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PREFACE

This three-volume text is designed for use in introductory, intermediate, and
advanced courses in computational fluid dynamics (CFD) and computational fluid
turbulence (CFT). The fundamentals of computational schemes are established in
the first volume, presented in nine chapters. The first seven chapters include basic
concepts and introductory topics, whereas Chapters 8 and 9 cover advanced topics.
In the second volume, the fundamental concepts are extended for the solution of the
Euler, Parabolized Navier-Stokes, and Navier-Stokes equations. Finally, unstruc-
tured grid generation schemes, finite volume techniques, and finite element method
are explored in the second volume. In the third volume, turbulent flows and several
computational procedures for the solution of turbulent flows are addressed.

The first two volumes are designed such that they can be easily adapted to
two sequential courses in CFD. Students with an interest in fluid mechanics and
heat transfer should have sufficient background to undertake these courses. In
addition, fundamental knowledge of programming and graphics is essential for the
applications of methods presented throughout the text. Typically, the first course
is offered at the undergraduate level, whereas the second course can be offered at
the graduate level. The third volume of the text is designed for a course with the
major emphasis on turbulent flows.

The general approach and presentation of the material is intended to be brief,
with emphasis on applications. A fundamental background is established in the
first seven chapters, where various model equations are presented, and the proce-
dures used for the numerical solutions are illustrated. For purposes of analysis,
the numerical solutions of the sample problems are presented in tables. In many
instances, the behavior of a solution can be easily analyzed by considering graphical
presentations of the results; therefore, they are included in the text as well. Before
attempting to solve the problems proposed at the end of each chapter, the student
should try to generate numerical solutions of the sample problems, using codes de-
veloped individually or available codes modified for the particular application. The
results should be verified by comparing them with the solutions presented in the
text. If an analytical solution for the proposed problem is available, the numerical
solution should be compared to the analytical solution.
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The emphasis in the first volume is on finite difference methods. Chapter 1
classifies the various partial differential equations, and presents some fundamental
concepts and definitions. Chapter 2 describes how to achieve approximate repre-
sentation of partial derivatives with finite difference equations. Chapter 3 discusses
procedures for solving parabolic equations. Stability analysis is presented in Chap-
ter 4. The order for Chapters 3 and 4 can be reversed. In fact, the results of
stability analysis are required for the solution of parabolic equations in Chapter 3.
The reason that the solution procedure of parabolic equations is developed first
in Chapter 3 is to spread the computer code developments, since they require a
substantial amount of time compared to other assignments. This will prevent the
concentration of code development in the latter part of the course. Procedures for
solving elliptic and hyperbolic partial differential equations are presented in Chap-
ters 5 and 6, respectively. Chapter 7 presents a scalar model equation equivalent of
the Navier-Stokes equations. In this chapter numerical algorithms are investigated
to solve a scalar model equation which includes unsteady, convective, and diffusive
terms.

The solution schemes established in the first seven chapters are extended to the
solution of a system of partial differential equations in Chapter 8. In particular, the
Navier-Stokes equations for incompressible flows in primitive variables, as well as
vorticity-stream function formulations, are reviewed. Subsequently, the numerical
schemes and specification of appropriate boundary conditions are introduced. Fi-
nally, Chapter 9 is designed to introduce the structured grid generation techniques.
Various schemes, along with applications, are illustrated in this chapter.

While every attempt has been made to produce an error-free text, it is inevitable
that some errors still exist. The authors would greatly appreciate the reader’s input
on any corrections, so that they may be incorporated into future printings. Fur-
thermore, we would appreciate any comments and [/or suggestions from the read-
ers on the improvement of the text. Please forward your comments by mail to:

Klaus Hoffmann
P.O. Box 20078
Wichita, KS 67208-1078
or e-mail to: Hoffmann@ae.twsu.edu

In addition to this three-volume text, Computational Fluid Dynamics, a three-
volume text, Student Guide to CFD, has been developed. The text, Student Guide to
CFD, includes computer codes, description of input /output, and additional example
problems. However, it is important to emphasize that computer code development
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is an important aspect of CFD, and that, in fact, one learns a great deal about
the numerical schemes and their behaviour as one develops, debugs, and validates
his or her own computer code. Therefore, it is important to state here that the
computer codes provided in the text Student Guide to CFD should not be used as
an avenue to replace that aspect of CFD and that code development must be an
important objective of the learning process. However, these codes can be used as
a basis upon which one may develop other codes, or the codes can be modified for
other applications.

The authors greatly appreciates the support and help of many friends and col-
leagues — in particular, Dr. John Bertin and Dr. James Forsythe of the U.S. Air
Force Academy, Dr. Walter Rutledge of Sandia National Laboratories; Dr. Dennis
Wilson and Dr. Douglas Cline of The University of Texas at Austin; Dr. Shamoun
Siddiqui of the Ministry of Defense, Pakistan; Mr. John Buratti of IBM; Mr. Shigeki
Harada of Hewlett-Packard, Japan; Dr. Yildirim B. Suzen of University of Ken-
tucky; Mr. Apichart Devahastin; Mr. Jean-Francois Dietiker; and Mr. Henri-Marie
Damevin of Wichita State University. Furthermore, we are indebted to many of
our students at The University of Texas, The Wichita State University, and those
who have participated in various CFD correspondence and short courses offered by
AIAA, EES, and ASME.

Finally, we greatly appreciate the efforts of Mrs. Karen Rutledge for editorial
work, Mr. Tim Valdez for art work, and Ms. Jeanie Duvall for her skillful typing of
the manuscript.

Klaus A. Hoffmann
Steve T. Chiang






INTRODUCTION

The task of obtaining solutions to the governing equations of fluid mechanics
represents one of the most challenging problems in science and engineering. In most
instances, the mathematical formulations of the fundamental laws of fluid mechanics
are expressed as partial differential equations (PDE). Second-order partial differ-
ential equations appear frequently and, therefore, are of particular interest in fluid
mechanics and heat transfer. Generally, the governing equations of fiuid mechanics
form a set of coupled, nonlinear PDEs which must be solved within an irregular
domain subject to various initial and boundary conditions.

In many instances, analytical solutions of the equations of fluid mechanics are
limited. This is further restricted due to the imposed boundary conditions. For
example, a PDE subject to a Dirichlet boundary condition (i.e., values of the de-
pendent variable on the boundary are specified) may have an analytical solution.
However, the same PDE subject to a Neumann boundary condition (where normal
gradients of the dependent variable on the boundary are specified) may not have
an analytical solution.

Experimental fluid mechanics can provide some information regarding a par-
ticular flowfield. However, the limitation on the hardware, such as the model and
tunnel size and the difficulty in adequately simulating the prototype flowfield, makes
it an impractical means of obtaining flowfields for many problems. Nevertheless,
the flowfield information from experiments is valuable in validating mathematical
solutions of the governing equations. Thus, experimental data is used along with
computational solutions of the equations for design purposes.

A technique that has gained popularity in recent years is computational (numer-
ical) fluid dynamics. Of course, numerical analysis has been around for many years.
However, improvements in computer hardware, resulting in increased memory and
efficiency, have made it possible to solve equations in fluid mechanics using a variety
of numerical techniques. These advancements have stimulated the introduction of
newer numerical techniques which are being proposed almost on a daily basis. Un-
like experimental fluid mechanics, the geometry and flow conditions can be easily
varied to obtain various design goals. The solution that any such numerical program
generates should be validated by comparing it to a set of experimental data; but
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once its validity has been established, the program can be used for various design
purposes, within the limits imposed by the assumptions on which it was based.

The fundamental concept of numerical schemes is based on the approximation
of partial derivatives by algebraic expressions. Once the partial differential equa-
tion has been approximated by an algebraic equation, it can be solved numerically
with the aid of a computer. The schemes by which the approximations to par-
tial differential equations can be develoepd may be categorized into three groups.
They are: finite difference (FD) methods, finite volume (FV) methods, and finite
element (FE) methods. The finite difference methods are used in conjunction with
structured grids, whereas the finite volume or finite element methods are typically
used in conjunction with unstructured grids. The emphasis in this text is on finite
difference methods, even though both finite volume and finite element methods are
introduced in Volume II.

In the first seven chapters, we will explore the fundamental concepts of numerical
methods used to solve PDEs, investigate how various methods are to be applied to
the proposed model equations, and analyze the resulting solutions. In Chapter 8,
the concepts of the computational schemes for the solution of a system of PDEs are
explored. _

The numerical procedures introduced in the first volume are extended to the
solutions of Euler, Parabolized Navier-Stokes, and Navier-Stokes equations in Vol-
ume II. Furthermore, unstructured grid generation schemes, finite volume schemes,
and finite element method are explored in the second volume of the text.

Turbulent flows and numerical considerations for the solution of turbulent flows
are provided in Volume III. Fundamental concepts and definitions are established
in Chapter 20. Subsequently, the modification of the Navier-Stokes equation to
include the effect of turbulence and turbulence models is introduced in Chapter 21.
Compact finite difference formulation is developed in Chapter 22. Finally, Large
Eddy Simulation and Direct Numerical Simulation are discussed in Chapter 23.



Chapter 1

Classification of Partial Differential
Equations

1.1 Introductory Remarks

Since the solution procedure of a partial differential equation (PDE) depends
on the type of the equation, it is important to study various classifications of PDEs.
Imposition of initial and/or boundary conditions also depends on the type of PDE.
Most of the governing equations of fluid mechanics and heat transfer are expressed
as second-order PDEs and therefore classification of such equations is considered in
this chapter. In addition, a system of first-order PDEs and a, system of second-order
PDE:s are considered as well.

1.2 Linear and Nonlinear PDEs

Partial differential equations can be classified as linear or nonlinear. In a linear
PDE, the dependent variable and its derivatives enter the equation linearly, i.e.,
there is no product of the dependent variable or its derivatives. Individual solutions
of this type of PDE can be superimposed, e.g., two solutions to the governing
equation can be added together to give a third solution to the original equation.
An example of a linear PDE is the one-dimensional wave equation

Ou du

= —0—

ot 8x

where a is the speed of sound which is assumed constant.
On the other hand, a nonlinear PDE contains a product of the dependent vari-
able and/or a product of its derivatives. Two solutions to a nonlinear equation
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cannot be added to produce a third solution that also satisfies the original equa-
tion. An example of a nonlinear PDE is the inviscid Burgers equation:

du ou
= —u

at Az

If a PDE is linear in its highest order derivatives, it is called a quasi-linear PDE.

1.3 Second-Order PDEs

To classify the second-order PDE, consider the following equation

8¢ ) % 08¢  _0¢
AE'F-FBaxay'FCayz+D5;+E5:J+F¢+G“O (1-1)

where, in general, the coefficients A, B, C, D, E, F, and G are functions of the inde-
pendent variables z and y and of the dependent variable ¢. Assume that ¢ = ¢{z,y)
is a solution of the differential equation. This solution describes a surface in space,
on which space curves may be drawn. These curves patch various solutions of the
differential equation and are known as the characteristic curves. Some fundamental
concepts of characteristics are provided in Appendix A.

By definition, the second-order derivatives along the characteristic curves are
indeterminate and, indeed, they may be discontinous across the characteristics.
However, no discontinuity of the first derivatives is allowed, i.e., they are continuous
functions of z and y. Thus, the differentials of ¢, and ¢y, which represent changes
from location (z,y) to (z + dz, y+ dy) across the characteristics, may be expressed

as
_ 0¢: 0z, 0% 3¢
d¢, = %% dx + 2 dy = szdx + axayd” (1-2)
and d¢ ¢ i) &%
_ 99y Y g0 — g ;
dé, 5 dx + By dy Bzaydx -+ By dy (1-3)

The original equation, i.e., Equation (1-1), may be expressed as follows

8¢ % F¢
A6z2 +Baxay+03y2 =H (1-4)
where
H=—- D-6—¢+E?£+F¢>+G
Oz Oy

Now Equation (1-4), along with Equations (1-2) and (1-3), can be solved for the
second-order derivatives of ¢. For example, using Cramer’s rule,
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A H C
dr d¢, 0

O | 0 doy, dy
dzdy | A B C
dr dy O

0 dzr dy

(1-5)

Since it is possible to have discontinuities in the second-order derivatives of the
~ dependent variable across the characteristics, these derivatives are indeterminate.
Thus, setting the denominator equal to zero,

A B C
dr dy 0 |=0 (1-6)
0 dr dy
yields the equation
A (5@)2 _ (@) +C=0 (1-7)
dx dz

Solving this quadratic equation yields the equations of the characteristics in physical

space:
dy _ B+ vBI-4AC
dz/, , B 24

(1-8)

Setting the numerator of (1-5) equal to zero provides a set of characteristic curves
in the ¢., ¢, plane. These are known as hodograph characteristics. Depending on
the value of (B2—4AC), characteristic curves can be real or imaginary. For problems
in which real characteristics exist, a disturbance can propagate only over a finite
region, as shown in Figure 1-1. The downstream region affected by a disturbance at
point A is called the zone of influence (indicated by horizontal shading). A signal
at point A will be felt only if it originated from a finite region called the zone of
dependence of point A (vertical shading).

The second-order PDE previously expressed as Equation (1-1) is classified ac-
cording to the sign of the expression (B? — 4AC). It will be

(a) elliptic if B? —4AC <0
(b) parabolic if B?—-4AC=0 or
(c) hyperbolic if B?—4AC >0

Note that the classification depends only on the coefficients of the highest order
derivatives.
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Figure 1-1. Zone of influence (horizontal shading) and zone of
dependence (vertical shading) of point A.

1.4 Elliptic Equations

A partial differential equation is elliptic in a region if (B? — 4AC) < 0 at
all points of the region. An elliptic PDE has no real characteristic curves. A
disturbance is propagated instantly in all directions within the region. Examples of
elliptic equations are Laplace’s equation

a2¢ a2¢
5‘5‘2' + 6_y2 =0 (1-9)
and Poisson’s equation , )
J 0
e ) (1-10)

The domain of solution for an elliptic PDE is a closed region, R, shown in Figure
1-2. On the closed boundary of R, either the value of the dependent variable, its
normal gradient, or a linear combination of the two is prescribed. Providing the
boundary conditions uniquely yields the solution within the domain.

1.5 Parabolic Equations

A partial differential equation is classified as parabolic if (B? — 4AC) = 0 at all
points of the region. The solution domain for a parabolic PDE is an open region, as
shown in Figure 1-3. For a parabolic partial differential equation there exists one
characteristic line. Unsteady heat conduction in one dimension

ar o*T

"a—t = 062:2 (1-11)
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and diffusion of viscosity, expressed as

— =V (1-12)

are examples of parabolic PDEs. An initial distribution of the dependent variable
and two sets of boundary conditions are required for a complete description of the
problem. The boundary conditions are prescribed as the value of the dependent
variable or its normal derivative or a linear combination of the two. The solution
of the parabolic equation marches downstream within the domain from the initial
plane of data satisfying the specified boundary conditions. The parabolic partial
differential equation is the counterpart to an initial value problem in an ordinary
differential equation (ODE).

Boundary
Condition
Prescribed

Figure 1-2. The domain of solution for an elliptic PDE.

/

Boundary Boundary
Candition Condition
Prescribe Prescribed

Initial Condition Prescribed

Figure 1-3. The domain of solution for a parabolic PDE.
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1.6 Hyperbolic Equations

A partial differential equation is called hyperbolic if (B? — 4AC) > 0 at all
points of the region. A hyperbolic PDE has two real characteristics. An example
of a hyperbolic equation is the second-order wave equation:

P _ a0
o2 0z?
A complete description of the flow governed by a second-order hyperbolic PDE

requires two sets of initial conditions and two sets of boundary conditions. The
initial conditions at ¢ = 0 may be expressed as

¢(z,0) = f(z)

(1-13)

and
Qst (xa 0) = g(ﬂ:)

where the functions f and g are specified for a particular problem.
For a first-order hyperbolic equation, such as

9¢ 8¢

ot “br
only one initial condition needs to be specified. Note that the initial condition
cannot be specified along a characteristic line.

A classical method of solving a hyperbolic PDE with two independent variables
is the method of characteristics (MOC). Along the characteristic lines, the PDE
reduces to an ODE, which can be easily integrated to obtain the desired solution.
Details of MOC and the appropriate solution schemes will not be discussed here.
However, some essential elements of characteristics are provided in Appendix A.
Additional materials on MOC may be found in References [1-1] or [1-2].

To illustrate classification of a second-order PDE, an example is proposed as
follows:

Example 1.1: Classify the steady two-dimensional velocity potential
equation.

(thQ) ¢zz+¢w=0
Solution: According to notations used in Equation (1-1),

A=(1-M?%, B=0, and C=1

Thus, (B*~4AC) = —4(1-- M?). If M < 1 (subsonic flow), then (B?—4AC) < 0
and the equation is elliptic. For M = 1 (sonic flow), (B? ~ 4AC) = 0 and the
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equation is parabolic. For M > 1 (supersonic flow), (B? — 4AC) > 0 and the
equation is hyperbolic.

Now consider the physical interpretation of various classifications. Assume that
a body moving with a velocity v in an inviscid fluid is creating disturbances which
propagate with the speed of sound, a. If the velocity u is smaller than a, that
is, if the flow is subsonic, then the disturbance is felt everywhere in the flowfield
(Figure 1-4a). Note that this is what happens for an elliptic PDE.

As the speed of the body u increases and approaches the speed of sound, a
front is developed, with a region ahead of it which does not feel the presence of the
disturbance (Figure 1-4b). This region is known as the zone of silence. Thus the
disturbance is felt only behind the front. This region is known as the zone of action.
When the speed u is further increased, to the extent that it exceeds the speed of
sound, a conical front (in three-dimensional analysis) is formed (Figure 1-4c). The
effect of the disturbance is felt only within this cone.

Figure 1-4a. Propagation of disturbance in subsonic flow.

Zone of silence Zone of action

Figure 1-4b. Propagation of disturbance in sonic flow.
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Zone of action

Zone of silence

Mach cone

Figure 1-4c. Propagation of disturbance in supersonic flow.

This conical front is known as the Mach cone in three-dimensional space or as Mach
lines in two-dimensional space. Mach lines patch two different solutions of the PDE
and thus represent the characteristics of the PDE.

1.7 Model Equations

Several partial differential equations will be used as model equations in the fol-
lowing chapters. These equations will be used to illustrate the application of various
finite differencing techniques and stability analyses. By observing and analyzing the
behavior of the numerical methods when applied to simple mode! equations, an un-
derstanding should be developed which will be useful in studying more complex
problems. The selected equations are primarily derived from principles of fluid me-
chanics and heat transfer. However, this selection should not limit our discussion
to problems in fluid mechanics. Many PDEs in science and engineering may be
represented by the selected model equations investigated here.

The selected model PDEs which will be used in the next chapters are as follows:

1. Laplace’s equation:

5o 0%
— ———t T 0 -
3 + B (1-14)
2. Poisson’s equation: ,
0% 0% _
Bt + e f(z,y) (1-15)
3. The equation for unsteady heat conduction:
or o*T 8*T

i «a (@ -+ —6—y7) (1-16)
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4. The y-component of the Navier-Stokes equation reduced to Stokes’ first prob-

fom: du  Pu
5 = Vg (1-17)
5. The wave equation: \ \
T (g}%) (1-18)
6. The Burgers equation:
%:1 = —u% (1-19)

These equations are expressed in one- or two-space dimensions in the Cartesian
coordinate system. Some of the model equations in two-space dimensions will be
reduced to one-space dimension in the upcoming discussions.

In most cases, the selected model equation subject to imposed initial and bound-
ary conditions has an analytical solution. In such instances, the analytical solution
is used as a basis for comparison with various numerical solutions. These compar-
isons are very useful in determining the accuracy of the various numerical algorithms
employed.

1.8 System of First-Order PDEs

The equations of fluid motion are composed of conservation of mass, conserva-
tion of momentum, and conservation of energy. The governing equations may be
expressed by partial differential equations, thus forming a system of second-order
PDEs. For certain classes of problems, the governing equations are reduced to a
system of first-order PDEs. For example, the equations of fluid motion for inviscid
flowfields, known as the Euler equations, belong to this category. Furthermore, in
some applications a higher-order PDE may be reduced to a system of first-order
PDEs by introducing new viariables. In this section, the conditions under which a
system of first-order PDEs is classified will be explored. Consider a set of first-order
PDEs expressed in the following form

feXi

Bt +
where ® represents a vector (or column matrix} containing the unknown variables.
The elements of the coefficient matrices [A] and [B] are functions of z, y, and ¢;
and the vector ¥ is a function of ®, z, and y. For example, a set of two first-order
PDEs could be represented by the following equations:

du du ov ou Ov
"é-t— -+ al-a'?z" + az-a—?v- + a3'6—y' -+ a46—y +¥, =0 (1-21)

[A]g—i- + [B]%% +U=0 (1-20)
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and
v du v Ou Ov
E+b1—£+b255+b3@+b4%—+\112_0 (1-22)
where
_|u _ o a | as a4 BR7
d = o | [A]—[b1 bg}’ [B]—[b3 b4],and \Il—kq’2

If the eigenvalues of the matrix [A] are all real and distinct, the set of equations
is classified as hyperbolic in t and z. For complex eigenvalues of [A], the system of
equations is elliptic in ¢ and . Similarly, the set of equations is hyperbolic in ¢t and
y if all the eigenvalues of matrix [B] are real and distinct; otherwise, for complex
eigenvalues, the set of equations is classified as elliptic. If the system of equations
has the following form (the steady-state form of Equation (1-20)),

8% . 0%
[Alg, + [Blg +¥ =0, (1-23)

then the set of equations is classified according to the sign of

H=R?-4PQ (1-24)
where
P = |A| (determinant of 4), Q = |B|
and
SFHER- 2

The set of first-order PDEs is hyperbolic for H > 0, parabolic for H = 0, and
elliptic for H < 0. This classification is presented in Ref, [1-3].

At this point, consider a general form of a system of first-order PDEs and its
classification. This consideration should also clarify the origin of relation H =
R? — 4PQ, i.e., Equation (1-24). In the arguments to follow, the mathematical
details are omitted; instead, applications are emphasized. Recall that characteristics
represent a family of Lines across which the properties are continuous, whereas there
may be discontinuities in their derivatives. Now, define S to represent characteristic
surfaces and normal to these surfaces denoted by 7. In the Cartesian system, we
may write (for 2-D problems)

= n+ n,J

At this point, we seek a relation whereby the number of possible characteristics
may be determined. If the characteristic normals are all real, then the system is
classified as hyperbolic. If they are complex, then the system is elliptic. For mixed
real and complex values, the system is mized elliptic/hyperbolic. The system is
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classified as parabolic if there is less than K real characteristics, where K is the
number of PDEs in the system. To introduce the required relation, consider the
following model equation:

A+ By =0 (1-26)
A wave-like solution (characteristics direction) for the system may be obtained if
IT|=0 (1-27)
where
(T] = [A] nz + [B] ny (1-28)

For mathematical details, see Reference [1-4}.
The matrices [A] and [B)] were previously defined from Equations (1-21) and
(1-22). Now, matrix [T is formed as

ang axny azny asny anz + asmny Nz + aqny
(7] = + -
biny  bang ban,  byn, binz + ban,  bang + byny
from which the determinant is computed as
IT| = (asbs — bsas)n? + (a1ba — azbi)nZ + (a1bs + asby — azhs — brag)neny, =0
Divide by n? to obtain
2
(a3b4 - b3a4) (;—L'y-) + (a1b4 + asbz - agb:; — b1a4) (;lnl) -+ (albz — a.gb;) =0

X

This equation may be written as
: 2
Q(-"—") +R(ﬂ)+P=o
Ng Ny
from which

(ﬁ) _ -R+yR*—4PQ -R*VH
ne/ 2Q T2Q

Note that the notation previously defined for Equation (1-23) is used in the
equation above. Therefore it is seen that, if H > 0, the system is hyperbolic; if
H < 0, the system is elliptic; and if H = 0, the system is parabolic.

To illustrate the procedure described above, the following applications are pro-
posed.

Example 1.2 Classify the following system of partial differential equations.

du Bv
ey = O
v _ou _ 4

dr Oy
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Solution: The system may be expressed in a vector form as

8q _84q
A~5; + B?a; =0
where
- u 10 0 1
Y 01 -1 0
Therefore,

-1

Now, from Equation (1-24), H is determined as H = R?* — 4PQ = —4. Since H is
negative, the system is classified as elliptic.

As a second approach, Equation (1-27) may be used. For this purpose, (T is
determined as

0 z
S A T 1 R B g
- "—ny nz
The determinant |T| is
IT| =n2 + n3

According to the requirement (1-27),

ni—l—ng = 0 or
2
(ﬂ) +1 =0
L

from which both values of (ny/n;) are imaginary and, therefore, the system is
elliptic.
The elliptic nature of the system can be further verified by combining the two

equations. That is accomplished by eliminating either u or v from the system. The
result is
Fu u v B
e = =
0z?  8y? Ox?  Oy?
which was previously classified as elliptic.
When the system of equations exceeds two, the general relation given by (1-27)
must be used for classification of the system. To illustrate this point, consider the
following example.

0
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Example 1.3 The governing nondimensional equations of fluid motion for steady,
inviscid and incompressible flow in two dimensions are given by:

du v 0
dz Oy -
Ju du Op
’U.EE + 'U“a—- 5— =0
v ov Op
U 3 +v By + v
Classify the system of equations.
Solution: Select the unknown vector, Q, as
u
Q=|v
p
Therefore, the vector formulation is written as
4% 5%2 o
By
where
1 00 010
A=]u 01 and B=1!v 0 0
0 v O 0 v 1
Following (1-28), the matrix [T] is
Ny 0 0 0 Ny 0
[T) = [Aln, + [Blny = | ung 0 ne |+ | vny 0 0
0 UNy 0 0 vn, Ty
or :
N Ny 0
T]=1 un;+vny 0 Ny
0 Uny + vny Ny

from which
IT| = ng[—nz(unz + vny)] — ny [ny (un: + vny)|

= — (ung +vn,) (ni + nz)
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Therefore, according to (1-27),
T} = —(unz + vny) (nf +nj) =0

Dividing the above equation by n3 yields

2
("—§+1) (ﬂwu) -0
n2 Ny
from which

Since mixed real and complex values result, the system is a mixed hyperbolic/
elliptic system.

1.9 System of Second-Order PDEs

On many occasions, the system of PDEs will include second-order derivatives.
In fluid mechanics, for example, the viscous terms in the momentum equation and
the heat conduction term in the energy equation are second order. The classi-
fication of such a system is facilitated if one reduces the second-order system to
a first-order system and, subsequently, applies the procedure described previously
for classification of a first-order system. To illustrate the procedure, consider the
steady, incompressible equations of motion in nondimensional form given as

du Bv

32 =0 (1-29)
Ou oOu I 1 (0u O

‘U.-(,;; + ‘Ua—y = _EE_ e (—6_? + a—yz) (1-30)
Qv v Op 1 (0% &%

'U.“a—z + v 6y ay E (@ + 3_!}2) (1-31)

In order to reduce the system to a first-order system, introduce the following
auxiliary variables:

a= @- _ o and ¢= Ou
T er ' T By ! T By
Note that, from the continuity Equation (1-29),
d
u_ Q‘l_) b

oz dy
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The new variables may be related by cross-differentiation. For example,

b (61)) v b

8z \ By - Oz 0y = oz
and
8 (o) _ &y _ba
Oy \dz/  08zdy Oy
Equating the two expressions,
o _da_,
dr Oy
Similarly,
oo 0 _g
oz ' dy

Now, the system of first-order equations is written as

ou _
Bymc

A

Ox Oy

o g _,

8r oy

dc Ob

a+-a—§——0

1 b dc Op
E(—a*‘a)—gg— ub+ ve
1 (8a Ob dp
-Eé(-é"a':'—i-a—y)-—-a—y—ua-!—vb

This system is written in the vector form as

8Q | 0Q _
Aa:c +B6y -
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where
] 0 0 0 0O 0 0
[ u
1 0 0 6 0 0
v
0 0 0 1 0 o0
a
Q= ; A=19 o o 0 1 o0
1
c 0 0 0 !
. 0 0 L 0 0 0
e
1 0 0 0 0 0 1 [ ¢
01 0 0 0 0 0
00 -1 0 0 0 0
B=19 0 0 1 o o C= 0
1 0
0 0 0 0 — o0
) Re —ub+ ve
0 0 0 Re 0 _1- _ua+vbj

Now the matrix [T is formed as,

[ n, 0 © 0 0 0

Ne Ny 0 0 0 0
0 0 -n, n 0 0
T=19 o o ny, nz 0
0 0 0 - X g
IR - AL
and, following (1-27),
IT| = Rie-nj (nﬁ + nﬁ)z =0

Thus,
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or 2
(1'1) +1=0
ng

since (ny/n;) is shown to be imaginary, the system is classified as elliptic.
Now, an example is proposed where the system is time dependent and, therefore,
falls in the category of the system given by (1-21) and (1-22).

Example 1.4 The governing equations of motion for one-dimensional, inviscid
flows are given by the Euler equations. If the assumption of perfect gas is imposed,
the system is written as

It is required that this system be classified.

Solution. Define the variable vector Q as

p
Q=|u
p

The system is written in the vector form as

oQ
A
ot + 3:::
where
U P 0
1
A=1 0 u -
p
0 pa® u
The eigenvalues of the system are obtained from
u—A P 0
0 uU—A 1 =0
P
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or (u—/\)[(u—-A)(u—/\)—(%) (paz)] =0

or (u—A) [(u—A)2—a2] =0
from which

A = u

A2 = u-—a

A3 = u+a

Since all the eigenvalues are real, the system is classified as hyperbolic.

1.10 Initial and Boundary Conditions

In order to obtain a unique solution of a PDE, a set of supplementary conditions
must be provided to determine the arbitrary functions which result from the inte-
gration of the PDE (compared to arbitrary constants in ODE). The supplementary
conditions are classified as boundary or initial conditions.

An initial condition is a requirement for which the dependent variable is specified
at some initial state.

A boundary condition is a requirement that the dependent variable or its deriva-
tive must satisfy on the boundary of the domain of the PDE.

Various types of boundary conditions which will be encountered are:

1. The Dirichlet boundary condition. If the dependent variable along the boundary
is prescribed, it is known as the Dirichlet type.

2. The Neumann boundary condition. If the normal gradient of the dependent
variable along the boundary is specified, it is called the Neumann type.

3. The Robin boundary condition. If the imposed boundary condition is a linear
combination of the Dirichlet and Neumann types, it is known as the Robin
type.

4. The Mixed boundary condition. Frequently the boundary condition along a
certain portion of the boundary is the Dirichlet type and, on another portion
of the boundary, a Neumann type. This type is known as a mixed boundary
condition.
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As an example, consider transient conduction in two-space dimensions. Assume
that a long rectangular bar has been heated to a temperature distribution of T' =
f(z,y). An initial condition would then be prescribed such that

for t=0, T=f(z,y)

Now, place the bar in an environment in which the lower and right sides are in
contact with a convecting fluid of temperature Ty and a constant film coefficient of
k, while the left side is insulated (adiabatic) and the upper side is kept at a constant

temperature.
The corresponding boundary conditions are:
oT
> = — =
t>0 z=0 , e
ar h
=L o _Z(T-—
* T a1
oT h
= — =—(T-T,
y 0 1 ay k ( J )
and J
v= H ’ T=T,
These are shown in Figure 1-5.
LT=Te

M __h 1o
e SX ="k (T

Figure 1-5. Sketch illustrating the imposed boundary conditions
on the rectangular bar.
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1.11 Remarks and Definitions

In order to solve a given PDE by numerical methods, the partial derivatives in
the equation are approximated by finite difference relations. These representations
of the partial derivatives are obtained from Taylor series expansions, as will be
shown in the next chapter. The resulting approximate equation, which represents
the original PDE, is called a finite difference equation (FDE).

To illustrate the objectives and the procedures to be developed, consider a two-
dimensional rectangular domain. We wish to solve a PDE within this domain
subject to imposed initial and boundary conditions. The rectangular domain is
divided into equal increments in the z and y directions. Denote the increments in
the z direction by Az and the increments in the y direction by Ay. Note that the
increments in the r direction do not need to be equal to the increments in the Y
direction. These increments may be defined as mesh size, step size, or grid size. The
location of mesh points, grid points, or nodes is designated by i in the z direction
and by j in the y direction. The maximum number of grid points in the z and
y directions are denoted by IM and JM, respectively. These nomenclatures are
shown in Figure 1-6.

The finite difference equation that approximates the PDE is an algebraic equa-
tion. This algebraic equation is written for each grid point within the domain.
The solution of the finite difference equations provides the values of the depen-
dent variable at each grid point. The objectives are to study the various schemes
to approximate the PDEs by finite difference equations and to explore numerical
techniques for solving the resulting approximate equations.

j+1

-
-

¥ i—1,j i+1,j

ij=1

=1 I(_ _)‘ =M
AX

Figure 1-6. Sketch illustrating the nomenclature of computational space.
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Before proceeding with an analysis of numerical techniques, it is necessary to de-
fine additional terminology for concepts which will be investigated in the upcoming
chapters.

1.

Consistency: A finite difference approximation of a PDE is consistent if the
finite difference equation approaches the PDE as the grid size approaches zero.

Stability: A numerical scheme is said to be stable if any error introduced in
the finite difference equation does not grow with the solution of the finite
difference equation.

. Convergence: A finite difference scheme is convergent if the solution of the fi-

nite difference equation approaches that of the PDE as the grid size approaches
ZEro.

. Lax’s equivalence theorem: For a FDE which approximates a well-posed, linear

initial value problem, the necessary and sufficient condition for convergence
is that the FDE must be stable and consistent.

The conservative (divergent) form of a PDE: In this formulation of a physical
law, the coefficients of the derivatives are either constant or, if variable, their
derivatives do not appear anywhere in the equation. For example, the conser-
vation of mass for steady two-dimensional flow is written in conservative form
as

V- (pV) =0

or in Cartesian coordinate system as
g g
g 1) + %(pv) =0

If this equation is written in expanded form as

8+30+ @_4_ Op
Pz Poy Yoz T Voy

it is known as the nonconservative form of the equation.

=0

Conservative property of e FDE: If the finite difference approximation of a PDE
maintains the integral property of the conservation law over an arbitrary re-
gion containing any number of grid points, it is said to possess a conservative
property.

