132)

€5 = ‘f::(:y - %ffny (11"133) e = Esz - %Ez(z (11'134)
€7 = &z — %Ssz (11-135) es = &y — %5:(3« (11-136)
ey = &0z 52' zCs (11-137) ew = &Gy — %é.yCz (11-138)

f] = %T]:C; + TJyCy + T]zCz (11'139) f2 = nzCz + %nvC;' + nz'Cz (11'140)

fi=nC + MGy + %77:(:: (11'141) f4 = Nz(x + Sy + 126z (11-142)

fs = ﬂny - %nyC: (11‘143) Jo =0z, — %nz(‘z (11'144)
fr=m — in:(, (11-145)  fy=n( - 2, (11-146)
fo=mC = 3nale (11-147) fio =Gy — 3myCs (11-148)

The derivation of viscous Jacobian matrices must be handled with special care,
due to the fact that the components of the viscous flux vectors involve gradients
of the dependent variable and the Jacobian of transformation, which is itself a
function of the independent variables. Thus, J remains embedded inside the viscous
Jacobians, unlike the inviscid Jacobians where the Js were cancelled. In order to
generalize the mathematical procedure, it is recognized that all of the terms in the
viscous flux vector may be expressed as

E = (Factor)-'}]—(@,) , (11-149)

where ¢ represents the dependent variable such as u, or a combination of dependent
variables such as u? and 1 represent an independent variable such as &, n,or {. For
example, the first term of the second component of E, (from Equation (11-94)) is

- 7] 1
Euz,lst term = __Rem jal (ug)

which may be expressed as

— 1
Buar = (g—an)5(ug
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or, in the general formulation of (11-149),
— 1
E,,g,yr = (Fa.ctor)jtﬁ,,',

To obtain the viscous Jacobian 8E,/8Q, it is necessary to compute each of the
terms in a(Evls Eu21 Eu3a Euh EUS) /B(Ql: Qz, QS! Qh Q_S) In a similar fa‘Shionr the
Jacobians associated with flux vectors F, and G, may be determined. In order to
perform this differentiation, the general expression (11-149) will be used to illustrate
the procedure. Consider the determination of

= s |(Facton 3(60)] = (Facton) () 55(44)
= (Racton) ) g5 o

At this point the order of differentiation is interchanged to yield:

OFE, a ,0¢

o = (Fa ctor)(J)aw(aQ) (11-150)

Recall that Q = Q/J. Hence, after substituting into (11-150), one obtains

ZEQ‘t (Factor) [Jav,b(J o¢ )] = (Factor) [ (J ).;,] (11-151)

This formulation is used to obtain the viscous Jacobians given by Equations (11-152),
(11-153), and (11-154):

0 0 0 0 0
EQiy EQi2 EQ3 EQzq 0O

OE, _ 1
8@ ~ RewlJ

EQsy EQs2 EQzzs EQse 0O (11-152)

EQsy EQs2 EQs3z EQ4s O

LEQ5,1 EQss EQss EQss EQsgs ]
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0 0 0 0 0
FQui FQya FQoy FQay 0
OF, 7
—r-_ | F F F F 0 -
30 = ReeJ Q@s1 FQua FQzs FQsy (11-153)
FQ41 FQu2 FQu3 FQu 0
i FQsyn FQsp FQs3 FQss FQsgs ]
[
0 0 0 0 0
GQz1 GQrp GQa3 GQ2y O
oG 7’
- G G G G 0 -
80 ~ et Qi1 GQs2 GQaa GQsy (11-154)
GQu GQuz GQs3 GQuy O
| GQsy GQs2 GQs3 GQss GQsjs ]
where
EQy = - [ (I2)e +as(J e + (I

— hdl(J%),, + d7(-]%)n + @(J%)n_

[ u v w
= |ex{d=)¢ + er(J=)¢ + eg(J—
_1( p)c 7( p)c ( p)c

EQyy = al(%)e -+ dl(.‘;')n + el(‘j’)(
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EQ23

EQa4

EQs:

EQ;

EQ;3

EQs4

EQa,

J
= GS(};)E + dr

(%),, + 67(%)(

J J J
a7(;)f + de(;)n + 39(;)4:

[ u v w
— las(J=)e + az(J=)¢ + ae(J—
l-a,s( p)f a2( p)f aG( p)f]

i u v w
— -ds(J;)n + dz(J;)n + dlo(‘I;)’{I

_ [es(J%)c + 62(.]%)( + ew(J %)c]

0.5(%)5 + ds(%)ﬂ + 65(%)C
aﬂ(%)f + dg(%)q + 62(%)C

J J J
06(;)5 + dio(;)n + 510(;)¢

[ u v w, |
— [az(J=)e + as{J=)¢ + as(J
b?( p)E ( p)f s( p)e_

- -dﬁ(,]-’:;),, + ds(J%)n + dy(J %)n-

_ :CG(J%)C + eg(J%)(; +es(J %)c]
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EQu2

EQus

EQqq

EQs,

J J J
a7(;)5 + dﬁ(;),, + ee(;)c

J J J
as(;)e + dS(;)n + ea(;;)c

J J J
aa(;)e + d3(;)n + ea(;)c

2 2
~{@ - Za Dyt - Ly D+

2
_ Wy o X, g8 uv vw
(a3 Pra4)(J p Je + Pra4(Jp)e+2as(J ’ de + 2as(J p De

+ 200}~ { (- ZAI D+ - L)),
+ (ds - **"-a4)(’Y )n + _d4(J'_)v; + (dsv + dsw) (J= )n

+ (dru + dgw)(.I-E),, + (dgu+ dmv)(J-‘;-’),, + %(dsv + dsw)u,
+ %(d-,u + dyw)v, + %(dgu + dmv)w,,} _ {(el L )<

+ (e2 — %edu )e+ (es— P—64)(J—)c + —64(-7 )c

+ (esv + esw) (J%)._— + (eru + esw)(J'%)(_- + (equ + 610”)(J%)c

J J J
+ ;(65’0 + GGUJ)’U(_- + ;(67‘“ + 68’!1))'!)( + ;(egu + Cm'U)’lU(
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EQs, =

EQs3

EQs4

EQsgs

FQs,

_T u v w
(a1 Pra4)(-fp)5+aS(Jp)e+av(Jp)e

[ y u J J J
-(dl - 75;6’4)(-];% + (dsv + dﬁw)(‘;)n + dT(;;)”n + da(;)"’n]

-

(0= FedU2)c+ e+ ean) P+ e+ e

(02 = praa)(J2)e + as(J )e + a(I )

(s )02+ (bru+ dow) G+ Ao + )

x
Pr

;(62 o) @20+ (et ean) D+ es(Dhuc + 610(%)")(]

(03— prad(J e+ arlJ e+ as(J-:-j-)f]

(= L))+ G+ ) G+ oD+ o]

1(83 - 7:;64)”%);’ + (esu + 61(1”)(%)( + %(%)“c + es(%)vc]

Y o LA
Br [04(p)e+ d4(p)n + 4(p)c]

- u v w
Ldl(J;)E + dS(J;)f + dﬁ(J;)E]

bbl(J%),, + bs(Jg),, + by (J %)n]
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FQa

FQq3

FQayu

FQs,

FQs,

FQs3

F Q3,4 =

u v w
- fl(-];)( + fT(J;)C + fQ(J;)C

J _{)

J
011(;)5‘F bl(;)ﬂ +f1(p ¢

ds(g)wbs(f)n +f7(§)<

J J J
de(;)g + b1(;)n + fg(;)c

- _d,(J%)f -+ dz(J'z')f + ds(J %})s]

- _bs(J%),, + bz(J%)n + bs(J%),,]

- [0+ a0+ fw(J%)c]

d7<§)e+bs(%),,+fs(§)c

= dz(%)é + bz(%)n + fz(%)c

J J J
ds(;)e + be(;;)q + fm(;)c

oDpTU XUTUPHANEST
M., E. T. U, LIBRARY
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FQqy

FQupz

FQu3

FQua

FQs,

o™ + duo(I2)e + d JE]
L(19( p)e+ 10( p)£+ a( p)f

_ _b,(ﬂ;.),, + bs(J%),, + ba(J%)n]

- [+ A0+ fsu%)c]
J J J
dg(;)s + b‘l(;)q + fs(;)c

J J J
dlo(;)f + bs(;)n + fa(;)C

J J J
dS(;)f + bﬂ(;)q + fa(;)c

~{@ - Fad e+ - Za0 L),

+ s~ L)L)+ LA (ID)e+ (v + )T

+ (dsu + dmw)(J%)f + (dotu + dgv)(J%)E + %(dﬂ: + dow)ug

+ %(dsu + diow)ve + %(dsu + dav)wg} - { (b, — Plrb.‘)(.fu;),,
+ (= 000D+ G- L0, + L0 0%,

2
+ 2b5(J1—L—:),, + 2bs(J-1%),, + 2b7(J%),,} — {(fl - g;f4)(J%)c +
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2 2
= A e+ U= BRI )+ A%,

+ (fsv + fsw)(J%)c + (fru+ fsw)(Jg)c + (fou + fmv)(J%)q

+ %(fsv + fow)u¢ + %(fvu + fsw)ve + %(fgu + fmv)wc}

Pas = | = )0 Y)e+ -+ ) D+ e + s
+ [(bl = b))+ B+ W%),,] + [m = P2

+ (fav+ fsw)(%)f + f7(%)v¢ v fg(%)wc}

J J J
FQs3 = [(dz - %ﬁ)(-f %)s + (dsu + dww)(;)a + dv(;)ue + ds(;)wsJ

[ 5 v u w
+ _(bz - };54)”;)1; + b5(']'p')n + bs(-f;)nl

+ - LAY+ Gt o)) SO+ Sy

PO = [(@= )02 deut oD+ o
J ¥ w U v
+ le(';)vE] + {(ba - P—rbtt)(-];)n + br(-];)n + bﬁ('];)v]

+ [(fa - Plrf-t)(«]%)c + (fou + f:ov)(%)c + fs(%)uc + fs(%)vc]
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FQss

GQa,

GQs

GQ23

GQaa

GQss

GQs2

GQs3

¥ J J J
Pr d4(;)e + b4(;)r) + f4(;)c]

[ u v w
— lei(J=)e + es(J~)e +es(J— ]
L1( p)e 5( p)E ( p)s

- Lﬁ(J%)., + fS(J‘Z‘)n + fs(J%)q]

[ U v w
- J=)e + es(J=)¢ + er(J— ]
Lcl( p)c (p)c 7( p)c

J J.J
61(};)5 + fl(;)n + Cl(;)c

J J J
85(;)5 + f5(;)n + 05(';)4

‘36(%)5 + fﬁ(%)n + C?(%)(

[ u v w
— e (J=)e + ex{J—)e + es(J—
L7( p)e 2{ p)e a( p)e]

[ u v w
- th(J;)n + f2(J;)n + fS(J;)ﬂ]

- LCS(J%)C + Cz(J%)g + cﬁ(J%)c]

J J
67(;)5 + .f'?(;)w + 05(%)c

62(%)5 + fz(%)n + Cz(%)c
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J J J
GQzy = 68(;)6 + fS(;)n + Cs(;)c

-
GQ4,1 = - eg(J%)g-l-e]o(Jg-)f-{-ea(,]%)eJ

- (60, fw<J§->q+fa(J1§>n]

- -07(.]%)( + CG(‘]%)C + Cs(J%)c]

GQuz = eS)e+ S+ en()
GQsy = 610(%)5 + fw(%)n + Ce(%)c

GQup = ea(%)s+fa(%)n+03(%)c

_ ARV g
GQs, = - {(61 - Pre4)(J p )e + (e2 Pre")(J P )
2
¥ w v e u
+ (e3— ﬁ%)(-f-;)e + P—reex(-];t)e + (erv + esw)(-];)f
v w J
+ (esu + 61011))(-];)5 + (egu + esv)(J;)e + ;(ew + eqw)ug
J J ¥ u?

+ ;(e5u + eww)ve + ;(36'”« + 68”)"’6} - {(fl - "j;;ﬁ)(-]?)n

2 2
+ e = prfdUn+ (o= TAIIZ 00+ o FlT2, +
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GQsp =

GQs3

GQsq4 =

+ (fro+ fow)(J%)n + (fsu+ fww)(J%)n + (fou+ fav)(J%)q
+ %(f?v + fow)u, + %(fsu + fiow)vg + %(fsu + fav)wv}

{( C L)L+ (e - L) (UL + (o — L (I
-— €1 PT'C4 P ¢ Cy PrC4 p ¢ C3 — “ﬁc«l)( 7 ¢

¥ e uv yw uw
X e T2 + 2e5(TEY v  fad
+ Prc4( p)¢+ es(J - Ye + 2c6(J P )¢ + 2c4( P )C}

1= e e+ (oo + ) (e + sl

+ 65(%)105- -+ -(fl - %ﬁ)(c’%)n + (frv+ fgw)(%),, + fS(%)”n

S0
+ fs(';)qu + _(Cl - %:04)(-7%% + CS(J%)c + C?(-’%)(]

(0= e T+ (s ew) () + ex(Dhue + xS

+ {(fa— Plrf4)(J%)" + (fsu+ flow)(%)n + f7(%)"~1 + fs(%)wn}

+ [ gD+ et + a0 2)]

e
Pr

(e3 — e.;)(J%))g + (esu + esv)(%)e + 69(%)“& + 610(%)”5] +
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| = A0+ s+ F0)Cn+ 5+ Fro D

+ |- gD+ al et %(J%)c]

J
60 = & [a@e+ A +ald)]

11.5 Thin-Layer Approximation

The Navier-Stokes equations are reduced rather drastically by assuming thin-
layer approximation. Under this assumption the gradients of the viscous stresses
in the direction parallel to the surface (£ and ¢ directions) are neglected. The
Thin-Layer Navier-Stokes equations are expressed as

§Q+'6_E+@+B_C?__LF,,T

or 8¢ Oy 8¢ oy
where flux vectors Q, E, F, and G are given by (11-61), (11-62), (11-63), (11-64)
and

(11-155)

Fur = 11-156
T Ree | — - — — — - — ( )

%bl (u?)y + %M("Q)v + %bli(wz)v + bS(“i’)n
+ bﬁ(’U‘LU)y, + b-;(uw),, -+ W’Y‘}TWE;IMT;'

The viscous flux vector Fyy is obtained from the viscous flux vector F, given as
Equation (11-96) by omitting all the mixed partial derivatives. To illustrate this

'
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point, consider for example the second component of the flux vector F,, where
F,,, = dl‘Uf + dsvf + de‘wE + blu,, + bs‘U,, + b7w,, + f]‘u,c -+ f7’Uc + fg‘wq

The partial differential equation (11-155) includes the 7 gradient of the viscous
terms. Therefore, this gradient will include terms such as 8%*u/8n0¢, 9*v/dnd¢,
-..and so on. These and similar mixed partial derivatives are omitted. As a result,
only 7 derivatives of the flow variables remain, which have been redefined as the
flux vector F,r. The reason these terms are dropped will be discussed in Chap-
ter 14 where the numerical solution techniques for thin-layer and Navier-Stokes
equations are considered. The elimination of these terms is not necessary; however,
this reduction does simplify the equations and reduces computer storage and time
requirements.

The inviscid Jacobian matrices are the same as those of the Navier-Stokes equa-
tions, and the Jacobian matrix 8F,r/9Q is
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d
“—r)4qz+
Yoz + Am%ﬁ
“(5 zs
o2 )0 L o)+ o )+ “Er)ar :w:s%-s:
;mzf wEr) g d )+ “Cr)at (SOE - |
d. s d d d . 4 £ M& = am@
(G «2 )4 €yl 4L - ) (Lot -0 - 4
w? w? o Pyig el w? g+ 4% pyial —
0 (G (S D {[4Grr+ G +Gon
w2 w? wDye || |-
0 G ()4 (%4 JA ERRCOCER)
b d u J < G .w d u d Sy L b d .
0 AMYQ AMV ] Aﬂvs . (Zr)ie+ AME q + ANZ:N. -
0 0 0 0 0
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11.6 Parabolized Navier-Stokes Equations

For steady supersonic flow fields, PNS equations provide an efficient method of
solution. It is assumed that the streamwise gradient of viscous stress is small com-
pared to the gradients of stresses in the 7 and { directions. Therefore, the streamwise
gradient of viscous stress is dropped. In addition, the streamwise pressure gradient
within the subsonic portion of the boundary layer must be approximated to pre-
vent a departure solution. This approximation may employ any one of the following
methods:

a. Neglect the pressure gradient completely.

b. Treat the pressure gradient explicitly.

c. Impose the pressure from the first supersonic point—this method is known as
the sublayer approximation.

d. Retain a fraction w of the pressure gradient.

The PNS approximations will exclude streamwise flow separation; however, cross
flow separation is predicted. In the following formulation of the PNS equation,
the streamwise pressure gradient within the subsonic portion is approximated by
method d. The PNS equations are expressed as

aEp‘ aEpp _a_._F—_ ?_g _ ava 6@,,;7

—5&—4- B€ + a1 + B¢ ——87T+——3-—C— (11-157)
where
i, 1
Ep = 7 [E:Ep + fpr + f,Gp] (11—158)
. 1
Epp = 7 [&zEpp + &, Fpp + €.Gpp) (11-159)
F = % nE + n F + 0, G| (11-160)
- 1
G = FlGE+GF+(C] (11-161)
Fp = % 1B + 1, Fo + 1G] (11-162)

Gwp = %[C:E,,+c,,F.,+<,G.,] (11-163)
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and flux vectors are defined as

Gp =

pu
pu? + wp
puv

puw

| (pec+ plu |

(11-165)

(11-167)

(11-169)

Fp =

Epp =

Gpp =

(11-166)

(11-168)

(11-170)
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The flux vectors E, F, and G are the same as Ep, Fp, and Gp with w = 1. The
parameter w, introduced in Equations (11-165) through (11-170), is determined by
stability analysis. The viscous flux vectors F,p and G,p are

=
FvP = Rem‘]
= 7
G.p =

P ReJ

where

31+ 350+ 3h(@)y + by(u)y + buluw)y
1

ot By — g

b T,

1 1 1
Se(u’)e+ 32 (v%)¢ + ges(w?)e + cs(uv)¢ + eluw)

1
T
+c7(uw)¢ + Pr(v = 1)M3°c4 ¢

(11-171)

(11-172)
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by = 503 + g + 712
by =i + 0} + 3n}
bs = 3mty
by = 30N
=3¢+ +¢2
3 =C; + G+ 3¢

1
Cs = §Cx<y

Cr = %Csz

(11-173)
(11-175)
(11-177)
(11-179)
(11-180)
(11-182)
(11-184)

(11-186)

by = 02 + §n2 + n?
by =1+ 2+ 1}

b6 = %nynz

=0+33+¢
ca=+G+¢

C6 = %CyCz

(11-174)
(11-176)

(11-178)

(11-181)
(11-183)

(11-185)

Note that the viscous flux vectors F,p and G,p are obtained from relations (11-
96) and (11-97) by omitting all the mixed partial derivatives, as was illustrated
previously for the Thin-Layer Navier-Stokes equations.

The inviscid and viscous Jacobian matrices for the PNS equations are as follows:
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D
L)

|

=)
O

c mn me Mu c
- :Q.u.ﬂ + mtc + Musv maﬁ_. |€3. - Hv_c mﬂ..ﬁ e ES\ - :n.uc £u— EAQ - HVMH.E A)\ - “_.vmu
+ 6 [l =00 + o+ )] | + (et v+ )
= v({zu + §v + L) &v —w(y — 1)6u &l —w(y = 1) Lv ~wl(y —1)§w (=1
+ ¢, ﬁ&: -1} + 0% + EJ_ + (&u + v + Lw)
— w(ézu+ Ly + Lw) Lw—wly—1D&u | fw—wly—1),v | Ll —w(y—1)lw (v 1)
+& mes - (ot 4+ 3_ + (u+ v +éw)
1 1 . 1

(bou + &v + Lw) [—ver & Ts —3(r=1 |4 TP —5(0-1 | & Ts -5(r=1)
+ (=1 + 0t + o) @+ +u?)] | @t tet)] | et re?)] et v+ bl

—(r-Du+bv| —(r-DiGu+by) - (v-)[&u+ 6o

+ &w]u + Lw]v + &w]w

|
(11-187)
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(881-11)
m [l + ajm®l + n[m®l +
a4+ ) (1~ L) —§ ol + 0 ([ — L) — |a%+nTb] (71— L) —
[ml + a®l + U] L T«S + 4+ 1) T«S + 0+ N:v TNS + .04 1) T«B + ,0 .+ ST -4) +
(1= sm - JL Wi oo(1- SW - ab_ (- sm. - i\_ al %ak—] (@7l + a® + n7k)
(n?l + a™h + n7lk) + TNS.*-NQ.*-":XHIS& 0+
U(p—4) ok —z)* aftl(1 — L) — o™l n7h(1 — L) — U (m*l + 2™ + no)m —
(% + atl + n%) + ?8 +.0+ (1 - S.w i+
fi(1 = L) mA(1 - L) - a%h a(l —g)* (1 — L) — a%l (m%h + o™ + n*b)a —
(m*h + o + n=b) + T«S + .0+ N:VQ - Sm_ = 4
(1 —4) al(1 - L) —n7l a®l(1— L) — nh n(L — g)% (% + o™ + ni)n —
0 zjy g o 0

o¢
4
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| @
3l

0 (s Cy (: 0
- .:Aﬁuz + ﬁe.c + ﬁu.ﬁv huﬁw - Qvﬂ ﬁu.:. - AQ - :Aue Gu— A\q - :hn.S 3‘ - :ﬁa
+ 6 [Ha =D+ + )] | + (Gt G+ Gw)
—v({u+ Gr+ ﬁnsv (v — AQ - :ﬁeﬂ neﬁm - Gv—(v- HVA_\E AQ - :ﬁe
+ 6 5= 1 + 9 + )| F (Gut Gy + )
- Sﬁﬁuﬁ + ﬁtc + ﬁu.Ev ﬁae - AQ - “_.vhuﬂ h.e.E - AQ - Hvﬁuc ﬁuﬁw - QV.S AQ - Hvﬁn
+ & ms ~ 1 +0* + epv_ + (G + o + Gw)
(Ceu + G + Gw) [—e: G Te - WS -1y 16 Tn. - WS -1) 1¢ TP - WS -1)
+ (7= 1) + v + )] (W + 9 + v?)] (W? +v* + w?)] (u? + v? + w?)] 7 [Geu + Go + ]
—(r=DutGr | - (=D Gu+ o] = (v-DiGut+
+ (w]u + Gwlv + CGwjw
(11-189)
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(fe) e+

(fe) (g =)
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11.7 Two-Dimensional Planar or Axisymmetric For-
mulation

For a two-dimensional planar or axisymmetric flow field, the nondimensionalized
Navier-Stokes equation may be expressed in a combined form as

0Q OE OF OFE, O&F,

where o = 0 represents two-dimensional planar flow and @ = 1 represents two-
dimensional axisymmetric flow. The flux vectors in Equation (11-192) are

p ou
pu pu? +p
= 11-193a E = 11-193b
Q=" | (1119 . (11-103b)
Pey (pe: + p)u
pv pv
1
F= | (11-193¢) H=-|" (11-193d)
pvi+p yipv
(pe: + p)v (e + p)v
0 0
Trzp Ty
E, = (11-193¢) F, = (11-193f)
Try Tyyp
uTzrp + 'UT;;y - q;: usz + UTWP - Qy
[0
2 vy 9, v
™" 3 Rew Or (uy)
2 u v v 28, v
1 g — = (E_ Y 0V




70 Chapter 11

where
e = 7 (g % _ g%) (11-194)
o = _RA:: (% gs _ % g_:) (11-195)
ey = R%) (a_; + Z_z) (11-196)
== _ReooPr(g— 1)M2 %:;—1 (11-198)
g = H oT (11-199)

" RewPr(y—1)MZ% 8y

The Navier-Stokes equations given by Equation (11-192) are transformed to the
computational space by relations (11-6) and (11-7), resulting in

9Q 9B oF . 9E,  9F,

o +3—6+3_n+aH= T + B -+ aH, (11-200)
where
~_ @
Q= (11-201)
E = J6Q+&E +§F] (11-202)
_ 1
F = -J-[mQ + n:E + 7 F] (11-203)
. H
B== (11-204)
E, = %[sz,, + &,F,) (11-205)
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= 1
F, = 7[77:Ev + nyFu] (11'206)
_ H,
H, = = (11-207)

and

where

a) = §§3+§3

az = %E:fy

b = %773 +"]§

by = 3nzmy

C = %n:f: + ‘Syny
€3 = Nzy — %'f:c’?y
Cs = E:T]z + gyny

— o —— . G i GAE A e T e e e mrn . — m—— m—— —

701(u%)¢ + 302(v?)¢ + as(uv)e + prtiypraaTe

| +3¢1(u?)y + ge2(v?)n + cauvy + cqvuy + F(%Wgcf’Tn

301 (u)e + 3e2(v?)¢ + cavug + cquve + prtipmosTy

| +301(u?)g + 302(v%)y + ba(uv)y + p i Ty

(11-210a) ay = &+ 3£ (11-210b)
(11-210c) ay =&+ € (11-2104d)
(11-211a) by =n2 + 32 (11-211b)
(11-211c) by=n3+n2 (11-211d)
(11-212a) co =&z + 36, (11-212D)
(11-212c) ca =&y — 3, (11-2124)
(11-212¢)

(11-208)

(11-209)
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The inviscid and viscous Jacobian matrices are

| @
tOII 3

1l

o e

& €z ¢ | 0
T P ~(r = 1)ev + by (= 1)t
Eelzlr = 1) + 7)) [+&u + &

ot bt (= Deut o &+ 62— (v = 1)

ly(r — 1) + )

+MH2 + med

ﬁmnﬂ + me..cV_lannT

(v = D(u? +v*)]

belre — 51— 1) +7)

—(7 = )& + &u)u

bulree = 507~ 1)(w +7)

=(7 = D(u + §o)v

(11-213)

.m__ + Qﬁmﬂﬂ + ME.Cv
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n(afl 4+ n76)(1 — L)—

(@4 )1 = )3 - "okj

[(z0 + ) (1 —4)

+tal~])(a% + nl)
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atl + n*l+

(o + (1= 2]

IR

(1 — &) a(k —g)h + a®l 4 nt(] — L)~ +(a% + n®l)a—
ol 4 nit | (2 + )1 - H)3]

Zu(1 — L) il + a7 — A)— n(b —g)* + +(afl + nol)n—
0 i /! H
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3=

@ |-

—Uuv

v[—vye: + (v — 1) (u? +v?)]

—(y = Duv

(11-215)

v
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i
0 0 0 0
1 HQ HQuz HQas 0
C, = FoTy (11-218)

HQsy HQ;y HQasg 0

HQsy HQuy HQ.3 HQuyu

where

HQu = -uleli e + 60 + e (B 2)].

= B[ D+ ] + om0
HQ2 = [ v(— )f+#77y( )n]
HQws = (e = quee[ D] +wni2 - 2Dt

Hass =2 - 6] + 506 [(D)] 42020+ 1Y)
+m[E0)]
HQ32 =0

15 = 26k~ 306 [)CD] + 2l - 22| - 2y, [ty 2

$
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HQu = (I %) [ecve + 6yte] — b [E(I e + 67| - (I 260 — e

+ 26,00+ 600 + 36 [O0D)] + g D),

+ e | g2 4 (S + )| - u(T=) v +

Py p (p p)e u(p)nn Ty
v u 2 v

- (7 + n(I2)| = FH0T) |20 et

2 v u dp, v 4 [p, 00
+ 2o om0, + 5] + 5505+ gm0

n

4 B, ,uY Y e ,J o J 2]
+ = ,[— J—] + == [—J—+ “ul 4 Sv
3¥1= | () ) =1 el (Cw+- )

J J 2 J 2
HQu2 = u(;)(&:ve + &ug) + uuf,,(;)e - guvfz(-f_;)e - Eyfz [(%)(J%)] )
J J 2 J
+ W) et + ) + um (o = 50 = BT )

- %ynz [(g)u %)L - %“;ny(J %)n

J 2 J 4 J
HQq3 = uu&(;)e + 5#;(2&”6 — &ug) + gﬂ”fy(;)s

4 oy, LV 2 Py, U Y v J
- gyfy [(;)(J;)L — ¥ [(5)(-];)] ¢ F'rfy(J;)f + »“'u’?:(;)fr

2 J _ 4 Iy _dpgry 4 [E 2]
+3ﬂp(277y'vn n:un)+3uvny(p)n 3y(Jp) 3V (y)(Jp)ﬂJr



Transformation of the Equations of Fluid Motion 79

2

g )] - Euna,

J J
HQue = 2 (5 +6(5)

The Thin-Layer Navier-Stokes equation for two-dimensional planar or axisym-
metric flow is reduced to
8Q OFE OF _ OF;
ar T Yoy T =,

+af, (11-219)

where flux vectors Q, E, and F are given by (11-201), (11-202) and (11-203), and

biuy + bavy
- u, ___________________
For= -
T ReJ (11-220)
bsu,, + bz’Uy,

301(u?)y + 152(v?), + ba(uv), + Frnmz 4Ty

The Jacobian matrices E/8Q and 8F /8@ are given by (11-213) and (11-214),
and



Chapter 11

80

m.w, vT

5=

U
Re,J

(11-221)
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The Parabolized Navier-Stokes equations under the assumptions stated previ-
ously are formulated as

OEp OEpp OF = F,p .
56t oe t oy toll =+ ol (11-222)
where
— 1
Ep = 7[§rEp + fpr] (11-223)
_ 1
Epp = "j[EzEPp + &, Fpp) (11-224)
and
[ pu ] [ pv ]
pu + wp v
Ep = (11-225a) Fo=|" (11-225b)
puvY pU° + wp
L (pe: + p)u |  (pe: + p)v ]
0 [0 T
(1-w)p 0
Epp = (11-226&) Fpp = (11-226b)
0 (1-w)p
| 0 ] 0
and the viscous flux vector F,p is
[0
bl'u,, + ba’l),,
- u _____________________
Fop = Rewd Ifa_ui 4_— b_zvi ________________ (11-227)
L (u?), + L (v®)y + bs(uv), + 1 by T,
g I\ /T QT n " Pr('y—l)Mgo4"

The inviscid and viscous Jacobian matrices are:
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+{u + m«c

+&u

—v({utéu)+E, ma (v-1) ?N + %v_

Lv—w(y—1)&u

Gl-—w(y-1)v

+ou + G

wy-1)§

(beu + &v) [—ver + (v — 1) (u? + v?)]

& Ts |W355.
(u? + v?)]

— (7 = Dlbu+ &ulu

& [ree— 5 (1=1)-

(u? +v?)]

—(y = 1) [&u + &ulv

v [eu + muc_

(11-228)
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8Q = ReoJ
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(11-230)
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11.8 Incompressible Navier-Stokes Equations

As introduced in Chapter 8, a common scheme to solve numerically the incom-
pressible Navier-Stokes equations is the modification of the continuity equation to
include an artificial compresibility term. If 7 is used to denote this artificial com-
pressibility and 3 is used to represent its inverse, then the incompressible Navier-

Stokes equations in dimensional form are given by

9Q OE OF 0G _0E, O0F, 4G,
5t—+5:-c—+3—y+5_ 3z T dy + 0z
where
p
Uu
Q= v
w
[ Bu [0 ]
u2 + P Tzx
= - E =
E w (11-233) v oo
| uw | Tzz |
[ Bu (0 ]
vu Tyz
= 11‘235 Fu =
F v4p ( ) Tyy
_‘Uw Tyz
B 0
G = | W (11-237) Gy=|"™
wy Tzy
w? +p] Tz
and
du
Tex — 2U£
I
Ty = T 8y Oz
ou
Ty = Zl/a—y

(11-231)

(11-232)

(11-234)

(11-236)

(11-238)
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Equation (11-231) may be expressed in a nondimensional form if the variables
are nondimensionalized according to nondimensional terms defined previously in
Section 8.2.1. The nondimensional form of the incompressible Navier-Stokes equa-

tion in a Aux vector form is:

8Q* OE* OF* 8G* OE, OF;  9G!
— v i 11_
5 "o "oy T oz T Oy | oz (11-239)
where
p‘
* ___ u*
Q - 'U‘
wi
ﬂtzut b .0 -
¥ L [
=Y TP (1120 E=|T= (11-241)
uv T:y
u'w* | 722 |
ﬁtvt '0 A
F' = :’)‘1 ol (11242) Fr = 'jf (11-243)
w
v uw' l_'r;,
ﬂtwt 0
G = z: (11-244) G =|T= (11-245)
zy
w' +p i
where
2 L]
T Ou (11-246)
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Toy = Tye = Rim (g: + g;) (11-247)
= R—i; %:- (11-248)
=Tl = Rim (g’;’ + g’:) (11-249)
7, = Ri,o %l;’-; (11-250)
Ty = Toy = Rim (gz. + gz*) (11-251)
and o &M
oo

The asterisk which is used to denote the nondimensional quantities will be
dropped for convenience. Therefore, all the expressions to follow are in nondimen-
sional form unless specified otherwise. Note that the flux vector formulations in
either dimensional or nondimensional forms are similar. Therefore, the transformed
formulation applies to either one. However, appropriate nondimensional terms and
expressions for shear stresses must be utilized.

Following the procedure of Section 11-4, the nondimensional incompressible
Navier-Stokes equations in the computational space are expressed as

0Q  OE oF oG 0E, 8F, oG,

o ettt T T tac (11-262
where oo Q
=7
and
E= -} (&E +6,F +£,G) (11-253)
F= % (1E + n,F + n,G) (11-254)
G = -} (GE+GF +(.G) (11-255)
Eﬂ = 'l]].- (&Eu -+ Eva + f:Gu) (11-256)
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1

Fu = T (. Ey + ﬂva + 1,G.) (11-257)

G = 3(GE+G R+ GG (11-258)

The shear stresses given by Equations (11-246) through (11-251) expressed in
the computational space are as follow:

2
Tzx = Re (exuf + nrun + C;-U() (11-259)
o0
2
W = R (&yve + myvy + o) (11-260)
2 .
T = g (€xwe + nawy + Cve) (11-261)
o0

1
Tey = Tyr = (Eyue + nauy + Gug + Exve + Mz + () (11-262)

| 1
Ter = Tex = B (Eaug + Matty + Goug + Exwe + Mown + Gowg)  (11-263)
o _

1

The expressions for the shear stresses given by Equations (11-259) through
(11-264) are substituted into the viscous flux vectors E,, F,, and G, to provide
the following:

0 .
_ 1 arug + biuy — €1 + Cown + b — cavg + CsW

"7 JRew | @1%¢ + 1y + by, — cawn + caug + bave — cewy
| a1we — Cotty + Cavy + biwy — Cstug -+ cevg + bowg |

(11-265)

- 0 '}
B = 1 Aty + biug + 1V — cawg + baue — crve + cawy (11-266)
JReq | azun — crue + byve + cawe + crug + bavg — cowy
| agw, + caug — Cave + biwe — catg -+ covg + bawg |
- 0 9
- 1 - Cc5w Uy + C7Uy — C
G, = asu¢ + bzuc + CaVg — CsWe + bs n + C1¥y 3Wn (11-267)

JReo | azve — catte + bavg + cowg — cruy + bavy + cowy
L azw, + csug — CeVe + bawe + Catty — Couy + bawy
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where

a =E+&+€ (11-268)

a = 2+ n +n} (11-269)

a3 =C+¢¢+¢ (11-270)

by = &ne + &1y + Eam (11-271)

by = &z + &Gy + &G (11-272)

by = (e + Gyt + G (11-273)

a=&m—mé (11-274) c =0 —&n, (11-275) ¢ = &,n, — € (11-276)

Cy = ér(y - CzEy (11'277) cs = (€ — &G (11'278) Ce = fyCz - cyfz

(11-279)

Cr = ﬂ:Cy - Ctny (11"280) Cg = Cznz - 77:(: (11"281) Cy = nyCz - Cy"k (11"282)

11.8.1 Inviscid and Viscous Jacobian Matrices

The inviscid Jacobian matrices are determined according to
OF

A=35

and

Using the contravariant velocity components defined by

U=&Lu+&u+&w

V =nu+nv+nw

and
W = Gu+ ¢+ {w

the resulting inviscid Jacobian matrices are:

[0 &P &0 £:0
& U+&Gu Gu &u
& £ U+ & &v
L & Lw Gw U+&w |

(11-283)

(11-284)

(11-285)

(11-286)
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[ 0 n:8 8 n:0
. V4 1n:u u X7
B=|" " 'h " (11-287)
Ny NV V+nuv NV
L Tz New nyw V+nw |
[ 0 C:0 G3 ¢:8 ]
: W+ Gu U U
c=|°¢ & C” ‘ (11-288)
¢y (v W+ G (v
| G Cew Gyw W+ Gw |

Following the procedure outlined in Section 11.4.2 and given by the general
expression (11-151), the viscous Jacobian matrices are determined and are provided

by the following:

where

where

l

| &
Ol

0 0 0 ‘ 0
1 0 A -B, C
RCOQJ 0 Bl Al —'Dl
1o -C, Dy Ay
= aDe+bi(Dy+ba(I)
= ca(J)g+calJ)e
= CQ(J),, + Cs(J)c
= c3(J)q+cs(J)¢
0 0 0 0
1 0 A2 —Bg Cg
RenJ 0 By A -D,
0 -C, D, A,
= ag(J)g + bi(J)e + ba(J)¢

—c1(J)g + er{J)¢

(11-289)

(11-290)
(11-291)
(11-292)

(11-293)

(11-294)

(11-295)

(11-296)
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Cg = —Cg(-])f + Cs(.])c (1 1-297)
Dy = —c(J)g+cald); (11-208)

0 0 0 0

oG, 1 0 Ay -B; G

Cy = — = 11-

90 "Rewl | 0 By, A3 Dy (11-299)

0 —C;; D3 A3

where

A3 = ag(-])( + bg(J)g-{- bg(.]),, (11-300)
By = —co(J)g — cr(J)y (11-301)
Cg = —C5(J)£ - Cs(‘]),, (11-302)
Dy = —co(J)e— co(d)y (11-303)

11.8.2 Two-Dimensional Incompressible Navier-Stokes Equations

The nondimensional, incompressible Navier-Stokes equations in the computa- -
tional domain ,n formulated in a flux vector form are expressed as

8Q OF OF OE, OF,
E'Fa—g"f*b“n"—-— -

where the flux vectors are defined by the following:

= Q_ i
Q== (11-305)
E= %(‘E,E + &, F) (11-306)
E, = :1,—(sz” +¢&,F,)  (11-308)
and

[
Q= |u (11-310)

| v

" fu
E=|u*+p (11-311)

uv

9¢

= (11-304)

_ 1
F==(mE+nF)  (11-307)

— 1
F, = 'j(anv +mF)  (11-309)

(11-312)
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0 0
E, = | To (11-313) Fy=|Tyu (11-314)
Tzy Tyy
The shear stresses in the physical space are
2 du
Tex = Re_oo (&) (11-315)
1 du Ov
Tey = Tyz = E a_y + 5‘; (11—316)
2 [0
Tw = oo (Ei;) (11-317)
The shear stresses in the computational space are
2
Tzz = R_ec; (&rue + Nouy) (11-318)
1
Ty = Te= g (&ue + Myuy + Ezve + Nzty) (11-319)
2
Ty = E (&yve + myvy) (11-320)

Upon substitution of shear stresses into the viscous flux vectors E, and F, given
by Equations (11-308) and (11-309) and utilizing continuity, one obtains

"0 -
.. 1
E"=JRe°o aue -+ bu, — cvy,
| ave + cuy + buy |
and
"0 .
- 1
F, = bu
JRCOO d'U-r,+ E+CUE
Ld’Un—CUg'i'b'Uf_
where
a = £+&

b = &nz+ &My
c = Ezny“gynz

d = ni+m

(11-321)

(11-322)

(11-323)
(11-324)
(11-325)

(11-326)
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The inviscid and viscous Jacobian matrices are determined to be as follows

oF 0 £
A=c-x=1 &
50 & U4 &u
Ey §zu
where the contravariant velocity U is
U=§&u+§&v
oOF 0 N0
B= 5@ =| n V4+nu
Ny Nzv

The contravariant velocity V is defined as

V =nu+nv

0

0

and
0

0

0 a(J)e+b(J)y
c(J)y

b(J)E + d(J)n
0 —C(J)E

3}
Eyu
U+ &

nyﬁ
Tyu

V + nu

0

—c(J)y
a(J)f + b(J)y

0
o(J)e

b(JN)e + d(J)y

(11-327)

(11-328)

(11-329)

(11-330)

(11-331)

(11-332)
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11.9 Problems

11.1 Nondimensionalize the energy equation given by

i}

Oy

where

orT

qz=_kg ) gy =

TI L4 -

T2z =

Tyz =

+..__
x

| UTzy + VT + w'ry,] +

= )+£( + )+i( + )+£(we+ )=
Gt PO T g PUC T PU T G APV T PR G WP T P =

[u'r,, + UTgy + wrn] +

d
- [’UT:: + UTyx + 'UJ'T;;]

0z

Use the nondimensional variables defined in Section 11.3.

11.2 What are the physical implications of Stokes hypothesis?

11.3 Determine the following components of the inviscid Jacobian matrix 8F'/8Q,

(2) 8F3/8Q,, (b) 8F;/8Q,, and

(c) 8Fs/8Qu.
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11.4 Start with
- 1
(Fa = 3 [me(Bu)a+ n,(R)s + 1e(G)s

and determine the third component of viscous flux vector F, given by relation (11-
96).

115 Determine the following components of the viscous Jacobian matrix 8F, /80,
(a) OFv/0Q:, (b) OFv/8Q,, and  (c) OFv;/0Q,.

11.6 What are the assumptions used in the PNS equations? What are the physical
implications of these assumptions?

11.7 What are the assumptions used in the TLNS equations? What are the
physical implications of these assumptions?

11.8 Show that with a genecralized coordinate transformation, the equation

Ju Ov

B + ‘a—y 0
may be expressed as _

ouU v

o " ="
where U v

V=7 V=7

and

U=u€:+”§y ) V=unr+v77y

11.9 Consider the system of partial differential equations given by

where p, the density, is assumed to be a constant.
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(a) Write the system of equations in a vector form, where the unknown vector (?
is
u
Q=1 v
P

(b) Recast the system of equations to a conservative form. Subsequently, write
a vector form of the system and determine the Jacobian matrices A and B,

where 9F OF
A = 5—6 a.nd B = _65
Define the flux vectors as
u v
E=|v+2| and P=| w
p w2 + p
uv p

(c) Transform the vector form of the system obtained in (b) to a (€,n) coordinate
system.

11.10 The z-component of the momentum equation for an incompressible bound-
ary layer with zero pressure gradient is
Ou Ou 8*u

tv—=v

Yoz " oy oy

Transform the equation into generalized coordinate system.

11.11 Transform the z-component of the momentum equation into the generalized
coordinate system. Assume a steady, incompressible, zero pressure gradient flow,
so that the governing equation is written as

ou  Ou (62u 6%)

U‘a—x'-i-v—ag:V ﬁ 'ay—2

11.12 Consider the generalized coordinate system in Problem 11.11 to be body
fitted such that the £ coordinate is along the body and the 7 coordinate is per-
pendicular to it. Use the boundary layer assumptions to reduce the transformed
equation. Compare the result to the transformed equation of Problem 11.10.
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Euler Equations

12.1 Introductory Remarks

Reduced forms of the equations of fluid motion are used for many practical
applications. Obviously, the assumptions involved in the reduction of the equations
of motion must represent the physics of a particular problem. A commonly used
method is the decoupling of the equations of motion for viscous and inviscid regions.
This approach is suitable for problems where the viscous/inviscid interaction is
weak. For high Reynolds number flows, viscous effects are confined to the vicinity
of the surface, where large velocity gradients exist. This region is known as the
boundary layer. Outside the boundary layer, the velocity gradients are negligible
resulting in zero shear stresses. This region is called the inviscid region.

In order to solve the boundary layer equations, the flow properties at the bound-
ary layer edge (usually defined at a location of u/u, 2 0.99, where u, is the velocity
at the edge of the boundary layer) are required. One method of providing this infor-
mation is to solve the inviscid region initially and impose the result on the boundary
layer. An iterative procedure between the inviscid flowfield and the boundary layer
may be used in order to include boundary layer displacement effect. This chapter
will investigate the solution procedures for the inviscid fiow region. The governing
equations are known as the Euler equations.

Several solution schemes will be investigated in detail in this chapter. This is
important not only because we are seeking the solution of the Euler equation, but
also because the Euler equation form the left-hand side of the Navier-Stokes equa-
tion. In fact, the solution of the Navier-Stokes equation is not much more difficult
than the Euler equation. Practically, there is only one method of approximating
the viscous terms which form the right-hand side of the Navier-Stokes equation.
Typically, that approximation is accomplished by the use of second-order central
difference formulation. However, there is a wide range of formulations to approxi-
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mate the convective term, each with its own advantages and disadvantages.

The numerical schemes and associated issues which are presented in this chapter
can be directly extended to the Navier-Stokes equation. An issue of importance is,
of course, the application of boundary conditions which are different for the Euler
and Navier-Stokes equations. The Euler equation requires slip condition at the
surface, whereas the Navier-Stokes equation requires the no-slip condition at the
surface. The application of appropriate boundary conditions will be addressed in
each chapter.

12.2 Euler Equations

Recall the equations of fluid motion in a flux vector form, given by Equation (11-
49), which is repeated here for convenience
8Q OE OF 8G JE, aG,

Bt T Tay T T 6x+6y+82 (12-1)

where all quantities have been nondimensionalized. For an inviscid flow, the viscous
forces are negligible and, therefore, Equation (12-1) is reduced to
8Q OE OF 0G

Bt + T + — oy + = 32 =0 (12-2)

where
p pu | v pw
pu pu® +p o | pou puwu
Q= pv , BE=1 puv , F = pv2 +p y G=1 pwv
pw puw pYW pw? +p
| pe; | | (pet +D)u | | (pec+ p)v | - (pey + p)w |

Due to advantages discussed previously in Chapter 9, Equation (12-2) is transformed
to a computational domain where grid point spacing is uniform and the domain is
rectangular. The transformed Euler equation is given by

BQ 8E OF &G

F AR T =0 (12-3)
where
5 = 9
Q=3 (12-4)
E = LeQ+&E+4F+86) (12:)
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. 1

F = 50Q+nE+nF+n.G) (12-6)

= 1

G = F(GQ+GE+{F +(G) (12-7)
To investigate several solution procedures, we will consider as a first step a model
system of equations, namely, the quasi one-dimensional Euler equations. With
this simple system of equations, the effect of time and spatial stepsizes, boundary
and initial conditions, convergence, and stability will be explored. Subsequently,
numerical procedures are extended to two-dimensional problems.

12.3 Quasi One-Dimensional Euler Equations

The Euler equations for a quasi one-dimensional flow may be expressed as:

continuity,
?——( S)+£( S)=0 (12-8)
8t~ T ag PRI = "
momenturn,
d a 2 as
5 (0uS) + 5-{(pu* + p)S) ~ pT- =0 (129)
energy,
9 (peeS) + Ll(pes + p)us] = 0 (12-10)
ot pet dz PE T P)UO| = -

where S is the cross-sectional area assumed independent of time, i.e., § = S(z),
and

e —e+lu2
tT T

Equations (12-8) through (12-10) are expressed in a flux vector form in a similar
fashion as the previous equations. Hence,

a8 OF
58+ - ~-H=0 (12-11)
where
p pu ds | ©
Q=|pu |, E=S|pi+p , and H=—1|p
pet (pe: + p)u 0
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12.3.1 Numerical Issues

Before proceeding to explore specific numerical schemes, several issues are ad-
dressed. First is the choice between an implicit scheme or an explicit scheme. Some
of the advantages and disadvantages of each category were explored previously;
however, at this point, consider the difference between the two schemes with regard
to linearization.

An explicit scheme can be formulated when the time derivative is approximated
by a forward difference approximation. For simplicity, a first-order approximation
is used and the explicit formulation is written as

Qn+l Qn _
— ( 3:1:) —-H"=0 (12-12)

Now, consider an implicit algorithm for Equation (12-11). The time derivative
is approximated by a first-order backward difference approximation to provide

Qn+1 Qn E\"! "
AT B —H" =0 (12-13)

Since formulation (12-13) is implicit, the second and third terms have been expressed
at the n 4+ 1 time level.
The change in flow properties per time step will be defined as

AQ=Q™ - @

Typically, the FDE is formulated in terms of AQ), which is referred to as the delta
formulation.

Observe that the nonlinear term given by the flux vector E in Equation (12-11) is
evaluated at the known time level in the formulation (12-12), and, therefore, it does
not require linearization. However, in the implicit formulation (12-13), a lineariza-
tion procedure must be considered. The linearization process introduces additional
approximations and associated errors into the equations. Thus, explicit schemes
have an advantage over implicit schemes with regard to linearization, namely, they
do not require linearization, and, therefore, associated errors are not introduced
into the equations.

Since both explicit and implicit schemes will be considered in this chapter, lin-
earization of implicit formulation is addressed next. However, since a linearization
procedure was explored previously in Chapter 11, only a brief review is presented
here.

Consider a Taylor series expansion about time level n as follows:

E'=FE" 4+ %EAt + O(At)? (12-14)
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Since E = f(Q, S), the chain rule of differentiation yields

OE OFE 0Q n 9FE 88

ot 0Q 8t ' 8S Bt
from which (note that S was assumed a function of z only and, therefore, the second
term is omitted)

OE OF 0Q . 0E Q"*''-Q~ OE AQ

"0 B a0 B —00 At (12-15)
Substitute (12-15) into Equation (12-14) to obtain
E AQ
+1 _ n ol 2
EMl=E"+ 30 AL —— At + O(At)
or
OF 9
E"l = E" 4 —AQ + O(At) (12-16)

In a similar fashion the following may be derived:

H"' = H™ 4 gg —=AQ + O(At)? (12-17)
Recall that the terms such as 0E/8Q and 8H/JQ were defined as the flux Jacobian
matrices. Derivation of Jacobian matrices was fully discussed in Chapter 11 and,
therefore, only the results are given below. The Jacobian matrix 8E/9Q will be

denoted by A and is

0 1 0
A= g—g =S (3’;—3) u? -(vy=-3u (y-1) (12-18)

| —yue: + (v - Dud ~e, — —(l-llu ~yu

The Jacobian matrix 0H/3Q is denoted by B and is

0 o0 o0
0H ds
B = 0 (r=DL—— | 3@ -—u 1 (12-19)
0 0 o0

The total energy e; in the Jacobian matrix A may be expressed in terms of the
speed of sound. We will assume a perfect gas and, therefore,

p=pe(y—1) (12-20)
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and since
E=¢e — lu2
tT g
thus, .
p=p(y—1)(e—5v)
from which P 1
e = ——— + U’ 12-21
“Top(y-1) 2 (12-21)

Speed of sound, denoted by a, is given by
2 pr

a‘ = y- 12-22
" (12-22)
After substitution of (12-22) into {12-21) the following is obtained:
a? 1,
eg=——-70+zu 12-23
(-1 T 2 (12-23)

Equation (12-23) is used to rearrange the Jacobian matrix as (note that only the
third row is affected)

0 1 0
A=S (“/_5_3) u? —(y=3)u (y—1) (12-24)
ua? 1 ;s @ 3 ) 2
-_7—1+(§'7—1)" 7—1+(§"7 ©or

The second issue to address is to identify the properties of the system of PDE’s
under consideration.

The first order hyperbolic equation (12-11) has the property that the flux vec-
tor E is a homogeneous function of degree one in Q; i.e., for any value of a,
E(aQ) = aE(Q). This property is referred to as the homogeneous property. In
general, Euler equations possess this property. Recall that for a system of equations
to be classified as hyperbolic, the Jacobian matrix A (for our model equation) must
possess real eigenvalues. The eigenvalues of A represent the characteristic direc-
tion of the hyperbolic system and thus provide the direction of the propagation
of information. Additional materials with regard to characteristics are provided in
Appendix G. Now consider the following statement. If a matrix has real eigenvalues
and associated eigenvectors, it may be diagonalized, i.e., a similarity transformation
exists such that

A=XDX™!
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where D is a diagonal matrix with its elements being the eigenvalues of A, and X
is the eigenvector matrix.

These mathematical observations are important in the development of the nu-
merical schemes to solve the model equation (12-11) and also in the specification
of the boundary conditions. The knowledge gained is easily extended to two- and
three-dimensional problems.

Before proceeding further, the following observations are re-emphasized about
the Euler equations:

(1) The flux vectors are a homogeneous function of degree one;

(2) For our hyperbolic system, the eigenvalues are real and, in general, consist of
mixed positive and negative eigenvalues;

(3) The signs of the eigenvalues indicate the direction of data propagation;
(4) The flux Jacobian matrices may be diagonalized.

The third issue to consider is the approximation of the convective term in Equa-
tion (12-11). Recall that several schemes were investigated for the solution of simple
hyperbolic equations in Chapter 6. These schemes can be extended to the Euler
equation, that is, Equation (12-11). That includes TVD schemes, Runge-Kutta
schemes, and upwind schemes, to name a few. Furthermore, recall that, in general,
the convective terms can be approximated either by a central difference approxima-
tion such as the Beam and Warming implicit scheme and the Runge-Kutta scheme,
or by a one-sided difference approximations such as the upwind schemes. Methods
which employ central difference approximation of convective terms typically require
the addition of numerical viscosity in the form of damping terms or TVD. Both
categories of schemes will be explored in this chapter.

Upwind schemes take advantage of the physics of the problem in the development
of a numerical scheme. That is, the finite difference approximation is consistent with
the direction of signal propagation. To proceed with the development of upwind
type numerical schemes, the flux vector splitting scheme introduced by Steger and
Warming [12-1] is explored first. Subsequently, the flux vector splitting scheme of
van Leer [12-2] will be introduced in Section 12.3.2.2.

The following discussion is pertinent specifically to the Steger and Warming
flux vector splitting. However, similar concepts are used in any flux vector splitting
scheme. Now return back to the flux matrix A, given by (12-24), and determine its
eigenvalues, For this purpose any program capable of symbolic manipulation such
as MACSYMA [12-3] or Maple [12-4] can be used. The resulting eigenvalues are

Al = u (12-25)
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Az
Az

= u+a

= u—a

(12-26)
(12-27)

and the associated eigenvectors (also determined by MACSYMA, Maple, etc.) are

r

1

>
I

U
1

L 2

-

u2
J

1

u-+a

| 2

1,
—u*+ua+

2

Y1

1

u-—a

[ 2

1
~u’ —ua+

a®

v—-1 |

Since the flux Jacobian matrix A possesses a complete set of eigenvalues and
eigenvectors, a similarity transformation exists such that

A=XDX!
where
u 0 0
D=85|0 u+a O
0 0 wu-a
and
1 a (o
X=1| u a(u+a) a(u—a)
1, 1, a? 1, a?
| g a(2u +ua+7_1) a(zu ua+7_1)_

where a = p/ (a\/i). The inverse of the eigenvector matrix X is

2

where g =1/ (pa\/i).

(r-15

(=D |

Bl - 1% —ua) Bla-(r-1ul  Bly-1)

| Bl - 15 +ua —Ble+ (v=10u] Aly-1)

a2

(12-28)

(12-29)

(12-30)
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Note that the flux vector E equals AQ. Also, recall that the flux vector FE
possesses the homogenous property; therefore, it may be split into subvectors such
that each subvector is associated with positive or negative eigenvalues of the flux
matrix Jacobian. Thus, the eigenvalues may be grouped as positive or negative.
For example, for a subsonic flow, two of the eigenvalues, namely u and u + a, are
positive, whereas the third eigenvalue, u — a, is negative. Therefore, the Jacobian
matrix A is split according to

A=A+ A"
where
At =XD*Xx™?
and
A =XD X!

The elements of the diagonal matrices D* and D~ are the positive and negative
eigenvalues, i.e.,

u 0 0 u 0 0 0 0 0
D=8|0 u+a O =5|0 u4a O|+S| 0 0 O
0 0 u—a 0 0 0 0 0 u—a

Now, the flux vector E may be split according to
Et = A*YQ (12-31)

and
E-=A7Q (12-32)

Note that for a supersonic flow, all three eigenvalues are positive and, therefore,
At =A

and
A =0

The flux Jacobian matrices At and A~ (for the subsonic flow) are easily deter-
mined by MACSYMA, Maple, etc. The result is:
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At =5

(v = 1)u® + a(3 = 7)u® — 24’y (7 - Dv® +a(2 - q)u +a? (r-Nu—ra+ta
||I 4a? 242 2q?
(y—1u'+2a(2 - 1)’ + a®(1 = ) + 2% ! (1= 1)wd +a(3 - 29)v* +a’ (3= Nu+a®] (v - Du?+ 21— y)u—ya® +d°
B 4a? 2a? 2a?
_ i — Du? = Vu? — Ivaly — 243
- T.«u — 27+ D’ + (=39 + 8y — 5)aut Tq» =27+ Dut + (=37 + Ty —Q)au® | - (r = Du” + 3a01 uM.mv: drau-2a
—2a%(9% — 2y 4 1) + 2a3(y + D)u? —a?(29% — 57 + 3)u? + 2a%(u + nv_
+§.L / Tn»? - :_ / Ta»? - C_
(12-33)
ﬁ _ .
|
(u = a)[(y = 1)u* + 2au] _(u=0a)l(7=1)u+4] (r-w-a)
4a? 242 2a?
I O R "~ (e= a7 — 1yt G- Do
- 4a3 242 2a?
(u—a) _wcu —au+ ..W»L [(y = Du? + 2ay] l?tnv —w:nl.nc._.. .,.nluu_ (y=Du+a] [(r-1){u-2a) ?:» In:.vwm.
4q? 2q? 2a?
(12-34) .
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The flux vector E for a subsonic flow is split according to

2vu+a—u
Et = 55”; 2(y — 1)u? + (u + a)? (12-35)
(v =D’ +[(w+a)*] /24 [ — 1) (u+ a)a?] / [2(y - 1))
and
- P 2
E = Sa (u - a) (12'36)

[(u — 0)*] /2+ (3 — 7)(u — a)a} / [2(y - 1)]

At this point, pause a moment to determine the reason for all the mathematical
manipulations considered so far. Recall that the objective is to develop efficient
and stable numerical schemes to solve a system of hyperbolic PDEs, for the time
being the model equation (12-11). To investigate the stability requirement of the
equation, a linear stability analysis is employed (Reference [12-1]). The results
indicate that if one-sided differencing is used for the spatial derivatives, it must be
a forward differencing for the terms associated with the negative eigenvalues and a
backward differencing for the terms associated with the positive eigenvalues. This
requirement is used to write the FDEs where one-sided differences are used. A
second consideration, a very important one, is the specification of the inflow and
outflow boundary conditions based on the eigenvalues. This point will be explored
after the examination of the FDEs.

12.3.2 Explicit Formulations

A first-order forward difference approximation in time introduced in Equation
(12-11) would provide the following explicit formulation.

Qn-i-l Qn
At 6

Now several schemes are available to approximate the spatial term. The resulting
finite difference equations are as follows.

(E") H"=0 (12-37)

12.3.2.1 Steger and Warming Flux Vector Splitting: The flux vector
F is split into positive and negative components, and Equation (12-37) is written
as

sﬁ? O (B +E)' —H"=0 (12-38)
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where AQ = Q"+ — Q".

Now the spatial derivative can be replaced either by a first-order or a second-
order one-sided approximation. According to the previous discussion, a backward
difference approximation is used for the positive terms and a forward difference ap-
proximation must be used for the negative terms. Thus, a first-order approximation
in space will provide the following FDE

1 /At + + - o, 1
AQ=-5 (KE) (Ef — BLy + By — B+ S(ADH, (12-39)
Observe that all the terms on the right-hand side are at time level n, that is, at a
known time level, and that the superscript n is dropped for convenience.
When a second-order approximation is used, the FDE becomes

AQ=- (ﬁ—tm) [Eg“_2 _4E}, +3E} —3E; +4Ej, - ,-;2] + (At H; (12-40)
Note that, when Equation (12-40) is computed at points ¢ = 2 and ¢ = IMM1 =
IMAX —1 (assuming that points ¢ = 1 and i = IM AX are the boundary points), a
difficulty is encountered, that is, at points i — 2 and i+2. The required points (i =0
and i = IMP1 = IMAX +1) do not exist! There are several methods to overcome
this problem. One simple method is to switch from the second-order scheme to
the first-order scheme. That is, at points 2 and TM M1, Equation (12-39) is used.
Another approach would be to employ the concept of fictitious points similar to
that discussed in Appendix B.

The flux vector E in the Steger and Warming formulation is given by relations
(12-35) and (12-36) for a subsonic flow and for a supersonic flow by E* = E and
E - =0.

Equations (12-39) and (12-40) will be referred to as first-order and second-order
explicit, respectively. In fact, observe that both are first-order accurate in time;
however, the spatial order of accuracy will be used to distinguish between the two.

12.8.2.2 Van Leer Flux Vector Splitting: Recall that, in the Steger and
Warming flux vector splitting scheme, the splitting of flux vector was based on the
eigenvalues of the Jacobian matrix A = 8E/8Q, and that the flux vector E is split
into E* and E~.

Similarly, in the Van Leer flux vector splitting scheme, the flux vector F is
expressed as E = E* + E~ where the following constraints must hold:

(a) All the eigenvalues of 8E*/9Q are > 0, and

(b) All the eigenvalues of 8E~/8Q are < 0.
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In addition, the following restrictions are imposed.
(1) The flux vectors E* and E~ must be continuous and

Et=F for M>1, and

E-=F for M<-1

(2) The Jacobian matrices 8E*/8Q and 8E~/8Q must be continuous.
(3) One of the eigenvalues of E* /0Q (or 8E~/8Q) must vanish for |M]| < 1.

(4) The components of the flux vector E* (or E~) must be symmetric to each
other with respect to M, as is the case with E. Mathematically, if E;(M) =
+E;(~M), then Ef (M) = +E7 (-~ M).

(5) The flux vectors E, E*, and E~ must be polynomials of the lowest degree in
M.

To proceed with mathematical details, first the components of flux vector E are
written in terms of M. Therefore,

Ey = Spu = SpaM (12-41)

Recall that the speed of sound is given by

a? =~
Yo
or p
= az—
Py
Now
2
Ey=S(pul+p) =8 (pa2M2 + %‘_) =5 [p02 (M’ + %) ] (12-42)

The total energy given by (12-21) is written in terms of M as

P 1, a? 1 9y,
e = +oul=—2 4 aiM
-1 T2 Ay-1) 7 2
Thus,
E; = S(pet+pu=_5 p——az—+1pa2M2+ @ aM
’ pe -1 " 2 7y

or
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By = S(pa®M) ( M2+7—11) (12-43)

Therefore, the flux vector E can be expressed as
paM
2 2, 1
E=§|pa* (M +—
7
1

3 2
paM(2M +——_~1)

Now restrictions identified earlier are imposed. Requirements (1) and (2) indi-
cate that E* and OE*/0M must vanish as M is decreased toward —1. Similarly,
E~ and 8E~/8M must vanish as M is increased toward 1. Furthermore, with the
requirement imposed by restriction (5), the flux vectors E* and E~ must include a
factor of (1 4+ M)? and (1 — M)?, respectively. Thus,

E; = S(paM) = S(pa) [71(1 + M) - %(1 - My| = Bf + B

or ]
Ef =8 (Zpa) (1+ M)?
and 1
E =8 (—Zpa) (1 - M)
for -1< M < 1.

Now, the momentum flux E, must include a cubic polynomial in M and, there-
fore, it is expressed as

E, = S(pa® (M2+$)=S(pa2)l (1+M)2( " M+2)

¥
1 ) -1 2
Tt M) ( v MJW)]

or

Ef = S(pa?)> (1+M)’( _ Rty VN :;)
and

- 1 -1 2
E2 = S(paz)z(l - .ﬂl)2 (—%—M + ;)

for -1 < M<1.
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The energy flux E5 can be split based on E; and E, according to
2 (E+)2
E+ — S Y 2
T2y - 1) (EY)
and
g Y (B
PNy -1) (BY)
for—-1< M < 1.
Finally, the flux vectors E* and E~ are written as
- )
o 1pa(l + M)
-1 2
+ + | = -1va21+M2(-~——-7 M+—)
E Ef | =5 ira¥( ) ” 5 2
E; 1..3 2 '72 v = 1 2
- 1+ M M4+ —
| a1t )2(72;—1) ( y Ty
or
i : |
7-1 2
Et = E+|¢ ( S M+ 7) 2 (12-44)
2 -1 2
a7 (7 M+ —)
| 2=\ v Y] |
and
_ —ipa(l — M)
By v—1 2
B~ = | B | =s| teat1-M) (———M+ ;;)
2
Es 1,301 _ 2 o N 1 _?_
apa (1= M) 2(v-1) ( v M+’Y ]
or
1
v—1 2
_ S P N S ¥/ i
E- = Ej “( y 'r) 2 (12-45)
2 -1 2
P — (—’Y + —)
2(v*-1) gl g

for 1< M < 1.
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Recall that, if M > 1, then E* = F and E- =0, and if M < —1, then Et =0
and E- = E.

Now the finite difterence equations (12-39) or (12-40), with the appropriate flux
vector splitting as described above, can be used for solution.