In closing, a few points should be emphasized.
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(a) First-order PDEs occur only occasionally in engineering problems. Al-
most all first-order equations have real characteristics and thus behave
much like hyperbolic equations of the second order.

(b) Equations with more than two independent variables may not fit neatly
into the classification of PDEs described in this chapter. However, the

concepts of elliptic, parabolic, and hyperbolic can be extended to such
PDEs.

{c) Not all problems are expressed as purely elliptic, parabolic, or hyperbolic
problems. On many occasions, a problem is expressed as a mixture of
elliptic and parabolic equations, i.e., the governing equations are elliptic
in one region and parabolic in another region of the domain.

1.12 Summary Objectives

After completing this chapter, you should be able to do the following:
1. Define and give examples of:

a. Linear and nonlinear PDEs
b. Elliptic, parabolic, and hyperbolic PDEs
c. Initial and boundary conditions

d. The conservative form of a PDE
2. Define:

a. Zone of influence and zone of dependence
b. Convergence

c. Consistency

d. Stability

3. Solve the problems for Chapter One.
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1.13 Problems

Classify the following second-order partial differential equations.

2 2 2
B¢+ ¢ +26¢x

1.1 36&:2 drdy  Oy?

0

8% 0O¢ &% O¢ _
1.2 -6?4-54-5;54';55-}-}{—-0

o6 86 ¢
1.3 a+ﬁ$+aé—$—2—0

o 06 ¢ 0% ¢
14 4(—9—F+y5;+$~6~5+6—y2+4a$—&}-—4my—0

Determine the values of £ and y to make the following partial differential equa-

tions elliptic, parabolic, or hyperbolic.

¢ 8% 8¢

1.5 x6x2+16z3y y3y2=0
0%¢ 8%

&% 9%¢ 8¢
2y —= + — 2 =
17z Yoz? my&cay y ay® 0

) 62¢ 62(15 ) 62
1.8 smmﬁ + ZCos:z:axay + sm:t:a—y2 =0

1.9 Classify the following system of equations:

ou 28 O _
ot %8z oz
dv du ov
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1.10 The z-component of the momentum equation for an incompressible flow

with zero pressure gradient is given by

Assume v to be a constant. Reformulate the equation into the conservative

form.

1.11  The governing equations for stationary, shallow water are expressed as

ou du oh

u£+v%+gﬂ—0
o, B oh_
“a:c v@y gay_

e d

where v and v represent the velocity components, and h represents the surface

elevation.

(a) Define the unknown vector Q as

and rewrite the system of equations in a vector form similar to (1-23).

(b) Classify the system.

112 Classify the following system of PDEs:

a +a @
018 26y—-91

ov du
b1$+b2‘a—y = g2

Consider three cases where
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(a) ay=by=as=by=1
(b)al:b'zzl, bl=01 0.2=—1

(C)a1:b1:b2—_-1, a2=-1

1.13  Consider the system

(a) Reduce the system to a first-order system.
(b) Write the system in a vector form.

(¢) Show that the system is parabolic.

1.14 A system of PDEs is given by the following:

o
dr Oy
6z = Oy  poz oz? ' Ayt

Yar T8y T T poy 8z Oy?

where the kinematic viscosity v and the density p are constants.

(a) Reduce the system to a first-order system.
(b) Write the system in a vector form.

(¢) Classify the system.

1.15  Classify the following system of equations:
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(a) (z+y)$+a—y=0
Jv  Ou
(I—y)&"f'b; 0
ou Ov Ow
bu_ov_du_
oz 8y Oy
ov dBw
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Finite Difference Formulations

2.1 Introductory Remarks

The differentials of the dependent variables appearing in partial differential
equations must be expressed as approximate expressions, so that a digital com-
puter (which can perform only standard arithmetic and logical operations) can be
employed to obtain a solution. Two methods for approximating the differentials of
a function f are considered in this chapter. One method of approximation often
used is the Taylor series expansion of the function f. A second method is the use of
a polynomial of degree n. The Taylor series expansion will be considered first, and
subsequently some examples using the polynomial representation of the function f
are given.

2.2 Taylor Series Expansion

Given a function f(z), which is analytical, f(z + Az) can be expanded in a
Taylor series about x as

(Az)? 8*f | (Az)® &f
o a3t et

flz + Az) = f(z) + (Am)% +

-ty 5 O -

Solving for 8f/8zx, one obtains

?_,f_ _ fz+Az) - f(z) Az 8f (Ax)?8f
dr Az T Y 6:c3+m




30 Chapter 2

Summing all the terms with factors of Az and higher and representing them as
O(Az) (that is read as terms of order Az) yiclds

0f _ flz+Az) - f(z)
oz Az

+O(Az), (2-3)

which is an approximation for the first partial derivative of f with respect to z.
Graphically, as shown in Figure 2-1, this approximation may be interpreted as the
slope of the function at point B, using the values of the function at points B and C.
If the subscript index ¢ is used to represent the discrete points in the z-direction,
Equation (2-3) is written as

8ff _ fin— K
% = T + O(Aa:) (2—4)

This equation is known as the first forward difference approximation of 8f/dz of
order (Az). It is obvious that as the step size decreases, the error term is reduced
and therefore the accuracy of the approximation is increased. Now consider the
Taylor series expansion of f(z — Az) about .

8f _(Bx) 8 (Axz) &
f(”'A‘”)=f(x)"A“’5E+(2T i

- @+ 3 |82 2

n! or"

+o o (2:5)

Solving for 8f/6z,
8f _ f(z)- flz - A)
8 Az

+ O(Ag)

f(x)

f(x+ Ax)
haé\ﬁ\
C

X x+Ax X

Figure 2-1. Illustration of grid points used in Equation (2-3).
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or
of| _ fi— fia
8zl Az
which represents the slope of the function at B using the values of the function
at points A and B, as shown in Figure 2-2. Equation (2-6) is the first backward
difference approximation of 8f/8z of order (Az). Now, consider the Taylor series
expansions (2-1) and (2-5), which are repeated here:

L (Ba) 8F | (Aa) &F

+ O(Ax) (2-6)

o+ a0) = o)+ ol + L S0 -0 @)
and
(A;z:)2 *f (Az)? 63f
f(.’L‘ - ) f(.’E) A 91 3:1:2 3! 3:!:3 (2"8)
Subtracting Equation (2-8) from Equation (2—7) one obtains
3
flz + Az) — f(z — Az) = 24z (A:z:) 83f 5+ (2-9)
3 "3 oz
¥
B
A
i—1 i >y
Figure 2-2. Illustration of grid points used in Equation (2-6).
Solving for 8f/0z,
af f(z-I-A:c) f(z — Az) 9
e oA + O(Az)
or
?i ft+1 ft 2
35 l; oA + O(Ax) (2-10)

which represents the slope of the function f at point B using the values of the
function at points A and C, as shown in Figure 2-3. This representation of 8f/8z
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is known as the central difference approximation of order (Az)?. Thus far, three ap-
proximations for the first derivative 8f/8z have been introduced. Now, the deriva-
tions of approximate expressions for the higher order derivatives are considered.
Again, consider the Taylor series expansion

_ of  (Ax)? 8*f (Ax) 8f
f(z + Az) = f(z) + (Ax) 5z + o B2 + TR + (2-11)
Expanding by a Taylor series f(z + 2Az) about z produces the expansion
_ af (2Az)* 8*f (2Ax) &f
f(z + 2Ax) = f(z) + (2Azx) 3. T T 552+ TR (2-12)
Af
A B C
i—1 i i+1 ;X

Figure 2-3. Illustration of grid points used in Equation (2-10).

Multiply Equation (2-11) by 2 and subtract it from Equation (2-12), and the result
is

—2f(z+ Az) + f(z + 2Ax) = —f(z) + (Aa:)2—g—z—2 + (Az)? %{- +--0 (2-13)
Solving for 8°f/0x2,
O*f  flz+2Az) - 2f(z + Az) + f(z)
oz (Az)? +0(Aq)
or "
fl _ fir—2fin+ fi +O(Axz) (2-14)

Oxtli (Az)?
This equation represents the forward difference approximation for the second deriva-
tive of f with respect to z and is of the order (Az). A similar approximation for the

second derivative can be produced using the Taylor series expansions of f(z — Ax)
and f(z — 2Az). The result is

Ffl  fi=2fia+ fia
oz, (Az)?

+ O(Ax) (2-15)



Finite Difference Formulations 33

This equation is the backward difference approximation of 82f/0z*. The derivation
of Equation (2-15) is left as an exercise. To obtain a central difference approximation
of the second derivative, simply add Equations (2-7) and (2-8). Thus,

8 f _ flz+ Az)—2f(z) + f(z — Az)
or? (Ax)?

+ O(Az)?

or
3f| _ fin—2fi+ finr
ozl (Azx)?
Approximations for higher order derivatives of f with respect to z can be found
using the same procedure (see example (2.2)). For convenience, define the first
forward difference fi;1 — f; as Azf; and the first backward difference fi — fi-1 as
V.f:. In general, first order forward and backward differences can be expressed as

+O(Az)’ (2-16)

Altf;=AMYALf) and Vifi= Vi (Vif)

Various central difference operators can be similarly defined. Some typical operators
are:

6:fi = firr = fisr = B fi+ Vafs
6zfi = fury — ficy
821y = 6065 = & (fury — Ficy)
= (fin—fi) — (fi — fi1)
= fin—2fi+ fin
(AzV2) fi = B fi = Vo fi = finn = 2fi + fia
(A2 fi = fin— 4fin + 6fi = 4finr + fiza

Using the operators just defined, the approximations of the higher derivatives by
forward, backward, and central differencing may be expressed as

o f AL S

oz (Az)" +0l4s) =
g‘;{ = A:ﬂ_z% ;m;:f“? + O(Az)*  for n even (2-19)
g’; jn’ - A:fi_ﬂzi?;-x;gfﬁn? + O(Az)?  for nodd (2-20)
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These expressions are tabulated in Tables 2.1, 2.2, and 2.3 for derivatives of up to
the fourth order.

So far the first and higher order derivatives have been expressed using forward
and backward differencing of order (Azx) and central differencing of order (Az)2.
By considering additional terms in the Taylor series expansions, a more accurate
approximation of the derivatives is produced. Consider the Taylor series expansion,

(A2) & | (Ao )
20 fz? 3! 823

f(z+ Az) = f(z) + (Az) g—i + + - (2-21)
Solving for 8f/0z,

of _flz+An)—f(z) Az 8f (Az)? 8

Oz (Az) T2 02? 6 Jr e (2-22)
Substitute a forward difference expression for 8%f/8z?, i.e.,
2 —
O°f  f(z)—2f(x+ Azx)+ f(z + 2Az) +0(Az)

dxr? (Ax)?
and one obtains

8f _ fle+Az)—f(z) Oz [f(z+20z) - 2f(z + Az) + f(2)

oz (Azx) 2 (Az)? + O(Ax)
(Az)® 8*f
T8 a2 +--- or
Of  —flx+20zx)+4f(z + Az) - 3f(2)
B = SAS + O(Az)? (2-23)

Thus, a second-order accurate finite difference approximation for 8f/8z has been
obtained. A similar expression for the backward difference approximation can be
generated by replacing the second-order derivative with a first order accurate back-
ward approximation. In general, higher order forward, backward, and central ap-
proximations are obtained by replacing more terms in the Taylor series by forward,
backward, and central difference representations of the derivatives. In practice, ap-
proximations of order three or more are rarely used because they require greater
computation time, since computation time increases as (Nodes)® in most machines;
however, with sufficient convergence criteria, a good approximation with a more
reasonable computation time can be obtained with second-order differencing. Ta-
bles 2.4, 2.5, and 2.6 present the forward, backward, and central difference approxi-
mations of first and higher order derivatives (up to fourth order) with error orders of
(Az)? (for forward and backward differencing) and (Az)* (for central differencing).
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2.3 Finite Difference by Polynomials

The second procedure for approximating a derivative is to represent the function
as a polynomial. The coefficients of the polynomial are computed by substitution
of data (dependent variable) from a series of usually equally spaced points of the
independent variable. The approximate values of the derivatives are computed from
the polynomial. For example, consider a second-order polynomial,

f(z) =Az*+ Bz +C (2-24)

which is shown in Figure 2-4. Select the origin at z;. Thus, z; = 0, z;y1 = Az,
and ziy2 = 2Az and the values of the function f at these locations are, f(z;) = f;,
f{zis1) = firr, and f(ziy2) = fire.- Thus,

fi= A.’I:?+B$.'+C=O
fi+1 = A.’.U?+1 + BIE.'.H +C= A(A.’B)2 + B(A.’B) +C

Y
x

Xy X141 Xi+2

j€— Ax —>e—Ax —»

Figure 2-4. A second-order polynomial approximating the actual function.

and

fi+2 = ASB?_{_Q -+ BI;‘+2 + C = A(2Ax)2 + B(2A:c) -+ C
From which it follows that

C=1f
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B = —fira +4fip1 — 3

2(Azx)
and
A= firz = 2finn+ fi
2(Az)?
Now computing the first derivative of f, one has
% _94z+B
or
orat z; =0, of
i =B
azrli
Therefore,

Of  —fira+4fi1—3f;

oz 2Azx
which is identical to the second-order accurate forward difference expression ob-
tained from Taylor series expansion. Note that this approximation is classified as
second-order accurate for 8f/8z, since 33f/0x® vanishes just as in the accuracy

analysis of the Taylor series expansion. The second derivative of f may be deter-
mined as

O*f
322 =24
from which
f _ fia—2fin+ fi
oz? (Az)?

and is consistent with the first-order finite difference approximation given by Equa-
tion (2-14). If the spacing of points 4, ¢ + 1, and i + 2 is not identical, as shown in
Figure 2-5, a finite difference approximation of the derivative is found by the same
procedure. Assume r; =0, Ty = Az, and z442 = (1 + a)Az. Then,

fi=C
fin = A(Az)*+ B(Az) + C
and :
firo = A1+ )} (Az)* + Bl+ a)Az + C
Consequently,

C=fi

B = —fira+ (1 + @) finn — (@ + 20) f;
B o(l + o)Az
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and
A= fira = (L + @) fir1 + afi
a1 + a)(Ar)?

f

X Xj41 Xi+2
lt— Ax—>}— aAx —>

Figure 2-5. A second-order polynomial with unequal stepsizes.

Therefore,
Of | —fua+ (1 + &) fir1 — oo+ 2)f;
fzrl ol + a)Azx
which is a second-order accurate approximation. The second derivative of f is
obtained as

(2-25)

o*f
ke 24
Hence,
f _ [fir—(+a)fin+afi
o2 a(l + a)(Az)?

which is a first-order accurate expression. Similar relations for backward and central
difference approximations may be obtained by this procedure.

2.4 Finite Difference Equations

The finite difference approximations just discussed are used to replace the
derivatives that appear in the PDEs. Consider an example involving time (¢) and
two spatial coordinates (z,y); i.e., the dependent variable f is f = f(t,z,y). A
governing PDE of the form

of &Ff &f
E- = (ﬁ + 3y2 (2-26)
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where « is assumed constant, is used for illustration purposes.

It is required to approximate the PDE by a finite difference equation in a domain
with equal grid spacing. The subscript indices ¢ and 7 are used to represent the
Cartesian coordinates r and y, and the superscript index n is used to represent
time. It is specified that a first-order finite difference approximation in time and
central differencing of second-order accuracy in space be used. The spatial grid
spacings are Az and Ay, whereas At designates the time step. The grid system is
shown in Figure 2-6.

Time Level
*n+1°

Figure 2-6. Computational grid system for the solution of Equation (2-26).

Note that the value of f at time level n is known, and the value of f at time level
n+ 1 is to be evaluated. Therefore, Equation (2-26) may be expressed at time
level n or at time level n + 1. As a result, two types of formulation are possible.
First, consider Equation (2-26) at time level n. For this case, a forward difference
approximation which is first-order accurate is used. Hence,

of _ I - £,

5t AL + O(At)
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From Equation (2-16)

Pf  fhag— 2+ fly 2
3p7 = Ba) + O(Arx)

and
O°f _ fm—2f+
ay: (Ay)?
Therefore, the finite difference formulation of the partial differential equation (2-26)
is:

Yt o(ay)”

o= o Sl — 200+ filyy + i — 2105+ i
At (Azx)? (Ay)?

+ 0 [At, (Azx)?, (Ay)g] (2-27a)

Note that in this formulation, the spatial approximations are applied at time level
n. For the second case, Equation (2-26) is evaluated at n+ 1 time level. Therefore,
a first-order backward difference approximation in time is employed, and the spatial
approximations are at time level n+ 1. Hence, the finite difference formulation takes
the form:

it Y a[ Ty 2 A fE 2T i'.‘:tll] +
At (Az)? (Ay)?
+0[At, (Az), (ApY] (2-27b)

The resulting finite difference equations, (2-27a) and (2-27b), are classified as ex-
plicit and implicit formulations, respectively.

An obvious distinction between two finite difference equations is the number
of unknowns appearing in each equation. Close examination of Equation (2-27a)
reveals that it involves only one unknown, f{}' , whereas Equation (2-27b) involves
five unknowns. Thus, the solution procedures based on explicit and implicit for-
mulations are different. In the explicit formulation, only one unknown appears and
may therefore be solved for directly at each grid point. In the implicit formulation,
more than one unknown exists and therefore the finite difference equation must be
written for all the spatial grid points at n+ 1 time level to provide the same number
of equations as there are unknowns and solved simultaneously. Obviously, the solu-
tion of explicit formulation is simpler than the implicit equation. However, as will
be seen shortly, implicit formulations are more stable than explicit formulations.
Other differences between explicit and implicit formulations are discussed in future
chapters.
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Before some applications are considered, the finite difference equation (2-27a) is
rearranged as

A7 (Az)? (Ay)?
= 0[At, (Az), (Ay)Y

n+1 n n n n n n n
g Jig iy 2SSy fha -2+ iJ—l]

where the right-hand side represents the truncation error. Since the lowest term
on the right-hand side is of order one, the formulation is classified as a first-order
accurate method. If the approximation of the original PDE was such that the
truncation error was of the order [(At)?, (Az)?, (Ay)?], in which case the lowest
term is of order two, then it would be classified as a second-order accurate method.

2.5 Applications

Example 2.1. Find a forward difference approximation of O(Axz) for %

Solution. From Equation (2-17),

af| _ AL
gz = (g T OA2)
For n = 4, one has o
fl 1 _
B, = (g lefi +O(82)
But,
ALfi = AALf) = Ad(forr — fi) = DA fi1 — ALf) =
= Al [(f¢+2 — fir1) = (fir1 — fi):l = A2(fiso — 2fi1 + £))
= AulBafirn = 2Bsfirs + Bef) = A (s = fira) = 20iwa = firr)
+ Ferr = )| = Bullfies = fesa + 3fiss — S
= A:fi+3 - 3A:fi+2 + 3Azfi+1 - Aa:fi
= (fira — fira) — 3(fixa — fira) + 3(fir2 — firr) — (Fir1 — i)
= fira —4fira +6fia—4fii + fi
Therefore,

lig
3:17‘4{\" - (Ala:)‘* ['fiH —4fira+ 6fira —4fin + f,-]
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Example 2.2. Determine the approximate forward difference representation for
& f/8z® which is of the order (Az), given evenly spaced grid points as shown in
Figure 2-7 by means of:

(a) Taylor series expansion
(b) Forward difference recurrence formula

(c) A third-degree polynomial passing through the four points.

Solution.

(a) The Taylor series expansions of f(z+ Az), f(z-+2Ax), and f(z+3Ax) about
x are

of , (Ax)f 8f | (Az)° &f

flz+Az) = (‘””Aa 3 a2 v 8l 5a

+ O(Az)* (2-28)

B (2.!‘.\.1:)2 i & f
flz + 2Az) = f(z) + 2Azx 6 TR
mﬁf > s -+ O(2Az)* (2-29)
(3A:xr:)2 >f
f(z + 3Azx) = f(z) + 3Az 6 TR
(3Aw)a & f 4
+ — A B8 + O(3Ax) (2-30)
f
1 e fiez
f fiia
> X
Xy Xi41 X142 Xje3
j€— Ax >}t— Ax —>-}4—AXx —>]
Figure 2-7. Grid points used for the solution of example 2.2.
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(b)

(c)

The three simultaneous equations can be solved for §%f/8z*; for example,
frormm Equations (2-28) and (2-30),

2
3fur — fra = 26— 3002 L — a4z T roazy 23
and, from Equations (2-28) and (2-29),
2
fur=2fin= st 02 T @ T Lo @

Now Equations (2-31) and (2-32) can be solved for 8 f/9z3, resulting in
Ff  fis=3fua+3fin — fi

i TR +0(4z)
From Equation (2-17),
&Ff _ Afi
@ = (A )3 +O(AIE)

where

AL = AUAF) = Afirr = £) = BolBafirs = Baf)
= A|(fra = furt) = Girs = )| = Balfira = 2fuss + 1)
= Acfun = 28 firs + Bafi= (fora = fura) = 202 = firt) + (fors = £)
= fos = 3fua+3fi— f

Thus,

& f _ fis — 3fiva + 3firs — fi n
oz3 (Azx)?

O(Azx)

Fitting the third-degree polynomial f(x) = Az®+ Bz?+ Cz + D through the
four equally spaced points at x,;3, ZTi+2, Tiv1, and z;, one obtains

firs = A(BAz)Y + B(3Az)? + C(3Az) + D

fiva = A2Az)* + B(2Ax)* + C(2Az) + D

firn = A(Az)® + B(Ar)* + C(Az) + D
and

fi=D
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(Note that the selection of z; = 0 does not affect the generality of the solution.)
From which it follows that

D = f;
C— 2firs — 9five + 18fir1 — 11;
6Ax
B - —3fira+ 12fira — 15 fis1 + 6
B 6(Az)?

and

A= fita— 3fira +3fir1 — fi
6(Az)°

Now, the derivatives of f(z) are determined as

2
a—')"=3A-’1:2+2B:::+C', —a—i=6A:c+2B, and ﬁ-‘j:=6A

Oz ox? ozd
Therefore,
Pf  fira—3fia+3firn — fi
= O
523 (Az) +0(Az)

In addition, the first and second derivatives at ¢, where z is zero, are obtained
easily as 5 : .
f_ of _
ok 2B and B C

Hence,
Of  —3fira+12fisa — 15fi1 + 6; 2
oxr 3(Azx)? +O0(Az)
_ —fus+4fue—bfir1 +2fi 9
= (Az)? + O(Az)
and

Of _ 2fus—9fue+18finn — 115 3
5 6(57) +0(Az)

Example 2.3. Determine a backward difference approximation for df/8z which
is of the order (Az)3.

Solution. Consider the Taylor series expansion,

of  (Az) &*f (Ax) &f
flz — Az) = f(z) - Am-(';—s; + 2l 8r? 3:1!: oz3

+ O(Az)!
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from which

a Ar)? &2 Az)’ 83f
62 = 5o) - f(o - az) + B2 oL ( 6) 1
Now substitute the backward difference approximations for 82 f /8z? and 8 f/0z3.
It is important to pay attention to the order of accuracy of the approximations for
8%f/0z* and 8* f/8z3. Since we are interested in 8f/8x which is of the order (Az)?,
we must select a second-order accurate formulation for 82f/8x% and a first-order

accurate formulation for 3 f/823, i.e.,

Of  —fist4fia—5fia+2fi
ozt (Az)?

+O(Az)t (2:33)

+ O(Az)?

and
»*f _ —fica+ 3fica — 3fici + fi
Ox3 (Ax)3

Substituting the expressions above into (2-33) produces

of _ (Az)? [—fiia+ 4fia — Bfic1 + 2f;
Azgs = fimfiat— [ (Ba)?

+0(A7)

+ O(Ax)zl

(AzP [—fis+3fica—3fii + fi s
- [ e + O(A:c)} +O(Az)
or 5
6AZIL = 2/, 5+ O~ 18fy + 11f + O(A)"
from which

B_f _ —2fia+9fio—18fi_1 + 11f;
Ox 6Azx

+ O(Az)?

Example 2.4. Using the Taylor series expansion, find a second-order forward
difference approximation for 8 f/8z with unequally spaced grid points, as shown in
Figure 2-8.

Solution: Expand f(z + Az) and f[z + (1 4+ a)Az] about

Of  (Az)? 8f (Ax)® %f
fletbz) = flo) + Az g + = o + 51 59

+ O(Azx)* (2-34)
and

‘ 2 2 02
fle+ L+ @)Az) = f(z)+ (1+ a)Ax% G ’21 (Az) gz{

| 1+ (Aa) &

5 s + O(Ax)* (2-35)
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f
r 3
fitq
f fi42
~» X
Xy X4 X 42
|« Ax»}e—aax —>

Figure 2-8. Unequally spaced grid points for the solution of example 2.4.

Multiply Equation (2-34) by —(1 + ) and add it to Equation (2-35), so that

Bz 77 | o(azy

fie— 1+ a)fin+afi=(1+a)(a) 2 B2

or, solving for 8*f/8z?,

Ff _ fie— (L +a)fin +af;
9z la(l+a)(Az)?

+ O(Az) (2-36)

Substitute Equation (2-36) into Equation (2-34):

of  (Az)? fia—(1+a)finn+af;

= 7 3
fin=fi+ Az B + 5 To(+ o) (Ag)? + O(Az)
Solving for 8f/0z, one obtains
8f  —fur+ (1 +a)fi—ola+2)fi 2
or a(l + o)Az +O(Az)

Note that this expression was obtained (as Equation (2-25)) by using the polynomial
technique for finite differencing.

Example 2.5. Determine a central difference approximation of 8f/8z for the
unequally spaced grid points by the polynomial technique. Refer to Figure 2-9.
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Solution. The second-order polynomial f(z) = Az®+ Bz + C is passed through
the points f;1, fi, and fiy, where ;) = —Ar, z; = 0, and z;;; = aAz. Thus,

fio1 = A(-Ax)* + B(-Az) + C
i=C

and
f§+1 = A(an)2 + B(O!AZL') +C

j4— Ax —>}<— aAx —>

Figure 2-9. Unequally spaced grid points for example 2.5.

Solving for the coefficients A, B, and C, one finds
A — f1+1 _ (a+ 1).f‘+aﬂ—
a(a+ 1)(Ax)?

B = firi+ (@@ - 1)fi—a?fi 4
o(a+ 1)(Ax)

and
C= fi

The first derivative of the function is 8f/8x = 2Az + B, which at point z; reduces
to 0f/0z = B. Therefore,

f _ fun+ (@ —1)fi—d?fi

2
oz~ oalat Dbz ToA2)
Note that for a = 1, this expression reduces to
af fs+1 fs— 2
e oA + O(Ax)

i.e., Equation (2-10).
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Example 2.6. Given the function f(z) = 32°, compute the first derivative of f at
z = 2 using forward and backward dlfferencmg of order (Az). Compare the results
with a central differencing of O(Ax)? and the exact analytical value. Use a step
size of Az = 0.1. Repeat the computations for a step size of 0.4.

Solution. From Equation (2-4), the forward difference approximation of order

(Az) is 9
f_fin—Ji
B = Az + O(Azx)
With step size of Az = 0.1,
af _ f(2.1) - f(2)
dr 0.1 +0(0.1)
3f 441 4
il 4 4 =
3z~ 01 + 0(0.1) = 1.025 + O(0.1)
From Equation (2-6), the backward difference approximation which is of order Az
is:
6f fs fl—l
2= Az + O(Ax)
For Az = 0.1,
of _ f(2) - f(1.9)
o 0.1 +0(0.1)
and
af 4 _ 361
et S 1) = 0.1
3~ 01 + 0(0.1) = 0.975 + O(0.1)
From Equation (2-10), the central differencing of O(Az)? is
Of _ fni—fin 2
3 - 2Az + O(Azx)
For step size of Az =0.1,
of &412 - gk 2 _ %1' — 3_4_ 2
E P TORY + 0(0.1)° = 02 + 0(0.1)
and |
of
B = 1+ 0(0.01)

The exact value is 8f /82 = (2z), which at z = 2 is 8f/8z = 1. Repeating the
computations for Az = 0.4, the results are

8f _ fur=hi  oiag - £20=10)

% - Az 04 + 0(0.4)
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576 _ 4
= “0 i 4 1 0(04) = 1.1+ 0(0.4) .
af _ fi~fia _ f(2) - f(1.6)
3= Ar + O(Az) = 04 + 0(0.4)
_i B:_ 0(0.4) = 0.9+ 0(0.4) .
f _ fin—fin _ f(24) - F(1.6)
iy W O(Az)?* = 200.4) + 0(0.4)*
5.76 _ 256
gé = W—+O(04)2—-1+0(04)

Note that the results obtained from backward and forward differencing deviate from
the exact value when a larger step size is used. Selection of the step size is extremely
important in numerical analysis. As it is shown in the next example, selecting a
step size without careful consideration can result in meaningless values.

Example 2.7. Given the function f(z) = sin(2nz), shown in Figure 2-10, deter-
mine 8f/8z at z = 0.375 using central difference representation of order (Az)? and
order (Az)*. Use step sizes of 0.01, 0.1, and 0.25. Compare and discuss the results.

Solution. The central difference approximations of order (Az)? and (Az)* are

3f f:+1 fs&l

2
2= oAz + O(Az)

and
Of _ —furt8fin—8fiatfia
Bz 12(A2)

For the step size of 0.01,

+ O(Az)*

df _ sin(2.4190) —sin(2.2934) _ 0.6613 — 0.7501 _
oz 2(0.01) 0.02

—4.4399602 + 0(0.01)?

and
Of _ —sin(2.4819) + 85in(2.4190) — 85in(2.2934) + sin(2.2305)
or 12(0.01)

_ —0.6129 + 8(0.6613) — 8(0.7501) + 0.7902
- 0.12

= —4.4428806 + 0(0.01)*
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For the step size of 0.1,

8f sin(2.9845) — sin(1.7279)  0.1564 — 0.9877
= = = = —4.1562 1)?
oz 2(0.1) 0.2 1562694 + 0O(0.1)

f(x)

0.0 0.5 1.0

Figure 2-10. The function f(z) = sin(2rx).

and
8f _ —sin(3.6128) + 8 5in(2.9845) — 8 sin(1.7279) + sin(1.0996)
or 12(0.1)
_ —(—0.4540) + 8(0.1564) — 8(0.9877) + 0.8910
- 1.2

= —4.4211667 + 0(0.1)*

For the step size 0.25,

_g_:j;_ _ sin(2.92722072§i)n(0.7854) _ -—0.707;; 0.7071 _ _2.8284271 + O(0.25)?
and
of _- sin(5.4978) + 8sin(3.9270) — 8sin(0.7854) + sin(—0.7854)
oz 12(0.25)
_ —(—0.7071) + 8(~0.7071) — 8(0.7071) + (—0.7071)
3

= —3.7712362 + 0(0.25)4



50 Chapter 2

The analytical solution yields:

gi = 2w cos 2mz = 27 cos[2m(0.375)] = —4.4428829
T

The calculations are summarized in Table 2.7.

Step size | O(Az)* |error (% )| O(Az)* | error (%) Exact
0.01 —4.4399602 0.0658 | —4.4428806 | 0.000052 | —4.4428829
0.1 —4.1562694 6.4511 | —4.4211667 | (0.4888 —4.4428829
0.25 —2.8284271 | 36.3380 | —3.7712362 | 15.1174 —4.4428829

Table 2.7

The error is determined as follows:

__ { Approximate value - Analytical value
% error = ( Analytical value 100

This problem clearly indicates the importance of step size in the computation
of derivatives. It illustrates that a large step size yields inaccurate results for the
derivatives. Before any computations of the derivatives are attempted, the behavior
of the given function must be examined, and the selection of the step size reviewed
with care.

Example 2.8. Given the following data, compute f'(5), f'(7), and f'(9). Use
finite differencing of order (Az). Compare the results to the values obtained by
finite differencing of order (Azx)?.

z |56 7]8]9
F(z) [ 25|36 |49 |64 | 81

Solution. Only a forward difference approximation can be used to compute f'(5).

Similarly, only a backward differencing may be applied for the computation of f/(9).
Thus, from Equation (2-4),

8f _fin— £ 36 — 25
! . A = —
fi(5) = B Az + O(Ax) 11 4+ O(1)
and from Equation (2-23),

8f _ —fuat4fi1 - 35 2

or 2Ax +O(Az)

- 4 -
af _ —49+4(36) — 3(25) =10+ O(1)?

or 2(1)
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The exact value of f/(5) is 10. [Note that the data may be represented by f(z) = z?;
thus, f'(x) = 2z.] By forward or backward differencing of order Az, f'(7) may be
calculated. Using forward differencing,

af ft+1 fi . 64_49

fI(1) = B = =15+ 0(1)
Using backward differencing,
£(7) = 8f _fi—fin _49-36 13+ 0(1)

Azx 1

Using a central difference approximation of order (Az)?, one obtains

£(7) = of _ fin—fia _ 64 — 36

8z 20z 2
The exact value of f/(7) is 14; f'(9) can only be computed using a backward repre-
tation: :
sentation 9) = Bf fs S 81— 64

Az 1

Using a second-order apprommation,

F(9) = 6f _ fia—4fia+3fi _ 49—4(64) +3(81)

2Azx - 2
The exact value is 18.

=14+ O(1)?

=17+ 0(1)

= 18 + O(1)?

2.6 Finite Difference Approximation of Mixed Partial
Derivatives

Approximating mixed partial derivatives can be performed by two procedures.
One method is to use the Taylor series expansion for the two variables. A second and
easier method is to use the approximation of partial derivatives discussed earlier, in
which only one independent variable is involved. Procedures for both methods are
presented.

2.6.1 Taylor Series Expansion

To illustrate the use of the Taylor series expansion to compute approximate
expressions for mixed partial derivatives, consider 8°f/(8z8y). The Taylor series
expansion for two variables = and y, for f(z + Az, y+ Ay), is

Az)? &
fl@+ Az, y+4y) = fz, y)+Aa:6f+A oo+ (2“!”) a.-;;

(Ay)? & f 42 o BTAY & f
2 3y o Bzdy

+

+0|(Az)*, (Ay)?]