12.3.2.3 Modified Runge-Kutta Formulation: The modified fourth-order

Runge-Kutta scheme introduced in Section 6.6.8 can be extended to Equation
(12-12) to provide the following FDE

M= Qr (12-46)

- HY (12-47)

@
&)

P o= Q-

(
A |
(

W = qr- - H® (12-49)

)
a - a-a@ @)

where a second-order central difference approximation is used for the spatial deriva-

tive, that is,
OE\  Eiyn - Ei,
(a) BT (12:51)
12.3.2.4 Second-Order TVD Formulation: Several second-order TVD
schemes presented in Section 6.10.4 will be extended to a system of equations and
will be applied to the quasi one-dimensional Euler equation in this section. Following
Equation (6-123), a finite difference equation for the vector equation given by (12-
11} is written as follows

QA =Qr - % ( ) |Re.y —BE |+ —H" (12-52)

where 1
Ry, =5 (B + BF + X700 (12-53)

and 1
Ry =3 (E? + B2y + X797 ) (12-54)
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The eigenvector matrix X is given by (12-29), and the components of the flux limiter
vector ¢ are provided in the subsequent sections. Note that now the flux limiter &
is a vector with three components, that is,

¢
=1 ¢
¢3

12.3.2.4.1 Harten-Yee Upwind TVD: The general expression for the components
of the flux vector limiter is defined as

biry = (e )) (Gina+ Gi) — Yoy + Bisy)disy (12-55)

¢i—,{, = 0(0‘.'—,1.) (Gi+Giy) — ’f’(ai_,{, + ﬂi-,},)é'—,} (12-56)

where o is used to denote SA. Recall that the eigenvalues for the one-dimensional
problem are A} = u, Ay = u+ a, and A\3 = u — a. Now consider, for example, the
computation of ¢; for which a; = Su, and 6, is calculated from (12-60) as

(biygh = (X.-;i)l-‘irst row (Qi+1 — @4)

Components ¢, and ¢ are determined similarly, and subsequently the flux limiter
vector & is formed.
The various terms appearing in 45,-+§ are defined as follows

1 At
o(enyy) = g¥lag) + 1-(ony)? (12-57)
Gin=Gi o by #0
Biry = oloyy biry (12-58)
0 for &, =0
ly] for |y| > e
by) = { 24 (12-59)
e~ for lyl<e

with 0 <€ <0.125
and

biyy = (X.-:LI ) (Qit1— Q) (12-60)
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The inverse eigenvector matrix X! is given by (12-30). The terms for ¢;
defined in a similar fashion.
Several limiters have been proposed, as follow

Gi = minmod (6;_} , &;4}) (12-61)

]
‘—’I

6‘4,%6,_; + |6l+! i—)

Gi= =5 T (12-62)
G — Sy [(Biry)? + 0] + 6‘+§ [(6-3)? +w] (12.63
CRYERCRYEE
where 107" < w < 1075
. 1
G; = minmod [26,-_; y 2641 5(6¢+%+6¢_i)] (12-64)

Gy = S+*max [0, min (2

Sy » S*6iy) , min (|84 . 25%6,,)] (12-65)
where, as before,
ABS(‘SH,{;)

5

|+i-

S = Sgn (6;'+§) =
and

minmod (a, b,¢,...,n) = § *max[0, min (lal, S*b, S*¢, ..., S*xn)] (12-66)

with
ABS(a)

a

S =

12.3.2.4.2 Roe-Sweby Upwind TVD: The general expression for the components
of the flux limiter vector is given by

G; At
biry = [? (Iai+§t + A_:z:a'?ﬁ) - \aiﬂl] bivy (12-67)
bip = [ (la'-i| Az Ax % }) B Io"'-i-l] by
and the following limiters have been proposed.
G; = minmod (1,7) (12-68)
||
Gi = 13, (12-69)

Gi = max [0, min(2r,1), min(r,2)] (12-70)
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where -1 -1
Xs'+1+aQ=‘+1gcr — XiioQito for 5|'+§ #0
. i} (12-71)
0 for 6,4=0

and o = Sgn(oy, ;)

12.3.2.4.3 Davis-Yee Symmetric TVD: The general expression for the components
of the flux limiter vector is defined as

At
| A (064G + (k1) (s = Gury) | (12-72)

Again, several limiters have been introduced as follow

¢H‘! =-

G,y = minmod [26_), 26, , 26,4 , %(5‘._i+5‘.+§)] (12-73)

Giyy = minmod [8_y, &y, 83 (12-74)

Gyyy = minmod :6,-+,x£ ) 6,-_%] + minmod [6,-4_% ) 6,-+%] =64y (12-75)

where 8 =0 and pax4+3 = 0.

12.3.2.5 Modified Runge-Kutta Scheme with TVD: The modified fourth-
order Runge-Kutta scheme discussed in Section 12.3.2.3 can be amended by a TVD
scheme as a post processor step to provide a mechanism to reduce dispersion error.
In this case, after the computation of Equation (12-50), the value of Q is updated

according to (1A
t
ntl _ Antl _
Ql Ql S 2 A [

where any one of the flux limiter functions and limiters can be used.

X7y Oy — X0, 00 ] (12-76)

I+ T l+ T 1i— 4 l—

12.3.3 Implicit Formulations

The implicit formulation for the one-dimensional Euler equation is given by

n+l
S A? (gf ) ~H"l =0 (12-77)

Since Equation (12-77) is nonlinear, the linearization procedure described in Section
12.3.1 is used. Substitution of (12-16) and (12-17) into (12-77) yields

JAQ .
SAE+ 5 ( +3 QAQ) (H +%AQ) (12-78)
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This equation may be expressed in terms of the Jacobian matrices A and B as

AQ 3 oE"
S_AT + 5;(AAQ) — BAQ = ~ s + H" (12-79)
and is factored as
A oE"

where T is the identity matrix and (8A/8z)AQ implies 3(AAQ)/Ox.

Several explicit formulations described in Section 12.3.2 can be extended and
applied to Equation (12-80) to provide equivalent implicit formulations.

Typically, the Runge-Kutta scheme is used in its explicit formulation because,
first, the stability requirement is larger than the typical CFL number of one, and,
second, the implicit formulation would require an excessive amount of computa-
tion time. However, the flux vector splitting schemes can be used for implicit
formulations. In the following section, the implicit Steger and Warming flux vector
splitting formulation is used to illustrate the development of an implicit scheme.
Furthermore, the modification of the coefficient matrix due to implementation of
the boundary condition is described. Other implicit schemes can be formulated in
a similar fashion.

12.3.3.1 Steger and Warming Flux Vector Splitting: The flux vector
E and the flux Jacobian matrix A are split according to the previous discussion to
provide

[SI + At {b%(;ﬁ + A7) - B}] AQ = —At [%(}:# +E) - H]

Note that the superscript n on the right-hand side has been dropped for conve-
nience. Following previous deliberations, a backward difference approximation is
used for the positive terms, and a forward difference approximation is used for the
negative terms. Hence, when first-order approximations are used, the following
finite difference equation is obtained.

At
[SI—{- _AHE(A;‘ - AL+ AL - A) - AtB.-] AQ =

1
—At [E(Ef -Ef +Eq —ET) - Hi]

This equation is rearranged to provide
At

- (i—i tl) AQi 1+ [SI+ 2—:(14.+ -A]) - AtB,;] AQi + (A—zAi—H) AQin =

ﬂ%(}z’f —E\+E ,-E)+AtH, (12-81)
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In order to write this equation in a manageable fashion, the following are defined:

At ,
AM = _A_mAi—l

At .,
AA = {SI+E(A,-—Ai)~BiAt
At

AP = ‘A_EA;H
At o
RHS = —-A—x-(E' —'E"_1+E§+1 —E" )+AtHl

Thus, Equation (12-81) is expressed as
AMAQ; , + AAAQ + APAQ,,, = RHS; (12-82)

This equation is solved in a computational domain shown in Figure 12-1.

2
n=1
i=1 2 IMM1 M
A A
Inflow boundary OQutflow boundary

Figure 12-1. The computational domain used for the solution of Equation (12-81).

Once Equation (12-81) is applied to each grid point 1, a block tridiagonal system is
produced. Note that the elements of the coefficient matrix are themselves matrices
and, for our 1-D problem, they are 3 x 3 matrices. As a result, it is referred to
as a block tridiagonal system. To illustrate this point, consider the following set of
equations (i.e., Equation (12-82) at various % grid points):

i=2: AMyAQ: + AAAQ, + ARAQ, = RHS, (12-83a)
i=3: AM;AQ; + AAsAQs + ARAQ, = RHS, (12-83b)
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i=IMM2: AMpuAQimma + AApmeAQImm: +

+ AP AQimm = RHSiume (12-83c)
i=IMML1: AMponAQmumz + AAmmAQmm +
+APimnAQiv = RHSimm (12-83d)

Note that in Equation (12-83a), AQ, is located at the inflow boundary; and in
Equation (12-83d), AQqm is located at the outflow boundary. Specifications of
inflow and outfow boundary conditions will be discussed shortly. Equations (12-
83a) through (12-83d) are written in a matrix form as:

[ A4, AP AQ |
AM3 AA:; AP 3 AQ3
AMyme AAjme APrume AQimm2
i AMivm AAmimn | | AQimm |

-

[ RHS, - AM,AQ,
RHS;

(12-84)
RHSiMm2
 RHSimm — AP AQim |

Any standard block tridiagonal solver may be used to solve this system. Note
that, for the supersonic region of the flowfield, AP is zero (because A~ is zero)
resulting in a lower diagonal banded matrix (bidiagonal system) which is inverted
more efficiently than the tridiagonal system. Recall that a block tridiagonal solver
is discussed in Appendix E.

12.4 Boundary Conditions

The Euler equations or, generally, any system of PDEs have an unlimited
number of solutions. What makes a solution unique is the proper specification of
the initial and boundary conditions. Currently there are intensive investigations on
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the topics related to the specifications of the boundary conditions and its effect on
the stability and accuracy of the solution.

For a given PDE, a set of boundary conditions must be specified. They shall
be referred to as the “analytical boundary conditions”. Once the PDE is approxi-
mated by a FDE, it may be higher order than the PDE. Thus the FDE will require
additional boundary conditions. These boundary conditions will be referred to as
“numerical boundary conditions.”

In order to develop proper boundary conditions, the following points must be
considered:

(1) The physics of a particular problem must be modeled correctly. For example,
for a viscous flow the no slip condition at the surface is specified.

(2) The physical conditions must be represented correctly by mathematical ex-
pressions. In some instances, they are specified by numerical approximations.
For example, an adiabatic wall boundary condition requires that the tem-
perature gradient must be zero. This condition is approximated by a finite
difference relation.

(3) Additional numerical boundary conditions may be required. These boundary
conditions are usually specified by extrapolation from the interior solution.

(4) The manner in which boundary conditions are specified must be considered
in the overall stability and accuracy of the numerical scheme used to solve the
system.

(5) The boundary conditions may be applied explicitly or implicitly. Some in-
vestigators have reported minor differences for the computation of the Euler
equations when the boundary conditions were applied either implicitly or ex-
plicitly, i.e., the stability requirements are similar, see References [12-5] and
[12-6].

(6) No difficulties are observed when the exact boundary conditions are overspec-
ified [12-5].

Note: Some of the statements made above are based on limited investigations and,
therefore, they should not be generalized.

Now, consider the specification of the boundary conditions for the quasi one-
dimensional problem. Recall that the eigenvalues of the flux Jacobian matrix A are
u, u+a, and u—a. As stated previously, these eigenvalues indicate how information
is fed into the domain. To illustrate this point, assume a supersonic inflow and a
supersonic outflow. For a supersonic flow, all three eigenvalues are positive. At

4



120 Chapter 12

the inflow, three characteristics enter into the domain and, therefore, three analyt-
ical boundary conditions may be specified. At the outflow all the characteristics
leave the domain and, as a result, no boundary condition can be specified. These
situations are illustrated graphically in Figure 12-2.

The values of the dependent variables at the outflow must be evaluated based
on the information reaching the outflow from the interior points. Note that these
numerical boundary conditions cannot be specified arbitrarily and must be consis-
tent with the direction of propagation of information determined by the sign of the
eigenvalues of A. Usually, extrapolation schemes are used for this purpose. The
extrapolation procedure may be either explicit or implicit. If an explicit approach
is used, the new value at n+ 1 is determined from the value at time level n or time
levels n and n — 1; in either case, these values are known. For an implicit approach,
the values are determined at the time level n + 1 as a part of the solution. Some
extrapolation schemes reported in the literature are (extrapolation for the value of
a property f at 1 = IM from interior points at ITMM1 or IMM1 and ITMM?2,
where IMM1 =IM — 1 and IMM2=1IM - 2):

i = fivon (12-85)
T = 2 e = v (12-86)
?f{l = fimm (12-87)
B = 2fTumn — STz (12-88)
Ii;l = 2fTum1 — Fimame (12-89)

Supersonic Inflow Supersonic Qutflow

— ——
/ . 4 — . = & 1“.'-743
+ -+
i=1 2
IMM1 IM

Figure 12-2. Incoming and outgoing characteristics for the supersonic
inflow and supersonic outflow conditions.

If the outflow is subsonic, two of the eigenvalues are positive, i.e., outgoing, and
one is negative, i.e., incoming from the outside. Therefore, one analytical boundary
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condition may be specified; and the other two are determined from the interior
solution by extrapolation.

A summary of the inflow and outflow boundary conditions for subsonic and
supersonic conditions is given in Table 12-1 along with graphical illustrations.

With regard to stability, it must be pointed out that according to the linear
stability analysis, the implicit formulation is stable. However, this analysis does
not guarantee the unconditional stability of the original nonlinear equations. In
practice some stability limits are encountered. That is especially true for highly
nonlinear problems, such as domains with shocks. However, the linear stability
analysis is valuable in providing some guidelines for the stability requirements of
the numerical schemes. In addition, the manner by which boundary conditions
are specified will affect the stability of the numerical scheme. Therefore, stability
analysis must be extended to include the boundary conditions. Some findings on
the effect of boundary condition implementation are reported in Reference [12-5].

INFLOW OUTFLOW
Subsonic Supersonic Subsonic Supersonic
Number of B.C, to be
specified (Analytical 8.C.) 2 3 1 0
Number of B.C, by extra-
1 0 2 3

polation (Numerical 8.C.)

Table 12-1. Inflow and outflow boundary conditions.

12.5 Application 1: Diverging Nozzle Configuration
Consider a nozzle whose cross-sectional area is defined by
S(z) = 1.398 + 0.347tanh(0.8z — 4) (12-90)

Locate the nozzle entrance at £ = 0.0 and the nozzle exit at z = 10.0 ft. Assume
air with v = 1.4 and R = 1716 ft 1b;/Slugs°R enters the nozzle at supersonic

'
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speed. The flow leaves the nozzle under two different conditions specified as (1)
supersonic and (2) subsonic. We wish to determine the steady-state solution of the
quasi one-dimensional model equation within the domain specified in this problem.
The physical domain is illustrated in Figure 12-3.

The supersonic flow at the inlet is specified by:

1.5

il

M,
p1 = 2000.0 lby/ft?

T1 = 520 OR
Outflow
Inflow -
‘5 >
x=0.0 T ——
x=10.0
Figure 12-3. Domain of interest where the steady-state solution is sought.

For the first case, where the outflow is supersonic, no analytical boundary con-
ditions can be specified. Recall that our formulation of the Euler equation (quasi
one-dimensional) requires p, u, and e; at the inflow. The following relations are
used to determine u; and e, at the inlet:

U = Mn/’YRTl (12-91)

e, = _;RII_. + _]Lu2
T -1 T2

The numerical outflow boundary conditions are evaluated by any of the extrap-
olation schemes given by (12-85) through (12-89).

To start the solution, a set of initial conditions must be provided. The solution
may converge faster for the better initial data. An easy procedure to describe the
initial data set is to specify the flow variables everywhere in the domain to be that
of the inflow condition.

The graphical illustration of the computational domain including the initial and
boundary points is shown in Figure 12-4.

For the second case, the outflow is specified as subsonic and, therefore, one
analytical boundary condition must be specified. For our example problem, either

and
(12-92)
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a pressure of 4930.07 1b, /ft?, or a density of 0.003954 Slugs/ft?, or a subsonic velocity
of 572.76 ft/sec at the exit can be specified.

The analytical solution of this problem is easily obtained by using tables in the
standard fluid dynamics text [12-7], NACA 1135 Tables [12-8], Tables of [12-9],
or relations developed for compressible, one-dimensional flows. With the specified
subsonic speed (or pressure) at the exit plane, a normal shock at z = 5.0 is expected.
The analytical solution will be used for code validation.

=1 2 IMM1 1M

Initial condition l l

Figure 12-4. Computational domain.

Inflow boundary Outflow boundary

How is it established whether or not a steady-state solution has been reached?
Various procedures may be used. Obviously, as the steady-state solution is ap-
proached, the variation in the flow properties becomes smaller and smaller. Thus,
a convergence criterion is set; and when this condition is satisfied, the steady-state
solution has been obtained. The condition in this problem was based on the total
variations of pressure within the domain defined as

IM
DELP =Y ABS(p!*' - p?) (12-93)

=1

When DELP was less than CONV, which was set to 0.1, the solution was
assumed converged, i.e., steady-state.

In this application, solutions by several numerical schemes, the effects of step
sizes, stability, and convergence will be investigated.
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12.5.1 Supersonic Inflow, Supersonic Outflow

12.5.1.1 Analytical Solution: An expression relating the Mach number dis-
tribution to variation in area can be established which is known as the area-Mach
number relation. The derivation of this expression is given in any standard text
such as {12-10, 12-11]. The area-Mach number relation is given by

s _1(_2 =1, )]
S°—M[(7+1) (1+255 M)] (12-94)

where S* is a location where the Mach number is sonic.

For a given §/§*, there are two isentropic solutions: one subsonic and one
supersonic. The unique solution is determined by the imposed back pressure. With
the area variation provided, Equation (12-94) can be used to compute the Mach
number distribution throughout the domain. It is noted that Equation (12-94)
cannot be solved directly for M. Given an area ratio S/S*, an iterative scheme
must be employed to determine M. Once the Mach number variation has been
computed, the temperature, pressure, and density distributions are determined from
the following relations.

=1, 2\
T = T, (1 + TM’) (12-95)
-1 3
P = p (1+1—2—-M2) ! (12-96)
piul SYOANES
o = p (1 +1-m ) (12-97)

The stagnation properties used in Equations (12-95) through (12-97) are com-
puted based on the inlet data as follow.

T, = T (1 + -7—%-1-M2) =520 [1+0.2(1.5)Y] =754 °R

-1 o 3.5
P = p (1 + ;Y—Z—Mz) = 2000 [1 + 0.2(1.5)2] = 7342.1 Ib/ft?

To determine the stagnation density, either the local density at the inlet is
computed from the equation of state, that is,

py= —% = 0.002241 slugs/ft*

Subsequently, the stagnation density is determined as

1 awh ,
o= p (1 + 3’—2-1-M2) " = 0.002241 [1 + 0.2(1.5)2]



Euler Equations 125

= 0.00567 slugs/ft’

or, using the values of the stagnation properties p, can be determined from the
equation of state as follows

= E% = 0.00567 slugs/ft®
Now relations (12-95) through (12-97) can be used to determine the temperature,
pressure, and density distributions. The analytical solution at spatial increments of

1.0 ft is given in Table 12.2.

x(f) | S@) | s/s* M [pbd/f®) [ TCR) |p (slugw/f®) | u (f/s)
0.000f 1.0512 1.1762{ 1.500] 200000 520.00] 0.002241] 167655
1.000{ 1.0522] 1.1772] 1.502| 1995.58| 519.67] ©0.002238| 1677.72
2.0000 1.0567| 1.1822] 1.509( 1974.24] 518.08] 0.002221| 1683.42
3.000( 1.0782| 12063 1.543| 187939 510.84] 0.002144| 1709.05
4.000( 1.1676] 13063 1.666| 156539 484.84] 0001882 1798.09
5000, 13980 1.5641] 1.907| 1083.61| 436.47 0.001447] 1952.98
6.000( 1.6284] 1.8220| 2.091| 814.840| 40233 0.001180| 2055.29
7.0000 1.7178] 1.9220 2.152| 740.130{ 39143 0.001102| 2086.91]
8.0000 1.7393| 1.9460[ 2.166| 723.940| 388.96 0.001085 2093.99
9.000] 1.7438] 1.9511] 2.169| 720.520] 388.44 0.001081| 2095.50
10.000; 1.7448 1.9521 2.170] 719.900 388.34 0.001080| 2095.77

Table 12.2. Summary of the analytical solution for supersonic flow
within the nozzle.

12.5.1.2 Numerical Solutions: The numerical solutions are obtained by
several schemes described in Section 12.3 and are presented in this section.

The flow properties at the inlet may be determined from the given data to be
as:

i

u 1676.55 ft/s
p = 0.002241 slugs/ft’
e = 3636204 fi?/g?

The flow at the inlet is supersonic and, therefore, the flow properties specified
above are used as the inflow boundary conditions. The flow at the outlet is specified
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as supersonic; therefore, no boundary conditions can be specified. To determine the
properties at the exit plane, extrapolation is used. For this purpose, the following
relations are used:

PIM = PIMMI1
UMy = UiMM1
€ T Ctpvan

To discretize the domain, equally spaced spatial grid points are used. For now,
take the spatial step Az to be 0.2 ft and the temporal step as 0.00001 sec. This
selection of step sizes provides a Courant-Friedrichs and Lewy (CFL) number of
about 0.15 which would satisfy the stability requirement of the explicit schemes.
The CFL number is defined here as

At
Ay
Note that the terms Courant number and CFL number are identical, and therefore
they will be used interchangeably throughout the text.

To start the solution, a set of initial data describing the flow properties must be
specified which may be accomplished by various methods. Perhaps the simplest is
to set all the flow properties within the domain equal to that of the inflow values.
With these specified initial conditions, a steady state solution was obtained after
1354 time steps for the first-order Steger and Warming flux vector explicit scheme
and after 1361 time steps for the second-order Steger and Warming flux vector
explicit scheme. The convergence criterion specified by CONV was set to 0.1. The
pressure and Mach number distributions are compared to the analytical solutions
in Figures 12.5 and 12.6, respectively.

To illustrate the intermediate solutions, the pressure distribution at various time
levels is shown in Figure 12-7. Note that the time level n = 1 is the specified initial
condition, and n = 1361 is the steady-state solution. The intermediate solutions
at time levels of n = 50, 100, 200, 400, 600, and 800 are shown in this figure.
Obviously, these solutions have no significant value; it is just a means of getting
to the steady-state solution. However, note that if correct (from the physical point
of view) and accurate initial data is provided, the solution at various time levels
will represent the time-dependent solution and is usually referred to as the time
accurate solution. Since the steady-state solution is of interest in this example, it
will be referred to as the converged solution; and the time levels will be referred to
as the iteration levels.

CFL=(u+a)
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Figure 12-5. Comparison of pressure distributions for the steady-state solution.
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Figure 12-6. Comparison of Mach number distributions for the steady state
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Figure 12-7. Pressure distributions at various time intervals.

To illustrate the effect of stepsizes or the CFL number on convergence, several
time steps are used. The results are shown in Figure 12-8. Note that typically
drastic changes occur during the first several iterations; thereafter, the solution
gradually approaches the steady-state solution. Furthermore, note that log scale is
used for the vertical axis which represents the changes in pressure which are used
to check the convergence criterion. The numerical solutions by the first and second-
order explicit Steger and Warming flux vector splitting schemes are summarized
in Tables 12-3 and 12-4, where the spatial and temporal steps were 0.2 ft, and
0.00001 sec, respectively. The solution by the modified Runge-Kutta scheme is
given in Table 12-5. Since, in this problem where the flow is supersonic within the
domain and a large flow gradient within the domain does not exist, the solution
does not encounter any oscillations. Therefore, the addition of a damping term is
not necessary, and the solution given in Table 12-5 is obtained without any damping
term. A solution by the Davis-Yee TVD scheme with limiter (12-74) is provided in
Table 12-6.
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Figure 12-8. Iteration history.
x (M M |pbsf?)[p slugs/t) | u(fs) | [x(®) [ M [p (b7 |p (slugs/ft®)| u (8/s)
0.00:11.500{ 2000.00] 0.002241|1676.55 5.2011.971] 994.86 0.001366{ 1989.90
0.4011.500| 1998.90] 0.002240/1676.86 5.60{2.044 883.09] 0.001253|2030.49
0.80/1.501] 1996.82] 0.002239|1677.44 6.00{2.094] 813.10] 0.001179] 2056.92
1.2041.503| 1992.89] (.002236]1678.55 6.40|2.124] 772.41| 0.001136|2072.68
1.60;1.505] 1985.52] 0.002230{1680.64 6.8012.142| 749.77] 0.001111]2081.5%
2.00{1.510] 1971.80 0.002219{1684.52 7.2012.1513 737.49] 0.001098|2086.46
2.40]1.520] 1946.65 0.002199]1691.66 7.60(12.156] 730.91 0.001090] 2089.09
2.80[1.537] 1901.90 0.002164/1704.44 8.00{2.15%9] 727.421 (0.001086|2090.48
3.20(1.566| 1826.071 0.002103{1726.2%9 8.4012 161 725.58] 0.001084| 2091.21
3.60]1.614} 1707.48) 0.002007|1761.01 8.80i2.161| 724.62| 0.001083{2091.58
4.00[1.684] 1542.75 0.001869{1810.52 9.20i2.162] 724.13] 0.001083|2091.77
4.4011.776| 1347.19; 0.,001698[1871.56 9.60{2.162! 723.90] 0.001083}{2091.84
4 80|1.877] 1153.87] 0.001520(1934.91 10.00|2.162{ 723.79] 0.001082|2091.85

Table 12-3. Solutions by the explicit first-order SWFVS scheme
Az = 0.2 ft, At = 0.00001 sec.
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x ()] M |p (Ibsft)|p (slugs/f®)| u (/) | [x (R)] M [p (1b/87)|p (slugst’)] u (f/s)
0.00[1.500{ 2000.00] 0.002241[1676.55] | 5.20[1.953| 1007.74] 0.001373] 1979.84
0.40[1.500[ 1998.94| 0.002241|1676.84] | 5.60{2.032| 890.38 0.001257| 2024.23
0.80[1.501| 1997.01| 0.002239[1677.36| | 6.00{2.088] 816.07| 0.001181} 2054.19
1.20[1.502| 1993.38| 0.002236{1678.34| | 6.40{2.124] 772.52| 0.001136] 2072.57
1.60/1.505| 1986.57| 0.002231|1680.17] | 6.80(2.145| 748.16| 0.001110[ 2083.16
2.00[1.509| 1973.85| 0.002220|1683.60f | 7.20|2.156] 734.90| 0.001096 2089.04
2.40[1.517| 1950.49| 0.002202{1689.93| | 7.60|2.163] 727.78| 0.001089| 2092.22
2.80|1.532| 1508.66] 0.002168|1701.32} | 8.00[2.166| 723.99| 0.001085| 2093.93
3.20{1.559| 1837.14] 0.002110{1721.02] | 8.40/2.168| 721.98| 0.001082| 2094.83
3.60/1.602| 1723.72] 0.002016|1752.84] | 8.80/2.169| 720.92| 0.001081| 209531
4.00/1.668 1563.24] 0.001880{1799.30{ | 9.20|2.169| 720.36] 0.001081} 2095.56
4.40[1.756| 1368.68|° 0.001710/1858.42| | 9.60]2.170[ 720.07| 0.001080| 2095.69
4.80/1.856] 1172.27] 0.001530{1922.16| [10.00{2.170] 719.90] 0.001080| 2095.77

Table 12-4. Solutions by the explicit second-order SWFVS scheme

At = 0.00001 sec, Az = 0.2 ft.

x ()] M |p (bdfD) | p (stuge/ft®) | u (fs)| [x ()] M [p (bdft))| p (slugs/f®) | u (fv/s)
0.00{1.500] 2000.00] 0.002241]1676.55 5.20|11.955] 1006.99] 0.001374]{ 1980.53
0.40{1.500; 1998.76] 0.002240{1676.68 5.6012.040f 885.13] 0.001253]|2028.80
0.80{1.501] 1997.54] 0.002239{1677.53 6.0012.082] 821.14f 0.001186| 2049.51
1.2011.5021 1993.25| 0.002236]1677.96 6.4012.143] 759.78] 0.001124| 2084 .55
1.60[{1.505] 1987.19] 0.002232|1680.30 6.8012.122| 764.64] 0.001127]2067.95
2.0011.508| 1974.51] 0.002220(1682.95 7.2012.190] 712.44] 0.001074]2110.56
2.40|1.518 1951.51] 0.002204(1689.70 7.6012.126f 752.49] 0.001112]2065.06
2.80(1.530[ 1911.20| 0.002168|1700.17 8.0012.206] 698.66] 0.001060|2118.56
3.20/1.558( 1839.63| 0.002113{1719.59 8.40{2.134] 745.10 0.001105]2072.91
3.60[1.599 1727.76] 0.002017}1751.15 8.8012.197| 702.68] 0.001063{2113.18
4.00:1.665 1566.70] 0.001883|1797.09 9.2012.152| 731.97 0.001092|2084.37
4.40|1.7547 1370.70) 0.001712|1857.48 9.60|12.176] 716.03 0.001077( 2099.58
4.80[1.856| 1171.01] 0.001528{1922.81] ]10.00{2.176] 715.66] 0.001076}2100.01

Table 12-5. Solutions by the modified Runge-Kutta scheme
At = 0.00001 sec, Az = 0.2 ft.
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x(®)] M |p (bdRY|p slugs/ft’) | u (i) | [x ®)] M [p (/8D [p (slugs/)] u (005)
0.00]1.500f 2000.00| 0.002241|1676.55| [ 5.20[1.958] 999.26] 0.001365] 1982.10
0.40[1.500! 1999.10]  0.002241|1676.78] | 5.60/2.037] 883.40| 0.001250|2026.38
0.80!1.501) 1997.14] 0.002239(1677.30] | 6.00|2.091] 811.81] 0.001176|2055.37
1.201.502 1993.43| 0.002236/1678.27] | 6.40{2.125] 770.53| 0.001133|2072.78
1.60{1.505| 1986.46| 0.002230/1680.11} | 6.80{2.144| 747.62| 0.001109|2082.72
2.00(1.509| 1973.46| 0.002220|1683.54] | 7.20{2.154] 735.30| 0.001096|2088.11
2.40/1.517 1949.59] 0.002201{1689.85| | 7.60{2.160] 728.96| 0.001089|2090.78
2.80/1.532 1906.94f 0.002166[1701.22| | 8.00[2.163| 725.68] 0.001086]|2092.12
3.20/1.559| 1834.25| 0.002107|1720.84] | 8.40{2.164| 723.70| 0.001083|2093.06
3.60{1.602/ 1719.50| 0.002012(1752.51| | 8.80{2.166} 722.49] 0.001082]2093.71
4.00{1.667| 1558.17 0.001875|1798.74| | 9.20{2.166 722.04| 0.001082}2093 88
4.401.755| 1363.94| 0.001705|1857.60| | 9.60{2.166| 722.01] 0.001082(2093.78
4.80[1.858] 1166.13] 0.001524|1922.74| ]10.00{2.165] 722.36] 0.001082|2093.33

Table 12-6. Solutions by the second-order Davis-Yee TVD scheme
with limiter (12-74), At = 0.00001, Az = 0.2 f.

In the applications of various explicit schemes just completed, the selection of
stepsizes are limited due to stability requirement of the schemes, namely, that the
CFL numbers must be generally less than one. However, implicit schemes are
typically less restrictive, and, therefore larger CFL numbers (and corresponding
time steps) can be used. Now, consider the application of the implicit formulation
given by (12-84). Several combinations of spatial and temporal stepsizes are used
to iliustrate the effect of CFL number on convergence.

The results are summarized in Figure 12-9 and in Table 12-7, where computation
time is included as well. It is clear that as the spatial step Az is decreased, the
number of grid points in the domain is increased, which increases the number of
iterations required for a converged solution. It is especially true for lower values
of the CFL number. Notice also the reduction of CPU time (Table 12-7) as the
iteration is decreased for each converged solution.

For this application where no shock waves appear within the domain, the non-
linearity effect is weak. The linear stability analysis indicates no restriction on the
step sizes for the implicit scheme. Indeed, very large time steps corresponding to
large CFL numbers may be used to provide a converged solution. However, for
problems with shock waves which represent highly nonlinear phenomenon, that is
no longer true. A domain with a normal shock will be investigated in Section 12.5.2.

To investigate the effect of the initial condition, consider the following data:
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u = 1676.55 ft/sec

p = 0.002241 slugs/ft’
e = 3636204 ft?/sec?

u = 1441.6 ft/sec

p = 0.001142 slugs/ft*
e, = 1719557 £2/sec?

o

o
A
3]

A
o

b<xr<10

When this initial data set was used and the converged solutions were compared
to the previous solutions, a negligible effect was indicated.

Az At CFL No. of CPU

Iterations (sec.)
0.1 1x1074| 2.794 138 0.993
0.1 | 4x107¢ | 11.177 43 0.314
0.1 1x1073 | 27.943 23 0.169
0.1 | 2x1073 | 55.885 15 0.111
0.2 | 1x10™* | 1.397 138 0.485
0.2 | 4x107™* | 5.589 43 0.154
0.2 | 1x1073 | 13.971 22 0.0802
0.2 | 2x1073 | 27.943 15 0.0561
0.2 | 3x1073 | 41.914 12 0.0458
0.4 | 1x107% | 0.699 142 0.246
0.4 | 4x10™* | 2.794 45 0.0801
0.4]1x1073 | 6.98 23 0.0431
0.4 | 3x1073 | 20.957 12 0.0248
0.4 | 5x1073 | 34.928 9 0.0197

Table 12-7: The number of iterations and CPU time required
to obtain a steady state solution.
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Figure 12-9. Effect of CFL number on the number of iterations.

12.5.2 Supersonic Inflow, Subsonic Outflow

The second part of the proposed problem includes a shock wave within the
domain followed by a subsonic flow. Recall that when the flow is subsonic, one of
the eigenvalues is negative which dictates that one of the characteristics is providing
information into the domain. Thus, one analytical outflow boundary condition may
be specified at the exit. The specification may be accomplished by defining p, u,
or p at the exit. In the following results, the velocity u at the exit is specified such
that usy = 572.76 ft/sec. This value of the exit velocity corresponds to a normal
shock location of 5.0 ft within the domain.

12.5.2.1 Analytical Solution: The expression for the area-Mach number
given by (12-94) can be used to determine the flow properties from the inlet to a
location just ahead of the shock, that is, z = 5.0 ft. Subsequently, the normal shock
relations are used to determine the flow properties after the shock wave. Now again
relation (12-94) is used to compute the flow properties from the shock to the exit
plane. Recall that relation (12-94) is valid for an isentropic flow and, therefore, it
cannot be used across a normal shock wave. The analytical solution at increments
of 1.0 ft is given in Table 12.8.
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x(®) | S@®) | S/8* M |pb/®) | TCR) |p (slugs/RY)| u (fs)
0.000] 1.0512] 1.1762] 1.500] 2000.00| 520.00] 0.002241| 1676.55
1.000] 10522 1.1772} 1.502| 1995.58] 519.67| 0.002238| 1677.72
2.000| 1.0567] 1.1822| 1.509] 1974.24] 518.08] 0.002221| 168342
3.000] 1.0782] 1.2063| 1.543| 187939 510.84] 0.002144| 1709.05
4.000] 1.1676] 1.3063] 1.666| 156539 484.92| 0.001882| 1798.09
5000, 1.3980| 1.5641| 1.907| 1083.61] 436.47| 0.001447| 1952.98
5.001 1.3983| 1.1951] 0.594| 4417.84| 70427| 0.003656] 772.93
6.0000 1.6284| 1.3918| 0475 4808.12] 721.51] 0.003883] 624.74
7.000| 1.7178| 1.4682| 0.442] 4904.72| 72562 0.003939] 583.87
8.000| 1.7393| 1.4866] 0.435] 492516 726.48] 0.003951] 574.93
9.000] 1.7438] 1.4905| 0.434] 4929.28] 726.66| 0.003953| 573.11
10.000{ 1.7448| 14913 0433] 4930.07| 726.69] 0.003954| 572.76

Table 12.8: Analytical solution with a normal shock wave just down-
stream of z = 5 ft.

12.5.2.2 Numerical Solutions: To start the solution, an initial set of data
is required. The following set of data is used for this purpose:

= 1676.55 ft/sec <28
u = 572.76 ft/sec z>28

p = 2000.00 b /ft’
0.0 <z <100
p = 0.002241 slugs/ft>

The solutions by the first-order and second-order explicit Steger and Warming flux
vector splitting schemes are compared to the analytical solution in Figure 12-10.

The steady-state solutions are obtained after 8533 time steps by the first-order
scheme and after 8877 time steps by the second-order scheme, where the relevant
step sizes are Az = 0.1 and At = 0.00001 sec.

Observe that, due to the dissipation error of the first-order scheme, shock smear-
ing is much larger compared to the second-order scheme. On the other hand, due
to the dispersion error associated with the second-order scheme, some oscillations
before and after the shock (discontinuity) are observed. However, shock slope is
more accurately predicted. The effect of spatial step on the solution is shown in
Figures 12-11 and 12-12 where Az of 0.2 and 0.4 are used, respectively. As expected,
the errors associated with each scheme is increased as the step size Az is increased
from 0.1 to 0.4. The error distributions for the first-order and second-order Steger

EY
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and Warming flux vector splitting schemes are shown in Figures 12-13 and 12-14,
respectively. Note that maximum error occurs in the vicinity of sharp gradients.
The convergence histories for the second-order scheme are shown in Figure 12-15.
The convergence histories are also shown in Figure 12-16 for several temporal steps
and a spatial step of Az = 0.2. Note that as the step size is decreased, the accuracy
of solution is increased. However, the computation time (indicated by increase in
iteration number) is also increased. That is always going to be the case! Thus,
a reasonable balance between accuracy and efliciency must be established by the
user. The solutions by the explicit first-order and second-order Steger and Warm-
ing flux vector splitting are given in Tables 12-9 and 12-10, respectively. The step
sizes used are Az = 0.2 ft and At = 0.00001 sec. The converged solutions are
obtained after 7701 and 8070 time steps (iterations), respectively, for the first-order
and second-order schemes.
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35000 ~
g 30000 —
&
a 25000 -
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1500.0 — .
—— 2nd-order explicit
1000.0 = * Analytical solution
500.0 I T | T
0.0 2.0 4.0 6.0 8.0 10.0
x (ft)
Figure 12-10. Comparison of pressure distributions for the
steady state solution, Az = 0.1, At = 0.00001.
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Figure 12-11. Comparison of pressure distributions for the
steady-state solution, Az = 0.2,
At = 0.00001.
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Figure 12-12. Comparison of pressure distributions for the
steady-state solution, Az = 0.4,
At = 0.00001.
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Figure 12-13. The error distributions for the first-order explicit
SWFVS scheme, At = 0.00001.

1000.0
dt=0.00001
—A—  dx=0.1
—5— dx=0.2
& —— dx=04
5
a, 0.0 -H—B—E X~ . X — KR = — T —
| W1
4n]
a
-1000.0 I I T
0.0 5.0 10.0
x (ft)
Figure 12-14. The error distributions for the second-order SWFVS
scheme, At = 0.00001.




138 Chapter 12
1.0E+4
4t=0.00001 |
T LOE+3
[
2 —&O—  dx=0.1
an
£ 1.0E+2 — —Ar—  dx=0.2
o
2 —F— dx=04
£ LOE+1 —
£
th
§  1.0E+0 -
=
L3
K| \
£ 1LOE-l — s
1.0E-2 , , , |
0.0 2000.0 4000.0 6000.0 8000.0 10000.0
Number of iterations (time steps)
Figure 12-15. Convergence histories for the second-order SWFVS
scheme, At = 0.00001.
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Figure 12-16. Convergence histories for the second-order SWFVS
scheme, Az = 0.2 ft.
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x ()] M {p (Ibdft))[p (slugs/t™)| u (@) | [x (@] M [p (b8 p (slugs/f’)] u (fs)
0.00[1.500] 2000.00] 0.002241} 1676.55 5.20|0.676] 3948.35 0.003365| 866.04
0.40[1.500 1998.60[ 0.002240} 1676.86 5.60§0.547) 4494 58 0.003695| 713.93
0.80[1.501] 199682 0.002239| 1677.44 6.00{ 0.495} 469986 0.003817| 649.61
1.20{ 1.503; 1992.89] 0.002236] 1678.55 6.40;0.467| 4802.61 0.003877| 615.12
1.60}1.505} 1985.52} 0.002230{ 1680.64 6.80:0.452] 4859.62| 0.003911| 595.76
2.00:1.510] 1971.80f 0.002219] 1684.52 7.2010.443] 4891.18] 0.003929( 585.07
2.4011.520] 1946.65] 0.002199] 1691.66 7.60]0.439| 4508.36[ 0.003939| 579.27
2.8011.537| 1901.90] 0©0.002164| 1704.44 8.00(0.436] 4917.59] 0.003945} 576.16
3.20]1.566| 1826.07] ©.002103]1726.29 8.40/0.435] 4922.52] 0.003948| 574.50
3.6011.614| 1707.48] (.002007| 1761.01 8.80]0.434] 4925.15f 0.003949| 573.62
4.00]1.684F 1542.75f 0.001869] 1810.52 9.20]0.434| 4926.55| 0.003950] 573.15
4.4011.776] 1347.i9 0.001698| 1871.56 ©.60|0.434| 492731 0.003950f 572.89
4.80{1.359] 1902.99] 0.002062| 1544.61 10.00] 0.433{ 4927.78] 0.003950] 572.76

Table 12-9 . Solutions by the explicit first-order SWFVS scheme,

At = 0.00001 sec, Az = 0.2 ft.

x({®)] M |p (ibf/ﬁz) p (slugs/f) | u (f/s) x(®) M |p (lbp’ﬁz) p (slugs/f*) | u (ft/s)
0.00{1.500] 2000.001 0.002241| 1676.55 5.20{0.568] 447037} 0.003666] 741.99)
0.40]1.500] 1998.94] 0.002241| 1676.84 5.60]0.498| 4759.42] 0.003856| 654.34
0.8011.501] 1997.01 0.002239{ 1677.36 6.00|10.476] 4790.55| 0.003870] 627.11
1.2011.502| 1993.38] 0.002236| 1678.34 6.40{0.456] 4856.59] 0.003909] 601.75
1.60j1.505] 1986.57| 0.002231] 1680.17 6.80]0.446| 4889201 0.003928| 588.37
2.00{1.509] 1973.85 0.002220] 1683.60, 7.2010.440 4907.01 0.003939] 581.08
2.40{1.5171 1950.49| 0.002202{ 1689.93 7.6010.437| 4916.68] 0.003945| 577.16
2.8011.532] 1908.66| 0.002168|1701.32 8.00{0.435] 4921.84] 0.003948{ 575.07
3.20/1.559| 1837.14] 0.002110|1721.02 8.40;0.434{ 4924.60] 0.003949| 573.96
3.6011602| 1723.72{ 0.002016( 1752.84 8.80|0.434 4926.07 0.003950f 573.37
4.0011.668] 1563.24| 0.001880| 1799.30| 9.20/0.434] 4926.86 0.003950] 573.05
4.40]1.756] 1368.68] 0.001710| 1858.42 9.60(10.434| 4927.29] 0.003950] 572.87
48012375 780.440{ 0.001277|2196.91 10.00[0.433| 4927.56] 0.003951] 572.76

Table 12-10 . Solutions by the explicit second-order SWFVS scheme,

At = 0.00001 sec, Az = 0.2 ft.

The solutions by second-order Harten-Yee upwind TVD scheme with limiters
(12-61) through (12-65) are shown in Figure 12-17 where the Mach number distri-
butions are compared to the analytical results. The solution by limiter (12-64) is
also provided in Table 12-11.
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x(®] M [p (bdf?)]p (slugs/f®)| u (f/s) | [x (@[ M |[p (bs/fth)]p (slugs/R) | u (ft/s)
0.00/1.500| 2000.00] 0.002241| 1676.55 5.20|0.560| 4547.50, 0.003731| 731.19
0.40/1.500 1999.19] 0.002241)1676.77 5.6010.508| 4714.24] 0.003828] 66649
0.80/1.501| 1997.31| 0.002239( 1677.27 6.00{0.475] 4813.76; 0.003885]{ 625.60
1.20[1.502} 1993.75| 0.002236( 1678.23 6.40{0.456] 4867.82 0.003917| 601.70
1.60[1.504] 1987.06] 0.002231| 1680.02 6.80(0.446| 4896.37( 0.003935] 588.32
2.00{1.509 1974.56] 0.002221f 1683.38 7.20{0.440] 4911.30{ 0.003943; 581.03
2.40(1.517] 1951.59 0.002202{ 1689.59 7.6010.437] 4919.06| 0.003946] 577.13
2.80{1.532| 1910.43] 0.002169| 1700.78 8.00(0.435] 4923.20] 0.003947| 575.05
3.20/1.557] 183992 0.002111]1720.20 8.40[0.434] 492547 0.003948 57394
3.60{1.600| 172786 0.002019|1751.77 8.80/0.434] 4926.68; 0.003950| 573.34
4.00}1.665] 1568.95 0.001884} 1798.20 9.2010.434| 4927.32( 0.003952] 573.02
4.4011.753| 1376.89| 0.001717| 1857.19 9.60/0.434] 4927701 0.003952] 572.84
4.80/1.842] 1198.66] (.001559]1911.4} 10.00]0.433} 4927.86; 0.003950| 572.76

Table 12-11 . Solutions by the second-order Harten-Yee upwind TVD
scheme, At = 0.00001 sec, Az = 0.2 ft.

2.50
—o— Limiter 1261

2.00 — o Limiter 12-62
—>—  Limiter 12-64

1.50 —<—  Limiter 12-65

- ' %  Analytical solution
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Figure 12-17 . Comparison of Mach number distributions by the
second-order Harten-Yee upwind TVD scheme,
At = 0.00001 sec, Az = 0.2 ft.
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x ()] M |p (bd/R%) [p (shugs/ft3)| u (R/s) | [x(®)| M [p (1bs8%)]p (stugs/f®)] u (fs)
0.00{1.500] 2000.00] 0.002241|1676.55 | 5.20[0.558] 4535.17] 0.003724] 728 53
0.40[1.500| 1999.21 0.002241|1676.75] | 5.60(0.506| 4708.34| 0.003826| 664 02
0.80{1.501] 199735 0.002239|1677.24 6.00(0.474| 4806.73 0.003882| 62443
1.2011.502] 1993.81 0.002236| 1678.17 6.40/0.456| 4864.35 0.003915| 600.78
1.60{1.504] 1987.16 0.002231{1679.91 6.80/0.445] 4894.13 0.003932| 587.84
2.00{1.509| 1974.74| 0.002221[1683.18] | 7.20(0.440| 4910.19| 0.003941| 580.7¢
2.40[1.517 1951.84| 0.002203(1689.24] | 7.60|0.437| 4918.64| 0.003946| 576.98
2.80{1.531] 1910.61] 0.002169]1700.22] | 8.00(0.435| 4923.12| 0.003948| 574 95
3.20[1.557| 1839.88] 0.002111|1719.28] | 8.40|0.434 4925.50] 0.003950! 573.88
3.60/1.600] 1724.65| 0.002016|1751.41} | 8.80|0.434| 4926 76| 0.003950| 573.30
4.00{1.662| 1570.23| 0.001885|1794.14] | 9.20l0.434| 4927.45| 0.003951] 573.00
4.40/1.775| 1337.77] 0.001681|1873.37] | 9.60/0.433| 4927.78| 0.003951| 572.82
4.80/1.832] 1199.80] 0.001560] 1900.67| [10.00|0.433| 4928.01] ©.003951| 572.76

Table 12-12 . Solutions by the second-order Davis-Yee symmetric

TVD scheme, At = 0.00001 sec, Az = 0.2 ft.

2.50
—A—  Limiter 12-73
* | —>— Limiter 1275
“ Analytical solution
1.50
=
1.00
0.50
0.00 T ; T
0.0 2.0 4.0 6.0 8.0 10.0
% (ft)

Figure 12-18 . Comparison of Mach number distributions by the
second-order Davis-Yee symmetric TVD scheme,
At = 0.00001 sec, Az = 0.2 ft.
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The solutions by the second-order Davis-Yee symmetric TVD scheme are shown
in Figure 12-18. Figure 12-18 illustrates the Mach number distributions computed
by limiters (12-73) through (12-75). The solution by limiter (12-73) is also provided

in Table 12-12.

x (@] M |p (bsfD)]p (shugs/ft)] u (/sy} [x (@] M Tp (osRD[p (slugs/ft®)

u (ft/s)

0.00|1.500{ 2000.00] 0.002241|1676.55 5.20(0.546] 4578.15| 0.003751
0.40/1.500| 1998.82] 0.002240] 1676.86 5.60]0.513]1 4647.04) 0.003790
0.80{1.501] 1996.63] 0.002239| 1677.45 6.00{0.477] 4773.78) 0.003864
1.20]1.503| 1992.41f 0.002235| 1678.55 6.40/0.457] 4843.96f 0.003904
1.60]1.505| 1984.71] 0.002229) 1680.64 6.80|0.446| 4882.76| 0.003926
2.00]1.510 1969.97] 0.002217| 1684.52 7.20{0.440{ 4903.82| 0.003937
2.40{1.520] 1943.76] 0.002196] 1691.66 7.60{0.437| 4915.08) 0.003944
2.80[1.536] 1896.98| 0.002158| 1704.41 8.00(0.435| 4921.08] 0.003947
3.20{1.566; 1817.47 0.002093|1726.17 8.40{0.434| 492427 0.003949
3.60[1.611| 1700.79] 0.001996( 1759.49 8.80(0.434{ 492597} 0.003950
4.00{1.683| 1522.19] 0.001843| 1809.71 9.20/0.434] 4926.88] ©0.003950
4.40|1.753| 1408.76{ 0.001748| 1861.65 9.60]0.434] 4927.46| 0.003950
4.80]1.863] 1157.86] 0.001531}1917.62] ]10.00{0.433] 4927.66{ 0.003950

713.73
671.78
627.94
602.96
589.01
581.41
577.33
575.15
573.99
573.37
573.04
572.88
572.76

scheme, At = 0.00001 sec, Az = 0.2 ft.

Table 12-13 . Solutions by the second-order Roe Sweby upwind TVD

x (ft)

second-order Roe Sweby upwind TVD
At = 0.00001 sec, Az = 0.2 ft.
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Figure 12-19 . Comparison of Mach number distributions by the

scheme,
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The solutions by the Roe-Sweby upwind TVD scheme are shown in Figure 12-19
for limiters (12-68) through (12-70). The solution with limiter (12-70) is also pre-
sented in Table 12-13.

Similar to the case of supersonic flow, the implicit formulation of (12-84) is used
to investigate the effect of step sizes (CFL number) on the convergence. As in the
previous case, the number of iterations required for a converged solution is decreased
as the CFL number is increased. However, note that for this case where a normal
shock appears within the domain, the number of iterations is larger than for the
fully supersonic flow (i.e., no shock wave in the domain). For the CFL number of
2.8 when Ax = 0.1 and At = 0.0001, this factor is about 9.0. The effect of the
spatial step size is shown in Figure 12-20, where the CFL number and the number of
iterations for a converged solution are related. When Figure 12-20 is compared with
Figure 12-9, it is obvious that the maximum allowable CFL number has decreased
for domains with shock waves. This point was mentioned earlier, whereby the high
nonlinearity effects due to shock waves were identified as the cause of instability for
larger values of the CFL number.

wefmdms  Delx = 0.1
—Q— Delx=02
——figeme  Delx = 0.4
1000.00 ~—
2
g
:
2
g -
Z,
0.00 T I T ]
0.00 4.00 8.00
CFL Number
Figure 12-20. Effect of the CFL number on the number of iterations.
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12.6 Grid Clustering

In the applications just investigated, equal grid spacing was employed. Shock
smearing due to a relatively large spatial grid was clearly illustrated for first-order
schemes. To decrease the shock smearing, a finer grid system is required. An
efficient scheme to obtain a better flow resolution in the vicinity of high gradients
is to use grid clustering. For this purpose, the following coordinate transformation
is considered

T =1
£ = S(I)t)
from which E_ﬁi’[_i
8t dr 6t Ot
e o _o0 o0t _ 0
dz O8Oz Ot Ox TOL

For the one-dimensional problem, the Jacobian of transformation is defined as

1
J=—
3
Note that for a fixed grid system &; = 0 and, therefore, {; = J. Now the governing
quasi one-dimensional equation is transformed to provide

i OF
3(5Q) + & —H =0 (12-98)
Once this equation is divided by J and rearranged, the following equation results
8, .~  OE _
5 (5Q) + T H=0 (12-99)
where
= Q = = H
Q—*j, E—E, a,ndH—J

The linearization and numerical scheme is similar to that of the previous problem.
Grid point clustering was produced by utilizing the following function

a=t{i-a|(BH) o/ [B) T} e

where L is the length of the domain and g is the clustering parameter. The spatial
locations of grid points from the entrance to the shock location at £ = 5.0 ft is
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determined by Equation (12-100) and subsequently reflected to specify grid points
from the shock to the exit plane. '

The converged solutions, obtained from Equation (12-99) utilizing the gridpoint
clustering relation of (12-100), are compared to the solutions obtained by a constant
Az of 0.2 in Figures 12-21 and 12-22. The clustering parameter § was set to
1.05. The solutions shown in Figure 12-21 are obtained with the explicit first-order
SWFVS scheme, whereas the solutions shown in Figure 12-22 are obtained by the
explicit second-order SWFVS scheme. By inspection of Figures 12-21 and 12-22, it
is evident that the shock smearing has been reduced substantially. However, note
that dispersion error indicated by oscillations in the vicinity of shock wave remains,
and, in fact, it had increased behind the shockwave. The addition of a fourth-order
damping term or TVD will reduce these oscillations.

5000.00 = | —A—  Ax=0.2
—&— Pp=1.05

4000.00 — * Analytical
g 3000.00 =
(=9

2000.00

1000.00 =

T T T T
0.00 2.00 4,00 6.00 8.00 10.00

x (ft)

Figure 12-21. Comparison of the pressure distributions for the '
steady-state solution with grid clustering obtained
from the explicit first-order SWFVS scheme.




146 Chapter 12
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3
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Figure 12-22. Comparison of the pressure distributions for the
steady-state solution with grid clustering obtained
from the explicit second-order SWEFVS scheme.

12.7 Global Time Step and Local Time Step

The solutions in the previous example were obtained by a specified temporal
step. A few points, with regard to the problem and the solution schemes, are
iterated at this time. Recall that a steady-state solution is to be computed for the
given variable area nozzle. The solution was initiated with a specified but arbitrary
initial condition. The solution history followed a path to reach a steady-state (or
converged) solution. The solution path is, of course, physically meaningless, as
discussed previously. Now, if one could introduce a technique by which convergence
is accelerated, it would certainly increase the efficiency of the numerical scheme.
With these points in mind, consider the following concept.

First, note that an equivalent way of specifying a constant temporal step is to
specify the CFL number. For example, one may specify CFL = 0.15, from which a
time step is determined according to

Az
At =(CFL)y——— 12-101
(CFL o (12-101)
Now one can use this value of At and proceed with the solution until a converged
solution has been achieved. Obviously this is the general approach that was followed
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in the previous applications; that is, the solutions were obtained with a constant
time step within the domain. Call this constant time step as the global time step,
At,;. Now consider relation (12-101) and scrutinize it carefully, keeping in mind the
discussion just completed about the path to a converged solution. Since the value of
(u+ a) varies within the domain, the corresponding values of At would vary within
the domain as well; that is, A¢ would have different values at different locations.
Call this variable At as the local time step designated by At,.

At this point, consider the following concept posed by the question: What if
one uses local time steps to advance the solution? This would allow the solution
at each point to advance through a local time which may be greater than At,.
Therefore, the solution moves faster toward convergence in regions where At, is
larger. This has an overall effect of speeding the convergence. This concept is
known as “local time stepping.” The effect of local time stepping is more dominant
in situations when gridpoint spacing varies from location to location, that is, when
gridpoint clustering is used. In that situation, the time step (for the one-dimensional
problem) is determined from

Aty = (CFL) —2¢ (12-102)
[¢:(u + a)]
Note that now, in regions where the grid is coarse, At, would be greater than the
At, in regions where the grid is fine for comparable velocities.

The example of Section 12.5 is used to illustrate the effect of local time stepping
on convergence. The numerical scheme employed is the explicit first-order Steger
and Warming flux vector splitting. The computations will be considered for a
specified equal grid spacing as well as with grid point clustering. For the first
investigation, an equal grid spacing of 0.2 ft and a CFL number of 0.15 is used.
The initial and boundary conditions are the same as those specified in Section 12.5.
Two solutions are obtained, one with a global time step and one with a local time
step.

Flow Global time step | Local time step
Fully supersonic 1379 1317
Subsonic/supersonic 7650 5692

Table 12-14: Number of iterations (time steps) required
for the converged solution.
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12E-5 =
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Figure 12-23. A comparison of the global and local time steps for
supersonic nozzle flow.

A comparison of the global and local time steps at several iteration levels are shown
in Figure 12-23 for the fully supersonic flow of Section 12.5.1 and in Figure 12-24
for the supersonic/subsonic flow of Section 12.5.2. The number of iterations (time
steps) required for converged (steady-state) solution is shown in Table 12-14 for
each case. The convergence criterion is set at 0.1 based on the total variation in
the pressure, as before. The convergence histories for fully supersonic and super-
sonic/subsonic cases are shown in Figures 12-25 and 12-26, respectively. Similar
computations are performed for the second investigation where grid point cluster-
ing is used. The results will be illustrated for the supersonic/subsonic problem of
Section 12.5.2 with a grid clustering function of Section 12.6 and with § = 1.05.
The global and local time steps at several iteration levels are shown in Figure 12-27.
Observe that, due to a large variation of spatial grid spacing, the variation in local
time step is much larger than that for equivalent constant spatial grid, illustrated in
Figure 12-24. The convergence histories are shown in Figure 12-28. The converged
(steady-state) solution with a global time step of 1.9617x10% corresponding to the
CFL number of 0.15 was obtained after 35,438 time steps. When local time stepping
was used, the converged solution was obtained after 12,058 time steps.
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In the example just completed, the local time step was evaluated at each time
level. However, determination of a local time step at each time level is not necessary.
In fact, a local time step can be calculated and used for the next few hundred (e.g.,
500) time levels and recomputed for the next several hundred time levels and so on.

In closing this section, it is noted that local time stepping accelerates the solution
toward steady state with very little modification/addition to a computer code. The
total saving in computation time could be substantial (e.g., as high as 50-70% ).
However, recall that this approach can be used only for steady-state solutions, and
it cannot be used for time accurate solutions.

— — = Global dt ——  Local dt, N=500
~—>¢— Local dt,N=1 —A—  Local dt, N=2000
—&—  Local dt, N=100 —S7Z— Local dt, N=5000
2E-5
l.SE-S - x x \’<
1.6E-5 — S
dt  14E-5 —
1.2E-5 ~
L ..
D R i
8E-6 I | I |
0.00 2.00 4.00 6.00 8.00 10.00
x (ft)
Figure 12-24. A comparison of the global and local time steps for
supersonic/subsonic nozzle flow.
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Figure 12-25. Convergence histories for the explicit first-order SWFVS
scheme for supersonic nozzle flow.
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Figure 12-26. Convergence histories for the explicit first-order SWFVS
scheme for supersonic/subsonic nozzle flow.
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4E-5
— — — Global dt —2%—  Local dt, N=5000
—>¢— Local dt, N=1 —3FZ—  Local dt, N=12000
3E.s —J| —©— Local dt, N=500
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0.00 2.00 4.00 6.00 8.00 10.00
x (ft)

Figure 12-27. A comparison of the global and local time steps for
supersonic/subsonic flow with grid point clustering.
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'g 1.0E+2 —&—  Global dt
é” ) —A— Local dt
5 1.0E+l —
.8
% 1.0E+0 —
G
g 1.0E-1 —

1.0E-2 1 T T

0.0 10000.0 20000.0 30000.0 40000.0

Number of iterations

Figure 12-28. Convergence histories for the explicit first-order SWFVS
scheme for supersonic/subsonic with gridpoint clustering.
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12.8 Application 2: Shock Tube or Riemann Problem

A second example for the solution of the one-dimensional Euler equation is
proposed by investigations of the shock tube problem. The shock tube problem is
a good case to study because it involves severe situations in a flow involving shock
wave, contact surface, and expansion waves.

A description of the shock tube, analytical solution, and numerical solution is
to follow.

12.8.1 Problem Description

A shock tube is a device which is used in the experimental investigation of
several physical phenomena, such as chemical reaction kinetics, shock structure, and
aerothermodynamics of supersonic/hypersonic vehicles.

A shock tube is a relatively long and a constant area tube which is divided
into two sections by a diaphragm, as shown in Figure 12-29. The section including
the high pressure gas is called the driver section and will be denoted as region 4,
whereas the section with low pressure is called the driven section (or the expansion

Driver section Driven(or expansion) section
High pressure gas @) Low pressure gas ()
x=00 Diaphragm x=L
p
Pa
P !
0.0 L b
Figure 12-29. A shock tube at its initial state and the corresponding
pressure distribution.
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section), and will be denoted as region 1. The two gases in sections 1 and 4 may
be different, and their corresponding ratio of specific heats are given by v and ,
respectively.

Complete specification of driver and expansion gases is sufficient to provide the
solution for the shock tube problem which is also known as the Riemann problem.
Thus, at the initial state, the following data is provided: ps, T4, Y4, and p1,Tim.
The operation of a shock tube is initiated by the rupture of the diaphragm, and the
resulting flowfield is briefly described in the following.

Once the diaphragm is ruptured, a normal shock propagates into the low pres-
sure region 1, and a series of expansion waves propagate into the high pressure
region 4. As the shock wave moves to the right over the gas, it accelerates the gas
in the positive z-direction with a velocity of V;. At the same time, an expansion
wave moving to the left accelerates the gas, also in the positive z-direction, with
a velocity of V3. The leading expansion wave moves with a velocity of a4, whereas
the trailing wave moves with a velocity of as. Now recall that a shock wave is a
nonisentropic process, whereas an expansion wave is an isentropic process. There-
fore the entropies behind the shock and expansion waves would be different. Thus
two distinct regions are identified separately by what is known as constent surface.
These regions are commonly identified as regions 2 and 3. A contact surface is de-
fined as a discontinuity in entropy and temperature, whereas pressure and velocity
are continuous, that is, s; # s3, Tz # T, and p; = ps, and V3 = V3.

The flow pattern and the corresponding pressure, temperature, and velocity
distributions are illustrated in Figure 12-30.

12.8.2 Analytical Solution

The analytical solution of the shock tube problem can be achieved by the
following relations. It is assumed that the flow is inviscid and one-dimensional
and that the gas is a perfect gas. The derivation of these relations can be found
in References [12-11, 12-12]. A pressure ratio can be established by the following
relation.

2
Y —1

( A Yot
Ps D2

a1\ (P
L )
" D - 1
h h =
[4’)’? +271(m +1) (?‘1' - 1)] 2

Note that Equation (12-103) must be solved by an iterative scheme for pz/p; which
defines the shock strength. Equation (12-103) can be rearranged in terms of the

, (12-103)

\
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shock Mach number M,, as follows.

2y
ol (ﬂ) (M?2-1) -1
P m—1f 2m va+ 1 \ay s
P _ —1 [1- 12-
n m+1 [71 - 1M’ ] M, (12-104)

Again, Equation (12-104) must be solved by an iterative scheme. Once py/p, is
determined, the temperature, density, shock velocity, and the velocity behind the
wave V; can be determined from the following relations.

m+1l  po
T ~1 t o
2 _k_om P1 (12-105)
T 20 m+1 (pz)
+_ —_—
n—1\m
1+’71+1 (1_)2_)
P2 m—11\m
f o _ 12-
- TES (12-106)
m-1 m
1
Vi = a [1+"‘+1 (&— )]" (12-107)
2y h
M = Y (12-108)
a1
and
1
2m 2
a, (P2 7+ 1
Vo = —|—=-1) | ——A—— 12-109
fom (m ) n-1 p (12-109)
n+1l pm

The flow properties in region 3 are determined as follow. First, the strength of the
expansion wave is calculated from

20 (12-110)
Ps D1 Ps D1 Da
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/_ Expansion waves

f Shock wave

(271 VS
o+ @ —_—

V4=O

Va

" O

Vs

> @

V1=0

Ps

Pi=D

\— Contact surface

Dy

b

I,=T

Vi=h

Figure 12-30. Flow pattern in the shock tube and the corresponding
pressure, temperature, and velocity distributions.
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Since the expansion wave is an isentropic process, the flow properties across the
wave are determined from the isentropic relations.

Y —1
I3 p;;) Y4
— = = 12-111
T, (P4 ( )
1
B (&) ™ (12-112)
P4 P4
The speed of sound and the Mach number in region 3 are determined from
Y —1
% _ (&) 2% (12-113)
] Da
and
Ya—1
My= 2 (ﬂ) n_y (12-114)
Ya—1|\Ds
Subsequently, the velocity is given by
V3 = M3l13 (12-115)

To calculate the flow variation within the expansion wave, recall that the equation
for C~ characteristic is given by Equation (A-30b).

dx

E =V-a (12-116)
which can be integrated to yield

z=(V—-a)t (12-117)

Furthermore, since [from Equation (A-35a))

2
V+ —g—i— = constant

The following relation can be developed

a v—1 (V)
Z=1-1_(= 12-
Z=1-5 g (12-118)
Now, from Equations (12-117) and (12-118), one obtains
2 z
V = -—) _
= (a4+ : (12-119)
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Assuming a perfect gas where a = (YRT)"?, then

T v—1/V\]?
=1t -
Ty [ 2 (04)] (12-120)
and using isentropic relations
2
el ek ] K 12
== 1-=(= -121
Pa 2 \agy ( )
and
2y
ol Ll ) A
£ = - - 12-122
D4 2 \a4 ( )

The analytical solution described in this section can be used for validation of
the numerical solution as well as for accuracy analysis.

12.8.3 Numerical Solution

The shock tube problem is governed by the one-dimensional Euler equation
given by Equation (12-11), which is written as

X = 12-12
+5 (12-12)

for a constant area problem.

The numerical solution is obtained by the modified Runge-Kutta scheme with
TVD, as given by Equation (12-76). The shock tube is 10 units long, and the
diaphragm is located at 5. The following initial conditions are specified.

pa =10 p1=0.125

Vi=0.0 V1 =0.0

ps= 1.0 m =0.1
Ta=7v=14 n=vy=14

A simple zero-order extrapolation is used at the boundaries, that is
= Qg

and

n+1l _ ntl
IM — QIM—I
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The solutions obtained with three different TVD models are compared to the
analytical solution in Figure 12-31. The spatial step is Az = 1.0, and the solution
corresponds to a time level of 120.