ODTU RKUTUPHANESE
M. E. T. U, LIBRARY
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Using indices i and j to represent a grid point at x,y,

0
fisignn = fis+Azx 5£ + Ay =~
(Ax)? 3*F | (Ay)? &*f

+ 2 Oz 2 Oy

+0/[(Az)*, (Ay)]] (2-37)

Similarly, the expansions of f(z — Az, y — Ay), f(z + Az, y— Ay), and f(z — Az,
y + Ay) yield:

&*f

af of
fij— Az — — 'y—+A:cAya$6y

oz dy
(Az)® &*f  (Ay)® &°f
+ 2 Ozt + 2 Oy

9f _ 5,0 _

Oz 4 Ay
(Az)® 3*f  (Ay)* &f

+ 2  Oz? + 2 Oy

.fi—lj-—l

Il

+0 [(Az)*, (Ay)’] (2-38)

firrg-1 = fij+ Az

+0[(az)*, Ay} (239)
and

of of
ficij1 = fij— Az B + Ay By AzAy

(Az)® 2f (Ay)? 8°f
2 a2 0

From Equations (2-37) through (2-40),

+ +0[(a2), (8y)Y]  (240)

o*f _ fign — fing- = ficgn + ficna
Ozdy 4(Ax)(Ay)

+0 [(Az)?, (Ay)?]

Finite difference approximation of higher order derivatives may be obtained by
following the same procedure.

2.6.2 The Use of Partial Derivatives with Respect to One Indepen-
dent Variable

Approximate expressions for partial derivatives with respect to one indepen-
dent variable have already been developed. These expressions can now be used to
compute mixed partial derivatives. Again, consider the partial derivative

7 _ o (oF
dzdy Oz \ Oy




Finite Difference Formulations 53

Using central differencing of order (Ay)? for 8f/dy, one may write
Of  fign— Jijm

_J = 2
By Ay + O(Ay)
Therefore,
Of 8 | fiyr1— fig= . 1 [Of of 2
dzdy O [ 240y +0(8y)" = 2Ay [5:1_: i+l e ig-1 +0(by)
Now apply a central differencing of order (Ax)? for 8f/0x:
Pf 1 [fingn = fingn  fing-1— fi-151 9 2
dzdy ~ 2Ay [ 2Azx - 20z +0 [(A:x:)  (8Y) ]

Hence,

O*f firrger — ficrgn — firng1 + ficr1
— 1 1§ $ O A 2 2
dzdy 4(Az){Ay) t [( z), (&) ]

As a second example, consider calculation of the approximate finite difference
expression for the mixed partial derivative of 8*f/(8x8y) which is of order (Az,
Ay). In this particular example, forward differencing is used for all the derivatives.

Pf 8 (0f\_ 0 |fun—Ffi
9rdy Oz (By) ~ Oz [ Ay +0)
__Le5) _9of
T Ay [63: ij+1 Oz t‘g‘] +0(8y)
_ b [ firgn — figtr  Jing— fog
~ Ay [ Az v Rt

_ fign — fign — g t i
= Ashy + O(Az, Ay)

Similar approximations can be obtained by using backward differencing for the
derivatives, or by using forward differencing for the z derivatives and backward
differencing for the y derivatives, or vice versa.

The finite difference approximations derived in this chapter will be used in the
following chapters to formulate various FDEs of model PDEs. Subsequently, various
numerical solutions of the FDEs will be investigated.

2.7 Summary Objectives

At this point, you should be able to do the following:
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. Use Taylor series expansion to approximate partial derivatives with various

orders of accuracy.

. Use polynomials to approximate partial derivatives.

. Approximate partial derivatives with finite difference expressions with variable

step sizes.

. Approximate mixed partial derivatives.

. Solve the problems for Chapter T'wo.
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2.8 Problems

21 Derive a central difference approximation for 8 f/8z® which is of order (Ax)?.

2.2 Determine an approximate backward difference representation for & f/0z*
which is of order (Azx), given evenly spaced grid points f;, fi-1, fi-2, and fi_3 by
means of:

(a) Taylor series expansions.
(b) A backward difference recurrence formula.
(c) A third-degree polynomial passing through the four points.

2.3 Find a forward difference approximation of the order (Az) for 8 f/dz5.

2.4 Derive a backward difference approximation of 8f/dz with the use of a second
order polynomial. Use unequally spaced grid points as shown in Figure (P2.4).

4
x

Xj-2 Xy Xy

= aAx —>}— Ax—>]

Figure P2.4. Grid points for problem 2.4.

2.5 Derive a first-order backward finite difference approximation for the mixed
O f

artial derivative .
P 0z dy
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e
2.6 Derive a third-order accurate, forward difference approximation for 5'):
z

2.7 Given the function f(z) = coswz, find f'(0.25) using forward and backward
difference representations of order (Az)?. Use step sizes of 0.01, 0.1, and 0.25.
Compare and discuss your findings.

2.8 Solve problem 2.7 using a second-order accurate central difference approxi-
mation.

2.9 Compute the first derivative of the function f(z) = tan(rz/4) at z = 1.5,
using first-order forward and backward approximations. Use step sizes of 0.01, 0.1,
0.5, and 0.8. Discuss the results.

2.10 Use the second-order accurate central difference approximation and the first-
order forward difference approximation to evaluate %(e’) at z = 1. A step size of
Az = 0.1 is to be employed. Recall that e = 2.71828.

2.11 Write a computer program to compute 8f/dz, 6°f/8xz?, 8 f/6z°, and
Of/0z* at z = 1.5 for f = sin(mx/2). Use central differencing of second order
with the following step sizes: Az = 0.0005, 0.001, 0.01, 0.1, 0.2, 0.3, and 0.4. Also
determine the % of error for each computation by

% Error = 1 OO(Numencal value — Analytical value)

Analytical value

2.12  Given the function f(z) = z® — 5z, write a program to compute df/9x and
0%f/0z* at £ = 0.5 and 1.5 by second-order central, backward and forward differ-
encing. Use step sizes of 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, and 0.3. Determine
the numerical error for each computation.

2.13  Compute f'(1), f/(3), and f'(4) for a function represented by the following
data. Use finite differencing of order (Azx)2.

z |o|1|2[3]36[4]5
flxylo|1]4]|3]24]2
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fi fir1 fira fisa fita
(ax)dL -1 1
(8224 1 2 1
aapZf | 1 3 -3 1
(Am)“gil; 1 _4 6 4 1

Table 2.1 Forward difference representations of O(Az).

fii | Fa | B2 | S | A
bn)dL R
(azy T L A I
(82pZ 4 -1 3 | -3 | 1
(A:c)“% 1 4 6 4 1

Table 2.2 Backward difference representations of O(Az).
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fi-2 fie fi Jin1 fire
2(80) 1 0 1
i
2 —
(A7) 6—3{ 1 2 1
oAy 8L . 2 0 -2 1
Oz
Vil
4 —_— —
(Az) a—xé 1 4 6 4 1
Table 2.3 Central difference representations of O(Ar)2.
fl' fi+1 fi+2 fl‘+3 fi+4 ﬁ+5
i)
2an) YL -3 4 -1
62
o7 2 -5 4 -1
2(A$)3% -5 18 24 14 -3
(Am)‘% 3 -14 26 —24 11 -2

Table 2.4 Forward difference representations of O(Ax)2.
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fis fi-a fi-s fia fic1 fi
2(an) 9L 1 4 3
20” _ _

(Az) %4 1 4 5 2
2(Aa:)3%§ 3 ~14 24 18 5
(Ax)‘*(i%l} -2 11 _24 26 | -14 3
Table 2.5 Backward difference representations of O(Ax)>.

fis | fie | finr fi firn | fiz | fins
12(80) 9L 1| -8 0 8 | -1
2
12(A$)2%&£ 1| 16| -3 | 16| -1
S(A:n)a%é 1| -8 | 13 0| —13| 8| -1
6(A:I:)4%45§- -1 12 -39 56 -39 12 -1

Table 2.6 Central difference representations of O(Az)*.
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Parabolic Partial Differential Equations

3.1 Introductory Remarks

Equations of motion in fluid mechanics are frequently reduced to parabolic for-
mulations. Boundary layer equations and Parabolized Navier-Stokes (PNS) equa-
tions are examples of such formulations. In addition, the unsteady heat conduction
equation is also parabolic.

In this chapter, various finite difference formulations of the model parabolic
differential equation will be investigated. Each of the resulting FDEs has its own
merit as far as accuracy, consistency, and stability are concerned. Although for
simple model equations some of the methods behave in much the same way, they
are investigated here to familiarize the reader with each of the methods. Obviously,
all the possible methods of solutions for parabolic equations cannot be presented
here; however, the most commonly used techniques are discussed. These methods
are applied to the model equations, and the resulting solutions for given initial and
boundary conditions are presented.

3.2 Finite Difference Formulations

A typical parabolic second-order PDE is the unsteady heat conduction equa-
tion, which is considered first in one-space dimension, and later in higher space
dimensions. The model equation under consideration has the following form

Bu ?u
= = 3-1
ot "oz (3-1)
where « is assumed constant.

Various finite difference approximations can be used to represent the derivatives

in Equation (3-1). The resulting finite difference equations will be discussed in detail
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shortly. For now, du/dt will be represented by a forward difference approximation
which is of order At:

ou  wftt—ul
= ="M oA (3-2)

Using the second-order central differencing of order (Az)? for the diffusion term,
Equation (3-1) can be approximated by the following difference equation:

’U.:H-l - 'U-? ‘+1 2’U. + u t—1
At % (AP (3-3)

In this equation, u?*! is the only unknown and, therefore, it can be computed from
the following;:

uﬂ+ 1 u® + a(At)

(] (A )2 l+1 2u +ut—-1) (3'4)

Thus, the second-order PDE has been replaced by an algebraic equation. Graphical
representation of the grid points in Equation (3-4) is shown in Figure 3-1.

Note that the value of the dependent variable at time level n is known from a
previous solution or given as initial data; i.e., the computed values at n+ 1 depend
only on the past history. To start the solution, an initial condition and two boundary
conditions must be specified. The formulation of a continuum equation in a finite
difference equation (such as Equation (3-4)), which expresses one unknown in terms
of the known values, is known as the explicit method. Since each finite difference
equation involves only one unknown, the resulting equations at time level n + 1
are solved independently to provide the values of the unknowns. Now assume that
the solution of a PDE using explicit finite differencing has progressed and that the
unknowns at time level n + 4 are being computed (Figure 3-2).

Unknown*n+1~- O

/TN

Known *n* —(O) O O —

i—1

Figure 3-1. Grid points for the explicit formulation.
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AT TI T T
n+3——C[)'/——?—?——OI ? ?_?_.?“o
n+2—0 —G—0—0—0—0— O~——9—|O

L
+1—O0—0—0—0—0—0—0—0—0O

oL
n—0—0—-0—0—0—0—0—0—0

i—4 -3 i—2 i—1 i i+1 i+2 i+3 i+4

Imposed boundary conditions at i—4 and i+4

Figure 3-2. Effect of the boundary conditions for the explicit formulation.

Note that the information at the boundaries at the same time level (n + 4) does
not feed into the computation of the unknowns at n + 4. That is contrary to the
physics of the problem, since the characteristic lines for this parabolic equation are
lines of constant ¢. Thus, in an explicit formulation, the boundary conditions lag
behind computation by one step. Next, a technique for which the formulation may
include the boundary conditions at every time level for the computations will be
reviewed.

When a first-order backward difference approximation for the time derivative
and a second-order central difference approximation for the spatial derivative is
used, the discretized equation takes the form

u?+l _ u? B u?ill 2u:t+l + un+1

AL % (Ar¢ (3-5)

In this equation, there are three unknowns: ul'!, u?*!, and uf}}!. Figure 3-3 shows
the grid points involved in Equation (3-5).
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i+1

\ /OM n+1* Unknown

Figure 3-3. Grid points for the implicit formulation.

"n" Known

The computation of the unknowns would require a set of coupled finite difference
equations, which are found by writing finite difference equations for all the grid
points. In order to apply a standard solution procedure for Equation (3-5), it is
rearranged as

alt L [1 aAt] ap1 , QAL o+ (3.6)

Byt o e e ]

A formulation of this type, which includes more than one unknown in each FDE, is
known as an implicit method. Equation (3-6) may be expressed in a general form
by defining the coefficients of ul*}, ul*!, and u{{ as af, b7, and ¢}, and by defining
the right-hand side of the equation as D}; therefore,

ﬂ n+l + bn n+1 +c?u?f11 — D:: (3_7)

This finite difference equation is written for all grid points at the advanced time
level, resulting in a set of algebraic equations. When these equations are put in a
matrix form, the coefficient matrix is tridiagonal. The solution procedure for the
tridiagonal system is presented in Appendix B.

Having identified two techniques for the discretization of the continuum equa-
tion, we must yet learn which method is superior for a particular application. What
about the step sizes At and Az? How does the selection of the step size affect the
solution? Will the solution be stable, and how accurate will it be? These impor-
tant issues are addressed in the upcoming sections and are illustrated by various
examples. The very important issue of stability is addressed in Chapter 4, which
covers stability analysis of finite difference formulations. Various formulations using
explicit and implicit methods are presented in the following sections.
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3.3 Explicit Methods

This section introduces some of the commonly used explicit methods for solving
parabolic equations.

3.3.1 The forward time/central space (FTCS) method. As discussed earlier, using
forward difference approximation for the time derivative and central differencing
for the space derivative in Equation (3-1), one obtains

a(At)

U (A )2 t+1

w5 —2uf +ui ) (3-8)
which is of order [(At), (Az)?. It will be shown that the solution is stable for
alAt/(Ar)? < 1/2. The grid points involved in Equation (3-8) were shown in

Figure 3-1.

3.3.2 The Richardson method. In this approximation, central differencing is used
for both time and space derivatives. For the model Equation (3-1), the resulting

FDE is “ )
n n—
w-uwTudy, — 2ud + ug,

2At - (Ax)?

which is of order [(At)?, (Az)?]. It turns out that this method is unconditionally
unstable and, therefore, has no practical value.

3.3.3 The DuFort-Frankel method. In this formulation the time derivative du/0t
is approximated by a central differencing which is of order (At)%. The second-
order space derivative is also approximated by a central differencing of order (Azx)?;
however, due to stability considerations, u} in the diffusion term is replaced by the
average value of 4! and ¥}, This formulation is a modification of the Richardson
method. The resulting FDE is

n+l _ ,n-1 ul, — 2—4—— +u
W W " 2 1 (3-9)
24t (Ax)?
From which,
. 2a(At) _
ntl _ , n-1 +1 1
up =t TR [ -t - (3-10)

Even though the n+ 1 value appears on the right-hand side, it is at ¢ location only,
so that the equation can be solved explicitly for the unknown u; at the time level
n+ 1. Thus,

2a(A) | ny1 _ _ a(At)| .y | 20(At)
[”(Am)?]“ [1 *lany )2]" By Mt

(3-11)
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This method is of order [(At)?, (Az)?, (At/Az)?. Interestingly enough, this for-
mulation is unconditionally stable! The additional term (At/Az)? is included in
the error term as a result of consistency analysis, which will be considered shortly.
The values of u; at time levels n and n— 1 are required to start the computation.
Therefore, either two sets of data must be specified, or, from a practical point of
view, a one-step method can be used as a starter. Of course, for the one-step (in
At) starter solution, only one set of initial data, say at n—1, is required to generate
the solution at n. With the values of u; at n— 1 and n specified, the DuFort-Frankel
method can be used. Two points about this scheme must be kept in mind. First,
the accuracy of the solution provided by the DuFort-Frankel method is affected by
the accuracy of the starter solution. Second, since the solution at the unknown
station requires data from two previous stations, computer storage requirements
will increase. The grid points involved in Equation (3-11) are shown in Figure 3-4.

n-+1 O
n O l O

e
i—1 i i+1

Figure 3-4. Grid points for the DuFort-Frankel method.

3.4 Implicit Methods

When model Equation (3-1) is discretized as

utt!

)

n n+tl n+l n+1
Uy S e B 2

e (Bz)?

(3-12)

it is defined as being implicit, since more than one unknown appears in the fi-
nite difference equation. As a result, a set of simultaneous equations needs to be
solved, which requires more computation time per time step. Implicit methods offer
great advantage on the stability of the finite difference equations, since most are
unconditionally stable. Therefore, a larger step size in time is permitted; however,
the selection of a larger time step is limited due to accuracy consideration because
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an increase in time step will increase the truncation error of the finite difference
equation. In this section some commonly used implicit formulations are described.

3.4.1 The Laasonen method. The simple formulation of Equation (3-12) is known as
the Laasonen implicit method. Applying the formulation to all grid points would
lead to a set of linear algebraic equations, for which a solution procedure is described
in Appendix B. The grid points were shown in Figure 3-3.

3.4.2 The Crank-Nicolson method. If the diffusion term in Equation (3-1) is replaced
by the average of the central differences at time levels n and n + 1, the discretized
equation would be of the form

U?+1 — 'U,? — (l) u?:ll _ 2U?+1 + u?jll + U?+1 — 2"‘? + u?—l (3_13)
At 2 (Az)? (Azx)?
Note that the left side of the equation is a central difference of step At/2, i.e.,
ou  uft!—up
B8t —(A_ty
2 -
2
which is of order (At)2.
n+1 —QO O O
At
- 2
n+1/2
‘ ‘ At
)
n —QO @) O
| AX | AX |
i—1 i i+1
Figure 3-5. Grid points for the Crank-Nicolson implicit method.

In terms of the grid points (see Figure 3-5) the left side can be interpreted as
the central difference representation of du/8t at point A, while the right side is the
average of the diffusion term at the same point. The method may be thought of as
the addition of two step computations as follows. Using the explicit method,

“+£ n n n n
w C -l ouly - 2ul+uy,

A T YT (Awy
2

(3-14)
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while using the implicit method,

1
utl — U?w ult — 2uft! +ulf!
A <O By’ (3-15)
2
Adding Equations (3-14) and (3-15), one obtains
wpt —ap 1 [uf -2t wb-mvwn] oo
At 2 (Ax)? (Azx)?

Note that by this analogy it is difficult to recognize the order (At)? of the time
derivative. This implicit method is unconditionally stable and is of order [{(At)?,
(Azx)?, i.e., a second-order scheme.

3.4.3 The Beta Formulation. A general form of the finite difference equation for
model Equation (3-1) can be written as
n+1 n n+tl n+1 n+1 n n n
U~ — Y i — 24+ w) Uiy — 2ud U,
o S S 1-—
A = G T gy
For 1/2 < B < 1, the method is unconditionally stable. Note that for 8 = 1/2,

the formulation is Crank-Nicolson implicit. For 0 < 8 < 1/2, the formulation is
conditionally stable. For g8 = 0, the formulation is FTCS explicit.

(3-17)

3.5 Applications

Various finite difference equations were used to represent the parabolic model
Equation (3-1) in the previous section. It is extremely important to experiment with
the application of these numerical techniques. It is hoped that by writing computer
codes and analyzing the results, additional insights into the solution procedures
are gained. Therefore, this section proposes an example and presents solutions by
various methods. In addition, readers are encouraged to work out the problems
proposed at the end of the chapter, since one gains valuable experience by writing
computer codes and overcoming difficulties in the process.

As a first example, consider a fluid bounded by two parallel plates extended to
infinity such that no end effects are encountered. The planar walls and the fluid
are initially at rest. Now, the lower wall is suddenly accelerated in the z-direction,
as illustrated in Figure 3-6. A spatial coordinate system is selected such that the
lower wall includes the zz plane to which the y-axis is perpendicular. The spacing
between two plates is denoted by h.

The Navier-Stokes equations for this problem may be expressed as

ou_ O
ot Oy?
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where v is the kinematic viscosity of the fluid. It is required to compute the velocity
profile u = u(t,y). The initial and boundary conditions for this problem are stated
as follows:

(a) Initial condition t=0, u=U0Up, for y=0
u=0 for O<y<h

(b) Boundary conditions ¢ >0, u=Uy for y=0
u=0 for y=~h

The fluid is oil with a kinematic viscosity of 0.000217 m?/s, and the spacing
between plates is 40 mm. The velocity of the lower wall is specified as Uy = 40 m/s.
A solution for the velocity is to be obtained up to 1.08 seconds.

A grid system with Ay = 0.001 m and various values of time steps is to be used
to investigate the numerical schemes and the effect of time step on stability and
accuracy. By selecting j = 1 at the lower surface and spatial step size of 0.001, j at
the upper surface would be 41. JM and NM will be used to denote the number of
steps in the y-direction and time, respectively. Note that n == 1 is used for ¢t =0,
i.e., initial condition. The grid system is illustrated in Figure 3-6.

An attempt is made to solve the stated problem subject to the imposed initial
and boundary conditions by the following:

(a) The FTCS explicit method with

(I) At=0002 , NM =541
(II) At=0.00232, NM =541

(b) The DuFort-Frankel explicit method with

() At=0.002 , NM =541
(I) At=0.003 , NM =36l

(c) The Laasonen implicit method with

(I) At=0.002 , NM =541
(I) At=001 , NM =109

(d) The Crank-Nicolson method with

(I) At=0.002 , NM =541
(II) At=001 , NM=109
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Initial conditions

at t=0 (n=1) B d diti
imposed along this oundary conditions

line of nodes imposed along this

line of nodes
4 I
j=iM

&
.

j=iM1

21

,i.i.

S—
H
N

L

S s
|
—

8¢
I-—At -I Boundary conditions
imposed along this

line of nodes
n=1 n=2 n=3 n=4 n=5 n=6

Direction of
Motion

Figure 3-6. Physical space and the computational grid system for a sud-
denly accelerated plane wall.
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Solutions:

Case al. In this case, the FTCS explicit method is to be used. As stated
previously, the stability requirement of this explicit method is vAt/(Ay)? < 0.5.
(The term vAt/(Ay)? = d is known as the diffusion number.) For this particular
application, the diffusion number is

At (0.002)
= Y— =, 1 ——— .4 4.
d = vrx s = 0.000217 oo = 043

Therefore the stability condition is satisfied, and a stable solution is expected. The
tabulated solution and the velocity profiles at various time levels are shown in
Table 3-1 and Figure 3-7.

Case a.Il. When the time step is increased to At = 0.00232, which is only a
fraction of an increase over Case a.l., the diffusion number exceeds the stability
requirement. In this case,

At _ o ooog170-00232)

4=V (0.001)?

= 0.50344

With the step sizes indicated, an unstable solution is developed. The velocity
profiles are given in Table 3-2 and shown in Figure 3-8. The oscillatory behavior of
the unstable solution, in which the value of the dependent variable (in this prob-
lem, the velocity) at a grid point changes sign for each step, is known as dynamic
instability. This concept is discussed further in Chapter 4.

Case b. The DuFort-Frankel explicit method behaves exceptionally well with
regard to stability, since it turns out to be unconditionally stable. Therefore, it
allows larger steps in time. However, large time steps should be selected carefully,
since an increase in the time step also increases the truncation error. The computed
values of velocity profiles are given in Table 3-3. Note that for the given values of
step sizes in Case b.IL,, d = vAt/(Ay)? = (0.000217)(0.003)/(0.001)? = 0.651, which
exceeds the stability limit of the FTCS explicit method. Therefore, the DuFort-
Frankel has the advantage of providing a stable solution with a large time step
and thus shorter computational time. Its disadvantage is the starting procedure it
requires. Since two sets of values are required, usually a one-step procedure is used
to provide the necessary information as the second set of initial data.
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0.04 — ——  t=0.00(s¢c)
~XZA— t=0.18 (sec)
—A—  =0.36 (sec)
0.03 = —&—  t=0.54 (sec)
—P—  t=0.72 (scc)
E 002 = —<—  1=0.90 (sec)
” —— =108 (sec)
0.01 —
0.00

0.0 10.0 20.0 30.0 40.0
u (m/sec)

Figure 3-7. Velocity profiles obtained by the FTCS explicit
method, Ay = 0.001, At = 0.002.

To generate the second set of data required for the DuFort-Frankel method,
various schemes may be considered. If the FTCS explicit method is employed for
this purpose, stability requirements must be considered. For this example, where
d = 0.651, the FTCS explicit will result in an unstable solution. Therefore, if it is
used to start the DuFort-Frankel method, some instabilities are introduced into the
solution. To overcome this difficulty, one may use the Laasonen or Crank-Nicolson
scheme, which provides stable solutions for the specified step size. Or, if the FTCS
explicit is used, a step size which would satisfy the stability condition must be
employed. For example, in this problem, a time step of 0.001 may be used and
solution proceeds to t = 0.003. Now this stable solution is used as the second plane
of data.

Case c. The Laasonen implicit method is unconditionally stable. Therefore, a
larger time step is allowed as long as the truncation error is within the accuracy
criteria for the specific problem. Note that the time step of At = 0.01 is larger by
a factor of five than the time step used for the stable solution of the FTCS explicit
method. This large step reduces the total computation time by decreasing the total
number of grid points. However, the computation time per step is larger than that
of the FTCS explicit method since a system of tridiagonal simultaneous equations
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Figure 3-8. Velocity profiles obtained by the FTCS explicit
method, Ay = 0.001, At = 0.00232.

must be solved. A routine for solving the system of simultaneous equations should
be selected with care. Since a tridiagonal system is to be solved, a scheme specifically
designed for the tridiagonal system of equations, which takes advantage of the zeros
of the coefficient matrix, is used. Various routines are available; one such method
is presented in Appendix B. The solution for the velocity profiles at various times
are shown in Table 3-4.

Case d. Since the Crank-Nicolson implicit method is unconditionally stable,
a time step of At = 0.01 does not encounter stability restrictions. The formula-
tion results in a tridiagonal system of equations, which is solved using the method
described in Appendix B. The solution is presented in Table 3-5.

3.6 Analysis

In the preceding section, various finite difference formulations were applied to
the reduced form of the Navier-Stokes equation and the solutions were presented.
The effect of the stability imposed by the diffusion number on the FTCS explicit
method was clearly indicated. Therefore, for this method the selection of step sizes
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is limited due to the stability requirement. On the other hand, the DuFort-Frankel
explicit method, the Laasonen implicit, and the Crank-Nicolson implicit methods
are unconditionally stable and allow larger time steps. However, the accuracy re-
quirement limits the use of large time steps, since an increase in time steps will
increase the truncation errors introduced in the approximation process of the PDE.
This point will be elaborated on shortly.

For the simple problem under consideration, an analytical solution may be ob-
tained. The partial differential equation 8u/8t = v(8*u/8y*) is transformed to an
ordinary differential equation by defining nn = y/ (2+/vt). For the imposed initial and
boundary conditions, the solution is given in the form of a series of complementary
error functions as

u = U {i erfe[2nm + 1) — i erfc[2(n + 1)m — 77]}

n=_0 n=0

— U, { erfe(n) — enfe(@m — 1) + erfe(2m + ) — erfe(dm — )

+erfc(4m+n)-—---+---}

whére = -L
m= 2\/;{

The analytical solution is given in Table 3-6.

The analytical result is used for code validation and for comparison of various
methods. In addition, it is used to study the effect of step size on the accuracy of
solutions.

An error term is defined as

ER = Analytical value - Computed value 100
Analytical value

A comparison of various methods used is illustrated in Figures 3-9 and 3-10.

The results shown in Figure 3-9 are the error term as defined above at time level
of 0.18 seconds for the solutions obtained by a time step of 0.002, whereas Figure
3-10 represents time level of 1.08 seconds.

Two points to emphasize with regard to Figures 3-9 and 3-10 are: (1) For this
application, the Crank-Nicolson scheme has minimum error in comparison with
other schemes, and (2) the amount of error is decreased for all schemes as the
solution is marched in time. This error reduction is due to a decrease in the influence
of the initial data. This effect is generally true for both time marching as well as
space marching schemes, i.e., the effect of initial data is “washed out” after few time
(space) steps.
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Figure 3-9. Comparison of error distributions for various schemes at
t = 0.18 sec.

To study the effect of step size on the accuracy of the solution, the Laasonen
implicit method is used to generate solutions using different time steps. Naturally,
as the value of the time step increases, the total grid points in the computational
domain decreases and, as a result, computation time is decreased. However, these
advantages are accompanied by an increase in error. Accuracy comparison is illus-
trated in Figure 3-11.

Clearly, increasing the step size increases the error as shown. It should be noted
that selecting a very small step size should also be avoided, since in addition to
the enormous amount of computer time required for a solution, the accuracy of the
solution will be dominated by round-off errors.

This example clearly illustrates the factors involved in the selection of step size.
First of all, stability analysis imposes limitations on some of the numerical methods.
Second, accuracy of the solution and the computation time required to generate the
solution play an important role in selecting step sizes. Once a solution is obtained,
it should be compared to other solutions, analytical or numerical, and to experi-
mental data if available. As one gains experience with numerical methods and their
behaviors, one develops a feeling for choosing the right step sizes and numerical
techniques.
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Figure 3-10. Comparison of error distributions for various schemes at
t = 1.08 sec.
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Figure 3-11. Effect of time steps on the solution obtained by the Laasonen
implicit method at ¢ = 1.0 sec.
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Selecting a numerical technique depends on the problem represented by the gov-
erning PDE and the imposed initial and boundary conditions. Each of the methods
described have their own advantages and disadvantages. Thus, when a problem is
posed, the advantages and disadvantages of the available numerical methods should
be carefully weighed before selecting a particular algorithm.

3.7 Parabolic Equations in Two-Space Dimensions

So far, various finite difference formulations of parabolic PDEs have been dis-
cussed by considering a model equation which was limited to unsteady, one-space
dimension. In this section, the space dimension is extended to two, and an efficient
method of solution is presented. Consider the model equation

ou [62 Bzu]

= %2 + '517 (3-18)

where « is considered to be a constant.
An explicit finite difference equation using forward differencing for the time
derivative and central differencing for the space derivatives is

n+l
U, 5 uJ C![ i+l 2“’ +u’: 1,§ |J+1 2u + usg 1]

At (Az)2 (A‘-y)2

(3-19)

which is of order [(At), (Azx)?, (Ay)?. Stability analysis indicates that the method
is stable for

alt alt 1
< =
[(Az)? * (Ay)ﬂ] =2
Define the diffusion numbers
4 = alAt
T (Ax)?
and At
o
5= oy
Then, the stability requirement is expressed as
1
(d:c + dy) S §

To make an easy comparison with the stability restriction of the one-dimensional
FDE (ie., Equation (3-8)), select equal step sizes in space such that Az = Ay.
Then d; = dy = d, and the stability requirement of the FDE (3-19) is d < 0.25,
which is twice as restrictive as the one-dimensional case. Such a severe restriction on
the step sizes makes the explicit formulation given by (3-19) an inefficient procedure
for some applications.
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Instead, consider an implicit formulation for which the FDE is

ntl n n+l n+l n+l n+1 ntl ntl
Uij — Uiy Uy T2 UG Ugie — 2Ui Uy

@y “ By By

From which it follows that

dufly; + daufts — (2de + 2dy + Dulf' + dyudfl, + dultl = —ul) (3-20)

By defining the coefficients of the unknowns as a, b, ¢, d, and e, and the right-hand
side by f, Equation {3-20) may be written as

+1
a‘JuH-l,J + b‘aus-—lg + c‘auu + d'.Jui,J 1 + et..'.'um+1 -f':‘)

7777

/

Figure 3-12. The 5 by 5 grid system for Equation (3-20).

For discussion purposes, consider the 5 by 5 grid system as shown in Figure 3-12.
There are a total of nine unknowns at time level n + 1. Therefore, a total of nine
simultaneous equations must be solved. The implicit finite difference equations for
the grid system of Figure 3-12 are

G22U32 + Co2Uz + €22Us3 = fo2 — baguyp — dopuie

a23u33 + Co3Us3 + da3Usa + €33Us s = foz — boguys
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Q2,4U3 4 + Coaloa + daaUss = fou — bagliyg — €24ups
a3 aUa2 + by oo + C3pus 2 + €3guss = fag + daouz
assusz + b3augz + c33uasz + dialsg + €33usg = fi3
a3,4Ua4 + b3qUag + C3aUss + d3atias = fag — €34u3s
by sz + Catisg + €42U43 = fa2 — QqoUsa — dyouy,
bssuss + Caatlay + dastiaz + €434 = fo3 — Qa3sa
b4,4ua,4 + Caqtlsq + d4,4u4,3 = f4,4 — Q44Us54 — €44U45

where all the known quantities from the imposed boundary conditions have been
moved to the right-hand side and added to the known quantities from the previous n
time level. The data at time level n are provided from the imposed initial condition
for the first level of computation and, subsequently, from the solution at the previous
station. The set of equations can be written in a matrix form as

[ 22 €2 0 a0 0 0 0O O 11 U2 1 T fag — bagu1 o — dypun ]
dys &3 €3 0 a3 0 0 0 O U3 faz —bygtya
0 dyg 24 0 0 a3 0 0 O U4 faa — bagurg — eaquas
b3g 0 0 c32 es2 0 azsp 0 O U3z fag — daquz,
0 b33 0 ds3 caz e33 0 a3z O usa | = | fas
0 0 bag O dag c3qe O O agy || uags faa — €34u3s
0 0 0 byg 0 0O g2 €2 O Us2 Ja2 — asous2 — diatie)
0 0 0 0 b3 0 diz cas €43 Usa fa3 — as3us3
0 0 0 0 0 b4g O deg cag || was] | faa— Qautisg— €satias |

The coeflicient matrix is pentadiagonal. The solution procedure for a pentadi-
agonal system of equations is also very time-consuming. One way to overcome the
shortcomings and inefficiency of the method described above is to use a splitting
method. This method is known as the alternating direction implicit method or
ADL The algorithm produces two sets of tridiagonal simultaneous equations to be
solved in sequence. Earlier, an efficient method of solution for tridiagonal systems of
equations was introduced. The finite difference equations of model Equation (3-18)
in the ADI formulation are

ntl n n+i n+y ntg n n
i Wiy ey T Py Uy W — 2u 4

oM e s B
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and

1 1 1 1
n+! nty nts ntg "ty ntl ntl ntl
UU — 'U."J- ui+1J b 2U‘J -+ 'u,,-_l’j 'U,‘-J-+1 - 2U‘J + 'u.,-‘j_l (3_21b)

@ ° Ba)? * By)?

The method is of order [(At)?, (Az)?, (Ay)?) and is unconditionally stable. Equa-
tions (3-21a) and (3-21b) are written in the tridiagonal form as

(1 20T -l =

= dyul ;1 + (1 — 2d2)uf; + dawg4 (3-22a)
and
—daulfl + (1 + 2dy)ul! — dauitsy
= dulth + (U= 2d)uT 4 (3-22b)
where A
1 1 aAt
b = 5% = 3 (A
and A
1 1 alt
SRR T

The solution procedure starts with the solution of the tridiagonal system (3-22a).
The formulation of Equation (3-22a) is implicit in the z-direction and explicit in the
y-direction; thus the solution at this stage is referred to as the z sweep. Solving the
tridiagonal system of (3-22a) provides the necessary data for the right-hand side of
Equation (3-22b) to solve the tridiagonal system of (3-22b). In this equation, the
FDE is implicit in the y-direction and explicit in the z-direction, and it is referred
to as the y sweep. Graphical presentation of the method is shown in Figure 3-13.
For application purposes, consider the unsteady two-dimensional heat conduc-
tion equation
aT [82T 32T]
—_— =Y | —— + T
at 8zt - 0y?

where o, the thermal diffusivity, is assumed constant. It is required to determine
the temperature distribution in a long bar with a rectangular cross-section. The
rectangular bar is shown in Figure 3-14. Assume the bar is composed of chrome
steel, which has cross-sectional dimensions of 3.5 ft. by 3.5 &., i.e., b=h=235.
The thermal diffusivity is provided as a = 0.645 ft?/hr. The following initial and
boundary conditions are imposed (see Figure 3-14).
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Figure 3-13. Illustration of the grid system for the ADI method.

Initial condition: ¢t =0 T =T,=0.0
Boundary conditions: ¢ > 0 T(z,0) = T1 = 200.00

T(0,y) =T, = 200.00

T(z,h) =T = 0.0

T(b,y) =T¢=0.0
Application of the ADI method yields the following set of equations for the x sweep

~d T + (2, + DT - TS
= doTiy + (1 - 2d) T + d, Ty,
1 aAt

1
where dl = bz — 3 and dz = Edv = E-(A—y)i

(3-23)
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Figure 3-14. Nomenclature for the rectangular plate.
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By defining the coefficients of the unknowns in Equation (3-23) so that they are
consistent with the general form of the tridiagonal system of equations, one has

a; = —d;,
bl = (1+2d1) y
c, = '—d1 )

and
Dy = &I, + (1 = 2d)T7; + & T7

Note that in order to rearrange the equations as a tridiagonal system, D, must
be modified at i = 2and i = IMM1 (IMM1 = IM —1), where boundary conditions
at i =1 and ¢ = IM enter the equation. Thus, at 1 = 2,

Dy =dy T3, +(1— 2do) T3 + do T3 + di Ty 5

where the last term includes the specified boundary condition T ; = T. Similarly,
at i = IMM1,

Dy = dyT pppy jiq + (1 - 2d2) iy + BT ur g1 + DT im

where T ; is specified as Ty for this application. Following the procedure described
in Appendix B, the imposed boundary conditions for this problem yield

Hy; =0
and (3-24)
Gz = T,

The FDE (3-23), along with the boundary conditions specified by (3-24), completes
the x sweep computations.

For the y sweep, the FDE becomes
—d T + (1 + 2d) T — do T

i+l
= T + (1 - 2410 4 T (3-25)
The coefficients are
az = —dy,
by = (14 2d,) ,
Cz = —dy,

and
D, = 4 ,":15+(1 —2d1)T':,-+’ +d,T"+’
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Modifications of D, at the boundaries are as follows. At j = 2,
1) ! 1 l n !
Dy =d\ T\ %+ (1 - 2d)T)5 * + di T + Ty
where T}, is specified as T}. At j = JMM1 (JMM1 =JM —1)

nt g n+} n+}
Dy = &\ T e + (1= 2d0)T; g + T g + 2 Tigm
where T; ;i is specified as T3. The imposed boundary conditions yield

Hly = O
and (3-26)
Gly =T

Solving Equation (3-25) subject to the boundary conditions specified by (3-26)
would advance the computation to the n+ 1 time level. The temperature distribu-
tions at time £ = 0.1 hr. and ¢ = 0.4 hr. are presented in Tables 3-7 and 3-8. The
computed values are printed for all y locations and selected z locations on intervals
of 0.5 ft. The symmetry of the initial and boundary conditions produces the sym-
metry in the solution. The temperature distributions are presented in Figures 3-15
through 3-17. Figure 3-15 shows the initial and boundary conditions, while Fig-

ures 3-16 and 3-17 show the temperature distributions at ¢ = 0.1 hr. and ¢t = 0.4
hr.

Figure 3-15. Initial temperature distribution for the rectangular bar.
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3.8 Approximate Factorization

The ADI scheme just investigated belongs to a class of methods known as “Ap-
proximate Factorization.” In these methods, the original multidimensional FDEs
are replaced by a series of finite difference equations which can be represented as
tridiagonal formulations. The purpose, as the ADI technique demonstrated, is to
simplify the solution procedure and permit it to be more rapidly executed. To see
the mathematical development and details of this procedure, consider the model
equation

u  [0%u | &u
o ° [a— * 5;]
Applying the Crank-Nicolson scheme, one obtains

ntl n n+l n+1 ntl n
upft -l 1 [“i+ld"2 +ultls uPy — 2ul

At 2% (Az)? (Aa:)2

+1 n 1 +1

(A )2 | (:ﬁ\y)2

which is of order [(At)?, (Ax)?, (Ay)?. Define the following operators such that
Equation (3-27) may be expressed in a compact form:

Ouig = Uir1y — 2ig + Ui (3-28)

and
63’[&-‘3' = Ui j+1 — 2u,‘J -+ Ui i1 (3—29)

Therefore (3-27) is represented as

ufft —uly _ 1 Sultt Sl ! + 62ul,;
At (A-'B) (Az)? (Ay)2 (Ay)?
> . aAt[ & &2 ) alt [ 62 &2
nt+l x n+l _ . T n.
M Ty [(Aw * (Ay)ﬂ] ity [(Aw>2 i (Ay)z]
Hence
[1- 5 (@8 + g uy = 145 5 (202 + 4,8 i, (3-30)
alt alt
where dI = (A_.'B)—i and dy (Ay)2

Now, turn back to the ADI formulation given by (3-21a) and (3-21b), and rewrite



86 Chapter 3

them with the operators defined by (3-28) and (3-29), to provide

"‘+! . 2, "+ 2,.n
U j u-J _ [Qrui.j 6y“¢JJ

&t (Az)*  (Ay)?
and ol Ll
n+1 n n 2 1’
u"';- ;t 'U,,-J- 2 _ 62u"d‘: + 6 ?j
= a7t Ay
or
nty oAt 2,01 _n alt
ui.j! 2(A )261 =.J! = + 2(A )2614 ?a
and
utt oAt &2yl — '}{rv}_*_ ot St
%) 2(Ay)? Y Uy 5 Uy 2(A )2 i

Then, in terms of the diffusion numbers, one may write

[1——d 62] o [1+ d,,az] (3-31)

and

[1--«1”52] mH [1+ d&’] v (3-32)

1
These two equations can be combined by eliminating u?;’, resulting in

(1— —d :62)(1 — —d,,52)u"+1 = (1+ %d,&ﬁ)(l + %dyéz)uz"j (3-33)

In order to compare (3-33) with the Crank-Nicolson formulation of (3-30), multiply
the terms in Equation (3-33). Thus,

[1 - %(d:ﬁ +d,8%) + %d,dﬁa?] m
1 1
- [1 + 5(deb? + d,80) + Zd,d,,&i&ﬁ] ul (3-34)

Compared to (3-30), Equation (3-34) has the additional term }d.d,§263(ul}" —ul),
which is smaller than the truncation error of (3-30). Therefore it is seen that the
Crank-Nicolson formulation of (3-30) can be approximated by (3-34), which in turn
can be factored as (3-33) and split as (3-31) and (3-32). Equation (3-33) is known
as the approximate factorization of (3-30).

The procedure described above may be applied to any multidimensional problem

to provide the approximate factorization of the PDE.
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3.9 Fractional Step Methods

An approximation of multidimensional problems similar to ADI (or, in general,
approximate factorization schemes) is the method of fractional step. This method
splits the multidimensional equation into a series of one-space dimensional equations
and solves them sequentially. For the two-dimensional model equation

Ou 62 &u u

T P Ay?
the method provides the following finite difference equations: (Note that the Crank-
Nicolson scheme is used.)

"+% n "H'! n+1 n
R R N K R ¥ ’U«—u Ul — 2uf; Uy
a = &% 2 2
2 2 (A-T) (A:z:)
and
+1 n+y n+l n+1 n+l n+! n+}
Ul = Uy _al Ujip1 — 7 U utd+1 2u ;7 +ui

At - 2 3
El 2 @) @)

The scheme is unconditionally stable and is of order [(At)?, (Az)?, (Ay)?.

3.10 Extension to Three-Space Dimensions

The ADI method just investigated for the unsteady two-space dimensional
parabolic equation can be extended to three-space dimensions, which is accom-
plished by considering time intervals of n, n+ 3, n+ 3, and n + 1. The resulting
equations for the model equation

du % O u
== 3-35
5t [33:2 tar T 322] (3-35)
are:
1 o 1
u:':-j — Uik _ 62uf:,}j Souls N Srusix
5 | (Az)?  (Ay)? (Az)?
n 2 n i n 3
Us';,lf _ui,j‘:i!c! - o 52 ?:,3 +52 J,g n A :If
5 | (Az)?  (Ay)*  (Az)?
and

'l]k ‘J: + 4.0y
& (Az)? (Ay)2 (Az)?

™l "T% 62 n+} 6u "+§ 82 n+1]
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The method is of order [(At), (Az)?, (Ay)? (Az)? and is only conditionally stable
with the requirement of (d; + d, + d,) < (3/2). As a result of this requirement,
the method is not very attractive. A method that is unconditionally stable and
is second-order accurate uses the Crank-Nicolson scheme. The finite difference
equations of the model Equation (3-35) are

Uik — Uik _ 162u; ik 02Ul . 5'“.” 6u,d,
At 2 (Aa:)2 (Ay)? (A2’
u::]',k"u?,j,k = a 162 :Jk+5ut,_‘}k 162 sgk+62 ;ch 6“:,]1:
At 2 (Az)? 2 (Ay)? (Az)2 ]’
and
upfy — Uik — 182uy,, + 62u? ulix  1682ul Gk T Soul lagu?ﬁ + 62ups ,
At 2 (Az)? 2 (Ay)2 2 (Az)?

3.11 Consistency Analysis of the Finite
Difference Equations

By previous definition, an FDE approximation of a PDE is consistent if the FDE
reduces to the original PDE as the step sizes approach zero. In this section, the
consistency of some of the methods discussed earlier will be investigated. Since the
procedure is simple and straightforward, only a couple of examples are illustrated.
As a first example, consider model Equation (3-1), i.e.,

ou  8u
ot~ %or
where the FDE approximation by the FTCS explicit method is
upt! ~ ul ufyy ~ 2uf + ul )
At (Az)? (3-36)
Expand each u in a Taylor series expansion about uy; therefore,
du 0%u (At)?
+1 n ve 3 _
upt = U] +—(At)+ Bt2 o + O(At) (3-37)
Az)*  8fu (Az)d
uly, = uf +6 (Az) + 6 5 u 2!) + 53 ( 3!) + O(Ax)* (3-38)
and Az)*  &u (Ag)?
T, Y —-(A )4 2u ( z) _Gu(Az) O(Az)! (3-39)

2l T 9z 3!
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Substituting Equations (3-37), (3-38), and (3-39) into Equation (3-36) yields

1 n ?__E (At) 3 n| _
At[ * 5 t)+6t2 5 HOBY - ]‘

8 e = 4_
(Ar)? u; + ——Ar+ + O(Azx)* — 2u

a Ou 0% (Az)? N Fu (Ax)?
Oz oz 2 oz 3!

. Ou 0% (Ax)?  &u (Az)? 4
R TR A
from which 5 B0 At 52y
u u .
[5‘t+6t2 2+O(At)] [62 O(A)]
or

Su aaz_u_[At]Bu
8t Ox®

= TREY [(at)?, (Az)]
Consistency requires that as the step sizes Az and At approach zero, the FDE
must reduce to the original PDE. In this example, it is obvious that as Az, At — 0,
the original PDE is recovered, i.e., u/8t = a(6*u/0z?). Therefore, the method is
consistent.

As a second example, consider the DuFort-Frankel method. The finite difference
formulation of the model equation is

(14 2d)uPt! = (1 — 2d)ul ™" + 2d(u}, +ufy) (3-40)
h
. d=a2t (3-41)
~ T (Az)?
Following the procedure illustrated for the previous example, expand ult!, url,

u? ;, and uf,; in a Taylor series about u}, and substitute the results into (3-40) to
obtain

Hu 8u (AL)?  u (At)? Jd

(1+ 2d) [u + —At+ 52 5 T 5@ 3l + O(At)*| =
3 du u (At Fu (AL 4
(1-—2d) [u - BtAt Bt 5 " 38 3l + O(At)

. Ou &u (Ax)?  8%u (Az)?
+2d{[u,- +aAz:+‘922 5 + 523 3l

n_ Ou &% (Az)? 8% (Az)? .
+[“ el ™ R R = AT +O(A‘”)}

+ O(A:c)“]
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This equation is reduced to:

%At (d)a—ﬁ(At) +O(AL) = (d) (A:v)2+(d)[O(A-"E)]

Substitution of (3-41) yields

; At &
SO (g T a0+ 02 =
alt (0% 2 At 4
(g () 02+ e o]
or
Zt—“+a%t—‘2‘- (f‘—t-) g L +o[ae?, (Azy]

%= 322+0[(At)” (Az)?, (Z\i)]

The method is consistent if only At and Az approach zero and if (At/Az) — 0,
so that u/8t = a(8*u/0z?), i.e., the original PDE, is recovered. Note that if Az
approaches zero faster than At, then (At/Azx) — K, and the equation becomes

du K28 A

T e T %

which represents a hyperbolic equation!

3.12 Linearization

The model equations investigated so far have been linear. In general, the
equations of interest in fluid mechanics and heat transfer are nonlinear. In this
section various methods to linearize the finite difference equations will be reviewed.
To show the linearization procedures, consider a nonlinear term such as u(du/dzr)
(which is a convection term in the Navier-Stokes equation). In the illustration, a
steady two-dimensional flow is assumed and the partial derivative is approximated
by a forward differencing scheme. The properties at all j nodes, for a given 1
location, are known, whereas the properties at i + 1 are to be computed.

Method I. Lagging. In this linearization, the coefficient is used at the known
value, i.e., at station i. Therefore, the finite difference representation becomes

Uity — Uiy

Ui Az



Parabolic Partial Differential Equations 91

There is one unknown, u,4, ;, in this expression and the finite difference represen-
tation is linear.

Method II. Iterative. In this procedure, the lagged value is updated until a spec-
ified convergence criterion is reached. Denoting by & the iteration level, the formu-
lation is -

ko Uip1y T Uiy
Wi Az
For the first iteration k = 1, u;1; is the value at the previous station, ie., u;;-.

Once ur}} ; has been computed, the coefficient uf,, ; is updated and a new solution

is sought. The procedure continues until a convergence criterion is met. The conver-
gence criterion can be specified by either of the following forms (usually depending

on the particular problem):

k+1 k

Uip1,i — Uinry <e

or

Uiy — Uity

k+1 k

k41
Uit1,j

Method 1I1. Newton’s iterative linearization. To illustrate how this procedure
works, assume a nonlinear term represented by (A4)(B). Define by 5A the change
in the variable A between two consecutive iterations, then

§A = Ak+1 _ Ak
and, similarly, :
§B = B¥! - B*;
or
A = AF16A; (3-42)
B¥* = B*+6B (3-43)

Return to the nonlinear term (A)(B), and substitute relations (3-42) and (3-43) to
get

AkF1BEL = (AR 4 §A)(B*+ 6B)
= AFB*4+ B*§A+ A*6B + (6A)(6B)
After dropping the second-order term (6A)(6B), the equation is rearranged as
AFHLBR . AkBk L BE(ARYL _ AR) 4 AR(B*1_ BF)
AFB* 1 AKFIBE _ ARBk | AR AkBE
—  AKBK1 ) ARHIBK _ AkpE
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Now, for the proposed problem where it is required to linearize uOu/dz, one has

Ou  , (0u k41 k+1 [ Ou . L [Ou\*
U&—u ('a—z) +u -a_ﬂ,' — U '6—2:

With forward differencing,

k+1 koo ok
WOU g Bl TG Wy %y e Uy
dz W Ag "W Ag YW Ax
1
k. k4l k k+1 , k k+1
Az [ui+1Jui+1,j = Uipr Wiy U U 1 — Uiy Ui

ko ok k
T Ui Uy ui+1,juid]

Thus,
du

1
== [ouk okl _ 0k N2 kg
oz Az [2“"+1,j“¢+1,j (ui+l.j) “w“m.j]

The linearization procedures just described are some of those most commonly
used in numerical methods. These procedures will be used in various applications
in the upcoming sections.

3.13 Irregular Boundaries

The problems investigated so far have all had nice rectangular boundaries, on
which a computational grid system was superimposed. Therefore, the physical and
computational spaces were identical. Simple rectangular boundaries rarely occur in
nature; indeed, most boundaries are irregular. Irregular boundaries create tremen-
dous difficulties in implementation of the boundary conditions. Various schemes are
available to treat irregular boundaries. One may consider using variable step sizes
in the neighborhood of the irregular boundaries, as illustrated in Figure 3-18. This
procedure is cumbersome and, in most cases, very inefficient.

A popular method is grid generation. Broadly speaking, grid generation schemes
can be categorized into two camps. One is the so-called structured grids and the
other is unstructured grids. For structured grids, a transformation from the physical
space to the computational space is performed. The computational plane has rect-
angular boundaries and constant step sizes. A typical grid is illustrated graphically
in Figure 3-19. There are three schemes for structured grid generation: 1) com-
plex variable methods, 2) algebraic methods, and 3) differential equations methods.
Some of these methods will be described and applied to problems of interest in
Chapter 9.
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|(—Ax -

jt1

i+1

i=1

Figure 3-18. Illustration of the variable step sizes for irregular boundaries.
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Figure 3-19. Physical space and the transformed computational space.
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Figure 3-20. Illustration of an unstructured grid with triangular elements.

The second category includes the unstructured grids. This type grid is directly
imposed on the physical space. Various types of elements may be used to construct
the grid system. Among many choices available, triangular elements are the most
popular. A typical unstructured grid generated by triangular elements is shown in
Figure 3-20. The unstructured grids will be addressed in Chapter 15.

In the remaining applications of various numerical methods in the first seven
chapters, only rectangular boundaries are considered. Therefore, specification of
initial and boundary conditions will not pose additional difficulties. After all, at
this point it is desirable to learn the procedures of the numerical methods in the
simplest forms and avoid any additional complexity.

3.14 Summary Objectives

After studying the material in this chapter, you should be able to do the fol-
lowing:

1. Define and give examples of

a. explicit formulation
b. implicit formulation
c. the FTCS explicit method
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d. Richardson’s method
e. the DuFort-Frankel method

-

the Laasonen method
the Crank-Nicolson method

Beta formulation

@

e
4

the ADI (alternating direction implicit) method
j- linearization by iteration

k. irregular boundaries
2. Define

a. diffusion number

b. approximate factorization

3. Solve the problems for Chapter Three.
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3.15 Problems

3.1 A wall 1 ft. thick and infinite in other directions (see Figure P3-1) has an
initial uniform temperature (7;) of 100.0°F. The surface temperatures (T,) at the
two sides are suddenly increased and maintained at 300.0°F. The wall is composed
of nickel steel (40% Ni) with a diffusivity of o = 0.1 ft ?/hr. We are interested in
computing the temperature distribution within the wall as a function of time.

Figure P3-1. Nomenclature for problem 3.1.

The governing equation to be solved is the unsteady one-space dimensional heat
conduction equation, which in Cartesian coordinates is

ar 0T
b = “ort
Use the following techniques with the specified step sizes to solve the problem.
a. FTCS explicit
b. DuFort-Frankel
c. Laasonen

d. Crank-Nicolson
For each method, two sets of step sizes are to be used.

I. Az =0.05, At=0.01
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II. Az =0.05, At=0.05

The analytical solution of this problem, subject to the imposed initial and boundary
conditions, is

= —(mn/L)a 1-(=D™ . mur
T=T,+2T,-T) > e /LY at war) sm( 7 )

m=1

where T, denotes the equal surface temperatures at the two sides and T; is the initial
temperature distribution within the wall. This solution is to be used to validate the
numerical solutions.

In all cases the solution is to be printed and plotted for all z locations at each
0.1 hr. time intervals from 0.0 to 0.5 hr.

e. To investigate the effect of step size on the accuracy of the solution and required
computation time of an implicit technique, use the Laasonen method with the
following step sizes.

I. At=0.01
II. At =0.025
III. At=0.05
IV. At=0.1

For all cases, Ax = 0.05.

3.2 Consider the wall described in problem 3.1. Assume the left surface is in-

sulated and the right surface is subject to a constant temperature of 500.0°F, as
shown in Figure P3-2.

3 N
] T
3
0:1 T
X s
Insulated %
O()
surface X
2
X=0 X=L

Figure P3-2. Nomenclature for problem 3.2.
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Obtain the solution by the following methods:

I. FTCS explicit

II. Laasonen implicit

The step sizes to be employed are Az = 0.05, At = 0.01. The analytical solution
provided in the previous problem may be used for code validation and accuracy
investigation. For this purpose, a plate of thickness 2L subject to surface tempera-
tures of Ty is considered. Note that, due to symmetry, the heat transfer rate at the
center line is zero, providing zero temperature gradient, i.e., insulated conditions.

3.3 Consider two infinite parallel plates, a distance of 0.3 cm apart. The upper
plate is stationary and the lower plate oscillates according to

©(0,t) = up cos(1000t) = g cos(1000nAL)

where n represents the computational time level, selected to be 1 at ¢ = 0.0.
The governing equation is obtained from the Navier-Stokes equation as

Ou _ 8

8t~ o

Assume the kinematic viscosity v is constant and has a value of 0.000217 m?*/s, and
up = 40 m/s. Select 31 equally spaced grid points with j = 1 located at the lower
plate. A time step of At = 0.00002 sec. is specified. Use the FT'CS explicit scheme
to obtain the solution within the domain up to ¢ = 0.00632 sec. Print the solution
for all spatial locations at time levels of 0.0, 0.00158, 0.00316, 0.00474, and 0.00632
seconds. Plot the velocity profiles at the time levels indicated above.

3.4 Two parallel plates extended to infinity are a distance of h apart. The fluid
within the plates has a kinematic viscosity of 0.000217 m*/s and density of 800
kg/m3. The upper plate is stationary and the lower plate is suddenly set in motion
with a constant velocity of 40 m/s. The spacing h is 4 cm. A constant streamwise
pressure gradient of dp/dz is imposed within the domain at the instant motion
starts. A spatial size of 0.001 m is specified. Recall that the governing equation is
reduced from the Navier-Stokes equation and is given by
Ou_ 0 10p

Bt 82 pox
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(a) Use the FTCS explicit scheme with a time step of 0.002 sec. to compute the
velocity within the domain for
() dp/dz =0.0, (I) dp/dz = 20000.0 N/m*/m,
(IIT) dp/dx = —30000.0 N/m?/m
Print the solutions at time levels of 0.0, 0.18, 0.36, 0.54, 0.72, 0.9, and 1.08
seconds. Plot the velocity profiles at time levels of 0.0, 0.18, and 1.08 seconds.

(b) Use the Laasonen implicit scheme to compute the velocity profiles and print
them at the specified time levels as that of (a) for

1) At=001, dp/dz=00
(II) At =0.01, dp/dzr=20000.0 N/m?/m
(IT) At =0.002, dp/dz =20000.0 N/m?/m

3.5 A long, rectangular bar has dimensions of L by W, as shown in Figure P3-5.
The bar is initially heated to a temperature of T,. Subsequently, its surfaces are
subjected to the constant temperatures of Ty, T3, T3, and Ty, as depicted in Figure
P3-5. It is required to compute the transient solution where the governing equation
is

or _ (oT &T
5t~ %\oz T By

The bar is composed of copper with a thermal conductivity of 380 W/(m°C)
and a thermal diffusivity of 11.234 x 1075 m?/sec, both assumed constant for this
problem. The rectangular bar has dimensions of L = 0.3 m. and W = 0.4 m. The
computational grid is specified by IMAX= 31 and JMAX= 41.

Use the FTCS explicit scheme with time steps of 0.2 sec. and 1.0 sec. to compute
the transient solution. The initial and boundary conditions are specified as: T, =
0.0°C, T} = 40.0°C, Ty = 0.0°C, T = 10.0°C, and Ty = 0.0°C.
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i=1 i=IM

Figure P3-5. Nomenclature for Problem 3.5.

(I) Print the solutions at intervals of 0.05 m in the z-direction and all y-locations
at t = 10.0 sec., t = 40.0 sec., and steady state. Assume the solution has
reached steady state if the total variation in temperature from one time level
to the next is less than CONSS, where CONSS is specified as 0.01°C. The total
variation is determined as

Jj=JMM1
i=IMM]1
TV = Y ABS(T -T7)
1=2
j=2

(II) Compare the steady-state solution obtained in (I) to the analytical solution.
Recall that the analytical solution is

T=Ta+Tg

where

] mm(W — y)
— cos{mm) smh( L —) mnz

sin
mm . . maW L
sinh

> 1
Ta=T*20)

m=1
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and

T — T ®_ 1 - cos{mn) sinh m;y . muIT
‘s = T3 % 2.0";::1 — n W sin T
L
(II1) Plot the transient solution for the following locations: (0.1, 0.05), (0.15, 0.10),
and (0.1, 0.3).

(IV) Print and plot the heat transfer distributions along the sides y =0.0, y=W,
and z = 0.0 for the steady state solution.

3.6 Repeat problem 3.5 using the ADI scheme.
3.7 Repeat problem 3.5 using the fractional step method.

3.8 Compare the accuracy, stability, and efficiency of the FTCS explicit, ADI, and
FSM from the results of problems 3.5 through 3.7.

3.9 Consider a fluid with a temperature of T; and a constant velocity of u, trav-
elling from left to right in a channel. The temperature at the end of the channel
is suddenly changed to Tj and is maintained at that constant value. It is required
to compute the steady state temperature distribution within the channel. The
governing equation is given by

ST O
dr Oz
where o is the thermal diffusivity. The boundary conditions are specified as follows:
z =0.0 ’ T= Tc
z=1L . T=T,

(a) Nondimensionalize the equation by

Ir =

and define

- Lu,

For the following, use the nondimensional equation.

(b) Obtain the analytical solution.
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(c) Use second-order central difference approximations and write an implicit for-

mulation.

(d) Use second-order central difference approximations with nonequal grid spacing

and write an implicit formulation. Denote the variable spatial steps as shown
in Figure P3-9a.

Figure P3-9a. Illustration of nonequal grid spacing used in Problem 3.9.

()

where
AzL(i) = z(i)~z(E—1)
and
AzR(i) = z(i+1)-z()
Define the ratio of stepsizes as
~_ AzR(i)
"= ATLG)

To simplify the formulation, use
AzL(i) = Az , AzR(i) =~Azx

However, bear in mind that Az and v will change from grid point to grid
point. The grid point clustering near the boundary at z = L is desired to
better resolve the temperature gradient within that region. A procedure for
grid point clustering is suggested at the end of the problem.

Obtain the numerical solution by the scheme developed in (c) for the following
set of data:

T.=20°C, T,=100C , w,==02 m/sec
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(f)

a=004m?/sec, L=20m
() IM=21

(I) IM =41

Print the temperature and error distributions for each case. Determine the
error by the following:

Error =  ABS (TA — TN)

where
TA == Analytical solution

TN ==  Numerical solution

Use the formulation developed in (d) with the data set specified above and
obtain the solution for the clustering parameter of § = 1.1. Print the temper-
ature and error distributions for each case.

HINT on grid point clustering: Various schemes are available for grid point
clustering. Detailed discussion is given in Chapter 9. For now, the foliowing

function is suggested
g+1\"
o|(55) -

, s
(525)

where 6; = &/L, and 8 is the clustering parameter between 1 and oo. More
clustering of grid points is enforced as § approaches 1. The length of the
domain is L, which would be 1.0 when it is nondimensionalized. The variable
€ represents the location of grid points in an arbitrary domain, where they
are equally spaced. The physical locations of the grid points are related to €
locations by

I¢=C,'*L

The graphical illustration of £ and its relation to x is shown in Figure P3-9b.

-
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Figure P3-9b. Physical and the corresponding computational grid points
distributions.
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y

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040

t=0.00

40.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1=0.18

40.000
36.410
32.864
29.408
26.079
22915
19.945
17.192
14.672
12.395
10.364
8.574
7.018
5.682
4.550
3.602
2.820
2.182
1.669
1.261
0.942
0.695
0.506
0.364
0.259
0.182
0.126
0.086
0.058
0.039
0.025
0.016
0.011
0.007
0.004
0.003
0.002
0.001
0.000
0.000
0.000

=(136

40.000
37.454
34.924
32,426
29.976
27.586
25.272
23.044
20914
18.889
16.976
15,182
13.509
11.959
10.532
9.227
8.041
6.970
6.009
5.153
4.394
3.726
3.142
2.634
2.196
1.820
1.500
1.229
1.000
0.809
0.651
0.519
0.411
0.322
0.249
0.190
0.140
0.098
0.063
0.030
0.000

1=0.54

40.000
37919
35.847
33.793
31.764
29.770
27.818
25915
24.067
22.281
20.563
18.916
17.344
15.850
14.436
13.104
11.854
10.687
9.601
8.594
7.666
6.813
6.032
5.321
4.676
4.092
3.566
3.094
2,672
2.295
1.960
1.661
1.366
1.160
0.948
0.758
0.586
0.427
0.279
0.138
0.000

1=0.72

40.000
38.197
36.400
34.614
32.845
31.099
29.380
27.693
26.044
24,436
22.874
21.360
19.899
18.492
17.142
15.850
14,619
13.448
12.338
11.289
10.300
9.372
8.502
7.689
6.931
6.226
5.572
4.965
4.404
3.885
3.405
2.961
2.549
2.167
1.809
1.474
1.157
0.855
0.564
0.280
0.000

t=0.%

40.000
38.386
36.776
35.175
33.585
32.012
30.458
28.927
27.424
25.950
24,509
23.104
21.737
20.411
19.127
17.887
16.691
15.543
14.440
13.386
12.378
11.417
10.503
9.634
8.810
8.029
7.290
6.591
5.929
5.304
4711
4.149
3.616
3.107
2,621
2.154
1.704
1.266
0.839
0.418
0.000

1=1.08

40.000
38.524
37.051
35.584
34.127
32.681
31.250
29.836
28.443
27.072
25.727
24.408
23.118
21.859
20.633
19.440
18.281
17.159
16.073
15.023
14.011
13.035
12.097
11.194
10.327
9.494
8.695
7.928
7.191
6.484
5.804
5.148
4.516
3.905
3312
2.735
2.172
1.619
1.075
0.536
0.000

Table 3-1. Solution of the accelerated lower plate by the FCTS explicit scheme,

Ay = 0.001, At = 0.002.
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y t=0.00 =021 =042 (=063 1=0.84 =104 =125
0.000 40.000 40000 40.000 40.000 40.000 40.000 40.000
0.001 0.000 36634 37597 3799 38.165 38114 37.656
0,002 0000 33430 35361 36.287 36975 37.772 39.184
0003 0000 30.049 32.845 34.018 34519 34365 33.002
0,004 0000 27.134 30.820 32.623 33975 35548 38.336
0.005 0.000 23.888 28.252 30.133 30944 30.687 28.453
0006 0000 21352 26467 29.057 31.026 33331 37424
0.007 0.000 18372 23911 26.398 27482 27.126 24.075
0.008 0.000 16265 22381 25.632 28.151 31124 36419
0.009 0.000 13649 19901 22.862 24.175 23.721 19928
0.010 0.000 11976 18627 22386 25371 28.932 35.2%
0.011 0,000 9781 16279 19.568 21.055 20.510 16.066
0.012 0.000 8512 15250 19352 22706 26.759 34.029
0013 0000 6753 13.080 16.547 18.150 17.522 12.536
0014 0000 5834 12277 16554 20.173 24609 32.604
0015 0000 4486 10320 13.820 15481 14780 9.374
0.016 0.000 3.851 9.713 14007 17.784 22488 31.008
0,017 0.000 2.864 7.991 11.395 13.061 12299  6.606
0018 0000 2445 7.550 11.721 15.549 20400 29.233
0019 0000 1756 6.071 9.274 10.894 10.088  4.248
0.020  0.000 1.492 5764  9.694 13473 18349 27.276
0.021 0000 1,032 4522 7447 8979 8148 2304
0.022 0000 0874 4319 7921 11.557 16339 25.141
0.023 0000  0.581 3303 5896 7307 6473 0.769
0.024 0000 0491 3.176  6.388  9.800 14372 22.833
0025 0000 0314 2363 4600 5.865 5.051 -0.372
0.026 0.000 0.265 2290 5078 8196 12449 20.363
0.027 0.000 0.162 1656  3.530 4.633 3864 -1.144
0.028 0000 0.136 1618 3969 6.733 10571 17.745
0.029  0.000  0.080 1135 2658 3590  2.88% -1.579
0030 0000 0.067 1.117  3.035 5399 8734 1499
0.031 0.000 0037 0.758 1952 2710 2100 -1718
0.032 0000 0032 0750 2248 4177 6936 12.135
0.033 0000 0.017 0.490 1381 1.965 1467 -1.606
0.034 0000 0.014 0.482 1.581 3.048 5171 9.183
0.035 0,000 0.007 0299 0913 1.327 0958  -1.293
0.036 0.000 0.006 0.284 1.004 1992 3432  6.161
0.037  0.000  0.003 0.160 0519 0765  0.539 -0.835
0.038 0000 0002 0.131 0487 0983 1.711 3.092
0039 0000 0.001 0.050 0.168 0250 0.174 -0.288
0.040 0000 0000 0.000 0.000 0.000 0000 0.000