The specific limiters used are (12-61), (12-68), and (12-73) for H-Y', R-S, and D-
Y models, respectively. Solutions are also obtained with finer grid where Az = 0.25,
as illustrated in Figure 12-32. Solutions are also obtained with the Harten-Yee
upwind TVD model with 5 different limiters given in Section 12.3.2.4.1 and are
illustrated in Figure 12-33. Several observations can be made at this point. The R-
S model produces more dissipation than others, and, therefore, shock and contact
surface smearing appear in the solution. The H-Y model computed the shock and
the contact surface more accurately than the other two models. As expected, a
reduction in grid spacing increases the accuracy of solution, as seen by comparison
of Figures 12-31 and 12-32. Finally, the accuracy of solution depends on the limiter
used, as shown in Figure 12-33.
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g WH -
L (12-61)

(12-68)

’ HW ‘ (12-73)
|

—A—  Limiter 12-61
—f3— Limiter 12-68
T

4

1.0

Limiter 12-73
Analytical solution

0.5 —

lbl—arm—mga—ﬁe*
0.0

0.0 500.0 1000.0

Figure 12-31. The density distributions obtained by the Runge-Kutta
scheme augmented with TVD models, Az = 1.0.
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WO
W=

(12-68)

T (12-73) ]

P
—A— Limiter 12-61

1.0 = Limiter 12-68
—57— Limiter 12-73

- & Analytical solution
0.5 —
0.0 1 | |

0.0 500.0 1000.0

Figure 12-32. The density distributions obtained by the Runge-Kutta
scheme augmented with TVD models, Az = 0.20.
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(12-61)

=

(12-62)

W[

(12-64)

(12-65)

—A— Limiter 12-61
—&—  Limiter 12-62
—f(3— Limiter 12-63

1.0

0.5 —
57— Limiter 12-64
4| —p— Limiter 1265
¢  Aualytical solution
0.0 , , l
0.0 500.0 1000.0

X

Figure 12-33. Comparison of solutions with several limiters of the
Harten-Yee upwind TVD model.
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12.9 Two-Dimensional Planar and Axisymmetric Eu-
ler Equations

The procedure for the solution of the quasi one-dimensional Euler equation,
along with some guidelines on stability, implementation of boundary conditions,
and specification of the initial condition, was established in the preceding sections.
In this section, two-dimensional planar and axisymmetric Euler equations will be
considered.

The governing equation of motion for the two-dimensional /axisymmetric inviscid

flow is:
Q@ OF OF
=+t aH =0 12-124
5t + 52 + 3 +a ( )
where
p pu
2
+
Q= | ™ (12-125a) E=|"TP (12-125b)
pu puv
| pee | | (pec+p)u |
pv pY
F = | (12-125¢) g=1" (12-125d)
pv? +p V| pv®
| (pe: + p)v | | (pe:+p)v |
and

{ 0 for a two-dimensional planar flow
O =

1 for a two-dimensional axisymmetric flow

The equations of motion were transformed from physical space to computational
space in Chapter 11. With the generalized coordinate transformation, the Euler
equation in the computational space become

o) OE OF .
5T aE Tyt =0 (12-126)

where

(12-127)

~[O
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E = S[6Q+&E+6F] (12-128)
F = %[TI:Q'*'T,’:E'*'T],,F] (12-129)
_ H

B= (12-130)

12.9.1 Numerical Considerations

Issues which were addressed in Section 12.3.1 with regard to the one-dimensional
Euler equation are just as valid for the two- and three-dimensional Euler equations.
However, it is beneficial to revisit these issues and to investigate the mathematical
details for the two-dimensional equations which are addressed in this section. Sub-
sequently, the extension from two-dimensions to three-dimensions is rather straight-
forward. The three-dimensional equations and the associated Jacobian matrices are
addressed in Chapter 11, and a discussion of an implicit solution procedure for the
three-dimensional applications is provided in Chapter 14.

First, the issue of linearization of the Euler equation which will be required for
implicit schemes is explored. A first-order backward approximation for the Euler
equation yields

An+l _ n =\ n+l =\ ntl _

Since Equation (12-131) is nonlinear, the following approximations are used to
linearize the equation

B o= By (gg) AQ + O(Ar)? (12-182)
Frlo= gy (gg) AQ + O(Ar)? (12-133)
A o= B4 (gg ) AQ + O(AT)? (12-134)

where 8E/8Q, 8F/8Q and 8H/0Q are the flux Jacobian matrices defined as
OE[0Q = A, OF/8Q = B, and 0H/8Q = C. These matrices are given in Chap-
ter 11 by Equations (11-213), (11-214) and (11-215).

Some of the numerical schemes to be investigated shortly require the modifica-
tion of the elements of the Jacobian matrices. For this purpose, the elements of
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the flux Jacobian matrices are rearranged such that e; is expressed in terms of the
speed of sound, a, and the velocity components, u and v. This relation, derived as
Equation (12-23) for the one-dimensional case, is extended to the two-dimensional

problem as

a?

BRTCRSY
The flux Jacobian matrices A and B are now modified using Equation (12-135).

1
e + -2—(u2 + v?) (12-135)

& e €y 0
—u(uée +v{y) G+ 6B -7 —(1= 1)k (v — 1)E
s [50r - 1+ %) +e +on
oE '

A= 3 —v(ués + v€,) v — (17— 1)&u &+ écu (v - 1)€,

+§, [%(7 -1+ ”,)] +6(3 v
a? 1, 5 2 a® 1 2 2
(é:u + &v)- & "7—_—1‘ + E(u + v?) ¢, 'y_—_-T + E(u + v¥) e+
2
[_1‘1 1 + (';"Y - 1)((;2 + u:)] —-(—y -— l)(f,u + EVU)U —(‘1 - ])(f,u + fvu)v a’(fzu + Evu)
l

(12-136)
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(Le1-21)

(afls + n2L)L

a(a®l + n7l)(1 — L)—

n(atl + n®b)(1 - L)—

o -5+ 155

b

— 4 - L
+ ?a + uavm + ! _ Ay ?a + u:vm + I g 2, (*a + *bn)
1 72 1 z? |
o T & apr
aL — g%t | [CRFENE SL st
A — L) nl 4 (] — &) — ol | (afl: + nol)a—
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“ nth+ afli4 Tap + (1 — Sﬂ T4+
]
Ay —-4) | a1 — &)— n(k — g)* 4 (*ha + “un)n—
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The eigenvalues of matrix A are determined to be

Aee = L+ &GUHEY (12-138)
Ay = &L+ E&ut & (12-139)
do = G+EutEutafe+el (12-140)
de = G+Eutbu-ofe+e (12-141)
The eigenvector matrix as determined by MACSYMA is
0 1 1 1
_f_y ur + vy az afy
€ £ MY~ Y
x + E!J E: + Ey
— e
1 0 v+ afy - v - aEy .
Xa= i+g £ +¢
v€y — uf, 2uvly + (u? ~ v)E, u? +v? a? u? + v? a’
éz 2, 2 + ¥ - 1+ 2 + ¥ - 1+
) +a(u€¢ + vfy_)_ _ a(uéz + v€y)
NGrT Jare
|
{

(12-142)
and the inverse of the eigenvector matrix X4 is
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| ' [
(1- 7v(u? + v?) I {y — Duv (v — Do? l (v - v
2a? + [ a? t a? + l T
+€y(ufa: -+ U&y) = _ Er&y + E ll
£2+¢2 | §2+ &} E2+¢E2 _l+
_____ —+—— e
1+(1—7)(U2+v2) I (y = Du (y— v I y-1
%a? | a? a? I~z
____________ +m____*u________________ﬂ_u_i_______
-DE+?) Tl=7u & (l=yv & y 1
X;{l = 4a? | 2q? % /£3+63 2a? 26!\/5—,;24'—53 2a?
_ uly + vy o
2a, /€2 + £2
(v = (* ++?) ! (1 = y)u (L=7v & y=1
: 2
442 g 2a? 2a Qam 2q?
'; + ufy + vfy I _ & |
i %, /€2 + €2 2a, [€2 + €2 |
‘ ay/§ ¥ E G y. {
(12-143)
Similarly, the eigenvalues of B are determined as
A = M+ nu+ U (12-144)
A = M+ nzu+ o (12-145)
Anp = T+ nzu+ v+ ay/n + 0l (12-146)
A = M+ nau+ v —ay/ni + (12-147)

with the associated eigenvector matrix Xpg of
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i
0 1 ' 1 1
|
_— + —_—
Ny une + vny anz y— 80
Nz Nz V1% + n V2 +n}
1 0 Ay po M
Xp = ye+n | V2 +n?
Unz — uny 2uvny + (u? — v¥)n, u? 4 o2 + a? 4 u? +0? " a? .
Nz 20z 7-1 2 v-1
+'a(un_, +vny) _o{un: + vp,)
Vi + v+
|
L 1 J
(12-148)
and the inverse
[ | 1
1= 7)u(u? +v? - Duv ~1e? -1
-7) (2 )+ (r 2) + (61 2) + -1y
2a a a a?
+ My (uns + vny) _ Nz n2
nz+ n +n} nz +
14 L= +47) (7= Du =1e _r-d
9q2 a? a? a2
, Q=D +v%) (1= Nz A=y, y-1
Xg' = 4a? 242 20\/,?3 +n? 242 ga\/,m 2q?
__ums Funy
2ay/n + 72
(7 = )(? ++?) (L=y)u I=7v _ n y-1
4a? 2a? 2a? 2a,/n? + n? 222
+ u'?.—. + v'iy _ rh:
2a\/n} + n? 2ay/n2 + n?

(12-149)
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The following splitting procedure corresponds to that of the Steger-Warming scheme.
The matrices A and B may be split according to

A=A"+ A"
and
B=B'+B"
where
A* = XuDiXj;' (12-150)
A" = XuDiX;! (12-151)
B* = XpDiXg' (12-152)
and
B~ = XpD3X5' (12-153)

As before, matrix D} is a diagonal matrix whose elements are the positive
eigenvalues of A; and Dy is a diagonal matrix whose elements are the negative
eigenvalues of A. The same analogy is extended to Df and Djg.

It is important at this time to recognize a distinct difference between the two-
dimensional problem being considered here and the one-dimensional problem exam-
ined previously. Recall that for the one-dimensional problem where no coordinate
transformation was used, the metrics of transformation do not appear in the eigen-
values. Indeed, the eigenvalues are explicitly in terms of the flow velocity and the
speed of sound, namely u, u+a, and u—a. Hence, for the one-dimensional problem,
eigenvalues are all positive for supersonic flow; whereas for a subsonic flow, one is
negative [u — @] and two are positive. In the two-dimensional problem with coor-
dinate transformation, that is no longer true; i.e., the eigenvalues not only depend
on the velocity components and the local speed of sound, they also depend on the
metrics of transformations as seen by relation (12-138) for example. Thus, the fact
that the flow is supersonic in a region does not guarantee that the eigenvalues are
all positive. Hence, the expressions for the eigenvalues are used at each point to
determine whether they are positive or negative and thus split accordingly. For the
one-dimensional flow investigated previously, the flux vector splitting was based on
whether the flow is subsonic or supersonic. Also note that if an ideal gas model
is not employed, the speed of sound used to modify Equation (12-18) is no longer
valid. In that case, the eigenvalues of (12-18) are determined without the modifica-
tion. Therefore, the sign of the eigenvalue is checked directly at each point rather
than whether the flow is subsonic or supersonic.
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Returning to the flux vector splitting, £ and F vectors are split according to

E=E*+E"
=nd o )

F=F"+F"
snere

Et = A*Q

B = 47Q

F*=B*Q
znd ) _

F-=B0Q

Several numerical schemes introduced in Section 12.3 for the solution of the
one-dimensional Euler equation are extended to two-dimensional applications in the
iollowing sections.

12.9.2 Explicit Formulations

A first-order approximation in time provides the following explicit formulation
for the Euler equation. )
An+1 An
rH-@ 8
At o€

The convective terms in Equation (12-154) can be approximated by either central
difference or one-sided finite difference expressions. And of course, within each
category, a different order of accuracy can be introduced. Typically, for general
CFD applications, second-order accuracy would be adequate.

Based on error analysis and experience gained by exploring various solution
schemes for the Burgers equations as well as for the one-dimensional Euler equation,
it is evident that, if a second-order accuracy for the convective terms is used, then
the addition of numerical viscosity in the form of damping terms or TVD may be
required. In this section, several explicit formulations are explored.

(E™ + a%(F‘") +aH" =0 (12-154)

12.9.2.1 Steger and Warming Flux Vector Splitting: The procedure
for the flux vector splitting was provided in the previous section. As a consequence,
the explicit formulation is expressed as
AQ &
Q. 9

A 5 (E*+E)+ (% (Ft+F ) +aH =0 (12-155)
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Again, based on our previous discussions, the positive and negative terms are
approximated by backward and forward difference expressions, respectively. A first-
order approximation yields

AT

AQ = ~5T[By - B+ By~ B
AT (-, =4 _ _ _
T An [P = FSoy + Figp - B - Ar(afly) - (12-156)

and a second-order approﬁmation yields

- A'r[

AQ = T 2A¢ Bl gy~ 4EL ;+3E] - 3B +4E ;-

2]
_ A7 [Pty — 4Ry + 3Fy — 8F; + 4F g, - F
A7 L2 ij-1 i ij ig+1 s'.j+2]

— Ar(aH;;) (12-157)

Similar to the one-dimensional problem, when Equation (12-157) is used, a dif-
ficulty is encountered when the equation is applied along the lines i = 2, i =
IMAX —1,j=2,and j = JMAX — 1. To resolve this difficulty, either one could
switch to the first-order schemes at these points or one could introduce fictitious
points along 1 =0,i=IMAX +1,j=0,and j = JMAX + 1.

12.9.2.1.1 Matrix Manipulations: An issue which needs further exploration is
the calculation of the matrices A*, A, B*, and B~. In general, they are calcu-
lated within the computer code using the expressions (12-150) through (12-153) by
matrix manipulations. In practice, only two sets of multiplication are carried out.
For example, expression (12-150) is used to evaluate A* and, subsequently, A~ is
determined by

A" =A- A"

Similar operations are performed to obtain Bt and B~.

A second approach is to carry out the matrix operations external to the computer
program and subsequently utilize the results. Recall that this procedure was used
for the quasi one-dimensional problem, i.e., the exact values of A* and A~ were
determined (given by (12-33) and (12-34)).

Since all of the matrices used on the right-hand sides of the expressions (12-
150) through (12-153) are known, the operations can be performed for the four
combinations of the eigenvalues. Redefine the eigenvalues of A given by (12-138)
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through (12-141) as follows

(1) A is positive, whereas A, could be either positive or negative; thus,

A =&+ &ut

/\2:/\1

Az =M +G\/f.3+§3
A=A —a/E+¢

where the speed of sound, a, can be written as

a=/7{v-1e

Now, the following four cases are considered.

(a) Ag > 0; therefore, all the eigenvalues of A are positive and, as described

| [given by (12-136)]

previously,

At =A

A" =0

and subsequently
Et=F

E-=0

(b) A4 < 0; therefore, either one of the matrices A* or A~ must be evaluated.
Due to simplicity of operations, A~ is considered, for which

A™ = [X4]

or

000 0]
000 0
000 0
(000 A

1531 Qg Q3
af B asfy o
aife 0 a3fy ouf
] By cofs afs oufs |

[Xa) ™' = M [X4]

Qy

(000 0]

0000¢OC
0000

000 1]

[x3]

(12-158)
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Where

| 20(ub + g EFT G+ (- D) (G &)
n= 1?2+ £)

_ [ee/@r g+ (- DuE+E)
@z = - 22%(€2 + £2)

/BT - g+ 6
@ 2a%(EE + £2)

(v-1

G4 = 72a2 :
b=

’

g+¢

N

v

ﬁ2=v_\/§;—€3

_a(ués + vgy) + w+v? | a

= +
& Jjg+e 2z -l
Finally, At = A— A~
The corresponding flux vector E is decomposed as follows:

.1 7
aéz

48
Sp ,, (12-159)
v ] g - ———
JE+8
_a(&u+§yv) + u? +v? + a?
| Jerg T 7Tt

:

and

Et=FE-E
(2) A, is negative and either,

(a) As < 0; thus, all the eigenvalues of matrix A are negative. Consequently,
At =0
A=A (given by (12-136))
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The corresponding flux vector E is decomposed as
E* =0, and
E-=E
(b) Az >0, for which A" is evaluated as follows
[0 0 0 0 0000]
00 0O 0000
At = [X,] [X31] = As[Xa] (x5!
00 X 0 0010
(0000 0000 ]
or
as (87 Qg Qg
asBy agfy 1B «
A* = Ag 501 B arfs sfy (12-160)
asfs asfs orfs asfs
| o506 aefs aifs asfs |
where

_ ettt ue) B+ gl +[0-1 2+ €+ )]

W@+ &)

aleJEE+ &~ (v - Du(& + &)

202+

afy\/EQ Ey (v =~ v+ 62)

2252+ &)

~1
%= (7202 )

- afx
Bs=u+ are
= ody
Bs = v+ fﬁ-l—fg
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a(ué, + vg)  ul+ ol a?

B = g

T Jegvrg 2 -1
and
A™ = A~ At
The decomposition of flux vector E provides
[ 1
oy P Je+e

e+ a

a(&,u+£yv)+u2+v 4+
NCGCREERETY
and
E-=E-E*

Similar matrix manipulations are used to determine the Jacobian matrices B*
and B~ and the flux vectors F* and F~. The results are identical to that of
At, A-, E* and E-, except the metrics & and &, are replaced by 7. and 7,.

12.9.2.1.2 Existence of Zero Metrics Within the Domain: A difficulty may arise
for problems for which the metric £; becomes zero. To overcome this difficulty, the
metric £&; in the original equation, i.e., (12-126), is set to zero. Subsequently, a new

Jacobian matrix Ag is determined as

‘ft 0 £y
~&uv &+ &v &u
Ao = &llv—Dv? + Lu(l—7)  &+&B-7v
(v —3)v% /2
Eul-a®/(v-1D+ gl-yw §le/(v-1)+
(v —2) (u?+ %) /2] u?/2+ (3/2 — 7)Y

0

0

&(v—1)

& + Y&y

(12-162)
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The eigenvalues of Ay are
)‘Em =&+ Eyv
)\602 = §£ + fyv
/\503 = f: + (‘U + O.)fy
’\Em = Et + ('U - a)fy
The eigenvector matrix is
0 1 1 1
1 0 u u
XAo =
0 v v+ a v—a
" v? ~ o2 a? + (u? + v? + 2av) a? (u? + v? — 2av)
2 -1 2 N1 2 ]
(12-163)
where the inverse of the matrix X, is
(v—1) (* + uv?) (v —Du? (y-Duw  —(y—Lu]
— 1+
2a2 a® a? a?
1= =D @+ (v = Du (y-1v  =(y-1)
xX-1 = 2a? a2 a? a®
A (=1 (+vY) -2  —(y-1u a—-(y-v (v-1)
4a? 2a? 2a? 2a?
(v -1D@E+v)+200 —(y-Du  [a+(y—1) (y-1)
4a? 2a? 202 2a?
(12-164)

For problems in which #; becomes zero, the above procedure is repeated. The
matrix By has the same form as Ay, except &, is replaced by 7,. The eigenvalues of

By are

’\fm =M+ v
Anee =1t + TyV
A=t + (v +a)ny,

Amd =1t + (v — @)y
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The Jacobian matrix By is identical to that of Ay, except &, is replaced by n,. Since
the eigenvectors become independent of the metrics, as seen by the eigenvector
matrix Xy, the eigenvector matrix X B, and its inverse X 501 are identical to that of
X4 and X1

It should be noted that the formulations above are employed only in regions of

the domain where the corresponding metrics become zero. In the remainder of the
domain, the original formulations are utilized.

12.9.2.1.3 Eigenvector Matrices: 1t is beneficial to elaborate on the eigenvector

matrices previously derived. For example, consider the eigenvector matrix X4 re-
peated here for convenience.

-
0 1 1 1
_& e + vgy w0 o 0
& & e+e Ve+e
. 1 0 v+ %y v— -—&—
Xa= Ve+¢g VeE+e
Ve —uly | uuf + (-, | w4z g2 w402 g2
£ %, 2 Ty=1t R
‘ +a(u€I + v&y) _ a(ufz + "Ey)
Ve +& VE+¢

Different forms of the eigenvector matrix X 4 will be encountered in literature.
That is due to the fact that the constants appearing in the eigenvectors can be set
arbitrarily. Therefore, different forms of eigenvector matrices can be obtained. To
make this point more clear and to show how the arbitrary constants were selected,
consider the general form of the eigenvector associated with Ag and Ag. Note
that since the eigenvalues are repeated, two arbitrary constants will appear in the
general expression for the corresponding eigenvectors. The general expression for
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the eigenvector is determined to be

- n

«

é(cw — B) + a;u

6}
515— [(2auv — 2Bu)é, + (—av® +28v+ GUQ)E:]

L x .

Various combinations of the constants a and § can be selected arbitrarily to
provide the two eigenvectors. For example, the selection of (a,8) = (0,1) and
(a, B) = (1,0) provides the first two eigenvectors appearing in matrix Xa.

Since unlimited choices are available for the selection of the arbitrary constants,
different forms of the eigenvector matrices can be introduced. However, the final
outcome which is to determine, for example A*, would be the same irregardless of
the specific form of X4 used. Obviously, that is due to the fact that for each X4
there is a corresponding inverse matrix, and, once an operation such as (12-150)
is carried out, the results would be identical. Clearly, it is advantageous to select
suitable constants so as to provide the eigenvector matrix as simple as possible.

12.9.2.2 Van Leer Flux Vector Splitting: The flux vector splitting ap-
plied to the convective terms of the Euler equation in the previous section follows
the procedure introduced by Steger and Warming [12-1]. A disadvantage of this
scheme is that the split fluxes are not continuously differentiable at the sonic point.
Therefore, a non-smooth solution in the vicinity of sonic points may appear within
the domain. Some simple procedure can be used to overcome this problem. For
example, one may exclude sonic points or one may add an arbitrary small number
to the eigenvalues, thus preventing them from ever being zero.

A flux splitting scheme which offers continuous differentiability is due to van Leer
[12-2]. This scheme was explored in Section 12.3.2.2 for the one-dimensional Euler
equation, and, therefore, only a brief discussion is provided.

The scheme requires the splitting of the flux vectors subject to the following
conditions:

(1) E* = E for M > 1 and E- = E for M; < —1 where

M. = §:u+§yv
PN

(2) For |M| < 1, one of the eigenvalues of A* (or A”) must vanish.
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(3) The components of the flux vector E* (or E- ) must be symmetric to each
other with respect to M, as is the case with E. Mathematically, if E;(M) =
+Ei(~M), then Ef (M) = +E; (- M).

(4) The flux vectors E, E*, and E~ must be polynomials of lowest possible degree
in M.
Following the above set conditions, the split fluxes are constructed to provide
the following,

(a) M > +1, then E* = E, and E~ =0 (similar to Steger and Warming scheme
where all the eigenvalues are positive).

(b) M¢ < —1,then E- = E, and E* = 0.
(¢) 0< M < 1, then

el

et [———é—-— (—C7+ 2a) +u

] are BENCEY: ]

A 4_{ :, i 1 (12-165)
Y

—|-U+2a)+v
Jerg o)y
—(—y—1)[72+2('y—1)al7+2c12+u2+v2

-1 2 ]|

where e} = %pa(Mf + 1)} E-=E — Et*, and

7= &u+ Eu

vE+8&
(d) -1< M < 0, then

| = _ '
e | ———(-U —2)+u
_ Jeve 1:N&+ﬁ( ) ]
-7 [ £, _ 7

D —=2— (-0 -2

€ 3 ££+£3( a)+v-
[-(r=1) 0% - 2(y - 1)al + 2a2+u2+v2
(v*-1) 2 |}

(12-166)
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where e, = —«—pa(ME -1)?and E*=E-E"~.

The flux vectors F- and F* follow the same form as £~ and E*, where all
the “€" are replaced by “n.”

12.9.2.3 Modified Runge-Kutta Formulation: The modified fourth-order
Runge-Kutta scheme introduced in Section 6.6.8 and implemented to write a finite
difference equation for the one-dimensional Euler equation in Section 12.3.2.3 is
extended to the two-dimensional Euler equation to provide the following finite dif-
ference equation.

3 = @y, (12-167)
_ B A r iy (D F (1 _ A
@ = ;*J.__ai (3—12 +(a—n) + oA} (12-168)
i i LY d
~ _ AT [(eE®  [aR\®
Q¥ = ?J_“SI (-?) +(_n) + aHY (12-169)
] i i |
- . AT [(0E\®  (9F\® o)
o =an-5 (—?) + (—n-) +aff) (12-170)
L LY 1J -
@ ap\@
A = @y A [(Zf) +(a) *“’?“3)] e
tJ

The convective terms in Equations (12-168) through (12-171) are typically ap-
proximated by second-order central difference expressions, that is,

_B_E'_ + B_F_ — EiHJ — E‘-"U + F_'ijﬂ - F.‘,j—1
3 an 2A¢ 2An

The addition of a damping term may be required to reduce the dispersion error.
In that case, the damping term is added after the final stage, as follows

:13—1 = Qn+1 + Dg-l- .D,,

The damping terms could be specified as a combination of both second-order
and fourth-order terms. Another scheme by which dispersion error which appears
as oscillations in the vicinity of large gradient can be reduced is the use of TVD
schemes which is addressed next.
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12.9.2.4 Second-Order TVD Formulation: The second-order TVD scheme
explored in Section 12.3.2.4 for the quasi one-dimensional Euler equation is extended
to the two-dimensional Euler equation in computational space. The finite difference
equation is written as

Qi =Qr - AE 2[Ry, - (RO -5 [(R,,)w, (Ro)ij-y] — Ar(aH)

(12-172)
where
n 1 149 n
(Rf)i+§,j ~ 9 Eﬂ+IJ+E +(XA),+%J(¢’€),-+iJ-] (12-173)
1=
(RE)?-i,j =3 B + B s—1,J + (XA)‘-N((I)f)'—w] (12-174)
1~ _ .
(R")mﬂ -3 _Fi?j+1 + F; + (XB)?J-}-&(@T]);'J.*.&] (12-175)
1
(B)iyoy = 51 Fiy+ Fyo + (Xe)yy (8n)y I] (12-176)

Now, the flux limiters introduced previously for the one-dimensional Euler equa-
tion are extended to the two-dimensional equations.

12.9.2.4.1 Harten-Yee Upwind TVD: The general expressions for the component
of the flux limiter vectors are defined as

(®e)isy =0 :(ae)wg.jj (Ge)inrg + (Ge)igl — ¢ [(af)ﬂi,j + (ﬁf)n“] (6e)iry; (12-177)
(@674 5=0 [(@e)i-ys] [(Gedos + (Gedimrg] — 9 ()i gy + (Bedioyg] (Bedioyy (12-178)

(@020 =0 [@ijay] [(Godigrr + Gdigl = ¥ [(@n)iges + (Brdeges] (61)sg44 (12-179)

(20)25_3 =0 [(@adigoy] U(Grdig + (Codiga] — ¥ [(0n)iyy + (Brdig-y] (Ba)ig_y (12-180)

1)

where o is used to denote the eigenvalues of A given by (12-138) through (12-141),
and ay is used to denote the eigenvalues of B given by (12-144) through (12-147).
As discussed in Section 12.3.2.4.1, each component of ®, or ¥, is determined, and
subsequently the flux limiter vectors ®; and &, are formed. The terms appearing
in the equations above are defined as follow.

o(ag) = %tb(ae)"*‘%;-(ae)z
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o) = 30(en) + ()’

- 1

Be)irgs = (Xadity, (J.-+1%J-) Qi1 = Qig)  Jiwyy =5 (Jing +Jiy)
- _ 1

(Gn)ijry = (XB).-J-I+% (J.-._,-Lé) (Qigr1 — Qig) > Jigep = 3 (Jigr1 + Jij)

(Ge)isrg — (Ge)iy
(ﬁf)H%J = a[(af)i‘+i.j] (6E)i+vlb1'
0 , for (5€)¢+;J =0

’ for (66)i+§,j :Ié 0

and

(Gn)igs1 — (G)ig
(5n)ig'+§

0 yfor (89)i43 =0

, for (5n)u+§ #0
(ﬂn)i,j+§ =0 [(aﬂ)i,j+%]

where ¢ is defined by (12-59). The limiters G¢ and G, are similar to those given
by (12-61) through (12-65) for the one-dimensional case. They are extended to
two-dimensions and are as follow.

(Geiy = minmod [(6e)i-ys + (Bedisyy] (12-181)

o (8)i+4,5(8)i-y5 + |(6f)i+§,j(6f)i—,k,j|
(Geliy = G+ Goleys (12-182)

(be)i-y s {[(65),-+§ J]2 + w} + ()i 1 {[(65).-—,:..,-]2 + w}

(Ge)ig 3 5
‘ [60)irys]” + [(Bediys] + 20

(12-183)

(Gehs = minmod {26 y5 + 2layy + 7 [(Beey + (Eyy]} (12180

(Geliy = Sgn*ma,x{O ) min[2 |(65),-+;2d| , Sgn*(éf)i_“] )
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min [ [(6irys| » 25on* (6e)iyy]} (12-185)
where
_ _ABS [(6¢)isy)

Sgn = Sgn(5£)e+,,j = (6€)i+§,j

(Gnig = minmod [(8)is—y + (Bn)igsy] (12-186)
R COIICR WL (CR WY CO W
(Gf‘l)t'.j - (6ﬂ)i,j+é+(6q)ilj-;. (12—187)
2 2

(G = (5q)u-§ {[(5n)u+,§] +w} + (5r;)i,j+.{. {[(50)1',;'—%] +w} (12-188)

[(‘5n)i.j+§]2 + [(‘%)u—i] ’ + 2w
where 1077 < w < 1073
(Gp)iy = minmod {2(6ﬂ)i,j—~1} ) 2(5n)i,j+§ ) :‘12 [(6ﬂ)ij+} + (60)5,_1‘—}]} (12-189)
(Godis = Sgn*max{O , min [Zl(éq)i,ﬁ-}' , Sgn*(&z)sd-;] )

min [|(&,)i503] » 2Sgn* (&), i1} (12-190)

where

ABS [(6ﬂ)i,j+z’1]
(5n)i,j+§

Sgn = Sgn(‘sn)i,ﬂ»} -

12.9.2.4.2 Roe-Sweby Upwind TVD: The general expression for the components
of the flux limiter vectors are given by

(‘PE)?+{.,;'={%(GE)€J ll(af)i+§J| + %;— ((af)s+§,j)2] - |(°‘5)i+%a‘|} (65),-+,5J (12-191)
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@07 1,~{ 3G [0 + 5 ((@0e1)] =@l 1./} 01, @210
@y ={ 3G || + B (@is)’] - gt P @y 12150

(‘I)n)?,j—§={%(cn)id—l ['(aﬂ)u-.{,l + % ((an)u—;)z] - ’(aﬂ)i,j—”} (6")¢J—é (12-194)

Any one of the following limiters can be used.

(Gf)i.j = minmod (1,7‘5) (12-195)
Tt rel

(Gf)u - 1_{_’.6 (12‘196)

(Ge)iy = max[0, min(2re, 1) min(2, r¢)] (12-197)

(Gy)iy = minmod (1, r,) (12-198)
_ Tatlnl

Godis = Tr _, (12-199)

(Gp)iy = max[0, min(2r,, 1) , min(2, r,)] | (12-200)

where

(X;1)1'+1+OJQI'+1+0‘J' i (Xf'_l)i+a,jQi+aJ

, for (6¢);1:#0
re = (5e)¢+§.j-7i+{.+a.j eirgs 7
0 , for (5E)i+§g‘ =0
with
1
'];+§-+a,j = _2' (Jl'+1+a',j + Jl'+cr,j)
o = Sgn(ag)y ;
and
v--l ) ‘. —— _] s s
(X )=J+1+7(?l31‘+‘1+1‘rJ. .(:YB Jig+yQus+y , for (6,,)i,j+% #0
rn e /gty 3+ g+y
0 , for (6n)i.j+§ =0

with
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Jigrprr = 5(Bigirey + Jijia)
Y= Sgn(a’?)i,j+§

12.9.2.4.3 Davis-Yee Symmetric TVD: The general expression for the components
of the flux limiter vectors are

(27 35= {?f“.;[(ae)ww]?(Ge)umw[<ae>a-+;a-] [<5e>e+%r(af)*+%~f]}

(12-201)
(@7 ,= { 2t [0 4]" Gy + ¥ [0 4] [0y - )
(12-202)
(‘I’n)m+, - {%% [(aﬂ)i,j+§]2 (Gﬂ):‘,j+£ + ¥ [(a'l)i.j+§] [(5n)ij+§ n):gﬂ }
(12-203)
@)= { o [@isi] Gy + 9 [0y (60 - G-}
(12-204)

Any one of the following limiters can be used.
(Gf)|+ 5. =minmod {2(6f)t—,g’ 2(6E)s+5,_1i 2(65)&,._1) [(65)1-,,_1 + (JE)H-,,J]} (12'205)
(Gf)i+§.j=nﬁnm°d {(éf)i—i,,j: (6E)i+},j1 (5$)i+;.j } (12-206)

(Ge)irgg=minmod [(&¢);1y 55 (B)iyg] + minmod [(Be)iys.sr (Edirgy] — Bedirys
' (12-207)

. 1
(Gﬂ)i:j+é =rr11nm0d {2(6ﬂ)ilj—%’ 2(6ﬂ)i,j+i1 2(6q)ij+§i 5 [(617)‘}]_% -+ (6r’)‘).7+1:!’] } (12'208)
(Gy)i 44 =minmod [(671)6,1'—;: (Gn)igeys (6n)i,j+§} (12-209)

(Gfr)i,j+§ =minmod [(671)44'4-;1 (517);',3'—;] + minmod [(5n)ig'+§a (5n)i,j+§] - (5n)i,j+-}
(12-210)

12.9.2.5 Modified Runge-Kutta Scheme with TVD: The modified
fourth-order Runge-Kutta scheme given in Section 12.9.2.3 can be amended by
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a TVD scheme to reduce any dispersion error that may be developed within the do-
main of solution. The governing equations are given by Equations (12-167) through
(12-171). After the computation of Equation (12-171), the value of @ is updated
according to

A =Y. 1 A'r n n . n n
Jl - Jl B §_Am§_ [(XA)”%J((I,E)H%J - (XA)i—i,j((DE)i—,}‘j]
1AT n N . .
B EA—T[ [(XB)"J+§((I)")‘J+% - (XB)iJ—i(q)n)u_i] (12-211)

where any one of the flux limiter functions and limiters discussed in Section 12.9.2.4
can be used.

12.9.3 Boundary Conditions:

Several types of boundaries and associated boundary conditions were identified in
Chapter Eight. The boundaries of a domain may include solid surfaces, symmetry
line (or surface), inflow, and outflow. In this section, specification of boundary
conditions are reviewed.

12.9.3.1 Body Surface: For an inviscid flow, the slip condition at the surface
is used. There are several methods by which the velocity at the surface can be
specified. One may extrapolate the velocity from the interior points; or, the same
value for p V can be imposed at the surface with the vector rotated such that the
velocity is tangent at the surface. Thus,

Ai = |p V5iz = /(0w + (o0, (12-212)
Ci = (pu)is (12-213)
D; = (pv);, (12-214)

‘These quantities are illustrated in Figure 12-34.
The pressure at the surface may also be specified by several different methods.
Perhaps the simplest is to use a zero-order extrapolation. Therefore,

Di1 = Di2 (12-215)

Another scheme by which the pressure at the surface is computed is to use the
momentum equation. The governing equation is developed in Appendix H.
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Figure 12-34. Approximation of the velocity at the surface.

An expression for the density at the surface is developed based on the assumption
of a constant total enthalpy at the surface. This statement is expressed mathemat-
ically as

1
ve + ~2—(u2 + v} = (h¢)wan = constant
or, for a perfect gas

y i1 1 0,2 + D?
2

= (h)w 12-216
(v = Vi Pi (e ( )

Note that (h)wan is known from its value at the freestream. Now Equation (12-216)
is rearranged as

[2(he)wan(y — 1) ] 051 = (2V)piapia + (1 =) (C? + D}) =0

which may be solved for the density at the wall to yield:

2vpi1 + /471 + 8(he)wan (7 — 1)%(C? + D7)
4(7 — 1) (he)wen
Note that the positive sign is used exclusively to prevent negative density values.

Now, with the equations describing the flow properties at the wall, as derived
above, an iterative procedure is used for the solution as follows.

pi) = (12-217)

(1) Assume pf, = p; 9
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(2) Compute u and v from (12-213) and (12-214) as follows.

= ﬁ = (pu)m — (PV)e,:z cos ;

w 12-218
CTOE T o (12-218)
D.‘ (p‘U).' 1 (pV), b3 sin 9,'
Y1 = — = - = - 12-219
o Pf,l Pf,l Pf,1 ( )

where 6, is the local surface inclination at grid point 3.

(3) Determine the pressure at the surface either by simple extrapolation such as
(12-215) or by solving Equation (H-11). A numerical scheme to solve Equation
(H-11) is provided in Appendix H.

(4) Use Equation (12-217) to compute the density.

(5) Check the convergence according to

k+1

i1 — P
k1

P

i=IM
CONV = Y}

=1

-

<~€

where € is a specified small number (typically 0.01).

(6) If the convergence criterion is not met, then

Ci =C,-R
D,' = .Di . R
where 1
R= p (Wrpkt! + Wapia] (12-220)
i1

W) and W, are weighting functions, such that W, + W, = 1.0, Now, pf, is set
equal to pﬁl, and steps 2 through 6 are repeated. The iteration will continue

until a converged solution is reached.

The procedure can also be performed using the metrics as follow. A unit vector
normal to the surface can be determined according to

.~ _ Vn
= —
|V
where

Vn =i+ nf = J(—yei + 2¢5)
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The velocity vector for a 2-D flow in Cartesian coordinates is expressed as

V=ui+ v

For mutually perpendicular vectors,

V=0
Thus,

un, +un, =0

which results in

v __

v Ne

Now the values of C; and D corresponding to (12-213) and (12-214) are deter-
mined according to

_ A
C, = B,

_ Aine
D= - B

where

Bi = /(nz + ma

The same iterative procedure is used for the solution. Another method by which
the flow properties at the surface can be determined is simply by the application of
the equations described above without incorporating an iterative method. In this
case, the pressure at the surface is set as p; = p; 5, and C; and D; are determined
from (12-213) and (12-214). Now, relation (12-217) can be used to compute p;;,
and, subsequently, (12-213) and (12-214) are used to determine u;, and Vi1

12.9.3.2 Symmetry: The symmetry boundary can be used for configurations
and the associated flowfields which are symmetric or axisymmetric. The grid line
1 = 1 is set below the axis of symmetry, and i = 2 is set above the axis of symmetry,
as shown in Figure 12-36. Due to the symmetry of the grid lines at i = 1 and
at 1+ = 2, the Jacobian of Transformation is equal, that is, J;; = Jy; for all j.
Now, from a physical point of view, the following constraints hold for the low and
thermodynamic properties.

P = Pag
U; = Ugj
Vij = —Va

(edis = (er)2y
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Therefore,
(o) | [ (B0).
AG,, = “JI‘ (Apu)y _ }1_ (Apu)s; (12-221)
W (Apv)y 2 | —(Dpv)
| (Ape) | | (Aped)z; |

12.9.3.3 Inflow: The inflow boundary is defined as a location for which V-n
is negative, where vector 7 is the unit vector normal to the boundary in an outward
direction. The specification of inflow boundary conditions follows the discussion
of boundary conditions presented in Section 12.4. For a problem for which all the
eigenvalues are positive, all the boundary conditions at the inflow are specified. For
example, for a two-dimensional supersonic flow with all positive eigenvalues, the
values of u, v, p, and p can be specified. If the flow at the inflow is subsonic and
one of the eigenvalues is negative, then three boundary conditions are specified and
one is extrapolated from the interior domain, Typically, the inflow boundary is set
at the freestream, let’s say at j = JM. If the freestream is independent of time and
is supersonic, then no changes in the flow properties should occur. Furthermore, if
the grid system is independent of time such that the Jacobian of transformation is
constant, then the boundary condition is specified by

AQism =0

When the inflow is subsonic, one component of AQi sy would be nonzero and is
determined from the interior points.

12.9.3.4 Outflow: The outflow boundary is defined as a location for which
V - n is positive. The specification of boundary conditions at the outflow follows
similar procedure as described in Section 12.4. That is, if all the eigenvalues are
positive, then the information at the boundary is received from the interior of the
domain, and, therefore, no boundary condition is specified. If one of the eigenvalues
is negative, then one boundary condition is specified at the boundary and the re-
maining flow properties are determined from the interior of the domain. Recall that
the calculation of flow properties at the boundary from the interior domain is by
extrapolation, as described in Section 12.4. For example, when all the eigenvalues
are positive and a zero-order extrapolation is used, then

AQIMJ = AQ!MMl,j

where 1 = IM defines the location of outfow boundary.
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12.9.3.5 Boundary Conditions Based on Characteristics: The bound-
ary conditions at the inflow and/or outflow can be specified and/or determined
based on the characteristic variables defined in Appendix G. In this case, local one-
dimensionality is assumed, and Riemann invariants are used. The procedure is best
illustrated by the following example. Consider specification and/or determination
of boundary conditions at n = nyum, as shown in Figure 12-35. The components of
the velocity normal and tangent to lines of constant 7 are determined in Appendix G

and are
NzU + NV
Vg = ——— 12-222
" ) (12-222)
nyu NV
Vi, = (12-223)
T (R + 2

— T MM

Figure 12-35. Schematic of the velocity components at the boundary.

Furthermore, the Riemann invariants defined by (F-62) and (F-63) can be written

as

(12-224)

and
R = Vi — 2a

(12-225)

and the two characteristic velocities are

)\1 = Vm, +a (12-226)
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and
A=V —a (12-227)

Now the procedure to determine the variables at the boundary is as follows.

12.9.3.5.1 Inflow Boundary: A boundary is treated as an inflow boundary if
Van < 0. As a consequence, Ay = V,;, — a is also negative. Now A, = V,,, + a could
be either positive or negative. If A, is negative, then all the variables are set equal
to the freestream values, that is,

R =R, , $=8w, Vig=Vi., and Rt = R}

If A, is positive, then RT is extrapolated from the interior of the domain, and R-,
s, and V,, are set to their freestream values as

R =R, , s=5x, and Vi =V,

12.9.3.6.2 Outflow Boundary: A boundary is considered as outflow if V,, > 0,
in which case A1 = V;; + a is also positive. Now if A\ = V3, — a > 0, then all the
variables, that is, R*, R, s, and V,, are extrapolated from the interior domain.
When A; is negative, then R~ is set to its freestream value, that is, R~ = RZ, and
the remaining variables R*, s, and V}, are extrapolated from the interior domain.

12.9.3.5.3 Determination of Flow Variables: Once the variables R*, R, s, and
Vin at the boundary have been determined, whether it is an inflow boundary or an
outflow boundary, the flow variables u, v, p, and p at the boundary can be computed
as follow:

1
Vm) = §(R+ + R_)

Now V,, and V,, given by (12-222) and (12-223) are used to compute u and v.
Furthermore, the speed of sound can be determined from relations (12-224) and
(12-225) according to

a= %(7 1) (R - R) (12-228)

In addition, the speed of sound is given by
a2 =L (12-229)
P
A combination of relations (12-228) and (12-229) provides

p_17L vl
;_;[2(7_1)(12 R)] (12-230)
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Furthermore,
In (f’—) =s (12-231)
p’7
Now Equations (12-230) and (12-231) are used to determine the pressure and the
density at the boundary.

12.9.4 Implicit Formulations

A general implicit formulation for the two-dimensional Euler equation can be

written as _ - N
AQ (JE\" aF\" _\nt1
~+ (53—) + (a_n) +a(H) =0 (12-232)

In order to linearize Equation (12-232), relations (12-132) through (12-134) are
substituted and rearranged as

AQ+ AT {-(%[E" + A"AQ] + %[F"' + B"AQ] + a[H" + C"AQ) } =0 (12-233)
or
d 0 = 8E™ OF™ -~
T+ AT | =AM+ =—(BM +aC"{  AQ=~-AT{—+ —+aH"} (12-234
(o ar g+ 3 +a| g = -ar {2 + G} (2230
Recall that when a scalar model equation for an unsteady two-dimensional equa-
tion was investigated [e.g., Equation (3-18))], it was concluded that the implicit for-
mulation results in a system of equations with a pentadiagonal coefficient matrix.
The solution of such a system is very time-consuming and, therefore, expensive. To
overcome this situation, an approximate factorization procedure was introduced.
This technique replaces the original FDE with a series of equations where the coef-
ficient matrices are tridiagonal.
The approximate factorization approach is used in Equation (12-234) in order
to reduce the pentadiagonal coefficient matrix into two tridiagonal systems.
The approximate factorization of Equation (12-234) is
OE» O8F*
-+ —+aH"
% " on T © }
(12-235)
Note that the terms on the right-hand side of this equation are evaluated at the
known time level n. The unknown is the vector AQ.

Following the discussion of Section 12.3.3.1, the Steger and Warming flux vector
splitting scheme is used to illustrate the development of an implicit scheme,

dA" oB" -
[I+AT B¢ ] [I+A‘r an +aATC"] AQ = —A‘r{
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12.9.4.1 Steger and Warming Flux Vector Splitting: Consider Equa-

tion (12-235) where flux vector splitting is used. Hence,

(1 ar S s o] oo [ 2004 5] e ac -

Y. B
—AT{B—E(E++E )+ g (FT+F )+aH}

As discussed previously, a backward difference approximation is used for the
positive terms, and a forward difference approximation is used for the negative
terms. In the following, first-order approximations are used, and, therefore,

- _ ATt
[I + _—(A1+ s 15 + As+1,J Ai,j)] [I+ Z‘E(B B;: 1+ t,)+1 t,;)
+aATC; J]AQ = -Ar [ (EBY - ELij+ By - E)

1 - _ o _
+A_n( -Fh+Fg, - F)+ aHu] (12-236)

Equation (12-236) is solved in two stages as

A - N
[1+ A—E(A;;,.- fog+ Ay - AU)] AQ* =

— AT [AE( El j+Eqyy,— E.-})+A—1n(- ~Ff 4+ Fopy - F}S)+aﬁu}
(12-237)

and
[ ( Blj1+ By = B + abs C\'.i] AQ=AQ (12-238)

where each equa.tlon will form a block tridiagonal coefficient matrix. These equa-
tions are rearranged as

= A - A ~
(_%EA\?‘_1J)AQI-1J+ [I + A_;(A;‘};j - A,-"J-)] AQ; i+ (—A—;A-}u) AQi.; = (RHS):
(12-239)
and

A B -
( A; §i— 1) AQi 1 + [I+ —( — B;}) +01ATC-',;] AQi;

A
+ (A; IJ+1) AQ:._H-] = AQ!,J (12'240)
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The terms in Equations (12-239) and (12-240) are redefined as:

Ar
CAM = —5zAL,

CA = [I + 2—2(/&,{, — A;J.)]

Ar

CAP = B—SAMJ
At

CBM = —-A—;]B‘:t’-_l

At . _
CB = I+K6 B‘J—B‘-J)'POCATC,'J

At __

CBP = -li;] ig+1

Therefore, Equations (12-239) and (12-240) become

CAM;;AQ;_, ; + CA;AQL; + CAP;AQ],, 5 = (RHS)y (12-241)

and

CBM;;AQ; -1+ CBi;AQi; + CBP;AQ: ;1 = AQ}; (12-242)

The grid system for Equations (12-241) and (12-242) may be generated by any
one of the techniques introduced in Chapter 9. If a grid line is aligned along the
stagnation streamline, which for the axisymmetric configuration at zero degree angle
of attack is coincident with the body axis, some difficulty in convergence is observed.
Therefore, the first constant £ grid line (i = 1) is set below the body axis, and the
second constant ¢ line (i = 2) is set by symmetry as illustrated in Figure 12-36. The
steps in the £ and 1 sweeps in the computational domain are shown in Figure 12-37.
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Figure 12-36. The grid system for the blunt body configuration.

n Sweep

E Sweep

T

[T AT

/

Known statien

[T7717 A7

/

Figure 12-37. The finite difference Equations (12-241) and (12-242) are
solved sequentially by £ and 7 sweeps.




Euler Equations 197

Before exploring the implementation of the boundary conditions, two issues
with regard to evaluation of Jacobian matrices need to be addressed. The first is
the matrix manipulations to provide for example A* or A~ at various grid points
within the domain. The second issue must address what values of the flow properties
(such as u, v, e, p) should be used to evaluate the elements of Jacobian matrices.
These issues are considered in the following two sections.

12.9.4.1.1 Computation of the Jacobian Matrices: The Jacobian matrices ap-
pearing in Equation (12-241) are evaluated at the previous time level of n. Obvi-
ously, this is the result of linearization by lagging the coefficients. For example, to
evaluate the coefficient

AT

CAM;; = —5z ALy

either relation (12-150) or A", as described in Section 12.9.2.1.1, is used. The
values of u, v, and a which appear within the elements of A" are taken at the
known values at time level n. And of course the metrics are provided by the grid
generation routine. :

Now consider Equation (12-242) and the evaluation of the coefficients involved,
for example CBM, which is given by

Ar
CBM = -KE B,-*a-_l

Recognizing that Equation (12-241) has been solved, the values of AQ* and,
subsequently, Q* are known. Thus, it can be decomposed to provide the values of
u, v, and a at the intermediate level designated by “*.” It would seem logical to
use these updated values to evaluate CBM. Another option would be to evaluate
CBM at the time ievel of n. If one chooses to use this approach, decomposition
of Q* is not required. Based on limited numerical experimentation, either one can
be used with no clear advantage of one over the other. However, there may be an
advantage to using updated values if the time step is large. The solutions shown
in this chapter were obtained by evaluating all the Jacobian matrices at the n time
level.

12.9.4.1.2 Boundary Conditions: When Equation (12-241) is written at each 7
for all i from i = 2 to i = IMM]1, a block tridiagonal system is obtained. This
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system is expressed as

.-

[C Ay [CAP]y AQs
[CAM) 010105 [C Al parz [CAP) yps2 AQ;MMz.j
[CAM] ppq1 [CA]IMMIJ ] i AQ;MMIJ ]

[ (RHS)q; — [CAM]MAQ;J -

(RHS)s;
_ (12-243)

(RHS)1mm2;

| (RHS) M5 ~ [CAP]iMa15AQ5 s 5 )

If the boundary conditions are explicitly implemented, the values of AQ! ;j and
AQjy; are taken from the previous time level. For an implicit treatment of the
boundary conditions, some modifications to the first and last equations must be
introduced. The procedure is as follows. '

At ¢ = 1, symmetry is imposed, and the boundary conditions as described in
Section 12.9.3.2 yield

(AP);J (AP)EJ

AG =L Bpu)iy | 1| (Bpw)y;
U e, | B | (@,
| (Bper)i; | | (Aper)s; |

Hence, the first equation represented as the first row of the block tridiagonal system
(12-243) is modified according to

[C4] 2 805 + [CAPL; AQS; = (RHS),

where ) _
10 0 0

[3'7}2J=[0A]2J+[0AM12J- vLoo

00 -10

(00 0 1|
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Assuming 1 = I'M is far downstream, such that the flow is supersonic, extrapolation
is used. For simplicity, the following zero-order extrapolation is employed:

AQ;MJ = AQ;MMI,J'
The reason for using this simple extrapolation scheme is that the higher order
schemes may overestimate the properties causing instabilities and eventual failure
of the solution. That is especially true for the first few iterations. With this simple

extrapolation, the last equation of the block tridiagonal system (12-243) is modified
according to

(CAM] pa15 AQIamzs + [_Cﬁ] AQimmy = (RHS)mm1y

IMM1,j
where
[CA] MMy [CAlian + [CAP pan
Finally, the block tridiagonal system is expressed as
[CAlL, [CAP]; AQ3,
[CAM ]3; [CA]3,J' [CAP ]3,,' AQ;J
[CAM|1ypre;  [CAlnma; [CAP|ppapag | | AQiama,
| (CAM];u L [UZ] IMM1j LAQ;MMI,J‘ ]
[ (RHS)y; |
(RHS)3;
(12-244)
(RHS) 1mm2j
| (RHS)Mm1; |

Once AQ! ; is computed, the RHS of Equation (12-242) is known. When this
equation is applied at each £ for all j from j = 2 to j = JM M1, one obtains the
following block tridiagonal system:

[ [CB];‘,Q [CBP]i,z W ] AQI’#
[CBM];, [CB)i [cBP), AQiz
[CBM]; jum2 (OBl sy [CBP]; suumz | | AQismne
[CBM Vi s [CBI; smmn I AQismm ]
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AQ:, — [CBM2AQ:,
AQ},

(12-245)
AQ:,JMMz

| AQ:,JMMI ~ [CBP ]i,JMMlAQi,JM

o

If the outer boundary of the domain (ie., j = JM) is set at the freestream, AQ; su
is zero. Note that for this statement to be valid, the spatial grid is assumed to be
independent of time, i.e., grid points do not move; as a result, JY = JT:Jfl. But
what about AQ;,;? For the time being, its value can be set to zero. Subsequently,
this value can be computed and updated according to the procedure described in
Section 12.9.3.1. By setting AQ;; equal to zero, the system (12-245) may be solved
for all the AQ;; from j = 2 to JM M1 for each £ from i = 2to i = IMM].

12.10 Application: Axisymmetric/Two-Dimensional
Problems

In this section, the application of the axisymmetric/two-dimensional Euler equa-
tion is illustrated. In the first example, a channel which includes both compression
and expansion corners is used to illustrate the formation of oblique shock and ex-
pansion waves and their reflection and interaction. In the second example, an
axisymmetric blunt body is used to illustrate the development of the flowfield.

In order to develop a solution procedure, the following issues must be addressed.
(1) The physical domain of the problem must be defined. This definition may be
accomplished by specifying the boundaries of the domain. (2) A grid generation
technique must be used to distribute the grid points on the boundaries and within
the domain. Various grid generation schemes were investigated in Chapter 9. (3) A
transformation from physical space to computational space must be performed. This
procedure simplifies the application of the boundary conditions, and, in addition,
the computational domain is rectangularly shaped and the grid points are equally
spaced. The transformation of equations of fluid motion were addressed in Chapter
11. (4) Finally, a numerical algorithm must be selected to solve the equations of
fluid motion.

12.10.1 Supersonic Channel Flow

A channel with a compression corner and an expansion corner located at the
lower surface and a straight upper surface is considered. A supersonic fiow enters
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the channel at the left entrance. The objective of this application is to use the Euler

equation to determine the inviscid flow pattern within the channel. The domain of
solution and the nomenclature are shown in Figure 12-38.

'lzi L4 z:!—“14 s 1J=1M
Hl H2
. ___1
=1-
L1 e L2 e L3
= =2 L=L1+L2+13

Figure 12-38. Illustration of the nomenclature for the two-dimensional channel

flow.

12.10.1.1 Grid Generation: A simple algebraic grid generation routine is
developed for this problem. In order to better resolve the oblique shock formed at
the compression corner and the expansion wave at the expansion corner, as well as
the shock reflection from the upper surface, grid point clustering is used to con-
centrate grid points at these locations. Furthermore, grid point clustering near the
lower and upper surfaces is employed to better approximate the implementation of
surface boundary conditions. The grid point clustering function given by Equation
(9-57) is utilized in this application. The specific grid point clustering function for
each segment of the domain is as follows.

1. 1<i<Il
—L1—L1d1—p1 |(BLH] x 1- (141 l—%+l
TELT Bl—1 - B1—1
J L
(12-246)
2. N<i<Il+12/2
LE 1 [ )
g+1\"a g2 +1 3]
= I1 - _ pev -
z +L2{1-p82 (ﬁ2~1 1 1 +1

(12-247)



202 Chapter 12

3. IN+12/2<i<I1+12

_ _ _ p2+1\"
e - i [ m[(m_l)

B2+ 1 1‘2&;%2@
(ﬂ2 - 1) +1 (12-248)

4 N+I12<i<IM

B3+1 - g
e memers l_m[(ﬁﬁ) _1]/
g L
(=i ] 1220
5. 1<i<I4 |
v=L4—L4l1-p4 (ﬂ““)l_&—l / bd+1 1_-&4-1
Ad—1 F4—1

(12-250)

i —E4

(ﬂ5+1)1"%&_1 g5+ 1\ E 1
B5—1 85— 1 +

(12-951)

:z:=L4+L5{1—ﬁ5

7. 1<j<JM

y=.fzi{ e (ggj)z(%f—lllmﬂaJ/[(ggii)’(%-l)J,.l”

(12-252)

A
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where §1, 02, 83, B4, B85, and B6 are the clustering parameters, and £1, £2, £3,
&4, £5, and nl are the lengths in the computational domain corresponding to the
physical lengths of L1, L2, L3, L4, L5, and H, respectively. Note that H is replaced
by H1 at : = IMAX location. Expression (12-252) can also be used to determine
grid points within the domain. In that case, the length of straight lines connecting
the same ¢ locations at the lower surface and at the upper surface are determined
and denoted by &;. Now, expression (12-252) can be used to distribute grid points
along each line where H is replaced by 6. Subsequently, the  and y coordinates of
grid points are determined.

Figure 12-39. The 241x 131 grid system for the channel flow.

12.10.1.2 Numerical Scheme: The numerical scheme selected for this appli-
cation is the modified Runge-Kutta given by Equations (12-167) through (12-171)
augmented with the Davis-Yee symmetric TVD model with limiters (12-205) and
(12-208), that is

50

AN

W= g (12-253)
_ Ar [ 6E)1 (aﬁ)“)'
@ - o =" |22 — 12-254
7 1) 4 -( E ‘-IJ- n ‘.'j- ( )
- - At [(OE\? aF\ @]
3 _ n = YR il -
- o[ E)] e
i 4 i
i =\ (3 =y (8
W - g, AT (@_)() (3_F) (12-256)
i J
2 | g 1§ n i
=y (4) -\ (@)
Qi = Q-Ar @) (?_{"_) (12-257)
€/ M/




204 Chapter 12

where convective terms in Equations (12-254) through (12-257) are approximated
by second-order central difference expressions as follow

22 + OF =Ei+1J_Ei~1J+RJ+1—Fi,j—x
¢ i an s 2A¢ 2An

After the computation of Equation (12-257), the value of Q is updated according
to

=n =n 1AT n . . i
i;l = ;’jl — §‘A—£ [(XA)H'LJ(Q)E)H';-.J — (XA)P-%,J((I)E)l—éJ]
1A7T n " . .
B EA_U [(XB)"J+§((I)’7)"J+} - (XB)iJ—.}.(‘I’n).'J_gJ (12-258)

The specific limiters are
(Gf)i+§.j =
minmod {2(55),._“ s 28eirys » 2006y » % [(Be)iy s+ (65),-44-]} (12-259)
(Gf)i.j+§
minmod {2(6,,),,_§ + 28)igry » 260)ize % [60is-4 + (Ge): H]} (12-260)
12.10.1.3 Analytical Solution: The analytical solution is used to check the
accuracy of the numerical solution. An analytical expression between the turning

(compression) angle §, the shock angle 8, and the freestream Mach number M; can
be established as follows.

2cot O(M{sin? 4 — 1)
tané =
24 (v + cos 28) M?

(12-261)

For a given value of § and M), the analytical expression (12-261) must be solved
iteratively for the shock angle 8. Solution can also be obtained by using charts where
Equation (12-261) is presented graphically, typically for v of 1.4. Once the shock
angle is determined, a normal component of the Mach number M, is calculated
from which the flow properties are computed from the normal shock relations (or
tables). The corresponding equations are as follow.

Mln = MlsinG

P2 2y a2 21

— —_ —-—— 12-262
D ,.r+1 In Pf+ 1 ( )

and
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po_ _(+ DM
o (v - DML +2

(12-263)

To calculate the flow properties downstream of an expansion wave, the Prandtl-
Meyer function v given by the following expression is used.

_ o fy=1 o, —
v(M) = ’Y_ltan ‘/1——+1(M 1) ~tan™' VM2 -1 {(12-264)

Again, given the value of v, this expression needs to be solved iteratively for the
corresponding Mach number. As in the case of oblique shock relations, tables are
also available for v of 1.4. Now, with the turning (expansion) angle & and the
upstream Mach number M, the downstream Mach number is determined from the
Prandtl-Meyer function from

V(Mg) =60 + V(M]) (12-265)

Once the downstream Mach numbser is determined, the remaining flow properties
across the expansion wave can be calculated. Recall that the expansion wave is an
isentropic process, and, therefore, the isentropic relations provide

Ts 1+ a7

14 M2\ 7
o_ (=4 (12-267)
p] 1 + 32_M2

and the density can be computed from the equation of state
P2
== 12-268
P2 RT, ( )

12.10.1.4 The Physical Domain and Flow Conditions: The physi-
cal dimensions of the domain in this problem is specified as follows: L, = 10cm,
Ly = 20cm, L3 = 40cm, Ls = 42cm, H; = 20cm, and the compression/expansion
angle is 10°. The number of gridpoints for the domain is specified as IM = 241 and
JM = 131, where the specific values of i are set according to I1 = 21, I2 = 91, and
I4 = 61.

The freestream pressure and temperature are 100 kPa and 300 K, respectively.
The ratio of specific heats v is 1.4, and the gas constant is given as 287.05 (N -
m)/kgK, values corresponding to air. Solutions are required for two different
freestrearn Mach numbers of 2.0 and 3.0.
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12.10.1.5 Initial Conditions and Time Step: Computations are initial-
ized by specification of the inflow conditions over the entire domain. The local time
stepping procedure of Section 12.7 is used to march in time toward steady state so-
lution. The CFL number of 0.2 is specified for both cases. A convergence criterion
is set according to

W

CONV= ¥ [ABS@ -]

The solution is assumed converged (steady state) when CONV<0.1.

12.10.1.6 Results: The pressure and density contours illustrating the forma-
tion of oblique shock, expansion wave, and their reflection and interaction are shown
in Figures 12.40 through 12.43 for M = 2.0 and M = 3.0. The computed pressure
and density distributions along the lower surface are compared to the analytical
solutions in Figures 12.44 through 12.47. The computational values compare very
well to those of the analytical solution.
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Figure 12.40. Pressure co s for My = 2.0.

. \ N \
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Figure 12.42. Pressure contours for M., = 3.0.

Figure 12.43. Density contours for M., = 3.0.
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Figure 12-44. Comparison of the pressure distributions on the lower surface

for My, = 2.0.
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Figure 12-45. Comparison of the density distributions on the lower surface
for M, = 2.0.
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p (Pa)
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Figure 12-46. Comparison of the pressure distributions on the lower surface

for M, = 3.0.
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Figure 12-47. Comparison of the density distributions on the lower surface
for M, = 3.0.
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12.10.2 Axisymmetric Blunt Body

Consider an axisymmetric blunt body defined geometrically by an ellipse as
shown in Figure 12-48 where the semi-major axis is denoted by a,, and the semi-
minor axis is denoted by b;. Assume a hypersonic flowfield where the freestream
Mach number is 18.

f

a4 o

i a2

Figure 12-48. The nomenclature used to define the blunt
body configuration.

Furthermore, the configuration is at zero degree angle of attack. It is required to
compute the steady-state, inviscid flowfield. The implicit Steger and Warming flux
vector splitting scheme given by Equations {12-241) and (12-242) is selected as the
numerical scheme to solve the proposed problem.

The physical domain is specified by the following data

a; =50, b=30, a=56, b=52

A T1x53 grid system is created by the elliptic scheme of Section 9.7.1 and is shown
in Figure 12-49. Observe that grid points are clustered near the stagnation region
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where the flow is expected to be subsonic. The CFL number for this problem is
defined as
AT AT

AE and C,=\,—

-where maximum value of A is used. Recall that the As are given by relations (12-
138) through (12-141) and (12-144) through (12-147). Thus, if a maximum CFL
number is specified, then the maximum time step is easily determined. With the
grid system specified, the tridiagonal systems (12-241) and (12-242) are sequentially
solved.

Contours of constant pressure and Mach number are shown in Figures 12-50 and
12-51, respectively. A convergent solution was obtained after 550 iterations.

Note that convergent solution and steady-state solution are used to imply the
same meaning. Similarly, the number of iterations and the number of time steps are
used interchangeably. However, it should be pointed out that the Euler equation
may be solved to provide a time dependent solution. In that instance, the procedure
will be referred to as the time accurate solution.

As a second example of an axisymmetric flow, a dented configuration is used to
investigate the shock/shock interaction phenomena. The configuration of interest
and the grid system are shown in Figure 12-52. The grid system was created by
an elliptic grid generator with a clustering option. The pressure contours for a
Mach 18 flow are shown in Figure 12-53. It clearly illustrates the complex expan-
sion/compression process within the domain of interest.

Ce = Ae
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Figure 12-50. Pressure contours for the blunt body configuration at
a freestream Mach number of 18.
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Figure 12-51. Mach contours for the blunt body configuration at
a freestream Mach number of 18.
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Figure 12-52. The dented configuration and the grid system.
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12.11 Concluding Remarks

In this chapter an attempt is made to illustrate solution procedures for the
Euler equation. Several numerical schemes were introduced, and the procedures
were extensively discussed. It is hoped that, with a good understanding of the
numerical procedure in this chapter, other procedures may be investigated with
ease. Furthermore, the materials presented in the previous chapters are brought
together in this chapter to illustrate the steps required for the solution of an inviscid
flow field. Finally, it is important to emphasize again that the numerical procedures
presented in this chapter will be implemented in the solution of the Navier-Stokes
equations, particularly in Chapter 14.



216 Chapter 12

12.12 Problems

12.1 Derive the Jacobian matrix A given by Equation (12-18).

12.2 Consider the nozzle described in Section 12.5 with the following supersonic
inflow conditions at z = 0.0 : M; = 3.0, py = 1000 lbs/ft*, and p, = 0.00237
slugs/ft®. For a supersonic flow at the exit (z = 10.0 ft), determine the flowfield
within the domain, using the explicit first-order Steger and Warming flux vector
splitting scheme. (a) Use Az = 0.1 ft, and At = 1 x 1073 sec, with a convergence
criterion of 0.1 based on pressure, as given by Relation (12-93). Print the steady
state solution and plot the comparison of the computed pressure distribution with
the analytical solution. (b) Investigate the effect of the spatial step size on the
solution by using Az of 0.2 ft and 0.4 . Plot the error distributions of the three
solutions obtained by Ax of 0.1, 0.2, and 0.4. Define the error as the difference
between the numerical and analytical values of the pressure.