Table 3-2. Solution of the accelerated lower plate by the FCTS explicit scheme,

Ay = 0.001, At = 0.00232.
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y

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040

1=0.00

40.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.18

40.000
36.405
32.795
29.392
25.948
22.887
19.766
17.151
14.463
12,341
10.143
8.510
6.805
5.613
4358
3.534
2.659
2.120
1.542
1,209
0.849
0.654
0.442
0.335
0.217
0.162
0.100
0.074
0.044
0.031
0.018
0.013
0.007
0.005
0.002
0.002
0.001
0.001
0.000
0.000
0.000

t=0.36

40.000
37.452
34.899
32421
29.927
27.577
25.203
23.030
20.828
18.870
16.878
15.159
13.402
11.931
10.423
9.196
7.933
6.937
5.907
5.118
4300
3.692
3.058
2,602
2.125
1,791
1.441
1.203
0.953
0.788
0.614
0.502
0.384
0.309
0.230
0.181
0.128
0.093
0.057
0.029
0.000

1=0.54

40.000
37918
35.834
33.790
31.738
29.765
27.179
25.907
24,018
22272
20.505
18.903
17.279
15.835
14.366
13.087
11.782
10.667
9.528
8.573
7.595
6.791
5.965
5.299
4.613
4.070
3.510
3.074
2.623
2.271
1.918
1.645
1.362
1.146
0.923
0.748
0.569
0421
0.271
0.136
0.000

1=0.72

40.000
38.196
36.391
34.612
32.828
31.095
29.354
27.689
26.011
24430
22.835
21.353
19.855
18.483
17.093
15.840
14.567
13.436
12.285
11.276
10.248
9.358
8.450
7.674
6.882
6.212
5.526
4.951
4.363
3.872
3.370
2.950
2.520
2.157
1.787
1.467
1.142
0.851
0.556
0.279
0.000

t=0.50

40.000
38.386
36.770
35.173
33.573
32.009
30.440
28.924
27.400
25.946
24.481
23.099
21.706
20.405
19.092
17.880
16.654
15.535
14.402
13.378
12.339
11.409
10.464
9.626
8.773
8.021
7.256
6.583
5.898
5.296
4.684
4.143
3.593
3.102
2.604
2.150
1.692
1.264
0.833
0.417
0.000

1=1.08

40.000
38.524
37.047
35.584
34.118
32.680
31.237
29.835
28.426
27.070
25.706
24.405
23.095
21.856
20.607
19.436
18.254
17.155
16.044
15.019
13.982
13.031
12.068
11.189
10.299
9.489
8.669
7.923
7.168
6.480
5.783
5.145
4.499
3.902
3.299
2.733
2.163
1.618
1.070
0.536
0.000

Table 3-3. Solution of the accelerated lower plate by the Dufort-Frankel explicit

scheme, Ay = 0.001, At = 0.003.
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y t=0.00 1=0.18 =036 =054 (=072 =090 1=1.08
0000 40.000 40.000 40.000 40.000 40.000 40.000 40.000
0.001 0.000 36.318 37422 37902 38.18 38.378 38.517
0002  0.000 32687 34.861 35813 36377 36.760 37.038
0.003  0.000 29.157 32334 33.742 34580 35.150 35.565
0.004  0.000 25771 29.857 31.698 32801 33.553 34.101
0.005 0.000 22.568 27446 29.690 31.045 31972 32.649
0006 0.000 19.580 25.113 27.726 29317 30411 31212
0.007 0000 16.829 22872 25812 27.623 28.874 29.793
0.008  0.000 14329 20.733 23956 25967 27.365 28.395
0009 0.000 12,086 18705 22.165 24.353 25.886 27.020
0010 0000 10101 16795 20442 22786 24.441 25.670
0011  0.000 8364 15006 18.793 21.269 23.032 24.348
0012  0.000 6.863 13343 17221 19.806 21.662 23.055
0013 0000 5581 11.807 15730 18398 20334 21.793
0014 0000 4498 10396 14321 17.048 19.048 20.565
0015 0.000 3595 9.109 12994 15758 17.807 19.370
0016  0.000 2848 7942 11.752 14.528 16612 18211
0017 0,000 2238 6891 10.593 13360 15464 17.088
0.018  0.000 1.744 5949 9516 12254 14363  16.002
0.019  0.000 1349 511 8.519 11.210 13310 14.953
0.020  0.000 1035 4370  7.601 10227 12305 13.942
0.021 0.000 0788 3.717 6.758 9.304 11347 12967
0022 0000 0595 3.147 5988 8439 10435 12.030
0.023  0.000 0447 2652 5287 7.632 9570 11.130
0024  0.000 0333 2223 4650 6880 8.750 10.265
0.025 0.000 0.246 1.855 4075 6.181 7973 9435
0.026 0.000 0.181 1.540  3.557 5.532  7.238  8.639
0.027  0.000 0132 1273  3.092 4932 6543 7875
0.028  0.000 0.096 1.046  2.675 4375 5885 7.142
0.029 0000 0.069 0856 2.303 3.861 5264 6439
0.030 0000 0050 0.696 1.971 3385 4675 5762
0.031 0.000 0035 0.562 1.674 2945 4118 5011
0.032 0.000 0025 0451 1410 2537 3588  4.483
0.033 0.000 0.018 0.358 1.174 2.157  3.083 3.875
0.034 0.000 0012 0.281 0.963 1.802 2,601 3.287
0035 0000 0009 0217 0771 1469 2138 2714
0036 0000 0.006 0162 0.597 1.153 1.691 2.155
0037 0000 0004 0.115 0436 0.852 1.257 1.607
0.038 0.000 0.002 0.074 0.285 0.562 0.832 1.066
0.039 0.000 0.001 0.036 0.141 0.279 0414 0.532
0040 0000 0000 0000 0000 0000 0.000 0.000

Table 3-4. Solution of the accelerated lower plate by the Laasonen scheme,
Ay = 0.001, At = 0.01.
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y

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040

1=0.18

40.000
36.396
32.839
29.371
26.035
22.864
19.890
17.137
14.619
12.346
10.321
8.538
6.990
5.662
4.538
3.598
2.821
2.189
1.679
1.274
0.956
0.710
0.521
0.378
0272
0.193
0.136
0.094
0.065
0.044
0.030
0.020
0.013
0.009
0.006
0.004
0.002
0.001
0.001
0.000
0.000

t=0.36

40.000
37.449
34.914
32412
29.957
27.565
25.247
23.017
20.885
18.860
16.947
15.154
13,482
11.934
10.510
9.208
8.025
6.957
5.999
5.145
4.389
3.724
3.142
2.636
2.200
1.826
1.506
1.236
1.008
0.817
0.658
0.526
0.418
0.328
0.255
0.194
0.144
0.101
0.064
0.031
0.000

1=0.54

40,000
37916
35.842
33.785
31.754
29.757
27.803
25.898
24.049
22.263
20.543
18.896
17.324

15.830

14417
13.086
11.838
10.671
9.586
8.582
7.655
6.803
6.025
5315
4,671
4.089
3.564
3.094
2.672
2.296
1.961
1.663
1.398
1.162
0.950
0.760
0.587
0.429
0.280
0.138
0.000

1=0.72

40,000
38.195
36.396
34.609
32.838
31.090
29.370
27.682
26.032
24.423
22.860
21.346
19.884
18.477
17.126
15.835
14.604
13.433
12.324
11.276
10.288
9.361
8.491
7.679
6.922
6.218
3.565
4,959
4.399
3.881
3.402
2.958
2.547
2.165
1.808
1.473
1.157
0.855
0.564
0.280
0.000

1=0.90

40.000
38.385
36.774
35.171
33.580
32.005
30.450
28.919
27414
25.939
24,498
23.092
21.725
20.398
19.114
17.874
16.678
15.530
14,428
13.373
12,366
11.405
10.492
9.624
8.800
8.020
7.281
6.583
5.922
5.297
4.705
4,144
361l
3.103
2618
2,152
1.702
1.265
0.838
0.417
0.000

t=1.08

40.000
38.523
37.049
35.581
34,122
32,676
31.244
29.829
28.435
27.064
25717
24,398
23.108
21.848
20.621
19.428
18.270
17.147
16.061
15.012
13.999
13.024
12.086
11.183
10316
9.484
8.686
7.919
7.183
6.476
5.797
5.142
4,511
3.900
3.308
2.7132
2,169
1.617
1.074
0.535
0.000

Table 3-5. Solution of the accelerated lower plate by the Crank-Nicolson scheme,

Ay = 0.001, At = 0.01.
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y

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040

=0.00

40.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

=0.18

40.000
36.397
32.839
29.372
26.035
22.864
19.889
17.135
14.616
12.342
10.315
8.532
6.983
5.654
4.528
3.587
2.810
2177
1.668
1.263
0.946
0.700
0.512
0.370
0.265
0.187
0.131
0.090
0.061
0.041
0.028
0.018
0.012
0.008
0.005
0.003
0.002
0.001
0.001
0.000
0.000

1=0.36

40.000
37.449
34.915
32413
29.958
27.566
25.249
23.019
20.886
18.860
16.948
15.154
13.482
11.933
10.508
9.205
8.021
6.953
5.994
5.140
4.383
3.718
3.136
2.630
2.194
1.819
1.500
1.230
1.002
0.812
0.653
0.522
0.414
0.325
0.252
0.192
0.142
0.100
0.063
0.031
0.000

t=0.54

40.000
37917
35.842
33.785
31.755
29.759
27.804
25.900
24,051
22.264
20.544
18.897
17.324
15.831
14,417
13.086
11.837
10.670
9.585
8.580
7.653
6.801
6.022
5.312
4.668
4.085
3.561
3.090
2.669
2.293
1.958
1.660
1.395
1.159
0.948
0.758
0.586
0427
0.279
0.138
0.000

t=0.72

40.000
38.195
36.396
34.609
32.839
31.091
29.371
27.683
26.033
24,424
22.861
21.347
19.885
18.477
17.127
15.836
14.604
13.433
12,324
11.276
10.288
9.360
8.491
7.678
6.921
6.217
5.563
4,958
4.397
3.879
3.400
2.957
2.546
2.163
1.807
1472
1.156
0.854
0.563
0.280
0.000

1=0.90

40.000
38.385
36.774
35171
33.580
32.006
30.451
28.920
27415
25.941
24.499
23.094
21.726
20.399
19.115
17.875
16.679
15.531
14.429
13.374
12.366
11.406
10.492
9.624
8.800
8.020
7.281
6.583
5922
5.297
4.705
4.144
3.611
3.103
2617
2.151
1.701
1.265
0.838
0417
0.000

t=1.08

40.000
38.523
37.049
35.582
34.123
32.676
31.245
29.830
28.436
27.065
25.719
24399
23.109
21.850
20.623
19.430
18.271
17.149
16.062
15.013
14.001
13.025
12.087
11.184
10.317
9.485
8.686
7.920
7.184
6.477
5.797
5.143
4.511
3.900
3.308
2.732
2.169
1.617
1.074
0.535
0.000

Table 3-6. Analytical solution of the accelerated lower plate.
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0.00

0 200.00
.10 200.00
.20 200.00
.30 200.00
.40 200.00
.50 200.00
.60 200.00
.10 200.00
.80 200.00
.90 200.00
1.00 200.00
1.10 200.00
1.20 200.090
1.30 200.00
1.40 200.00
1.50 200.00
1.60 200.00
1.70 200.00
1.80 200.00
1.90 200.00
2.00 200.00
2.10 200.00
2.20 200.00
2.30 200.00
2.40 200,00
2.50 200.00
2.60 200.00
2.70 200.00
2.80 200.00
2.90 200,00
3.00 200.00
3.10 200.00
3.20 200.00
3.30 200.00
3.40 200.00
3.50 200.00

200.00C
163.57
129.52
100.69
77.51
60.58
49.06
41.80
37.56
35.25
34.07
33.50
33.23
33.11
33.06
33.03
33.02
33.02
33.02
33.02
33.02
33.02
33.01
33.01
32.99
32.96
32.88
3z2.71
32.35%
31.64
30.29
27.90
23.95
17.94
9.75

0

200.00
156.64
116.11
g81.81
54,21
34.07
20.36
11.71
6.67
3.92
2.52
1.83
1.51
1.37
1.31

1.27
1.27
1.26
1.26
1.26
1.26
1.26
1.26
1.26
1.26
1.25
1.24
1.22
1.18
1.12
1.00
.83
.60
.32
0

200.00
156,37
115.59
81.07
53.30
33.03
19.24
10.54
5.46
2.70
1.28
.59
.27
.13
.06
.04
.03
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
01
.01
.01
.00

0

200.00

200

153.
111.
76.
49.
30.
17.

[l ]

200.00

OOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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Table 3-7. Temperature distribution at ¢ = 0.1 hr.
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0 200.00 200
.10 200.00 188
.20 200.00 177
.30 200.00 166

.40 200.060 156,

.50 200.00 147
.60 200.00 138
.70 200.00 131
.80 200.00 124
.90 200.00 118
.00 200.00 114
.10 200.00 110
.20 200.00 107
.30 200.00 104

.40 200.00 102,
.50 200.00 101,
.60 200.00 99,
.70 200.00 99.
.80 200.00 98.
.90 200.00 97.
.00 200.00 97.
.10 200.00 96.
.20 200.00 96.
200.00 95.
.40 200.00 94,
.50 200.00 83.
.60 200.00 gl.
.70 200.00 88.
.80 200.00 85,
.90 200.00 80.

WwiwwWwwhhhpRNRNDNNONNNDEFE PP
w
L=}

e T e T e e o e e e . L e e - . — e s T .

Table 3-8

.00 200,00 200.00
.62 181.48 178.66
.46 163.32 157.73
.73 145.86 137,60
60 129,38 118.61
.23 114.13 101.04
.72 100.29 85.10
.15 87.98 70.91
.55 77.23 58.53
.89 68.02 47.93
.13 60.28 39.02
.21 53.91 31,68
.04 48.75 25,75
.52 44.66 21.05

Kh 33.37 8.39
82 32.83 7.95
26 32.32 7.60
55 31.76 7.31
60 31.09 7.04
28 30.24 6.75
43 29,15 6.42
85 27.74 6.03
286 25.94 5.56
a3 23.69 5.01
62 20.92 4,37
62 17.62 3.64
83 13.80 2,81
90 9.50 1.92
95 4.85 .97
0 0 0

200
177
156
135

115.

97
80
66
53
42
33
25
19
14
11
8
6
4
3
2
2
1
1
1
1
1
1

.00
.82
.08
.19
50
.82
.18
.42
.51
.37
.85
.18
.97
.24
.39
.26
.69
.56
.75
.19
.80
.52
.34
.20
.09
.00
.92

0

200.00
176.65
153.85
132.10
111,81
93.28
76,69
62.14
49.61
39.02
30.24
23.08
17.35
12,85
9.38
6.75

2.32
1.60
1.09
.15
.52
.36
.26
.20
-15
.12
.10
.08
.07
.05
.04
.03
.01
0

3.00 3.50

200.00 200.00
168.67
138.56
113.90
91.98
73.62
58.41
45.91
35.73
27.50
20.92

sy
on
o

QOO0 O00O0O0OCOO0OOCOO0OOCOC OO0 OOCOOOOQOO0O

. Temperature distribution at ¢ = 0.4 hr.



Chapter 4
Stability Analysis

4.1 Introductory Remarks

In general, two types of errors are introduced in the solution of finite differ-
ence equations. These errors may be caused by round-off error, which is a property
of the computer, or by the application of a particular numerical method, ie., a
discretization error. If the errors introduced into the FDE are not controlled, the
growth of errors with the solution of the FDE will result in an unstable solution.
Understanding and controlling these errors by stability analysis is essential for a
successful solution of an FDE. In this chapter, stability analyses of scalar model
equations are introduced. The results will establish valuable guidelines for the sta-
bility requirement of complicated FDEs. In some cases, stability analysis becomes
so cumbersome that numerical experimentation is a more realistic approach. Sta-
bility analysis of model equations, along with numerical experimentation, should
provide insight into the limitations on stepsizes that are needed to obtain a stable
solution.

In this chapter, two methods of stability analysis and their applications to var-
ious model equations are investigated. The two methods are discrete perturbation
stability analysis and von Neumann (Fourier) stability analysis.

The von Neumann stability analysis is more commonly used and is less cumber-
some mathematically. However, discrete perturbation stability analysis is presented
here to familiarize the reader with the method and to illustrate graphically the effect
of a disturbance as it grows or decays with the solution.
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4.2 Discrete Perturbation Stability Analysis

In this method, a disturbance is introduced at a point, and its effect on neighbor-
ing points is investigated. If the disturbance dies out as the solution proceeds, then
the numerical technique used is indeed stable. However, if the disturbance grows
with the solution, the method is unstable. To illustrate this analysis, consider the
following parabolic model equation

Ju u

= a— 4-1

ot~ "o (41)
where a is assumed constant. An explicit finite difference equation using second-
order central differencing for the space derivative and first-order forward differencing

for the time derivative is
n+l n
ut — U] ufyy — 2ul +ul

At YT (B2

(4-2)

Two procedures may be used to approach the mathematical work. The first
procedure assumes that a solution 4} = 0 at all i has been obtained. Then a
disturbance € at node ¢ at the time level n is introduced and the solution at the
time level n + 1 for all 7 nodes is sought. Therefore,

-l +e)  ul, —20ulte)+ul

At - (Az)?
from which it follows that
uftl—e —2 or
At YAz

v e (=]

The expression aAt/(Ax)? is known as the diffusion number and will be denoted
by d. Thus,

u;&l

— = (1 — 2d) (4-3)

Before proceeding with the effect of disturbance on other nodes, the second

procedure is considered. In this procedure, a disturbance ¢ is introduced at node

at time level n, and the disturbance at (i,n + 1) is computed as follows. The FDE
is

ultt — na—2ul 4 ul
L] 1 — l §— 4_4
At T Ay (4-4)
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A disturbance €} is introduced at (i,n), and the disturbance to be calculated at
(i,n + 1) is €7*!. Thus, from Equation (4-4),

(' + ) — (D) up, 20+ )l

At = () (4-5)
Subtracting Equation (4-4) from (4-5) produces
et —e¢ =2 )
At YAy ©
n n A n
E,-+1 =€ — -(K-')—2€- = (1 2d)€‘-
hence,
€n+1
o = (-2 (4-6)

This result is identical to that obtained by the first procedure, i.e., Equation (4-3).
Since less mathematical labor is involved in the first procedure, it will be used to
continue the analysis. One important point to note is that the assumed solution at
time level n does not effect the outcome of the analysis.

Returning to Equation (4-3), we have

un-i-l

= (1—2d)

which represents propagation of the error to grid point ¢ at time level n 4+ 1. In
order to prevent its growing with the solution, the error must be bounded. For this
purpose, the absolute value of error propagation is set to be less than or equal to
one. Mathematically, this requirement is expressed as

u:H-l

€

<1

This limitation requires that 1 — 2d < 1, which is always satisfied since d has a
positive value, and

1-2d>-1, sothat d<1 (4-7)
To calculate the effect of the disturbance at time n+ 1 at point i + 1, consider
ufft —ufyy Uy — 2uy, +uf
1 — 4_
A % (o) (+8)
or ulfy —ufy; = d(ufy, — 2ufy, +uf). With a disturbance at 1,n
ulf — ufyy = dfulie ~ 2ul, + (0 + €] or

ull = de (4-9a)



116 Chapter 4

Similarly, at 1 — 1

U?jil = df (4—9b)
Now for the time level (n + 2),
u;‘l+2 . 'U,?+l _ au:n_:l 2 :H—l + ,u?j-ll or
At (Ar)?
upt? = w4 d (i - 20 4 ) (4-10)

Substituting Equations (4-3) and (4-9) will yield

ult? = ¢(1 - 2d) + d[ed - 2¢(1—-2d) + ed] or

ult? = e(6d* — 4d + 1) (4-11)
n+2

For a stable solution, u]

= |6d? — 4d+1‘<1
[

This inequality includes two possible cases, which are 6d?—4d+1<1 and 6d? —
4d + 1 > —1. The first condition requires that 2d(3d — 2) < 0. Thus,

2

d< - (4-12)

3
From the second condition, it follows that 2d—3d? < 1, a requirement that is always
satisfied. Note that the analysis indicates a more severe restriction on d at this time
level. Now, consider the disturbance at point i + 2 at the time level (n + 2), for
which

n+2 n+1 n+l n+1 n+1
Uity — Uiys _ a’“«+3 2uify +uiy or (4-13)
At (Az)?

nt2 n+l n+l n+1 n+1
wiy = ujy +d (ui+3 = 2ugp + “-;+1)

Hence,
uM? = d(ed) = ed® (4-14)

Similarly, at point ¢ + 1
upt? —ulf = d (ulfd — 20l 4+ )

ult? — ed = d{~2ed + (1 — 2d)]
ul 2 = 2ed(1 — 2d) (4-15)

The analysis may be continued to higher time levels, in which case a more restrictive
condition on d is imposed at each time level.
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Eventually the error will reach all grid points after many time steps with ap-
proximately the same magnitude. Two possibilities may be considered. In the first
case, the errors at the time m have the same sign; for example,

m —
Ui = €
upt = €"
uly =¢€"
Then,
u;rﬂ—l —m €™ — 2™ + €™
=a
At (Azx)?
or
u:n+1 = ™

Thus, this case does not impose a stability restriction. For the second case, the
errors alternate signs, i.e.,

m m
ult =€
m m

ul, = —¢€

This oscillatory error distribution is illustrated in Figure 4-1. Now the FDE is

u;n+1 — €M _ a_em — D™ — M
At (Az)?

1

<
i+.1 %

<
i—3 <

m

—>
S

Figure 4-1. Distribution of error at time level m.

-
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Hence,
ultt = €™ 4 d(—€™ — 2¢™ — €") = (1 — 4d)e™ (4-16)
The solution will be stable if
m+1
L l<1 or 1—4451
em

Hence, the two requirements are
1-4d<1 and 1—-4d>-1

The first condition will yield —4d < 0, a requirement that is always satisfied.
The second condition will result in

dsl (4-17)
2
or, in terms of the step sizes Az and At,
1
< L Ar? 418
At < o-(82) (4-18)

This requirement imposes limitations on the step sizes and provides a valuable guide
for the selection of step sizes. It is concluded that, for a stable solution of the FDE
given by Equation (4-2) and for a specified @ and Az, a At must be selected that
is less than or equal to (Ax)?/2a.

Decay or growth of a disturbance for two values of d are now considered graph-
ically. For the first case, assume that d = 0.25, which should cause the disturbance
¢, introduced at (¢,7), to decay as illustrated in Figure 4-2.

1
n N+ n+2 n+3

Figure 4-2. Decay of error for FTCS explicit formulation of model
Equation (4-1) for d = 0.25.




Stability Analysis 119

For d = 1.5, which exceeds the stability requirement, the disturbance grows as
shown in Figure 4-3.

A second example illustrating the application of discrete perturbation stability
analysis involves a first-order hyperbolic equation. The relevant model equation is
the one-dimensional wave equation:

du Ou
5% = %3z where a >0 (4-19)

To approximate the PDE, the derivatives are replaced with a forward differencing
of the first order in time and a backward differencing of the first order in space.
Then the explicit formulation is

uptt —up u —uly
A Y ar (4-20)
When a disturbance e is introduced into the ith node at the time n, the FDE is
uft ' —(upte) _ (uite)—ul,
At Azx

from which u™! = u} + € — ¢(u} + € —u},) , where ¢ = aAt/Az is known as
the Courant number. Therefore the solution at (i,n + 1) is

utl = (1-c)e (4-21)

n n+1 n+2

Figure 4-3. Growth of error for FTCS explicit formulation of
model Equation (4-1) for d = 1.5.
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For a stable solution,

unt
—I <1 or ‘(l—c)gl
€
from which
1-¢c<1 (4-22a)
and
1—c>—1 (4-22b)

Condition (4-22a) requires that —c < 0; since c is positive, this requirement
is always satisfied. Condition (4-22b) requires that ¢ < 2.
Now consider the propagation of the disturbance to (i + 1,n+ 1). The FDE is

n+1 n n n
urtt — ul = ul
et g0l or u?:ll = ulyy —clul, — (uf +¢)]

At B Az
from which u}' = ce. For a stable solution,
ut

€

<1

Thus, |c] € 1;sothat ¢ <1 and ¢ > —1. The second condition is always
satisfied; therefore, for a stable solution, ¢ must be < 1. At (i — 1,n+ 1)

n+l n n n
U] — Uiy _“aui—l — U9

At - Az

Therefore, u?*! = 0. The procedure may be continued to the next time level at

(n + 2) with the following solution:

ult? = (1 - c)% (4-23a)
ulf? = 2c(1 - c)e (4-23b)
uli? = ce (4-23c)
Ul =0 (4-23d)
ut =0 (4-23€)

Imposing the stability requirement indicates that the solution will be stable if ¢ < 1.

Now the decay or growth of the disturbance ¢ for ¢ = 0.75 and ¢ = 1.5 is
investigated. When ¢ = 0.75, stability analysis indicates a cecay of disturbance,
which is illustrated in Figure 4-4.
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n n+1 n+2

Figure 4-4. Decay of error for the finite difference Equation (4-20)
for ¢ = 0.75.

Note that for the upper limit of the stability requirement, i.e., at ¢ = 1, the solution
is exact. The disturbance propagates along the characteristic line, as shown in
Figure 4-5.

n n-+1 n+2

Figure 4-5. Propagation of disturbance along the characteristic line.
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An unstable solution of Equation (4-20) results when ¢ = 1.5. The resulting
propagation of disturbance (for the first two time levels) is shown in Figure 4-6.

A comment on instability: Recall the unstable solution presented in Figure 4-3.
The instability of solution for node i at various time levels is repeated in Figure.4-7.
This figure clearly indicates the oscillatory behavior of an unstable solution, which
is known as “dynamic instability”. The error propagations for node 7 at various
time levels are

=€
! = (1 — 2d)e
uPt? = (6d2 — 4d + 1)e

Note that for d > §, the unstable solution is indeed oscillatory; for example, when
d = 1.5,

T=€e>0
uftl = —2¢<0

upt? = +8.5¢ >0

That is, the solution changes sign at each time step as it proceeds forward in time.

i+3

i+2

i+1

—0.5¢ 0.25¢

Figure 4-6. Growth of error for the finite difference Equation
(4-20) for ¢ = 1.5.
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If the instability is such that the amplitude grows without oscillation, it is clas-
sified as a static instability. A typical result is shown in Figure 4-8.
Applying discrete perturbation analysis to a model equation becomes cumber-
some when it contains both convection and diffusion terms, i.e., when
du  Bu u

5 Ve T %

Indeed, in such instances the von Neumann stability analysis, which is discussed in
the next section, would be more practical.

i+2
i+1
i & =2 —t B.5¢
i—1
i—2
n n+1 n+2

Figure 4-7. Sketch illustrating dynamic instability.

£ 1.5¢€ 2,25¢E

Figure 4-8. Sketch illustrating static instability.

>
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4.3 Von Neumann Stability Analysis

Von Neumann stability analysis is a commonly used procedure for determining
the stability requirements of finite difference equations. In this method, a solution of
the finite difference equation is expanded in a Fourier series. The decay or growth of
the amplification factor indicates whether or not the numerical algorithm is stable.

Recall that, for a linear equation, various solutions may be added. Therefore,
when the FDE under investigation is linear, it is sufficient to investigate only one
component of the Fourier series. In fact, the linearity of the equation is a general
requirement for the application of the von Neumann stability analysis. Furthermore,
the effect of the boundary condition on the stability of the solution is not included
with this procedure. To overcome these limitations, one may locally linearize the
nonlinear equation and subsequently apply the von Neumann stability analysis.
However, note that the resulting stability requirement is satisfied locally. Therefore,
the actual stability requirement may be more restrictive than the one obtained from
the von Neumann stability analysis. Nevertheless, the results will provide very
useful information on stability requirements.

To illustrate the procedure, assume a Fourier component for u} as

u:: — Une!P(A:)i (4_24)
where I = /—1, U" is the amplitude at time level n, and P is the wave number in
the z-direction, i.e., A; = 2x/ P, where A; is the wavelength. Similarly,

nHl _ pyntl e!P(A:r)i and u"‘il =" eIP(A:)(t'il)
1

u;

If a phase angle 8 = PAz is defined, then

ul = Urel® (4-25)
u?+l — Un+161'9i (4—26)

and
uly, = Ure®=) (4-27)

To proceed with the application of this method, consider the explicit repre-
sentation of Stokes' first problem. Recall that the partial differential equation is
Equation (3-1), and its FTCS explicit formulation is

n+l __

U n

n n n
ul o oudy — 2ul+ul,

At 9T (Axy

or, in terms of the diffusion number

Pt = ul + d (ufy, — 2] + ul,) (+28)
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Substituting Equations (4-25), (4-26), and (4-27) into the finite difference equa-
tion (4-28), one obtains

UnHel® = prel® 4 d [Un. 061 _ opmel®i 4 n e"’(“‘)]
After canceling the common factor e'®,
Urt = Un 4 d(Une — 20+ Une ) or
yrtl = [1 +d (em + e 10 _ 2)]
Utilizing the relation

el 4 e 18
2

U™t = U™ [1 + 2d(cos8 — 1)]

coséd =

Introducing an amplification factor such that Urtl = GU", then
G =1-2d(1 — cosb) (4-29)

For a stable solution, the absolute value of G must be bounded for all values of .
Mathematically, it is expressed as

|G|51 or ll—2d(1~—cos€)$1

so that
1-2d(1—cosf) <1 (4-30)

and
1—2d(1-cosf) > -1 (4-31)

Tnequality (4-30) is satisfied for all values of 6. With the maximum value of (1 —
cos§) = 2, the left-hand side of (4-31) is (1 — 4d), which must be larger than or
equal to —1; thus, 1 —4d > —1lor 4d < 2. So the stability condition is that

d< % (4-32)
This result was expected because this stability condition was determined by the
discrete perturbation analysis in the previous section. On some occasions, the
amplification factor may become a complicated mathematical expression. Once
the stability requirement (|G| < 1) is imposed, one may not be able to clearly
conclude a stability condition(s). In such instances, a graphical representation of
the amplification factor along with some numerical experimentation may facilitate

N
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the analysis. Furthermore, experience gained by the stability analysis of simple
model equations should also provide some very useful guidelines. To illustrate the
graphical representation, the amplification factor given by (4-29) is considered.

The graphical solution may be either in a polar coordinate or a Cartesian co-
ordinate. They are shown in Figures 4-8a and 4-9b, respectively. Note that in
Figure 4-9a, when d = 0.625, some values of G have fallen outside the circle of ra-
dius 1; and in Figure 4-9b, it has exceeded the stability limit, indicating an unstable
solution for this value of d.

(a) Polar

(b) Cartesian

0. 00 20.00 180.00  270.00  360.00
(THETA)

Figure 4-9. Amplification factor given by (4-29) illustrated for various
values of d.
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For a second application of the von Neumann stability analysis, consider a one-
dimensional equation with both convection and diffusion terms, i.e.,

Su Ou J*u
%= %%, "% (4-33)

The FTCS explicit formulation is expressed as

urtl -yl uf, —ul, ul, — 2ul +ud
AL - Y 9Az YT (A .
c
upth = — 2 (udyy — i) + d{udyy — 2uf +ul,y) (4-34)

Following the von Neumann stability analysis,
[rHlelti — pnelti _ g [Une!a(m) _ Unelf)(i—l)]
+d [Unera(m) — opnelt + Unew(i—l)]
Eliminating %,

Ut = Un - %[U"e"’ — U]+ dfUrne —2Un + U] o

ntl __ pym _Cyre__ -18 10 4 18\ _
U™ = U {[1 (e - )| +d[ () 2]} (4-35)
With the identities 19 e

cosl = e__-+:-2_e__ (4-36a)
and el _ =19

Equation (4-35) is written as
U™ = U™ 1 — ¢(Isinf) + 2d(cos 6 — 1)]
from which it follows that |
G =[1—2d(1 — cos8)] — I'[csin ] (4-37)

Note that, for this particular problem, the amplification factor has real and imagi-
nary parts.

A stable solution requires that the modulus of the amplification factor must be
bounded. Thus, a formal requirement may be expressed as

2

Gl £1
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Before mathematical arguments are considered, a graphical presentation is stud-
ied. When Equation (4-37) is written in the form

G=X+1Y =[(1-2d)+2dcosb] — I [csin)] (4-38)

it becomes the equation of an ellipse which is illustrated in Fig. 4-10. For a stable
solution, the requirement of |G| < 1 indicates that the ellipse should fall inside the
circle of unit radius. In the two most extreme cases, 1 — 2d == 0 or d = 0.5 (Figure
4-11a), or ¢ = 1 (Figure 4-11b). Thus, it appears that the stability requirements are
d £ 0.5 and ¢ < 1. However, a more restrictive condition is found by considering
the formal requirement that the modulus of (4-38) must be bounded, i.e., |G|* < 1.
Note that

’G ’ = GG = {[(1 - 2d) + 2d cos 0] — I(csin®)} {{(1 — 2d) + 2dcos 0] + I(csin8)}

or
2

‘G — [(1 - 2d) + 2d cos 8] + (csinB)? (4-39)

When this equation is written as a quadratic, it follows that

2

IG = (1 — 2d)* + (4d°) cos® 0 + 4d(1 — 2d) cos @ + c*(1 — cos? 6)

or .
rGr = (4d2 - c’) cos? @+ 4d(1 — 2d)cos@+4d(d - 1)+ F + 1 (4-40)

Imaginary

¢ }: Real

Figure 4-10. Sketch of amplification factor G given by Equation (4-38).
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N
R=1 R=1

Figure 4-11a. Amplification factor for Figure 4-11b. Amplification factor for
d = 0.5. . = 1.

This quadratic equation represents either a convex curve (with a minimum) or a
concave curve (with a maximum) (see Figure 4-12).

2
|G|MA)<>1 |G|2

<—Unstab|e
1.0
\__/
2
|Gl min$ 1
0.0 —_Cost
-1.0 0.0 +1.0

Figure 4-12. Quadratic function representing Equation (4-40).