12.3 Repeat Problem 12.2 using the explicit second-order Steger and Warming
flux-vector splitting scheme.

124 Repeat Problem 12.2 using the fourth-order Runge-Kutta scheme.
12,5 Repeat Problem 12.2 using the Harten-Yee TVD scheme,

12.6 Consider the nozzle described in Section 12.5 with the supersonic inflow
specified by M, = 3.0, p, = 1000 lb, /ft?, and p, = 0.00237 slugs/ft>. The flow
at the exit plane is subsonic, and the flow properties correspond to conditions of a
normal shock located just downstream of z = 5.0 ft. The analytical solution would
provide the following conditions at the exit plane: Mjy = 0.358, u;y = 454.44
fps, pry = 8511.67 lb,/ft2, pjyr = 0.007389 slugs/ft®. However, recall that only
one boundary condition at the exit needs to be specified. (a) Use Az = 0.1 ft,
and At = 1 x 107 sec, and CONV = 0.1 to obtain a steady state solution by
the explicit first-order Steger and Warming flux vector splitting scheme. Print the
converged solution and plot the comparison of the computed pressure distribution
with the analytical solution. (b) Investigate the effect of the spatial step size on
the solution by using Az of 0.2 and 0.4. Plot the error distributions of the three
solutions obtained by Az of 0.1, 0.2, and 0.4. Define the error as the difference
between the numerical and analytical values of the pressure.
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12.7 Repeat Problem 12.5 using the Harten-Yee TVD scheme.

12.8  Consider Problem 12.5 with Az = 0.1 ft. (a) Use the global time steps of
1x107* sec, 1< 107° sec, and 1x 107% sec to obtain steady state solutions. Compare
the convergence histories of the solutions. (b) Use the concept of local time step to
obtain steady state solutions with the following specified CFL numbers: 0.1, 0.2,
0.3. Compare the convergence histories.
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Parabolized Navier-Stokes Equations

13.1 Introductory Remarks

The design of a vehicle in a supersonic/hypersonic stream requires detailed
analysis of the flowfield. Accurate calculation of the shock structure, pressure, skin
friction, and heat transfer distributions are important parameters for the designers.
Calculation procedures that range from simple methods to complex numerical tech-
niques have been developed over the years. A traditional approach to the problem
is to decouple the flowfield into an inviscid region governed by the inviscid-flow re-
lations and a viscous region adjacent to the surface governed by the boundary layer
equations. Once the inviscid flowfield is known, either from experimental mea-
surements or from a theoretical solution, procedures can be developed to generate
solutions for the thin boundary layer near the vehicle surface. These procedures vary
in degree of sophistication from simple correlation to numerical programs which cal-
culate the non-similar boundary layers for laminar, transitional, and/or turbulent
flows.

Two problems in the boundary layer formulation are: (1) the uncertainties in
the flow properties associated with having to determine the boundary layer edge
required for the solution of the boundary layer equations, and (2) the iterative
process for locating the boundary layer edge.

In addition, for applications where a strong interaction between the viscous and
inviscid regions occurs, the decoupling of the flowfield is no longer an acceptable
approach. This fact is particularly important for hypersonic flowfields where the
shock layer is relatively thin and the viscous effects may influence a large portion
of the shock layer. Flowfield computations of vehicles in a supersonic/hypersonic
stream at large angles of attack, where cross flow separation dominates, also fall in
this category. Examples of such flowfields are illustrated in Figure (13-1).
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Shock

inviscid region

Boundary layer

Strong Interacti . .
trong Inter on Weak interaction

Figure 13-1. Examples of flowfields where viscous/inviscid
decoupling is not possible.

To address these categories of flowfields, procedures are developed to solve the
equations of motion for the entire flowfield. Obviously the Navier-Stokes equations
may be employed to solve such flowfields. However, the numerical solution of the
Navier-Stokes equations requires a substantial amount of computer time and stor-
age. This difficulty is due to solving the unsteady Navier-Stokes equations in time
until a converged steady-state solution is reached. Thus, it is desirable to reduce the
Navier-Stokes equations to a form which can be solved efficiently while the physics
of the problem is preserved. Therefore, among the issues to be considered are:
(a) the reduction of the equations of fluid motion valid for the categories specified
above, and (b) development of an efficient numerical scheme to solve the system of
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equations.

A popular method which has proven successful for the computations of these
categories of flowfields is the parabolized Navier-Stokes (PNS) equations. The PNS
equations are obtained from the full Navier-Stokes equations by the following as-
sumptions: (a) steady state, (b) neglecting the streamwise viscous gradients, and
(c) approximating the streamwise i)rmsure gradient within the subsonic portion of
the viscous flow near the surface. Thus, the Navier-Stokes equations are reduced to
a set of parabolic equations which are marched in the direction of a space coordinate
aligned along the streamwise flow direction from an initial plane of data.

A comparison of numerical marching for the NS equations and the PNS equations
is illustrated in Figure 13-2. It is important to note that the NS equations are
marched in time with a step At, whereas the PNS equations are marched in space
with a step A£. For either case a set of initial conditions is required. For the NS
equations, freestream conditions are usually imposed everywhere within the domain
and the steady-state solution is sought. For the PNS equations, a set of accurate
initial data must be provided. This set of data can be obtained by solving the NS
equations for the nose region of the configuration.

A vast number of researchers have investigated the PNS equations and various
numerical algorithms to solve these equations within the last two decades. Extensive
research in this area is still being conducted at the present. As a result, certain
guidelines and conclusions have been established which are summarized below.

1. Transformation from physical space to computational space with clustering
near the surface is necessary.

2. Implicit numerical schemes are preferred over explicit schemes for efficiency
purposes.

3. The equations must be expressed in their conservative form for shock captur-
ing purposes.

4. The outer bow shock is usually used as one of the boundaries and is calculated
using the shock-fitting procedure.

5. Numerous approximations for the pressure gradient within the subsonic por-
tion have been introduced.

6. Formulations which employ central difference approximation of the convec-
tive terms require the addition of damping terms. Thus, the addition of
second-order and/or fourth-order dissipation terms to prevent oscillations in
the flowfield has been used by many investigators.

7. Flux vector splitting schemes of the previous chapter may be employed to
formulate the convective terms and thus eliminate the need to include damping
terms.
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In this chapter, the PNS equations, assumptions, approximations of the pressure
gradient, initial data plane, boundary conditions, and a numerical algorithm are
presented. Two-dimensional/axisymmetric equations are discussed first with the
extension to 3-D to follow.

Initial plane of data

Marching in space

Marching in time

Figure 13-2. Illustration of time and space marching schemes.

13.2 Governing Equations of Motion

The governing equations of motion and various reduced forms were considered
in Chapter 11. These equations were nondimensionalized and expressed in a con-
servative form. In addition, they were transformed from the physical space to the
computational space. PNS equations were among those presented in that chapter.
Therefore, only a brief review is presented in this section. In the following sections,
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two-dimensional problems are discussed in detail; and, subsequently, the approach
is extended to three-dimensional problems.

The two-dimensional, axisymmetric Navier-Stokes equations in the computa-
tional space are expressed in a vector formulation as

00 oF oF . 0B 0F .
E+6—E+B—H+QH—F&T+—(%+QH’U (13-1)

The flux vectors are given in Chapter 11 by Equations (11-201) through (11-207).
The first assumption in the reduction of equations is the steady-state condition,
which mathematically states that
oQ _
or
The second assumption requires that we neglect the streamwise gradient of the
viscous terms, i.e.,

0

a_p'i > aE"’
an o€

Note that this reduction is imposed after the equations have been transformed into
the computational domain. In addition, we have selected the coordinate £ aligned
in the streamwise direction where numerical marching will progress. With these
assumptions, the Navier-Stokes equations given by (13-1) are reduced to
8E OF _
L 4L aH =
5t T e T = 5y

OFwp af, (13-2)

Since mixed partial derivatives which appear in %ﬁl are dropped, as discussed in

Chapter 11, the modified viscous flux vector F, is redefined as F,p. The flux vec-
tor E includes pressure and, therefore, the streamwise pressure gradient appears in
%. With no modification of the streamwise pressure gradient within the subsonic
portion of the viscous region, the equations are elliptic which would allow the prop-
agation of a disturbance upstream. Therefore, a space marching procedure to solve
the system cannot be incorporated. If a marching procedure is used, exponential
growth or decay in the solution near the surface will occur, which will cause failure
of the numerical scheme. This failed solution is known as the departure solution.
To overcome this difficulty, the streamwise pressure gradient is modified such that
the equations become parabolic. One approach for this approximation is to split
the inviscid flux vector E as

E=Ep+ Epp (13-3)

where B 1
Bp = J16Bp +&,F) (13-4
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and 1
Epp = —j{E:EPP + & Frp (13-5)
The flux vectors in (13-4) and (13-5) are:
U ] pv
Ep = pu -+ wp Fp = 2m)u
puv pUt + wp
(pec + p)u | (pe: + p)v |
0 T 0 |
| @=w)p _ 0
Epp = 0 Fpp = (1-w)p
0 ] 0 |
Thus, Equation (13-2) is expressed in terms of these flux vectors as
OEp 8Epp OF . OF,p .
P haulll H = H, 13-6
3§+3§+6n+a 3 + o, (13-6)

In the supersonic portion of the flowfield, w = 1 and no modification of the pressure
gradient is required. Various approximations for the streamwise pressure gradient
within the subsonic portion of the flow will be discussed shortly.

Equation (13-6) is a mixed hyperbolic/parabolic system of equations. Stability

analysis [13-1] indicates that for a stable solution the following restrictions must be
satisfied.

1. The component of the local velocity in the streamwise direction must be pos-
itive,

2. The Mach number determined by the component of the velocity in the stream-
wise direction must be supersonic everywhere. However, once an approxima-

tion to the streamwise pressure gradient has been incorporated, this condition
will allow subsonic flow in the viscous regions.

Note that the first condition eliminates streamwise flow separation; however,
cross flow separation (in three-dimensional problems) is permitted. Next various
approximation techniques will be considered for the streamwise pressure gradient;

and, subsequently, a numerical algorithm will be investigated for the solution of the
PNS equations.

13.3 Streamwise Pressure Gradient

In order to suppress the elliptic nature of Equation (13-6), the pressure gradient
within the subsonic portion must be approximated. Numerous schemes have been
introduced for this purpose, some of which are reviewed in this section.
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. The obvious and simplest approximation is to drop the pressure gradient

within the subsonic portion of the flow. This crude approximation will in-
troduce inaccuracies in the solution of the flowfields where large pressure gra-
dients are present and therefore has limited use.

. The pressure gradient is evaluated explicitly by a backward difference approx-

imation, i.e.,

op| _Pi=Pia

B¢ lin Ag
When this approximation is used, the stability requirement imposes a lower
limit on the selection of the marching step size, i.e., A must be larger than
some (A€)min which is provided by the stability analysis.

In the development of the boundary layer equations it is assumed that the
normal gradient of pressure within the boundary layer is negligible. Consistent
with this assumption, the streamwise pressure gradient in the PNS equations
is computed at the first supersonic point and imposed upon the subsonic
portion. This procedure is known as the sublayer approximation. It has been
observed that this approximation introduces instability for some cases.
Earlier the flux vector E, which includes the pressure, was decomposed by
introducing a parameter “w”. Based on an eigenvalue stability analysis, a
fraction w of the streamwise pressure gradient may be retained and evalu-
ated implicitly while the remaining (1 — w) fraction is evaluated explicitly.
Therefore,

dp  Ip

dp
oc ~ “o¢

+ (1 -w)=;

B (13-7)

implicit explicit

The parameter w is determined by the stability analysis and is given by

_ TM¢
w—all+(7_1)ME2] (13-8)

where o is a safety factor, usually assigned a value of 0.8, and M is the
local Mach number in the £-direction. Note that in regions where the flow is
supersonic, M > 1, w = 1, and no approximation is incorporated.

The approximations reviewed above are only a few among the many reported

in the literature. In the remaining discussion and in the results to be presented
shortly, the fourth approximation for the streamwise pressure gradient has been
incorporated.
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13.4 Numerical Algorithm

Following the same procedure used for the Euler equations in Chapter 12, the
delta formulation of the PNS equations are derived as

1 - 0., .= oF dF,p
—A_E(AEP) + b;(AF) (AFup) = —-(% | + an |,

)

3 OFpp
0¢

where a first-order backward difference approximation for 8Ep/8¢ is employed. The
right-hand side is evaluated at the known streamwise location “”. Equation (13-9)
is nonlinear and, therefore, a linearization procedure similar to that introduced in
Chapter 11 is considered. To illustrate the linearization procedure, consider the
flux vector Ep. Recall that

- Ez‘ + (Eu)i (13‘9)

Ep = f(Q,£:,5) (13-10)
A Taylor series expansion in the ¢ direction yields
- _ OFE
Ep, =Er+— z —L AL + O(AL) (13-11)

The chain rule of differentiation applied to (13-10) results in

BEP 8Ep BQ 4 OEp 8¢,  OFEp 9%,
06~ 0Q 8¢ " o¢, BE " BE, B¢
This equation is substituted into (13-11) to give

OEp 0Q  0Ep 8¢  8Ep 0%
8Q 8¢ " 9, ot T B ot

The £ derivatives in (13-13) are approximated by a first-order backward difference
approximation, for example,

3Q _ Qu-Q_ AQ
a¢ A A€

(13-12)

Ep, =Ep+ AL + O(AE)? (13-13)

662 £1i+1 — £z¢ _ AEJ!
o¢ A At

After substitution into (13-13), the following is obtained:

OEp AQ N dEp AE, N OEp Ag,

ABr= |30 Ae t 9. e T o, BE

AL 4+ O(AE)?
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or

aEp aEp OEp
AEp = hfentis P Ay 2
Similarly,
- 8F . OF OF .
AF = 55AQ + EEA"’ + B—%Any + O(AE) (13-15)
and
dF, OF, oF,
AFp == Q” —2LAQ + ;PA + "An,, + O(AE)? (13-16)

Note that the 8Ep/8Q, 8F/8Q, and 8F,p/6Q appearing in Equations (13-14)
through (13-16) are the Jacobian matrices derived in Chapter 11 and are given by
Equations (11-228) through (11-230). The remaining terms may be evaluated as
follows.

Recall that

- 1
Bp = [£:Ep + &, F) (13-17)
Therefore, the partial derivatives %‘%— and QEE in Equation (13-14) can be determined
from (13-17) as
OEp Ep
% = T (13-18a)
BE‘ P F P
Similarly, from the expressions for F and F,p,
oF E
= -_— { i
B, 7 (13-18c)
OF F
BF wP Eu
o - T (13-18e¢)
BF vP E,
o 7 (13-18f)
Returning to the delta formulation:
_ a,, = =y 0 ,- = OEpp -
AE‘P + Agan(AF - AFvP) - _AEB—T,'(E - FuP") - AE 35 - Af(Hl - Hv.-)
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Substitution of the linearized approximations given by (13-14) through (13-16) into
this equation yields:

8Ep . -~  OFEp 8Ep OF
F@'AQ“LEEAE’ 5. 5508 + At~ {[BQAQ+
aF aF OF,p 8F,p OF,p
A+ (=) A AQ + 2 An, + —=FA =
(377:) et (Bny) n”] { 8Q Q+ ane = g, n”]}
8E _
—As—( F,) - Ag g“’—As(H.-—Hm)
From which
oEp aF,,p -
A =
9, - OEpp .
—AE%(F; — F,p) — A¢ 5 A&(H; — Hy,)
AEp aEp
A
( T T E)
9 ([8F OF,p OF OF,p
—Af— An+ |z7— - ———]A
6677 {[371: on, ] =t [67}1! 877!1 ] ny}

The left-hand side (LHS) is rearranged as
BEP +Ag 9 oF BF.,p
aQ aQ 8q

Note that a similar operator was used in Chapter 12 for the Euler equations. To
emphasize how this operator is defined, note that

d (8F 3F,,p
{'55 (6@ 0 )}AQ

8 [(OF\ r~] _ 8 [(BF.wp
an|(7) 29 - 5 |(55) 29
Now, the RHS is modified as follows. Expressions (13-18a) through (13-18f) are
substituted into the RHS to provide
OEpp

ok (5~ one 55 on

)}AQ Right-hand side (RHS)

implies

RHS = -A¢zH(R- Fun) - AEZE" — Ae(Hi - ) — [ ag,+ T2 g
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In order to reduce this expression further, consider a Taylor series expansion of a
function such as f

J
fur = fit JrAz+ O(Ba)?

or
fir = fi= L Az + 0(80)"

from which of
Af = EEAa: + O(Az)? (13-19)
Using this approximation, the following relations may be written:
At = 35’ A.g + O(A€)? (13-20a)
_ 65;, 2
Ag = —gAE + O(AE) (13-20b)
An = ZEac+0(88)?
o= GebE+0(8Y (13-20¢)
_ Oomy 2
An, = B —LAE+ O(AE) (13-20d)
Incorporating these approximations into the RHS results in the following:

3EPP

RHS = ~8¢p-(Fo- Fup) = A7l — B6(H~ L)

Ep 0t .  Fp 0% 8(/E Eu\On
(J ety TEGE)"AE%{(J 7) aene

F F)\ 0n 8 -
(7'— J) A E} AE@;}(Fs—FuE)

_AeaEPP

— AE(H - A,) - (E” %e  IF 65”) i¥:

7 8 T 8¢

_O8f(E &y,  F on\ _(E On.  F Ony 2
an{(J T ae) (J 5t T B )}( 2

Note that the last term in this relation is second order. Since the numerical method
is a first-order scheme, this second-order term is dropped. Hence, the formulation
becomes

{BEP ael [BF dF,p
0Q an 8@~ 8Q

_(2Er ar[OBPP\ _ Ae(H. - B ]
(ag )QAf Ag( 35) A(H, - R,) (13-21)

]}AQ = —AE——(F Fyp)
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where _
OEp\ _ Ep 06 | Fp 0§
()5 % 5%
A second-order central difference approximation is used for the 5 derivatives
on the left-hand side of Equation (13-21). The viscous and inviscid terms will be
investigated separately. The inviscid term is approximated by

8F\ A A 8F\ A A

3 oF AQ| = [(3_07) AQ]i,j+1 B [(375) AQ]:‘J—I
8@ 2A7n

The approximation of the viscous term is complicated due to the presence of

embedded gradients. These gradients include flow properties as well as the metrics

and Jacobian of transformation. To identify the problem clearly, consider element
2,1 of the viscous Jacobian matrix, i.e.,

%), = w2 (3), (%)
=) == by {J=) +bs(J-
(362 2 RewJ[‘ o)y \"0/,

In order to write a general formulation to present the terms of the elements,
consider the first term of the relation above, i.e.,

() (%),

(550) (J%) - (L)),

__+ -
L_RemJbl and MwJp

Note that each element in the Jacobian matrix 6?‘.,;:/3@ has the same general
form and can be expressed as L(M),. Now proceed with the approximation of the
gradient of the Jacobian matrix, where the general form just defined is used. Thus,
consider an approximation of

l25) 2] = & [ (45r) )

A second-order central difference approximation at i is used providing

2[(:2) o] - LR T (0B,

and express it as

where
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Grid points (3,7 + 1/2) and (i, 7 — 1/2) are considered as dummy grid points which
are eliminated in the next step. The coefficient L is evaluated by averaging as

Lijyy = %(Lig‘ + Lij+1)
and
L"-J“i = -;-(L,"j + L.‘J_l)

The gradient 8M/8n is evaluated by a second-order central difference approximation
as well. Hence,

| (5r) 9] -
MAQ) 1 —(MAQ) MAQ);—(MAQ); 4-
Mg+ Ligpr) [MODaputo 0] _ 4L 4 L) [HEg U700
An

or

a5 (572 -

(Lig + Ligan) [(MAQ)iz01 — (MAQ)i] — (Lis + Lig-1) [(MAQ)iy — (MAQ)i5-1]

2(An)*
2(Al )2 [(LIJH + Lm)(Mt.J+1)AQJ+1 - (Ls,;+1 + 2Lt,j + La,j 1)(M.J)AQJ
+(Lij + Lij-1){(M; ;1) AQj-1 ] (13-22)

In order to write this equation in a compact form, define

Liji1 = Lijn+ Lij
Lij = Lijs+2Lij+ Lij
Lija = Lij+Lij

Hence, /

8 oM ~ 1
'a_n [(L_E_T]—) AQ] Z(A )2 l(L|J+lMlJ+1)AQJ+1
—(f'iJMi.j)AQj + (Eij—lM,j—l)AQj—l]

With the approximations for the gradients of the viscous and inviscid Jacobian
matrices identified, the finite difference representation of the LHS for Equation
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(13-21) is
8Ep| . ~ AL |OF ~ oF x
= AQi+ 5 |55 AQm— 55| AQ
BQ i.J QJ 2A'7 [BQ ii+1 QJH BQ t5—1 QJ 1}
A ) B _ _ _ _
—'__E_g (Mij+1Li,j+l)AQj+l - (M.'JL.'J)AQJ' + (Mi,j—le'.j-l)AQ.‘i—l
2(An)
= RHS

which is rearranged as

At OF At - _
3A090),,., W(M..,,_J;‘,_l)] A+

(9Ep
| 9Q

[ A¢ OF
2An 8Q

+ Z(A )Q(MJL‘J)] AQJ

L)

A
2(AE )2( M, J+1L.,+1)] AQj41 = RHS (13-23)

ig+1
The brackets in this equation are defined as

Ag OF AE

1 - 2(An)?

Ag
2(An)?

AA;J = - M;J_lf,id_l (13—24)

0Ep

=] +
8Q |
A¢ OF
2An0Q

BB.'J' b M.aL‘J (13-25)

_AL

CO,'J' = 2(A )2 |.,_1+1Ls,_1+1 (13"26)

ig+l
Hence, Equation (13-23) is expressed as
AAi;AQj-1 + BB, jAQ; + CCiAQ 1 = RHS; (13-27)

At this point the RHS, which is evaluated at the known streamwise station “i”, will
be investigated. Recall that
9 .- = OEp OEpp
RHS = ~Af—(F;— Fpp) - | ) Aft-A
5, (B~ Fun) (ag) £~ Ag=g"
The gradient of the inviscid flux vector is approximated by a second-order finite
difference expression, i.e.,

AE(Ei - I—Iv.)

OF; _ Fiji—Fij
on 2An
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The gradient of the viscous flux vector is approximated in a similar manner ag
the implicit viscous terms on the LHS. To derive a general formulation for these
terms, note that the viscous terms may be expressed as

a | oM

— =z

On [ an ]
Following a similar procedure previously employed which produced approximation
(13-22), the following may be written:

O [ oM] _ i+ Lisn) (WhostoM) — (L5, + Lyy) (Fhagri)

On | on 24An

- (Lig + Liji1)(Ms o1 — Miy) — (Lij-1 + Lij)(Mij — M)
2(An)?

. 8E )
The third term, (-géﬂ) o 1
(6E‘p) _Ep 0¢; Fp o&,

B )T T T %

The gradients of the metrics & and &, are evaluated in the grid generation
subroutine (or a program, if it is performed externally) with Ep and Fp evaluated
at the grid point (4, 7). The pressure gradient term is determined explicitly as

@ — Pig —Pi1j
BE|,, Ag

At this point, return to the implicit formulation given by Equation {13-27). This
equation is applied at a new streamwise station “i + 1” for all j grid points from
J =1toj = JM. The domain of solution may be specified in two different fashions.
Obviously, one boundary of the domain is the body surface. The outer boundary
may be selected far into the freestream, such that the bow shock is included in
the domain; or the bow shock itself is taken as the boundary, in which case a
shock-fitting procedure is used. In the formulations to follow, the inner boundary
is selected at the surface where j = 1, and the outer boundary is at the freestream
where j = JM. The physical and computational domains are illustrated in Figure
(13-3). The shock fitting procedure is discussed in Section 13.8.

Now, Equation (13-27) is applied to each j grid point from j = 1 to j = JM,
providing the following finite difference equations:

BB:‘,IAQI + CCi,lAQQ =R,
AAi2AQ: + BB, AQ; + CCiaAQs = Riy
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AA!',I}AQQ + BB,‘,_';AQ:; + CC",3AQ—4 = Ri,3
AAi,AQs + BBiyAQs + CCuAQs = Ry

AA sur2BQumms + BBigum2BQsmmz + CCypa2AQumay = R rmm2
AA s AQummz + BBi g1 AQumm + CCi sum1 AQuy = R ymmt
AAimAQimm1 + BBigyAQim = Rigu

AY

Boundary condition 2, free stream\

j=IM

initial plane
of data

Boundary condition 1, body surface

U

[

Boundary condition 2, free stream;

j=IM

Initial plane

of data\

=1 —
i=1 @ i=IM
Boundary condition 1, body surface

Figure 13-3. The physical and computational domains
for the compression corner.

This system of equations is written in a matrix form as:
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[ BB;, CC;,
AA",2 B.Bi,2 CC;‘.Q
AA;3 BBis CCia
AAiy BB, CCiu

\

AAi M2 BBigumz CCismms
AAiyum BBigumy CCiammn
M BBigum |

[ A 1 [ R
AQ. Ry
AQs R;s
AQq Ri4
; = (13-28)
AQimm3 Rismms
AQimm2 R smmz
AQimm Ry smm
| AQum | | Rium |

Notice that the elements on the first and the last rows of the coefficient matrix
are distinguished by an overbar from the remaining elements. The reason for this
distinction is due to the imposition of the boundary conditions which will modify
these elements. The boundary conditions are discussed in the next section. Before
we proceed to implement the boundary conditions, consider the system of equations
given by (13-28) and briefly review its features.

1.

The system is expressed as a block tridiagonal formulation. Efficient numerical
schemes to solve this system have been developed.

The elements of the coeflicient matrix are 4 x 4 matrices for a two-dimensional
problem and 5 x 5 matrices for three-dimensional problems.

The unknowns in this system of equations are the AQ vectors, which are 4 x
1 for two-dimensional problems and § x 1 for three-dimensional problems.

The right-hand side is computed at the known station. Note that these ele-
ments are 4 x 1 vectors for a two-dimensional problem and 5 x 1 vectors for
a three-dimensional problem.

The coefficient matrix is evaluated at the known station “”, whereas the
unknowns are at the “4+1” location. Once the unknown vector AQ has been



Parabolized Navier-Stokes Equations 235

obtained, the vector Q at “¢ + 1” is evaluated by
Qi1 = Qi+ AQ

6. For the first level of computation, the known station is provided by the speci-
fied initial data set. Subsequently, the newly computed values are stored and
used for the next level of computation.

13.5 Boundary Conditions

Boundary conditions are required at the surface and at an outer boundary set
at the freestream or at the bow shock. Graphical representation of a domain with
boundaries at the surface and the freestream along with an initial plane of data is
shown in Figure (13-3).

The initial plane of data is specified at “¢ = 1”. Therefore, Equation (13-28) is
first solved for the unknowns at “¢ = 2" for all the grid points from j = 1to j = JM.
Some of the dependent variables at the boundaries may be specified from physical
laws pertinent to the problem. The remaining variables at the boundaries must be
computed as a part of the overall solution. For this purpose additional (assumed)
boundary conditions must be specified. For example, the no-slip condition is applied
at the surface for viscous flows. Therefore, the velocity at the surface is set equal
to zero. On the other hand, the value of the density at the surface is unknown and
must be obtained from the solution of Equation (13-28). Along the surface either
the value for the temperature or its gradient may be specified. For an adiabatic flow
the temperature gradient is set to zero. The assumed boundary condition is usually
specified by setting the pressure gradient normal to the surface equal to zero.

At the outer boundary, designated as boundary 2 in Figure 13-3, the freestream
conditions are imposed if the domain is extended to the freestream. A second
option of specifying the outer boundary is to use the bow-shock as boundary 2.
Such a domain is shown in Figure 13-4. In this problem the location of the shock
is unknown and is computed as a part of the overall solution. For this purpose,
Rankine-Hugoniot relations are used. The mathematical implementation of various
types of boundary conditions and the manner in which they effect the matrices,
BB;,, CC;,, AAiu, and BB, jy, are discussed next.

Consider first the wall boundary conditions. Assuming no flow injection or
suction, the no-slip condition is imposed at the surface. Therefore,

(AQz)in = (Apu)iy =0
and
(AQs)iy = (Apv)iy =0
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The inner subscripts in Q denote the component of the vector Q, i.e.,

Q

P P

5 _ | Q| _ 1) pu| _| pu

Q=] ¥ | == =~

Qs J| pv pv

Q4 pey e,
Boundary
condition 2,
shock

Physical

Domain
Initial plane of data

Boundary condition 1, body surface

" Boundary condition 2,5hock;

Initial plane

of data| pomain of solution

W
Boundary condition 1, body surface

2 is selected at the shock.

Figure 13-4. Physical and computational domains where boundary

To describe the density at the surface, note that Q, = p = p/J. By definition

(Ap)i1 = Piv1y — Pig = (%)Hl,l - (%)i,l

The term ;41(Ap); 2 is subtracted from this equation, where 1, is the ratio of the
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Jacobian of transformation defined as

_ e (é)
Vi Jis11 N1/

Note that the term 1 is provided by the grid generation routine. Hence,
. ~ [ P
(Ap)i1 ~ Yint(Ap)iz = [(7)s+1.1 - ("j)i,l]

- [(%)m,z - (%)4,2} (13-29)
If an adiabatic wall is assumed, then
Ting =Ting

In addition, it is assumed that piy11 = Pi+1,2. This assumption implies that 8p/dn =
0 at the surface, which falls within the overall assumptions used in PNS equations.
Therefore, for an adiabatic wall boundary condition,

Pi+1,] = £i41,2

Now, Equation (13-29) is rearranged as
(AP)ip — Yir1(AP)ig = ¢'¢+1(§)¢,2 - (%)m

+('§)i+l,l - wi+l(§)i+l,2 (13-30)

The last two terms add up to zero! This statement is proven below. The terms are
rearranged as

Ji
(%)H—l,l - ¢s+1(§)s‘+1,2 = (%)i+1,1 — J,:j (§)¢+1,2
_(Py P12
(J)‘+1,1 J"+1’1

But for an adiabatic wall,
Pi+11 = Pit1,2

Hence,
Pir11  Pit12 0

Jirg i
As a result, Equation (13-30) is reduced to

(88)ia = Yunr(88)s2 = Yinn(5ia - B (13-31)
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The last term of this equation is modified as follows:

(ﬁ) =P e Ja o P2
Jligvw o Jir Jig g Jia “Jig
Note that pi1 = pi2 is used , which is valid for an adiabatic wall condition as
described earlier. Finally, Equation (13-31) is expressed as

()i = Wi(AP)ia = Wina ~ 9052 (13-32)

In this equation (Ap);; and (Ap);, are the unknowns, whereas Piz2 is known and

the Jacobian of transformation at any grid point is provided by the grid generation
routine.

Similar mathematical manipulation is used to obtain a relation for the energy.
To derive this relation, start by writing the following expressions:

(Aﬁet)t’,l _ ¢i+l(Aﬁ31)i,2 — (pet)i+l,l . (pet)i,l
| i Jia
[ ; o |
—¥Yin (p;?:hz - (p;:);,e (13-33a)
(Yirui2)(Agu)ia = (Yir1uia) (Pl (pu)ia (13-33b)
| Jis2 Jia ]
[ (pv): 02|
(rortia) ) = (g) | G2tz (P2 (13-35)
and
1 1 ; i
— S¥iea(uly + vl5) (Ap)iz = — i (uly + v3y) p—ﬂ"g - P‘,z (13-33d)
2 2 Jirz  Jig

Equations (13-33a) through (13-33d) are summed, and the result expressed as LHS
and RHS is

LHS = A(pe)ii — tir(Ape)iz + (Yirruig) (Apgu)ia
+(ir1vi2) (Apv)ip — %"/’Hl(u?,z + v9)(Ap)ia

and

i i 1
RHS = (per) thl (per) 2~ [(Pet)i+1,2 - ui,2(ﬂ“)s‘+1,2 +
Jir1y1 Jin Jii
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—‘Ui,2(pv)t’+1,2 + %(’U?2 + U?,z)(ﬂwlﬂ) ]

Fie1~— [ (pee)iz — tig{pu)ia — via(pv)ia

Jl

+%(“s‘,2 + ‘U;‘Q,z)(Pi,z) ]

The quantities in the RHS expression need to be expressed in terms of the known
values of i. For this purpose the following relation is employed:
__P 1
pe = 7-:1* + 5.0(“2 + v%)

Therefore,

RHS =

1 [P¢+1,1
Jiy1g |y —1
1

Di 1 | Dit12
A [’Y t— 1 + i+ U?'I)] " T [’Y‘:l 1 + g2l
1, t 1

1 2 2
+ 51Uy + UH—I,I)]

+v?a) — wia{pu)isrz — via(pv)iv12 + 1oua(ul, + ”42,2)]

11 g
+¢s+1—J:; [ " ‘_ 1 + %Pi,z(uf,z + U?,z) ~ uiz(pu)i2

—~vi2(pv)iz + %Pﬁ,z(uﬁz + vi2,2)]
To simplify this expression, consider the following terms:
%p,-ﬂlgu,ﬂ_l_g + %pi+l,2vi2+1'2 — Pi+12Wi 2U441,2 — P12V 2Vi1 2
+%Pi+1,2uﬁ2 + %P¢+1,2”s2+1,2 = %Pi+1,2(u;'2+1,2 — 2u; Ui + u?,z)
+3pi12(VE 12 — 2002012 + V)

The terms in the parenthesis are assumed small and, therefore, they are omitted.
Hence,

1 1 1 1 1 1
RHS = — ;
i 1 1
+¢i+lﬁ '—];Pi,z ~_1 J:+1 (Ps+1 1— Ps+12)
1 1 1 1

1¢i+1"1‘_7pi,2 P 1 .—f-p"
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But, it was previously stated that p;; = p;» for all ¢, therefore,

1
RHS = 7___1' - (¢1+1p$2) —:—pl ]
_ 1 Pn J|2
- ,y _ 1 - (wi+1p‘2) J J 2]
- L o~ iy
= =1 i+1 7 P:z

Now, the final form of the expression for the total energy e; may be written as

(Apey)iy — i {Afe)ia + Vit o(Agu)i 2 + Yir1vi2(APV)i 0
P: 2

|,2

1 1
=W (uiz + vig)(AP)iz = ,Y—_—I(ibm W5
The four expressions to be used at the wall boundary and the imposed assump-

tions are summarized below.

1. Assumptions
{a) adiabatic wall

(b) normal gradient of the pressure at the surface is zero

(¢) no slip at the surface

2. Equations

(a) (Ap)i1 — Vi1 (AP)ia = (Wis1 — %) (%)

(b) (Apu)iy =0

(c) (Apv)iy =0

(d) (Ap_et)t, ¢s+1[ (u? 2+'U"2,2)(Aﬁ)":2_u‘-Q(Aﬁ“)i,ﬁ—vi,z(Aﬁv).-,2+A(p'et)‘.'2] _

L - w2
These equations are expressed in a matrix formulation as
1000 (Ap)ia -1 0 0 o (Ap)ia
0100 (Apil.).',l + U 0 0 0 0 (Ap“u).',z
001 0[] (As), i1 0 0 0 0 (Apv)ia
0001 (Ape)ia —g(ud +ovdy) we v -1 [ (Ade)is
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(¥ir1 — i) Pia
0
0
.Tl‘i'(":biﬂ — Yi)Piga
or
ﬁ,‘JAQl + UU;‘,IAQQ = R!',l

The derivation just described completes the required modifications at the surface
for an adiabatic wall condition. Next the constant wall temperature condition will
be investigated.

By definition

(Ape)in = (per)irrn — (Per)in
At the surface

pe, = pe
because the velocity at the wall is zero. In addition,
e= T
v(y - 1)ME
Therefore,
TWHI T

Afe)q = gy ——__ 5w
(e =P S0 Mg ~ Pt - i

For a constant, uniform surface temperature

Twi+l = Tﬂk = Tw
Therefore,
(Apein = ¢'(Pis1y — Bin) (13-34)
where ¢’ is defined as
¢I —_ Tw
vy - 1)M3,

Equation (13-34) may be rearranged as

1 _ - _
W(Apez)i,l = Pivi) — Pi

or
d{Ape,)iy = Pir1,1 — Py (13-35)

where

¢=8,— T
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By definition, the following may also be written:
(AP)iy = Pis11 — Piy (13-37)
Now, Equation (13-35) is subtracted from Equation {13-37) to yield:
(Ap)ir — d(Ape)in = Piviy — iy — (Pivr1 — Big) =0

The required equations applied at the surface for the constant temperature bound-
ary condition may be summarized as:

(Ap)iy — ¢(Ape)ia = 0
(Apu)iy = 0
(Apv)iy = 0

(Age)in — i | 3(uds + v]5) (AD)iz — wia(Apu)ia ~ via(Apv)ia + (Aﬁﬂt)-‘.z] =

1 Di2
m(wm — % T2

The imposed assumptions which lead to these equations are:
1. Constant wall temperature.
2. Normal gradient of the pressure at the surface is zero.

3. No slip at the surface.

When these equations are expressed in a matrix form, the following is obtained:

100 —¢ (Ap)in I' 0 0 0 0 (Ap)ia
010 0 (Agu);ip + 0 0 0 0 (Apu)iz
001 0 (Apw)y ‘“l 0 0 0 o0 (Apv)ia
000 1 (Age,)i —3(ul,+vl) wp v -1 (Ape,)ia
0
~ 0
o 0
15 (W1 — Y)ia
or

BB1AQ, + CCiuAQ; = Riy
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Now, consider the outer boundary set at the freestream. At this location, flow
properties do not change and, therefore, Q’s at “i + 1” and “" are equal, ie.,
Qi+1om = Qisnm which results in AQ; ji = 0. However, in general AQ; su is not
necessarily zero, since Ji1 4 does not have to be equal to Jism. To proceed with
mathematical development, one may write

(Aﬁ)i,JM = ﬁ"'l'l,JM —_ ﬁ‘.,JM _— p‘+1,JM _ p;'lJM
Jingm  Jiam

At the freestream
Pi+1JM = DiJM

Therefore,
1 1
Jinigm  Jigm

(Ap)iam = pigm (

where it has been defined that

) = I‘JM(pi,JM) (13-38)

1 1
Jiniam  Jigm

=Tym

Note that (Ap)ism would be equal to zero only if Jiy1su = Jiyym. This condition
may be achieved under certain transformations, but it is not required for these
derivations. Following similar procedures which lead to Equation (13-38), it may
be concluded that:

(Apu)igm = Tim(pu)ism (13-39)
(Apv)igm = Tam(pv)igm (13-40)
(Ape)iam = Taimlpe)ism (13-41)

Equations (13-38) through (13-41) are expressed in a matrix form as

0000 (Aﬁ)i'JMMl 1 000 (AP—)-;,JM
0000 (Apu)i smmn 0100 (Apu); sm
0000 (Apv)i sman 0010 (Apv)iam
0000 (Apey)ismm 0001 (Ape,)iam

Pi M

FJM (pu)i,JM

(pv)iam

(per)iam

or
AAsmAQimm + BB yyAQ = Rigm

This completes the specification of boundary conditions at the surface and the
freestream.
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13.6 Extension to Three-Dimensions

The PNS equations expressed in a generalized coordinate system were given in
Chapter 11. These equations are written in a flux vector formulation as
Q_% BEPP+6_F+8_G'___6FVP+660P
0¢ ¢ on 8¢ On a¢
The flux vectors are given by Equations (11-158) through (11-163).
The assumptions and modifications imposed on the Navier-Stokes equations
which resulted in Equation (13-42) are briefly reviewed here. They are:

1. Steady state.

(13-42)

2. Streamwise gradient of the viscous terms are omitted.

3. Flow must be supersonic in the streamwise direction; however, modification
of the streamwise pressure gradient allows subsonic flow within the viscous
layer.

4. All mixed partial derivatives are assumed negligible and are omitted from the
formulation.

Various modifications of the streamwise pressure gradient discussed previously are
valid for three-dimensional problems as well and, therefore, they are not repeated
here. The same approximation of the streamwise pressure gradient incorporated for
the two-dimensional problem will be employed for the three-dimensional studies.
Specification of initial and boundary conditions is also similar to the previous dis-
cussion. However, the numerical algorithm to solve the equations is different and,
therefore, it is presented in detail.

13.6.1 Numerical Algorithm

Using a first-order backward difference approximation in the streamwise direc-
tion, Equation (13-42) is expressed in delta formulation as

— - - - o -
AEAER + 5 (AF) + (A0 - 55 (OFn) - 2(0Gr) =

_ BEpp
73

a éuP
24

_B_F _3_G_ +8F"P
i Only 8Cl, O

i i

or

AEp + Af% [AF‘ - AF‘uP] + Afaic Aé - AG’UP] =

6(5',, P

¢

Ag [— agg -

i Onj, B¢l Bn |,

J (13-43)
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where the pressure term on the right-hand side is computed explicitly. Equation (13-
43) is nonlinear and, therefore, a linearization procedure similar to the previously
discussed approximations is utilized. The approach is briefly outlined here. Each
flux vector in Equation (13-43) is expanded in a Taylor series in the £ (streamwise)
direction. For example,

8Ep

Ep, =Ep+ 3 — AL + O(Ag)? (13-44)

Recall that ) )
EP = f(Q: 5:3 £y, Ez)

and, therefore, the chain-rule of differentiation provides

dEkp aEp 9Q | BEp 8¢ N OEp 8¢, N OEp O¢,

13-45
B~ 90 o "o ot aE, ot o ()
After substituting this equation into Equation (13-44), one obtains
AE + + Af +0(A
p= ( oG o "o ot T o, o T ok, o) OB
or
A 8Ep BEp - 8Ep OEp
AE 30 o) ——AQ+ BE. . Ag + Z, A + &, —A¢, + O(Af) (13-46a)
Similarly,
_ _OF,.. OF, oF, . oF )
AF = EQ-AQ + EAU; + E)—-Aﬂy + -a——AT]z + O(Af) (13-46b)
AG = é AQ + AC, + A( oG —AC, + O(A€)? (13-46¢)
~ 80 8= 8¢, g o
aFuP aF,,p aﬁ‘.,p aFuP 2
AF,p = —AQ + —=An. + —=A A . + O(A 13-46d
= BGUP aéup aGyP aGuP 2
AG,p = ——AQ + Al + A A .+ O(A 13-46e

The inviscid flux Jacobian matrices, BEp/BQ, OF/8Q, and 8G/8Q, and the
viscous flux Jacobian matrices, 8F,p/0Q and 8G,p/0Q, which appear in these
equations are given by Equations (11-187) through (11-191). The remaining terms
in Equations (13-46a) through (13-46¢) are evaluated in the same manner as the
two-dimensional case, i.e.,
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"""""

OEp

P, % (13-47b)
?9% - gf (13-47c)
gri = z—g=§ (13-47d)
g—f; = -gg =§ (13-47¢)
g,i = 3—2 =% (13-47£) *
%ip = afcip = % (13-47g) %
a;‘:;,: = % = % (13-47h) R
af,f = 5‘%’-’- = %— (13-47i)

Now, Equations (13-46a) through (13-46e) are substituted into Equation (13-43) to
yield:

%AQ O et 3E”A@ 6E‘°Ae,+

s (300 + o an+ 2 an+ pon) - (Z3rag

a;;”’A +6:"PA +a;|"A )]+A£ac[( AQ+

e 2 (i
+a§;”+a§£”] (13-48)

This equation is rearranged following the same procedure as for the two-dimensional
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problem. Therefore,

OEp OF OF,p 0 |0G OG.p
{BQ Af [6Q 6Q} AEBC[(?Q 6Q]}AQ RHS

The remaining terms of Equation (13-48) are included in the RHS, which is modified
using approximation (13-19). Hence,

RHS = —As"’gg‘“—as—w Fur) ~ Aty (G - Gur)

Ep 0¢. Fp 8¢, Gp 0¢,
woff 55

20 [(E _ENOn: (F_F)
-89, {(J‘ J) 9 +(J J) 3¢
G G 317, ) E Ev 6(:
+H7-7) g} (A’E)ag{(‘f 7)6_5
F F,\ 6¢, G G,
+('f‘7)'a?+( )ae}
Note that the last two brackets are second-order in the streamwise direction &.

Since a first-order method has been employed, these terms are dropped.
Finally, the delta formulation of the PNS equation is written as

oy |, oF 8F., Y. aG.,p ~
{ FTa) Afan [3Q 0 | 25 |3 [ ] }AQ
8Epp o 8E,
~A%2EE — AELIF - Pl - MGG~ Gurl - ¢ (6_6)@ (13-49)

where
==+
o¢ J ot J 0T T B¢

Direct approximation of Equation (13-49) by a second-order central difference
expression for the 77 and ¢ derivatives will result in a block pentadiagonal system. As
mentioned previously, numerical solution of such a system is very time consuming.
To overcome this deficiency, approximate factorization is used.

In order to write Equation (13-49) in a factored form, a second-order term, i.e.,
O(A£)?, is added to this equation. The addition of this term does not affect the
order of accuracy of the method, because the scheme is first order. Subsequently,
Equation (13-49) is factored as

8Ep 8 (6G 8G.p\] [(0Ep\"
{ [(w) +Alse (5@ - ?@")] (Fé')

() B2t re o Grok
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[(%gp)+ Ao (gg a;ép}} }AQ = RHS (1350

Now this equation is split as

[%‘g’ +Agg (gg 65(3")] AG* = RHS (13-51a)
and
[%Eg + e (gg- - %%3)] AQ = AQ™ (13-51b)
where ]
AQ" = (‘%Eé’i) AQ* (13-51c)

The solution proceeds as follows:

1. The RHS in Equation (13-51a) is computed. Note that all of the terms on the
RHS are at the “” location, where all the dependent variables are known.

2. Equation (13-51a) is solved for the unknown vectors AQ*. Note that this
system of equations is block tridiagonal. This system is solved along each
constant “p” line from j = 1 to JM, progressing from k = 1 to KM. This
step is referred to as the { sweep.

3. Equation (13-51c) is used to evaluate AQ**.

4. Equation (13-51b) is used to solve for the unknown vectors AQ. This system
of equations is also tridiagonal, and is solved along the constant “™ line from
k =1 to KM, progressing from j = 1 to JM. This step is referred to as the
1 Sweep.

5. The unknown flux vector Q,+1 is evaluated from its known value at %" and
the incremental change AQ, which was computed in step 4. Thus,

Qt+1 QI + AQ

6. The five steps just outlined are repeated from one streamwise surface to an-
other until the entire domain has been evaluated.
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13.7 Numerical Damping Terms

Previously in Chapter 6, it was illustrated that the second-order central differ-
ence scheme inherently introduces dispersion errors into the solution. These high
frequency oscillations may produce unacceptable results and are highly visible in
regions where natural viscosity is absent. For example, these oscillations appear
in the vicinity of shock waves in the inviscid regions. Note that in the viscous re-
gions, the oscillations are usually damped out by natural viscosity. To eliminate or
reduce the oscillations in the inviscid regime, numerical viscosity, herein defined as
damping terms, are added to the governing equations. The addition of such terms
should be such that the order of accuracy of the scheme is not altered. Usually a
fourth-order damping term will satisfy this condition. However, when a damping
term is included implicitly, second-order terms are usually employed. The follow-
ing operators are commonly introduced to represent the difference approximation
within the damping terms. For a second-order term in 5

(VﬂAn)f = f:1'+1 - 2f:‘ + f:i—l
and for a fourth-order term
(VoA f = five — 4fj41 + 6f; — 4fj1 + fi-2

The damping terms may be added implicitly or explicitly. When the inclusion is
implicit, i.e., the damping term is added to the left-hand side, a second-order term
is used. That is done to preserve the tridiagonal nature of the system. For explicit
addition, fourth-order damping is used.

For the PNS formulation just prescribed, the modification to include damping
terms is as follows:

[?‘3’ Beg (-g-% - %5) + (Dc)im,,] AQ® = RHS + Deg
and 0Ep , p. 0 (OF _oF» "
[+ e (55 - T3 ) + (Do 20 = 20
where
(Dodmp = —(eQ)mpAET (VALY
(Doimp = —(&)impAET ™ (VpAg)J
and

Do = —eA6 7! [(VeA() + (Vo) Q"

In the damping terms above, (¢¢)imp and (€y)imp are the implicit damping coefficients
and ¢, is the explicit damping coefficient. The values of these coefficients are input.
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Obviously they are problem-dependent and must equal less than one. They should
be selected as small as possible, since the addition of too much damping clearly
will overwhelm the solution, i.e., flows in the high gradient regions, such as shock,
are destroyed. Generally speaking, the implicit damping coefficients are specified
as twice the explicit damping coefficient.

13.8 Shock Fitting Procedure

The bow shock generated by an object in a supersonic/hypersonic flowfield
may be selected as the outer boundary of the domain and determined as a part of
the overall solution. Obviously this procedure has some advantages compared to
an outer boundary set at the freestream where the bow shock must be captured.
First, the number of grid points in the domain may be decreased. That is due
to the fact that additional grid points must be located in the freestream if the
bow shock is to be captured. Second, shock smearing (of the bow shock), which
is a consequence of shock capturing, will not appear in the solution when shock
fitting is used. Of course, these advantages are accompanied by some disadvantages.
Most shock fitting procedures are explicit and, therefore, some additional stability
requirement is imposed. Furthermore, additional sets of equations must be used
to determine the shock location. Usually Rankine-Hugoniot relations are used for
this purpose. In this section, the shock fitting procedure and the derivations of the
pertinent equations are explored.

The initial conditions at “/ = 1” provide all the required data including the shock
slope. To generate the grid at the next station, i.e., “ = 2", the shock is linearly
extrapolated. Therefore, the grid system at “ = 2" is generated and the PNS
equations are solved for j =1 (at the surface) to j = JM (at the shock, i.e., JM is
the grid point just behind the shock). Note that the finite difference equations of the
PNS equations must be modified and a one-sided difference approximation employed
at the shock. Once the PNS equations at “ = 2" are solved, all the flow properties
including the pressure are known. However, recall that the shock location at “i = 2"
was extrapolated from the previous station. Therefore, an updating procedure must
be used to modify the shock properties and compute a new shock slope at “i = 2".
The procedure is described in two steps. First, an equation for the shock slope
is derived, and subsequently Rankine-Hugoniot equations are introduced. In the
following, the subscripts n and ¢ denote the normal and tangential directions to the
shock wave. The detailed derivations are given for 2-D problems with extension to
3-D to follow.

The normal component of the freestream velocity is

Vi = (Voo - fi0)A2s
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where #, is a unit vector normal to the shock and is oriented outward. The nomen-
clature is shown in Figure 13-5.
The unit normal is expressed as

s oo YN _ Mt )
Vol (m2+n2)'/?

The freestream velocity vector is

1700 = Ugol + Voo]

Thus, the normal component of the freestream velocity is expressed as

Vo= (UooTz + VooTly) (Nt + 7,9)
e [Vn|?

whereas its magnitude is
v UooNz + VooTly
= 0z T Joolly

13-52
|V (13-52)

Body

Figure 13-5. Nomenclature used for the shock fitting procedure.

The tangential component may now be expressed as

‘-}tm = V'w - ‘7“& = (umi + vooj) _ (uoon: + Ui,ovn:’??(nzz + ny])

The normal component of the velocity behind the oblique shock is
Tt + 1yd
—V,,
1Vl

The tangential component of the momentum equation requires that

-
Vo = _unnl =
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Thus,

—e -
‘/tJM = ‘/tou

. L i+ nj
Vim = Vﬂ.m + Vf.m = _Vn.m L Tl

From which

Usm

VM

N o (Ut +vomy) N
W" + Ul + vooJ - lvnlgw Y (T];,_-Z + T)yJ)

Va
= ug su Tz

_ _ Uoolls + Uoo"?yn
|V Vo2 ™
=y — YTl Yool + Uty

] Vo ™

These equations are modified by using Equation (13-52) to provide:

UM = U

UM = Yy

Recall that the conservation of mass across an oblique shock is written as

or

_ Vosu T

_ Vel

V; 77::(
=l + == (1

|V |Vl *
_Vautty Vaom _

- V;UM)
Ivﬂl Vi

(13-53)

‘M”V( I"JM)
S U+ T[] — 1IN

13.54
o \' "W, ) (3%

poovnm = pJMI/nJu

Vo _ poo

Vi PiM

(13-55)
Before proceeding further, the required equations are nondimensionalized. Equa-
tion (13-55) is nondimensionalized as

or

and Equation (13-53) becomes

Ui
Voo
or

I Poo
Voo _ Poo
Vo  PIM
Voo P
Vaue _ 1
AT 7Y,

(13-56)
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* * * "7:: ‘/r:
Wiy =Usg + Vi —— |1 - %
M °"|an( Vn:o)

Substitution of Equation (13-56) into the equation above yields:

Nz 1
Wy = Ul + Vi —— (1 - —-—) 13-57
e i \' P (1357
Similarly, Equation (13-54) is expressed as
1
v} =u'+v*-ﬂ!—(1— ) 13-58
R 12 TR Y (15-58)
Next, consider the computation of 7, and 7. Recall that
N =—Jyg
and
ny = JT¢
The coordinates of the grid points at constant £ locations may be expressed as
z = T+ 86Sm (13-59)
y = w+65n; (13-60)
where -
m = é,-, X}
n2 — é,’ . j

and &, is defined as a unit vector along 7, 6 is the shock standoff distance, and S is
a grid clustering function.

Now Equations (13-59) and (13-60) are differentiated with respect to £ to pro-
vide:

Tg = T - S(nlfé + ﬂ.léf) = (zbf + Snleﬁ) + Sn165
ve = W+ S(neb+ nabe) = (Yo + Sz b) + Snpde

In order to write these equations in a compact form, the following definitions are

used:

o = T+ Smb (13-61)
ay = Y+ Sngd (13-62)
B = Sm (13-63)

B = Sna (13-64)
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Thus,
Te = a1+ P
Ye = az+ b
These equations are substituted into the metrics 7, and 7y to provide:
= = —J{aa+ Bb) (13-65)
Ty = J(ar+ B6) (13-66)

Now, return back to the normal component of the freestream velocity given by
Equation (13-52)

— Uoollx + Voot
CETo
This equation is rearranged by squaring the terms; hence,
Ve (0 + 1) = n202, + 0202, + 2uooiooren, (13-67)
Now, substitute Equations (13-65) and (13-66) into the equation above to get
V(B2 + B8 + 208, + B)be + (08 + a2)] =
(Baul + B2 + 261820 Voo )67
+[26u3, + 26,02, + 2(af + 0182 ) thoo Voo ) B¢
+(agul, + a0, + 201 QU0 Voo )
This equation is written in a compact form as
(ALL)&Z + (A2L)6; + (A3L) = (AL1R)é; + (A2R)6; + (A3R) (13-68)
where
AL = (B + V2
AL = 26+ B)V2
AL = (af+ V2
AlIR = (Byus + Bive)?
A2R 2[Boul, + BivE, + (aofy + 0132) oy Voo ]
A3R (Qr2oo + 0110)?

I

Il
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Now, Equation (13-68) is expressed as
A8+ Asbe+ Ay =0 (13-69)

where
Ay, = AlL- AlR

Ay = A2L - A2R
Az

If

A3L - A3R

Equation (13-69) is solved for &, where the positive root is selected; hence,

Ay + JAE 44 A
5 = 2+ A2 143 (13-70)

24,

In order to determine the parameters A; through As, Equations (13-61) through
(13-64) are employed. These equations require data about the body configuration,
grid system, and shock standoff distance. Of course, the body configuration is
known, the grid system with a specified clustering has been selected, and é has
been extrapolated from the known station “i”. Thus, Equation (13-70) provides a
new shock slope at the new location “: 417,

The Rankine-Hugoniot relations are now used to update the flow properties
behind the shock. These newly computed values will replace the values of the
flow properties behind the shock at “JM”. Note that these values were initially
computed by the PNS equations. A brief review of the Rankine-Hugoniot equations
to be employed here is provided next.

Conservation of mass, normal component of momentum, and energy across an
oblique shock are:

piVa, = P2V, (13-71)

pVi+p = pVi+m (13-72)
1

hi + '2-V,.ﬁ = hy+ %V,ﬁ (13-73)

where the subscripts 1 and 2 denote the flow properties ahead and behind the shock.
When Equations (13-71) and (13-72) are combined to eliminate V;,, the result is

V2 = 7’2;11’1 1 - (13-74)

P
Continuity is combined with the energy equation to provide
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1 1{p 2
hy + —V2 = — 2] 2
1+ 2Vm ha + 5 (PQ) "

This equation is rearranged as

1 2
h2=h1+—|i1—(£'l')}‘/n2]
2 P2

Now, Equation (13-74) is substituted into the equation above to provide

2
h2=h1+l[1-—(p—l-)] popf 1

%,5’
R
A
%
>i.n

&

2 P2 n (1-£
p2 :
which is rearranged as '5‘7
ha=h + 2211 (1 + ﬂ) (13-75) i
2m P2 P
Recall that by definition ¥
h=e+Z ?

p

and if the perfect gas assumption is invoked, then

p=ype(y-1)
Thus, =L£
Y-1p

Enthalpy in Equation (13-75) is replaced by this equation. Therefore,

— 2 +
Yy=1p (vy-1)p 2m

which may be rearranged as

Y P P —p (1+f’—‘-)

VP2 YPi+p)+pi—p P2 —
= + 13-76
(v—1)pe 2(y - Dm;m 2pa (13-76)
The nondimensional form of this equation is
P} ¥(pi+p})+pi—p5 PP
= 13-77
(v — L)pi 2v-1) 205 (1s-77)
When this equation is solved for p}, the following is obtained:
* — 1)p*

T (y+Dpi+ (v - Dp}
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This equation is the one which is used to update the density behind the shock at

“IM”.
The normal component of the velocity V;, given by Equation (13-74) in nondi-

mensional form may be expressed as:
BR (13-79)

V'f: -1

o
Now, the continuity may be used to compute V. Since Vj; = V7, the total
velocity at “JM”, and as a result its components u* and v*, may be computed.

These values replace the previously computed values at JM. The energy term, e,
is then updated according to
0 e = —12 2 + l(u;2 + vy
" (y-1)pt 2 2
Once this updating procedure has been completed, the procedure is repeated at the
next streamwise station and proceeds forward throughout the domain.

1

DR bR by

13.8.1 Extension to Three Dimensions

v The shock fitting procedure just described for a two-dimensional problem will

now be extended to three-dimensional problems. Since detailed mathematical ma-

nipulation has been explored, only a summary of results is given in the section.
The unit normal (to the shock) is given by:

~

o= Vn - et + My + ek
Vol (240 + )2

The normal and tangential components of the freestream velocity are:

V’ — (Uoo?le + UMy + Weo:) (M2 + nyj + 17,]‘;:)
e |Vn)?

Vi = (thood + Voo + Weok) — (Uoollz + VooTly + ngf'&') (03 + 0y + 0:k)

The velocity component behind the shock at j = JM is

~
~

~ ) 7+ n.k . R
ViMm = —V,Wn +|@‘:’| N + Uool + Vo] + Wook

_ (UooTlz + Voolly + WooTz) (M3 + 1yJ + 7?1’;)
V|2
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from which:
VisuTlz _ Yooz + Voolly + Wool
UM = U — I'%me_ collz |%°n|y2 wlls,
Vs = Voo — VlrﬂéunTy _ Usollz + rg:rz+ WooT)z "
o = e T S

These equations are now modified by using continuity and are subsequently
nondimensionalized to provide:

. * ] M= . _1_
= Ut Voo gy (l ij) (13-80)
- L * 1
o= v+ V"“lgy_'ﬂ (1 - E) (13-81)
. * » N 1
= Vv 1- 1
As described previously, the coordinates of the grid points may be written as
r = zp+6Sn (13-83)
¥y = th+6Sny (13-84)
z = zm+6Sns (13-85)
where
n = éﬂ -1
ng = é-J
ng = éﬂ . IE

When Equations (13-83) through (13-85) are differentiated with respect to &,
the following are obtained:

e = (Ibf + Snlfé) 4+ Sn165
Ye = (e + Sngb) + Snabe
Z = (zbe + Sn3€6) + Sn36¢

’
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These equations are written in a compact form by using the following definitions:

oy = Ty + 8

a2 = Yy + Sngb

az = 2z, +85n30

B = Sny

Pr = 8ny

Bz = Sng

Therefore,

Te = o+ Phée (13-86)
Ye = a2+ 026 (13-87)
e = o3+ [ab¢ (13-88)

Recall that the metrics 7;, 7y, and 7, are given by:

e = —J(Yeze — Ye2e)
ny = J(zez — %)
N = —J(xeyc — Tcye)

Substitution of Equations (13-86) through (13-88) into the metrics given above
yields:

N = Jl(as + Babe)yc — (a2 + B2be) ] (13-89)
y = Jl(on+ Bz — (as + Bsbe)z(] (13-90)
n: = Jl(ag+ Babe)xze — (a1 + Bie)yc] (13-91)

The normal component of the freestream velocity may be squared to provide
VilTlz + 1+ 00) = nfud, + njvd, + nfwd + 2mnyteve
+20202 oo Woo + 21Tz Voo Woo (13-92)
To determine 73, Equation (13-89) is squared and rearranged as
n = (Boze ~ Bowg)*6; + 2z — aaye)(Boze — Boc) B

+(aaz¢ - a;;yc)2
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This equation may be expressed as

Similarly,

N2y
N2z

NyTl=

nt = (en + 61255)2

(621 + 62265)2

(€31 + €326¢)*

€12€2207 + (€11€92 + €12€2 )¢ + €r1€m

€12€3207 + (€11632 + €12€31) ¢ + €nrear

e22€320} + (ea1632 + €3162:2)8¢ + enen

where the following definitions are incorporated:

€11

€12

€21

€22

€31

€32

(@22¢ — asyc)
(B22¢ — Paye)
(12¢ — asz()
(Brz¢ — Bax)
(enye — o)

(Biye — Baz¢)

(13-93)

(13-94)
(13-95)
(13-96)
(13-97)
(13-98)

(13-99)
(13-100)
(13-101)
(13-102)
(13-103)
(13-104)

Substitution of Equations (13-93) through (13-98) into Equation (13-92) yields:

where

and

AL = (e, + ey + )V

AICS? + AQ(SE + Aa =0

Ay
Az

AlL — A1R
A2L — A2R
A3L - A3R

A2L = 2(enern + enexn + 631632)Vn2°,

(13-105)
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AL = (E,+€+ E?H)V,fm

ALR = (€12Ue + €20U00)? + €22W2 + 2€12€30U00Wo0 — 2€20€32V00Woo

A2R = 2lenenul, + enenv’ + enenwl + (€162 + €1€12) Ul
+(e11€32 + €31€12)UooWoo + (€21€32 + €31€22) Voo Woo)

2 2
A3R = (Cnuoo + 621’U°°) + eqnwg, + 2€11€31U%coWoo — 2€21€31 Voo Woo

Now Equation (13-105) is solved for the shock slope to provide

j At JAZ — 44,4,
E —

24,

The Rankine-Hugoniot relations given previously are now used to update the flow
properties behind the shock.

13.9 Application

To illustrate the solution obtained by the PNS equations, the following simple
configuration is proposed. The configuration is a sharp cone of 10° half angle at
an angle of attack of 24°. The freestream conditions are My = 7.95, P = 3.984
psi, T = 99.7°R with a wall temperature of 557.6°R. The shock fitting procedure
described previously is used to obtain the outer shock. In addition, due to symmetry
of the flowfield, only half of the domain is used in the computation. However, the
grid system and the solution to be presented shortly are shown for the entire domain.
The domain at a cross-section is shown in Figure 13-6.

To start the PNS computations, a plane of data (for a first-order scheme) or
two sets of data (for a second-order scheme) is required. Since the configuration
in this example is simple, approximate methods may be used to provide the initial
condition. Otherwise the Navier-Stokes equations must be solved to provide the
required data. The approximate initial data set may be obtained as follows. Assume
an initial shock shape, for example an elliptical shock. The windward shock angle
is determined by the charts in standard text {12-7) or NACA 1135 [12-8]. For the
leeside, the limiting Mach angle is used. Now, the Rankine-Hugoniot relations are
employed to determine the flow properties behind the shock. A sine function is used
to represent the velocity within the viscous region of the flowfield. The pressure
and density are assumed constant within the interior domain as provided by their
values obtained by the Rankine-Hugoniot relations.
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The initial data is used to march downstream using the PNS code, usually 20-30
streamwise stations. Then, the properties within the domain are scaled back using
conical flow assumption to provide a new starting solution. This iterative procedure
is continued until a convergent solution is obtained. This set(s) of initial data is

used to march the PNS over the entire domain.

/]
7

[]]

L]]]

&7

[]]
iy
”I[Illlllll

[1T]
[[]
7

/]

Figure 13-6. Physical domain at a cross-section where symmetry is applied
ati=1and 2andi=IM and TMM]1.

L



Parabolized Navier-Stokes Equations 263

A typical solution at a cross-section is illustrated in Figures 13-7 through 13-9.

Figure 13-8. Contours of total Figure 13-9. Velocity vector plot for
enthalpies for M,, = 7.95, My =T7.95, a = 24°,
o = 24°,
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Pressure contours are shown in Figure 13-7, where the expansion which occurs as
the flow accelerates in the circumferential direction is clearly evident. Figure 13-8
represents contours of total enthalpies. In this figure the growth of the viscous
boundary layer in the circumferential direction and eventual separation on the lee-
side is illustrated. Finally, in Figure 13-9, the flow separation on the leeside and
formation of vortices are illustrated by the velocity vector plot.

In this chapter, the fundamental aspects of the Parabolized Navier-Stokes equa-
tions and a typical numerical scheme for its solution have been presented. Addi-
tional consideration which requires some modification of the equation is the incor-
poration of turbulence and equilibrium or non-equilibrium chemistry effects. These
individual topics will be addressed briefly in Chapters 17 and 18.

13.10 Summary Objectives

After completing this chapter, you should be able to discuss:

1. Mathematical assumptions introduced in the PNS equations

[

. Shock-fitting and shock-capturing procedures
3. Various assumptions used for the streamwise pressure gradient term
4. Numerical scheme used to solve the PNS equations

5. Implementation of the boundary conditions
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13.11 Problems

13.1 You are required to solve the flowfield around a reentry vehicle at moderate
angle of attack (~ 20°-30°). You have developed a PNS code for this purpose. A
colleague has an NS code which he claims will solve the entire flowfield, i.e., the NS
equations are solved by marching in time until the required steady-state solution
has been achieved. Present a convincing argument as to why your PNS code is more
economical compared to the NS code for this application. Your discussion should
also include the starter solution for the PNS code and how your colleague’s code

may be helpful in this regard.

13.2 List the mathematical assumptions involved in the PNS equations and their

physical implications.
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Navier-Stokes Equations

14.1 Introductory Remarks

For complex flowfields with separations or strong viscous /inviscid interaction,
the reduced form of the equations of fluid motion do not provide adequate solution.
Therefore, to accurately compute the flowfield, the Navier-Stokes equations must be
considered. On many occasions where the flow separation is not severe, Thin-Layer
Navier-Stokes equations are used.

The Navier-Stokes equations may be solved to either provide a steady-state so-
lution or a time-accurate solution. For problems involving complex interactions,
separation, and mixed flowfields composed of subsonic and supersonic regimes, the
Navier-Stokes equations are initiated with an assumed data set within the domain
and marched in time to steady state. As remarked previously, the intermediate solu-
tions have no physical meaning. Hence, when a steady-state (or converged) solution
is sought, the maximum allowable time step dictated by the stability requirement is
used to reach the solution with the minimum number of time steps and, therefore,
computation time.

For time-accurate solutions, a physically correct set of data is used to initiate
the solution. The time step must not only satisfy the stability requirements of
the numerical scheme, but must be consistent with the physical requirement of the
problem.

In this chapter, selected numerical schemes to solve the Navier-Stokes equations
are introduced.
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14.2 Navier-Stokes Equations

The Navier-Stokes equations in a flux-vector formulation in the computational
space is given by Eq. (11-60) as

?.Q_{..@_F.a_ﬁ_’_@_ aE”+aF" +aé"

Or 8¢ 8y O 0¢ ' Oy o¢

(14-1)

This three-dimensional equation may be reduced to two-dimensional planar or ax-
isymmetric applications as
60 oE oF . 0B,  oF,

H _—
+a +37)

dr ' 8¢ ' o = B¢ +aH, (14-2)

Before proceeding with the numerical algorithms, a few guidelines established
in the previous chapters which may be applied to the Navier-Stokes equations are
summarized.

1. Coordinate transformation from the physical space to computational space is
necessary. This transformation drastically simplifies the applications of the
boundary conditions and may include various options on grid point cluster-
ing and orthogonality, both being extremely important for the solution of the
Navier-Stokes equations. Obviously grid point clustering near the surface for
viscous flows is required in order to resolve the flow gradient. The orthogo-
nality at the surface is desirable to facilitate the computation of the normal
gradients. Recall that the normal gradients are used to compute the heat
transfer and skin friction.

2. For efficiency purposes, multi-dimensional problems expressed in implicit for-
mulations are split such that each equation has a block tridiagonal coefficient.

3. When the convective terms are approximated by the second-order central
difference expression, the addition of damping terms or TVD terms may be
required to prevent oscillations in the inviscid region of the flowfield where
strong pressure gradients may exist.

4. The use of first-order forward or backward difference approximation for the
convective terms, while preserving the physics of the problem, overcomes the
difficulty associated with the central differencing. Mathematically, this leads
to flux vector splitting. However, the first-order approximation may lead to
excessive dissipation error, thereby destroying the solutions. For this reason,
higher order approximations are considered.
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5. Implicit formulations in general possess less restrictive stability requirements
than explicit formulations.

6. Since the Navier-Stokes equations are nonlinear, a linearization procedure
based on Taylor series expansion is introduced.

7. The viscous terms in the Navier-Stokes equations are almost always approx-
imated by a second-order central difference expression. On the other hand,
there are several algorithms for the approximation of the convective terms, as
seen previously in Chapter 12.

These established guidelines will be considered in the investigation of numerical
schemes for the Navier-Stokes equations.

14.3 Thin-Layer Navier-Stokes Equations

For problems where the flow separation is moderate, the normal gradient of
the stress terms are much larger than the streamwise and circumferential gradients.
Therefore, the Navier-Stokes equations are reduced to

00, OE  oF 80 _oR,

B T e T ot A = an

(14-3)

Usually the mixed partial derivatives on the right-hand side of (14-3) are also
dropped; hence the flux vector F, is redefined as F,,, which is given by (11-156).

A factor which may dictate the selection of the Thin-Layer Navier-Stokes equa-
tion over the full Navier-Stokes equation is the computer capability. When Navier-
Stokes equations are used, additional grid points in the streamwise and circumfer-
ential directions must be included. This large number of points is important to
resolve the viscous gradients in those directions. As a result, the solution of the
Navier-Stokes equations requires more grid points, and therefore more memory and
storage must be available. All computers have limits; hence, computer hardware im-
poses an upper limit on the number of grid points within the domain of interest. In
addition, computation time will increase due to an increase in the number of nodes.
Therefore, based on the physical considerations as well as computer limitations,
Thin-Layer Navier-Stokes equations are used extensively.

‘The numerical algorithms to be developed next are based on two-dimensional
planar or axisymmetric Navier-Stokes equations. Reduction of the equations to
Thin-Layer Navier-Stokes equations is obvious, and the extension to three dimen-
sions is addressed in Sec. 14.5.
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14.4 Numerical Algorithms

Several numerical algorithms were presented in Chapter 6 to solve the hyperbolic
equations, and the schemes were extended to a hyperbolic system of equations in
Chapter 12. These equations typically include a time-dependent derivative and
convective terms. Subsequently, in Chapter 7, a diffusion term was added to the
equation, and several schemes were investigated. The procedure was extended to a
system of equation in Chapter 8 where the incompressible Navier-Stokes equation
was explored. In this chapter, the numerical schemes investigated previously are
extended to the Navier-Stokes equation. Thus, even though the formulations appear
to be more complex, they should be familiar to us at point. The emphasis in
this chapter will be placed on the approximation of the right-hand side of the
Navier-Stokes equations, since the left-hand side forms the Euler equation which
was discussed in Chapter 12. A summary of possible approximations of terms in
the Navier-Stokes equations is provided in Table 14.1.

a. Forward difference in time = Explicit formulation
Time derivative =>{ b. Backward difference in time = Implicit formulation
c. Runge-Kutta (with damping terms or TVD terms)
a. Flux vector splitting
Convective terms=>{ b. Total variation diminishing
{ c. Central difference approximation with damping terms
Diffusion terms =>{ a. Central difference approximation

Table 14.1: Approximation of terms in the Navier-Stokes equations.

14.4.1 Explicit Formulations

A first order in time, explicit formulation of the Navier-Stokes equations can
be written as

Yo apﬂ)+At(aEg aFn

Q”*‘=Q”—At(a—s+3n— 5 an)—a(ﬁ“+ﬂr) (14-4)

At this point, several schemes are available for the convection terms which were
explored in Chapter 12. The diffusion terms, which include the viscous and heat
conduction terms, are typically approximated by a second-order central difference
expression. This approximation may be at the grid points or may also include
midpoints as well. Both methods are investigated in this section.

The explicit schemes for the Navier-Stokes equations which are reviewed in this

section include the MacCormack explicit, flux vector splitting, modified Runge-
Kutta, and TVD formulations.
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14.4.1.1 MacCormack Explicit Formulation: In Chapters 6 and 7, the
MacCormack explicit scheme was introduced to solve the inviscid and viscous Burg-
ers equations. The procedure is a multi-level (predictor/corrector) scheme which
uses forward difference approximation in one level (predictor step) followed by back-
ward difference approximation in the next level (corrector step). This order may
be altered, i.e., backward followed by forward differencing. The overall accuracy of
the scheme is second-order in time and space. The scheme is subject to stability
requirements and, for the wave equation, leads to the requirement of ¢ < 1. Stabil-
ity analysis of the viscous Burgers equation does not lead to a simple expression.
Therefore, based on numerical experimentation requirements such as

(l ' +2;1(A )2) <1 (14-5)
or Az (Az)?
At < min [lul ' o, ] (14-6)

have been reported in the literature.
Now the scheme is applied to the two-dimensional Navier-Stokes equation given
by Equation (14-2). For the first level, forward differencing is used to provide

. —-Qr, Er .- FEn,  Fn. _Fn
1,9 3,5 s+l,; (%] 1,541 %) no_
Ar + Y J 4 An + aH
(Eﬂ )t+1a (Eﬂ )u (F" )ﬁ.:+1 (F‘? )i.J' i
Ae + A’? + a(H:.-‘)h.i
from which
Y _ o AT (oo
Qiy = Q- [Eﬂ i+ly T u} 73—7] [‘F?:Hl - F::,]
+ 87 (g Er AT rpm Fr
+ R [(EDinng = (BD)ig] + A [(Fign = (B}
— Ara [HY ~ (H2)4] (14-7)
For the second level (corrector step), a backward differencing is used to result in
An 1 n &
o= 5{ Wt @iy [ —la] [ Fyj]
AT g ALd * *
+ Ag [(Bo)s - (Eu)-'—la] [(F = (F2)ig1]

- AraAY - (H):5) } (14-8)
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A point to consider at this stage is the manner by which the gradients em-
bedded in the viscous terms are approximated. Consider, for example, the second
component of E, given by Equation (11-208) as

(E,)s = .]Igem [ayue + a3V + CrUy + Cavy)
When considering the gradient 8F, /8¢, the derivatives in E, in the ¢ direction are
approximated in the opposite direction of that used in 8E, /8¢, i.e., since forward
approximation was used for dE,/9¢; thus a backward approximation is employed
for the € gradients within E\,. For example,

O0u _ wiay—wy
5 Y

The 7 derivatives in E, will result in mixed partial derivatives in 9E, /8¢. These
derivatives are evaluated by central difference approximation; for example,

_63 _ Ui — Uij

on 2An

The MacCormack explicit scheme is subject to stability requirements. A suggested
(empirical) requirement is
0 (AT)iny
Ar < 7y
"= 142/Re,
where o is a safety factor (usually about 0.8), and (A7),p, is the time step associated
with the inviscid Courant number such that

(14-9)

1

(AT)iny < { } (14-10)

U V) W 1 1 1 1®
Re + %+ X+ o[y + iy + e

Re. is the minimum of cell Reynolds numbers associated with &, m, or ¢ direc-
tions, i.e.,
Re. = min(Re; , Re,, Re;)

where

Reezﬂl.{.ﬁ

plV|An

Re,,:-.L._.I__
7

Re(=pIW;|AC
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14.4.1.2 Flux Vector Splitting: The convective terms can be approximated
by either a first-order or a second-order scheme, as given by Equations (12-156) or
(12-157), respectively. The diffusion term (8E,/8¢ + 8F,/8n) is approximated by
a second-order central difference scheme as follows.
The viscous flux vector E, is given by (11-208) for which the second component
is
Eu

2= Re J(alue + agvg + iUy -+ c3vy)

Consider the first term given by

(Bahise = (g (o

In fact, all the terms in E, have a similar form. Thus, a general expression can be
defined as (L) (Mg), where, for the first term

__H —
_RewJal and M=u

Now, recall that the objective at this point is to develop an approximation for
8E, /€. For the time being, consider only the £ derivatives in E,, defined by E'vf-
Thus, using the general formulation, one can write

% a (L BM) _ (L%%l—)ﬂ»i,j - (L%%I_)i—lu
R

1 Mg — M 1 M, — M_,;
~ ‘2*(Li+1.j + Li;) (;I'JAE——i) - '2-(13;',_1' + Li14) —LA'E——l"l
= AF
_ Ging + Lij) Ming — Miy) — (Lig + Liag) (Miy — Miyy)
2(Af)?
1
= m [(LHIJ + Lij) Miy1j — (Lirg + 2Li 5 + Ly j) My
+ (Lij+ Liog) Miy ‘,-] (14-11)
Define
f/i+1,j = Lijng+ Lij (14-12)
f‘id = Linng+ 2L+ Li (14—13)

Liov; = Lij+ Liny; (14-14)
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Then

0 oM 1 . . .
9 (L o€ ) = 2(aee [Li+1JMi+1.J' = LijMi; + Li—uMi—u] (14-15)

In the formulations to follow, all the mixed partial derivatives in AE,/d0¢ and
&F,/8n are omitted. Therefore,

OF, OF, S P s B s F
e = e (fesins - Bt anbiog

1 £ ' ° ad -~ ~
+ Bn)? [f¢J+1E'.j+1 = figFij + f¢._,-_1F}J_1] (14-16)

Note that é and f are used to represent I:, as defined in the general formulations
given by (14-12) through (14-14), E and F are used for M, and L, and Ly will be
used for L. Now consider E,¢ and F,,, that is

-

0
D n A Ue + agv
B Fw_ 4 ¢TI (14-17)
0f Oy ReywJ a3ug + a9V ,
| 3a1(u)e + Jaa(v¥)¢ + a3 (uv)e + Lages |
and
[0
_ biuy, + byv
Fp=-2 s (14-18)

" Rewd | byuy + byu,
L %bl(uz),, + '21'b2('”2)n + ba(uv), + baey |

Now the corresponding terms can be easily identified as follow

Component of | - - _ _
E-',_,E - Eufl E,,,gg E,,gg Eu£4
Terms in each

component —

Re,J 1 1
u Le 0 | as|azjas 50,1 50.2 as | —ay

O [12}1|2] 1|2 |3]| 4

E O [ulv|u|lv]| ]| v?2 |uww| e
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Component of | - _

§
%
M

I und F urd
Foy —

Terms in each
component —

(Pju )Lf O |b;|bs]bs|bs %bl =by | b3 -:“Y—b:x

F O |ul|lv|ujvyiu | vijuv] e

If mixed partial derivatives are included, the following general formulations can
be used

d oM 1
an (LF{-) = BAnhE [(Li,j + Liji1) (Mig1g — Micrg + Mg — Micyge)

— (Lij + Lij1) (Miy15 — Moy + M i1 — Mc‘—l,j—l)] (14-19)

and
a oM 1
5 (L-b—n—) = 3AéAT [(Li.j + Ligry) (Mijer — Mg+ Mig i — Miny-1)

— (Lig + Licrg) (Migs1 — Mij1 + Micy50 — Mi—ld—l)] (14-20)

Now the first-order scheme is written as (where mixed partial derivatives are omit-
ted).

~ - 1 /- ~ _ _
Q" =Q" - AT [KE (E::, - E:tl.j + By — E-'J)

+—-—(F+ Fho + ,-:,-+1—17“,.3)+afi.-h,~]

An
At /. = N . -
+ —2(_A?)3 (et'+1,jEi+1j — & Eij + ei—l,jEi—l,j)
(A )2 (fi.JH 1441 ftg X +.f|g an,J 1) + AT (Hﬂ)i'j (14—21)

and the second-order scheme is

Q"“ - Qﬂ - AT [2A§ ( -2, T 4Et—-1a + 3E+ 3E€1 - SE;._J +4 —1'11..1' - —i_+2d')

F+

* 24 2An ( -2

—4AFf  + 35:3 —4F5,, - ‘.i:i+2) + aﬁi.j]
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AT .
2(AE)2 (61+1,JE|+1,J B;JE + 6¢_1JE‘-_1J)
ATt A s . . - . _
+ 2(An)? (ﬁJHFi,jH — fiiFig + fi,j—lFi,j—l) + alAr (H.,)'_J_ (14-22)

The inviscid fluxes E*, E~, F*, and F~ are specified for the Steger and Warming
flux vector splitting in Section 12.9.2.1 and for the van Leer flux vector splitting in
Section 12.9.2.2.

These formulations are relatively simple to program; however, the schemes are
subject to stability requirements. Determination of an expression for the stability
requirement of Equations (14-21) or (14-22) is not easily accomplished. However,
as a general rule, a CFL number of around one will be required. It is cautioned
that the exact value (of the CFL number) will depend on the grid system as well as
the particular flow conditions. For example, in regions where grid spacing is very
small, a smaller CFL number may be required.

One way to avoid the use of small CFL numbers is to utilize a mixed ex-
plicit /implicit formulation. For example, if grid clustering near the surface is being
used, i.e., in the 5 direction, an implicit formulation may be utilized in that direction
to eliminate the severe stability requirements of the explicit formulation. If the grid
spacing in the streamwise direction £ is not severe, then the explicit formulation
may be employed along that direction.

14.4.1.3 Modified Runge-Kutta Scheme: The modified Runge-Kutta
scheme introduced in Section 12.8.2.3 for the Euler equation can be used to develop a
fourth-order Runge-Kutta scheme for the Navier-Stokes equation. The formulations
following (12-167) through (12-171) are

Qi =y (14-23)
= (1) =\ (1) = \ (1) =\ (1)
@ _ _ﬁ oF OF\""_(OE,\""_(0F, 7 _ fr, 0
Q = 4 [(aﬁ)‘d-i- (an ‘J BE i,j 3‘[) "J+ a(Hg‘J HU|J)
(14-24)
7 a i (@) =\ (2) = \ (2) =\ (2)
FS.) = _?J - ..A._t (a_E_) + (.‘.9_1.?.) — (%) _ (aF") + (Hg) Hv(z))
3 |\8€),; \on), \& )\,
(14-25)

~n AT [(8EN®  (8F\® (9E\® (9F\®
a5 ) (- 8- () v -0
g2 \O¢ /), \0n/, 8 J.;, \on/,,

3,5 [ K]
(14-26)
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~ _ AENY [aF\“Y (aE\® [8FENY .
ntl _ A _ e °e vy _ v ) _ @
v AT[(&?) +(5n)~ (36)-- (an) +oliy — Hu)

1.7 iJ (K} LN
(14-27)

The convective terms are approximated by a second-order central difference
expression as

3E BF _ EH—]_J - El'—l,j EJ+1 — F“J—l
( 3 )i,j * (377 )‘-.j B 2A¢ + 927 (14-28)

and the diffusion terms are approximated according to the formulation of (14-16).
To reduce computational efforts, the diffusion term may be evaluated only at the

first stage, that is,
OE, (1) 8F, (1
( 73 )i,j * (37) )i,j
and used subsequently at the next three successive stages. As discussed in Sec-
tion 12.9.2.3, the addition of damping terms or TVD may be required to reduce

any oscillations which may develop in the vicinity of sharp flow gradients due to
dispersion errors.

14.4.2 Boundary Conditions

The boundary conditions described in Section 12.9.3 for the Euler equation are
extended to the Navier-Stokes equation, with the modification of velocity at the
surface. Recall that the slip condition was imposed for the velocity at the surface
for inviscid flow. The no-slip condition is specified at the surface (nonporous) for the
Navier-Stokes equations, namely, the velocity, and therefore velocity components are
zero at the surface. Typically, zero-order extrapolation is used to obtain pressure
at the surface. Thus, the boundary conditions at the surface are specified as

u,; = 0
wy = 0
iy = Di2

Furthermore, note that at the surface the total energy e; is reduced to the internal
energy, that is,

1
e¢=e+§(u2+vz)=e
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If the wall temperature distribution is specified, then
vy - DMZ

where T, is the nondimensional wall temperature. If the wall is specified as adia-
batic, then

e (14-29)

or

an =0
and therefore
L, =T,
and furthermore
Pi = Pie

Now the total energy e; can be determined as follows

1
e=e+ E(u2 + 1)
or 1
pec = pe+ p(u® + v?)
Since for a perfect gas p = pe(y — 1),

_r
vy—1

and at the wall (u = v = 0); therefore, pe; = p/(y - 1), or

1
pey = + '2'10(“2 +v?)

(pec)in = 7”211 - 7”221 (14-30)

When a boundary is located at the freestream where the flow can be described
as inviscid, the inviscid boundary conditions described in Section 12.9.3 are used.

Implementation of the boundary conditions and modification of equations at the
boundaries for implict formulations will be further deliberated in Section 14.4.3,

14.4.3 Implicit Formulations

A first-order backward approximation in time provides the general implicit
formulation for the Navier-Stokes equations as follow

Q,H_l _ Qn BE’ n+l 61';". ntl 8E_'u n+1 61-;-,‘, n+l _ _ \n+l B
& *\#) *\&) T -\F) te@E@-m)T=o
(14-31)
Equation (14-31) is nonlinear and, therefore, a linearization procedure must be

employed. Previously a linearization scheme based on a Taylor series expansion was
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introduced and used in the linearization of the incompressible Navier-Stokes, Euler,
and PNS equations. Similar approximations are used here for the Navier-Stokes
equations providing the following relations:

- ..  OF

EMt! = Er gy b_c'jAQ = E" 4+ AAQ (14-32)
ntl I aF = o 3

R %AQ = F" + BAQ (14-33)
rrn+1 aH n

A = B4 —--AQ A +0AQ (14-34)
o1 i 8E,

EM = ET+ 30 —AQ =Er+ AAQ (14-35)
i+l I dF,

FMl = Frg 3G —=AQ =F"+ B,AQ (14-36)
Fntl =n , OH,

A = H' 4 FQ—AQ H' 4+ C,AQ (14-37)

The Jacobian matrices A, B, C, A,, B,, and C, are given by Equations (11-213)
through (11-218).
The linearized expressions (14-32) through (14-37) are substituted into Equation
(14-31) to yield
AQ

3E (E"+AAQ)+£(F“+BAQ) ‘Z(EHA.,AQ)

-5 O (Fo+B,AQ)+a[A"+CAQ- (A7 +C.AQ) =0  (14:38)

This equation is rearranged as

a g a a - A =
{I + Ar [6_£(A) + EE(B) - _6?(A") - E)‘(Bu) + a(C — C,,)] }AQ =

A [aE" oF 0By OF . (gn_ FI:)] (14.39)

%€ " T

Based on the experience gained through the solution of the multidimensional

problems, it is obvious that the coefficient matrix of this system will be a block

pentadiagonal system. To increase the efficiency, the system is approximated by
two sets of equations solved sequentially; i.e., approximate factorization is used.

For two-dimensional problems, an approximate factorization scheme provides a

stable solution. However, for three-dimensional problems approximate factorization
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is unstable. To overcome the stability problem, artificial viscosity in the form of
damping terms or TVD must be added. A scheme known as the LU decomposition
is stable for two-dimensional problems as well as for three-dimensional problems.
Therefore, it will be discussed in this chapter. For now, the procedure using ap-
proximate factorization is investigated. Equation (14-39) is factored as

{I +Ar [-(%(A) - B%(A.,)]} {I+ AT[-a%(B) - (%(B.,)
+ Ara(C - C)) }AQ - [aa”? Lo
aai" a;: +a (A" - FI,’,‘)] (14-40)

Again, there are several methods by which the convection (inviscid) terms can
be approximated, whereas the diffusion terms are approximated by the second-order
central difference expression.

14.4.3.1 Flux Vector Splitting: To retain correct differencing associated
with signal propagation, the inviscid fluxes are split as discussed in Chapter 12.
Thus, the inviscid Jacobian matrices A and B and flux vectors E and F are split
according to the sign of the eigenvalues, resulting in the following equation:

[I+ A'r (A+ + A7) - A'rag?] [I-l- A’r;{%(B+ + B7)
T + Ara(C - C)]|AG =
8 .. - 8. .. ~. OB, 0OF .- -
—AT[EE(E++E )+ 5 (4 ) =5 = 5 +a(H—H.,)] (14-41)

Equation (14-41) is solved in sequential stages according to

0 ot o
[1+ A‘J"-—-(A+ e ]AQ AT[B—E(E’“ + )
OE, OF, _
—(F" +F7) -~ 5 +ald - H.,)] (14-42)

and

9, .
[I+Ara—n(B +B)-A

0B,
an
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At this point the finite difference approximations of the derivatives in Equa-
tions (14-42) and (14-43) are considered. The viscous terms are approximated by a
second-order central difference relation. Note that due to the existence of natural
viscosity, use of central differencing for the viscous terms does not introduce oscil-
lations into the solution. That is, any dispersion error which may cause oscillation
is damped out by viscosity.

The approximations of dA,/d¢ and 8B,/8n are similar to that of 8E, /O0¢ and
OF,/0n described in Section 14.4.1.2. Again, all the terms in matrices 4, and B,
are similar; therefore, a general expression is derived to represent the elements of

these matrices. Recall that matrix A, is given by (11-216) where element (2,1) is

(), - 2 (D), o)
[a(2) +(3)]]

Now consider the first term, that is,

(Re J)( “1)( )6 (alR:;J) (Jt;‘):(ff) (N)e—K%I—g— (14-44)

First consider the viscous terms, realizing that the viscous term that appears in
the formulation (14-42) is of the form

(A,,) Q= E[( aN) AQ] (14-45)

A second-order central difference approximation at point i, j provides

8 [(. 6N KagaQ|, .~ (K9,
()2 -

o [\ ¢ Ag
*(3)
- 1 (NAQ)ir1; — (NAQ)yy
= Af { (KI.J + K|+1.J) [ 2+(KA£/2) J]

(NAQ)is — (N AQ)I’—M‘] }

1
~ 3+ Kiy) 2(AE/2)

S ey
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(Kt Kig) [(VAQy - (NAQ)-] }

= 2(25)2 [(K"J + Kiy 1) (NAQ)is1y — (Kigrj + 2Ki5 + Kio1y) (NAQ);

+ (Kig + Kicrg) (NAQ)i14] ~ (14-46)
Define
Kiny = Kij+ Ky (14-47)
Kij = Kiaj+2Kij+ Ki (14-48)
Kiaj = Kij+ Ko (14-49)
Then

gf— [(K%%r-) AQ] = _2(25')2 [(ki+lJNi+1j) AQiry — (IA(UNU) AQ,;

+ (f{"—l,jNe-l,j) AQi—lJ] (14-50)

The convective terms in Equations (14-42) and (14-43) are approximated by
forward or backward difference expressions. The procedure is the same as the one
introduced in Chapter 12. It has been noted that when first-order approximate
expressions are used for the convective terms, some accuracy is lost. That is due
to excessive dissipative error of the first-order approximation. To overcome this
problem, second-order or third-order approximations for the convective terms can
be used. However, a difficulty is introduced, namely, the tridiagonal system is
distorted because new points such as i — 2 will also appear in the formulation.

First-order approximation of the convective terms is considered first and subse-
quently extended to higher order. Before writing the finite difference equations, one
more point must be considered. Recall that the elements of the viscous Jacobian
involve both gradients, i.e., derivatives with respect to £ and 7. Therefore, when
the gradient 8A,/O¢ is considered, some mixed partial derivatives will appear, i.e.,
8%/0¢0n. Inclusion of this and similar terms implicitly will distort the tridiago-
nal nature of the coefficient matrix. To overcome this problem, the mixed partial
derivatives are moved to the right-hand side and evaluated explicitly. As discussed
in the previous section, some investigators suggest to drop the mixed partial deriva-
tives completely and, indeed, inclusion of these terms does not affect the accuracy
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for the majority of applications. Therefore, in the formulation to follow, the mixed
partial derivatives are dropped.

Now approximation (14-50) is utilized for the viscous terms. The following
notation is used for this purpose,

9] 8 (.0R 1 7. . "
& ( —) [T’i+1,jR-'+1,j — ity + T‘i~1jR¢—1,j] (14-51)

E ~ 2(Agy
Similarly,
0B, a (.88 1 . n .
61’] = 51; (3%) = 2(A—7])2 [S,‘J+1S,'J+1 - sijsi,j + 3i,j—lsi,j—1] (14‘52)

where # and R represent K and N associated with A,, and § and S represent K
and N associated with B,.

Observe that the mixed partial derivatives have been dropped in the approxima-
tions above. Now, the finite difference approximation of Equation ( 14-42) is written

AT _ B At . A
[I +Af (A~ Ay + Ajyy — AG) - TINGE (FirgRivrg — FiRi

+fiiRing) |AQ" = RHS
which is rearranged as

A AT
{_Z—E '+—1J (Af)zr' IJR' 1J}AQ| -1

AT _ AT =,
+{I+K£(A+ AiJ)+—2-.(AT)2riJEJ}AQiJ

A AT .,
+ {A_EA;LIJ - 2(A_—;)2Ti+l,j-Ri+1'j} AQ‘HJ = RHS (14_53)

Similarly, the finite difference equation for (14-43) is expressed as

AT AT
{_K’;B‘.:._l 2(an)? s.d 155 4— I}AQU 1

At _
{I+ Aﬂ (B+ B‘) 2(27)23,JS.J + aAT[Ci; — (C")"J]}AQU

A A '
+ {A:’ B|J+1 2(AT)2 81J+ISI.J+1} AQ!J"'I AQhJ (14—54)
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The evaluation of the RHS of Equation (14-53) is simple and is briefly described
as follows. The RHS is
dE, OF,

RHS = -Ar 3%  on

0 _
——(E+ +E7) + n(F+ a(H - Hv)]
The gradients of the viscous terms include embedded derivatives with respect to £
and 7. These gradients may be expressed in a general form as

o oM 0 oM
%(La—n) or a—n(L“az')

where, as before, L represents some combination of the metrics, Jacobian of trans-
formation J, Rew, and u; whereas M represents flow variables. The mixed partial
derivatives do not create any difficulty since they are evaluated explicitly, or, for
most applications, they are omitted. The approximation given by (14-16) is used
to evaluate the viscous terms as described in Section 14.4.1.2.

The gradients of the inviscid terms are evaluated by forward or backward differ-
ence approximations in the same fashion as the Euler equations. In order to write
Equations (14-53) and (14-54) in a compact form, the coefficients are defined as
follows:

ATt AT )
CAM = - [KE-AI—LJ 2(A£)2Tl—l,JRl—l,J] (14—55)
[ AT AT
CA=|I+%; (4 - 45) +5 @ £)2r,,,R.J] (14-56)
(AT A
CAP = AZ '+1J 2(A2)2rt+1'_’&+1"] (14—57)
and
A AT
CBM = —[—A%BZ 1'+' Z(A )231,3 151,1‘—1] (14—58)
A : AT
CB = {I + A—:’ (B;t, - B‘TJ) + 2(A )QS.JS,J -+ O:A'I'[Cw (Cv)ij]](14‘59)
AT AT
CBP = [AnBI,J-H 2(A:-7)2 siJ+1SiJ+1] (14-60)
where

RHS = _“AT{Z.!E (E:,“J - E.-+-1,j + E‘;ru - E;J.) + 1 (F.+.
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_ _ _ 1 R - R . o
—FLi +E G, - F',-J-) TG (ei+1JEi+1,j — &b+ 6"—1,,'1‘1'-1,1)
1 s . s a2 oa . _
T 2! (fi,jHE'JH — figFij + fij—lﬂj-—l) +a (Hi,j - (Hu)i,j)

Note that in the formulation of the RHS given above the mixed partial derivatives
are excluded.
Thus, Equations (14-563) and (14-54) become

CAM,-JAQ:_U + CA,-JAQ:J- + CAP.-J-A -:HJ = RHS,-J (14—61)
and
CBM,-JAQ;J_l + CB,'JAQ.'J + CBRJ'AQ_,'J'.'.] = AQ:J (14-62)

Equations (14-61) and (14-62) are solved sequentially as the ¢ and 7 sweeps.
First, Equation (14-61) is applied at each 5 line (j constant) for all i from i = 2 to
i = IM]1, resulting in the following set of equations:

i=2:  CAMpAQY; + CAyAQS, + CAPAQ, ;= (RHS);; (14-63)
1=3: CAM3;AQ;;+ CAAQy; + CAP;AQY, = (RHS)s;  (14-64)

t=IM2:  CAMmaiAQ 35 + C Az AQ s,
+ CAPma AQ 1 j = (RHS) 1ar2, (14-65)

i=IM1: CAM 1 iAQ ua + CAn1,iAQiy
+ CAPIMI,J'AQ—;MJ = (RHS) a1 (14-66)

If the boundary points at ¢ = 1 and 1 = T M are treated explicitly, then the system
of Equations (14-63) through (14-66) is expressed in a matrix form as

_
CA,; CAP,; Az,
CAM:;J‘ CA.;;J CAPgJ AQ;,J

CAMpma;  CAinay CAP; | | AQjpy
CAMipm CAn Ath.j
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1 RHSQJ - CAMZ,J'AQ;J
RHS3;
(14-67)
RHS m2, _
| RHS]MU - CAPIMI.J'AQ;M.JJ

Once a new solution is obtained, the flow variables at the boundary points are
updated. If the boundary conditions are to be treated implicitly, the following
modifications are introduced. Boundary point 7 = 1, which appears in Equation
(14-63), is repeated here as:

CAM;AQS; + CAx;AQL ; + CAPy;AQ ; = RHS,

For the two-dimensional problem, the grid system is selected such that grid lines
i =1 and 7 = 2 are symmetrical with respect to the body axis. Thus,

€k
P = Py
. __ %
Uy = Ugj
* *
Vij = —V2y

(e:)u = (e:)2,j

Therefore,
(o), (Bp)s;
AQ‘-=—1—- (Apu)i _____1__ (Apu)s
Mg | (Bev)i; | T ey | —(Apv)s
(Bper)i; (Bper)i
Now, Equation (14-63) is modified as
[CAMy; - IT + C A 5] AQ; + CAP;AQ; ; = RHS,,j (14-68)
where
10 0 O
01 0 O
=190 -10
00 0 1
Defining

CAMQJ‘ I+ CAQJ =m2j
Then Equation (14-68) becomes



At the outflow boundary set at i = IM, extrapolation is used, i.e.,
AQ;MJ = AQ;MU (14'70)

Now, Equation (14-66) is modified by using Equation (14-70) to provide

CAMm1;AQ ua; + (CAmms + CAPipy 5)AQ i = RHS1 (14-71)

With the following definition,
CAimy = CAnayj + CAPIMQ
Equation (14-71) becomes
CAMpm13AQ 2+ CA1sAQ = RHSps1

Thus, the matrix formulation is modified as

ﬁQJ CAPQJ‘ F AQ;J RHS2,J'
CAM3J' CA;;J' CAR';d AQ;J RHSS,J‘
CAMs CArmayj CAPima; | | AQ J RHS; 3
CAMim CAmn ] AQ u, RHS 1, 5
(14-72)

Now consider Equation (14-62). This equation is applied along each constant ¢
line for all j from j = 2 to j = JM]1. Thus,

J=2: CBMAQ;, + CBi2AQ; 2 + CBP,2AQ;3 = AQ:, (14-73)
J=3: CBM3AQ;s+ CBi3AQ;s + CBP3AQ;, = AQ.-',:; (14-74)

J=JM2: CBM;jpAQ; yu3 + CB; m2AQ; yuma
+ CBP, j32AQi sy = AQ; s (14-75)
J=JIM1: CBM;jnAQium+C B jm1AQ; 1

+ CBP, i AQi = AQ) 1y (14-76)

Before these equations are written in a matrix form, consider the equations at
J=2and j = JM1. Boundary conditions at j = 1 (wall) and j = JM (freestream)
appear in these equations. At the wall, the no-slip condition requires

u=0 , wv=0
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Thus the total energy is reduced to the internal energy, i.e.,
IS Vo T N
et—e+-2-(u +v)=¢e

Therefore, the unknown vector AQ at the wall is

A(p)
0
0

A(pe)

Usually, the pressure gradient normal to the surface is set to zero; thus,

AQ;, = (14-77)

on =0

which results in
Di1 = Dig2
For a constant temperature wall, the internal energy is expressed as
Ty
€= ———" (14-78)
vy - MG
where T, is the nondimensionalized wall temperature.

The simplest procedure is to explicitly implement the wall boundary condition.
Thus, Equation (14-73) at j = 2 is written as

CB;',QAQ:',Q + CB-Pi,QAQi,S = AQ:,z - CBM-.',2AQ1,1

Once the solution is obtained, p and e at the wall are updated according to the
following

e = — Twhi
vy -1)ME
which may be modified as

Dia
and = ————
) P B (7 — 1)61',1

P2 0y - DM, M
v-1 (T (Tw)™

pin = (14-79)

For an adiabatic wall condition
Li.=T;,

In addition, imposing the zero pressure gradient at the wall yields

Dig = Di2
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As a result,
Pin = piz (14-80)
and
(pec)in = 71)—1_,21 (14-81)

After the solution is obtained, Equations (14-80) and (14-81) are used to update
the values at the wall. At j = JM, which is set at the freestream,

AQism =0

Thus, the equations are written in a matrix formulation as

CB;, CBP,, Ac?i,z
CBM,4 CB;; CBP,3 AQis
CBM; sus CB; su CBPm2 | | AQ: a2
C BIVf,-,JM] CBi,JM 1 AQ;‘,JM 1

[ AQ%, — CBM, 0G|
AL,
(14-82)
AQ:,JMz
] AQ:,JMI j

14.4.3.2 Higher-Order Flux-Vector Splitting: In the previous method,
first-order approximations for the convective terms were utilized. The dissipation
error associated with the first-order relation may require the use of higher-order
approximations. For this purpose, a second-order or a third-order approximation
may be used. For example, the backward approximations which may be considered

are as follows.
Of _ fia—4fii +3f;
Oz 2Az
Of fin—fin fur—3fi+3fi,- Jia 3
ey 6A2 + O(Az) (14-84)
The introduction of point i — 2 causes some difficulty—namely, that it distorts
the tridiagonal nature of the system. To overcome this difficulty, point ¢ — 2 and

point i+ 2 which would appear in the backward and forward difference approxima-
tions may be evaluated explicitly, thus preserving the tridiagonal formulation. The

+ O(Az)? (14-83)

or
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modifications of Equations (14-53) and (14-54) to include the higher-order approx-
imations given by (14-83) or (14-84) are straightforward. For example, the use of
second-order approximation yields the following FDE for Equation (14-42),
AT ¥ + -
I+ o5 (A, oy — AL+ BAL, — BAL, + 445, ~ A,.w.)

A
(A2)2 (ri+l,JR+l,J rl,JRlJ + T:—IJR‘l—lJ)] AQ‘ RHS (14—85)

where

RHS = - At {2AE( i2j — 4E;"1J+3E+ 3E‘-_J+4E.'11,j'— —i-;zj)

1 =_ =_ -
+ E)(F+ — ARG+ 3 - 3F + AF G, — Fm+2)

1 . . .
- W (ei+1,jEi+1J — &b + ei—‘l,jEi—l,j)

.__1 3 7 I r - - —
- A (fi..iHE'JH — figF+ fi,j—lFi,j—l) + a(H;l,- - (H,,),-_,-)} (14-86)

To retain the tridiagonal nature of the formulation, variables at (1, 2,7) and (i+2,5)
are evaluated explicitly; thus,

A'r At =y
{23640 ~ gt A%

3AT - At
# {1+ g (40— 45) + sag s A%,

Ar  _ AT
{A;A'“" z(A.f)“"*”R‘“*’}AQ‘“*’

RHS — AT [A+

2AE ¥ Z,JA An-1

=24 |.+2,_7AQs+2,J] (14'87)

Similarly, the finite difference equation for (14-43) becomes

At AT ~
{ 2AnB‘t’ -1 WSiJ—ISiJ—I}AQiJ—I

{I+ 2—2—:’-(3*“ B") 2(‘2 )zs.,,S..,+aAr( (Cn)e.f)}AQu
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AT _ AT . )
+ {2E7-B;J+1 - Wsuﬂsi.fﬂ}AQ‘J“

= AT =" — &
= AQ}; - 5a |80y — By Qiya) (14-89)

The convective terms in the Navier-Stokes equations may also be approximated
by a second-order central difference expression. Indeed, in the PNS formulation
of the previous chapter, the central difference approximation was utilized. The
formulation utilizing central difference approximation of the convective terms in
the Navier-Stokes equations is addressed in Sec. 14.5. However, note that if the
central difference approximation is used, the addition of damping terms or TVD
terms most likely will be required.

14.4.3.3 Second-Order Accuracy in Time: The next issue to consider is
the accuracy of the time derivative. Previously, a first-order accurate approximation
for the time derivative was used. When one is interested in obtaining a steady-state
solution, a first-order scheme will be sufficient. However, when a transient solution
is sought, second-order approximation of the time derivative may be required. As
a result, the following relation is incorporated into the Navier-Stokes equations

a@n-{-l B Qn—l _ 4Q’n + 3Qn+1
or 2AT

3AQT— AQr
- 2A7

+ O(A7)?

+ O(A7T)? (14-89)
where
AG™ = g™ — O
A = G — O

It is obvious that two sets of data are required to march the solution in time. As
expected, this formulation will increase the memory and storage requirements. The
second-order backward finite difference approximation (14-89) is introduced into
Equation (14-2) to yield

3AQ"—AQ"_1+ @ n+l+ B_F—‘_ n+1_ BE-'., n+1— BF‘, n+l
2AT a¢ On o€ on

+a (A" - H*) =0 (14-90)
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Linearized expressions (14-32) through (14-37) are substituted into (14-90) to
provide

AQ+ -;A'r{ 9

a _
n A n n v
5 (E™ + AAQ) + U(F + BAQ) - E(E" + A,AQ)

- (%(FJ‘ +B.AQ) + a [A" + CAQ - (A + C,AQ)] } E %AQ"“‘ =0 (14-91)

Note that the superscript n has been dropped from AQ". Now Equation (14-91) is
rearranged as

2. [ o 8 ) -
{I+ AT [—a—é(A) + 57(B) = 5g(An) = 5.(B) +a(C - c")] } A

8E" aF" oEr  OFp
¢ 0§  On

Equations (14-39) and (14-92), which are obtained by replacing the time deriva-
tive by a first-order or a second-order backward difference approximation, may be
expressed in a combined form as

Ar {8 a 8 0 ~
{I 174 {3—5(14) + 56(3) - EE(A”) - 6_17(3") +o{C - Cu)] } AQ =

-;-AQ”“ - gA [ + o(H" - I?:‘)] (14-92)

¢

- Ar [8E* @F» QEr @Fn L
— _AQ™M ! — v LA - H* - H" 14-93
1+¢ Q 1+¢[6€ T T % oy +a ")] (14:93)
0 = First-order
where ¢ = ¢
3 = Second-order

The approximation of the spatial gradients in Equation (14-92) has already been
investigated.

14.4.3.4 LU Decomposition: The linearized Navier-Stokes equation in two-

spatial dimensions is given by (14-39). The flux vector splitting technique applied
to the convective terms of Equation (14-39) yields

7} éj 8A, OB

T s[4y Loy 5y e OB

{ + T6£( + )+6n(B + B7) 5 o

+a(C - 0] }aQ = -ar [%(E+ +E) 4 (P4 F)

_8E, &F,
8¢ oy

(14-94)
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At this point, define the following difference operators:

6 f= % : First-order forward difference operator (14-95)

o f = L-:A—;{'—_l- : First-order backward difference operator  (14-96)
O f = ﬁ—Hz;—xf'“-l- Second-order central difference operator

= 265+ 6)f (1497

The procedure to follow is illustrated by using first-order approximation of the
convective terms and second-order central difference approximation of the viscous
terms. However, as discussed previously, the first-order approximation of the con-
vective terms may introduce an excessive amount of numerical viscosity into the
equation. Therefore, higher-order approximations may be required. Extension to
higher-order schemes was illustrated previously and is therefore not repeated here.
Returning to Equation (14-94), the finite difference formulation in terms of the
operators defined by (14-95) through (14-97) becomes

{I + Ar [5;A+ +6A” +6,B" + 6B — A, — 6,B,
+a(C - C,,)] }AQ = -Ar [65‘5““ + 86 E" + 6, Ft+ 61 F-

— §eE, — 6,F) + o — f‘f.,)] (14-98)

Note that backward difference approximation is used for the positive values, whereas
forward difference approximation is used for the negative values.
Substitution of (14-97) and rearranging terms yields

1 1
{I #AT[6 AT+ 6B — 87 Ay — 6B + A o4

+67B - -;-5;,4,, ~ %5;3,,] +aAT(C - C.,)}AQ —=RHS (14-99)

Note that RHS is evaluated at the known time level. Now, Equation (14-99) is
factored as

n

{I + AT [6;A+ + 6, B" — %6gA,, - -;—6‘3.,] } {I + AT [agA-

+65B" — 26 A, — L8} B] + atr(C - c,,)}AQ —RHS  (14-100)



Nuavier-Stokes Equatioris 293

and is split as

{1 + AT [5gA+ + 68, B* - %55-/1,, ;5,, ]}AQ‘ = RHS (14-101)

and
{I + AT [55+A— +65B” — —6+A,, — —6+B ] + aAT(C — C',,)}AQ = AQ* (14-102)

Substitution of the finite difference approximation given by (14-96) yields

Af.— Af,. B! — B l(A)---(A,,)-_ ;
1,5 1,4 NJ i,j—1 u /i -1,
{I + AT[ AE T Ag T2 AE

1 (B,,); i — (Bv)i i—1 A .
- 1By 5 g ]}AQ = RHS; (14-103)

which may be rearranged as
AT 1 . _
Af [ -Al;+ §(Av)i—u} AQi_; + {I + [Af (Au)id'}

A 1 ~ AT
+ Z\_:; [B:f, - §(Bv)i.jJ }AQ:J + 7)[ B+ (B )ig- 1] AQ;;

This equation may be written in a compact form as

APLAQL,;+ AP;AQ;, + APRAQ, ., = RHS,; (14-105)
.where
APL = ‘2—2[ Af+ %(A,,),-_, ,,-] (14-106)
AP =T+ 22 [ t— %(A,,).- ,,-] + %—;[B;; - %(B,,),- J] (14-107)
APR = g;[ B, + ;(B,,),- J_l] (14-108)

Similarly, the finite difference formulation of Equation (14-102) is expressed as

AML;jAQis + AM;AQu; + AMR;AQ; 441 = AQ, (14-109)
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where the coefficients are defined by

A 1
AML = 'A—E [AC_H.J' - §(Am)i+u] (14-110)
A 1 A 1
AM = {I+ Kg‘[“ A:'_J + E(Au)i.j] + A_;[_ Bl':i + 'Z'(Bu)id
+ a7 [C.v 5 —{C) J]} (14-111)
A 1
AMR = ET? [15:;,.+1 - 5(Bu): ,,-H] (14-112)

Once Equation (14-105) is written for each grid point, only one unknown per
equation appears. Therefore, Equation (14-105) is solved point by point, sweeping
along each constant £-line, i.e.,

AQ;; = (AP;)™ [ — APL;AQ;_,; — APR;AQ};_, + RHS, J] (14-113)

Subsequently, Equation (14-109) is solved point by point along lines of constant 7,
ie.,

AQ;y = (AM;;)™ [ — AML;AQij — AMRAQ ji1 + AQ:,J-} (14-114)

Specification and application of boundary conditions are similar to the ones dis-
cussed in the previous section.

14.5 Extension to Three Dimensions

In the previous sections, the two-dimensional/axisymmetric Navier-Stokes equa-
tions were investigated. A selected number of commonly used numerical schemes,
used to solve the Navier-Stokes equation, along with the implementation of bound-
ary conditions, were introduced. In this section, the procedures are extended to
three dimensions. Recall that the governing equation in vector form and in the
computational space is given by

8Q 9B oF 9G 0k, , oF , G,
ot ' ot 8y ' 8¢ 8¢  Onp &

(14-115)

where all the quantities are non-dimensional. The Navier-Stokes equation given by
(14-115) can be reduced to the thin-layer Navier-Stokes equation as



Navier-Stokes Equations 295

8Q OFE OF 8G O8F,r

FTI TR m Tk = (14-116)
where the modified viscous flux vector F,, used in the thin-layer formulation, is
redefined by F,r and given by (11-156). The numerical schemes explored in this
section are primarily applied to the thin-layer equation. The extension to Navier-
Stokes equations is straightforward, since the gradient of viscous terms in almost all
schemes is approximated by second-order central difference expressions. Initially, an
explicit finite difference formulation based on the Steger and Warming flux vector
splitting technique is investigated. Subsequently, typical implicit formulations are
explored. Consistent with previous chapters, the indices, 4, j, and k are used to
denote grid points associated with z, y, and z in the physical space and with £, n,
and ¢ in the computational space.

14.5.1 Explicit Flux Vector Splitting Scheme

Application of a first-order forward difference approximation to Equation (14-
116) provides

Ol On. OE OF BG‘)" (BF‘ )"
ig.k 1.9,k T

The formulation is written in a delta form as

_ 0E oF 0G\" 3er)"
N I\ 14117
Qg [ ( o¢  dn O )i.j,k ( an ‘J”J ( )

The Steger and Warming flux vector splitting scheme introduced in Chapter 12
is utilized to approximate the convective terms. To generalize the formulation,
both the first-order and the second-order expressions are included. The inviscid
flux vectors are decomposed into positive and negative vectors associated with the
corresponding eigenvalues. The mathematical procedure is similar to that of the
two-dimensional case introduced previously. Therefore, only the details of finite
difference approximation for the three dimensions is considered. The procedure is
illustrated for the flux vector E. Thus

() -(%E+2%)
9¢ idk S\ % 3 igk

The corresponding finite difference formulations are given by
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Er., —E¥X .
. ik -1k First-order
a E+ _ Af
8 | 3E+. 4Bt 4+ E
id.k 2:2;" T Sz Second-order
and
- E.
) +14,k 34k First-order
8E- Ag
§ | -8B, +4E,.. ~Fr,.
(M 2Xé~’"‘ i+2k Second-order
o] G
The convective terms B and T are represented in a similar fashion. To proceed

with the flux vector splitting scheme, the eigenvalues and the associated eigenvectors
of the Jacobian matrices A, B, and C must be determined. Following the procedure
discussed in Chapter 11, the eigenvalues of A are determined to be

Al = Ap=da=&+U (14-118)
/\54 = & + U+ a\/a_.; (14—119)
/\55 =&+ U —avag (14—120)

where the contravariant velocity U is given by (11-90a) and a, = E+E+¢&as
defined by (11-101). The associated eigenvectors for the repeated eigenvalues may
be expressed as

Fal

fl [(alw —_ a2)$z -+ (C!]'U — 0!3)&, + alug:]

a3

Xm:XAz:XAa: s

1
Z‘:_ 20nuw — 200u)é, + (20quv — 20i3u)€;
x

+ (—ayw? + 20w — a;v? + 20450 + aluz)&]

where a1, o, and ;3 are arbitrary constants. For each set of values of these con-
stants — (0,0,1), (1,0,0), and (0,1,0) — three eigenvectors associated with each
of the repeated eigenvalues can be obtained. The eigenvector associated with the
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fourth eigenvalue A is determined to be
[ 1
&
—a+u
Vay
€y
—Z-q + v
XM = ‘\ﬁ1—4
§:
a+w
a
Ua 1,,
(P2
e +5{g" + 27e) _
Similarly, the eigenvector associated with the eigenvalue Ags is
[ 1
&z
- a+u
N
&
——=a+v
XA_r, = \/0_4
£
- a+w
N
Ua 1,6,
S AR 2
Jat 5{¢" + 27e) _
The eigenvector matrix associated with Jacobian matrix A is
0 1 0 1 1
E&l U §: :a £.a
—_— [ —_—— U + u —
'3 € & Vs Vs
§ya Eya
— 1 0 0 - - —
Xu= v+ Vo v Va (14-121)
§:a £:.a
0 0 1 w—+ w —
va T Va
| Xasy Xaso Xass Xase  Xaes)
where
—_ U ;'U
Xasny = S+ &y
€z
Xasa) = TR ) N VA TN

€z

2
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w—&,u
XA(S,J) — &_E_Ef_

X = e+-1-2-!-ﬂ

1 aU
Xass = e+ ~q% — 22
AB5) = YEe+ 2‘1 Ja

and the inverse X' is

[ &U_ v, w &6 ¥ LHG vw 46 v
as  2vel ve  ay ve ay Yo o a @ e
1L cl i w _1
2ve ve ve - e e
xp=| &_w, o w & w & v G+ v
a4 2ve e a4 ve a4 ye a4 ve

U 1, £ u & v & w 1

" 2a,/ag + Z%q 2a,/a; 2ve 2a/aq T 2ve 2a/a4 e e
U n 1, &2 v & v &G w1
2a./as 47eq “2a\/af4 T 2ve 2a./ay 2ve 2a./as 27ve 2ve

(14-122)

Now that the eigenvalues, eigenvectors, and the associated eigenvector matrix
have been identified, one may proceed with the flux splitting. For this purpose, the
following combinations of the eigenvalues are investigated:

(a) If Agy > 0, then obviously Mg, and Ag are positive dve to (14-118). Further-
more, Ag4 will be positive as well, while Ags could be either positive or negative.
Thus the following two categories must be considered.

(i) If Ag > 0, then all the eigenvalues of A are positive and

At=4A4 , E*=FE
A = , E =0
(ii) If Aes < O, then
- 0 e r 0 b
0 0
A =X, 0 (XY = Aes [X] 0 [X:]
0 0
i Aes | L 1]




Navier-Stokes Equations 299

and
AT =A - A"
Subsequently, the lux vector E~ is determined as follows
1
2y
- 1 u aE:
“ o 2vam
5 _ 41854121 | v pl Y _ &
= = A — — — -~
E=mie=wig]|Y dol | e
1o w a,
| 6737 2y 27/a
2ve + ¢* U
4y 2v\/fay |
or
(1
a&z
u-—.
/@
at,
= p P — ¥
E = /\esg’y—j ‘/E; (14—123)
w — 5
Vai
'S + a> ol
L2 (y-1) @l
and

(b) If ey, A2, Aga <0, then, Ag is also negative. However, the fourth eigenvalue
Ags could be either positive or negative. Thus, consider the following two
cases.

(1) If Aes < 0, then all the eigenvalues are negative and

At=0 , Et=0
A= , E =FE
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(ii) If Age > 0, A* is evaluated as follows.

AT =[X,] 0 (X3 = A [X ] 0 (X2

and
A"=A-A"
Subsequently, the flux vectors E* and E~ are determined by
B 1 M
aé-

u—+

E+=[A+]Q=/\e4i' v+ﬁ

27 (14-124)

and
E-=E-E*

The flux vectors F+, F~, G*, and G~ have similar forms to those defined for
E* and E-. Simply replace £ by 7, the contravariant velocity U by V, and a4 by
by, i.e., (11-108). Thus, the eigenvalues (A1, A2, Ags, Apa, and Ays), the eigenvector
matrix and its inverse (X and X;'), the decomposed matrices (B* and B~), and
the flux vectors (F'* and F~) are known. Similarly, the eigenvalues (Ac1, A2, A,
Ags, and Ags), the eigenvector matrix and its inverse (X, and X!), the decomposed
matrices (C* and C™), and the flux vectors (G* and G~) are obtained by replacing
the following: £ by ¢, the contravariant velocity U by W, and a4 by c,, as given by
(11-115). At this point, the splitting of the convective terms is completed. Next,
the appropriate forward or backward finite difference approximations are used, thus
providing the left-hand side of the finite difference equation. The right-hand side of
the Navier-Stokes equation includes the viscous terms which are approximated by
the second-order central difference expression applied at mid point. This procedure
was introduced previously. However, due to its importance, it is repeated here and
applied to the viscous term F,;. As discussed earlier, the elements of flux vector

Eyr can be written in a generalized form as

(%(L’"M,‘;") (14-125)

4
e
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For example, the first element of the second component of viscous flux vector F,r
biu, and its gradient is

a7 (7 gn) = 3 () o)

According to the generalized relation (14-125), one has

8 Re J

_ M _
—Rew.]bl and M=u

To simplify the mathematics, rewrite the viscous flux vector F,r given by (11-156)
in a generalized form in terms of the parameters L and M. Thus,

r -

0
3
Z L"‘M"‘
m=1
6
Fr= E_:(L M) (14-126)
9
Y (LM
i
> (L™MT)
. m=10 ]
where
m 1 2 34| 5 6 71 8 9
I/ (g2g) o | b |bfbs ot |b ||t
M™ U v w U v w U v w
m 10 11 121131141 15 16

a T ENE v
I/ () g0 | 3% | 3% | & | b6 | b1 | 2t

Mm w { ¥ | w? luv | vw |uw e

g;;T appearing on the right-hand side of the thin-

layer Navier-Stokes equation is approximated by a second-order central difference

Now the viscous gradient
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expression applied at the mid point. Thus, the general expression becomes

( mMy;n)iﬁ.},k (LmMm)

mafm Li- -,r.
(L M )Id, 0 (&)
2
- M MR — M™
L™ L™ "JH k. L™ S,k iJ-1,k
_ ( (R + 1,5+1, k) 2(A /2) (LI,J k -+ I!,]—],k) 2(An/2)
A7
1 m
- 2(An)? [(L"’ b L) (M) — (Lone+ 205 6 + L) (Mi5)

+(LTx + LTy o) (M u)]

Consistent with the previous notation, define

Lijpe = Liju+ Lijx (14-127)
Lijp = Lijo1p + 2Lijx + Lo (14-128)
Lijoig = Lijx + Ligoag (14-129)

Therefore,

ma m 1 *m m -
(L My )ik = 2(An)? [Li.j+1.kMi,j+1,k L.,,kMEk’FL.-,j_l,kM-';_l,k] (14-130)

Thus, the viscous gradient is expressed by
[ 0
L,J+lk J+li: Lsngrzk+Ls,J lk LR B lk)

(@) 1 ~1,k
on )ik 208n)?
MIT? k + Ls,_;l 1 kM 1,71 k)

L:.J k

(L ,J+1k ,J+lk Ltngm + L:,J lk ij—
( i,j+1,k t.1+1k

;imoimaimu

(Luﬂ kMG L:,J KM+ Lt,j 1M lk)
(14-131)
Now, either first-order or second-order finite difference approximations for the con-

vective terms, along with the approximation of the viscous term given by (14-131),
are substituted into Equation (14-117) and solved for the unknown AQ.

1l
—

LmO



Navier-Stokes Equations 303

14.5.2 Implicit Formulation

Consider again the Thin-Layer Navier-Stokes equation given by (14-3), i.e.,

aQ OF aF oF % 9G _ 0Fyr
£ 8~ on

Following the procedure described in Chapter 3, a combined formulation of first-

order in time (i.e., Euler) and second-order in time (i.e., Crank-Nicolson) is ex-
pressed by

ég_*,ﬁ @_F@_*.Qg_apw "
At o€ on 8¢ on

+(1-p) [(BE 3F+6_G_6F,,T) l_o

14-132
a0 T BC  om (14-132)
where
B=0 ; the formulation is FTCS explicit
B = —% ;  the formulation is Crank-Nicolson implicit
and
B=1 ; the formulation is Euler implicit

The linearization of the nonlinear terms as introduced previously provides the
following equation

AD I U D
89 .6 [B—(AAQ) + 5 (BAQ) + 5£(CAQ) - 5 (BAQ)

B (aE 8F 8@ BF,,T)

T o (14-133)

JF,
?@Z. Note that B, can easily be obtained from (11-217) where only
the terms involving 7 derivatives are retained.

Approximate factorization applied to (14-133) yields

{1+ a8 [ 2|+ ais[ 2o - Zww) {1+ s 70|} o

= -At (?—E L o8 56 3F”T) = RHS

where B, =

3 % o (14-134)
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The formulation is solved sequentially in three steps as follows:

{I + Atg P(%(A) + D,»mpm] } AQ* = RHS + Doy, (14-135)
{I + Atg %(B -B,)+ Dimp(,,,] } AQ = AQ" (14-136)
{I + AtS a%(C’) + Dimp(c)] } AQ = AQ" (14-137)

where second-order implicit and fourth-order explicit damping terms have been
added. The fourth-order damping is generally given by

D, = —e,At% [(VEAE)2 + (Vo) + (V¢£\¢)2] JQ"
and the second-order damping is given by
Dingiey = ~6iAt=(Verel)
T )
Dimpg) = -fiAté(VcAcJ )

The difference operators used in the equations above are associated with the central
difference approximations of second- and fourth-order derivatives. For example,

(Vede)Q = Qi — 2Q; + Qicy

and
(Vehe)Q = Qive — 4Qu1 +6Q:i — 4Qi1 + Qi_,
To maintain stability, in general ¢; > 2¢.. Typically ¢; would be set to about 3e..

The specified values of ¢, must be as small as possible such that a stable solution
can be obtained.

Typical central difference approximation of second order is applied to Equa-
tion (14-135) through (14-137), providing block tridiagonal systems which are solved

sequentially.

14.6 Concluding Remarks

An attempt is made in this chapter to introduce the readers to selected finite
difference equations to solve the Navier-Stokes equations. Some of the discussions
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were restricted primarily to Thin-Layer Navier-Stokes equations; however, extension
to Navier-Stokes equations is straightforward. It is hoped that the various aspects
of the numerical schemes discussed in this chapter will facilitate the understanding
of other algorithms presented elsewhere.
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14.7 Problems

14.1 Select a recently published journal article of your interest where the Navier-
Stokes equations (or the Thin-Layer Navier-Stokes equations) are solved by a finite
difference scheme. After careful review, relate the following topics in the article
to the discussions of this chapter. Your discussion should address the following
topics: (a) coordinate transformation, (b) grid system used, (c) linearization pro-
cedures, (d) numerical scheme, (e) boundary conditions, (f) stability requirements,

and (g) specific application.



Chapter 15
Boundary Conditions

15.1 Introductory Remarks

A unique and accurate solution for a given system of pdes within a domain
can be obtained only when proper boundary conditions are specified. Depending
on the particular application, some of the boundary conditions are provided from
the physics of the problem, however, in general not all the boundary conditions
are known apriori. Therefore, not only the flow properties are unknown within the
domain of solution, some of the flow properties may be unknown on the boundaries
of the domain as well. The values of the unknowns on the boundaries can not be
arbitrarily specified. These values depend on the solution of the interior domain as
well as information provided from the exterior. The boundaries of any domain may
be composed of (1) solid surface, (2) free stream boundary or far field boundary
composed of inflow and/or outflow, (3) symmetric boundary, (4) branch cut, or (5)
periodic boundary.

Any given problem may be considered either as an internal flow problem or an
external flow problem. The selection of computational domain for internal flows is
relatively simple, because the domain of solution can be uniquely identified based on
the well defined physical domain. On the other hand, the selection of computational
domain for external flows is not as simple. The boundaries of such domains will
include artificial boundaries set in the free stream (far fields) which could be either
inflow or outflow. The difficulty is primarily associated with the specifications of
farfield boundary associated with external flow. Ideally, the location of farfield
boundary should be set as far away as possible. However, from the practical point
of view, this is not a viable option. Since one is limited in the number of grid
points and since one ideally would like to maximize the grid points density to
increase accuracy, a finite computational domain must be selected. Therefore, from
efficiency and accuracy points of view, the farfield boundary is set such as to reduce
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the size of the computational domain.

Once an appropriate computational domain is selected, a set of boundary con-
ditions must be specified along the boundaries of this domain. Specifications of the
boundary conditions representing the physics of a problem in general is a difficult
task. This difficulty is manifested when one uses a finite domain where boundaries
at the free stream is arbitrarily set in the case of external flow or open boundaries
for internal flows. Flow must be allowed to move across these boundaries, with
the flow properties typically unknown. Furthermore, recall that applications in-
volving hyperbolic equations represent wave propagation within the domain. The
proper representation of the boundary conditions should allow propagation of waves
across the free stream (inflow/outflow). If specification of the boundary conditions
is not addressed carefully, the wave reflection from the boundaries will eventually
contaminate the solution within the domain.

From the discussions above and based on a large number of studies conducted by
numerous investigators, it is concluded that: (1) The freestream boundary should
be set such as to reduce the size of the computational domain and thereby allowing
sufficient number of grid points within the domain to provide adequate solution,
and (2) the boundary conditions have profound effect on the stability and accuracy
of the solutions and must be properly specified.

The objectives of this chapter is to review the development of several schemes
which can be used as a guide for specification of boundary conditions and compu-
tation of the unknowns at the boundaries of the domain.

15.2 Classification of Schemes for Specification of
Boundary Conditions

Just as there are several numerical schemes by which a pde (or a system of
pdes) can be approximated, several schemes have been developed to approximate
the boundary conditions. These schemes vary widely in degree of sophistication,
accuracy, and implementation. Various schemes will be grouped into three cate-
gories.

Category one includes specification of boundary conditions by simple extrapola-
tion. The concept is equivalent to the requirement that the normal gradient at the
boundary to vanish. The schemes in the second category are based on the theory
of characteristics, where a set of equations are solved to provide the required un-
knowns data on the boundary. Finally the third category includes schemes where
additional layers of grid points are imposed at the boundary, and within this layer
or zone procedures are introduced to dissipate or absorb disturbances and prevent

%
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wave reflections from the boundary. Simple extrapolation schemes were discussed
and used in previous chapters. The emphasis in this chapter is to explore charac-
teristics based equations and category three type of boundary treatments.

It is noted that some basic concepts and appropriate equations related to theory
of characteristics are provided in appendices A and G. In fact the description of
schemes in category two will begin by considering some of the materials presented
in Appendix G.

15.3 Category Two Boundary Conditions: Character-
istics Based Boundary Conditions

A system of equations is classified as hyperbolic if its eigenvalues A are real. A
hyperbolic system of equations can be written in various forms including in terms of
characteristic variables as shown in Appendix G. The resulting characteristic equa-
tions represent a set of wave equations where the characteristic quantities propagate
along the characteristic line with characteristic velocity of A. In category one bound-
ary conditions, the sign of \'s are used to identify as how many boundary conditions
have to be specified at the boundaries and how many boundary values have to be
determined from the interior domain typically by extrapolation. In category two, a
set of equations are derived which is used to solve for the unknowns at the bound-
aries. The procedure for the development of the required equations is illustrated
for the two-dimensional Euler equations in generalized coordinate system.

Depending on a particular application, different forms of the equations will be
required. Therefore, as a first step, a set of general equations based on charac-
teristics are derived and provided in several different forms. Subsequently these
equations are modified for specific boundary requirements.

Two types of boundaries which are typically encountered in most applications
will be addressed. These are boundaries at the inflow/outflow and at surfaces with
slip or non-slip conditions.