It can be shown that for a stable solution, this quadratic function may not have a
global maximum, i.e., the curve cannot be concave. The mathematical procedure
is as follows. The first and second derivatives of the function |G|* with respect to
cos @ are

d|G|’

qcos) ~ (4d® - A)(2cos B) + 4d(1 - 2d) (4-41)

R
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and

&|G|*
d(cos 6)?
The function has a maximum, and it would be a concave curve if the second deriva-

tive is negative, that is, if (4d? — ¢®) < 0 or ¢ > 2d. Now from Equation (4-41),
4d(1-2d)  2d(2d—1)

= 2(4d* - &) (4-42)

and, from Equation (4-40), with the substitution of (4-43)
2 2d(2d - 1)1
_ 2
’G\mu‘ (4d C)[ i — & ]
+ 4d(1 — 2d)g%l%i_—_cz—l) +4d(d -1+ +1
From which it follows that
2 AP —4d+1)
\G mac  CE—4dP (4-44)

Requiring that |G|? < 1 will result in
AP —4d+1) < F - 4d°

which is reduced to
(2 —2d)* <0

Since (¢? — 2d)? is always a positive quantity, the condition for stability cannot be
achieved; and the quadratic function represented by (4-40), which corresponds to a
concave curve is not allowed. Thus, it is concluded that one must first enforce

c<2d (4-45)

Enforcing of (4-45) would ensure that a maximum would not occur. However, the
extreme values of cos §, namely, *1, still need to be explored. For cos § = 1,
Equation (4-40) yields |G|? = 1, and the stability requirement is satisfied. For
cos § = —1, |G|* = 16d* — 8d + 1 and, imposing the requirement of |G|? < 1, yields

d< % (4-46)
which was also obtained previously as Equation (4-32). Note that the combination
of requirements (4-45) and (4-46) includes the requirement of

c<1 (4-47)
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A more restrictive requirement than (4-45) is obtained by the combination of
(4-45) and (4-47), which provides

c2<ad (4-48)

Thus, the stability requirements for the FTCS explicit scheme given by Equation
(4-34) are

ds% and c*<2d

Using the definitions of the Courant number and the diffusion number, the require-
ment (4-45) can be written as

At At
=« i
“Aar = 2 (Ax)?

or
a 3‘;5 <2 (4-49)

The expression aAz /o is called the “Cell Reynolds number Re,.” Therefore, (4-49)
can be written as

Re. <2 (4-50)
Similarly, the more restrictive requirement of (4-48) can be written as
Re. < (2/c) (4-51)
Imaginary
c?>2d

/g
Real

Figure 4-13. Sketch of amplification factor indicating instability for
& > 2d.
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(a) Polar

(b) Cartesian

-
0. 00 90.00 180.00  270.00  360.00
(THETA)

Figure 4-14. Amplification factor given by Equation (4-40).

Graphical representation of the amplification factor for various values of ¢ and
d is illustrated in Figures 4-14a and 4-14b.

The finite difference equations discussed so far in this chapter have involved
two time levels, i.e., time levels n and n + 1. Some of the methods described in
Chapter 3 involve three time levels, so that time levels n — 1, n, and n + 1 appear
in the finite difference equations. To illustrate the application of stability analysis
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to the three-level FDEs, the following example is proposed.
Consider the wave equation,

bu__ ou

at Oz
and approximate the PDE using central differencing. The resulting equation (known
as the midpoint leapfrog method)

(4-52)

utt —up Uy — Ui
] 1 —_ -_ 4-
2AtL O oAz (4-53)

is an explicit equation of order [(At)% (Ax)?*]. Using the definition of Courant
number ¢ = aAt/Azx, rewrite Equation (4-53) as

n+l _ . n-1 n n
i Uy C(ui+1 - ui )

u
Application of the von Neumann stability analysis yields

Un+1610¢ — Un-—leIBi —-c (Unelﬂ(i-l-l) — UneIB(i—l)) or

U™t =l = U (610 _ e—]ﬂ)

from which
UM = Ut - (2T sin YU

Let —2I¢sinf = A; then
U™ = AU 4 U™ (4-54)

Furthermore, the following identity may be written:
Ut =U"+ (0! (4-55)

Equations (4-54) and (4-55) in a matrix form are expressed as

Un+1 A 1 Uﬂ

A 1 0 Un-l

Now, the amplification factor is a matrix:
A 1
1 0

G =

For stability purposes, the eigenvalues of G (call them A) must obey the condition
|A| € 1. Proceeding with the determination of the eigenvalues,

A-2A 1
1 0-A

=M-2-1=0

“
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Hence,

_AxA-4(-1) A+ VAT

A1,2 = 2 9

In terms of the Courant number

Aig = % [—ZIcsinHi V4 — 42 sin?# ] or
A2 = —Icsinf + /1 — ¢2sin? @ (4-56)

Here, two cases must be investigated. If ¢?*sin’8 < 1, then

2

Ma| =c*sin?8+4 (1 - Asin?f) =1

So, when ¢?sin?f < 1, the stability requirement is satisfied. The most restrictive
condition corresponds to the maximum value of sin?8, in which case ¢ < 1.
For the second case, when ¢?sin®8 > 1, one may write

Ag =1 [—csinﬂ:t \/c'-’sinaé?— 1 ] or

A12

2
= c*sin® @ + (c*sin?8 — 1) £ 2csinfy/c?sin’f — 1

= 2c?sin® @ + 2csinfy/c?sin?d — 1 — 1

The stability condition requires that

2

| <1

2¢* sin 6 + 2csinfy 2sin8~1-1< 1

When the “+” is used, one obtains

Asin?f + csinfy Esinf - 1< 1

which is never satisfied for ¢?sin?@ > 1. Thus, the stability requirement for the
finite difference equation (4-53) is ¢ < 1.

Another example of stability analysis and its interpretation is proposed as fol-
lows. Consider the second-order wave equation,

or that

8%u 8%u
=5 (4:57)

St
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In this equation, u is the fluid speed and a is the speed of sound, which is assumed
constant, resulting in a linearized equation.
It can be shown that the analytical solution of Equation (4-57) may be expressed

u(z,t) = f(z — at) + g(z + at)

for which the characteristic equations are:
r—at=c

and

rtat=0e

These characteristics have slopes of dz/dt = *a in the z —¢ plane (lines AB and AC
in Figure 4-15). Recall from Chapter 1 that information at point A is influenced by
the data within the region BAC, known as the domain of dependence of point A.
Now, consider the finite difference representation of Equation (4-57), which is
obtained using second-order central difference approximations for the derivatives;
thus,
uft — 2uP +ul ! _ az”?ﬂ — 2uf +ul,
(At)? (Az)?

(4-58)

or
att

2
) (- 2T -

ult! = 2uf —ul 7+ (

|
n+1 A
n
n—1
n—2 ; /
n—3 &
1T T 1K
i—47i—=3 i—2 i—=1 i i+1 i+2 i+3vi+4

Figure 4-15. Physical and computational characteristic lines.

-
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In terms of the Courant number,
ultt = 2 — N+ A (Wl - 2l ) (4-59)

Equation (4-59) indicates that a newly computed value at (i,n+ 1) depends on the
previous values at 7 and 111 at time level n and node 7 at time level n~1. Similarly,
properties at i,n + 1 will propagate to the points 7, 1 + 1 at time level n + 2.

The von Neumann stability analysis indicates that ¢? < 1 will result in a stable
solution. (Verifying this statement is left as an exercise.) Therefore, the stability
condition of the numerical solution is

2
e« et

This relation indicates that, for a stable solution, the zone of dependence in the
finite difference domain shown as B’AC’ in Figure 4-15 must include the zone of de-
pendence of the continuum domain shown as region BAC. This result is inaccurate
because it includes some unnecessary information propagating from regions B'AB
and C'AC. It is clear that when ¢ = 1, i.e., when the continuum and computational
domains are identical, the numerical solution is exact. On the other hand, if the
numerical domain does not include all of the continuum domain, some of the vital
information necessary for the computation is deleted and an unstable numerical
solution results.

It is appropriate at this time to discuss the stability analysis of a system of
equations. Consider the model equations

ou 61}

and P P
v U _
5 Thig =0 (4-61)
Expressing the set of equations as a vector equation, as in Chapter 1, one obtains
8¢ + [A] =0 where ¢= [ Z ] and
0
A= a’ ]
by O
Explicit finite differencing produces
¢n+1 ¢n n ¢:: — n_l _
At + 4] Az 0
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so that At
ntl _ gn —_— ("~ "
¢| ¢1 [A] AIE (¢s s—l)
Application of the von Neumann stability analysis yields:
At

ntl I8 __ xn f0i = n 0 xn I0(i-1)
P e!™ = @"e [A]Am[ée d"e ]

T6i

After canceling the common term e'®, one obtains

At
+1 __ R
o" _¢I>"—[A]—-—z[1 e ]<I>"
It follows that the amplification matrix is

[G] = [ID] - -AA—;(I —cosf@+ Isinf){A] or

[G] = {[ID] — (1= cos) (g-:) [A]} _I {% sine} 4]

where [ID] is the identity matrix. Stability requires that the largest eigenvalue of
[G], say |AGmax| < 1. An equivalent of the stability condition is that |Apax At/Az| <
1, where Amax is the largest eigenvalue of matrix [A]. Thus, for our example, where

a3

Amax = Vbi1az, and the stability requirement is

<1 (4-62)

4.4 Multidimensional Problems

The von Neumann stability analysis can be easily extended to multidimen-
sional problems. Even though discrete perturbation and other stability analyses
can be used to analyze multidimensional problems, an extension of the von Neu-
mann method is the most straightforward and the most commonly used. Thus, this
technique for the stability analysis of multidimensional problems will be considered
in this section. As a first example, consider the unsteady, two-dimensional heat

conduction equation
ou (6% 82u)

E=a 5;-*-—6? (4—63)

— s, o33 8
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Approximating the derivatives by forward differencing in time and central dif-
ferencing in space, one obtains the explicit formulation

ulft —ul _ Uy — Uy T Wy | Ui T 2ul; —uli (4-64)
At (Az)? (Ay)?
Define the diffusion numbers d; = aAt/(Az)* and dy = alt/(Ay)? , then
u;'.;_rl =uf; + ds (u?ﬂd ~ 2uy; + u?_u) +d, (u?,jﬂ — 2ug; + “?g‘-1) (4-65)

Assume a Fourier component of the form
u‘?,j —_ UneIP(A:)iqu(Ay)j
where U™ is the amplitude at time level n, and P and ¢ are the wave numbers in

the z and y directions. The phase angles 6 = PAz and ¢ = gAAy are defined as in
the previous case. Then,

up, =U" elfipldi — [nel@i+4d) (4-66)
Similarly,

Wy = UnelOED) 49 (4-67)

' Wl = UnelOHH#GED) (4-68)

Substituting Equations (4-66) through (4-68) into Equation (4-65), one obtains
Un+1el(0i+¢j) — Uﬂef(9i+¢'j) +dy [Uﬂ61(3(5+1)+¢1') — opnel@itéd) Uﬂel(ﬂ(i—lHd’j)]
+d, [Unel(()t'+¢(j+1)) _ oUnelBited) | Unej(9i+¢(j—1))]

Canceling terms and factoring U™,

Ut = U [14d: (e —2+€7) +dy (e -2+ e
Using the identities (4-36a) and (4-36b), it follows that

U™ = U1 + 2dz(cos@ — 1) + 2dy(cos¢p —1)] or
G =1+ 2d.(cosf — 1) + 2dy(cos ¢ — 1)

For a stable solution, |G| £ 1, or

1 + 2dz(cos @ — 1) + 2dy(cosp - 1)| < 1
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that is,
2d;(cosf — 1) + 2dy(cos ¢ — 1) <0 (4-69)

and
2d, (cos 8 — 1) + 2d (cos¢ — 1) = —2 (4-70)

The first condition, given by (4-69), is always satisfied. The second condition, (4-
70), specifies that dz(1 — cos8) + d,(1 — cos¢) < 1. At extreme values of cos# and
cos ¢,

d:(2)+dy(2) €1 or
detdy < (4-71)

In terms of the step sizes At, Az, and Ay,

alt [ 1 + ! ] < E
oyt Bep) = 2
Note that, in the one-dimensional case, d < 0.5. In the two-dimensional case just
considered, if Az = Ay, then d < 0.25, ie., the stability condition is twice as
restrictive as in the one-dimensional case.
The procedure described above can be used to analyze three-dimensional prob-

lems as well. For the FTCS explicit formulation of the three-dimensional heat
conduction equation,

2 2 2
6‘u=a(6‘u &*u Ou) (472)

ot Oz + oy* + 042
stability analysis indicates that a numerical solution will be stable if

1
dz + dy + dz S '2'
The analysis is left as an exercise in problem (4-5).
As a second example of a multidimensional problem, consider an unsteady, two-
dimensional convection equation with positive constant coefficients a and b, i.e.,
ou Ou ,0u
= —g— — b— 4-73
ot~ "oz oy (+73)
An explicit finite difference representation of the partial differential equation may
be obtained by using a first-order accurate forward difference approximation of the
time derivative and a first-order accurate backward difference approximation of the
spatial derivatives. Thus,

upit — ul ul; —ul o ul —ul
b B RS Sy S B 4-74
At Az Ay (4-74)

-
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which can be written as

n+1

. .n n n n n
Uij =U; —C (ui,j - ui—u) - & (ui,j - uij—l)

where ¢; = eAt/Az and ¢, = bAt/Ay. Substituting the Fourier components defined
in (4-66) through (4-68) yields

UntlplBied) — pmel(i+ed) _ o rm [el(ﬂi+¢j) . e:(a(e--1)+¢j)]
- Um [61(9i+¢j) - el(oi+¢(j—1))]
After eliminating common terms,
Urtl = g — e U™ [1 _ e*m] —qU" [1 _ e“"’]
hence,
G=1-c¢;[1—(cos@—TIsind)] —c,[l — (cos¢ — Ising})] or
G =11—c;(1—cos)—cy(l —cos¢)] — I'[c;sinf + ¢y sin @)

Therefore,

2

‘G = [1 — ¢z(1 — cos ) — ¢, (1 — cos $)]* + [c; sin@ + ¢, sin ¢]*

For a stable solution, {G|*> < 1, or
[cz(1 — cos8) + ¢, (1 — cos @)}* — 2[cz(1 — cosB) + ¢, (1 — cos §)]
+ (czsind + ¢y sin¢)* < 0 (4-75)
For the maximum values of (1 — cos ) and (1 — cos @), one has
Ac, + 4c} + Bezey — dex — 4ey <0

or (cz+¢y)?— (¢ +¢y) < 0. From which (c;+¢,)(c;+¢,—1) 0. Since (c;+¢y) is
positive, (cz;+ ¢, —1) <0 or ¢ +¢y £ 1. When Equation (4-75) is investigated for
the maximum values of sin # and sin ¢, the same requirement will result. Therefore,
the solution of the FDE given by Equation (4-74) is stable for ¢; +¢, < 1.

Before proceeding to the next section, a summary on application and limitations
of the von Neumann stability analysis is considered.

1. The von Neumann stability analysis can be applied to linear equations only.

2. The influence of the boundary conditions on the stability of solution is not
included.
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3. For a scalar PDE which is approximated by a two-level FDE, the mathematical
requirement is imposed on the amplification factor as follows:
(a) if G is real, then |G| < 1
(b} if G is complex, then |G|* < 1, where |G|* = GG
4. For a scalar PDE which is approximated by a three-level FDE, the ampli-
fication factor is a matrix. In this case, the requirement is imposed on the
eigenvalues of G as follows:
(a) if A is real, then |A} <1
(b) if A is complex, then [A? < 1

5. The method can be easily extended to multidimensional problems.

6. The procedure can be used for stability analysis of a system of linear PDEs.
The requirement is imposed on the largest eigenvalue of the amplification
matrix.

7. Benchmark values for the stability of unsteady one-dimensional problems may
be established as follows:

(a) For most explicit formulations:

I. Courant number, c<1
II. Diffusion number, d<0.5
ITI. Cell Reynolds number, Re, < (2/c)

(b) For implicit formulation, most are unconditionally stable.
8. For multi-dimensional problems with equal grid sizes in all spatial directions,

the stated benchmark values are usually adjusted by dividing them by the
number of spatial dimensions.

9. On occasions where the amplification factor is a difficult expression to analyze,
graphical solution along with some numerical experimentation will facilitate
the analysis.

4.5 Error Analysis

Methods for which the lowest order term in the truncation error is of order one
are classified as first-order accurate methods. An example of a first-order accurate

>



142 Chapter 4

method for the model equation

Ou ou
Y e g 4-76
5 - %5z (4-76)
is n+1 n n n
U Uy U Uiy
At = a————-Ax (4-77)

Note that, in the approximation process, the Taylor series expansion was truncated
at an even (second) derivative, i.e.,

u ult —u} N (At) 8 + (At)? 8u

ot~ At 2/ ot? 3! a
‘ —» truncated terms represented as O(At) .

o

(=]

S

e

o~

3

8] &  Exact

o~

A SOLUTION OF A FIRST ORDER ACCURATE METHOD
o SOLUTION OF A SECOND ORDER ACCURATE METHOD

150. 00

100. 00

50. 00
1 1

0. 00

-50. 00

T ] T
100.00  135.00  170.00 (zb.rs. 00  240.00  275.00  310.00
X(I

Figure 4-16. Comparison of solutions obtained by a first-order
accurate method and a second-order accurate method.
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For a second-order accurate formulation, the truncation of the error term is at
an odd (third) derivative; for example,

Ou _ utl —up 1__ﬂA02§E
ot 2A¢ 31 93

I — truncated terms represented as O(A¢)* .

The errors associated with first-order accurate methods are known as dissipation
errors. These errors tend to decrease the gradients within the solution domain. Er-
rors associated with second-order accurate methods are known as dispersion errors.
Typical dissipation and dispersion errors are shown in Figure 4-16. The dissipation
error produced by a first-order accurate method is indicated by a decrease in the
amplitude of the wave, while the dispersion error created by a second-order accurate
method is indicated by an oscillation in the solution.

4.6 Modified Equation

In order to determine the dominant error term of a finite difference equation,
Taylor series expansions are substituted back into the finite difference equation and,
after some algebraic manipulation, the so-called modified equation is obtained. To
illustrate the procedure, two examples will be considered. The selected examples
represent a first-order accurate and a second-order accurate finite difference formu-
lation of a model equation. These examples will show the dominant error terms of
these methods and their relation to dissipation and dispersion errors.

A first-order finite difference equation for model equation (4-76) is given in
(4-77), which can be rearranged as

WP = — e — ) (479)
The terms u”*! and u?_, are expanded in Taylor series as follows:

ou &% (At):  &u (At)
ntl _ .0 =
i e R ]

du o (Az)*  Fu (Az)®
no__,n__ Y -
Ui = B:L'Ax_,r dz? 2! oz 3!
Substitution of (4-79) and (4-80) into (4-78) yields:

 bu,.. Su(AD?  Bu (A
Wt HMtgE oo T 3l

2 2 3
up —¢ {u;" - [u’? - -6—EA:1: + Pu (M) Fu (Az) + O(Aa:)“]}

+ O(At)? (4-79)

+ O(Az)* (4-80)

+ O(At)* =

LY 8r2 2!  8r3 3

~
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Canceling terms and factoring produces:

[_B_u Ou At | &u (At)?

ot 82 2 ' 9 6

+ O(At)SJ (At) =

At [Ou  0*u Az Bu (Az)? 3
- a—— [%ﬁ @T-{F@T-}-O(Al‘) (A.’B)

This equation is divided by At and rearranged as
du du ult HulAz  u (At

o “ar ar2 "8 2 3B 6
BPu (Azx)? 3
—apm =+ 0 [(Aty, (Az) ] (4-81)

In order to analyze Equation (4-81) and to compare it to the original partial dif-
ferential equation, the higher order derivatives in time must be replaced by spa-
tial derivatives. This substitution requires determination of 8%u/8t? with O[(At)?,
(Az)?] and 8%u/8¢* with O[(At), (Az)] such that the order of accuracy of (4-81)
is not altered, i.e., it remains third order. These calculations, presented in Ap-
pendix C, yield the equations

8 u &u
P a%x_z +[a*At — a’Ag] 7=+ 0 (802, (AzAg), (Az)?] (4’_82)
and
%‘; = ——a3% +0[(At), (Az)] (4-83)

Substituting (4-82) and (4-83) into (4-81) produces

du du a’At 8% 3 o x At 33u
% T 7 gm (WAt-a@An) o
alAz 8*u N a’(At)? 8*u  a(Az)? &u
2 Oz? 6 023 6 Ozt

+0 (A1), (A2)(At?, (Az)*(At), (Az)']
Rewrite the equation as

@ _ 8u  aAz (1 aAt) d%*u

&~ "t 2 T Ao
_a(Az)? 20,2(A1t)2 B 3aAt 1 Fu
6 (Ax)? Ax 0z3

+0[(At?, (Az)(AtY, (AzP(AY), (Az)]
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or, in terms of the Courant number,
du du alz &u (A:t:)2
-é-t- = —aé; -+ —2—'(1 — C) 6.’1:2 (202 3c + 1)
+0[(At), (M)A, (Ax)’-(At), (Az)’] (4-84)

This equation is known as the modified equation. When compared to the original
PDE given by (4-76), the error introduced in the approximation process is clearly
indicated. Note that the dominating term in the error is the second term on the
right-hand side of Equation (4-84), which includes the second derivative. Equation
(4-84) and its associated error will be further investigated in the next section when

artificial viscosity is introduced.

At this time, consider a second-order method in which the dominant error term
includes a third-order (odd) derivative. Such a formulation is the midpoint leapfrog
method given by (4-53). The equation may be rearranged as

ur_1+l

1

Substituting the Taylor series expansions,

= “?_1 — c(ud, — uy)

n . Ou 0% (At)?  Pu (At)
U = Uy + EAt'l" Be2 ( 2!) Ot° ( 3!) + O(At)4
e du O*u (At)?  FPu (At
W= - At G s g O
n n  Ou 0% (Az)?  u (Az)®
un=uw+gATt s ( 2!) Fr ( 3!) +0(Az)!
and
Ou o (Ax)?  &u (Ax)?
A =R It = R e G

into Equation (4-85), one obtains

3 3
Ou Fu (At du A &u (At)

Tl TR R TR v +
du &u (Az)? 5 5
—c|25-An+ 25— ]+O[(At),(A:n)]

from which it follows that

du  du Ou(At))  Pu (Az)

5 Yoz e 3 Yar 3

oA, (az)]

(4-85)

(4-86)
(4-87)

(4-88)

(4-89)

(4-90)
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From Appendix C, Equation (C-6) is
33

Fu u
'a—ta‘ = —a3~a? + O(At, Ax)

After substituting into (4-90) and factoring terms one obtains

ou  Ou  a(Az)? [a®(At)? Fu
AR [ anr 1] 527
+0 [(At)*, (Az)*(AY), (Az)’] (4-91)

This is the modified equation, clearly indicating the dominant error term. Note that
this term includes the third-order (odd) derivative. Additional error terms, such as
some factor times 0°u/8z°, may have been included in Equation (4-91); however,
to avoid cumbersome mathematical work, they were lumped and represented by
higher order terms in O [(At)*, (Ax)3(At), (Ax)Y.

4.7 Artificial Viscosity

Recall the modified Equation (4-84), repeated here for convenience:

2 2
T LS S LT
The error term of this first-order accurate method is clearly indicated, with the
second term on the right-hand side being the dominant term in error. The coefficient
of 8’u/8x? in the error is known as the numerical or artificial viscosity. This is a
nonphysical coefficient introduced by a particular approximation of the PDE. We
may use «. to denote the artificial viscosity, in which case

e = %aA:n(l —c)

Note that for ¢ = 1, a. = 0, the solution is exact. Additional investigation and
analysis of dissipation and dispersion errors will be studied in Chapter 6. The effect
of artificial viscosity is to dissipate the solution; as a result, the gradients in the
solution domain are reduced.

Note that the artificial viscosity just defined must be distinguished from a damp-
ing or smoothing term that is sometimes added intentionally to an FDE. An example
of that will be illustrated in Chapter 6 when a fourth-order damping term is added
to an FDE in order to reduce the oscillations in the solution.
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In closing, another procedure for determining the dominant error term is inves-
tigated. Consider Equation (4-81) where

Ou Su  O%u At 8*u Az

guar 2 2
57 5=~ 37 5 T %% 5 +O[(At) , (Az)] (4-92)

To eliminate the time derivative on the right-hand side of Equation (4-92), the
original PDE will be used, i.e.,

ou _ _,ou (4-93)

Taking the time derivative, one obtains

6u 8 {Ou 8 (0u
ER (a—m) =% (“éz) (494
Substitute (4-93) into (4-94) to obtain
8u i} Ou 8%u
52~ oz ("“az) =g (+:95)

Substituting {4-95) into (4-92) yields:

Ou_ _ Ou_ ,0%uAt Az du
o Yoz a2 T2

Hence,

oz?

ou du Az  ,At\ &u
* (“ 7 ¢ 7)

or, in terms of the Courant number,

du du alz 0%u

&~ %tz %
where the second term on the right-hand side represents the error term, and the
coefficient (aAz/2)(1 — c) represents artificial viscosity.

This procedure, though relatively simple mathematically, is not precise, since the
original PDE is being used in the approximate FDE. Furthermore, this procedure
does not provide the additional terms shown in Equation (4-84). However, this
method has been used and presented in various literature.
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4.8 Summary Objectives
After studying this chapter, you should be able to do the following:

1. Define:

Stability

S o

Discrete perturbation stability analysis

Von Neumann stability analysis

oo

The Courant number

The cell Reynolds number
Static instability
Dynamic instability

S

Dissipation error

e

Dispersion error
j- A modified equation
k. Artificial viscosity

2. Solve the problems for Chapter Four.
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4.9 Problems

4.1 Given the model equation

ou_
ot = 8z

use the DuFort-Frankel method for this PDE and apply the von Neumann stability
analysis.

4.2 Consider the model equation

du du

-———a—

at Ox

A numerical technique with the following formulation has been suggested for the
FDE:

n-i—i

_u + A (uﬂ-l "')

1 + alt 1 +
up = g (™) 4 gag (W - )

Use the von Neumann stability analysis to obtain the stability condition for this
technique. Hint: Eliminate “n+ 3 17 time level in the second egquation by the substi-
tution of the first equation. The resultmg equation will have time levels of “n” and
“n+ 1" only. Now apply the von Neumann stability analysis.

4.3 Using the von Neumann stability analysis, determine the stability requlrement
of the following FDE:

n+1 n n n
Uy U U T Uiy

At a Az
a>0

Plot the amplification factor for Courant numbers of 0.5, 0.75, 1.0, and 1.1.
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4.4 Consider the model equation

Define v/a = K.

(a) Write an explicit formulation using a first-order forward differencing in z and
a second-order central differencing in y.

(b) Use von Neumann stability analysis to determine the stability requirement of
the scheme.

4.5 Consider the unsteady three-dimensional heat conduction equation

oT (32T T azT)
= +

ot o T a2 T B2
(a) Obtain an explicit FDE using forward time and central differencing of O|At,
(Az)?, (Ay)%, (A2)7.

(b) Apply the von Neumann stability analysis to the FDE.

4.6 Determine the modified equation for the Laplace’s equation,

u  8u

2oL =0

8z*  Oy?
Use second-order central difference approximation for the derivatives. The modified
equation should include terms up to fourth-order derivatives.

4.7 Write an implicit finite difference formulation for the wave equation which
is first-order in time and second-order (central) in space. Determine the modified
equation.

4.8 Consider the model equation,

a_u + ag}ﬁ = o .62_u

ot Oz Ox?
(a) Write an explicit formulation using a first-order forward differencing in time,
a first-order backward differencing in space for the convective term, and a

second-order central differencing for the diffusion term.

(b) Determine the amplification factor G.
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4.9 Consider the wave equation,

du ou
E%—ab—;—o a>0

(a) Write an explicit finite difference equation which employs a first-order forward
differencing in time and a second-order central differencing in space.

(b) Determine the stability requirement of the scheme.
4,10 Repeat problem 4.9 using the implicit Crank-Nicolson scheme.

4.11 Consider the diffusion equation given by

o _, o
Bt—a3:1:2

(a) Write an implicit Crank-Nicolson formulation.

(b) Use von Neumann stability analysis to determine the stability requirement of
the scheme.

4.12 Show that the application of explicit FTCS differencing to the model equa-
tion
ou  Ou

_..a-—
ot Oz
introduces an artificial viscosity ae = —a?At/2.

4,13 For the model equation
ou Ju

5t~ %ox
the following finite difference equation (known as the Lax method) has been pro-
posed: A
1 alil
U?H =3 (uly +uiy) — 2Az (us — uls)

Determine the artificial viscosity of the method.



Chapter 5
Elliptic Equations

5.1 Introductory Remarks

The governing equations in fluid mechanics and heat transfer can be reduced
to elliptic form for particular applications. Such examples are the steady-state heat
conduction equation, velocity potential equation for incompressible, inviscid flow,
and the stream function equation. Typical elliptic equations in a two-dimensional
Cartesian system are Laplace’s equations,

Pu %
Rl vl (5-1)
and Poisson’s equation,
32u 62
o+ o = flz,) (52

These model equations are used to investigate a variety of solution procedures.

5.2 Finite Difference Formulations

Of the various existing finite difference formulations, the so-called “fve-point
formula” is the most commonly used. In this representation of the PDE, central
differencing which is second-order accurate is utilized. Therefore, model Equation
(6-1) is approximated as

Uit — 2Uij + Uiy 4 Y1 — 2uij + Ui 5
(Az)? (Ay)?

=0 (5-3)

The corresponding grid points are shown in Figure (5-1).
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i+ 1
i—1,j i i+1,j
)
AY
Y dif=1
st A X ey

Figure 5-1. Grid points for a five-point formula.

A higher order formulation is the nine-point formula, which uses a fourth-order
approximation for the derivatives. With this formulation, the FDE of model Equa-
tion (5-1) is:

—Ui_2,j + 16’11,,'_.1‘,‘ - 30114',1‘ + 16’(L¢+1,j — Uir2,§
12(Az)?

n —Uij-2 + 16u;j-1 — 30ui; + 16U 541 — Uij+2 _
12(Ay)?

0 (5-4)

The grid points involved in Equation (5-4) are shown in Figure (5-2).

ioj42

i jt+1

i—2,j i—1,j i, i+1,j lit2,)
i o 4 ' s

ij—=1

Ii,j—-z
I

Figure 5-2. Grid points for a nine-point formula.




154 Chapter 5

One obvious difficulty with the application of this formula is the implementation
of the boundary conditions. Thus, for problems where higher accuracy is required,
it is easier to use the five-point formula with small grid sizes than the fourth-order
accurate nine-point formula. Due to its simplicity, the five-point formula represented
by Equation (5-3) will be considered in this chapter. Rewrite Equation (5-3) as

Az\*
Uiy — 2Uij + Uiy + (—A—y) (i1 — 25 + uij-1) =0 (5-5)

Define the ratio of step sizes as 8, so that § = Az/Ay. By rearranging the terms
in Equation (5-5), one obtains

Uirtg + Uiorg + Buiger + Buig— — 2(1+ B2ui; =0 (5-6)
In order to explore various solution procedures, first consider a square domain with

Dirichlet boundary conditions. For instance, a simple 6x6 grid system (see Figure
5-3) subject to the following boundary conditions is considered:

r=1L u=uy , y=H U = ug

Applying Equation (5-6) to the interior grid points produces sixteen equations
with sixteen unknowns. The equations are:

i=1 2 3 (l 4 5 6
u,

Figure 5-3. Grid system used for solution of Equation (5-6).




Elliptic Equations 155

Usg + U1 + Bugs + Bugy — 2(1 + FHugs =0
Ugo + Uz + ﬁ2u3,3 + )62“3,1 —-2(1+ ﬁ2)u3,2 = {)
us + usp + Brugs + BPuay — 2(1 + fHug =0
Usz + Ug2 + FPuss + Blusy — 2(1 + BHusz =0
Uzs + U1z + BPuga + fPusg — 2(1 + AHuss =0
Ug3 + Uz + BPuag + Buap — 2L+ fus3 =0
Us3 + uz3 + ﬁzﬂ4.4 + 52’&4,2 —-2(1+ ﬂz)m,a =

Uss + g3 + FPusa + Pusz — 2(1+ fHus = 0
Uz g + Urg + BPugs + Brugs — 2(1 + B*ugy =0
Usa + ug s + BPuss + Buzs — 2(1 + fugs = 0
Us g + Uz g + Brugs + fruss — 2(1 + fuge =0
Usa + Uag + Bluss + fPuss — 2(1+ FPusa =0
us + trs + Brugs + Frugs — 2(1 + fugs =0
Uss + Uz s + BPusg + BPuas — 2(1+ BPugzs =0
us s + uss + Fugg + BPusg — 2(1 + fPugs =0

Uss + Uas + Blusg + Brusa — 2(1 + fPuss =0

These equations are expressed in a matrix form as

-
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(0 1 00 820 0 0 000 00 0 0 0 |[uge] [—wa—Bus,

1 a1 00 F20000O0O0O0O0TO0O0 uzz | | —Bua,

01l alO0O0OPB0O0O0O0O0O0O0TO0O0 ugz | | —B%uq,

001 «a 00O B00O0O0O0CO0D0O usz | | —usa — Bus,

820 00 al 00 B000O0O0O0 O ugs | | —w1a

0 20 01 alO0O0B0000O0O00 uzz | {0

00 82001 alO00PpB200000 ws | |0

0 00 B2°001 aa000 620000 us3 | | —usgs

0000 BD00O0aloo0 200 0 ||uwl|]|-us

00000 B 2001 al 00 B0O0 uzq | | O

0000O0O0PBO0O01 al 00 B0 usq | | O

000 0O0O0O0 /001 a0 00 B |usl| | —uss

0 000O0DO0OUOOPpBO0O0O0aalo00O uzs | | —wis — Blusg

0000O0CO0ODODOQB0OO01L1 alo0 uzs | | —Buags

0000 0O0OO0OOUO 0D DUPB0 01 ot Uss | | —Bugp

(00000 O0O0O0O0O0O0 F0 01 of] us| |—uss—Buse|
(5-7)

where a = —2(1 4 2.

The matrix formulation has two noteworthy features. First, it is a pentadiagonal
matrix with nonadjacent diagonals; and second, the elements in the main diagonal
in each row are the largest. These features are important when developing solution
procedures.

5.3 Solution Algorithms

In general, there are two methods of solution for the system of simultaneous
linear algebraic equations given by (5-7). These schemes are classified as direct or
iterative methods.

Some familiar direct methods are Cramer’s rule and Gaussian elimination. The
major disadvantage of these methods is the enormous amount of arithmetic oper-
ations required to produce a solution. Some advanced direct methods have been
proposed which require moderate computation time, but almost all of them have
disadvantages. Usually these methods are limited by one or more restrictions such
as the Cartesian coordinate system, a rectangular domain, the size of the coef-
ficient matrix, a large storage requirement, boundary conditions, or difficulty of
programming. Nevertheless, some of the advanced direct methods show promise for
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applications and indeed are useful tools. The discussion of these methods, however,
is beyond the scope of this text. Since the general application of solution proce-
dures is of more interest, the investigation will be confined to the simple and easily
understood iterative methods. Iterative procedures for solving a system of linear
algebraic equations are simple and easy to program. The idea behind these meth-
ods is to obtain the solution by iteration. Usually an initial solution is guessed and
new values are computed; based on the newly computed values, a newer solution
is sought, and the procedure is repeated until a specified convergence criterion has
been reached.

The various formulations of the iterative method can be divided into two cat-
egories. If a formulation results in only one unknown, then it is called a point
iterative method. This formulation is similar to the explicit methods of parabolic
equations. On the other hand, if the formulation involves more than one unknown
(usually three unknowns, resulting in a tridiagonal matrix coefficient), it is classified
as a line iterative method, which is similar to an implicit formulation of a parabolic
equation. Some of these iterative methods will now be discussed.

5.3.1 The Jacobi Iteration Method

In this method, the dependent variable at each grid point is solved, using initial
guessed values of the neighboring points or previously computed values. Therefore,
Equation (5-6) is used to compute a new value of u;; at the new iteration k + 1
level as

ufft = m [uf+l,j -+ Uf-x,j + ﬂz(uﬁj-ﬂ + Uf,j—x)} (5-8)
where k corresponds to the previously computed values (or, to initial guesses for
the first round of computations). The computation is carried out until a specified
convergence criterion is met. One immediately notices an easy way to improve the
solution procedure. Why not use the newly computed values of the dependent vari-
able to compute the neighboring points when available? Indeed, implementation
of this idea gives us the Gauss-Seidel iteration method, which increases the con-
vergence rate and, as a result, involves much less computation time. The Jacobi
method is rarely (if ever) used for the solution of elliptic equations. It is reviewed
here to show the step-by-step improvements of various iteration methods.

Before proceeding with other iterative methods, the analogy between the itera-
tive method just discussed and a time-dependent parabolic equation is investigated.
Consider the following parabolic equation:

du 0% O

E—'a?—{"a—?ﬁ (5-9)
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The explicit formulation of the finite difference equation (FTCS) is:

n+1 n n n

At (A:c)2 (Ay)2

or

At At
n+1 n n n
iy =yt gy (g = 2+ ol W)+ Tagy (g — 2uly + u3y)

For simplicity, assume that Az = Ay, then

n At
u‘jl—u -+-(A [umg"'“‘—u dul; +uli Hud; 1]

If At/(Ax)? < 0.25, a stable solution is obtained. So for the upper limit of
At/(Az)? = 0.25, one has

nt+l
Uy up +4[u,+u+u‘ 1y — dug; +u,’]+1+u,d }

or

n+l

1 n
ulyt = 2 (o + g el +ul) (5-10)

Now apply the Jacobi iterative method to the two-dimensional elliptic equation (5-
1). With g = Az/Ay =1, the result is
uil = "11 (ufﬂ,j ol uin + u:‘ij-—l) (5-11)
Comparison of Equation (5-10), which is the FTCS approximation of a parabolic
equation, and Equation (5-11), which is the Jacobi iteration method for an ellip-
tic equation, indicates that the two equations are identical. Even though the two
equations represent different formulations and completely different physical phe-
nomenon, mathematically (and to the computer) they are equal. This analogy
suggests that some of the techniques used for the solution of parabolic equations
can be extended or modified to provide efficient methods for the solution of elliptic
equations. Indeed, the ADI method described earlier for the solution of parabolic
equations is such an example. The ADI method for solving elliptic equations will
be discussed shortly.

The discussion above may be presented graphically as follows. Assume that
Equation (5-10) is solved for the time dependent values of u;;. A steady-state

solution is approached after a sufficiently large time, which is illustrated in Figure
5-4.
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Time Accurate Solution

Time

Figure 5-4. A time accurate solution.

Now consider the solution of the steady-state equation (5-1). Assume that an
iterative method is used to obtain a solution. For instance, Equation (5-11) is
employed. A typical solution is illustrated in Figure 5-5.

An important difference between the two solutions is emphasized at this point.
The time dependent solution obtained from Equation (5-10) is a wvalid solution
at any intermediate time level. On the other hand, the intermediate solution of
Equation (5-11) has no physical significance; it is only a path to the steady-state
solution.

ULJ

Steady
State

Number of Iterations

Figure 5-5. An iterative solution for steady-state problem.

Another point to address is as follows. In order to start a solution procedure
for an unsteady problem, an initial set of data is required, as was illustrated in
Chapter Three. When the imposed initial data and time step correctly represent
the physics of the problem, then the solution is time accurate. But, what about
problems where an accurate initial data set is not available? A hypersonic flow
field around a complex configuration is such an example. In such instances, an
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arbitrary initial condition is imposed. Hence, the required equations may be solved
for a converged solution which represents the steady-state solution. Thus, a time
dependent problem with an arbitrary initial data set is solved to reach steady-state.
The intermediate steps are not physically correct solutions. In many instances
where such a procedure is used, the expressions converged solution and steady-state
solution are used interchangeably. Similarly, time step and iteration step may be
used interchangeably. These issues will be further explored in Chapter Twelve,
when Euler equations are investigated. For now, return to the iterative procedures
for the solution of elliptic equations.

5.3.2 The Point Gauss-Seidel Iteration Method

In this method, the current values of the dependent variable are used to compute
the neighboring points as soon as they are available. This will certainly increase
the convergence rate dramatically over the Jacobi method (about 100%). The
method is convergent if the largest elements are located in the main diagonal of
the coefficient matrix, as in the case of the formulation that produced (5-7). The
formal requirement (sufficient condition) for the convergence of the method is

n

las| > 3~ oyl
j=1
i

and, at least for one row,

NE

las| > |asj]

[
Il
—

A

Since this is a sufficient condition, the method may converge even though the con-
dition is not met for all rows. Now the formulation of the method is considered.
The finite difference equation is given by Equation (5-6), which is repeated here:

1
T 201+ 6

In order to solve for the value of u at grid point 3, 7, the values of u on the right-hand
side must be provided. This procedure is easy to understand if one considers the
application of Equation (5-12) to a few grid points. For the computation of the first
point, say (2,2), as shown in Figure 5-6, it follows that

Us j [Umg + tio1g + B (uiie + md_1)] (5-12)

1
k+1 __ 2
Ugy = —"""“—2(1 g [U3,2 +urg + B (ugs + ﬂ’i)]
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k
2,3

B.C. k+1 k

% 1,2 2,2 3,2

B.C.

@

Figure 5-6. Grid points for Equation (5-13).

In this equation, ug,; and u,z are provided by the bdunda.ry conditions (underlined
in the equation above). Only two values, namely us2 and ug3, use the values from
the previous iteration at k. Thus, in terms of the iteration levels,

1
bt = gy [ e+ (s ¢ ) (5-13)

Now, for point (3,2), one has

1 2
sz = gy gy [+ v + B (s + )]
In this equation, us, is provided by the boundary condition, and 42 and usg3 are
taken from the previous computation; but ugs is given by Equation (5-13). Thus,
(see Figure 5-7)

1
u'éf&l = m [u:,g + ug;l + 62(U§’3 + _"f_a,_l)] (5-14)

Finally, the general formulation provides the equation

1
k+1 _ k k+1 27,k k+1
'U.,-J-' - 2(1 + ﬁz) [ui+1,j + Ui14 + ﬁ (U5J+1 + ui;—l)] (5-15)

This is a point iteration method, since only one unknown is being sought. The grid
points involved in Equation (5-15) are shown in Figure 5-8.
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k ”

3,3
k+1 kt1 k
2,2 3,2 4,2

B.C

%3,1

Figure 5-7. Grid points for Equation (5-14).

K
i1
k+1 | k+1 k
=1i] [T @Lj
k+1
ij—1

Figure 5-8. Grid points employed in Equation (5-15).

5.3.3 The Line Gauss-Seidel Iteration Method

In this formulation, Equation (5-6) results in three unknowns at points (i—~1, 7),
(4,7), and (i + 1,5). The formulation becomes

Ufjll,j -2(1+ ﬁg)ﬂfjl + ufi’ll,j == 2“?.;41 - 62“?,;11 (5-16)
This equation, applied to all i at constant J (Figure 5-9), results in a system of
linear equations which, in a compact form, has a tridiagonal matrix coefficient.
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[ Boundary Conditions

bl Known values at k+1 iteration level

. Values at k+1 iteration being computed
* Known values at k iteration level

+ s N Wil W S =
——% ¥

Line of unknowns resulting in a system of linear

algebraic equations which are tridiagonal.

Figure 5-9. Grid points employed in the line Gauss-Seidel iteration method.

This method converges faster than the point Gauss-Seidel method (by about a fac-
tor of 1/2), but it requires more computation time per iteration, since a system of
simultaneous equations is being solved. Note that, in this formulation, the bound-
ary conditions at a line immediately affect the solution, as was the case with implicit
formulation of parabolic equations. For problems in which the value of the depen-
dent variable changes more rapidly in one direction, it is advantageous to use the
line Gauss-Seidel method in that direction since the solution converges with the
least number of iterations.

It is seen that, by using the updated values, the convergence rate is improved.
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Still, more improvement can be incorporated to reduce the number of iterations for
a converged solution, which is introduced next.

5.3.4 Point Successive Over-Relaxation Method (PSOR)

Earlier, the analogy between the iterative method for solving an elliptic equation
and the FTCS explicit formulation of the unsteady parabolic equation was noted.
Thus, solution by iteration can be thought of as a process beginning at an initial
state and approaching a steady state. If, during this solution process, a trend in the
computed values of the dependent variable is noticed, then the direction of change
can be used to extrapolate for the next iteration and, thereby, accelerate the solution
procedure. This procedure is known as successive over-relaxation (SOR).

First, consider the point Gauss-Seidel iteration method, given by

1
k+1 kel 9 fol
uJ m[ .+1J+u.+1a+ﬁ (um+1+u‘; 1]

Adding ufd- —uf '; to the right-hand side , and collecting terms, one obtains:
1
us" = s+ gy [+ P +ulfh) — 200+ Bl
As the solution proceeds, uf '; must approach u"+1 To accelerate the solution,

the bracket term is multiplied by w, the relaxation parameter, so that

k+1 _ o
Ug; u i+ —-—-2(1 o)
For the solution to converge, it is necessary that 0 < w < 2. If 0 < w < 1, it is
called under-relaxation. Note that for w = 1, the Gauss-Seidel iteration method is
recovered. The formulation (5-17) is rearranged as

[y + Wt + By +ulfl) — 20+ Bl (5-17)

ufi' = (1 - w)uf;

1,7 :+1,_1 + uf+11,3 + 182( E,J+l + ufjll)] (5‘18)

w
* BT
An obvious question is: What is the optimum value of the relaxation parameter w?
Well, no general guideline exists for computing the optimum value of w. For limited
applications, some relations for which an optimum w can be calculated have been
introduced by various investigators. One such relation, for the solution of elliptic
equations in a rectangular domain subject to Dirichlet boundary conditions with

constant step sizes, is
2—-2y/1—a
wopt = _—_a— ] (5'19)

oS (M;—l) + B%cos (“’;_1) 2
T+ 5

where

a =

(5-20)
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In general, wop, cannot be determined easily. Therefore, for most cases, nurmerical
experimentation is performed.

5.3.5 Line Successive Over-Relaxation Method (LSOR)

The line Gauss-Seidel iteration method can be accelerated by introducing a re-
laxation parameter similar to the one introduced into the point Gauss-Seidel method
to provide the point SOR method. The line Gauss-Seidel method for the model
equation is given by Equation (5-16) as

k+1 2y, k+1 k+1 2, kt+1
u,f 2(1+16 )u ; +uHTl,j = 1,J+1 _ﬂ sjl

Introduction of the relaxation parameter and rearranging terms results in:
wuf-i'llj _ 2(1 + ﬁ2) k+1 + Wufﬂ,j —

—(t = w) [200+ B ufy — B (ulyey +uffly)  (5-21)

There is no simple way to determine the value of optimum w. In practice, trial
and error is used to compute wept for a particular problem.

5.3.6 The Alternating Direction Implicit (ADI) Method

The similarity between the iterative methods and time-dependent parabolic
equations suggests that some of the methods discussed earlier for the solution of
parabolic equations should be investigated. Of particular interest is the applica-
tion of the ADI method to the elliptic equations. An iteration cycle is considered
complete once the resulting tridiagonal system is solved for all the rows and then
followed by columns, or vice versa. For model Equation (5-1), the FDE takes the
form

k k k
t+1!,] - 2(1 + ﬁz) k+! + U‘.:IIJ = ﬁz(umﬂ -+ U‘;—“'l) (5-22)
and
k 1
ﬁ2uf3'—-}1 —2(1+ ﬂ2) 1+ fPu fﬂ—l = _ui-:-l!,j - uffffj (5-23)

In these equations, (5-22) is solved implicitly for the unknown in the z-direction
and (5-23) is solved implicitly in the y-direction. The solution procedure and the
grid points in Equations (5-22) and (5-23) are shown graphically in Figure 5-10.



166 Chapter 5

u Boundary conditions
X  Most recently computed values
e Values being computed

+ Xnown values at previouys iteration level

k+1

k+1/2

Y Sweep

X Sweep

Figure 5-10. Grid points used in Equations (5-22) and (5-23).

The solution procedure can be accelerated by introducing a relaxation parameter w
into the ADI equations. The resulting formulations are:

wu:c 1 — 21+ By LI wuf:fi:j =
— (1 -w) [20+ ) oy - By, +ulfh)  (5-24)
and
whufl - 2(1+ Bl + wBtufll, =
~(1-w) [ (1+ ﬂz)] Ky _ w(uffﬁ, +uftl)  (5-25)

Again, because it is difficult to compute wep, Numerical experimentation is often
performed to obtain the best value of w for faster convergence. Other formulations
of the ADI method and various methods of solution are described in various pub-
lications. Since it is not intended to explore every method of solution in this text,
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additional methods (which are usually much more complicated) are not presented.
The methods which have been investigated are the basic methods of solution for
elliptic equations and are sufficient for our purposes. In the next section, these
methods are used to solve a steady-state heat conduction equation in two dimen-
sions, and the results are compared to analytical solutions.

5.4 Applications

Some of the basic solution procedures for elliptic partial differential equations
were just explored. In this section various methods will be used to illustrate their
applications. Suppose that it is required to obtain the steady-state temperature
distribution on a two-dimensional rectangular plate as shown in Figure 5-11.

. T,
Y=H 3 ] =M
T, T, 2
Y=0 T ) )=
X0 1 X=1
| ] ——]
i=1 i=IM

Figure 5-11. Rectangular plate subject to constant temperature
distribution at the boundaries.

The imposed boundary conditions are:

y=0 T=T1
z=0 T=T2
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y=H T=T3

r=1 T=T,

The rectangular plate has dimensions of 1 ft. by 2 ft. The temperatures at the
boundaries are specified as T} = 100.0 °R and T3 = T3 = Ty = 0.0 °R. Since the
values of the temperature at the boundaries of domain are specified, the boundary
conditions are Dirichlet type. The governing PDE for steady, two-dimensional heat
conduction is: 0T ST

F) + :9? = () (5-26)
It is intended to solve this elliptic PDE, subject to the imposed boundary conditions,
using the various methods discussed earlier. Select constant step sizes of Az = Ay =
0.05 ft., in which case IM = 21 and JM = 41. The temperature distribution is to
be computed for a total of (IM — 2) x (JM — 2) = 741 grid points.

The first method of solution to explore is the point Gauss-Seidel iteration method,
represented by Equation (5-15), where 8 = Az/Ay = 1. This method is simple,
and coding the equation is straightforward. For this example, an initial guess of
T = 0.0 at all interior points is selected. The point Gauss-Seidel method reaches a
converged solution within 574 iterations. The imposed convergence criterion is that
if ERROR < ERRORM AX, the solution has converged where

j=JMM1
i=IMM1

ERROR= Y. [ABS(T5'-Th) (5-27)

1=2
=2

and ERRORMAX is specified to be 0.01. This condition for convergence is used
in all the methods presented. The temperature distribution is given in Table 5.1
and the contours of constant temperature are shown in Figure 5-12. When the
line Gauss-Seidel iteration method is used, the number of iterations are reduced
as expected; in this example, the number of iterations was 308. However, since
a system of tridiagonal linear equations (Equation 5-16) is being solved, the total
computation time is not reduced; indeed, it increases somewhat (Table 5.2). A
point to explore here is the direction to which Equation (5-16) was applied. As
noted earlier, if the equation is applied in the direction of expected rapid change (in
temperature, for this problem), the convergence of the solution is accelerated. The
present example bears out this point. Because of the given domain and boundary
conditions, larger changes in temperature in the z-direction are expected compared
to the changes in the y-direction. That is the direction which Equation (5-16) was
applied. The solution converged after 308 iterations. When Equation (5-16) is
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applied in the y-direction, the formulation (for # = 1) becomes

k+1 k+1 k k k
Tif—l - 4Tif + Ti,jTl = ‘“Ti~+111' =Ty
The solution obtained from this equation converged in 315 iterations. This example
illustrates that the application of a line iterative method in the direction of rapid
change in the value of dependent variable increases the convergence rate.

2.00

1,75

Figure 5-12. Contours of constant temperature for the rectangular plate.

The efficiency of the point Gauss-Seidel and line Gauss-Seidel iteration methods
increases dramatically when a relaxation parameter is introduced to accelerate the
solution. The PSOR method given by Equation (5-18) is the third method used
to obtain a converged solution. For the problem at hand, where the domain is
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rectangular and subject to Dirichlet boundary conditions, Equation (5-19) can be
used to provide the optimum value of the relaxation parameter. Thus, with 8 =1,
IM =21, and JM = 41, from Equation (5-20),

coS (1) + cos (I—) ‘
20 - 40/ [ — 0.9847

and, from Equation (5-19),

2-2y/1-a 2-2/1-009847

a B 0.9847
At this value of w, the solution converges after only 52 iterations (recall that the
point Gauss-Seidel method converged with 574 iterations). In general though, sim-
ple relations such as (5-19) are not available for the determination of wqy. Instead,
numerical experimentation is used to determine wqp;. When numerical experimen-
tation was performed on this example (even though we know wegp}, it verified wop,
obtained from (5-19). The result is given in Table 5.3 and plotted in Figure 5-13.
If a solution is sought only once, it is not so advantageous to compute wyp by nu-
merical experimentation. However, if many solutions are sought, determining wogp
is highly recommended.

== 1.78

Wopt =

2.0

1.8}%

1.6}

1.4}F

1.2¢

1.0

0.8}

0 200 400 600 800 1000
NUMBER OF ITERATION

Figure 5-13. Relaxation parameter and the corresponding number of
iterations for the converged solution of the rectangular
plate by PSOR iteration method.
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A note follows on the initial guess. Usually the imposed boundary conditions
suggest a reasonable guess on the initial condition to start the solution. Of course,
the best guess results in a solution with the least number of iterations. In this
example, an initial guess of 7' = 0.0 °R produces a converged solution with 52
iterations. The solution was also obtained using an initial guess of T = 100.00 °R
(which is not a good guess for this problem). The number of iterations required
for the converged solution increased to 76. As this example illustrates, selecting
a good guess for the initial condition is certainly desirable. For all the methods
investigated in this example, an initial guess of T = 0.0 °R was imposed.

The number of iterations necessary for a solution is further reduced by the
LSOR method, given by Equation (5-21). Numerical experimentation provided a
value of wept = 1.265 for this problem. Values of w and the corresponding number
of iterations required for a converged solution appear in Table 5-4 and are shown in
Figure 5-14. The number of iterations can be reduced to 36 with an optimum value
of the relaxation parameter. Since the application of any line iterative method in
the direction of rapid change reduces the number of iterations, the LSOR method
was applied in the z-direction.

1.35¢

1.30f

1.25¢t

1.20¢

1.15}

1.05}

1.00

0 50 100 150 200 250 300
NUMBER OF ITERATION

Figure 5-14. Relaxation parameter and the corresponding number of
iterations for the converged solution of the rectangular
plate by LSOR iteration method.
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Application of the ADI method and the accelerated ADI procedure with a re-
laxation parameter indicated that a converged solution could be obtained with 157
iterations for ADI and only 23 iterations for the accelerated ADI with optimum w.
Table 5-5 and Figure 5-15 present the relaxation parameter w and the corresponding
number of iterations which yielded a converged solution.

1.4¢

1.3F

1.2

1.1}

1-0 1 1 n
4] 50 100 150
NUMBER OF ITERATION

Figure 5-15. Relaxation parameter and the corresponding number of
iterations for the converged solution of the rectangular
plate by ADI iteration method.

Typical convergence histories are illustrated in Figure 5-16 where the conver-
gence histories of point Gauss-Seidel, line Gauss-Seidel, and point SOR are shown.
The error or residual is computed according to Equation (5-27).

Finally, Table 5-2 shows various methods used to obtain a solution, along with
the number of iterations required for convergence. Also presented in the same table
are the computation times. A small fraction of the computer time was used to write
the computed values onto tapes, which were used for plotting the results.

The analytical solution of the two-dimensional steady-state heat conduction
given by the partial differential equation (5-26) and the imposed boundary con-
ditions specified earlier is

.  Sinh (" —9)
ronfaf Sigh(nfﬂ) gz o
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Figure 5-16. Convergence histories.

The temperature values computed from (5-28) at the locations corresponding
to the grid points used in the previous computational methods are presented in
Table 5-6. Comparison of the numerical solutions with the analytical solution is
considered good. The computed values of temperature using Equation (5-28) were
performed for n =1 to n = 20.

In closing this chapter, the following “general” conclusions are adopted:

1. Iterative methods for solution of elliptic PDEs are preferred over direct meth-
ods. '

2. Accelerated methods clearly are superior, since they drastically reduce the
number of iterations and the computation time, especially if the optimum
relaxation parameter is known.

3. A “good” guess on the initial data required to start the solution reduces the
number of iterations.
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4. For line iterative methods, application of the finite difference equation in the
direction of largest change increases the convergence rate.

5.5 Summary Objectives

After studying this chapter, you should be able to do the following:

1. Describe:

(a) The five-point formula

(b) The Jacobi iteration method

(c) The point Gauss-Seidel iteration method

(d) The line Gauss-Seidel iteration method

(e) The point successive over-relaxation (PSOR) method
(f) The line successive over-relaxation (LSOR) method
(g) the ADI method

2. Solve the problems for Chapter Five.
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5.6 Problems

5.1 A two-dimensional inviscid, incompressible fluid is flowing steadily through a
chamber between the inlet and the outlet, as shown in Figure P5-1. It is required
to determine the streamline pattern within the chamber.

Figure P5-1. Sketch illustrating the chamber and the proposed boundary
conditions .

For a two-dimensional, incompressible flow, the continuity equation is expressed
as

Ou Ov
gz "7y =" (P5-1.1)
A stream function ¥ may be defined such that

av
= -1.2
B (P5-1.2)

and

v= _o¥ (P5-1.3)
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Recall that a streamline is a line of constant stream function. Furthermore, vorticity
is defined as

Q=Vx V
from which
" _ v o

T 0zr Oy

For an irrotational flow, the vorticity is zero. Therefore,
v Ou
= == P5-1.4
Oxr By 0 (P5-1.4)

Substituting (P5-1.2) and (P5-1.3) into (P5-1.4) yields
O (_o9¥)_0 (o)
Oz i oy\OBy)

v v
a7 T o

The goal in this problem is to obtain the solution of this elliptic partial differen-
tial equation using the various numerical techniques discussed earlier. The solution
will provide the streamline pattern within the chamber.

Since the chamber walls are streamlines, i.e., lines of constant ¥, we will assign
values for these streamlines (see Figure P5-1). The assignment of these values is
totally arbitrary as long as continuity is satisfied. Note that, for this application,
the boundary conditions are the Dirichlet type, i.e., the values of the dependent
variable are specified.

Assume that the inlet and the outlet are 0.2 ft. (per unit depth), and the chamber
is 5 ft. by 5 ft. The locations of the inlet and the outlet are shown in Figure P5-1.

The following methods are to be used:

or
0 (P5-1.5)

(a) Point Gauss-Seidel
(b) Line Gauss-Seidel
(c) Point SOR
(d) Line SOR
(e) ADI
For all methods, the step sizes are specified as:

Az=02, Ay=02, and ERRORMAX =0.01
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Print the converged solution for each scheme for all y locations at z = 0.0, 1.0,
2.0, 3.0, 4.0, and 5.0. Use initial data distribution of ¥ = 0.0.

Plot: (a) The streamline pattern, i.e., lines of constant ¥s. Only one plot is
sufficient since, as you will notice, solutions by various schemes are very similar;
(b) The relaxation parameter versus the number of iterations for PSOR and LSOR
schemes.

In addition, the following tasks are to be investigated,

I. The effect of the direction for which the finite difference formulation (i.e., LGS
and LSOR) is applied on the convergence.

II. The effect of the initial data on convergence. For this investigation use the
PSOR scheme with optimum value of the relaxation parameter. Suggested
values of initial data are (a) 0.0, (b) 25.0, (c) 50.0, and (d) 100.0. In addition
you may consider a non-uniform initial data distribution.

5.2 Flow enters at the 0.2 ft. inlet and leaves at the open-ended outlet as shown
in Figure P5-2. We are interested in computing the streamline pattern within the
chamber.

The assumptions stated in problem 5.1 are imposed and, therefore, the governing
partial differential equation is

gy 2V _,
oz  Oy?

Obtain the solution using the PSOR technique and step sizes of Az = 0.2 and
Ay = 0.2. Since the chamber walls are streamlines, we may specify the values of
the stream function at these boundaries. These values are indicated in Figure P5-2.
At the outlet, we will assume that the flow is parallel and, therefore, v = 0. This
assumption implies that 87 /8z = 0 along the right boundary.

The imposed boundary conditions are summarized below.

¥(I,1) =00 for I=1,6
¥(I,1) = 100.0 for I=1,31
T(1,J)=0.0 for J =2,20
(I,JM) =0.0 for I=1,31
av
5o IM,J) =00 for J =2,20

Print one solution for all the y locations at each increment of one from z = 0.0
to £ = 6.0.
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Plot (a) the streamline pattern, and (b) the relaxation parameter versus the
number of iterations.
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Figure P5-2. Sketch illustrating the open-ended chamber and the pro-
posed boundary conditions.

5.3 Consider a fully developed flow in a rectangular duct with a constant stream-
wise pressure gradient. The cross-section of the duct, along with its dimensions

and the coordinate system used, is illustrated in Figure P5-3. The z-momentum
equation is reduced to

u O\ Bp
i} (3__1]2 + a—zz') e 0 (P5-3.1)

Before attempting to numerically solve this equation, the following nondimen-
sional variables are introduced:

e _ ¥

y = I

r4

* — —_

A
v - pu



Elliptic Equations 179

Upon nondimensionalization, Equation (P5-3.1) becomes

82 . 82 *
53% + 5% +1=0 (P5-3.2)

/y

\\‘

7

T
L "

Figure P5-3. Nomenclature for problem 5.3.

The asterisk denoting the nondimensional quantities is dropped from this point
on and, therefore, quantities are nondimensional unless otherwise specified. It is
required to numerically solve Equation (P5-3.2) by the point Gauss-Seidel scheme
subject to the following set of data:

JM =61 (Maximum number of grid points in ¥)

KM =41 (Maximum number of grid points in z)

L=15m and h=10m
The fiuid is oil with a viscosity of 0.4 N.s/m?. Two different values of pressure
gradient are to be considered:

(a) & = 10 N/m?/m,  (b) $ =-25 N/m?/m

Use a convergence criterion of 0.00001 over the entire domain.
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The analytical solution is given by

16L% { dp ol _ cosh(mnz/2L) ]| cos(mny/2L)
— _-r -1 {(m-1)/2 1-—
ua(y, 2) s ( d.'L‘) mzlz,g:}s,_"( ) cosh(mmh/2L m3

where ua represents the velocity obtained by the analytical solution. Compute error
distribution within the domain determined by the following relation

ER = ABS [(u(4, k) — va(j, k))/ua(j, k)] * 100.0

Print the numerical solution, analytical solution, and the error within the domain
for all the z locations and at each y location at increments of 0.5 m.

5.4 Repeat Problem 5.3, except use the PSOR scheme with the optimum relax-
ation parameter. Compare the number of iterations required for a converged solu-
tion and the computation time to that of Problem 5.3
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Y X=00 X=0.2 X=04 X=06 X=08 X=1.0
2.000 0.000 0.000 0.000 0.000 0.000 0.000
1.950 0.000 0.044 0.072 0.072 0.044 0.000
1.900 0.000 0.050 0.145 0.145 0.090 0.000
1.850 0.000 0.138 0.223 0.223 $.138 0.000
1.800 0.000 0.189 0.305 0.305 0.189 0.000
1.750 0.000 0.244 ¢.396 0.396 0.244 0.000
1.700 0.000 0.306 0.496 0.496 0.306 0.000
1.650 0.000 0.376 0.608 0.608 0.376 0.000
1.600 0.000 0.454 0.735 0.735 0.454 0.000
1.550 0.000 0.544 0.880 0.880 0.544 0.000
1.500 0.000 0.647 1.047 1.047 0.647 0.000
1.450 0.000 0.766 1.240 1.240 0.767 0.000
1.400 0.000 0.905 1.463 1.463 0.905 0.000
1.350 0.000 1.065 1.723 1.723 1.065 0.000
1.300 0.000 1.252 2.025 2.025 1.252 0.000
1.250 0.000 1.469 2377 2377 1.469 0.000
1.200 0.000 1.723 2.787 2.787 1.723 0.000
1.150 0.000 2.020 3.266 3.266 2.020 0.000
1.100 0.000 2.366 3.825 3.825 2.366 0.000
1.050 0.000 2.771 4478 4.478 2.771 0.000
1.000 0.000 3.245 5.242 5.242 3.245 0.000
0.950 0.000 3.799 6.134 6.134 3.799 0.000
0.900 0.000 4.448 7.176 7176 4.448 0.000
0.850 0.000 5.209 8.394 8.394 5.209 0.000
0.800 0.000 6.101 9817 9.817 6.101 0.000
0.750 0.000 7.147 11.479 11.479 7.147 0.000
0.700 0.000 8.377 13.419 13419 8.378 0.000
0.650 0.000 9826 - 15.682 15.682 9.826 0.000
0.600 0.000 11.534 18.320 18.320 11.535 0.000
0.550 0.000 13.557 21.391 21.391 13.557 0.000
0.500 0.000 15.960 24.959 24,959 15.960 0.000
0.450 0.000 18.830 29.097 29.097 18.831 0.000
0.400 0.000 22,281 33.878 33.878 22281 0.000
0.350 0.000 26.464 39.379 39.379 26.464 0.000
0.300 0.000 31.582 45.670 45.670 31.582 0.000
0.250 0.000 37911 52.808 52.808 37.911 0.000
0.200 0.000 45811 60.817 60.817 45.811 0.000
0.150 0.000 55.722 69.676 69.676 55,722 0.000
0.100 0.000 68.079 79.291 79.291 68.079 0.000
0.050 0.000 83.053 89.487 89.487 83.053 0.000
0.000 100.000 100.000 100.000 100.000 100.000 100.000 '

Table 5-1. Temperature distribution for the rectangular plate by the point

Gauss-Seidel iteration method.
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Method Number of TM seconds
iterations
PGS 574 5.524
LGS 308 7.196
PSOR 52 1.082
LSOR 36 1.41
ADI 157 6.693
AADI 23 1.535

Table 5-2. The number of iterations and computation time required for
converged solution by various methods.

Relaxation

Number of TM seconds
parameter iterations
1.00 574 6.215
1.10 478 5.282
1.20 396 4.354
1.40 261 3.071
1.60 152 2.027
1.70 102 1.550
1.78 52 1.082
1.80 55 1.100
1.90 120 1.727
1.95 256 3.023
1.98 668 6.948

Table 5-3. The relaxation parameter and the corresponding number of

iterations and computation time for the PSOR method.
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Relaxation Number of TM seconds

parameter iterations
1.000 308 7.726
1.100 201 4.057
1.200 106 2.967
1.230 78 2.338
1.250 57 1.876
1.260 44 1.573
1.265 36 1.410
1.270 39 1.480
1.280 45 1.608
1.300 67 2114
1.320 153 4.054

Table 5-4. The relaxation parameter and the corresponding number of

iterations and computation time for the LSOR method.