15.3.1 Mathematical Developments

Recall the governing equations for an inviscid flow in the computational space
given by Equation (12-126), where for a planar two-dimensional flow it is reduced
to

8Q OF OF
&-** FE--Fa—n—O (15-1)

Linearization with the help of expressions (12, 132a) and (12-132b), provides
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Q 499 g0
Age + B3, =0 (15-2)

where the matrices A and B are given by (12—134) and (12-135) respectively. Now
consider the similarity transformation

8080 60060 _806Q
—J A p— B ) ;
aQ ot Q 9§ * aQ 9

=0 (15-3)

where_QJ represents the vector of primitive variables as given by

) P
- U
=<
p
and, as previously defined,
8Q _ (15-4)
oQ
Therefore, Equation (15-3) is written as
oQ aQ aQ
Mat +AM6§ +BM311 =0
or
o .+ BN |+
i T MAM G + M BM 5 =0 (15-5)
Rewrite Equation (15-5) as
aQ a aQ
+A G =0 (15-6)
where
A =M1AM (15-7)
B =M1'BM (15-8)

and
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B 1 0o 0 0
m=22_ “ p 0 0 (15-9)
80 v 0 p (1)
Lur+v?) pu pu oy
and
oq ! i 8 8
-1 _ Y% ] o -
M =22 & ’ : 0 (15-10)
Y-+ —-(r=Du ~(r-1) (r-1
Performing multiplications in (15-7) and (15-8), one obtains
Lu+ syv E:P fyp 0
I} 0 Ezu + E v 0 f:/p
A= v 15-11
0 P (15-11)
0 £:a%p fyazp §zu+ &
and
Nzt + v Nzp e 0/
, 0 NzU + MV 0 Nz/p
B = v 15-12
0 0 NeU + My /P ( )
0 17z0°p walp  meu+nu
The eigenvalues of A'and B'are determined to be
/\El = )\Eg = €I'U. + fy'u (15-13)
Mo =t §u+a /BT 6 (15-14)
Aot = &u+ §v — ay/E2 + €2 (15-15)
and
At = Ag2 = NzU + U (15-16)
Ans =z + v + ay /02 + 75 (15-17)

Ana = Nzu+ v — a0k + 72 (15-18)
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which are identical to the eigenvalues of A given by relations (12-136) through (12-
139), and the eigenvalues of B given by Equations (12-144) and through (12-147).
Define by Dy, a diagonal matrix whose elements are the eigenvalues of A’ (or A) and
similarly D,, a diagonal matrix whose elements are the eigenvalues of B’ (or B),

then

(15-19)

and

Ao (15-20)

Ant
Associated with the eigenvalues defined by (15-13) through (15-15) and (15-16)
through (15-18), there exists a complete set of both left and right eigenvectors. If
I, is used to denote a left eigenvector, then the following requirements must be
satisfied

le A = Al (15-21)

The left eigenvectors expressed as row vectors are determined to be as follows

le=[100 —1/a? (15-22)

l=[0 Ky — Kee 0] (15-23)

le = [0 Keo/V2 Kgy/V2 1/ (V200)] (15-24)
le =10 —Ke/VZ ~Kg/VZ 1/ (V2pa)| (15-25)

The left eigenvector matrix associated with A’'which is also the inverse of the right
eigenvector is

1 0 0 Z
- 0 KEv —Kex 0
Le=R:! = 15-26
0 -Ke —yKe U5
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where

£x

K = VY (15-27)
(e2+¢)
Key = __@__é_ (15-28)
(g+8)
The right eigenvectors expressed as column vectors are
1
Tel = 8 (15-29)
0
0
K
re=| " Ig:: (15-30)
0
.
1 | K,
res = —= 15-31
£ \/L—’ K&, ( )
pa
e
1| -k,
= | THeE .
w=7| k. (15-32)
pa
where the following relation is satisfied
A'Tf,' = A,‘TE" (15-33)
The right eigenvector matrix is now
lp 1p
o Ky oK. Tk
Re= 8 I;gv T RE (15-34)
Tz ARy “‘Yi &
0 0 Vlspa 7 pa

The matrices R,and R 'have similar forms as R¢and R, except K¢, and K,
are replaced by K, and K,, defined by

Kpp = —205 (15-35)
T ()
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and

Ty
™ (15-36)
(n2 + 173)&

Now, recall that a similarity transformation exists such that

Kw =

A’ = ReD¢R;! (15-37)
or
D¢ =R;'AR, (15-38)
and
B' = R,D,R;! (15-39)
or
= R;'B'R, (15-40)

Since the concept of characteristics is used assuming local one-dimensionality,
the governing two-dimensional equations is written accordingly. Therefore, when
the required equation at the boundaries i = 1 and/or i = I'M is used, characteristics
in the £ direction are employed and, similarly. at the boundaries set at j = 1 and
J = JM, characteristics in the 7 direction are incorporated in the equation. Thus,
consider Equation (15-6) to be used at ¢ = 1 and/or i = I'M, repeated here for
convenience

aZj‘ e

3€+B

This equation is written with the substitution of (15-37) as

=0 (15-41)

3Q BQ IBQ
B¢+ ReDeRg' 5 + —0 (15-42)
Multiply by R;’, one has
L0 09 0]
1 1 )
R G + DR G+ BB 5 (15-43)

This equation is called the characteristic equation corresponding to Equation (15-
41). More spemﬁcally, Equation (15-43) can be written in terms of the characteristic
variables Qf as defined in Appendix G by
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Q; = / R;'dQ (15-44)
and the resulting characteristic Equation as given by (G-30) is written as
60 , 1 0 | pp0Q
—6?- + Df-—a? + RE B -C;)F =0 (15-45)

The characteristic equation written either as Equation (15-43) or Equation (15-
45) represents a set of wave equations where each wave moves with characteristic
velocity of A¢. Each wave propagates along the characteristic line with a constant
amplitude. This physical understanding of wave propagation is important in spec-
ification of boundary conditions. It is also convenient to define

Le= DR\ ZX (15-46)
¢ = DeRg

and thus

6Q 60

194 -1p'%% _ N
R; 8£+LE+R€Ban (15-47)
A vector component of Equation (15-47) can be written as
- —
aQ 0Q
l‘f"jﬁﬂt— -+ Le‘. + l&B —a? =0 (15-48)
where
6Q
= Al 22 15-49
Lg = Aalgi : (15-49)

Before proceeding further with the mathematical developments, let’s pause a
moment and consider as how the boundary conditions must be specified to be
consistent with physics of the problem. In general, at any point within the domain
and at any point at the boundaries, some of the eigenvalues will be positive and
some will be negative. This indicates that waves are propagating both into the
domain and out of the domain. Waves that leave the domain, that is outgoing,
carry information from the interior of the domain to the boundaries. The incoming
waves carty information from the exterior domain to the boundaries. Unfortunately,
in most applications, the data exterior of the domain is not known. In some external
flow applications the data due to the exterior, may be approximated. For example,
the free stream flow properties at the far field may be imposed. Another scheme to
specify the boundary condition associated with the incoming waves is the so called
nonreflecting boundary conditions. This definition is based on the requirement of
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minimizing the reflection of outgoing waves. An equivalent nonreflecting boundary
conditions introduced by Hedstrom requires that the amplitude of the incoming
waves must be constant at the boundaries. Mathematically, it requires that Lg = 0.
Therefore, the nonreflecting boundary conditions can be imposed by specifying the
following requirements.

—
L = )\5‘15‘% for the outgoing waves (15-50a)
0 for the incoming waves (15-50b)

Now, the appropriate equations to be used at the boundaries are the character-
istic equations for the outgoing waves, i.e., Equation (15-48), and the nonreflecting
requirement of L, = 0 for the incoming waves. These relations will be developed
for specific types of boundaries shortly. However, before proceeding with imple-
mentation of specific boundary conditions, observe that the characteristic Equation
(15-48) is expressed in terms of the primitive variable vector d Similar equations
can be written in terms of the conservative variables resulting in:

@ +M (REDERE %QEJ) +o—=0 (15-51)
or
q 6F
S M (ReLe) + o =0 (15-52)

Either one of the Equations (15-51) or (15-52) can be written as

aQ oF
B+ Mde+ 5 =0 (15-53)

where

0
k3
Note that with the definition given by (15-54), Equation (15-42) can be written as

de = ReD¢R;' =% = ReLs (15-54)

(15-55)

This completes the mathematical development of the required relations to be
used at the boundaries where £ = constant, typically set at i =1 and/or 1 = IM.
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The required equations to be used at the boundaries set at j = 1 and/or j = JM
are established in similar manner. The results are

aQ 8Q L6
Bt T Age T RDaBTI ST =0 (15-56)
or
L,0Q G L, 0Q
' +R,,‘A-——+D,,R,,‘—55- =0 (15-57)
or
R;I%Q- + R,;IA'%% +L,=0 (15-58)
where
Y1)
- 19% -
= D,R; 3 (15-59)
In terms of the conservative variables,
9Q 6E
Tt (R,,D,,R,, ) (15-60)
or
8Q OE _
B T e T M (BaLy) =0 (15-61)
or
g  OE _
Bt T aE T Mdn=0 (15-62)
where
L0 |
d,-' = Ranqua—n = }ZnL,-, (15-63)
and for Equation (15-56) is
9@ A‘ BQ +dy=0 (15-64)

at

Proceeding with the mathematical operatlons, d¢ defined by (15-54) is deter-
mined as follow
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1 1
0 ]755 YEE L¢
Kfy Vlinz _715KEI LEQ
—Kex 7Kgy _YiKEV Les
1

7P e
Lo+ 58La+ TaLf4
KeyLga + TKszea 73 Kee Lea

de = ReLe =

OO O -

15-65
—KezLes + 75 KeyLes — 75 Key Lea ( )
715paL53 + :}-2',00..[454
Now Equation (15-55) is
plJ La + 7521353 + waLa
O u/d| | Kelet V-Ke:Les 3KesLes
ot U/J _K&'LEQ + TK&L& 7—1{5ny4
p/J vlipaLfg + VlgpaL&
Mzl + Ty v NP NP 0 5 p; J
0 Nz + Nyv 0 Nz/p u/J
—_ = 15-
0 0 Nzl + Tyv /P on | v/J 0 (15-66)
0 n-a’p nalp el + v p/J

from which the following equations are obtained.

+

a p) 1p 1p é) ( ) d (v)
L °r s+ L
6t(.] Frat Ba st e e T e \T) T WP T
0 (p\ _
(e + 1) 5= (§) =0 (15-6)
0 ru 1 n,@ p)
5t (5) + Kola+ sKala~ fofo” o (5)

(et + Tyv) 5% (%) =0 (15-68)

0 /v 1 m 0 )
3t (7) — Keg Lz + \/inngg \/_KEng + = p 67] (J +
d (v
(rut )z (5) =0 (1569)
9 (py, L 1 z_f’_(z) 2 3_(2)
5 (J) + ﬁpaLg—F \/ﬁpaL54+n,a pan ¥ + na pan 7 +

(nzu + n,,v)(% (%) =0 (15-70)
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Similar equations can be developed for the boundaries at j = 1 and j = JM.
For this purpose, consider Equation (15-64). Once the mathematical details are

completed, the following equations (similar to that of Equation (15-67) through
(15-70) are obtained.

gt (5)+m+ pr"3+ \1pr”‘+5"’as 5 )+f""a§ (7)+

(&u + &) % (le) =0 (15-71)

2 (9) 4 Kl + bl SR+ E2 (2) 4

Cuteng (5)=0 a5
5 (3) = Koela + 7k Loy = Ko Lon+ 2 (2) 4

(Eu+ ) E(”) —0 (15-73)
8 (2)+ o iy (3) 00 (3

(&xu + &) T3 (%) =0 (15-74)

When the conservative variables are considered, the Equation (15-53) is used

at ¢ = 1 and/or 1 = IM. Once the mathematical operations are completed, the
following equations are obtained.

b (p Lepeter 9 [1 ]_
5 (5) + Lo+ ZPla+ Zlla+ o [t mon)] =0 (1575)

d (pu 1 /pu ) 1 (pu. )
) b uLe + KeypLep + —= (= 4 Keap) Les + —= (= — Kes
(J)+u 61 + Keyp 52+ﬁ(a+ ezP f:;'i'\/§ " Kezp) Ly

+ C% [%’5 (u* +p) + (p'wv)] =0 (15-76)

a (pv 1 /pv 1 fpv
5 (—3—) +vla - Kepla+ 7 (; + Keyp) La+ 75 (‘a— - Keyp) Les

+ 3% [%—f(xmv) + %(;rw2 + p)] =0 (15-77)
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0 1
5 (ﬁ”i) + §(u2 +v*)Ley + (Key pu — Kezpv) Lea +

1 a
V2 [z’; (' +v%) + mq,p_ { t Kespu + Kesypv] Les +

1 a
7 [—2%(112 +v?) + 7—‘:——1 — Kezpu — K&,pv] Leg +

0 [n: Ty —
o [7 (pecs + pu) + = (pecu + pv)] =0 (15-78)

The equations at boundaries j = 1 and § = JM are obtained from Equations
(15-62) and are given by

% (5) + Ly + \}EPL,,:; + \}ﬁpLM + (966 [ (€zpu + fyp'u] =0 (15-79)
a 1 1
Bt (%) +uly + KpypLp + V2 (% + Knxp) Lo+ V2 (p_:- - MP) Ly +

365 [ (pu +p) + gy(puv)] =0 (15-80)

% ( ) + oLy — KyzpLga + % (pv + Knyﬂ) Ly + % (% - WP) Ly +
f?g [& (puv) + =% (pv2 + p)] =0 (15-81)

pa
-1

(u2 + v”) + (—‘f?—l—j - Koppu — Kwpv]

a 1
() 410 +9) s U K 5[ 044

l2a. .
1 1p

Kpzpu + Km,pv] L+ _ﬁ l:%
Lo+ ¢ [ et 30) + & (o4 =0 (1582)
Recall that L¢ and L, are defined by (15-46) and (15-59) respectively. At this

point the mathematical operations are carried out and the results are provided as
follows.

L,0Q
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or
] | Geren £ (0)+40)
Ler (&ut &) [~Keg (5) + Ko ()]
(st -+ o EHE) [ (5) + 554 () +
Lg | = Ke 8 (v _ (15-83)
BE(3)]
(eutéw-af@+8) [k (3) - %% (3)-
LI w5 ()]
and
L,,=D,,R;‘%%
or
(ew+ ) [~ & () + % (5)]
Ln (nets + 70) [~ Knay (3) + Ky (3)]
o | _| (uems o) [ () + S )+ |
L A5 ()
os b | Gt o) [ 5) - 525 ) -
Kn 8 (v
22 (3)

15.3.2 Slip Wall Boundary Condition

The slip wall boundary condition is specified by setting the normal component of
velocity equal to zero while allowing tangential component of the velocity. Relations
to be applied at the slip wall boundary are developed for a boundary at i = 1.
Similar relations can be derived for boundaries at j=1.

The normal component of the velocity at 1 = 1 is

U==E&u+§v

which is set equal to zero. As a subsequence, the characteristic velocities given by
(15-13) through (15-15) become
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/\51:)\52=0, /\53>0, and/\54<0

The required relations are developed first for the nonconservative variables, and
subsequently the relations for the conservative variables are developed.

15.3.2.1 Nonconservative (Primitive) Variables.

Since Ag < 0, (that is, outflow) Lg,,is computed based on characteristics according
to (15-83) with &u + &v = 0. Note that the relation for Lg involves only ¢-
derivatives which can be computed at ¢ = 1 using one-sided (forward difference)
approximations. Therefore, L is computed based on the information provided
from the interior of the domain.

Since Ag > 0, it represents an incoming wave, and therefore we must specify
Lgz according to nonreflection boundary condition. Since the boundary condition is
specified as slip, and U is zero at the initial time level, it must be zero at subsequent
time levels to satisfy the imposed slip condition. Therefore,

% (Gu+&v)=0 (15-85)
for a time independent grid, Equation (15-85) is written as
0 (u a (v
ez (3) +om () =0 (15-86)

Now, relations (15-68) and (15-69) are substituted into (15-86) and rearranged as

J

Vo & 1y0) [ﬁ,c% (;) + g,,a—fil- (%)] —0 (15-87)

14
Les — Ly + V2 (Keoniz: + Keymy) >n (E) +

from which

18 rp
Les = Les — V2 (Keatto + Keymy) e (-j) -

\/5—-—("““,6—-;:;;) [E:;% (5)+ Ey;% (—3)] (15-88)

With the characteristic velocities A;; and Mg, being zero, specification of Lg—
and Lg become ambiguous. However, setting Ly = Lg = 0 is reasonable. These
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specifications imposed on (15-67) and (15-68) indicate that the changes in flow
properties are in tangential direction (n—direction) only which is consistent with
the imposed no-slip wall condition.

15.3.2.2 Conservative Variables

Similar procedure as described in the previous section is used to developed the
required relations at the no-slip boundary at 1 = 1, except Equations (15-76) and
(15-77) are substituted in

(5o 5
resulting in
Les— Leg + ﬁf"% {% [n= (ou* + p) + 1y (mw)]} +
Yo D {2 [etow) +m (7 45)] } =0 (15:90)

15.3.3 No-Slip Wall Boundary Condition

The no-slip boundary condition at a nonporous surface is specified by imposing the
velocity, and therefore, each component of the velocity to be zero. The procedure
for the determination of L's will be illustrated for the boundary at 4 = 1 in terms
of the primitive variable formulations and subsequently extended to conservative
variable formulation.

15.3.3.1 Non-Conservative (Primitive) Variables

The no-slip wall boundary requires that the velocity must be zero along the
surface at the initial time level and subsequent time levels, therefore

and
ou Ov
= 0 (15-92)

Imposing the requirements (15-91} and (15-92) into Equations (15-68) and (15-
69), one has
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1 1 n=0 (p
KeyLer + —=KesLes — —KeaLea + = (—) = i
&y €2+\/§ Ex L3 ‘/2- I3 64+p8n 7 0 (1593)
1 y O
- KE:L&'Q + EK&,L@ \/—K&,L“ —5— (—) = 0 (15-94)
from which
Lg — Ley + V2 (Keanie + K&:ﬂy) an (“j) =0 (15-95)

Now, since L is positive, and therefore it represents an incoming wave, Equa-
tion (15-95) is used to specify Lg. Thus, from Equation (15-95)

18 /p
L£3 = Lf4 - \/ﬁ (Kg:ﬂx + Kgyny) ;57—7 (3—) (15—96)

With Ag being negative, that is outflow, Lgs must be computed from the definition
of (15-83), therefore,

= (/i 8) Gz () - e (5) - e (5)] oo

Again, observe that the data from the interior domain is used to compute L¢s
utilizing one-sided difference approximations.

Finally, Ae; and Ag are zero. We may select Ly, to be zero and calculate Ly, as
follows. From Equation (15-69), with % (ﬁ) = 0, one can solve for Lg to obtain

& Lag &L Ty 13
L Sy 8 Sy 4 15-98
= Ez \/— &x \/— KE: Pa"'] ( ) ( )

By the substitution of Lg and Lg given by Equations (15-96) and (15-97) into
Equation (15-98), one obtains

18
Ley = (Kezny — KeyMiz) — Y ( J) (15-99)

This completes the specification of L's.
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15.3.3.2 Conservative Variables

The no-slip boundary condition requires that

u=v=0 (15-100)
and
d [pu a pv)
5i(7) " (5)=0 (5-10)
Now, Equations (15-76) and (15-77) are reduced to
1 1 8 (N
KeypLer + EK&:’JL& - —ﬁKexpL54 *+ o (71)) =0 (15-102)
— KeapLeg + ——KeypLes — —KeypLes + 2 (@p) =0 (15-103)
fxlig2 \/i Sy g3 \/i 37 3 o \J

Equations (15-102) and (15-103) are rearranged as

1 n: 8 0 ( p) pl d _
and
1 1 y 0 (D plad
— KeLga + ﬁKEyLSi \/-KEyLE"- + 37? ( ) P Ja’l( ™) = (15-105)

Observe that Equations (15-104) and (15-105) are identical to Equation (15-
93) and (15-94) except the appearance of the last term in Equations (15-104) and
(15-105).

Equations (15-102) and (15-103) are combined to provide

Les— Lea+ ‘/75 [K&z% (?) + Koo ; (22 )] 0 (15-106)

Following the same procedure of the previous section, the values of L¢’s are
determined.

15.3.4 Inflow/Outflow Boundary Conditions

The inflow boundary condition is considered at ¢ = 1 for both the subsonic and
supersonic flows in terms of either primitive or conservative variables. The inflow
boundary conditions at boundaries at i = IM, j =1, and j = JM can be specified
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similarly. Subsequently, the development of boundary conditions for the outflow is
considered.

First, a set of nondimensional velocity parameters similar to the Mach number
is defined for computational domain based on the contravarient velocities as follows

U _&u+ &

M = = (15-107
‘CuErE ojire )
and
|4 Nzl + N
M, = = , (15-108)
" oaii+nl a/nitnd

The flow will be defined as supersonic in the computational domain (associated
with the £-direction) if Mg > 0, that is, all the eigenvalues ¢ are positive. This
definition and its interpretation is based on mathematical ground and it is not asso-
ciated with the physical concept of supersonic flow. Nonetheless, the interpretation
will be used because specifications of boundary conditions is based on M; and M,

A similar discussion about the relation between eigenvalues of the Euler equation
and their relation to the physical supersonics or subsonic flow was presented in
Section 12.9.1.

Now, for a supersonic flow, where M, > 0, all the eigenvalues, A¢, are positive.
That is, information is entering the domain of solution, and therefore all boundary
conditions are specified. This is accomplished by specifying all the flow variables at
the inflow.

For a subsonic inflow, require a constant mass flow in £ direction and set

a
Bt (&pr+ &ypv) =0
or for a time independent grid
7] d
&g, () + &5 (pv) =0

2
Substitute Equation (15-76) and (15-77) into equation above and divide by (E?, + Eyz) Y
to obtain

1 pu 1 (pv )
(Kests + Keyv) Les + [\/51{& ( L Keup) + T3k (5 + Kan)| Lo+

1 pu ) 1 (pv )

—=Kez | — — Kg; —K¢ | — — K| L
[\/ﬁKf (a Kep ) + V2 Y\, &P ‘ ¢t

aF, 9F,

Keg— + Key— = 15-

3 Bn + K, an 0 (15-109)
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Select Lgy = Lg to enforce them to be nonreflecting, Equation (15-109) is reduced
to

OF, OF,

1 p 1p
Jza (Kezu + Keyv + a) Legg + Fa (Ke;u+ Keyv —a) Ly + K&_(Tj.n_ + Kf”a_n =0
which can be solved for Lg to provide
e s et K ‘U+G)P oo Kot Kav —a) Lat Kegr S+ Ky 677
€ 137

or in terms of the eigenvalues,

OF OF
Legy = _E [/\54L54 + \/_— (f: 2+ 6;,‘5772)]

Summarizing the results, one has,

0
Lfl 0 ) )
iﬁ = ‘—['\64Le4+\/_ e (5:%?%,,%3}()]
AR oy 1Y
- T V2 E\T

15.4 Category Three Boundary Conditions: Addition
of Buffer Layer

In these schemes, an additional layer of several grid points is added to the
computational domain. The governing equations are modified or amended in the
buffer layer such as to absorb or dissipate the waves so as to prevent wave reflection
back to the domain of solution.

Within this category of boundary treatment, there are two schemes. The first
scheme introduced by Berenger [15.1, 15.2] is known as Perfectly Matched Layer
(PML). In this scheme, the governing equation is split according to the spatial
derivatives. Furthermore, the dependent variables are also split into subcompo-
nents. An absorption coefficient is also introduced into these equations. The result-
ing PML equations are solved within the PML domain with specified absorption
coefficient. The procedure originally developed by Berenger with applications to
electromagnetic waves, have been extended to Linearized Euler equations [15.3,
15.4] and Euler equations [15.5].



328 Chapter 15

The second scheme includes the introduction of a so-called sponge layer, where
a source term is added to the governing equation. The objective here is to dissipate
the wave within the sponge layer and thus prevent any possibility of wave reflection.
The source term w to be added to the right hand side of the governing equation is

w=—o(z)Q (15-110)
where

oe) = {olmn) /el mSaso 5

This expression is used for the sponge layer at the boundary perpendicular to
the z-axis. Similar expression is written for the boundary perependicular to the
y-axis. zp and zg in Equation (15-111), denotes the z coordinates of the beginning
and the end of the sponge layer respectively. The constants a and n are specified
to control the amplitude and distribution of the damping coefficient .

An expression for the source term, similar to that of (15-110) which includes an
additional term, has also been used. Now the source term is written as

w=—o(z) (Q - Qo)

where Q, is an approximate solution. For example, a mean flow solution can be
used for this purpose. The implementation of sponge layer concept is simple and
straighforward without any major modification of the governing equations. In the
example to follow, this approach is used.

15.5 Applications

Two example problems are proposed in this section, and solutions are obtained
with the implementation of several boundary treatments disscussed in the previous
sections. The solutions are compared to each other in order to determine the effect
of boundary treatments on the solution.

15.5.1 Application 1: Moving Shock Wave

Consider an oblique shockwave moving through a rectangular domain with open
boundaries. The upstream Mach number is 1.25 and the shock wave is at 45° with
respect to the z-axis. Time accurate solution of the Euler equation is required
up to a time level where the shock exits the domain. Ideally, no wave reflection
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should be detected within the domain. The initial pressure distribution is shown in
Figure 15.1. The number of grid points are 100 and 50 in the z- and y-directions
respectively.

To investigate category three-boundary treatment, sponge layers to the right
and top boundaries have been added with 20 and 10 grid points, respectively. The
values of constants a and N, appearing in relation (15-111), are set to 0.05 and
4.0, respectively. A discussion on the selection of these constants is provided in
the next section. The solutions at time levels of 0.25 ms, 0.50 ms, and 0.75 ms
are shown in Figures 15.2 through 15.4 for the three categories of boundary treat-
ments. Figure 15.2 illustrate the solution with category one boundary conditions,
that is, extrapolation. Figure 15.3 shows the solution with category two boundary
treatment and finally Figure 15.4 shows the sponge layer approach. It is seen that
the sponge layer approach provides the cleanest solution with no reflected waves
observed. However, note that this increase is accuracy requires additional compu-
tations, namely solution of the equation in the sponge layer. Nonetheless, for DNS,
LES, aerocoustics and several other applications, accurate treatment of boundary
conditions are required.

15.5.2 Application 2: Flow Over a Compression Corner

As a second example, consider the computation of an inviscid, supersonic flow
over a compression corner. In this problem, the Euler equation in generalized coor-
dinates, given by (12-126), is solved by the modified Runge-Kutta scheme described
in Section 12.9.2.5 with the TVD scheme of Section 12.9.2.4.3.

Typically, the domain of solution for this type of problem is selected such as
the shock wave to impinge on the far right boundary. Since the flow at the outflow
at the far right boundary would be supersonic in most cases, extrapolation works
very well. A typical domain is shown in Figure 15-5. However, depending on the
application, it is not always convenient, nor computationally efficient to select such
a domain, especially if the shock angle is large.

A second option on the selection of the domain of solution is illustrated in Fig-
ure 15-6, for which the shock wave will impinge on the upper boundary. It is
obvious that such a domain can be selected to be much smaller than the domain
of Figure 15-5, and therefore, fewer grid points are required for the solution and
the computation time is consequently reduced. This advantage, however, is chal-
lenged by the treatment of the boundary condition at the upper boundary. That is,
because the simple extrapolation scheme does not work well, a more sophisticated
boundary treatment must be implemented. The objective of this example problem
is to illustrate the effect of boundary treatment for these types of domains.



330

Chapter 15

0s
-1
0«

[ 2

Figure 15.1.

N

[} 08 1
x

Initial pressure distribution for the moving shock wave.

Ay 1
\ o8
o8

.
N
AN

-
04

e NS

\\“&

05

(a)

a5 [)
x

)

e

©

Figure 15.2. Solution with category one boundary condition (Extrapolation).

04

1 1
N .
o8 b 11}

. .

oS5

(@ (b) (c)
Figure 15.3. Solution with category two boundary condition
(Characteristics Based Boundary Condition).
u; \ o,: N o;
o2 02 02
(2) (b) (c)

Figure 15.4. Solution with category three boundary condition
(Addition of a Buffer Layer).

Pressure contours at

(a)t=0.25 ms

(b) t=0.50 ms

()t=0.75 ms




Boundary Conditions 331

ié

e e

Figure 15-5. Domain of solution for the compression corner where the
shock wave impinges on the right boundary.

A supersonic flow of Mach 2.95 over a compression corner of 16 degrees is con-
sidered in this problem. The computational domain includes 120 grid points in the
streamwise direction, that is, in the z-direction, and 90 grid points in the y-direction.
The solutions obtained with the implementation of three types of boundary treat-
ments are illustrated in Figures 15-7 through 15-9. Observe that when the simple
extrapolation scheme is used at the upper boundary a nonphysical shock reflection
occurs. An improvement is seen as one uses the nonreflecting boundary condition.
There is no shock reflection; however, some small disturbances are generated up-
stream of the shock impingement at the upper boundary, as observed in Figure 15-8.
Finally, the solution with the sponge layer scheme is shown in Figure 15-9, where
a layer of 10 grid points has been added to the upper boundary. The constants in
the damping terms a and N are set to 0.05 and 4.0, respectively. As seen in Figure
15-9, a clean solution with no shock reflection has been obtained. That is, all the
waves have been dissipated within the sponge layer, and, therefore, any possibility
of a nonphysical shock reflection has been eliminated.

One point which warrants further elaboration is the selection of the constants
a and N which appear in the damping term. When the sponge layer scheme was
implemented in the previous test case, the values for a and N were respectively
0.05 and 4.0. The coefficient a controls the quantity of damping term added to
the right-hand side of Equation (12-126), whereas the exponent N determines the
distribution of the damping terms inside the sponge layer. A parametric study on

these two constants has been performed to highlight their effects on the solution
[15.6].
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Figure 15-9. Solution by implementation of sponge layer (18 points).
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Figure 15-10. The effect of a on the  Figure 15-11. Details of Figure 15.10
solution. downstream of shock.

To investigate the effect of a on the solution, the values of N and the number of
grid points in the sponge layer are kept constant at 4.0 and 18 points, respectively.
The corresponding pressure distribution on the physical upper boundary (that is
just below the sponge layer) is shown on Figures 15-10 and 15-11. Figure 15-10
shows that, up to the shock impingement location on the upper boundary, the
coefficient a does not effect the solution. This was expected because, in this region
(upstream of the shock), there is no need to damp out any reflection. It also means
that the damping term stays neutral when it is not needed. On the other hand, the
magnitude of the reflected wave is sensitive to the coefficient a, as seen in Figure
15-11. For a = 0 (i.e., no damping term is added), a large reflected wave can be
seen downstream of the shock wave. As the value of a is increased, the smaller the
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undesired reflections become, until the value of @ = 0.05 is reached. At this value,
the solution is considered to be reflection-free. For high values of a, no change has
been observed, and the solution remains clean (it shows good agreement with the
analytical solution).

To investigate the effect of exponent N on the solution, the value of a is set to
0.05, and the number of grid points in the sponge layer is set to 18 points. The
pressure at the upper boundary is shown in Figure 15-12. Negligible changes in the
solution have been detected for values of N varying from 1 to 6. It suggests that,
for a proper amount of damping within the sponge layer, the distribution of this
damping does not affect the solution.
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-0.02 0.00 0.02 0.04 0.06
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Figure 15-12. Effect of the exponent N on the solution.

Finally, to investigate the effect of the number of grid points within the sponge
layer, the thickness of the layer is kept constant at 20 percent of the vertical grid
size. The values of @ and N are, respectively, 0.05 and 4, and are kept constant.

Results are shown in Figures 15-13 and 15-14. When the number of grid points
is sufficiently large (10 or 18 points}, no reflection occurs. When the number of grid
points is reduced to 5, the sponge layer does not absorb all of the reflected wave,
and the solution is contaminated.

15.6 Concluding Remarks

The specification and treatment of boundary conditions have a profound effect
on the accuracy of numerical solutions. Depending on the application and domain
of solution, the values of some variables on the boundaries may be knwon from
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the physics of the problem, and, therefore, they can be easily specified. However,
difficulty arises in situations where some or all of the variables at the boundary are
unknown, and, therefore, they must be computed as a part of the solution. Several
simple schemes have been introduced throughout the text for the treatment of
boundary conditions. Some more sophisticated treatments of boundary conditions
have been reviewed in this chapter. Research in the development of efficient and
accurate treatments of boundary conditions continues.
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Chapter 16

An Introduction to
High Temperature Gases

16.1 Introductory Remarks

For high speed flows, particularly those in the hypersonic regime, the assump-
tion of calorically perfect gas imposed in the previous equations is no longer valid.
That is due to the high temperatures associated with such fow fields. As a conse-
quence of high temperatures, molecules will dissociate and may ionize. Therefore,
the effect of chemistry must be accounted for if a reasonable computation is to be
carried out. To address numerous issues related to chemically reacting gases, the
fundamental concepts are initially explored. Subsequently, a procedure to include
the chemistry effect in the equations of motion is introduced. In this regard, only
inviscid equations of fluid motion are considered to illustrate the procedure.

16.2 Fundamental Concepts

The underlying assumption of calorically perfect gas results in constant specific
heats and, hence, a constant ratio of specific heats, 7. For example, a value of
v = 1.4 is used for air. In addition, the internal energy of the system is expressed
solely as a function of temperature. Indeed, it is assumed that the internal energy
is composed of translational and rotational modes of energies only. It is based
on these assumptions that the previous set of equations was developed. For a
chemically reacting flow, the energy may be a function of temperature as well as
pressure. The ratio of specific heats, 7, is.no longer constant and, in general, a new
definition for - in the form of the ratio of enthalpy to internal energy is introduced.
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In the next few subsections, various definitions from physical as well as mathe-
matical points of view are explored.

16.2.1 Real Gas and Perfect Gas

A molecule possesses a force field due to the electromagnetic actions of electrons
and the nuclei. When a domain composed of many molecules is considered, the force
field associated with each molecule affects other molecules in that it may act as a
repulsive force if molecules are very close to each other or as an attractive force if
they are relatively far apart. Under normal conditions, such as atmospheric, the
average distance between molecules of air is about 10 molecular diameters, resulting
in weak attraction force. Now consider a fixed region and introduce more and more
molecules into this fixed region. As a result, the molecules are more compact. This
translates into conditions where the pressure is extremely high and/or temperature
is very low. Under this condition the intermolecular forces become important and
the gas is defined as a real gas. On the other hand, when the intermolecular forces
are negligible, the gas is defined as a perfect gas. For the majority of problems in
aerodynamics, the assumption of perfect gas is a valid one and is utilized extensively.
From an application point of view, the major difference between a real gas and a
perfect gas is the use of the equation of state. For a perfect gas, the equation of
state p = pRT is employed, whereas for a real gas, the van der Waals equation of
state expressed as '

(p+a6") (5 —b) = RT

is usually employed. Note that in the equation above a and b are gas-dependent
constants. An important point to clarify at this time is the consideration of chem-
istry. Whether the flow under study is chemically reacting or not has nothing to
do with the assumption of perfect gas or real gas. Indeed, the equation of state for
a perfect gas is used extensively for chemically reacting gases. Such a chemically
reacting flow is considered a mixture of perfect gases. In this regard, the following
equation of state for a species s holds

Ps = psR,T (16-1)

where p, is the partial pressure contributed by species s; p, is the partial density
contributed by species s; and R, is the gas constant for species s defined as R, = 'M%
where R is the universal gas constant; MW, is the molecular weight of species s;
and T is the temperature. Modification to Equation (16-1) to include real gas
consideration may be accomplished by introduction of a so-called compressibility
factor Z, such that

Ds = ZPnRsT (16—2)
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where the compressibility factor Z is usually given as a function of reduced pressure
and temperature, e.g., see Reference [16-1}. Thus, when the compressibility factor
is about one, the perfect gas equation of state may be employed.

16.2.2 Partial Pressure

Consider a gas mixture composed of various species. For simplicity, assume
air composed of 80% nitrogen and 20% oxygen within a fixed region at a pressure
of 10 atm. Now consider the region with exactly the same number of nitrogen
molecules, i.e., the oxygen molecules have been extracted. The measured pressure
is now 8.0 atm. Similarly, when the domain includes the original number of oxygen
molecules, the measured pressure is at 2.0 atm. By definition, these pressures are
called partial pressures. Thus, partial pressure of a species is formally defined as
the pressure within a domain if the species s is the only matter within the region.
Mathematically, the pressure of a mixture within a domain is written as the sum of
the partial pressures, i.e.,

p= Z:Ps (16-3)

This relation is known as the Dalton’s law of partial pressures. In terms of Equa-
tion (16-1), it may be written that

n n R
= = T
P ’gp,R,T ’;p. MW, (16-4)
Now, define the mass fraction of species s as
c, =2
P
Substitution into (16-4) yields
p= pCrrn T=pTi(C’, R )=pRT (16-5)
- MW =N MW,

Note that the gas constant for the mixture, R, is defined as

n
R=Y.C,R,

s=1

16.2.3 Frozen Flow

When the chemical reaction rates within the flow field are extremely slow,
such that fluid particles moving within the domain do not experience any change
in the chemical composition, it is referred to as a frozen flow. In order to better
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understand various categories of chemically reacting flows, define two time scales:
one associated with the luid motion and one associated with the chemical reactions.
Assume t; seconds are required for a fluid particle to travel the length of a domain
designated by some characteristic length L with a velocity u. Hence, t; ~ L/u.
Now denote the time required for chemical reactions to take place by £.. Then, for
a flow field where ¢, > t;, the flow is assumed to be frozen.

From a physical point of view, recall that the chemical reactions occur due to
molecular collisions. Relating the number of molecular collisions to the chemical
time scales, it is apparent that for a frozen flow the molecular collisions are suffi-
ciently few such that no chemical processes take place.

16.2.4 Equilibrium Flow

For flow fields where the chemical reaction rates are extremely high, the reac-
tions take place instantaneously. Thus, reactions are completed before the fluid has
a chance to move downstream. Such a flow is called equilibrium or, more precisely,
chemical equilibrium. Therefore, for an equilibrium flow, £; > ¢.. For a flow in an
equilibrium state, the specific heats are functions of both pressure and temperature.
Therefore, the ratio of specific heats is no longer constant and becomes a function
of temperature and pressure as well. The gas constant is also a variable due to
changes in the molecular weight of the mixture.

16.2.5 Nonequilibrium Flow

The frozen and equilibrium flows just defined represent two extreme condi-
tions. In reality, chemical reactions occur as particles are moving within the do-
main. Therefore, in situations where the flow cannot be classified as either frozen
or equilibrium, it is referred to as nonequilibrium. For nonequilibrium flows, the
perfect gas equation of state still holds, except the gas constant is now a variable

 because the molecular weight of the mixture is changing.

It is important to realize that, within a flow domain, equilibrium flow may be
established in a certain region while in some other region, flow is in a nonequilibrium
state. A computer code which incorporates a nonequilibrium model should be able
to compute the equilibrium state as well. This point will be illustrated shortly.

16.2.6 Various Modes of Energy

In order to describe the various forms of energy, consider a diatomic molecule
in motion within a domain. The energy associated with the translational motion
of its center of gravity is called the translational energy. Since the molecules may
also rotate about orthogonal axes in space, it also possesses rotational energy. In
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addition, the atoms forming the molecule are vibrating. The associated energy ig
known as the vibrational energy. Other modes, such as bending and twisting, may
be activated but are usually assumed negligible. Finally the electrons are in motion;
therefore, they possess kinetic energy due to orbital motion about the nucleus, and
a potential energy, established by an electromagnetic field.

From a computational point of view, what is essential is the change in the value of
energy rather than its absolute value. Thus, various modes of energy are measured
with respect to a reference datum, usually selected as the lowest allowable energy,
theoretically at a temperature of zero degrees absolute. This reference datum is
known as the zero point energy level Now, the internal energy for a molecule may
be written based on the classification of various forms of energies as

€=€t+€r+eu+6¢+ea

where e, €, €y, €, and ¢, represent translational, rotational, vibrational, electronic,
and zero point energies, respectively. Note that the energy for an atom is composed
of translational, electronic, and zero point energies only.

The various energies defined above are now expressed mathematically for a di-
atomic molecule in thermal equilibrium flow

3 R
€t = 5 _—MW,T (16—6)
2 R
= 5 2T (16-7)
R 6,

€vs = MW, (69,/7' — 1) (16‘8)

where 6, is the characteristic temperature.

A closed form relation such as (16-8) does not exist for electronic energy. For
problems where the temperature is less than 8000 K, the electronic energy can be
ignored. That may effect at most about 1% of the total energy. Finally, the values
of zero point energies are given in tables for various gases. For example, Reference
[16-2] provides such tables for air. The zero point energy, €,,,, is usually expressed in
terms of h,,, called the keat of formation. The heat of formation, in general, is given
as a relative value, whereas ¢,, is an absolute value. Note that for flows within the
subsonic and supersonic range, the vibrational energy within the internal energy of
the system is small and is usually ignored. A benchmark value at which to include
the vibrational energy of air for a pressure of one atmosphere is at temperatures of
about 800 K and above.

Examination of Equations (16-6) through (16-8) reveals that one temperature is
used for various modes of energies, in which case it is referred to as a one tempera-
ture model. Sophisticated models based on multi-temperature models are currently
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under investigation. One such model is a two temperature model in which a trans-
lational/rotational temperature 7' is used in relations (16-6) and (16-7) for the
translational and rotational energies, and a vibrational temperature 7T}, is used in
(16-8), where T # T,.

Finally, incorporating relations (16-6) through (16-8), the internal energy of a
species s may be expressed for an atom as

3 R
TR By e
and for a molecule as
5 R R
a=3 ( MW,,) T+ 35700/ [0/ T) = 1)+ B (16-10)

16.2.7 Reaction Rates

Consider a domain composed of molecules at standard atmospheric conditions.
When the temperature of the domain is increased, it is accompanied by an increase
in various energy modes. As a result, the collision rate between molecules is in-
creased as well. Now, some of the increased energy is absorbed into breaking the
atomic bonds between molecules. This breakdown of molecules to atoms is known
as dissociation. Next, consider the reverse situation where the energy of atoms
is released to bond atoms into the formation of molecules. This process is called
recombination. For simplicity, consider a diatomic molecule such as oxygen. The
definitions above may be expressed mathematically as

O, + absorbed energy — 20 for dissociation

20 — released energy — O, for recombination

Note that the energy provided for the reactions above is related to the collision
between molecules and atoms. With this physical concept in mind, it is customary
to express the relations above as

!
O+ M = 20+ M (16-11)
b

where M is considered as a nonreacting particle. Dissociation is represented by
forward reaction denoted in (16-11) by f, and recombination is called backward
reaction, denoted by b. The reactions in (16-11) occur at specific rates which are
functions of temperature and composition.

In order to generalize relation (16-11) to n reacting species, define the concen-
tration of species s per unit volume of the mixture as
2Cs
MW,

[Xal =
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Now, Equation (16-11) is generalized as

Ky

SalX] = S bix, (16-12)

K

where a, and b, are the stoichiometric mole numbers of the reactants and products
of species s, respectively. The forward reaction rate and backward reaction rate are
represented by Ky and K. An empirically determined expression for the forward
reaction rate K, may be written as

K;=CT'exp[-F/KT)] (16-13)

where K is the Boltzmann constant and C, n, and E are constants depending on
each dissociating molecule. These constants are given in Appendix I for a five-
species model. Instead of introducing a relation for the backward reaction rate
directly, an equilibrium constant is first introduced as

A typical relation for the equilibrium constant is expressed as
K. =exp(A, + AlnZ + A3Z + A 2% + AsZ3) (16-14)

where Z = 10000/T, and the coefficients A, through As are provided in Appendix I.
Now, the backward reaction rate may be determined as

At this point, consider the net rate of formation of (X,]. From Equation (16-12),
one may write

dX] diX,)| | dX,]
—=| = (16-15)
dt | dt |7 dt |,
where the forward rate of formation of X, is
d[:;’] = (by — a4) K11, [X,])™
!

and the backward rate of formation of X, is

dx,]

= —\0s — Qg sXsb'
28 = (b~ )KL ()

b
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The symbol II is used to represent the product. Note that, by definition, when
a chemical equilibrium state exists, the rate of formation of each species is zero;
mathematically,

d[X.]

dt =0

net

Obviously, for chemically nonequilibrium flows the net rate of formation is not zero,
and relations such as (16-15) will form a set of equations which have to be solved
for the concentrations of each species.

In order to establish a benchmark value with regard to molecular dissociation,
consider air at atmospheric conditions. The onset of dissociation and ionization is
shown in Figure 16-1. This figure illustrates the range of dissociation of N3, O3 and
the onset temperature for ionization.

Dissociation begins o lonization begins

for N,

Almost all of O,
has been dissociated

<>

Almost all of N,
Dissociation has been dissociated

begins for O, ¢

0K 2500K 4000 K 9000 K

Figure 16-1. Temperature range for molecular dissociation and ionization
of air at atmospheric pressure.

It is emphasized that these values correspond to a pressure of one atmosphere and
that an increase in pressure will increase the onset temperatures for dissociations
and ionizations.

16.2.8 Five-Species Model

In order to illustrate the nonequilibrium effect, a five-species model for air is
considered. In this case, the chemical reactions of interest would be

O+ M=204+M
No+M=2N+M

NO+M=N+0+M
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NO+O =N+0,

O+ N, =N+NO

where M represents a nonreacting particle and can be any one of the five reactants,
i.e., Oy, Ny, NO, O, or N. The selection of this simple model limits the range of
applicability to 8000 K. Recall that for temperatures above 8000 K, ionization must
be considered as well; for example,

N+O=NO"+e

For the application to follow, the five-species model is used.

16.3 Quasi One-Dimensional Flow/Equilibrium
Chemistry

For a wide range of applications, the utilization of an equilibrium chemistry
model will provide an accurate solution. That is particularly true for high density
flows where a sufficient number of molecular collisions take place and the reaction
rates are high. For example, a flight regime below 50 km can be adequately modeled
by an equilibrium model. In general, specification of two thermodynamic state
variables will provide the remaining thermodynamic properties.

The general approach to include an equilibrium chemistry effect is to consider
the governing equations for partial pressures of the species. The relevant equations
form a system of nonlinear algebraic equations. A typical system is composed of the
Dalton’s law of partial pressures, equilibrium constants (provided by statistical me-
chanics as a function of temperature), and equations for conservation of each nuclei.
To solve this system of equations, two thermodynamic states, namely pressure and
temperature, are required. Once the partial pressures of species are determined,
the mass fraction of species may be evaluated. Subsequently, the density, enthalpy,
and internal energy of the mixture are computed.

Since many applications in gas dynamics involve air, various sets of tables or
graphical plots have been generated by the system of equations just described.
Therefore, they may be used to facilitate the computation of equilibrium air. In this
regard, two procedures are available. In one procedure, the tabular values are input
to a program, along with an interpolation routine. With any two thermodynamic
states specified, the remaining variables can be determined by interpolation. In a
second approach, the tabular data are curve fit using polynomials. A commonly
used scheme in this category is given in Reference [16-3]. This approach is adapted
for the example to follow and, therefore, a brief explanation is provided.
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As stated earlier, two thermodynamic variables are required to compute the
remaining variables. Recall that the equation of fluid motion considered in previous
chapters provides velocity, p and e;, from which internal energy can be determined
as

1
e=¢e — §(u2+v2+w2)
Hence, for the time being, consider the two given thermodynamic variables to be the
density and internal energy. First, an effective v denoted herein by % is computed

from the following relation
¥ = a+aVh+aZ,+ a2+ asylz + aszf + a»,-Yl.Zf + aszf
ag + apY: +and; + a1 4,
1+ expl(ai3 + a1aY1)(Z1 + a15Y1 + as6)]
where Y; = log(p/1.292) and Z; = log(e/78408.4). The corresponding units for the
variables in the relations above are: (N/m?) for pressure, (Kg/m®) for the density,

and (m?/sec?) for the internal energy. Once 4 has been determined, the equation
of state is used to compute the pressure, i.e.,

(16-16)

p=pe(y—-1)

Now, the temperature (in units of Kelvin) is evaluated from the following relation
T
log (ﬁ'ﬁ) = b+ byYs + by Zp + baYaZs + bs Y3 + b Z2 + br Y2 2o + b Vo Z3

bo + b1oYz + b11 2o + b1p Y22, + b13 22
1 + exp[(b1aY2 + b15)( 23 + byg)]

where Yz = log(p/1.225), X, = log(p/1.0314 x 10°), and Z, = X, — Y;. The
coefficients appearing in relations (16-16) and (16-17) are provided in Reference [16-
3], which should be consulted for an in-depth explanation.

Implementation of the equilibrium model into the equation of fluid motion is
simple and straightforward. The computation of the flow field at the first time step
uses a specified -, usually 1.4. The solution of the gas dynamic equations provides
the values of p and e. Now the equilibrium model is used to determine a new 4.
The computation for the next time level is carried out with the newly computed
value of 4. The procedure continues until the solution converges.

(16-17)

16.4 Quasi One-Dimensional Flow/Nonequilibrium
Chemistry

At a high altitude flight regime, the nonequilibrium chemistry model must
be used in order to adequately simulate the high speed flow field. This is due to
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insufficient molecular collisions and the resulting low reaction rates. Mathematical
modeling of the nonequilibrium chemistry is similar to that of equilibrium, except
now a set of partial differential equations must be solved to provide the necessary
mass fractions of various species. It is therefore obvious that the solution procedure
for nonequilibrium flows is more difficult than for equilibrium flows. Furthermore,
since a system of PDEs is now being solved, the computation time is drastically
higher, typically by a factor of about three. In order to illustrate the effects of
chemical nonequilibrium, the simple quasi one-dimensional Euler equation is used
in the following discussion.

16.4.1 Species Continuity Equation

In conjunction with the quasi one-dimensional Euler equation introduced in
Chapter 12, the nonequilibrium species continuity equation is written as

8SQ. OE,
Ot + oz

where, as before, S = S(z) is the cross-sectional area, and the vectors Q., E,, and
W are defined as

+SW =0 (16-18)

[ p01 ] puC'1 ] un |
pCh puCh )y
Qe=|pCs | E.=S8| puCh =—| 1y
pCy puCy 1y

| pCs | | puCs | | s |

The subscript number used in the mass fraction, C, and mass production rate, s,
represent reactants as
1 for 02

for N2
for NO
for O

[ V- B ]

5 for N

The components of vector W represent the mass production rate of each species
where dX.]
w, = MW, 7
The rate of formation for the five-species are provided in Appendix I.
The conservation of mass requires that ¥°_, 1, = 0, i.e., total mass of the system
is conserved. Therefore, the five-species continuity equations must sum to the global
continuity equation.

(16-19)
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16.4.2 Coupling Schemes

There are two schemes upon which the Euler equation given by (12-11) and
the species continuity equation (16-18) are related. One scheme is the so-called
fully coupled approach where the three gas dynamic equations and four-species
continuity equations are expressed as one vector equation. Note that only four-
species continuity equations are used since a global continuity equation is included
in the gas dynamic equation. Hence, the coupled system is expressed as

%(SQ) + %‘g +H =0 (16-20)
where . - | - .
P pu 0
pu pu® +p ~%p
pe: (pe: + p)u 0
Q= | pCi E=S8 puCy , H=—-] Sun
pCz p‘U.Cg S'U)g
pCh puCs S
pCy puCy Sy

Equation (16-20) may be solved by the flux-vector splitting scheme described in
Chapter 12. Obviously, some additional mathematical manipulation is required.
For example, now the Jacobian matrices for this system must be derived. A second
scheme is known as the loosely coupled method. Inthis approach, the communication
between the gas dynamic equation and the species continuity equation is performed
by defining a thermodynamic property 4 such that

y=h_2 4
e pe
Note that 4 is a variable which depends on temperature and species mass fraction.
Each approach has its own merit. For the loosely coupled system, previously de-
veloped computer programs for ideal gas can be easily modified to include chemistry
effects. In addition, the Jacobian matrices are 3 x 3 and 5 x 5 for the gas dynamic
and species continuity equations, respectively. A disadvantage of the scheme is sta-
bility requirement in that it is more restrictive than the fully coupled scheme. For

illustrative purposes, the loosely coupled approach is adapted.

16.4.3 Numerical Procedure for the Loosely Coupled Scheme

The quasi one-dimensional Euler equation and the numerical scheme introduced
previously in Chapter 12 are used in conjunction with the five-species continuity
equation in a loosely coupled fashion. The numerical scheme proceeds along the
following steps:



348

Chapter 16

(1)

(2)

(3)

Euler equations are solved for the unknown AQs based on the original for-
mulation described in Chapter 12. This solution is designated by an asterisk
to distinguish it from the solution obtained after the chemistry adjustment.
Hence, the solution of Euler equations yields:

pt=p"+0p
(pu)" = (pu)" + A(pu)
(pe)* = (pe)" + A(per)

Once the three primary unknowns p*, u*, and €} are computed, the remaining
variables such as T, p*, etc. can be determined. Note that the mass fractions
(Cs)", 4", and the gas constant of the mixture R™ are held constant during
this step.

With the values of p*, T*, and C? known, the mass production rate of each
species 1, is determined from Equation (16-19). Subsequently, the unknowns
A(pCy,) in the species continuity equations are computed. Now the interme-
diate partial densities are evaluated by

(pCs)" = p*CY + A(pC,)

Subsequently, the species mass fraction and the gas constant of the mixture
are updated according to

{0C,)*
Zi:l (pCs)*

n+l __
Cot =

5 1
IR
= 5w,

s=1

The pressure p*, flux (pu)*, and total enthalpy h; are considered as invariant
variables during the chemistry step (2). Therefore p* = p™1, (pu)* = (pu)"**!,
and h; = h}*!. Now, an equation for temperature is developed in order to
evaluate its value at the n + 1 time level. For this purpose, recall that

Bt = entl 4 % [(un+1)2] + (RT)"H (16-21)

Furthermore 5
et =3 CTte, (16-22)

s=1
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and

w1 (0w (pu)t  (puw)"(RT)™! )
- an - pn+l/(RT)n+1 - p* (16 23)

u

Note that €, is a function of T™*! and is defined by Equations (16-9) and
(16-10) for atoms and molecules, respectively. Now, Equations (16-22) and
(16-23) are substituted into Equation (16-21) to yield

5 «12
e = Yot g[S e e - s
s=1

Equation (16-24) is solved by the Newton-Raphson method for the unknown
™1,

(4) At this step, the updated value of T™*! is used to recompute all other prop-

erties according to
¥
n+1 p

7
un+1 = (‘;':i):

*
ntl __ pe P
e‘ - ht pﬂ+1

en+1 = e;1+1 _ —;—(U"H)z

and

¥

antl __ p
v - pn+1en+1 +1

(5) Once all the flow properties at n + 1 time level are updated, the solution is
ready to proceed to the next time level, i.e., n 4 2. Thus, steps (1) through
(4) are repeated for each time step until a converged solution is reached. A
typical convergence criterion may be specified as
i=IM I,r;l+1 _ 7':"

CONV =Y

n
i=1 T

where r is a property, such as temperature. Once CONYV is less than CONVMAX,
a prescribed value, the solution has converged.
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16.5 Applications

In order to illustrate the effect of chemistry on the flow field, two examples
are presented. As a first problem, the quasi one-dimensional nozzle flow intro-
duced in Chapter 12 is considered. Subsequently, a two-dimensional axisymmetric
configuration is used to demonstrate the differences in the flow fields due to the
implementation of different chemistry models.

16.5.1 Quasi One-Dimensional Flow

The diverging nozzle with cross-sectional area given by Equation (12-90) is used
to define the domain of interest. For the current application, the nozzle entrance
is located at = 1.2 cm, whereas the nozzle exit is at 8.0 cm, providing an exit
to inlet area ratio of 1.65. Twenty-one equally spaced grid points are distributed
along the nozzle. The inflow boundary conditions are set by specification of the
inlet Mach number, temperature, and pressure. The outflow boundary condition is
set by specification of pressure so as to position a normal shock at £ = 4.0 cm. In
order to demonstrate the differences in the computed fiow fields by equilibrium and
nonequilibrium models, inlet pressures of 26500 N/m? and 79.8 N/m? (correspond-
ing to altitudes of 10 km and 50 km) are used. The inlet temperature is set to a
fixed value of 230.44 K, which is about the average value of temperatures at the two
altitudes. In addition, to evaluate the effect of the inlet velocities, two conditions
are specified. In one case the inlet flow is supersonic with a Mach number of 4,
whereas in the second case the inlet flow is hypersonic with a Mach number of 20.
Computations based on the ideal gas model are performed as well, for comparison
purposes.

In Figures 16-2a and 16-2b, the temperature distributions for the inlet Mach
number of 4 for altitudes of 10 and 50 km are presented. Since the post-shock
temperature rise is still relatively low, i.e., below 1000 K, the chemistry effect is
minimal. Indeed, all three models provide results within a few percent.

For the second case, the inlet Mach number is 20. Now the post-shock temper-
ature, computed by the ideal gas model, is about 18500 K. Obviously, before the
temperature of the flow reaches such a high value, chemical reactions will occur, thus
absorbing some of the energy and consequently reducing the temperature. Indeed,
the actual post-shock temperature for an altitude of 10 km is about 8200 K. At this
low altitude, the density is relatively high and, therefore, the chemically-reacting
flow is in equilibrium. As demonstrated in Figure 16-3a, the solution obtained by
the nonequilibrium model is shown to be identical to that of the equilibrium model.
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Figure 16-2. Temperature distributions for the condition at altitudes
of 10 and 50 km and inlet Mach number of 4.
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Figure 16-3. Temperature distributions for conditions at altitudes of
10 and 50 km and inlet Mach number of 20.
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At higher altitudes, the density is low and, therefore, nonequilibrium effects be-
come important. The temperature distributions at an altitude of 50 km, with an
inlet Mach number of 20, are shown in Figure 16-3b. In contrast to Figure 16-2b,
now a remarkable difference between the solutions obtained by the equilibrium and
nonequilibrium models exists. In particular, there is a temperature peak just down-
stream of the shock. This phenomenon indicates that nonequilibrium conditions
exist in that region and, in fact, chemical equilibrium has not been achieved. When
the altitude is increased further, the peak’s wave length will increase, indicating a
larger region of nonequilibrium flow. This behavior is shown in Figure 16-4.

20000. 0 T
® IDEAL CAS

——— ALT. BOKM
- . . ALT, TOKMW

15000. 0 —— - ALT. 6OKM |
— e ALT, SOKM

10000. 0 ;:\ .. 4
X N ..
. \ .. ..
~

5000.0

TEMPERATURE (K)

T

2.0 ‘.0 6.0 8.0
X{cM)

Figure 16-4. Comparison of the temperature distributions for conditions at
various altitudes and inlet Mach number of 20.

16.5.2 Two-Dimensional Axisymmetric Flow

In this example, an axisymmetric blunt body at zero degree angle of attack
is considered. The governing equations of gas dynamics given by Equation (12-
124), along with an ideal gas, equilibrium chemistry model, and nonequilibrium
chemistry model are solved within the domain of interest. The freestream Mach
number, pressure, and temperature are specified as 18, 1197 N/m?, and 226.5 K,
respectively. Contours of constant temperature obtained by the ideal gas model,
equilibrium, and nonequilibrivm chemistry models are shown in Figures 16-5, 16-
6, and 16-7, respectively. Note the remarkable difference in the shock stand-off
distances.
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Figure 16-5. Temperature contours Figure 16-6. Temperature contours for
for the ideal gas model. the equilibrium chemistry model.

3 + T T 1
0.00 0.50 1.00 1.50 .00 2.50

Figure 16-7. Temperature contours for the nonequilibrium chemistry
model.
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Figure 16-8. Temperature distributions along the stagnation streamline
by various models.

Since the post-shock density values obtained by utilizing chemistry models are
higher than the values predicted by the ideal gas model, the shock stand-off dis-
tance is smaller for chemically reacting flows. The temperature distribution along
the stagnation streamline is illustrated in Figure 16-8. Three facts which have al-
ready been discussed are notable in this figure. First, the shock stand-off distance
obtained by chemistry models is about 2/3 of that obtained from the ideal gas
model. Second, the peak in temperature illustrates the nonequilibrium flow region.
Third, the stagnation temperature obtained by chemistry models is less than half
of the value obtained by the ideal gas model.

16.6 Concluding Remarks

In this chapter, some fundamental concepts and definitions of high temperature
gases were introduced. The majority of equations used in high temperature gases
are provided by statistical mechanics. No attempt has been made to explore the
origin or details of the equations utilized in this chapter. Instead, the primary
objective was to show how to implement chemistry models into the gas dynamics
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equations and observe the differences in the solutions. For in-depth discussions of
chemically reacting flows, the classical text of Vincenti and Kruger [16-4] and texts
by Anderson [16-5] and Bertin [16-6] are strongly recommended.
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Grid Generation — Unstructured Grids

17.1 Introductory Remarks

Discretization of a domain can be accomplished either directly in the physical
space or on the transformed computational space. The choice will primarily depend
on the numerical scheme to be utilized as well as the domains of solution. As
seen previously, the finite difference equations approximating the partial differential
equations are solved within a rectangular, equally spaced grid system. For non-
rectangular physical domain, a coordinate transformation to computational space is
required. The grid points are defined at the intersection of equally distanced parallel
lines within the rectangular (2-D) or cubical (3-D) computational domain. There
are corresponding grid points within the physical space established by algebraic
relations or differential equations. The grid points can be casily identified and
are usually designated by the indices, 4, §, and k in an orderly manner along the
grid lines. This type of grid is known as structured grid, which was the subject of
Chapter 9.

In addition to finite difference schemes, two other numerical schemes are avail-
able for the solution of the conservation laws. These schemes are finite volume
schemes, to be introduced in Chapter 16, and finite element schemes. Both of these
schemes are integral methods, that is, the original differential equations are inte-
grated on the physical domain and, subsequently, are solved numerically. Therefore,
the grid system for the finite volume or finite element schemes are usually gener-
ated directly within the physical space. There exist various choices in the selection
of the volumes or elements. Thus, the domain of solution is usually divided into
triangles or quadrilaterals (or any other kind of polygon) in 2-D, whereas pyramids
or tetrahedrals are used in 3-D. It is obvious that the grid points, in general, can-
not be associated with grid lines. Therefore, the identification of the grid points
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must be individually specified. Such a grid system is known as an unstructured grid
system. The main advantage of the unstructured grid is that it can be used easily
to fit irregular, singly-connected domains, as well as multiply-connected domains.
The unstructured grid also can be coupled with grid refinement techniques for the
adaptive methods. However, unstructured grid generation is more difficult to pro-
gram, that is, the programmer needs a sound background in the data structure
arrangement and experience in the data book-keeping skills.

The objective of this chapter is to introduce the unstructured grid systems and
the schemes by which they are generated. The discussion will be limited to the two-
dimensional triangulation techniques, i.e., the physical domain is to be discretized
with triangles. This selection is due to the fact that triangular elements are generally
the most flexible shape to fit any type of boundary. The particular methods utilized
to generate such a grid are the “Advancing Front” and the “Delaunay” methods.
Both of these schemes can be extended to three-dimensional domains and are the
most popular methods used today.

17.2 Domain Nodalization

The first step in triangulation of a physical domain is to distribute grid points
within the interior domain, as well as the boundaries of the domain which will
be referred to as nodalization. Subsequently, the interior and boundary nodes are
connected to each other, forming the required elements. The detailed description
of element formulation will be presented in the next section. As for nodalization,
it is emphasized that it is currently an art rather than science, i.e., there is no
“best” scheme for generating the required nodes. Nevertheless, the simple and di-
rect method introduced in Ref. [17-1] will be employed to describe the fundamental
concept of nodalization. It is also obvious that any scheme employed to distribute
grid points within a domain by the algebraic or differential methods described in
Chapter 9 can be used for this purpose. The procedure described in this section is,
however, more or less an automated scheme with the least amount of user interfer-
ence.

Consider an irregular domain shown in Figure 17-1 which is defined by the outer
boundary nodes 1, 2, 3, ... 14 [observe that they are numbered in counterclockwise
(ccw) order] and the inner boundary nodes 15, 16, 17, ... 20 [observe that they are
arranged in clockwise (cw) order]. Now, define a line segment formed by connecting
the two successive nodes as “edge.” Thus an edge can be defined by its two end
nodes such as (i, k), where ¢ and k represent the end points. One may also represent
the edge by designating an edge number such as j, where j can be related to either
one of the end points.
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12 11 Ymax

Lave

14

3 4 Ymin

Figure 17-1. Illustration of Steps 1 through 3 of domain nodalization.

Now, using the domain shown in Figure 17-1, the details of procedure for nodal-
ization are as follows.

1. The minimum and maximum y locations of the domain, i.e., Ypin 804 Ymax, are
determined as shown in Figure 17-1.

2. An average edge length is calculated, for example Loy = Z_;-\’;I(L,- /N), where L;
is the j-th edge length and N is the total number of edges.

3. A set of imaginary horizontal lines at different levels between ymin and Ymax
across the domain is created. The spacing between two successive horizontal
lines can be set equal to L,y (or any other suitable value). Thus, there are NL
imaginary lines, where NL = (Ymin — Ymax)/ Lavg.

4. Determine the intersection points of a horizontal line (say line y = D) and the
boundaries. For this purpose one must check to see whether intersection points
exist. For an edge (i, k), there would be an intersection point if
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(@) (mi—D)w—-D)<0
or
(b) (i — D)(wx— D)=0 and D>y or D>y

The z coordinate of the intersection point is determined according to

T =i+ (D —y)(ze — z:) /(v — %)

The y coordinate is obviously equal to D.

Lines which cut the boundaries with an even number of points will be referred
to as qualified useful lines. A second category of horizontal lines could be en-
countered where an edge does not satisfy either one of the conditions (a) or (b),
i.e., the edge is located along the horizontal line. In the same category one may
include a horizontal line where the number of intersection points is odd. This
category of lines which includes either one of the situations described above,
will be referred to as unqualified lines. An example of each type is shown in
Figure 17-2, where the edge (7, 8) is coincident with the horizontal line y = M,

12 11

¢ P3 P4 p5’
- 9- -0 ¢
18

Figure 17-2. Illustration of Steps 4 through 8 of domain nodalization.

such that neither of the conditions described by (a) or (b) can be satisfied. A
second situation is shown by the horizontal line y = L, where the number of
intersection points is three. Once unqualified lines have been identified, they
should be removed from the list of horizontal lines. However, simply removing
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the unqualified lines may distort the uniformity of node distribution. To over-
come this problem, the unqualified lines are adjusted by a fraction of Lgyg such
that even intersection points are produced. For this purpose the line y=M
is replaced by y = M + alLayg, where a is a small number on the order of few
percent of L.,,. The procedure is illustrated schematically in Figure 17-2. A
similar procedure is used for horizontal lines with odd intersection points. Thus,
Step 4 provides a set of qualified horizontal lines distributed in a near uniform
fashion with a distance of about Ly from each other.

5. Once the intersection points of all the qualified lines have been determined, they
are rearranged according to the increasing magnitude of their z-coordinate. For
example, the horizontal line y = H has 4 intersection points, with the boundaries
identified by points a, b, ¢, d. The order of these points is rearranged to be b,
d, ¢, and a, i.e., according to increasing z-coordinates.

6. The interior nodes are now distributed along the horizontal lines between every
two successive intersection points within the domain. This distribution may
be accomplished by a pre-selected distance, i.e., 8Ly, where 8 = 0.5. For
illustration purposes, consider line ¥ = H in Figure 17-2 where the set of points
(P, By) and (B, Py, P;) have been generated between points b, d, and ¢, q,
respectively.

7. It is possible and, indeed, more likely that some of the nodes to be located would
be too close to the boundaries. Such points will distort the near uniformity of
node distribution and may be removed. A simple check may be devised to
identify such points. If p denotes an interior node and 1, k denotes the nodes of
edge j, then one may use the following criterion to remove undesirable interior
points,

(Lig) > (Lip)® + (Lip)? (17-1)

where L designates the length, e.g., Lix is the length of edge (i, k). Points which
satisfy the condition set by (17-1) are removed from the domain.

This description completes the node distribution within the domain, Again, note
that the procedure described above is only one technique among many by which
node points can be distributed within the domain.

17.3 Domain Triangulation

Among various schemes available for domain triangulation, two techniques are
introduced in this section. These schemes are selected because of their relative
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simplicity. Each scheme has its own advantages and disadvantages, which will be
identified as each is introduced.

17.3.1 The Advancing Front Method

Domain triangulation by the Advancing Front Method developed in Ref. {17-
1] possesses some important features which include (1) the scheme is simple and
straightforward, (2) it is relatively easy to implement for numerical applications,
and (3) it can triangularize concave domains without any difficulty or additional
effort. Tt should be noted that many triangulation schemes can only handle convex
domains. If a domain is concave, some means must be taken to subdivide the domain
into a number of convex regions and subsequently proceed with the triangulation.
The advantages of the Advancing Front scheme are, however, accompanied by the
following shortcomings of the scheme: (1) the scheme is not as efficient as some
of the other triangulation schemes, and (2) control over grid quality is limited.
Among factors contributing to grid quality, perhaps the most important is element
skewness. For example, in the formation of triangular elements, two possibilities
exist which are shown schematically in Figures 17-3a and 17-3b. It is obvious that
the elements in Figure 17-3b are of superior quality to that of elements formed in
Figure 17-3a, due to their ckewness. At this point, the procedure for triangulation by

(a) (b)

Figure 17-3. Formation of triangular elements.

the Advancing Front Method, as applied to simply-connected domains, is outlined.
Subsequently the procedure is extended to multiply-connected domains.

17.3.1.1 Simply-Connected Domain

A simply-connected domain which was defined in Section 9.7.1 is perhaps the
simplest domain to discretize. However, it should be noted that when the boundaries
of such a domain are highly irregular, discretization will be a challenging task indeed.
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In order to describe the triangulation procedure by the Advancing Front Method,
it is best to accompany it with a simple example. Thus, consider the simple square
domain shown in Figure 17-4, which is defined by the boundary points a, d, g, and

J-

"9i8h7
*—0—9¢

10 6
(4]

K ® o ¢f
11 *
m (5‘ .G'

I‘ e
12 ™™ 4
¢ *——o ®
a 1 b 2 ¢ 3 d

Figure 17-4. Schematic of Step 3 for the simply-connected domain by
the Advancing Front Method.

It was previously stated that, before triangulation begins, one must devise a
procedure by which the interior domain is nodalized. A scheme to do so was in-
troduced in the previous section. For illustrative purposes, assume three interior
points m, n, and o in Figure 17-4 are points which have been distributed within the
domain. Recall that these points are referred to as “interior nodes” to distinguish
them from the edge nodes, e.g., points a, b, ¢, ...k, [, which are located on the
boundaries of the domain. The Advancing Front Method proceeds sequentially by
the following steps.

1. All the edges along the initial boundary of the domain are numerated in ccw
order and saved in an array as E. Recall that an edge is defined as a line segment
between two edge nodes. Therefore, the array E is composed of edges 1(a,b),
2(b,¢), 3(c,d), 4(d,e), ...12(l,a) as shown in Figure 17-4. Edges defined in
array E will be used to construct the advancing (or generation) front.

2. All the interior nodes are saved in an array I. Thus for the problem shown in
Figure 17-4, array I includes three points m, n, and o.

3. Beginning with the last element in array E which represents the last edge in
the boundary, a search is conducted to locate nodes which are on the left-
hand side of the edge. This search includes both interior nodes as well as edge
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nodes. These nodes will be referred to as qualified nodes. Among the qualified
nodes one needs to select a particular node which will be referred to as the
most suitable node. Generally, the most suitable node is one which has the
minimum norm distance to the two edge nodes among all the qualified nodes.
To illustrate this step, recall that the last edge was defined by 12(,a). If the
most suitable node is called z, then the criterion for its selection is rewritten as
(Lz)? + (Lza)? = minimum, where L is the length.

Now, three nodes, I, a, and z, which are ordered in ccw fashion are used to form
a triangle. Referring to Figure 17-5, node m is selected as the most suitable
node and, subsequently, the triangle (I, a,m) is formed.

J 9 i 8 h 7
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a 1 b 2 ¢ 3 d
Figure 17-5. Schematic of Step 4 for the simply-connected domain by
the Advancing Front Method.

An issue which still needs to be resolved is the procedure for identification of
qualified nodes, i.e., how does one judge if a node is located on the left-hand
side of a particular edge? Consider, for example, edge 12 in Figure 17-4, and
the node m. Define a position vector @ from point ! to point a, and similarly
a position vector b from point ! to point m. If the cross product of vectors @
and b is positive, one concludes that node m is located on the left-hand side of
vector @ which represents edge 12.

. Now one needs to update the advancing front array F which represents new

boundaries as well as the list of interior nodes in array I. It is quite obvious
that the edge (/,a) in Figure 17-5 is no longer a part of the advancing front.
Therefore, edge 12(l, a) must be removed from E, thus reducing the array E to
include 11 edges. However, the newly formed edges (I, m) and (m,a) must now
be used as a part of the new advancing front and, therefore, they are added to
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Figure 17-7. Schematic of Step 6 for the simply-connected domain by
the Advancing Front Method.

... 10(n, €). Since the edge 10(n,e) is now the last edge, it is therefore the edge
which is used to continue the triangulation process.

7. The procedures described in the previous steps are continued until all the edges

in the list of array E have been removed. As a consequence, the triangulation
of the entire domain is completed.

17.3.1.2 Multiply-Connected Domain

For doubly-connected or multiply-connected dornains, one or more objects are
located within the domain. The advancing front algorithm described in the previous
section can be easily extended to multiply-connected domains. However, a point to
recognize is that now the advancing front array F is composed of both the outer
boundary E, and the inner boundary E;. What is important is the organization of
the edges in array E. The arrangement of the outer edges must be in ccw order (as
for the simply-connected domains), whereas the edges of the inner boundary(ies)
should be listed in cw order. In order to clarify this important point, consider
the doubly-connected domain shown in Figure 17-8. The advancing front array
E is composed of edges of the inner boundary arranged as 1(15,16), 2(16,17),
...6(20,15) and edges of the outer boundary arranged as 7(1, 7), 8(7, 10), 9(10,11),
...16(6,1). Note that the identification of nodes along the boundaries as well as
those within the interior of the domain is random. However, it is emphasized again
that the arrangement of edges within the advancing front array E must follow the
guideline specified above. Now assume a set of points have been distributed within
the interior of the domain identified by nodes 8, 9, 13, and 14.
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E and registered as edge 12 and edge 13. The list of array E is now arranged
as: 1(a,b), 2(b,¢), 3(c,d), 4(d,€), ...12(l,m), 13(m,a). Meanwhile node m is
removed from the list of interior nodes I, because it was changed from an interior
node to an edge node.

5. Now Steps 3 and 4 as described above are repeated, and the procedure is applied
to the last edge in the list of E which, for the example considered, is edge 13.
The most suitable node is selected to be point b, and subsequently the triangle
(m,a,b) is formed, as shown in Figure 17-6. The list of E is updated by the

" 8 i 7 h 6
@ L4 99
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Figure 17-6. Schematic of Step 5 for the simply-connected domain by
the Advancing Front Method.

removal the edges (m,a) and (a,b) and the addition of edge (m,b). Therefore,
the list of E will be shifted as 1(b, c), 2(c,d), 3(d,e), ...11(l,m), 12(m,b). Note
that, at this instance, no interior point was used and, therefore, no changes in
the list of I will occur.

The following conclusions may be stated at this point, based on Steps 4 and 5.
(i) The edge(s) which is/are used in the newly formed triangles that belong to
array E is/are removed. (ii) The order of edges in the list of F is reorganized
and, subsequently, newly formed edge(s) is/are added.

6. The procedure described in Steps 2 through 5 is repeated until triangle (e, c, d)
is formed, as shown in Figure 17-7. This may be considered as a “dead-end”
situation for the advancing front, because all three edges 13(e, ¢), 1{c,d), and
2(d, e), which belonged to E before triangulation must be removed from E.
Subsequently, the edge (e, f) is now edge 1, and edge (n, e) is the last edge in
E. Thus, the updated “advancing front” array E is: 1(e, f), 2(f,9), 3(g,h),
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Figure 17-8. A doubly-connected domain to be triangulated by the
Advancing Front Method.

The advancing front algorithm will proceed, as described in the previous section,
from the last element of array E, i.e., 16(6,1). The result of triangulation is shown
in Figure 17-9. A total of 24 triangles is generated. The order of formation of
triangles is illustrated by a number within each triangle. Observe that the first
dead end situation occurs after triangle 21 is formed. Subsequently, triangulation
proceeds from edge (17, 18) toward the left.

The application of the scheme to a multiply-connected domain is illustrated
in Figure 17-10, which includes two openings within the domain. The domain is
first nodalized by the scheme described in Section 17.2 where a total of 35 interior
nodes have been generated. Subsequently, the advancing front scheme is used to
triangulate the domain. For the example shown, 116 triangles have been formed.
For the purpose of clarity, the order of formation of triangles is shown in Figure 17-
11.

17.3.2 The Delaunay Method

This scheme is designed to provide an efficient procedure for connecting a given
set of points into an optimum unstructured triangular mesh. The most important
aspect of this scheme is its efficiency [17-2], as well as the quality of the generated
grid. The disadvantage of the scheme is associated with triangulations of concave
domains. For such domains, which occur frequently in practice, triangular elements
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Figure 17-9. The triangulated doubly-connected domain.
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Figure 17-10. A multiply-connected domain to be triangulated by the
Advancing Front Method.
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Figure 17-11. The sequence of formation of the triangular elements.

Figure 17-12. A schematic illustration of a false triangle formed in a
concave domain by the Delaunay scheme.
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are generated outside the domain, therefore, violating the boundary faces. To clearly
point out this fact, consider the domain shown in Figure 17-12, where a false triangle
(6,5,4) has been generated. To overcome this difficulty, extra effort is required to
identify and subsequently remove those triangles which are generated outside the
domain. Various procedures may be used to resolve the difficulty associated with
non-convex domains. Further discussions may be found in Reference [17-2].

1 R \

Figure 17-13. Dirichlet tessellation and Delaunay triangulation.

17.3.2.1 Geometrical Description

In order to understand why the Delaunay method generates an optimized tri-
angular grid, some geometric basis of the scheme needs to be explored. In 1850,
Dirichlet proposed a method whereby a domain can be decomposed into a set of
convex polygons. Each polygon is defined as a “tile” and is associated with a single
“generating point.” Any point inside a tile is closer to its own generating point
than to any other tile’s generating point. The tile defined above is also referred to
as “Dirichlet tessellation,” “Voronoi tessellation,” or “Theissen tessellation,” [17-3).
The polygon shown in Figure 17-13 defined by points @, b, c, d, ¢, f, and g is de-
fined as tile A, and the generating point is point 8. The boundaries of the tile are
perpendicular bisectors of the lines joining the neighboring generating points. The
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Delaunay triangulation that corresponds to the Dirichlet tessellation is constructed
by connecting generating points of all neighboring tiles. To relate this discussion
to Figure 17-13, observe that any point inside tile A should be closer to point 8
(which is the generating point of tile A) than to any of the points 1, 2, 3, 4, 5, 6,
or 7 (which are the generating points of the neighboring tiles of A). Furthermore,
note that boundary ab of tile A bisects the distance between generating points 1
and 8 and is also perpendicular to line 1-8. Triangles are formed by connecting the
generating points.

Before proceeding further, let’s explore the concept of locally equiangular. This
concept states that for every convex quadrilateral formed by two adjacent triangles,
the minimum of the six angles in the two triangles is greater than it would have been
if the alternative diagonal had been drawn and the other pair of triangles selected.
Schematically, consider points 8, 3, 4, and 5 in Figure 17-13 which needs to be
triangularized. Note that if no requirement is imposed, two sets of triangles may be
generated. One set includes triangles formed with points (8,4, 5) and (8,3,4). The
second set is composed of triangles (8,3,5) and (5,3,4). However, imposing the
concept of locally equiangular, the first set of triangles, namely (8, 4,5) and (8, 3, 4)
is generated. That is because the minimum angle in triangles (8,4,5) and (8, 3, 4)
will be greater than the minimum angle in triangles (8,3,5) and (5,3,4). The
algorithm used to generate the locally equiangular triangles is known as swapping
and will be described in the next section.

17.3.2.2 Outline of the Algorithm

There are a number of algorithms which have been proposed [17-2, 17-4] for
the construction of planar Delaunay triangulation. One of the simplest schemes,
suggested by Sloan [17-4], is an efficient method for both small and large sets of
points and will be explored in this section. An average run time of the algorithm
for a domain with N randomly distributed points is O(N*®), where a = 1.06 for
N < 10, 000.

The details of the scheme are described in this section in several steps followed
by an example of a four point triangulation.

1. a. The z- and y-coordinates of all the N points are normalized with respect to
the largest length in the domain such that their values are within the range
of 0 to 1, i.e., all the points are in a unit domain. Note that if the coordinate
system is originally set such that there are negative z- and for y-coordinates,
it should be shifted so that negative coordinates are replaced.

b. Three points are added to form a supertriangle which completely encom-
passes all of the N points to be triangulated. The coordinates of the three
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vertices of the supertriangle can be chosen arbitrarily; however, the vertices
of the supertriangle should not be very close to the window enclosing the N
points. For example, the values of the vertices [points N + 1, N + 2, and
N + 3] can be assigned as (—100, -100), (100, —100) and (0, 100).

c. Create a triangle list array T, where the supertriangle is listed as the first
triangle.

2. Partition the domain to be triangulated into approximately N%® bins. Assign
a bin number to each of the N points in the unit domain. Subsequently, all the
points are sorted in ascending sequence of bin numbers. The points are now
ordered such that consecutive points are in close proximity of each other. This
step is optional. It can increase the efficiency of the algorithm, but is not a
necessary requirement.

3. Introduce the first point (from the list of N points) into the supertriangle and
generate three triangles by connecting the three vertices of the supertriangle
to this point. At the same time, delete the supertriangle from the triangle list
T and subsequently add the 3 newly formed triangles into the list of T. The
triangles are always defined by their vertices in a ccw order. Note that, at this
step, the net increase of triangles in array T is 2.

4. Now the next point (call it point p) is introduced for triangulation. First, one
needs to locate an existing triangle (call it triangle z) which encloses point p,
and subsequently 3 new triangles can be formed by connecting point p to the
vertices of triangle . Now the original triangle z is deleted from array T' and
newly formed triangles are added. Thus, the net gain in the total number is
2, ie., a total of 5 triangles have been formed. In order to accomplish the
procedure above, one needs to know a scheme for searching for triangle . The
search begins with the most recently created triangle, i.e., the last triangle in
the list of array T'. Subsequently, a check is made to see if point p is to the
left of all the edges of this triangle. A procedure to do so was described in
Step 3 of Section 17.3.1.1. If point p is located to the left of all the three edges,
then point p is enclosed by the triangle. However, if point p is located to the
right of any edge of the triangle, then the search shifts to the triangle which is
adjacent to that edge. The process is repeated until triangle z is found. With
this search algorithm, one can avoid the need to search all the triangles in the
list of array T. To complement the discussion above, consider the following
example. Assume that the last triangle formed is triangle 14(m, n,0) shown in
Figure 17-14a. Point p is found to be on the RHS edge mn. Recall the ccw
ordering of the triangle, and therefore edge mn (not nm) is used for triangle
14. Now the search moves to the next triangle, that is triangle 13, which shares
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the same edge with triangle 14. Note that now the edge is nm for triangle 13 in
order to satisfy the ccw ordering. A check is made, and it is found that point p
is on the RHS of edge mk. Therefore, the search

—-—

Search Direction

Figure 17-14a. The search path for point p for the Delaunay scheme.

moves to triangle 12(m, f, k). At this point, we reach a crossroad in our search.
That is point p is located on the RHS of edge mf as well as fk. The issue
now is in which direction does one proceed, i.e., triangle 9(k, f,b) or triangle
11(f,m,1)? It turns out that either one will work. For example, if triangle 9 is
selected, the search path will be triangles 14, 13, 12, 9, 4, and 1. If triangle 11
is chosen, the search path will be triangles 14, 13, 12, 11, 10, 4, and 1. In either
case, the total number of triangles searched would be less than the total number
of triangles, which for the example shown is 14. Thus, point p is found to be
located within triangle 1. Now, three new triangles are formed and added to the
list of array T as 1(a, b, p), 15(p, b, ¢), and 16(a, p, ¢), as shown in Figure 17-14b.
Observe that the original triangle 1(a, b, ¢) is replaced by triangle 1(a, b, p), and
the net increase of triangles in list T is 2.
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Figure 17-14c. Swapping procedure applied to triangles 2(a,c,d) and 16(a, p,c).

5. The swapping algorithm is now used to update the existing triangulation to a
Delaunay triangulation, i.e., optimization of the grid. All triangles which are
adjacent to the edges of the triangle enclosing point p are placed on a last in,
first out stack S (a maximum of three triangles are placed on the stack initially,
i.e., triangles 2, 3, and 4, as shown in Figure 17-14b). Each triangle is checked,
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one at a time starting from the last one in the stack, to determine if point p is
located within its circumcircle. If that is the case, then the triangle containing
point p as a vertex and the adjacent triangle from the convex quadrilateral with
its diagonal drawn in the opposite direction must be replaced by the alternative
diagonal to preserve the structure of the Delaunay triangulation.

Once the swap is completed, triangles which are now located to the opposite of
point p are added to the stack S. Subsequently, the next triangle is unstacked
and the entire process is repeated until the stack is empty. To illustrate the
procedure above, consider Figure 17-14c, where the triangles adjacent to the
edges opposite to p are triangles 2(a,c,d), 3(a,e,b) and 4(b, f,c). Thus, the
list of S includes the triangles 2, 3, and 4. The circumcircle of triangles 2,
3, and 4 are used to determine whether the swapping is necessary. For the
example shown in Figure 17-14, more specifically Figures 17-14¢ through 17-
14e, it is concluded that point p is enclosed only by the circumcircle of triangle
2. Therefore, triangles 3 and 4 are removed from list S. Now, triangles 2 and 16
are updated from 2(e,c,d) and 16(a,p,c) to triangles 2(a,p, d) and 16(d, p,¢),
as shown in Figure 17-14d. Subsequent to the swap, triangles 5(d,c,g) and
6(a, d, h), which are adjacent to the edges opposite to p, are created and added
to the list of S. The scheme now proceeds to determine whether a swap between
triangles 2, 6 and 16, 5 is necessary. By inspection of Figures 17-14f and 17-
14g, it is concluded that no swap is necessary since point p is outside both
circumcircles of triangles 5 and 6. Observe that the total number of triangles
during the swapping process does not change. That is, the two old triangles are
replaced by two new triangles with no net gain.
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Figure 17-14d. Illustration of swapping procedure for triangles 1(a, b, p)
and 3(a, e, b), which is not required.

Figure 17-14e. Illustration of swapping procedure for triangles 4(b, f,c)
and 15(b, ¢, p), which is not required.
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Figure 17-14f. Tllustration of swapping procedure for triangles 5(d, c, g)
and 16(d, p, c¢), which is not required.

Figure 17-14g. Illustration of swapping procedure for triangles 6(a,d, h)
and 2(a, p, d), which is not required.

At this point, a scheme will be introduced which can be used to determine
whether point p is located inside the circumcircle of a triangle. The procedure
is described with reference to Figure 17-15. It can be simply stated that if
a+ 3 > m, then the point p is located inside the circumcircle of triangle abc, and
therefore, a swap is necessary. An equivalent statement to satisfy the criterion
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above is
sinfa+ ) <0
which can be expanded as
sin(a + B) = sinacos f + cosasinF < 0
and subsequently written in terms of the length of the edges involved as
(TacTre + Yaclise) (Top¥ap — Tapltp) < (VacToe — Tackive) (ZTopTap + Yapltp)  (17-2)

Thus, when the criterion previously set by (17-2) is satisfied, it is concluded
that point p is located within the circumcircle of triangle abc. Note that the
required lengths used in (17-2) are determined by

Zmn = In — Tm

and
Ymn = Yn — Um

c
Figure 17-15.

6. Next, a new point is introduced into triangulation process. Therefore, Steps 4
and b are repeated. The process continues until all N' points are consumed.

7. Finally, all triangles which contain one or more of the vertices of the supertri-
angle are removed. At the same time, note that any vertex which appears in
the deleted triangles, but is not a vertex of a supertriangle, must be on the
boundary of the domain.

The various steps outlined above can be reinforced by a simple example proposed
in the next section.
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17.3.2.3 An Dlustrative Example

Consider a domain with four points numbered as points 1, 2, 3, and 4 shown in
Figure 17-16a. It is required to triangulate the domain by the Delaunay method.
Following the steps outlined in the previous section, the procedure is implemented
as follows.

1. Three points identified as points 5, 6, and 7 are added to form the “Supertri-
angle.” Note that, for clarity of the figure, the coordinate of the points are not
normalized. In either case, the total number of triangles on the list 7 is one,
Le., the supertriangle (5,6,7).

2. Since the number of points involved in this example is only four, the sorting of
points into bins is not necessary and is skipped.

3. The first point, i.e., point 1, is introduced to form three triangles, which are
a(1,7,5), b(1,5,6), and ¢(1,6,7), shown in Figure 17-16a. The original super-
triangle (5,6,7) in the list of T is replaced by a(1,7,5), and the number of
triangles is three.

Figure 17-16a. Triangulation of a four-point domain by the Delaunay scheme.

4. Search begins for a triangle that encloses point 2. Recall that the search always
starts from the last triangle formed or, equivalently, the last triangle on the list
of T. Thus, search begins from triangle c. It happens that, in this example,
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point 2 is found to be within this triangle, i.e., it is found in the first try! Now,
three new triangles are formed by using point 2 and the vertices of triangle
¢(1,6,7). The result is shown in Figure 17-16b. Observe that the number of
triangles in the list T' is now 5.

5. A check is now required to see whether swapping is necessary between triangle
pair b,d and a,c. The result indicates that no swapping is required.

6. The search moves now to identify the triangle that encloses point 3. Again,
note that since the search always begins from the last triangle formed, the
search will start from triangle e(2,6, 7). The search path will be triangles e and
¢, as shown in Figure 17-16b. After point 3 is found to be inside triangle c, three
new triangles are formed. The newly formed triangles are ¢(3,1,2), £(3,2,7)
and ¢(3,7,1), which are shown in Figure 17-16¢.

S 6

Figure 17-16b. Triangulation using point 2 with search path to point 3.

7. Again, a check is made to see if swapping is necessary between triangle pairs
a,g, ¢, d, and f,e. The results indicate that no swapping is required.

8. The search moves to locate a triangle that encloses point 4. The search starts
with the last triangle found, ie., g(3,7,1). The search path is g, ¢, f, and
e (note that it is also possible to take the path of g, f, and e) as shown in
Figure 17-16¢c. It is found that point 4 is inside the triangle e. Now, three new
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triangles are formed as triangles e(4,6,7), h(4,2,6), and 1(4,7,2), as shown
in Figure 17-16d.

9. A check is made to see whether swapping is necessary between triangle pairs
1,f and h,d. The result shows that point 4 will be enclosed by the circumcircle
of triangle f and, therefore, swapping is necessary. The two newly formed
triangles after swapping are triangles f (3,4,7) and (2,4, 3), which are shown
in Figure 17-16e.

10. At this point all four points have been used. Thus, the last step to complete
the triangulation is to remove all the triangles that contain the vertices of the
supertriangle. Therefore, all triangles which contain any of the points 5, 6,
or 7 must be removed. The specific triangles which are removed are triangles
a, b, d, e f, g, and h. Therefore, the result of the triangulation for the four
points are two triangles: (1,2, 3) and (3, 2, 4) shown in Figure 17-16f,

5 6

Figure 17-16¢. Triangulation using point 3 with search path to point 4.
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Figure 17-16d. Triangulation using point 4.

5 6

Figure 17-16e. Swapping of triangles f and 1.
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Figure 17-16f. Removal of triangles containing the vertices of the supertriangle.

17.4 Concluding Remarks

Unstructured grids which are used in conjunction with finite volume and finite
element schemes were discussed in this chapter at the introductory level. The
objectives were accomplished by considering a limited number of methods applied
to two-dimensional problems. The specific schemes reviewed are Advancing Front
and Delaunay methods. It is hoped that a detailed description of each scheme will
facilitate the understanding of other schemes presented in various publications as
well as the extension of the schemes to three-dimensions. The procedures introduced
in this chapter wili be utilized to generate the required grids for the applications of
finite volume schemes in the following chapter.
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17.5 Problems

17.1 Describe the advantages and disadvantages of unstructured grids. Also pro-
pose a scheme whereby a combination of structured and unstructured grids may
be used to increase accuracy and efficiency of flowfield computations. For exam-
ple, such a grid may be used to accurately compute the normal gradients of flow
property such as velocity and temperature at the surface.

17.2 Consider a rectangular domain with dimensions of L and H, as shown in Fig-
ure P17.2. A circular half-cylinder is placed on the lower boundary at the midpoint.
The following geometrical data is provided: L1 =2, R = 1, H = 4, and L = 6.
Use incremental distances of AL = 0.2, AH = 0.4, and an angular increment of
Af = 18°, to distribute grid points on the boundaries. (a) Generate the interior
nodes by the scheme described in Section 17.2 and (b) triangularize the domain by
using the Advancing Front method.

oLk

& &

]

H

—*—0 0—*—

AH‘ R 0AH
4

T‘, _)| AL}(— \\AG "T

——o—o —

l<— LI
< L

Figure P17.2. Domain of solution and the nomenclature for Problem 17.2.
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17.3  Use the Delaunay method to triangularize the following specified nodes.

Node

1

2

3

4

5

6

7

8

9

10

11

12

13

X

0.0

1.0

2.0

2.0

2.0

1.0

0.0

0.0

0.5

1.6

1.0

0.5

1.5

Y

0.0

0.0

0.0

1.0

2.0

2.0

2.0

1.0

0.5

0.5

1.0

1.5

1.5




Chapter 18
Finite Volume Method

18.1 Introductory Remarks

The conservation laws of fluid motion may be expressed mathematically in
either differential form or integral form. When a numerical scheme is applied to
the differential equation, the domain of solution is divided into discrete points,
upon which the finite difference equations are solved. On the other hand, when the
integral form of the equations is utilized, the domain of solution is divided into small
volumes (or areas for a two-dimensional case). Subsequently, the conservation laws
in integral form are applied to these elementary volumes. The integral methods
include finite volume and finite element methods. In this chapter, the finite volume
schemes are introduced.

Before proceeding to the details of the finite volume schemes, it is important
to state the differences between the differential and integral methods so that the
advantages and disadvantages of each method can be identified. The discussion will
be limited to two dimensions, although the conclusions are valid for three dimensions
as well.

Recall that the finite difference equations which approximate the partial differen-
tial equations are solved within a rectangular domain at equally distanced discrete
points. Since the majority of physical domains are irregular in shape, a coordi-
nate transformation from a physical space to a computational space is performed
where the computational domain is rectangular. The procedure was described in
Chapters 9 and 11, whereas the applications were shown in Chapters 12, 13, and
14. However, even with the coordinate transformation available, domains which
are highly irregular would create serious difficulties in accuracy and convergence of
the solution. The reason is that the metrics and Jacobian of transformation and
the corresponding gradients which are used in the governing equations may include
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numerical discontinuities if the grid system is not relatively smooth. To overcome
this difficulty which is encountered when a complicated domain is involved, one
incorporates the use of a zonal (or block) grid system. The zonal grid system dis-
cretizes the physical domain into several overlapped subdomains and subsequently
solves the finite difference equations on these subdomains. The overlapped regions
serve as interfaces between subdomains. The solution of one sub-domain is commu-
nicated with other subdomains through these overlapped regions, i.e., these regions
are used as boundary conditions for other subdomains. An example of a zonal grid
system is shown in Figure 18-1. It is noted that the numerical implementation of

boundary of zone 2

overlapped regicn

zone 1

boundary of zone 1

Figure 18-1. A typical zonal grid for finite difference computations.

the zonal grid approach may become cumbersome if one is to develop a general
purpose program which can be used for any arbitrary configuration. At this point,
it may be concluded that, in general, the finite difference methods possess inherited
weaknesses for highly complicated domains. On the other hand, finite volume (or
finite element) schemes do not encounter such weakness. That is because the in-
dependent variables are integrated directly on the physical domain and, therefore,
grid smoothness is no longer an important issue. Thus, the governing equations
can be solved if only the domain can be successfully discretized into elements. The
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geometrical difficulty is now the concern of the grid generation routine and not
of the finite volume solver. Furthermore, finite volume schemes do not require a
structured grid, as is required of the finite difference schemes; therefore, for most
applications, unstructured grids are used. It is also important to emphasize that,
since the integral equations are applied directly on the physical domain, a coordinate
transformation is no longer required. It is then clear that the finite volume methods
have advantages over the finite difference method if the geometry of the domain is
complicated. That is, finite volume schemes provide great flexibility, in that a wide
range of choices is available for the selection of discrete volumes. However, it should
be noted that if the domain can be discretized into a smooth structured grid, the
finite difference method would be a better choice due to its efficiency over that of
the finite volume or finite element methods.

18.2 General Description of the
Finite Volume Method

Finite volume schemes can be generally categorized into two groups; the first
group includes the “cell-centered” schemes, and the second group includes the
“Nodal Point” schemes. To illustrate each approach and identify the differences
between the two, consider the following model equation:

=t et e = (18-1)

Initially, Equation (18-1) is integrated over an element such as quadrilateral
mesh abcd shown in Figure 18-2a. Thus, one has

[ (%?) dody=~- [ (6E + ‘ZF ) dzdy (18-2)

Subsequently, Green’s Theorem is applied to the right-hand side of Equation (18-
2). Recall that Green’s Theorem converts area integrals to line integrals. Thus,
Equation (18-2) is written as

./M (%Q) dedy = - fm (Edy — Fdx) (18-3)

Equation (18-3) is used to develop a cell-centered scheme as well as a nodal point
scheme in the following sections.
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Figure 18-2a. Schematic of a cell-centered scheme.

18.2.1 Cell-Centered Scheme

The integrals in Equation (18-3) are approximated over the element shown in
Figure 18-2a. The dependent variable Q is to be solved for at node 5 which is
located at the center of the element, and hence the scheme is referred to as a cell-
centered scheme. The formulation can be expressed in either explicit or implicit
forms, depending on how E and F are evaluated. This point is addressed shortly.
For now, Equation (18-3) is approximated as

nt+l __ Mn
(EZ %) At =  [Bidvs + By + Enbiye+ Fub

+ [FAzgy + FjAzy + FrlAzy + FoAzy]  (18-4)
where Aguq is the area of the cell and points 4, 7, m, and n represent the midpoint
locations of the edges ab, bc, cd, and da, respectively. Points 1, 2, 3, 4, and 5 are

called the control points of the five quadrilaterals. The z and y increments of each
edge are determined by the following relations:

AT =Ty —Ta , ATpe=Tc— T3 , ATa=Td—T; , ATaa=12,—14 (18-5a)
AYss =W —Ya » DYc=Y~U , AYa=Va—V » OUta=Ya—ya (18-5b)

The values of functions E and F at the midpoints of the edges can be evaluated by
averaging their values from the two control points located on the opposite sides of
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the corresponding edge. That is,

1 I * 1 * *
Ei='2"(E5+E2)a Ej:E(E5+E3)’

] : (18-6a)
Em:E(E.;'*'EZ)ﬁ En:—“-é(E;+E;)=

1 * * 1 * &
Fizi(Fs’*‘Fz), F}""’E(Fs'*"Fs)s

, 2 (18-6b)
Fo=3(F +F), Fo=5(F5+ )

In the equations above, if the values of the functions designated by * are evaluated
at time level n, then the formulation is an explicit formulation. If the values at * are
evaluated at n + 1 time level, the formulation is an implicit scheme, Furthermore,
note that: (1) if the element abcd is rectangular in shape, then Az, = —Az.,,
ATy = —ATday AYap = —AYed, AYype = —Ayda. Therefore, Equation (18-4) is simply
equivalent to a finite difference formulation where central difference approximation
of the spatial derivatives are used. The proof is required in Problem 18-1. (2) The
values of E and F as provided by (18-6a) and (18-6b) may be obtained by other
schemes as well. For example, one may use one-sided approximations (such as
upwind schemes) to provide the values of E and F. A description of such schemes
is presented in Section 18.4.

Figure 18-2b. Schematic of a nodal point scheme.

18.2.2 Nodal Point Scheme

In this approach the dependent variable is evaluated at the vertices of the
element. Thus, the approximation of the governing equation given by (18-3) over
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the element shown in Figure 18-2b is as follows:

(Qa+ Qs+ Qe+ Qa)™' — (Qu + Qo + Q. + Q)" A
abed =
4A¢L
~ (EiAyas + E;Ayse + EnAyeg + EnAyiw) + (Fildza + F Ay, + FrAzy + FAzy,)
(18-7)
where 1 ]
Ei=-(E,+E), E;=-(E}+E),
2 2
1 ) (18-8a)
En=3(B:+E)), En=_(Ei+E),
1 1
F=3(F+F), F=_(F+F),
(18-8b)

1 1
Fn=3(F+F), Fa=g(Fi+F),

Again, the values of E and F can be evaluated at either time levels of n or n 41
to provide an explicit scheme or an implicit scheme, respectively.

Our discussion up to this point has been limited to a model equation which
contains only time derivatives and convective derivatives, i.e., a first-order partial
differential equation. Furthermore, the approximation of the integral equation was
performed over a quadrilateral element. Most practical applications include a dif-
fusion term, i.e., the governing partial differential equation is second-order. Thus,
the schemes introduced in this section must be extended to a second-order partial
differential equation. In addition, to illustrate the application of the scheme to a
variety of available elements, instead of a quadrilateral element which was used in
this section, a triangular element will be used. Thus, the reader is exposed to the
development of the finite volume scheme applied over different types of elements.

An important issue with regard to finite volume schemes, which has not been
addressed as yet, is the implementation of the boundary conditions, which will be
explored in the next section.

18.3 Two-Dimensional Heat Conduction Equation

To achieve the goals set above, the two-dimensional heat conduction equation
is used as the model equation. The particular application is that of Section 3.7.
Therefore, an easy comparison between the finite difference solution and the finite
volume solution can be made. Obviously, grid generation is the first step in the
solution procedure of any scheme. Since one of the goals is to experience the appli-
cation of the finite volume scheme to triangular elements, the domain of solution is
triangularized. For example, consider the domain shown in Figure 18-3, which has
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been triangularized. The triangular elements can be divided into two groups defined
as “boundary triangles” and “interior triangles.” A boundary triangle is defined as
a triangle with at least two vertices on the boundary of the domain (or, equiva-
lently, at least one edge is coincident with the boundary). The boundary triangles
in Figure 18-3 are identified by the shaded triangles. Pre-set boundary conditions
must be imposed for the boundary triangles when computations of the tempera-
ture at the control points of such triangles is performed. A detailed description of
how to impose these requirements is presented in Section 18.3.2. The remaining
triangles within the domain belong to the “interior triangle” group. The governing
equations can be directly applied to the interior triangles and are described in the
next section.

& Boundary Triangle A interior Triangle

Figure 18-3. Illustration of interior and boundary triangles.

18.3.1 Interior Triangles
Recall the two-dimensional heat conduction equation given by

or T 8T
yie «a (_6—37 + '5??) (18-9)

where o is assumed to be a constant and hence, a linear equation. Consider now a
triangular element such as that identified by triangle abc of Figure 18-4. Observe
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SN

d

Figure 18-4. Geometric identification of triangular element abe.

that the identification of triangles is ordered in a counter-clockwise (ccw) fashion.
Integration of Equation (18-9) yields

or 8T 8T
bl = — + — | dz 18-
/abc(at)dxdy alu(&z”&yﬁ) ay (18-10)
The approximation of the left integral is simply accomplished by the following
expression: :
8T TP+ - 17
I8 (E) dody = ( ) A (18-11)

where T} is the value of temperature at the control point 4. Before proceeding with
the evaluation of the integrals on the right-hand side of Equation (18-10), let’s pose
the following question. Where is the exact location of control point 4 (and similarly
the location of other control points such as 1, 2, and 3)? A simple scheme to identify
its location is to use the centroid (average value of the vertices) of the triangle as
the location of the control points. Thus,

Ty = :—13(:1:,z + 2+ x0) {18-12a)
1
b= (W + 0+ 3) (18-12b)
and
1
Awe = £ (ToYc + Talp + Tcla — ToYa — TeYs — Tale) (18-13)

2
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What about the initial value of Ty? That is, given the values of temperature at grid
points (such as Ty, Tb, and T.), how does one determine T, which is required in
relation (18-11)? A simple and efficient scheme is to use the weighted average value
of the temperature at the three vertices. Therefore,
Ty I7 11 1

m-(mrn )/ (G et ) 1814
where Lga, Las, and Ly, are the distances between control point 4 and the vertices
a, b, and c, respectively. The same approach is applied to all other control points
of the interior triangles, thus providing their coordinates, the areas, and the values
of temperatures at the required time level.

Now return to the right-hand side of Equation (18-10). First, define

or oT
F_Eﬂ—: and G—a—y

Therefore,

8T T 8F G
fm(aza az)d"’d fm(a a)dxdy f(de Gdz)  (18-15)

where Green’s Theorem has been applied in the last step. Using the triangle abc,
one may approximate the integral in (18-15) as

RHS = fm (Fdy — Gdz)
= (FiAya + FiAy. + FAy,) — (Gilldzg + G;Azy + GiAz,) (18-16)
where

ATy = Ty — Tay, ATpe =Tc— Ty ATa = Ta— T¢ (18-17a)
AYob =Us — Yar DYse = Yo — Yoy Alea = Yo — Yo (18-17b)

For an explicit formulation, the unknown Ty is determined from
TP = T 4 o 2L (RES) (18-18)

Ak

What about the computation of functions F and G at points 4, 7, and k, which are
required in Equation (18-16)? They are evaluated by the following relations:

Ri- (5), = L (&) o] /4

= (@ + T)Aya + (TF + ) Ay + (T + T7) At

TP + T7) Do) / (2Aain) (18-19)
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5= (5), = [ (55) ] f e

= (T3 + T) Ayz + (T3 + TP Ayae + (T + T7) Ay

(T + T3) Ayas) / (2Aszee) (18-20)

e (), L ()]

= (T2 + T) Ayes + (TF + T2) Ao + (T + TF) Ayag

+(T7 + T2) Aae] / (2Acsas) (18-21)
where, in Equations (18-19) through (18-21), the Ay increments are computed by

Aymn =YUn—Ym

‘The function G is evaluated in a similar fashion according to

6= (@), [ou (57) o] /2

= = (@ + T Aza + (T + ) Az + (I} + TP Az

+ (T} + T2) Azaa] / (2Aarns) (18-22)

o () L ()] o

= — (T + ID) Az + (T} + TP Azse + (T7 + T7) Ay

+ (T7 + T7) Azg) / (2 A1) (18-23)

(3) = [ (55) 8] /2

= — (@7 + TD)Azes + (TF + T7) Ay + (T + T])Azg

Gy

I

+ (T3 + T2) Az / (2Acs0s) (18-24)
Again, the Az increments are determined by

Azmn = xn - mm
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With regard to expressions (18-19) through (18-24), observe the following: (1) In
Equations (18-19) through (18-24), the nodal point scheme is used to integrate the
expressions for F and G at the three quadrilaterals a1b4, b2c4, and c3ad. (2) The
corresponding areas are evaluated according to

1
Aum = E(Aabc + Aun)

1
Apot = E(Aabc + Apec)

and i
ArBaat = E(Aabc + Acfa)

Substitution of Equations (18-19) through (18-24) into Equation (18-16) pro-
vides the value of RHS which is subsequently used in Equation (18-18) to provide
the value of TPt'. The procedure described above is applied to all of the interior
triangles to provide the temperature values at the control points of interior triangles
at the time level of n + 1. Subsequently, the temperature values are updated at
the vertices. This update may be accomplished by averaging of the temperatures
of the control points surrounding the vertex. For example, consider vertex a shown
in Figure 18-3. Observe that point a is surrounded by control points 1, 2, 3, 4, and
5. Thus, one may approximate

-

<+

53

5

t~

M =g (18-25)

m=1 L""“
where L, is the distance between point m and the vertex a evaluated by

Loa = [(@m — 2 + (g — 3]

The next step is to proceed with the boundary triangles, and it is addressed in
the following section.

18.3.2 Boundary Triangles

Various types of boundary conditions were defined in Chapter 1 and then imple-
mented into numerical schemes in the subsequent chapters. A review of the physical
boundary conditions as applied to the heat conduction equation at this point is
helpful. For a Dirichlet-type boundary condition, simply the temperature value, or
the temperature distribution along the boundary is specified. For a Neumann-type
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boundary condition, the heat flux at the boundary is provided. Recall that the heat
flux is given by

1=~k
where k is the thermal conductivity. The third type boundary condition is the mixed
type, which for this problem may be expressed as CT + D(8T/8n). In this section,
the implementation of Dirichlet and Neumann types is described. The extension to

mixed boundary conditions is straightforward.

18.3.2.1 Dirichlet-Type Boundary Condition

Since the temperature distribution along the boundary is specified for a Dirichlet-
type boundary condition, the temperature value at the control points of boundary
triangles can be easily determined. For this purpose, the temperature value at the
control point is updated using the weighted average scheme, i.e., Equation (18-14).

18.3.2.2 Neumann-Type Boundary Condition

It is apparent that the application of Neumann-type boundary conditions is
not as simple as the Dirichlet type. The difficulty is encountered because, in most
cases, the locations of nodes are such that normal gradients at the surface can-
not be directly defined. Nevertheless, by incorporation of an indirect, iterative
scheme, the flux boundary condition can be enforced. To illustrate the difficulty
and subsequently the solution procedure, consider a heat distribution given along
the boundary ...idabg, ...shown in Figure 18-5. As part of the overall solution, it
is required to determine the temperature values at points ...4, d, a, b, g, ..., and
on the control points 1, 2, 3, 4, .... The solution procedure is developed as follows.

(i) For a typical boundary triangle such as triangle abc, define by m the midpoint
of boundary edge ab. Thus, the coordinates of m can be determined by

Ty = %(:L‘n + z3) (18-26a)

and 1
Um = §(ya + yb) (18'26b)

The value of heat flux is determined by
1
Im = 5(4a + @) (18-27)

(i) Generate a line perpendicular to edge ab from point m. Identify the line
by mm'. Now, determine the intersection of line mm’ with the edges of the
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heat flux distribution (q)

. - « LM a
-

T

Figure ié—S.wﬁlﬁﬁstration of Neumann-type boundary condition.

triangle, i.e., either edge ac or be. To generalize, represent either one of the
vertices a or b by z. Thus, the edge which intersects line mm’ is z¢. Call the
intersection point k. Define parameter R by

L
R=2%
L,
where L. is the distance between point k and vertex c; and similarly, L,, is
the distance between point z and vertex ¢. Now, the coordinates of point k

and the temperature value at that point can be determined according to

Ty = z.+ R(x, — x.) (18-28a)
Uk = Yo+ R(y: ~ ¥c) (18-28b)
Ty = T.+ R(T, - T%) (18-28¢)

Recall that z is used to designate either one of the vertices a or b. In order
to use Equation (18-28), one needs to know which one of the points a or b
must be utilized. The following procedure is used for this purpose. First, the
relation between the slopes of the two perpendicular lines km and ab is written

(yk—ym) (yb“ya) -1 (18-29)

T — ZIm Xy — Za
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(iii)

Relations (18-28a) and (18-28b) are substituted into (18-29) and sotved for R
to provide

R = (xb - xa)(xc - Im) + (yb - ya) (yc —_ ym)
(T2 — z)(Ta — Tb) + (U2 — ¥e)(¥a — 1)

Now the coordinate of point a is substituted into (18-30) to provide a value for
parameter R; call it R,. Similarly, one determines R, by substitution of the
coordinate of point b into (18-30). Recall that point & must be located between
points 2z and ¢ and, therefore, R must satisfy the requirement 0 < R < 1. If
now 0 < R, < 1, then the point defined by z is the vertex a. Otherwise
0 < R, < 1, and point z is assigned to be vertex b. Observe that if R = 0,
then point k is coincident with vertex c. For the example shown in Figure 18-5,
point z would be the vertex a.

(18-30)

Once point z has been identified, the location of point k is determined by
Equations (18-28a) and (18-28b). Thus, the distance between points m and
k can be calculated as well. Finally, the temperature value at point m is
computed by

Tn =Tk — qmLim/k (18-31)

Note that Equation (18-31) is obtained from the heat conduction law, i.e.,

Im =—kon =

= .

Furthermore, recall that the unit normal to the surface is usually defined as
positive in the outward direction of a closed domain. Therefore, for ¢, < 0,
the heat is flowing into the domain. Note that the temperature at point k
cannot be treated as a fixed value and must be updated within an iterative
loop along with temperatures on the boundaries. Thus, an iterative scheme is
required to determine the values of the temperature T, T,, T}, and T.. The
details of this procedure are described in the following four steps.

1. Calculate the temperatures of all the midpoints, i.e., T, T, Ti, and T, in
Figure 18-5 by the method described in Steps (i) through (iii).

2. Update the temperature at the vertex by averaging the temperatures of the
two neighboring midpoints, e.g.,

Ta=(Tm+Tw)/2 ) nz(Tm+Tn)/2 1 Td=(Tw+T;J)/2

Note that this simple averaging is based on the assumption that Ly =
Lda = ch = ng.
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3. Update temperatures T;, T, Tk, and T, of intersection points ¢, u, k, and
v by employing the interpolation method of Equation (18-28¢). Note that
the temperatures at vertices (Tj, Ty, Ta, T3, and T,) are now the updated
values as provided from Step 2 and are not their original values.

4. Steps 1 through 3 are repeated until the temperature distribution along the
boundary is converged.

(iv) Once the convergence of the temperature distribution on the boundary has
been achieved (i.e., T;, Ty, T4, T}, and T,), the temperature of the control points
on the boundary triangles are updated by utilizing the method described by
Equation (18-14).

This step completes the solution algorithm for both the interior and boundary
elements. Now the scheme is used to solve the heat conduction equation within
the rectangular domain described in Section 3.7. Recall that the domain is a 3.5 ft
by 3.5 ft rectangular bar with thermal diffusivity of 0.645 ft?/hr. In addition to
the boundary conditions specified in Section 3.7, which are of Dirichlet type and
will be referred to as Case (a), a second set of boundary conditions is specified as
Case (b). For this case, the boundary conditions along edges £ = 3.5 and y = 3.5
are specified as inflow heat flux and are given by ¢(3.5,y) = —10, 000 Btu/hr ft> and
q(z, 3.5) = —10,000 Btu/hr fi2.

Solution begins with triangulation of the domain. For this application, the
domain is discretized into 2450 triangles, as shown in Figure 18-6. The time step
for the explicit formulation given by (18-18) is selected as 0.01 hr. The temperature
contours for Case (a) are shown in Figures 18-7 and 18-8, which correspond to time
levels of 0.1 and 0.4 hrs, respectively.

The solution is also provided in tabular form in Tables 18-1 and 18-2. These
solutions can easily be compared to the solutions provided in Tables 3-7 and 3-8,
obtained by a finite difference method. The temperature contours for Case (b) are
shown in Figures 18-9 and 18-10 for the time levels of 0.1 and 0.4 hrs, respectively.
The temperatures are listed in Tables 18-3 and 18-4 for the corresponding time
levels. Note that the values of temperature at the two sides imposed by the heat
flux boundary condition increase with time in order to maintain the constant heat
flux specified.

An important consideration with regard to the solutions given in Tables 18-3
and 18-4 is as follows. If one evaluates the heat flux based on the computed values of
temperature, a value slightly different from that imposed by the boundary condition
is obtained! For example, heat flux at point (1.0,3.5) can be calculated according

to 9227.4 — 198.99
3534

g =—35 ( ) — 9,982 Btu/hr ft?
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Y (ft)

3.0
2.0
Total nodes used = 1296
1.0 Tota! triangles used = 2450
0.0 l
0.0 1.0 2.0 3.0 4.0

X (ft)

Figure 18-6. The domain of solution and the triangular grid system.

Leval T
F 1875
E 175¢
D 1625
C 1500
8 1ars
A 1250
e 123
8 1000
7 815
6 75.00
5 6250
4 5000
3 TS50
2 2500
t 12,50

Figure 18-7. Temperature contours at time level of 0.1 hr for Case (a).
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Lovel T

187.5
175.0
1625
150.0
137.5
125.0
1128
100.0
87.50
75.00
62.50
60.00
a7.50
25.00
12.50
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Level T

401.8
ars.0
348.2
3214
29045
267.8
2411
2143
187.5
160.7
1339
107.%
680.37
83158
26.79
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Figure 18-9. Temperature contours at time level 0.1 hr for Case (b).
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Recall that the imposed value is —10, 000 Btu/hr ft2. Thus, an error in the order
of 0.18% has been introduced. The computation of temperatures at the boundary
nodes was performed with only 5 iterations. If the number of iterations is increased,
then this error would be reduced.

Level T

401.8
375.0
J48.2
3214
2946
2678
241.1
2143
$187.5
160.7
133.9
107.1
2037
53.58
26.79

N ,r

“NQGArsOONBOIDOOMT

Figure 18-10. Temperature contours at time level 0.4 hr for Case(b).

18.4 Flux Vector Splitting Scheme

Recall that the values of flux E and F used in the finite volume scheme of Sec-
tion 18.2 were evaluated by averaging the corresponding fluxes at two neighboring
control points. Furthermore, for a rectangular element, the resulting formulation is
equivalent to the central difference approximation of the finite difference method.
It was shown previously in Chapter 6 that a hyperbolic equation is unstable for a
formulation with central difference approximation. However, the solution would be
stable if the governing equation includes a diffusion term. Indeed, to stabilize the
hyperbolic equation approximated by central difference formulation of the convec-
tive term, the addition of a damping term would be required. Furthermore, the
damping terms are used to reduce oscillations within the domain which may de-
velop in the vicinity of sharp gradients. To avoid the addition of damping terms,
one may use the flux vector splitting scheme to formulate the convective term. If
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the governing equation includes diffusion terms, they are approximated by central
difference approximation, as seen in Chapters 13 and 14.

In this section, a flux vector splitting scheme used for a triangular element is
explored. The formulation will be developed for the two-dimensional Euler equation
given by (12-124), which is repeated here

8Q 8E 8F |
E’+E+5§+H"O (18-32)

where the vector Q and the fluxes E, F, and H are given by (12-125).

18.4.1 Interior Triangles

Equation (18-32) is integrated over the triangular element abc shown in Figure

18-11 to provide
0Q _ dE OF
jabc (—Bt ) dzdy = fm (—33: + By +H ) dzdy (18-33)

f
Figure 18-11. Triangular element abc and its adjacent elements.

The scheme proceeds with the application of Green's Theorem to the RHS of
the equation and subsequently an explicit, cell-centered scheme is employed to ap-
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proximate (18-33) by

n+l _ n
(_LA-t—Qd) Ao = —[(EiDyas + EjAyse + ExAye,)

— (FAzg + FjAzy + FilAzy,) + HyAw:] (18-34)

Recall that fluxes E and F at points 1, j, and k were determined previously by
an averaging scheme. The objective now is to use a flux vector splitting scheme
to determine these fluxes. The development of the scheme is illustrated by the
evaluation of the fluxes E and F at point i located at the midpoint of the edge ab.

Recall that each flux can be split into a positive part and a negative part each
associated with the corresponding eigenvalue. Schematically, the fluxes at control
point 4 of triangle abc are illustrated in Figure 18-12, which is used as well in
subsequent discussions. The specific forms of the fluxes E*, -, F*, and F~ in the

f
Figure 18-12. Tlustration of signal propagations.

transformed computational space were given in Chapter 12. However, since in the
finite volume scheme the formulation is applied directly on the physical space, one
needs to obtain the associated fluxes in the physical space. The eigenvalues of the

E
Jacobian matrix A = —— are easily determined to be A, = u, My = u, A3 =u-+a,

oQ
A4 = u — a, where u is the z-component of the velocity and a is the speed of sound.
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Observe, as expected, the lack of metrics in the eigenvalues, as compared to those
given by (12-138) through (12-141).
The splitting of flux vector E proceeds as follows.

(a) If u > a, then all the eigenvalues are positive and therefore,

Et=FE and E =0

(b) If 0 < u < @, then one of the eigenvalues, namely A4 is negative, and

1
u—a
E"=(u-a) (f_) v
2y 1 a?
—au+~¢* +
I 2" y-1]
where
¢ = u? + 0
and
Et=FE-E"

(¢) If —a < u < 0, then one of the eigenvalues, namely As, is positive, whereas the
remaining three are negative. Subsequently,

1
p u+a
Et =(u+a) (—-—-) v
Ry
and
E-=E-E*'

(d) If u < —a, then all the eigenvalues are negative and therefore,
Et=0

and
E =F

The splitting of flux vector E is now concluded. Following a similar procedure,

the eigenvalues of Jacobian matrix B = g—g are determined to be A, = v, Ay = v,

Az = v+ @, and Ay = v — a, where v is the y-component of the velocity. The fluxes
F* and F~ associated with the four possible combinations of A’s are
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(a) If v > a, then F* = F and F~ = 0.
(b) If 0 < v < q, then

1
u
F‘=(v—a)(i) v—a
2y 1 a?
—av+ —¢* +
! 2 y—1 |
and
Ft*=F—F~
(c) If —a < v <0, then
[ 1 ]
o U
F*—(v+a)(—-) v+a
2y 1, a
_av+§q+;y_1J
and
Fr=F-Ft

(d) If —a < v, then F* =0 and F- = F.

Thus, the fluxes can be decomposed into their positive and negative parts with
the exact forms given above. Therefore, at a given point four signals emanate in
the four directions. However, observe that only two of the four signals will cross
any given edge. For example, only two signals represented by fluxes E} and F;" will
reach edge ab from control point 4, which is illustrated in Figure 18-12. Similarly,
the signals reaching edge ab from control point 1 located on the other side of edge
ab would be ET and Fy. Therefore, the combination of signals reaching point 7 and
contributing to its value are written as

E; = E; + Ef
and
F=Ff+F
A similar argument is extended to edges bc and ca to provide the following:
E;=E; +FEf
Fy = Fl +F;
Ey = Ef + Ey

F=Fy + F
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The description of the algorithm above is simply based on graphical inspection,
in particular, Figure 18-12. Now, the graphical conclusions are used to develop a
numerical scheme. The procedure is described utilizing edge ab as follows.

1. Determine a perpendicular vector from control point 4 to the edge ab and des-
ignate it as vector P. Vector P intersects line ab at point g as shown in Figure
18-12. The equation for line ab can be simply expressed as

y=mr+n

where
Yo — Ya

—_— —

Iy — Za

and
o = Tts = il

Ty — Ta
The perpendicular vector P is expressed by
By = (5~ 2a)i+ (g~ 00)7 = [(vs — n = may)/(m* + D] (mi—J) = Pud+ Py T

where the coordinate of the intersection point g is

£, = (Mys + T4 — mn)/(m® + 1)
and

Yy = (mPys + mzy +n)/(m* + 1)
Note that if x, = b, then

B = (2, — )T = PuT+ Py7

2. The fluxes E and F at the midpoints are determined by inspection of the compo-
nents of the vector B, which provides the required information on the contribu-
tion of each term. The flux vector E at the midpoint i of edge ab is determined
as follows.

(a) If Py; > 0, then control point 4 contributes E} and control point 1 will
contribute E;. Thus,

(b) If Py; < 0, then E; is contributed due to control point 4, whereas Ef is
contributed due to control point 1. Thus,

E;=E; + Ef
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The procedure is extended to the flux vector F as well to provide
Fi=Ff+F for Py, >0

and

Similarly, the fluxes E and F at point j (midpoint of edge bc) and point &
(midpoint of edge ca) are determined. Subsequently, Equation (18-34) is utilized to
compute Q7+

18.4.2 Boundary Triangles

Various types of boundary conditions were identified in the previous chapters.
Generally, they are categorized as body surface, symmetry surface, farfield, inflow,
and outflow boundaries. To simplify the analysis and implementation of the bound-
ary conditions, the control points of all the boundary triangles are shifted to the
middle of the boundary edges, as illustrated in Figure 18-13. The implementation
of various boundary conditions is illustrated for an axisymmetric domain of a blunt
body in supersonic stream.

1. Inflow boundary. When the inflow boundary is set far in the flowfield, the
freestream conditions are imposed as the boundary conditions. Thus,

P=pPw , T =T , U1=Ux , and v; =0

2. Symmetry line. Along the symmetry line, the y-component of the velocity is
zero, whereas the remaining flow properties are approximated by an average value
of the properties from the interior points. For example,

1
P2=§(P3+P4)

1
T, = §(T3+T4)

1
Uy = §(u3 + 1)

and
U = 0

3. Body surface. The no-slip condition for the velocity and the zero-normal
gradient for pressure is usually used at the body surface. The temperature may be
specified either as a Dirichlet type, where the temperature distribution is provided,
or as a Neumann type, where the distribution of the normal gradient is specified.
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Figure 18-13. Schematic of boundary conditions.

An easy scheme for obtaining an approximate value of the pressure at the surface
is as follows. Assume that the midpoint of points 6 and 7 is on a line perpendicular
to the surface at point 5. Then, since the pressure gradient at the surface is zero,
one may write

1
P5=P9=§(P6+P7)

Of course, a precise scheme would be that of Section 18.3.2.2 for the implementation
of Neumann type boundary conditions. The velocity components are set to zero
due to the imposed no-slip condition. Thus, us =0 and vs = 0. The temperature
value is that specified temperature if the boundary condition is Dirichlet type.
However, if a Neumann-type boundary condition is imposed, then, depending on
the specification, two situations can be identified. (a) If the surface is specified as

adiabatic, i.e., 8T/0n = 0, then by the same analogy to that of pressure, one may
approximate

1
Ts = §(Ts + T7)
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(b) If the heat flux is given, i.e., 8T/0n is specified, then the iterative procedure
described in Section 18.3.2.2 is used.

4. Supersonic outflow. All the properties at the outflow are determined by
extrapolation from the interior domain. A zero-order extrapolation yields:

1

Ps = 5(1?9 + Puo)
1

Ty = §(Ts + Tyo)

1
ug = 5(“9 + U1p)

and
1
Ug = 5(’09 + tho)

18.5 Concluding Remarks

Fundamental topics in finite volume schemes have been introduced in this chap-
ter. Due to its introductory nature, only a selected number of schemes in two-space
dimensions using triangular elements were explored. It is hoped that, at this point,
the reader has established a fundamental understanding of the topic. With this
background, the review of other finite volume schemes presented elsewhere and
extension of the schemes to three dimensions should be facilitated.
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18.6 Problems

18.1 Consider the cell-centered formulation described in Section 18.2.1 and illus-
trated in Figure 18-2a. If the mesh abed has a rectangular shape, where Az =
— ATy, Az = —DZaa = 0, Dy = ~Agyeq = 0, and Ayye = —AYda, show that the
formulation (18-4) can be reduced to a finite difference equation with second-order
central difference approximation of the spatial derivatives.

18.2 In Equations (18-19) to (18-21), show that the areas of quadrilaterals are
AalM = %(Aabc+ Aadb), AbQot! = %(Aabc -+ Abec)g and Ac3a4 = %(Aabc + Acfa)-

Hint: Use Equations (18-12) and (18-13) to prove that Aus = Ay and, similarly,
Aatp = 3 Aasp, and so forth.

18.3 Consider the domain of Problem 5.1 which is repeated here for convenience
as Figure P18.3. Use the finite volume scheme described in Section 18.3 to obtain
the streamline patterns within the domain. The governing equation to be solved is
given by

op_ o 9
Bt~ 0z% | O

where the time-dependent term is added to represent the iteration, i.e., each time
step is equivalent to an iteration step. Recall the analogy between the FTCS scheme
applied to a time-dependent parabolic equation and the iterative schemes for the
solution of an elliptic equation. Furthermore, note that the time-dependent term
%ﬁi will approach zero for a large time. Thus, Laplace's equation is recovered.

Select a time step of 0.001 and proceed to a final time of 2.0. That should
provide the converged solution. Furthermore, set the initial values of the stream
function within the domain to be 50. The appropriate boundary conditions are
specified in Figure P18.3.
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Figure P18.3. The solution domain and the proposed boundary conditions.

18.4 The streamline patterns of an inviscid, incompressible flow within the domain
shown in Figure P18.4 are required. The problem requires the solution of Laplace’s
equation or, equivalently,

v _ oy o
ot 8z ' Oy?
The concept of using the equation above instead of Laplace’s equation is provided

in Problem 18.3. Assuming the fiow to be uniform at both the inlet and outlet, the
following boundary conditions are specified.

1. At the lower surface, ¥ = 0.0
2. At the inlet, i.e., z = 0.0, ¥ = 100y
3. At the outlet, i.e., z = 6.0, ¥ = 100y

4. At the upper surface, ie., y = 4.0, ¢ = 400.0
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Figure P18.4. The solution domain and the specified boundary
conditions for Problem 18.4.

Use a time step of 0.003 and proceed up to a total time of 6.0, which should
provide the desired solution. Use the grid system generated in Problem 18.2, and
set the initial ¢ distribution at 100.0.
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Table 18-1. Temperature distribution at ¢ = 0.1 hr.
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
0.10 200.00 169.43 161.60 161.26 161.26 161.24 159.45 0.00
0.20 200.00 136.66 121.83 121.22 121.22 121.18 117.54 0.00
0.30 200.00 107.96 87.10 86.27 86.27 86.21 81.84 0.00
0.40 200.00 84.65 58.97 57.96 57.95 57.90 53.83 0.00
0.50 200.00 67.07 3781 3666 36.65 36.60 33.41 0.00
0.60 200.00 54.75 23.01 21.77 21.76 21.73 19.53 0.00
0.70 200.00 46.74 1341 1211 1211 12.08 10.73 0.00
0.80 200.00 41.91 7.64 6.30 6.30 6.28 5.53 0.00
0.90 200.00 39.20 4.42 3.06 3.05 3.05 2.67 0.00
1.00 200.00 37.81 2.75 1.39 1.38 1.38 1.20 0.00
1.10 200.00 37.14 1.96 0.59 0.58 0.58 0.50 0.00
1.20 200.00 36.84 1.60 0.23 0.23 0.23 0.20 0.00
1.30 200.00 36.72 1.46 0.09 0.08 0.08 0.07 0.00
1.40 200.00 36.67 1.41 0.04 0.03 0.03 0.02 0.00
1.60 200.00 36.66 1.39 0.02 0.01 0.01 0.01 0.00
1.60 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
1.70 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
1.80 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
1.90 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
2.00 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
2,10 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
2.20 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
2.30 200.00 36.65 1.38 0.01 0.00 0.00 0.00 0.00
2.40 200.00 36.63 1.38 0.01 0.00 0.00 0.00 0.00
2.50 200.00 36.60 1.38 0.01 0.00 0.00 0.00 0.00
2.60 200.00 36.53 1.37 0.01 0.00 0.00 0.00 0.00
2,70 200.00 36.34 1.36 0.01 0.00 0.00 0.00 0.00
2.80 200.00 35.92 1.34 0.01 0.00 0.00 0.00 0.00
2.90 200.00 35.07 1.29 0.01 0.00 0.00 0.00 0.00
3.00 200.00 33.41 1.20 0.01 0.00 0.00 0.00 0.00
3.10 200.00 30.44 1.06 0.01 0.00 0.00 0.00 0.00
3.20 200.00 25.52 0.86 0.01 0.00 0.00 0.00 0.00
3.30 200.00 18.16 0.58 0.00 0.00 0.00 0.00 0.00
3.40 200.00 8.48 0.26 0.00 0.00 0.00 0.00 0.00
3.50 200.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 18-2. Temperature distribution at ¢ = 0.4 hr.
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
0.10 200.00 190.45 183.64 180.81 179.97 17897 172.55 0.00
0.20 200.00 179.61 165.74 160.06 158.37 156.27 142.98 0.00
0.30 200.00 169.11 148.44 140.01 137.52 134.50 116.51 0.00
0.40 200.00 159.17 132.07 121.05 117.82 114.11 93.86 0.00
0.50 200.00 149.94 116.86 103.44 99.55 9543 74.95 0.00
0.60 200.00 141.51 103.01 87.41 8295 78.66 ©59.38 0.00
0.70 200.00 133.98 90.63 73.08 68.13 63.90 46.64 0.00
0.80 200.00 127.37 79.78 60.53 55.17 51.15 36.30 0.00
0.90 200.00 121.67 70.44 49.73 44.05 40.34 27.97 0.00
1.00 200.00 116.86 62.55 40.62 34.68 31.34 21.30 0.00
1.10 200.00 112.88 56.02 33.08 2694 23.98 16.03 0.00
1.20 200.00 109.63 50.71 26.96 20.67 18.07 11.90 0.00
1.30 200.00 107.04 46.48 22.08 15.68 13.41 8.72 0.00
1.40 200.00 105.01 43.17 18.26 11.79 9.80 6.29 0.00
1.50 200.00 103.44 40.62 15.34 8.81 7.06 4.48 0.00
1.60 200.00 102.24 38.69 13.13 6.57 5.01 3.14 0.00
1.70 200.00 101.33 37.24 11.50 4.92 3.50 2.16 0.00
1.80 200.00 100.62 36.15 10.30 3.73 2.42 1.47 0.00
1.90 200.00 100.056 35.33 9.44 2.88 1.66 0.98 0.00
2.00 200.00 99.55 34.68 8.81 2.28 1.13 0.65 0.00
2.10 200.00 99.05 34.12 8.34 1.87 0.77 0.42 0.00
2.20 200.00 98.48 33.57 7.98 1.58 0.52 0.27 0.00
2.30 200.00 97.76 32.97 7.67 1.38 0.36 0.17 0.00
2.40 200.00 96.79 32.25 7.37 1.24 0.26 0.11 0.00
2.50 200.00 9543 31.34 7.06 1.13 0.19 0.07 0.00
2.60 200.00 93.54 30.16 6.70 1.03 0.15 0.04 0.00
2.70 200.00 90.88 28.64 6.27 0.94 0.12 0.03 0.00
2.80 200.00 87.17 26.70 5.77 0.85 0.10 0.02 0.00
2.90 200.00 82.02 24.27 5.17 0.75 0.08 0.01 0.00
3.00 200.00 7495 21.30 4.48 0.65 0.07 0.01 0.00
3.10 200.00 65.38 17.76 3.69 0.53 0.05 0.00 0.00
3.20 200.00 52.69 13.68 2.80 0.40 0.04 0.00 0.00
3.30 200.00 36.55 9.12 1.85 0.26 0.03 0.00 0.00
3.40 200.00 17.38 4.25 0.85 0.12 0.01 0.00 0.00
3.50 200.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 18-3. Temperature distribution at ¢ = 0.1 hr,
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
0.10 200.00 169.41 161.58 161.24 161.24 161.32 164.20 197.63
0.20 200.00 136.62 121.79 121.19 121.19 121.37 121.67 190.41
0.30 200.00 107.91 87.06 86.23 86.23 86.48 95.63 176.70
0.40 200.00 84.59 5893 57.92 57.91 5823 6949 161.80
0.50 200.00 67.01 37.76 3662 36.62 36.97 49.60 148.30
0.60 200.00 54.69 2298 21.74 21.74 22.11 35,50 137.28
0.70 200.00 46.68 13.39 1209 12.09 1247 926.18 128.92
0.80 200.00 41.86 7.62 6.29 6.28 6.67 20.43 12295
0.90 200.00 39.16 4.40 3.05 3.05 3.43 17.12 118.90
1.00 200.00 37.76 2.74 1.38 1.38 1.756 15.34 116.26
1.10 200.00 37.10 1.95 0.59 0.58 0.6 1443 114.61
1.20 200.00 36.80 1.60 0.23 0.23 0.60 14.00 113.60
1.30 200.00 36.68 1.46 0.09 0.08 0.45 13.80 113.01
1.40 200.00 36.64 1.40 0.04 0.03 0.40 13.71 112.67
1.50 200.00 36.62 1.38 0.02 0.01 0.38 13.67 11247
1.60 200.00 36.62 1.38 0.01 0.00 0.37 13.66 112.36
1.70 200.00 36.61 1.38 0.01 0.00 0.37 13.65 112.30
1.80 200.00 36.61 1.38 0.01 0.00 0.37 13.65 112.28
1.90 200.00 36.61 1.38 0.01 0.00 0.37 13.65 112.27
2.00 200.00 36.62 1.38 0.01 0.00 0.37 13.65 112.30
2.10 200.00 36.62 1.38 0.01 0.01 0.38 13.66 112.36
2.20 200.00 36.63 1.39 0.03 0.02 039 13.68 11249
2.30 200.00 36.67 1.43 0.06 0.06 0.43 13.74 112.77
2.40 200.00 36.76 1.52 0.15 0.15 0.52 13.89 113.29
2.50 200.00 36.97 1.75 0.38 0.37 0.75 14.21 114.25
2.60 200.00 37.45 2.26 0.88 0.87 1.26 14.89 115.93
2.70 200.00 38.43 3.33 1.92 1.91 231 16,22 118.797
2.80 200.00 40.34 5.38 3.93 3.92 4.35 18.70 123.34
2.90 200.00 43.78 9.08 7.56 7.54 8.02 23.05 130.39
3.00 200.00 49.60 1534 1367 13.65 1421 30.22 140.74
3.10 200.00 5887 2522 2334 23.30 24.00 41.38 155.27
3.20 200.00 72.78 39.90 3769 37.63 3855 57.78 174.64
3.30 200.00 9255 60.46 57.78 57.68 58.92 80.63 198.97
3.40 200.00 119.05 87.50 84.21 84.07 85.76 110.63 225,94
3.50 200.00 148.30 116.26 11247 112.30 114.25 140.74 239.57
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Table 18-4. Temperature distribution at ¢t = 0.4 hr.
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
0.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
0.10 200.00 190.44 183.64 180.87 180.51 182.37 190.05 225.65
0.20 200.00 179.60 165.75 160.19 159.56 163.58 179.94 244.37
0.30 200.00 169.11 148.45 140.22 139.32 145.40 169.69 252.48
0.40 200.00 159.17 132.08 121.32 120.16 128.13 159.35 254.39
0.50 200.00 149.93 116.88 103.77 102.36 112.02 149.09 252.59
0.60 200.00 141.51 103.03 87.79 86.15 97.26 139.12 248.66
0.70 200.00 133.98 90.66 73.51 71.65 83.99 120.69 243.60
0.80 200.00 127.37 T79.81 6099 58.94 72.20 120.99 238.09
0.0 200.00 121.68 70.48 50.23 48.00 62.16 113.16 232.58
1.00 200.00 116.88 62.62 4115 3877 53.56 106.31 227.40
1.10 200.00 11291 56.12 33.66 31.13 46.41 100.44 222.72
1.20 200.00 109.70 50.86 27.59 24.95 40.60 95.56 218.68
1.30 200.00 107.16 46.71 22.80 20.07 35.97 91.61 215.31
1.40 200.00 105.21 4352 19.12 1631 3241 88.53 212.65
1.50 200.00 103.77 41.15 1639 13.53 29.77 86.24 210.69
1.60 200.00 102.76 39.51 1449 11.58 27.94 84.70 209.43
170 200.00 102.14 3849 1330 1037 26.83 83.83 208.86
1.80 200.00 101.88 38.03 12.76 9.83 26.38 83.64 209.02
1.90 200.00 101.94 38.12 12.83 9.92 26.57 84.12 209.94
2.00 200.00 102.36 3877 13.53 10.65 27.43 85.32 211.70
210 200.00 103.17 40.02 1490 1208 29.03 87.33 214.40
990 200.00 10443 4197 1706 1431 31.46 90.26 218.17
230 200.00 106.23 4476 20.12 1749 34.88 094.28 223.18
240 200.00 108.71 4855 2429 21.79 39.48 99.60 229.64
950 200.00 112.02 53.56 29.77 2743 45.49 106.42 237.74
9.60 200.00 116.34 60.04 3681 3468 53.17 115.03 247.73
270 200.00 121.92 68.25 4569 43.80 62.81 125.69 259.84
280 200.00 129.01 7849 56.70 55.09 74.70 138.69 274.31
990 200.00 137.95 9107 70.12 6884 89.14 154.33 291.35
300 200.00 149.09 106.31 86.24 85.32 106.42 172.89 311.12
3.10 200.00 162.89 124.48 105.32 104.82 126.82 194.65 333.72
300 200.00 179.87 14587 127.58 127.49 150.57 2190.87 359.12
3.30 200.00 200.61 170.68 153.18 153.57 177.83 248.78 386.87
3.40 200.00 225.67 198.99 182.14 183.04 208.61 281.42 414.93
350 200.00 252.59 227.40 210.69 211.70 237.74 311.12 428.63
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Finite Element Method

19.1 Introductory Remarks

Previously, three different numerical schemes for the solution of a partial dif-
ferential equtaion or a system of partial differential equations had been identified
as finite difference methods, finite volume methods, and finite element methods.
Historically, the application of finite difference methods to the governing equations
of fluid mechanics has been more common. That is primarily due to the simplicity
of the scheme and the simplicity of the associated structured grid system used. In
fact, in this three-volume text,that is one of the reasons why emphasis is placed on
finite difference schemes. However, it is essential that both finite volume and finite
element schemes be introduced and investigated.

The finite volume (FV) method was introduced in Chapter 18, and it is the
objective of this chapter to introduce the finite element (FE) method. It is also
important to realize that the numerical schemes investigated in finite difference for-
mulations are commonly used in FV and FE formulations. Therefore, it makes com-
mon sense to introduce and investigate the numerical schemes in FD formulations
due to their simplicity, and subsequently to consider the FV and FE formulations.
This is another reason why finite difference schemes are investigated in more detail.

The finite element method, similar to the finite volume method, is a powerful
scheme in that it can be used in conjunction with unstructured grids. Furthermore,
the FE method can be used to solve not only partial differential equations, but also
integral, integro-differential, and variational equations. In addition, various classes
of problems, including boundary value problems, initial value problems, and eigen
problems can be solved by the FE method.

Historically, the finite element method was developed for applications in struc-
tural and solid mechanics, and, in fact, prior to the 1960’s and 1970’s, the majority
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of applications in the FE method was in solid mechanics. However, during the last
two to three decades, the scheme has been extended to several other disciplines,
including fluid mechanics, beat transfer, acoustics, and electromagnetics. Several
commercial programs/packages are now available and are used in several industries
for design and analysis purposes.

As mentioned previously, an important feature of the finite element method is
its ability to handle complex geometries/domains without any difficulty. Unlike the
FD method which requires a structured grid system, the FE method discretizes
the domain into small subdomains or elements which can be selected to be any
shape, typically triangular or quadrilateral for two-dimensional applications and
tetrahedral, pentahedral, or hexahedral for three-dimensional applications.

The fundamental approach of the FE method is to develop local element equa-
tions on each element, based on an optimization technique to minimize the error of
the solution, and to subsequently patch all of the element equations together into a
global system of eguations which results in a system of linear algebraic equations.
Several numerical schemes are available to solve a system of equations, including
direct elimination methods such as Gauss elimination or LU decomposition and
iterative methods such as the Gauss-Siedel iterative method.

It is important to note that the FE formulation always leads to a system of
equations with many unknowns, as opposed to one unknown per equation. There-
fore, the FE method is always viewed as an implicit formulation. Recall that the
FD method can be formulated as either explicit of implicit. This limitation on the
FE method can be viewed as a disadvantage of the method.

19.2 Optimization Techniques

In general, optimiation techniques can be divided into two different categories.
First is the method of weighted residuals, which is applied to differential equa-
tions where different weighting functions can be used. Among the methods in this
category, the following are commonly used: (a) the collocation method, (b} the
subdomain method, {c) the least-squares method, and (d) the Galerkin method.
The second category is the variational or energy method, which is applied only to
differential equations which can be written in an energy form, that is, ones that can
be integrated into a variational form (an integral equation).

Historically, the fundamental energy principles were used in the development of
the finite element method in the 1960’s for applications in structural mechanics.
However, due to the limitation of the method to differential equations which can
be written in variational formulation, the method of weighted residuals, such as
the Galerkin method, which does not have such a restriction, has gained the upper
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hand. Furthermore, development of the Galerkin method is more straightforward
and more easily understood. F inally, for applications where both schemes can be
used, identical solutions are obtained if the same trial functions are used. Therefore,
due to the advantages listed, the method of weighted residuals and, in particular,
the Galerkin method will be used here to describe the fundamental concepts, de-
velopment, and applications of the finite element method.

Before proceeding with mathematical development, it is beneficial to review the
two ways by which the error of solution can be defined in finite element methods.
One is the pointwise error, which is the sum of the difference between the exact
solution and the numerical solution at each point. The second is the €nergy error,
which is an integral over the entire domain of the pointwise error function. It can
be shown that, if a solution converges with respect to the energy error, it will also
converge with respect to pointwise error. Therefore, the energy error is typically
used in most finite element schemes.

19.3 General Description and Development of the Fi-
nite Element Method

The development of a typical finite element method is illustrated by the ap-
plication of the method to the heat conduction equation. Recall that the heat
conduction equation was used in Section 3.7 in the development of the ADI scheme
and in Section 16.3 in the development of a fnite volume scheme. The heat con-
duction equation can be written in a vector form as

pc,,%T=V-(kVT) (19-1)

In comparison to the heat conduction equation given by (16-9), recall that ther-
mal diffusivity o is defined as ;
P

Now the heat conduction equation, given by (19-1), is multiplied by a weighting
function w (which is also known as the test function) and integrated over a small
domain (volume) to provide

(19-2)

L(pc,%w) dVol-——fw[V-(kVT)]deol (19-3)

Since at this point we will limit the applications to two-dimensional problems,
and, in order to include both the option of either a two-dimensional planar or two-
dimensional axisymmetric application, the cylindrical coordinate system will be
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used in the following developments. Recall that a differential volume in cylindrical
coordinates is given by
dVol = r*(d8)’drdz (19-4)

where the parameters a and 8 define the problem as two-dimensional or three-
dimensional according to

a=1 6=1 = Three-dimensional

a=1 6=0 = Two-dimensional axisymmetric

a=0, §=0 = Two-dimensioanl planar

The bracket term on the right-hand side of Equation (19-3) can be written as
[V-(kVT)]w=V-(kaT)—k(VT-Vw) (19-5)

Furthermore, the time derivative on the left-hand side of (19-3) can be approximated
by a forward difference formulation as follows

oT _ T T

e At (19-6)
Finally, using relations (19-4) through (19-6), Equation (19-3) is written as
'I'n+1 —-Tm o 5
]wpc,,( A7 )wr (d@)’drdz
= j V. WkVT) - k(VT-Vw)]r(do)’drdz (19-7)

Now, rearranging Equation (19-7), where the terms involving unknown 7™ are
placed on the left-hand side of the equation, and the known terms and the boundary
condition terms are placed on the right-hand side of the equation, one has

fw [BuT™ + k(VT-Vw)]ro(d6) drdz

= f (V. (wkVT)+BuwT"r*(df)’drdz (19-8)

where ’
B At (19-9)

At this point the problem is reduced to two-dimensional applications, that is,
§ = 0, and the volume is simply replaced by area, denoted by . Therefore,

L[ﬁwr+’+k(VT-Vw)]rﬂdrdz

= L[V-(kaT)-i—ﬁwT"]r"‘drdz (19-10)
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Now, the first term on the right-hand side of Equation (19-10) can be written
by the following, where the Gauss divergence theorem is used

/ﬂv-(kaT)r“drdz:f

T\ ..o a
P Y (k 51-;) T dS-lgnw(-q)r as (19-11)

where dS is the line integral along the boundary 952 of the domain 0. Furthermore,
observe that Fourier's heat conduction law is used, where (k 8T/8n) is replaced by
the heat flux through the boundary (—g). Note that, if the line integration along
0N is carried out in counter-clockwise (ccw) direction, a positive value of ¢ would
indicate the flow of heat to be out of the domain. Recall that the del operator in
cylindrical coordinates is given by

g - 18 -~ @8 _

V=% ¢ trgg coty, e

where, for a two-dimensional application, it is reduced to

d - 8 -
V—B; e,.+-£ €,

In order to develop a general two-dimensional formulation, replace the independent
variables z and r by r and y, respectively. Thus,

g - 9 -

Now, substitution of (19-11) and application of (19-12) in (19-10) yields

0w 8T Ow 8T
+1 hbadiutnll hubadindnt a
fn[ﬁwfr" +k (63; 5" B ay)] yedrdy

= jgn(—q)wy dS-J—/ﬂﬂwT“y dzdy (19-13)

The solution of T and heat flux q is constructed by some trial functions ¢;(z, ),
where three linear trial functions would be required for a triangular element with
three vertices (z;, %) where i = 1, 2, 3. Therefore,

j=3
T(z,y) =) T;¢; (19-14)
j=t

and

j=3
q(z,y) = qid; (19-15)
=1
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where T; and g; are the temperature and heat flux at vertex 7, and the trial functions
are defined by the following

1
b1 = oz L@~z + -yt (@-—s)yl=m=1-m-m (19-16)

¢y = 2];4 {((@agy — ) + (s —y)z+ (T —z3)yl =m (19-17)

¢3 = ’21—.4 [(z1y2 — Tan) + (11 — v2) T+ (T2~ T1) yl=m (19-18)

where A represents the area of a triangle with the vertices (zi, wi), 1 =1, 2, 3, and
it is computed according to

1z, n
1 T2 U2
1

I3 i3

_ (zays + T + Ty s = Tt 7)) (19.19)

B

It is important to note that the area A would be positive only if the vertices 1,
2, and 3 are arranged in ccw fashion. The weighting function w employs the same
trial function ¢; used in the solution when the Galerkin scheme is used. Therefore,

=3

W= Zwiqb.- (19-20)
i=1

Now, substitution of (19-14), (19-15) and (19-20) into Equation (9-13) yields

Lo (Be) (Ers) 4 [(Ee) (B8
+ (zw.gz:) (JZ pi ay,-) ] } v dzdy
- () (B e

+[8 (fwm) (’2—:37;'@) ydzdy (19-21)

=1 =1

which is rearranged to provide the following
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i=3 (=3 0¢: 0¢; | 04 0¢;\] .
> w {ZT?H./:; [ﬁ¢i¢j+k (6::: quj + dy 531’)] Y da;dy}

=] j=1

i=3 =3 j=3
= Dow {Z(*QJ‘) fgn Gidjy ds+gﬂ7?_[}¢i¢jy dmdy} (19-22)

i=1 j=1

For each w; in Equation (19-22), one has

> TTHKS = rhst (19-23)
where 8s 06, B0 86
c. = .. 1 J i j o
Ki; fn [ﬁd).cﬁ, +k (8.1: 3 T 3y ay)]y dzdy (19-24)
and
=3 =3
rhs{ =3 (-qj) f $id;y*dS + Y BTY / ¢y dxdy (19-25)
=1 o0 =1 0
Now, Equation (19-22) is written in a matrix form utilizing (19-23) as follows
K, Ki, Ki, T rhst
K;J K;'g Kig T2 = TILS% (19—26)
K51 Kjp K3, I rhsg

Observe that K{; = K3, as evident from Equation (19-24). Therefore, the
[3%3] coefficient matrix in Equation (19-26) is symmetric. Furthermore, since the
trial functions ¢; are linear functions, the terms (%él %{i + %%‘ %:1) are constants and,

therefore, are moved outside the integration such that (19-24) is written as

K =8 fn $id;y°dzdy + k (‘Z‘i" %‘i" + g‘i‘ %‘z") /ﬂ y*drdy (19-27)
where
99, _ (“T"Ayﬁ (19-284) %%1 - %"”—2) (19-284)
% _ @%‘—) (19-28b) %% = % (19-28¢)
9 _ (y—’;ﬁﬂl (19-28¢) %%é = 9’—”2“7“”‘—) (19-28f)

In order to carry out the integration Jay®dzdy and [, ¢iy*dzdy appearing in
Equation (19-27), it is much easier to use the area coordinates (1, 73) instead of



Finite Element Method 425

the Cartesian coordinates (z, y). This is due to the existence of the exact form
of integration when area coordinates are used. Therefore, the triangular element
in the z, y space will be transformed into 7, M3 space, where two sides of the
triangular element are aligned along the 7; and 73 axes, and each has a length of
unity. The transformed triangle with vertex 1 at the origin, vertex 2 on the np-axis
with coordinates (1,0), and vertex 3 on the ns-axis with coordinates (0,1), is called
the master element.
Now, consider the following integration

[ #(@,v) dedy = [ Fm,ma,ms) J dmad (19-29)

where J is the ratio of the area of the triangle  in (z, y) space to the area of the
master element 2 in (72, 73) space, and it is determined from

dr Oz

B B
=" B _94 (19-30)

Oy O
o o
Note that when a node with the coordinates (s, 71) is located inside the triangle
€}, that is, the master element, then the following relation can be established

~

= =2 , i=123 (19-31)

ool £

where & is the area of the subtriangle opposite to vertex i of master element €1, and
A =1/2 is the area of the master element.
If f(m, n2, me) = mininS, then the integration in (19-29) may be determined

according to
alblc!

(a+b+c+2)

fﬁf (m, ne, ) dmdms = (19-32)

with

If the shape functions which are used to describe the geometry of the triangle
are selected the same as the trial functions, then

i=3 i=3
=" T =) Tl (19-34)

=1 i=1

and i3 i=3
y=_ ybi =) Vilk (19-35)

=1 o1

which are established according to (19-33).
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Now consider the integration of the form

fn ydzdy

which is determined using relations (19-35), (19-29), and (19-32), that is,

fn yrdzdy = /Q (Mmy? + mys + mys] J dnydn

& 1 A’ [p ] o
= J(y+y5 +5) g =3 1 +us) (19-36)
Similarly,
L Y éididzdy = J fn [mug + mavg + nays | mnjdmdrs
= Jy%; =245, (19-37)
where
Ui = (@1, @y, Qa)ij (1, Yo, ¥3) = (G + Waliz + Lalys) (19—38)

The values of (@, Wy, @s); 4 are provided in Table 19-2.

for i=1 i=2 i=3

7 =1]1(62,2)/120 | (2,2,1)/120 | (2,1,2)/120
j=2](2,21)/120 | (2,6,2)/120 | (1,2,2)/120
3=381(2,1,2)/120 | (1,2,2)/120 | (2,2,6)/120

Table 19-2. The values (@1, @2, @) 4 for various values of i and 7.

Now relations (19-28a) through (19-28f), (19-36), and (19-37) are substituted
into Equation (19-27) to obtain

9¢: 9¢;

5z Oz (19-39)

. A
(Wi +vs +y5) =

Ry = A (220, 2008 :

Oy Oy

A similar procedure is applied to the (rhst) given by relation (19-25), repeated here
for convenience.

=3
rhef =3(~a) §,_éidy°dS + 3BT [ iy dzdy
Consider for now the first term (—g;) $pq ¢:$;y°dS. Note that, when this line

integral is applied along the edges of internal elements (triangles), it will be ignored.
That is due to the fact that the heat transfer through the common side to two
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neighboring triangles will have the same value of ¢; but with opposite sign, and
therefore the net effect of heat transfer across the internal sides (surfaces) will be
zero in the global matrix sysem. Thus, for the internal triangles, the right-hand
side of Equation (19-25) can be written as

=3
rhs; =28 A Z T;y%: (19-40)

i=1
However, it is important to note that, for the elements on the boundaries of the
problem, there will be heat exchange between the elements and the environment
specified by the imposed boundary condition. Of course, if the problem specifies
adiabatic boundary condition, then g; will be zero. Now, proceeding with the
general nonadiabatic boundary, assume the side of the triangle identified by the
vertices 1 and 2 is aligned along the boundary where heat transfer is taking place.

First, let’s establish the following relation,

k=3
¢i$;y°dS = f 7 anyk) S12dn (19-41)
side 1-2
where .
S = [(m - x2)2 + ( — v2)* ] ’ (19-42)
and, furthermore, recall that .
f mimsdne = +a;b'+ o1 (19-43)

Now, when 7 = 1, then

j=3
> (-4) [ $1¢;y°dS = — \:QI / mm(mys + mys + mys) Sp dnz]
=l side 1-2

1 _
- [qz fo mne(mys + nys + mys) S dnz]

1 —
- [Qa [) mma{myt + mys + mys) Sndnz]
yr . vl "N Yo
[q‘ ( e 12) t (12 + 12)] S (19-44)
Similarly, for ¢ = 2

£ [ sowis=(o(he8)en(fe D] o
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and, for 1 = 3

j=3
> —(a5) f ¢3¢; y*dS =0 (19-46)
j=1
Thus, for a triangle at the boundary
. v,y ¥r ¥\ & =2
rhs] = [‘h(i +é)+q (1‘2+ 2)] 512+2ﬁA§ T7y%,; (19-47)
. U, Y yr o,y _
rhs; = - [q1 (115 + 1—;) + (112 42)] 512+2/5AZ Trgs; (19-48)
j=3
rhs; = 2B8A Z: T Vs (19-49)

19.4 Two-Dimensional Heat Conduction Equation

For a two-dimensional problem, a = 0, and the governing relations are written
by the following

8T dw 8T
/ [k (5({5‘# % ‘;“’) +ﬂTw] drdy = f (- q)wds+fﬁT"wd:z:dy (19-50)

: I¢i 0¢;  O¢i I¢;

from which
e a¢'s 6¢3 6¢| 6¢J ( 1 ) . .
K, _k(az 6$+6y 3y A+ P BA for i # j (19 - 51a)
or
c O 0¢; | O¢; 8¢, (1) L B
K, _k(ax 3:1:+3y 5y A+ 5 BA fori=j (19 — 51b)
The right-hand side terms for the internal triangles are
rhst = (%) BA (2T] + Tp + 1) (19-52)
rhs = (115) BA (TP + 2T + T (19-53)

rhsi = ( )BA (TP + T + 2T7) (19-54)
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and for the boundary triangles

rhet = —(30+50)Sut(33) PACTI+TF+ T (1055)
s = - (ot 3@) S+t (55) AT+ 2T +TD) (19:56)
rhsg = ( )5A(T"+ +2T7) (19-57)

Observe that, if the material properties k, p, and ¢, are assumed constant and
a constant temporal step At is selected, then the K§; terms will be only dependent
on the geometry of the element (triangle). Furthermore, if the grid system is fixed,
then the values of K{; would be constants, and therefore they need to be computed
once and used as required. Similar argument applies to the terms

o, W h
[‘“(4 + 12)“’ (12+ 12)]51

of Equations (19-47), (19-48), or (19-55), (19-56).

19.5 Construction of the Global Matrix

Consider a domain for which IV nodes have been distributed. For such a domain,
an N by N coefficient matrix known as the global matrix G and a global right-hand
side vector R will be produced. The global matrix G and the vector R are composed
of the element matriz K and the vector rhs from all the triangles within the domain.
Element matrix K7, will contribute its value to the global matrix Gy, where m
is the node number of vertex i and n is the node number of vertex j of element e.
Similarly, the rhs§ term will contribute and form vector Rn.

To see exactly how the procedure is developed, consider a simple domain with
eight triangular elements and the following problem.

A two-dimensional block of AISI 302 (18-8) stainless steel has a length of 0.3
meters and a height of 0.2 meters. The block is heated to a temperature of 300 K
to be used as the initial condition at ¢ = 0.0. Subsequently, the lower boundary at
y = 0 and the upper boundary at y = 0.2 m are imposed to constant temperatures
of 600 K and 800 K, respectively. Compute the temperature at locations (0.1, 0.1)
and (0.2, 0.1) at t = 10 seconds. The thermal conductivity, density, and specific
heat of the steel are, respectively, 15 W/mK, 8055 Kg/m?®, and 480 J/Kg K, and
are assumed to remain constants.

The term 3 is determined to be

8= pc,, (8055) (480)
10

= 386, 640
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The domain is discretized into eight triangles with six boundary nodes and two
interior nodes, as shown in Figure 19-1.
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Figure 19-1. Illustration of the domain of solution and of the triangular elements.

Application of Equations (19-51) through (19-57) provides the data given in
Table 19-3. Now that the element matrices have been formed, the global matrix
G is constructed. Element 1 is used to illustrate the procedure. Observe that,
for element 1, vertices 1, 2, and 3 correspond to nodes 6, 1, and 7, respectively.
From the element matrix given in Table 19-3, we observe that K}jl = 652. Since
vertices (1,1) represent nodes (6,6), therefore Gig = K], = 652. Now, the value
of 652 is placed in the global matrix at the (6,6) position. Proceeding with the
assignment of the elements of the global matrix, note that Kl, = 322 = Gsa,
and therefore the value of 322 is placed in the global matrix at the (6,1) position.
Furthermore, K{, = K}, = G}, = 322, which is placed at the (1,6) position.
Similarly, K}; = K3, = 315 = Gg7 = Glg, and the value of 315 is placed in the
global matrix at positions (6,7) and (7,6). However, observe that nodes § and 7
are also shared with element 8, and therefore the following contribution from el-
ement 8 must be included, that is, K3, = 490 = G and K33 = 238 = G§,.
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Node Nu:mber Largest Element Element
Element of Vertices Node Area Matrix Vector
1,2,3 Number Ke rht
(cew) Difference
[ 652 322 3157 | [ 8.06E5
1 6,1,7 7T-1=6 |0.01 322 652 315 7.41E5
| 315 315 659 | | | 6.44E5 |
(490 239 238 1! [ 5.07E5 |
2 1,2, 7 7-1=6 |0.0075 239 493 234 5.07TES
| 238 234 495 ] | | 4.3bED |
[ 332 157 1557 | [ 2.42E5
3 7,2,8 8—2=6 |[0.005 157 330 157 2.90E5
| 155 157 332 ] | | 2.42E5 |
[ 493 239 2341 | [ 5.07E5 ]
4 2,38 8—-2=6 | 0.00756 239 490 238 5.07ED
| 234 238 495 | [ 4.35E5 |
[ 652 322 315 ] [ 7.41E5 ]
5 3,4,8 8—-3=5 ]0.01 322 652 315 8.06E5
| 315 315 659 | | [ 6.44E5 |
[ 490 239 238 ] | [ 6.52E5 ]
6 4,5, 8 8—-4=4 |0.0075 239 493 234 6.52E5
238 234 495 | | | 5.32E5
(332 157 1557 | [ 2.T4E5 ]
7 8,57 8—5=3 10.005 157 330 157 3.54E5
| 155 157 332 | | | 2.T4ES |
403 239 234 1 | [ 6.52E5 ]
8 5,6, 7 7-5=2 10.0075 239 490 238 6.52FE5
| 234 238 495 | | | 5.32E5 | |

Table 19-3. Summary of element matrices.

Thus, the final values of G and G, in the global matrix are

Ges = Gy + Gog = 652 + 490 = 1142

and

Gey = Gh7+ Gap = 315 + 238 = 553

The right-hand side vector R is similarly determined. For example, observe that
all of the elements 1, 2, 3, 7, and 8 will contribute values to node 7. Therefore,

Ry = rhst + rhs? + rhsd + rhs] + rhsy = 6.44E5 + 4.35E5

+ 2.42E5 + 2.TAE5 + 5.32E5 = 2.13E6
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Finally, the global matrix G and the vector R are constructed to be

[ 1142 239 0 0 0 322 553 0] [Tn] [125E6]
239 1316 239 0 0 0 392 392 |7 1.30E6
0 239 1142 32 0 o0 o0 53|17 1.25E6
0 0 3221142 239 0 0 553] (T, 1.46E6
0 0 0 239 1316 239 392 392 | T | | 1.66E6
322 0 0 0 239 1142 53 o0|lT 1.46E6
553 392 0 0 392 553 2312 311||T 2.13E6
0 392 553 553 302 0 31 22| (7% | | 2136 |

(19-58)
Observe that the global matrix G is symmetric.

19.6 Boundary Conditions

The specified boundary condition for the proposed application is of the Dirichlet
type, where the temperature at nodes 1, 2,3is T'= 600 K and at nodes 4, 5, 6, is
T = 800 K. A simple scheme to implement the Dirichlet-type boundary condition
is to add a penalty value (an arbitrary large value) to the diagonal element of the
matrix G. Doing so will guarantee that the values of temperatures at the boundary
nodes will automatically satisfy the specified values. Therefore, (19-58) is modified
as follows

[ 1142+L 239 0 0 0 322 553 0] [Ty ]
239 1316+L 239 0 0 0 392 392 T
0 239 1142+L 322 0 0 0 553 T
0 0 322 1142+L 239 0 0 553 T,
0 0 0 239 1316+L 239 392 392 Ts
322 0 0 0 239 1142+L 553 0 Ts
553 392 0 0 392 553 2312 311 Ty
0 392 553 553 392 0 311 2312 | | Tg |
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[ 1.25E6+L" 600 ]
1.30E6+L* 600
1.25E6+L* 600
1.46E6+L* 800
1.66E6+L* 800 (19-59)
1.46E6+L* 800
2.13E6
| 2.13E6

The large value L used in this application is L = 10*. The solution of (19-59) yields
the temperature values of T1 = T3 = T3 = 600 K and Ty = Ty = Ty = 800 K at the
boundaries. The interior temperatures T and Ty are 306.9 K.

19.7 Reduction of the Half-Bandwidth of the'} G 1°bal"-'¥
Matrix JRE |

v
SN i

Observe that in the application of the previous section, the global matrix G
is a banded matrix with a half-bandwidth of 7. It is important to note that the
smaller the half bandwidth, the smaller the memory space requirement and CPU
time requirement would be. Therefore, it is essential to reduce the half-bandwidth
in finite element applications. By careful investigation of the construction of matrix
G, it is observed that the half-bandwidth is determined from the maximum value
of the largest node number difference, given as column 3 of Table 19-3. Note that
the maximum value from the 8 elements is 6. Therefore, the half-bandwidth is
6 + 1 = 7. However, if the numbering of the nodes is rearranged in the process of
triangulation, the half-bandwidth will change. For example, if the numbering of the
nodes is arranged as shown in Figure 19-2, the half-bandwidth would be 4, and the
resulting system of equation is expressed as

1142 322 553 239 0 0 0 0]l [Tn] [1.25E6]
1142 553 0 239 0 0 0|71 1.46E6
9312 392 392 311 0 0| | T 2.13E6

1316 0 392 239 O | Ty 1.31E6

1316 392 o0 239| | T | | 1e6E6

2312 553 553 | | Ts 2.13E6

1142 32| | Tt 1.25E6

] 1142 | | Ta | | 146E6
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Figure 19-2. Specific arrangement of the nodes.




APPENDIX G:

An Introduction to Theory of
Characteristics: Euler Equations

G.1 Introductory Remarks

The Euler equations used for the solution of inviscid flowfields is composed
of a system of first-order, nonlinear coupled equations. The system of equations
may be written in various forms in terms of either conservative variables, primitive
variables, or characteristic variables. In this appendix, the concept of characteristics
is extended to the Euler equations. For simplicity, the mathematical manipulation
is applied to the one-dimensional Euler equations as a first step and, subsequently,
the results for the two-dimensional case are provided.

G.2 One-Dimensional Euler Equations

Consider the one-dimensional Euler equations in conservative form given by

dp

6 9 _
E(pu)+$(/m +p)=0

3] a
5; e + 7 Lpe +p)uf =0
which, in a vector form, may be expressed as

E
6Q+6

ERETN (G
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where
p pu
Q= pu E=| pi+p
pe; (pec + plu
Linearization of Equation (G-1) yiclds
%?— + A g% =0 (G-2)

where the Jacobian matrix 4 = §E /0Q is given by

i 0 1 0 7

1
A= 3 (v—3)? —(v-3)u v~-1

3
—yue; + (y — 1)° ver — 5("/ — 1) o

The Euler equations can also be written in terms of the primitive variables p, u,
and p by the following equations:

dp dp Ou
§+u$+p$—-0

Ju du 1@_

— — + - =0
ot tu Oz + p Or
dp dp , Ou
_6? +u 6—:1; + pa B = 0
The system of equations is written in a vector form as
Q) aq’
— +A = =0 G-3
ot " or (G-3)
where -
U 0
p ( P
Q=|u and A = 0 u 1
p
P |0 pa’ u

Obviously, since Equations (G-2) and (G-3) represent the same physical laws,
one may relate the two systems by a similarity transformation. Indeed, the coefli-
cient matrix of Equation (G-2) may be diagonalized under this transformation. It
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will be shown shortly that the elements of the diagonal matrix are the eigenvalues
of matrix A.
Proceeding with similarity transformation, Equation (G-2) can be rewritten as

0Q 0Q' | , 8Q 9V _

50 o T4a0 or " (G-4)

Define 2@ B

Q"
Then Equation (G-4) may be expressed as

6QI . oQ ~
vy + M7 AM 5 0 (G-5)
Comparison of Equations (G-3) and (G-5) yields
A =M1AM

where ]

1 0 0 1

_9Q _ u ) 0
M= 30
1z L
| 2" o v—1
and
[ 1 0 0 ]
‘AJ“1 = -6—Qi = "'E l 0
oQ p p
1
| -1 —(y-=Nu (v-1)

The eigenvalues of matrix A or matrix A’ can easily be determined to be A; = u,
A = u+a, and A3 = u — a. As expected, matrices A and A’ have the same
eigenvalues because of the similarity transformation. Now, define a diagonal matrix
D, composed of the eigenvalues of 4, i.e.,

U 0 0 -]
D=1 0 u+a 0 (G-6)
I 0 0 u—a |

The significance of matrix D will be shown shortly.
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At this point, a simple procedure is introduced by which the characteristic vari-
ables may be identified. Define a vector for the characteristic variables by "
Recall Equation (G-3) given by

2@+A’6Q

ot Oz =0

Rewrite the equation as

6QI aQH , 8QI 8@” B

ww-&Awa—-—O (G-7)
Define the matrix 90
R= 50" (G-8)
Then Equation (G-7) can be expressed as
% +RTAR %iﬁ =0
where it can be shown that
R'M'R=D
or
a;‘z” +D ‘?92” =0 (G-9)

Several points need to be explored at this time. First, the coefficient matrix D
is a diagonal matrix which was defined by (G-6). Second, the matrix defined by
(G-8) is obtained by the right eigenvectors of A’. Similarly, R~ can be formed by
the three left eigenvectors of A’ , which is determined to be

[47
83 0 —-F
R1l= 0 i _ﬁ_
pa
o 5 -2
pa |

where a, 3, and § are arbitrary normalization coefficients. For example, the follow-
ing values are commonly used:

=
I
-
5
o,
&
i
!
|
)|
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With coefficients specified above, the matrix R and its inverse are written as
[, Le Lo
V2 a Vv2a
1 1
R=1} 0 — - G-10
7 7 (G-10)
0 ——1— a —1— a
L /2 p NG P
and _ 1
1
1 0 —=
1 1 1
R'=l0 —»= —=— G-11
V2 V2pa (G-11)
0 1 1 1
I V2 VZpa |
Now, one may proceed to determine the characteristic variables from (G-8) as
follows,
QII — R—ldQl
or
10 / _dp [ Cdp\ ]
Lo - ||de G e
1 1 1 1 dp 1 2a
 — 0 — —=— = _ i = —_
@=[10 7 Gm||® \/if("“pa) \/5(”"*7—1)
1 11 1 dp 1 %
0 —= —=— d _— | |du—— ——= U~
07 EmlL?] | TR (u pa). ! 2(” 7-1)_

(G-12)

The integration above is performed by the implementation of relations (B-34a) and

(B-34b) of Appendix B. Recall that the expressions

o) (o

IY_..

2a
v—1

previously given by (B-35a) and (B-35b) are called the Riemann invariants.
To clearly identify a typical characteristic form of the one-dimensional Euler

equation, expand the vector equation (G-9) and rewrite it as

ot a? ot dx a®dr
0 2a 2a
a(u+7—:)+(u+a)—a—(u+7_l)—0
a 2a 2a
-6?(“—7_1)-%('&4‘&)5—(’&—7_1)——0

(G-13)

(G-14)

(G-15)
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Equations (G-13) through (G-15) represent the characteristic form of the Euler
equations, i.e., governing equations are expressed in terms of the characteristic
variables defined by the components of vector Q"

‘The characteristic equations along which the characteristic variables propagate
are given by

dzx
dz
—(E =u+ta (G-l?)
dxz
Foue (G-18)

Schematically, the characteristic lines are shown in Figure (G-1).

X

Figure F-1. Characteristics for the one-dimensional Euler equation.

'To reemphasize, recall that the quantities represented by the characteristic vari-
ables propagate along the characteristic lines. For example, the characteristic quan-
tity [u+2a/(y — 1)] is propagated along the C* characteristic line with the speed of
u+ a. Similarly, the characteristic quantities (dp — dp/e?) and [u - 2a/(y — 1)] are
propagated along characteristics C' and C~ with speeds of u and 1 — a, respectively.
Observe that the C characteristics are coincident with the stream lines of the flow.
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G.3 Extension to Two Dimensions

Recall the governing equations for an inviscid flow in the computational space
given by Equation (12-45), where for a planar two-dimensional flow it is reduced to

SQ 8E OF
3 € + = (G-19)
Linearization with the help of expression (12-51) provides
00 00 oG
87+Aag+Ban"0 (G-20)

where the matrices A and B are given by (12-56) and (12-57), respectively. Now
consider the similarity transformation

0Q0Q , 0009  .0Q 2

50 br ‘6‘-@—, —6? + B 6Q' =0 (G-21)

where Q' represents the vector of primitive variables as given by

p
- 1 U
! e —
=7
v
- p o
and, as previously defined,
aQ
g =M
Therefore, Equation (G-21) is written as
Q' Q! Q’
MIx %
or + AM B¢ +BM — =90
o 8¢ 8¢ 80"
1 1
B +M" AMag + M- BMBn (G-22)

Rewrite Equation (G-22) as

3t

A (G-23)
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where
Al=M"AM (G-24a)
B'=M"'BM (G-24b)
and
1 0 0 0
4) ~ u p 0 0
M= —;g = (G-25)
v 0 p 0
1., 1
_2(u +v) pu pv 71 |
and
i
1 0 0 0
U 1
- _e - 0 0
M= %9,' - p p
Q _v 0 1 0
p p
1
Z0-DEH?) =D —(-Dv  (y-1)
(G-26)
The eigenvalues of A’ and B’ are determined to be
Ag = Ap =&u+ € (G-27a)
Aea = Eu+ Eu+ a2+ £2 (G-27b)
AE“ = f_-,;u + §yv - a\/.fg + €5 (G-27C)
and
Al = Agz = Nzu+ v (G-28a)
Ans = Nzt + v + ay/n? + n (G-28b)
Aga = TU + v — ay/n2 + 12 (G-28c)

which are identical to the eigenvalues of A given by relations (12-58) through (12-
61), and the eigenvalues of B given by Equations (12-62) through (12-65).
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To proceed with the determination of characteristic variables, consider Equation

(G-23) and introduce the characteristic variables vector associated with &, Qf as
follows.

o 0Q; . ,,0Q 9Q¢

Q'
+ A'— B' X = -
90! or 8Q” ¥ L4 B 0 (G-29)
which is equivalent to
Q¢ 0Q¢ 8Q _
+D 1p—=~ G-
B T Dege Y Ty T (G-30)
where
Ag1
A
D¢ = ¢ (G-31)
Aga
| e
Furthermore, recall that
= RglA’ R (G-32)
where R is the matrix of right eigenvectors of A', and is given by
10 e 1o
V2 a V2 a
1 1
0 Ky —Ke -——7mKe
Re = \{5 \/15 (G-33)
0 —-K. —=K ———K,
& \/5 §y \/ﬁ £y
1 1
0 0 —=pa
: VR i
where
KE:: = 2 £ 2 (G-34)
@+et
Ke = S

@ el (G-35)
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The inverse of R, which is the matrix of left eigenvectors of A’ is

[ 1
! 0 0 e
§ 0 K, ~ K¢, 0
Ite" = 1 1 11 (G-36)
0 —Ke =Ky ———
V2 V2 V2 pa
1 1 1 1
0 —=Ke ——=K —_
V2t V2 ¥ Vapa |
The characteristic variables associated with 4’ are now determined as follows,
@=f&H@ (G-37)
i -
1
1 0 0 3 dp
_ 0 Ky ~Ke 0 du
% = [
1 1 11
0 —K¢, K —= —
VITE VB hpa || W
1 1 1 1
0 ——%K, -—2=K —= — d;
_ V2t VR e | L

=

[ e ~ cdv) (€2 + €)1]
_ (G-38)

7o |(sr s e 2]

- [(erdwsydu)/(sznte:)%—i’i] J

oa

To proceed with the integrations, the following relations are to be used. First,
recall the following relation p
2
[2-= (G-39)

pa  y-—1
Second, the velocity components normal and tangent to the lines of constant £ can
be shown to be

_ Eut

M= @ an (G-40)
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and

&u —&:v

€2+t
The mathematical details to obtain relations (G-40) and (G-41) are provided in
Section F.4. Return to relation (G-38) and substitute expressions (G-39) through

Vie = (G-41)

(G-41) to obtain

V2

The corresponding characteristic equations are

¢
dt
3
dt
de
dt
dg

dt

Vie
Vae
V,-,,g +a

an-—a

2a
(v,,€+—._7_1)

2a
(e 525

)

(G-42)

(G-43a)
(G-43b)
(G-43c)

(G-43d)

The significance of Equations (G-42) and (G-43) is reemphasized as follows. The
characteristic quantities defined in (G-42) are propagated with the speeds of Vi,
Vae + @, and Viz — a along the characteristic lines defined by Equations (G-43).
Schematically, the characteristic lines in the £ — ¢ plane are shown in Figure G-2.

Similarly, the characteristic variables associated with 7, @q are determined as

follow.

First characteristic variable vector Q”, is introduced, and Equation (G-23) is

written as

or

BQ’
BQ”

” + A’GQ'

,0Q
B aQU

aQﬂ

617 =0

af" +RTA X BQI + Dyapdv@'n =0

(G-44)

(G-45)
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ﬂ-l&
“lum

Figure G-2. Characteristics of the Euler equations in £ — ¢ plane.

where

D, = (G-46)

/\mj

The matrices R, and R, have similar forms as R and R;', except K¢, and K,
are replaced by K,, and K,, defined by

142
- = G-47
K,. 2+ )} (G-47)
and

Ty
K, —=-— M ___ G-48)
Ly (
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The characteristic variables associated with B’ are now determined as follows.

Y%= [ R4Q (G-49)
or
1 h
0 Kqy —Kys 0 du
U
n = f 1 1 1 1
0 —=Kyz —=K, — —
sz J2 V2 pa dv
1 1 1 1
0 ——fxKup ——FKy = dp
L V2 v2'™  V2pa 1L

[ (w-%) |

f [(nydu — nedv) / (2 + ) é]

~ f 1 o (G-50)
B 2, 2\1 , 9P
2= [ |t nan (24 ) + %]
1 2, g _ 9P
| | /)i -]
which is written as .
dp
[(#-%)
v,
T = K (G-51)
K 1 Vo4 2a
VZU™ -1
1 2a
- Vo, —
I w/ﬁ( "y 1)
where
anw (G-52)
(2 +n2)"
and
Vnn——m (G-53)
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The associated characteristic lines are given by

Z—? = Vi (G-54a)
% = Vg (G-54b)
% Van +a (G-54c)
Z—Z Vin—a (G-54d)

G.4 Velocity Components

The components of the velocity normal and tangent to the lines of constant ¢
and 7, which were used in the previous sections, are derived in this section. First,
consider lines of constant ¢ and designate the normal and tangential components
of velocity by V¢ and Vie, which are shown schematically in Figure (G-3). The
velocity vector and unit normal to the lines of constant £ are given by

—y

V=ui+ vj

and - o
5 _VE _ &itg]
SV (grg)

Now, the normal and tangential components are determined as follows,

Vig = V- g = (‘f—li%% (G-55)
E+¢
and 1
R ; (fzu+€ v)2 !
Vie= [V V-V = [(u2+v2) ——512-%"3 }
or
Vie = Lu—&y (G-56)

(2 + &3)é

Similarly, for the lines of constant 7, one has

TIJ+ ny;

fiy = ST

(2 +m)*
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n = constant

E = constant

Figure G-3. Illustration of the normal and tangential velocity components.

Therefore,
Vi = S22 TY (G-57)
(m2 +n3)°
and
Vig = 22 (G-58)

(2 +n2)*

G.5 Specification of Boundary Conditions

In this section, the specification of the boundary conditions associated with
characteristic variables is reviewed. The numerous physical and/or numerical bound-
ary conditions which must be specified or determined at the boundaries are provided
in the appropriate sections of the text.

Before proceeding, consider a brief review of the previous topics related to char-
acteristics. For simplicity, consider a first-order hyperbolic system given by

= =0 (G-59)

Since the system is hyperbolic, the {n x n) matrix A’ possesses n real eigenvalues
and associated eigenvectors. In the previous section, it was shown that there exists
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a similarity transformation by which A’ is diagonalized, resulting in

BQ” aQ” .
Bt +D or 0 (G-60)
where
D=R'AR (G-61)

It is emphasized again that the eigenvalues of D are real. Assume D to possess
m positive eigenvalues and, therefore, (n — m) negative eigenvalues. Furthermore,
assume that the spatial boundaries are located at z = 0 and = = L. Since there
exists m positive eigenvalues along which information is transmitted into the domain
at = 0, m boundary conditions at z = 0 are required. Similarly, the (n—m) set of
data is propagated along the characteristic lines into the domain at z = L location,
thus requiring specification of (r—m) boundary conditions at z = L. The remaining
boundary conditions are usually extrapolated from the interior solution.

To illustrate specification of a typical set of boundary conditions, consider the
following simple example. A one-dimensional inviscid flow enters a nozzle with sub-
sonic speed, and it exits subsonically. It was previously shown that the eigenvalues
of the system are u, v + a, and u — a. Therefore, two of the eigenvalues, namely
u and u + a, are positive at the inflow transmitting information into the domain,
thus requiring specification of two boundary conditions at the inflow. Similarly, at
the outflow, one characteristic enters the domain from the exterior of the domain
along which information is transmitted to the outflow boundary. Therefore, only
one boundary condition can be specified at the outflow. The remaining variables
at the boundaries must be extrapolated from the interior domain. To proceed with
this example, assume that the freestream conditions at the inflow are provided and
designate them by “occ.” Thus, the following requirements at the inflow for the
characteristic variables are specified as

2a 2a
T = Uy X = _— G-62
R" = uy + po—) u+ po— ( )
_ zae 212
— — p—l — —— G_63
R™ =, po— U po— ( )

where e designates the extrapolated value. Now, from relations (G-52) and (G-53),
one has

u= %(R‘ + RY) (G-64)

and

ot = 'Y—Z—I(m _ R (G-65)
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Subsequently, density and pressure may be updated according to

¥ Poo )T
p= (55 p“zo) (G-66)
and 5
= a’= G-67
p " (G-67)

Note that one encounters numerous forms by which boundary conditions may be ap-
plied. Just as in the governing equations, some approximations may be required in
order to implement the specified boundary conditions. The specification of bound-
ary conditions in the example shown is typical.




APPENDIX H:

Computation of Pressure
at the Body Surface

‘The components of the momentum equation for an axisymmetric flow may
be expressed as:

7] 8, , 0 1
2P + 5-(pu” +p) + 3—y(puv) + ga(mw) =0 (H-1)
a 8 8, o 1 o
5100+ 55w + (0" 4 )+ Zalm?) = 0 (1-2)
By definition
m=pV f (H-3)
and is equal to zero at the surface for a nonporous surface. Now recal] that
X Vn
n = —
|V

vV = (ut + vj)

and
Vn = nat + 0§ = J(—yei + z¢)

Substitution of these relations into Equation (H-3) yields:
puze — puye =0 (H-4)

A time derivative of (H-4) provides

re (o) — Vep (pu) = 0 (15)
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Note that the grid system has been assumed to be independent of time. Now the
following mathematical manipulation is performed. Equation (H-1) is multiplied by
ye and subtracted from the product of z¢ times Equation (H-2). The result is

a a d g
Ye g (PU° + P) + veg (puv) — ze5 (puv) = ze%(mﬂ +p) =0 (H-6)
This equation may be rearranged as (with the help of Equation (H-4))
Ou Bu ap v av Bp
Rewrite this equation as
du Ou ov ov\ _ dp op
Ye ("“ax + ’"’ay) e (puﬁ:c + ””ay) = Vs +e e(')y
Using Equations (9-4) and (9-5), one obtains
Ve [ou(€aue + naun) + pv(€yug + Nytn)]
— z¢ [pu(€ave + novg) + pu(§yue + TyVn)]

— Ye(£2pe + M=Py) + xe(€ype + MyPy)

Now equations for the metrics (e.g., Equations (9-14) through (9-17)) and Equation
(H-4), i.e., uye — vz¢ = 0, are employed to provide

Jp [(—ueye + zeve) (Tgv — uyn)] =
(=&Y + Teby)Pe + (—yene + Teny )y
Resubstitution of relations for the metrics, i.e., Equations (9-14) through (9-17),

o[ () o] [(5)+- ()
[ () e Wl (B w0+ (B

which may be simplified to

P 1 1
- j(ufr + v§y) (uen: + veny) = j(f:ﬂ: + &my)pe + —J-(ni + 73)py (H-8)

This equation may be expressed in a conservative form by the addition of some

“zero” terms. The procedure closely follows that of Chapter 11. The LHS of the
equation is considered first.
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The lefthand side of Equation (H-8), in terms of the contravariant velocity U,
is (excluding the minus sign which will be included at the final result)

U
LHS = E}—(ﬂeﬂz + ver)

A zero term is added to provide

_eU (22 + (&)
LHS = J(u,fn,+v¢ny)+V[ 5 €+ 7,

Note that the added term is zero because V is zero at the surface, Thus,

J

« () (%) |+
= ung [(.] E+ 7/, + J(uéflz + vemy)

w57+ (7))

Now the zero terms (pV /J) u, and (pV /J) v, are added to yield:

5 = [w(57) e ()] 0 o () ()
o (5), (8] o0 (), (2)
R R o RS P R

Now, the RHS is modified. Recall that

U U |4
LHS = f}—-(‘uwx + vemy) + (une + vny) [(p_f—)f * (p_)"]

1 1
RHS = (& + &m)pe + 5 (nf + n))py

Add the following zero term

ofn (%) + (),

Hence,
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Do+ (§)a] o+ ()

= N (%B)e + 7 (%—Iz)q + 1y (%2)5 +my (g)n (H-10)

Therefore, the conservative form of Equation (H-6) is expressed as

o)t (57) e (55), o (5)
T’I( J €+Tl'y J £+nz .] +T’y .] n

() @) 0 (), - 0w

+ ny

In order to obtain a finite difference equation for (H-11), a second-order central
difference approximation for the £ derivatives and a second-order one-sided differ-
ence approximation for the 7 derivatives is used. Note that the unknowns are the
values of pressure at the surface, i.e., j = 1. The values at the interior points have
already been computed. The grid points involved are illustrated in Figure H-1.
With the second-order approximation described above, the FDE is obtained as

i [(5F), 0 (BF). )+ 206 (BF)... - (BF)..)
o [ (5) 4 (5),- (59
v mn )4 () (),

2 |(5),, (&) | e [ (), e (3),

()] 2 | (D).~ (P,

LT [ (y_y_rg) (flyp n,,p ]
mn[s F), + J (H-12)
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Figure H-1. llustration of the grid points used in the FDE (H-12).

i+1,1

Note that V' is zero at the surface where j = 1 and, therefore, those terms are
dropped. Now this equation is regrouped so that a tridiagonal system is formed.
The rearrangement is as follows:

where

a

aipi-1,1 + bipiy + Cipiy1,) = ds

(H-13)

- 1 £ &
- e (5,0 (9).)
_ _ 8 [mAn
28| J i1
1 [ (‘f:) (gy) ]
= SAr n’-’i,l 2 +771 3
2068 | J 41,1 MAT i+1,1
_ psf, (m )
2AT] Mzan (J)sﬁ + ny"'l (J 5,3]
-2 e (5) 0+ ()
An [77::.-,1 7 i,2+7iy‘-.x J )i
2

(B}/'); 2 [nz.-,lui,z + My vi,2] +



Computation of Pressure at the Body Surface 457

i oV
+ 2An J i3 [171‘-'.1“*.3 + Ny vc,a]
1 pU
* 2A€ (—OJ—-)"_I'I ["7:.-,1'11'{_1'1 + ny\,l Ui—l,}]

- 2A8 (7);4.11 [n:"‘ui+‘-1 + nyi.lvi+l,1]

When Equation (H-13) is applied to all 7 at j =1, the following tridiagonal system
of equations is obtained.:

- - - - - -

by o P21 ds — agp1,
az b3 C3 P31 ds
armmz biMme  Cimme PIMM2,1 dimas
I amamy biwmy | | poumny | | Ao — crmmipivg |

d Pimy _ PiMMi1

= , therefore
Iy Jivng

Since p;; = pa,; an

by e D2 dy
az b cs P31 ds
I - ‘ (H-14)
armmz bimmz  Cimma PiMMa,1 drmme
i ammr b | | ponny | | doon |
where
by = az+ by

and

Jrm,
Jimmi,

brmm = brmm + Crmmn
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Rate of Formation of Species

Consider the chemical reaction given by Equation (16-11), i.e.,
O,+M 220+ M

For a five-species model, the rate of formation for O, may be written as

A2 o (O {3 (V] + (O] + K2 (1Nl + [04] + VO
— [0 {K} (IN] + [O]) + K} ([N2] + [0a] + [NOD) }
= R
4] _
and for O, ek —2R,;.

From the chemical reaction
No+M 22N+ M

the rate of formation is expressed as

d[Vq]
dt

= [N {K} [N]+ K} [O] + K3 (M) + [0a]) + KE [NOJ}

— [N3] { K} [N] + K} O] + K& (IN2] + [04]) + K¢ [NO]}

= Ry
diN
and % = —2R;.
Similarly for NO+ M 2 N+ O+ M

d[NO]

(I-1)

(1-2)

i = (KGN (O] = K] [NO]) (IN]+[0] + (O] + [No] + [NO]) = Ry (1-3)
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diN] _ do] _
and ——E = dt = '—Rg.
and for
NO+0O 2 N+ O, (I-4)
diNO] d[O
INOL _ 401 _ ks ) [02) - K3 (VO] [0] = Re
diN] _ d[0d] _
7R
and for
O+N; 2 N+NO (1-5)
dlO] d[N.
401 _ M _ ks vo) v - K3 1) [0) = B
diN] _ d[NO] _
@& e - e
Therefore, the five species reactions for the rate of formation of the five species are:
d[O
10) _ 5 _p, ”
d[N.
[dtz] = R+ B (I-7)
d[NO
[dt ] = R34+ R4~ Ry (I-8)
d|O
—%{]‘ = —2Ry— Ry+ R4+ Rs (1-9)
d{N
—%t—]- = —2R,— R3— Ry — Ry (1-10)

Note K} and K} (for i =1, ...9) are defined in Table L.1.
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Chemical Equilibrium Constant Heavy Constants for Ky [K}, K}
Reaction A Az As A As Particle M C n | E/K 2
N,O 2.90%3 1

O2+M 220+ M 2.855| 0.988[{—6.181]—0.023|-0.001 -2.0{ 597a0.
Na, 0y, NO 9.68%2 2
N 1.60%? 3
No+M 22N+ M 1.858 |~1.325|—-9.856|-0.174] 0.08 O 4.98221-1.6{113200. 4
Ny, O, 3.70% 9
NO 4,98 6
NO+M 2 N+O+ M| 0.792|-0.492(-6.761}~0.091| 0.004(N, O, N,, 02, NO 7.95%3|-2.0| 75500. 7
NO+O - N+ O, ~2.063|-1.48 |—-0.58 |-0.114] 0.005 8.371%1 0 19450. 8
O+ N, = N+ NO 1.066(—0.833|--3.095]—0.084] 0.004 6.44171-1.0| 38370. 9
Table I.1




REFERENCES

[12-1] Steger, J. L. and Warming, R. F., “Flux Vector Splitting of the Inviscid Gas-
dynamic Equations with Application to Finite Difference Methods,” NASA
TM-78605, July 1979,

[12-2] Van Leer, B., “Flux Vector Splitting for the Euler Equations,” Lecture Notes
in Physics # 170, 8th International Conference on Numerical Methods in
Fluid Dynamics, 1982.

[12-3] “MACSYMA Mathematics and System Reference Manual,” Macsyma Inc.,
1996.

[12-4] Maple V, Waterloo Maple Software and the University of Waterloo, 1981-
1994.

[12-5] Yee, H. C., “Numerical Approximation of Boundary Conditions with Appli-
cations to Inviscid Equations of Gas Dynamics,” NASA TM-81265, March
1981.

[12-6] Thompkins, W. T\, Jr. and Bush, R. H., “Boundary Treatments for Implicit
Solutions to Euler and Navier-Stokes Equations,” NASA CP-2201, October
1981.

[12-7] Bertin, J. J., “Engineering Fluid Mechanics,” Prentice-Hall, 1984.

[12-8] Staff, “Equations, Tables, and Charts for Compressible Flow,” Report 1135,
Ames Research Center, NACA, 1953.

[12-9] Hoffmann, K. A., Chiang, S. T., and Siddiqui, M. S., “Fundamental Equations
of Fluid Mechanics,” EES, 1996.

[12-10] Hodge, B. K., and Koenig, K., “Compressible Fluid Dynamics,” Prentice Hall,
1995.



462 References

(12-11} Saad, M. A., “Compressible Fluid Flow,” Prentice Hall, 1993.

[12-12] Anderson, J. D., Jr., “Modern Compressible Flow,” McGraw Hill, 1990.

[13-1] Vigneron, Y. C., Rakich, J. V., and Tannehill, J. C., “Calculation of Super-
sonic Viscous Flow over Delta Wings with Sharp Subsonic Leading Edges,”
ATAA-78-1137, July 1978.

[15-1) Berenger, J.-P., “A Perfectly Matched Layer for the Absorption of Electro-
magnetic Waves,” Journal of Computational Physics, 114, 1994, pp. 185-200.

(15-2] Berenger, J.-P., “Perfectly Matched Layer for the FDTD Solution of Wave
Structure Interaction Problems,” IEEE Transactions on Antennnas and Prop-
agation, Vol. 44, No. 1, January 1996, pp. 110-117.

[15-3] Hu, F. Q., “On Absorbing Boundary Conditions for Linearized Euler Equa-
tions by a Perfectly Matched Layer,” Journal of Computational Physics, 120,
1996, pp. 201-219.)

(16-4] Tam, C. K. W., Auriault, L., and Canbuli, F., “Perfectly Matched Layer for
Linearized Euler Equations in Open and Ducted Domain,” AIAA-98-0183,
January 1998.

[15-5] Hu, F. Q., “On Perfectly Matched Layers as an Absorbing Boundary Condi-
tion,” ATAA-96-1664, May 1996.

[15-6] Dietiker, J.-F., Hoffmann, K. A., and Forsythe, J. R., “Assessment of Compu-
tational Boundary Conditions for Hyperbolic Systems,” AIAA-99-3350, June
1999.

[16-1] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., “Molecular Theory of
Gases and Liquids,” John Wiley and Soms, Inc., 1954.

[16-2] Stull, D. R., “JANAF Thermodynamical Tables, National Bureau of Stan-
dards,” NSRDS-NBS 37, 1971.

[16-3] Tannehill, H. C. and Mugge, P. H., “Improved Curve Fits for Thermody-
namic Properties of Equilibrium Air Suitable for Numerical Computation Us-
ing Time-Dependent or Shock-Capturing Methods,” NASA CR-2470, October
1974.

[16-4] Vincenti, W. G. and Kruger, C. H., “Introduction to Physical Gas Dynamics,”
Robert E. Krieger Publishing Co., Inc., 1965.



Index

467

Linearization, (90, $17), 2(81, 100, 163,
225)
Lagging, 1(90)
Iterative, 1{91)
Newton’s iterative, 1(91)
Local derivative, 1(447)
Local time step, 2(146)
Low Reynolds number k-¢ model, 3(56)
LU Decomposition, 2(291)

MacCormack method, 1(190, 211, 278,
286, 287), 2(270)

Marker and cell (MAC) formulation,
1(330)

Metrics
2(28)

Midpoint leapfrog method, 1(188, 186)

Minmod, 1({246), 2(114)

Mixed boundary condition, 1(20)

Mixed partial derivatives, 1{51)

Modified equation, 1(1438)

Modified wave number, 8(128)

Momentum thickness, 3(40)

Monotone schemes, 1{236)

Multi-step methods, 1(189)

Navier-Stokes equations, 1(274, 455),
2(28, 267)
Two-dimensional planar or axisym-
metric, 2(69)

Newtonian fluid, 1({52)

Neumann boundary condition, 1(20)

of transformation, 1(363),

Neumann boundary condition for pres-
sure, (928}

Nodal point scheme, 2(389)
Nonequilibrium flow, 2(839)
Nonlinear PDE, 1(8)

Numerical flux functions, 1(241)
Orr-Sommerfeld equation, 3(7)
Orthogonality at the surface, 1(407)
Outflow boundary condition, 1{826,
348), 2(120, 190, 192, 325)
Parabolic equation, 1(6, 60)
Parabolic grid generation, 1{{18)

Parbolized Navier-Stokes equations,
2(60, 218)
Two-dimensional planar or axisym-
metric, 2(81)

Partial pressure, 2(888)

Poisson equation for pressure, 1(810,
311)

Prandtl mixing length, 8(%6)

Prandtl number, 1(468), 2(25), 8(22)
Pressure dilatation, 3(58)

Production of turbulence, 8(12, 54)

Reaction rates
Backward reaction, 2(341)
Forward reaction, 2(841)

Real gas, 2(887)
Recombination, 2(841)

Reynolds Averaged Navier-Stokes
Equation, 3(27, 28)

Reynolds number, 1(806), 2(25)
Richardson method, 1(64)
Richtmyer method, 1(189)
Riemann invariants, 1({85), 2(191)
Robin boundary condition, 1(20)
Rotational energy, 2(839)

Round off error, 1(113)

Runge-Kutta method, 1(219)
Modified Runge-Kutta, 1225, 290),
2(112, 180, 275)
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Scaled wave number, 9(128)
Spalart-Allmaras model, 3(48)
Species continuity equation, 2(846)
Specific heats, 1(461)
Splitting methods, 1(189)
Shock fitting, 2(250)

Shock tube, 2(152)
Smagorinsky model, 8(148)
Staggered grid, 1(828)
Stability, 1(23)

Stability Theory, $(7)

Static instability, 1(128)

Steger and Warming flux vector split-
ting scheme, 2(107, 116, 170)

Stokes hypothesis, 1(452)

Stream function, 1(807)

Stream function equation, 1(308)
Streamwise pressure gradient, 2(223)
Structural scales, 8(56)

Structured grids, 1(92, 358)
Subgridscale model, 8(140)
Subgridscale Reynolds stress, 3(142)

Successive over-relaxation method,

1(164)
Point SOR, 1(164)
Line SOR, 1(165)

Sutherland’s law, 1(459)

System of first-order PDEs, 1(11)
System of second-order PDEs, 1(16)
Thermal conductivity, 1(460)
Thermal diffusivity, 3(85)
Thermally perfect gas, 1(461)

Thin-Layer Navier-Stokes
equations, 2(57, 268)

Tollmein-Schlichting waves, $(7)
Total derivative, 1(447)

Total variation diminishing (TVD),
1(287), 2(112)
First-order TVD, 1(239)
Second-order TVD, 1(244, 292)
Harten-Yee Upwind TVD, 1(245),
2(181)

Roe-Sweby Upwind TVD, 1(247),
2(183)
Davis-Yee Symmetric TVD, (250),
2(185)
Transition, $(9)
Translational energy, 2(839)
Tridiagonal system, 1(63, 438)
Turbulence Reynolds number, 3(43)
Turbulent boundary layer, 3(2)
Turbulent conductivity, $(35)
Turbulent diffusivity, 8(35)
Turbulent kinetic energy, (42, 109)
Turbulent Mach number, 9(58)
Turbulent Prandtl number, $(37, 42)
‘Turbulent shear stress, 9(85)
Turbulent viscosity, §(95)
Two-equation turbulence models, 8(53)
Universal gas constant, 1(462)
Universal velocity distribution, $(28)
Unstructured grids, 1(92, 358), 2(856)
Vibrational energy, 2(340)
Viscosity, 1(452, 459)
Viscous Jacobians, 2({6-57)
Viscous stress, 1(452), 2(81)
Viscous sublayer, 3(4)

van Leer flux vector splitting scheme,
2(108, 178)
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von Karman constant, 3(25)

von Neumann stability analysis, 1(124)

Vorticity, 1(307)

Vorticity-stream function formulations,
1(307)

Vorticity transport equation, 1(308)

Wall boundary conditions, 2(186, 235,
821, 823)

Zero equation model, 8(39)
Zero point energy level, 2(340)
Zone of dependence, 1(5)
Zone of influence, 1(5)
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