Relaxation Number of TM seconds

parameter iterations
1.00 157 7.081
1.10 105 4.884
1.20 58 2.940
1.25 36 2.076
1.26 31 1.867
1.27 23 1.535
1.28 25 1.620
1.30 26 1.625
1.32 31 1.862
1.34 58 2.985

Table 5-5. The relaxation parameter and the corresponding number of

iterations and computation time for the accelerated ADI

method.
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Y X=0.0 X=02 X=04 X=0.6 X=08 X=10
2.000 0.000 0.000 0.000 0.000 0.000 0.000
1.950 0.000 0.044 0.071 0.071 0.044 0.000
1.900 0.000 0.089 0.144 0.144 0.089 0.000
1.850 0.600 0.137 0.221 0.221 0.137 0.000
1.800 0.000 0.187 0.303 0.303 0.187 0.000
1.750 0.000 0.243 0.393 0.393 0.243 0.000
1.700 0.000 0.304 0.492 0.492 0.304 0.000
1.650 0.000 0.373 0.604 0.604 0.373 0.000
1.600 0.000 0.451 0.730 0.730 0.451 0.000
1.550 0.000 0.541 0.875 0.875 0.541 0.000
1.500 0.000 0.643 1.041 1.041 0.643 0.000
1.450 0.000 0.762 1.233 1.233 0.762 0.000
1.400 0.000 0.899 1.455 1.455 0.899 0.000
1.350 0.000 1.059 1.713 1.713 1.059 0.000
1.300 0.000 1.245 2014 2014 1.245 0.000
1.250 0.000 1462 2364 2.364 1.462 0.000
1,200 0.000 1.715 2773 2.773 1.715 0.000
1.150 0.000 2.010 3.250 3.250 2010 0.000
1.100 0.000 2.355 3.808 3.808 2.355 0.000
1.050 0.000 2.759 4.460 4.460 2.759 0.000
1.000 0.000 3.231 5.221 5.221 3.231 0.000
0.950 0.000 3.784 6.111 6.111 3.784 0.000
0.900 0.000 4432 7.152 7.152 4.432 0.000
0.850 0.000 5191 8.369 8.369 5.191 0.000
0.800 0.000 6.080 9.790 9.790 6.080 0.000
0.750 0.000 7.125 11.451 11.451 7.125 0.000
0.700 0.000 8.352 13.392 13.392 8.352 0.000
0.650 0.000 9.798 15.656 15.656 9.798 0.000
0.600 0.000 11.503 18.296 18.296 11.503 0.000
0.550 0.000 13.521 21.371 21.371 13.521 0.000
0.500 0.000 15.919 24.947 24.947 15.919 0.000
0.450 0.000 18.783 29.094 29.094 18.783 0.000
0.400 0.000 22.227 33.889 33.889 22227 0.000
0.350 0.000 26.405 39.408 39.408 26.405 0.000
0.300 0.000 31.524 45.720 45.720 31.524 0.000
0.250 0.000 37.871 52.880 52.880 37.871 0.000
0.200 0.000 45.822 60.907 60.907 45822 0.000
0.150 0.000 55.832 69.772 69.772 55.832 0.000
0.100 0.000 68.316 79.376 79.376 68.316 0.000
0.050 0.000 83.310 89.537 89.537 83.310 0.000
0.000 100.000 100.000 100.000 100.000 100.000 100.000

Table 5-6. The temperature distribution for the rectangular plate by analytical

method.



Chapter 6
Hyperbolic Equations

6.1 Introductory Remarks

Hyperbolic equations and methods of solution are investigated in this chapter by
considering simple model equations. A commonly used technique to solve hyperbolic
equations in fluid mechanics is the method of characteristics. This method is well
known and is used for the solution of inviscid supersonic flow fields. However, it
is often difficult to use this method for three-dimensional problems and problems
which involve nonlinear terms. Some discussion of the method of characteristics
is considered in Appendices A and G. This chapter presents various methods of
solution by finite difference approximations of the hyperbolic PDEs. Both linear
and nonlinear PDEs are investigated by applying numerical methods to the model
equations. In addition, various types of error, i.e., dispersion error and dissipation
error, are explored in the example problems.

6.2 Finite Difference Formulations

The first model equation to consider is the first-order wave equation,

— = —am— a>0 (6-1)

which is a linear equation for constant speed a. For this simple equation, the
characteristic lines are straight lines given by the equation z — at = constant. The
quantity u is convected along these lines with constant speed a. A number of finite
difference approximations for the first-order wave equation have been studied by
various investigators. These approximations have been formulated in explicit or
implicit forms. Some of these methods and their applications are presented in this
section.
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6.2.1 Explicit Formulations

6.2.1.1. Euler’s FTFS method. In this explicit method, forward time and forward
space approximations of the first-order are used, resulting in the FDE:

n+l n n n
I Uiy — U

= =g 6-2

At Az (6-2)

von Neumann stability analysis indicates that this method is unconditionally un-

stable.

6.2.1.2. Euler’s FTCS method. In this formulation, central differencing of O(Axr)?
is used for the spatial derivative, resulting in

wft -}l —ul
ot SRt S S 2 of SNt X 6-
At @ 2Azx (6-3)

This explicit formulation is also unconditionally unstable.

6.2.1.3. The first upwind differencing method. Backward differencing of the spatial
derivative produces a finite difference equation of the form

n+1 n n n
Uy — Y Ui — Ui

= — 4

At Az (6-4)

with O(At, Az). Von Neumann stability analysis indicates that this method is
stable when ¢ < 1, where ¢ = aAt/Ax is the Courant number. For the model
Equation (6-1), a forward differencing for the spatial derivative must be used if
a < 0. Therefore, for du/8t = a(8u/8z), where a < 0, the FDE for a conditionally

stable solution is

ul*t! —uf Udy — U7
[ — _ _5
At Az (6-5)

6.2.1.4. The Lax method. If an average value of u? in the Euler’s FTCS method is
used, the FDE takes the form

1 alt |,
uptl = 5(“?+1 +uly) — 2_A?L'-(ui+1 —uy) (6-6)

Stability analysis shows that the method is stable when ¢ < 1.

6.2.1.5. Midpoint leapfrog method. In this method, central differencing of the second
order is used for both the time and space derivatives, resulting in the FDE

upt! — ! Up — Uy
oAt Y 2Ar (6-7)



Hyperbolic Equations 187

which is of order {(At)?, (Az)?. The method is stable when ¢ < 1. As the for-
mulation indicates, two sets of initial values are required to start the solution. The
dependent variable at the advanced time level n4-1 requires the values at time level
n—1 and n. To provide two sets of initial data, a starter solution that requires only
one set of initial data, say at n — 1, is used. The use of a starter solution will affect
the order of accuracy of the method.

It has been shown that two independent solutions can be developed as the so-
lution proceeds forward. In summary, the midpoint leapfrog method has a higher
(second) order of accuracy; however, this formulation may include some difficulties
such as the starting procedure, the development of two independent solutions, and,
if programming is not done carefully, a large increase in computer storage.

6.2.1.6. The Lax-Wendroff method. This finite difference representation of the PDE
is derived from Taylor series expansion of the dependent variable as follows:

du &u (At)2 3
u(z, t+ At) = u(z, t) + atAt+ 2 o + O(At)
or, in terms of indices,
Ou &u (At)2
n+l _ 3
u; up + o 5 —At+ Fr i + O(At) (6-8) |
Now consider the model equation
Ou Ou
5 = —a-a—i (6-9)
By taking the time derivative, one obtains
Pu 3 (du d (ou . 0%
7~ % ('a‘;) = %% (a) 5zt (6-10)

Substituting (6-9) and (6-10) into (6-8) produces

Bu (At { 0%
ntl __ .0 P hed 2¥ %
Ul —u‘-+( ac’?a:)At+ 5 (a a2

When central differencing of the second order for the spatial derivatives is used, it
follows that

ntl _,n_ Uiy — "?-1] 1 g a2 | Wi — 2uf +ul,
ult =l — aAt [ AT + 38 (At) (Bz) (6-11)

This formulation is known as the Lax-Wendroff method and is of order [(At)?,
(Azx)?. Stability analysis shows that this explicit method is stable for ¢ < 1.
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6.2.2 Implicit Formulations

6.2.2.1. Euler’s BTCS method, Implicit formulation of Euler’s backward time and
central space approximation is unconditionally stable and is of order [(At), (Az).
This approximation applied to model equation (6-1) yields:

n+tl n
YW —u o a [u’~'+1 _ up+1] or
At 2A$ 1 1—1
l n+l _  n+t _“l wrtl = _,n (6 12)
zcui-—l Uy 2" i1 7 U -

Once this equation is applied to all grid points at the unknown time level, a set
of linear algebraic equations will result. Again, these equations can be represented
in a matrix form, where the coefficient matrix is tridiagonal.

6.2.2.2. Implicit first upwind differencing method. A first-order backward difference

approximation in time and space results in the following implicit scheme which is
O(At, Azx)

U;H-l —u" u:H-l — yntl

T i—1
Az = —q Ay (6-13)

This equation can be rearranged as

cull! — (14 uPt! = ~y (6-14)

Once Equation (6-14) is applied to all the grid points, it will result in a bidiagonal
system. The solution of a bidiagonal system written in a general form of

A,—u?_*'f + .B{U:-H-I = D"

is given by »
n
ntl _ D; —- Al
W=
1

6.2.2.3. Crank-Nicolson method. This is a widely used implicit method for which
the model equation takes the form

uftl — P _ 1 [ — S 0 (6-15)
At 2 2Az 2Azx

The order of accuracy is [(At)?, (Az)?. This formulation also results in a tridiag-
onal system of equations as follow.
1

1 1
Zcu,’-‘fll — Pt Zcu?fll = —ul + Zc(u{‘+1 —ul)) (6-16)
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6.3 Splitting Methods

The methods introduced thus far are simple and their application to linear
one-dimensional hyperbolic equations is straightforward. Extending these methods
to multidimensional and/or nonlinear problems may create some difficulties. The
implicit formulation of a multidimensional problem results in a large number of al-
gebraic equations with a coefficient matrix that is pentadiagonal or larger. Solving
such a system requires an excessive amount of computer time. Therefore, methods
such as ADI, which split the multidimensional problem into a series of equations
with tridiagonal coefficients, are preferred. Various formulations of ADI or, more
generally, of approximate factorization discussed previously can be applied to mul-
tidimensional hyperbolic equations.

6.4 Multi-Step Methods

The second problem to address is nonlinearity. Some of the methods presented
for linear equations are not well suited to the solution of nonlinear problems. Multi-
step methods, which use the finite difference equations at split time levels, work well
when applied to nonlinear hyperbolic equations. Some of these methods are intro-
duced in this section and their applications to linear model equations are illustrated.
Later, these methods are extended to nonlinear problems.

These methods may be referred to as predictor-corrector methods as well. In
the first step, a temporary value for the dependent variable is predicted; and, subse-
quently in the second step, a corrected value is computed to provide the final value
of the dependent variable.

6.4.1 Richtmyer/Lax-Wendroff Multi-Step Method

The Lax-Wendroff method discussed earlier is split into two time levels. There
are two variations of this method in the literature. The one referred to as the
Richtmyer method applies the equation at grid point “i", while the so-called Lax-
Wendroff multi-step method applies the first step at the midpoint ¢ + % In both
formulations, Lax’s method is used at the first time level n + %, followed by the
midpoint leapfrog method at time level n+ 1. The method is second-order accurate
both in time and space.

The Richtmyer formulation is

'“?H - %(u‘?+1 + uf_,) - au?q-l - ul,y

at 2Az

2
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and |
wpt —wp g -y
At 2Azx
Rearranging terms yields
ntg 1 n n alt n n
in =3 (uly +uly) - 1Az (uiyy —ui, (6-17)
and
alt nti n+i
utt =l - AT ( i~ ui-f) (6-18)
This method is stable for aAt/Az < 2.
The Lax-Wendroff multi-step formulation is
n+! 1 n n aAt
’U.H_; =3 (wl +uf) - 2AT (wl — ) (6-19)
and
n+l alAt ntd n+j
it = gp - 928 ( i~ ,._;) (6-20)

Az

The stability condition is aAt/Az < 1. Note that if Equation (6-19) is substituted
into Equation (6-20), the original Lax-Wendroff equation given by (6-11) results.
The same result can be obtained with Equations (6-17) and (6-18). Be careful about

the step sizes!

6.4.2 The MacCormack Method

In this multi-level method, the first equation uses forward differencing resulting

in the FDE . . . .
Ui — Uy Uy T Y

At_aA:c

(6-21)

where * represents a temporary value of the dependent variable at the advanced

level. The second equation uses backward differencing; thus,

1
n+1 ntg * *
Ui T __aui — Ui
A Az

1
The value of u?+’ is replaced by an average value, as follows.

n+%

uptt = 2 (af 4 )
The two-level MacCormack method is organized as:

predictor step al\t

w o= — o () — )

Azx

(6-22)

B
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and

corrector step W = 1 [(u“ +ul) - alt (] — )] (6-23)
i 9 ' ' Ax * -

This method is also second-order accurate with the stability requirement of
aAt/Az < 1. 1t is well suited for nonlinear equations and is consequently a popular
method in fluid mechanics. The order of differencing can be reversed for each time
step, (i.e., forward/backward followed by backward/forward); and, for nonlinear
problems, this procedure provides the best result. For linear problems, this method
is equivalent to the Lax-Wendroff method.

A note of caution. Our classification of various formulations into splitting
methods is not universal. A multi-step method might be called a splitting method by
some, or a predictor-corrector method by others. The important point to recognize
is the distinct procedures of the methods. What was called the splitting method
applies to multidimensional problems and reduces the finite difference equation to
a set of equations that are tridiagonal. This procedure is used to increase efficiency;
the resulting tridiagonal system requires less computer time. The second category
of methods, which was called multi-step methods, solves problems in a sequence
of time steps, using various finite difference approximations. These methods are
desirable for solving nonlinear hyperbolic equations.

Before proceeding to nonlinear hyperbolic equations, the applications of the
methods just presented to a simple linear hyperbolic problem are considered.

6.5 Applications to a Linear Problem

As a first example, consider the first-order wave equation,

du Ou

5% = %3 a>0 (6-24)

where a, the speed of sound, is selected to be 250 m/s. Assume that at time t =0,
a disturbance of half sinusoidal shape has been generated. The initial condition is
specified as

u(z,0) =0 0<z<50 )

. z— 560
u(z,0) = 100 {sm [11'( = )]} 50<z <110 § (6-25)
u(z,0) =0 110 < £ < 400 |

and is illustrated in Figure 6-1.
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250
u(x,0) = 0.0 0<x<50
200 —
u(x,0) = 100 sin[n(f_—so)] 50<x<110
60
150 ~ u(x,0) = 0.0 110 < x <400
u
100 —
50 -
Y { Tt T |
50 110
0 100 200 300 400
X
Figure 6-1. Initial distribution at ¢t = 0.0 sec.

Assuming that the disturbance is introduced in a one-dimensional long tube
with both ends closed, the imposed boundary conditions are

z=0 u(0,t) =0

and
z=1L u(L,t) =0

Due to the simplicity of the problem, only some of the methods discussed earlier
will be used to illustrate the solution procedures. However, the selected methods
will illustrate the various types of errors associated with each.

Start by considering an explicit first-order accurate method, such as the first
upwind differencing technique. In this formulation, the finite difference equation
applied to {6-24) is

n+l __ .0

W= - c(w —uly) (6-26)

where ¢ = aAt/Az. For a stable solution, ¢ < 1. From the finite difference formu-
lation (6-26), it can be seen that if ¢ = 1, the solution is exact, i.e.,

ntl __ . n

Uy - ui—l

To investigate the effect of various step sizes on the solution, three values of the
Courant number are used. The cases under study are:
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(1) Az=5.0, At=0.02 resultingin  c¢=1
(2) Az =50, At=0.01 c=05
(3) Az =50, At=0.005 c=0.25

Before analyzing the solutions, recall that first-order accurate methods (where
second and higher order derivatives in the Taylor series expansion have been dropped
in the approximation process) produce errors that are dissipative. These errors
depend on the step sizes; hence, they affect the accuracy of the solution.

The resulting solutions for ¢ = 1.0 and 0.25 are presented in Tables 6.1a and 6.1b,
and Figures 6-2 and 6-3. Figure 6-2 clearly illustrates the propagation of solution
along the characteristic line. Note that in Figure 6-2, the solution is propagated
with minimum error. That is not surprising, since for ¢ = 1 the solution is exact.
However, as the step size (At) is reduced so that the Courant number is smaller
than one, errors appear in the solution. Due to the dissipation error of the method,
the amplitude of the original (sinusoidal) function is decreased and the solution is
dissipated to neighboring points. The phenomenon is clearly evident in Figure 6-3.

c=1.0

Figure 6-2. Solution of the first-order wave equation by the ex-
plicit first upwind differencing technique.
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c=0.25
Figure 6-3. Solution of the first-order wave equation by the ex-
plicit first upwind differencing technique.

125.0

exact

100.0 c=1.0

c=0.5
75.0

Tt

c=0.25

u 50.0

25.0

0.0

-25.0

0.00 100.00 200.00 300.00 400.00
X

Figure 6-4. Comparison of the solutions of the wave equation by
the explicit first upwind differencing method at t = 0.5
sec for various Courant numbers.
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0.50

0.25 =

0.00

ERROR

-0.25 -

-0.50

0.00 100.00 200.00 300.00 400.00
X

Figure 6-5. Error distributions of the explicit first upwind scheme
at t = 0.5 sec.

The effect of the step sizes (the Courant numbers) on the solution of the wave
equation is shown in Figure 6-4. These solutions are at t = 0.5 sec. It is clear that
for ¢ = 1.0, the solution is very close to the exact solution (with minimum error).
As the Courant number decreases the errors increase, as is evident in the decrease
in the amplitude and in the dissipation of the wave to the neighboring points. In
conclusion, then, the best result is obtained when the Courant number is at the
upper limit of the stability condition, ie., when ¢ = 1. A comparison of errors at
¢t = 0.5 sec for the three different Courant numbers is illustrated in Figure 6-5. The
error is defined as the difference between the numerical and analytical solutions.
Tt is interesting at this point to investigate the implicit equivalence of Equation
(6-26) given by (6-14). It is important to recognize that both equations have the
same order of accuracy, that is, O(At,Az). However, when the modified equations
for the two formulations are considered, the differences between the two become
apparent. In fact, the implicit formulation will have more of a dissipation error
than the explicit formulation. To identify this difference, consider also the solution
by the implicit formulation for Courant numbers of 1.0, 0.5, and 0.25 shown in
Figure 6-6. A comparison with Figure 6-4 clearly indicates the larger dissipation
error associated with the implicit formulation of (6-14). The solutions for Courant
numbers of 1.0 and 0.25 are given in Tables 6-2a and 6-2b, respectively. The wave
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propagation for Courant number of one is shown in Figure 6-7. Note that, even at
¢ = 1, the solution has considerable dissipation error. Finally, the error distributions
for the three Courant numbers at ¢ = 0.5 sec are shown in Figure 6-8.

Next, a second-order accurate method to the model Equation (6-24) is applied.
One such method introduced earlier is the Lax-Wendroff method. The finite differ-
ence formulation applied to the model equation is

1 1
WP = o — e (uly, - U)o+ 5 (il — 2uf ) (6-27)

This method is stable when ¢ < 1. Again, three cases with various step sizes will be
investigated. A typical solution (c = 1.0) is presented in Table 6.3. The generated
solutions for At step sizes of 0.02 and 0.005 are shown in Figures 6-9 and 6-10, and
the solutions at ¢ = 0.5 sec for the three cases are compared to the analytical solution
in Figure 6-11. Furthermore, the error distributions at ¢t = 0.5 sec for the three
different Courant numbers are illustrated in Figure 6-12. Note that the solution
behaves differently when this method is used. Since the algorithm is second-order
accurate (third and higher order terms have been dropped in the approximation
process of the finite difference relations), some dispersion error is expected. Indeed,
the oscillatory behavior of the solution for the smaller Courant number clearly
indicates the errors developed in the solution. Note that the amplitude of the
solution remains the same (within small errors).

125.0
——  cxact
100.0 —&—
_A\__
75.0
___JGL
u 500
25.0
0.0
0.00 100.00 200.00 300.00 400.00
X
Figure 6-6. Comparison of the solutions of the wave equation by the
implicit first upwind scheme at ¢ = 0.5 sec for several
Courant numbers.
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Figure 6-7. Solution of the first-order wave equation by the implicit

first upwind scheme, c =1
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Figure 6-8. Error distributions of the implicit first upwind scheme

at t = 0. sec.
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N
SN
>

Figure 6-9. Solution of the first-order wave equation by the Lax-
Wendroff method, ¢ = 1.0.

Figure 6-10. Solution of the first-order wave equation by the Lax-
Wendroff method, ¢ = 0.25.
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Figure 6-11. Comparison of the solutions of the wave equation by
Lax-Wendroff method at t = 0.5 sec for various Courant
numbers.
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Figure 6-12. Error distributions of the Lax-Wendroff scheme at ¢t = 0.5 sec.
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Again, the error is smallest at the upper limit value of the Courant number, i.e.,
when the Courant number approaches one. Therefore, the best solution is obtained
by selecting step sizes which yield a Courant number of one, or close to it. These
simple applications clearly illustrated the dissipation and dispersion errors discussed
in Chapter Four.

Now consider the implicit BTCS scheme. The finite difference formulation given
by (6-12) is

1
n+1 n+1l n+l
—C’u‘-_l - u‘- - Ecu"+1 = —U

-3

This equation, applied to all 1 at each time level, results in a system of tridiag-
onal equations. Solutions were obtained with step sizes (At) of 0.02 sec and 0.05
sec. The results are shown in Figures 6-13 and 6-14.

The solutions for Courant numbers of 1.0 and 2.5 are presented in Tables 6-4a
and 6-4b, respectively. Furthermore, the solutions at ¢ = 0.5 sec for several Courant
numbers are compared to the analytical solution in Figure 6-15, and the error
distributions are illustrated in Figure 6-16. Note that the solution at higher Courant
number (larger time step) has produced a poor solution. Therefore, the advantage
of an implicit scheme due to its less restrictive stability requirement has to be viewed
with skepticism for some applications.

A multi-step method popular in aeronautics is the MacCormack method. But
for linear problems, the method is equivalent to the Lax-Wendroff method. The
solution is identical to the solution just obtained from the Lax-Wendroff method
and, therefore, is not repeated here. The two methods are not identical for non-
linear problems, though, and the MacCormack method will be investigated in the
application of method to the inviscid Burgers equation.

As a second example, consider the second-order, one-dimensional wave equation

Pu _ 4ot

—_— = -2
ot? a ox? (6-28)

where a, the speed of sound, is assumed constant.



Hyperbolic Equations 201

RAITS
AR

Figure 6-13. Solution of the first-order wave equation by the BTCS
implicit method, ¢ = 1.0.
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Figure 6-14. Solution of the first-order wave equation by the BTCS
implicit method, ¢ = 2.5.
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Figure 6-15. Comparison of the solutions of the wave equation by
BTCS implicit method at ¢ = 0.5 sec for various
Courant numbers.
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Figure 6-16. Error distributions of the implicit BTCS scheme at
t = 0.5 sec for several Courant numbers.
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For the second-order hyperbolic equation, two sets of initial conditions are re-
quired. These conditions may be expressed as

u(z,0) = f(z)
and 5 0
uf;t’ ) _ g(a)

where f(z) and g(z) are specified for a particular problem. For this application, a
u distribution similar to the one imposed on the first problem is used. In addition,
g(z) =0 is selected. The initial conditions are stated as

0.0 0<z <100
u(z,0) = { 100 [sin7 (Z2)] 100 < z < 220
0.0 220 < z < 300
and
Ou(z,0) 0.0
at

and the boundary conditions, which represent solid boundaries, are:
z=0 u(0,¢) = 0.0
z=1L u(L,t) = 0.0

Since the application of the midpoint leapfrog method in the first example was
not illustrated, it would be beneficial to consider its application to the problem at
hand. This method, applied to (6-28), results in the FDE

uPtt = 20l - w4 A (), - 2uf 4l (6-29)

The method is three-step, i.e., the dependent variable appears at three time
levels, n — 1, n, and n + 1. Therefore, a starter solution is required. To generate a
second set of data, consider the second initial condition, namely,

Ou(z,0) _

5 0
Using a central differencing one obtains
u:ﬂ-l —_ u?—l _
st~ o
upt = (6-30)
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Substituting (6-30) into (6-29) yields

ult =2l — w4 A (U, - 2wl +ul,) or

1

1
uftt =uf 4 oot (uly - 2uf 4+ ugy)

which can be used as a starter solution. With the first initial condition provided at
t =0 (n =1), it follows that

1
u,2 = u} + §c2 (u}_l - 2u} + u}H)

where superscript 2 indicates time level 2. With the computed values of u? for all
i, two sets of data at n =1 and n = 2 are available for the solution of (6-29). The
stability requirement of the method is ¢ < 1.

The analytical solution of (6-28) is well known. The solution has the functional
form

u(z,t) = f(zx — at) + g(z + at) ,

where the solution propagates with constant speed a along lines z — at = ¢; and
T + at = ¢, with slopes dz/dt = +a. These are the characteristic lines.

Figure 6-17. Solution of the second-order wave equation by the mid-
point leapfrog method.

g
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The numerical solution is presented in Figure 6-17. The initial wave is split into
two waves (each with one-half the amplitude of the original wave) with the same
wavelength and are propagated in the opposite directions, i.e., one to the right and
the other to the left. As the waves reflect from the boundary, the sign of u changes.
Note that to clarify the plot in Figure 6-17, all negative u were plotted as positive.
The effect of various step sizes expressed by Courant numbers is shown in Figure 6-
18. The oscillations (dispersion error) increase as the Courant number decreases.
Again, as in the first example, the best solution is obtained for ¢ = 1, which is the
upper limit imposed by the stability consideration.

———  ¢=0.9996

—t— =09

40.00 — =045

0.00

' I ' I o
0.00 100,00 200.00 300.00

Figure 6-18. Comparison of the solutions of the wave equation by the
midpoint leapfrog method at ¢ = 0.28 sec. for various
Courant numbers.
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One further comment. Equation (6-28) is equivalent to the coupled first-order
wave equations given by

du ov

-a-t- = O.-a—; (6—31&)
v du

Therefore a solution of the original model equation (6-28) may be obtained by
solving the first-order equations (6-31a) and (6-31b).

In conclusion, when one broadly compares the implicit and explicit methods just
explored, it is clear that, for linear hyperbolic equations, the explicit formulations
provide better solutions than implicit methods. The advantages of implicit methods
(which are usually unconditionally stable) are lost, since large step sizes produce
poor results.

6.6 Nonlinear Problem

The majority of partial differential equations in fluid mechanics and heat trans-
fer are nonlinear. The simple linear hyperbolic equation just investigated should
provide some foundation to approach the nonlinear hyperbolic equations. A classi-
cal nonlinear first-order hyperbolic equation is the inviscid Burgers equation, which
will be used as a model equation to investigate various solution procedures.

In this section, the numerical techniques presented earlier for the linear problem
will be applied to the nonlinear model equation. The inviscid Burgers equation is
ou Ju

o = ~Up- (6-32)

which, in a conservative form, may be expressed as

ou_ o (@)

8t Bz \2 T

8 AE

?§=_E (6-33)

where E = u?/2. Equation (6-32) can be interpreted as the propagation of a wave
with each point having a different velocity and eventually forming a discontinuity
in the domain. This is similar to the formation of shock waves by a series of weak
compression waves.

\
1!!-!
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4.0

Figure 6-19. Discontinuity used as initial condition.

The discussion of various numerical schemes will be accompanied by their ap-
plications to the example problem posed as follows. A discontinuity described by

the function
u(z,0) =1 0<z<20

u(z,0) =0 20<z<40
shown in Figure 6-19 is to be used as initial data to investigate its propagation
throughout the domain.

6.6.1 The Lax Method

This explicit method uses forward time differencing of O(At) and central space
differencing of O(Azx)?. The corresponding FDE for model equation (6-33) is

n+l n
Ui  —u ___E?+1_ i—1

At - 24z

For stability consideration, u? is replaced by its average at the neighboring points.
Thus,

. At
uMt! = 5 (g +uiy) — 2Az (B — EZy) or

" 1 n At
Ut = 2 Ui+ ul) — o [l) — ()] (6-34)
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Figure 6-20. Solution of the inviscid Burgers equation by the Lax

explicit method, Az = 0.1 and At = (.1.

The solution will be stable when
At

u
A:cmnx

<1 (6-35)

Since the method is first-order, it is expected that the errors will be dissipative.
The solution for Az = 0.1 and At = 0.1 at several time intervals is presented
in Table 6.5 and Figure 6-20, which clearly reflects the dissipative nature of the
solution. Note that the discontinuity is smeared over several grid points. The effect
of the step size (and the corresponding Courant number) is shown in Figure 6-
21, which indicates the solutions at ¢t = 1.8 sec for values of At/Az = 1.0 and
At/Az = 0.5. As in the linear problem, the best result is obtained for a Courant
number of one.

6.6.2 The Lax-Wendroff Method

Here the finite difference formulation of the method is derived from a Taylor series
expansion, as in the linear case. Consider the expansion

ntl

2 2
u; ul + itiAt + Ou (At)

ot o2 o T (6-36)
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Figure 6-21. Effect of step sizes on the solution of Burgers equation
by the Lax method.

The model equation is

ou OF
F Tl (6-37)

u__0 (98 __0 (9F
o2 dt\dzr) Oz \ &t
0z om0 9F)__,(0F)

o Oudt Oul\ Oz Ox
where A = 8E/8u is known as the Jacobian. Therefore,

&u a OF o ( 0F
3 = 8s (‘Aa) =% (Aa) (6-38)

For the model equation, where

Therefore,

But

then
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After the substitution of (6-37) and (6-38) into Taylor series expansion (6-36), one
obtains

0 Oz 2!

ultl — OE 8 [ OF\ At
TAr T (a) * oz (AE) 5 + oWy’

2
uft! = ol + ( 3E) At + 62 (Aa—E) (Af) +O0(At)?®  or

Now, the spatial derivatives are approximated by central differencing of order
two, resulting in the FDE

2E\" aE\"
uft! —up _ _EL, - EL (Ag)‘*i i (A-‘E)"—"z At
At 2Az Az 2
At this point, the approximation
9E OE B, —E} Er-E}
(A,,,)”; (4%); R L v W e v
Az : Az

for the last term is incorporated and the Jacobians are evaluated at the midpoints,
which results in

s (A% + AD) (BY, — EF) — gh- (AP + AP) (EP - E7)
Az

Note that for the problem at hand, A = u. Finally, the FDE is arranged as follows:

n At
u‘i+1 =uf — Az (E?H - E?—1)

¥ 4((At);2 (s + uf) (B — B) - (uf +uly) (BF - ELy)] (6-39)

The method is second-order, with a stability requirement of |ums At/Az| < 1.
Application of the method to the sample problem yields the solution shown in
Figure 6-22 and Table 6.6, where the step sizes were Az = 0.1 and At = 0.1. These
step sizes correspond to a Courant number of one. The dispersion error is evident by
the presence of oscillations in the neighborhood of the discontinuity. Two solutions
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obtained with various step sizes (and, therefore, Courant numbers) at ¢ = 1.8
sec are compared in Figure 6-23. When At/Az = 0.5, the oscillations are larger
and propagate further from the discontinuity. In general, as the Courant number
decreases, the solution degenerates; the best solution is obtained at a Courant
number of one.

6.6.3 The MacCormack Method

This multi-level method applied to the model equation yields the finite difference
equations

. . At
Uy = Uy — Az (B — EY) (6-40)
and ) At
g Sl P SR il § ), SO
ut‘ - 2 { T + u’l A:L' (E| El—l)] (6'41)

The stability requirement of the method is |umax At/Az| < 1. The solution obtained
at several time intervals with Az = 0.1 and At = 0.1 is shown in Figure 6-24 and
presented in Table 6-7. This solution, unlike the solution of the Lax method and
the Lax-Wendroff method, is well behaved. This is due to the splitting procedure

1.6

14 -
1.2 —
lo :::::::::;:::::::::-..;:|:'.:,;:

0.8

0.6
—O— t=0.0s¢cc
0.4 —
—A— t=0.63s¢ec
0.2 — —f— t=12sec
0.0 — —P— t=18sec
02 T T |
0.0 1.0 2.0 3.0 4.0

Figure 6-22. Solution of the inviscid Burgers equation by the Lax-
Wendroff explicit method, Az = 0.1 and At = 0.1.
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X
Figure 6-23. Effect of step sizes on the solution of Burgers equation
by the Lax-Wendroff method.
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Figure 6-24. Solution of the inviscid Burgers equation by the Mac-
Cormack explicit method, Az = 0.1 and At =0.1.
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and corresponding forward, backward differencing used to approximate the spatial
derivative. Note that the solution is not identical to that of the Lax-Wendroff
method, as it was in the linear problem (see Figures 6-22 and 6-24). As with the
previous methods, the solution degrades as the Courant number decreases from the
maximum allowable value of one (see Figure 6-25). As expected, the best solution
is obtained with At/Axz = 1.0, i.e., when the Courant number is one.

6.6.4 The Beam and Warming Implicit Method

To understand the development of this method, start with the Taylor series expan-
sions

_ du &u| (A1)? 3
ulr, ¢+ A1) =u(a,t) + 5| At ‘ét'?L,t o+ () (6-42)
and
du &u| (At)? 3
= LI N
u(z,t) = u(z, t + At) B b e t+ 1 T + O(At) (6-43)

1.6

1.4 -

02 | 1 |

0.0 1.0 2.0 3.0 4.0
X
Figure 6-25. Effect of step sizes on the solution of Burgers equation by Mac-
Cormack method.
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Subtracting (6-43) from (6-42), one obtains

du Ju
= — At+ — A
2u(z, t + At) = 2u(z,t) + B e t+ B e o t
Pu| (At)? (At)? 3
7 T VR I )

or, in terms of indices,

Qﬂ_ n+ @ ntl
at ). " \ot),

Additional substitution is considered for (6%u/8t?)?*! using the equation

S\ &u\" 8 [&u\"
(55). - (%), +a(5), aeroweo

L ] )

1
u:‘“ =u; + 3

At +

(G- (3

1 i

Thus,

n+1 n 1 au " au m 3
u, =u + 3 |\ 3 + 5t At + O(At) (6-44)

t

For the model equation, recall that

ou_ _0E
8t Oz

which, after substituting into (6-44) and rearranging the terms, becomes

() (@] rowr o

[} £

ultt — 1

At 2

which is written in this form to show the method’s second-order accuracy in time.
At this point, a distinct difference in the implicit and explicit formulation of the
finite difference equations for the nonlinear model equation is recognized. Since the
nonlinear term E = u?/2 was applied at the known time level n, the resulting FDE
in explicit formulation was linear. On the other hand, the resulting FDE in implicit
formulation is nonlinear and, therefore, a procedure is used to linearize the FDE.
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From Taylor series expansion,

E(t+ At) = E(t) + %At + O(At)?
_ OF du 9
= E(t) + 5 mAt + O(At)
or, in terms of indices,
gt g OB (W W) A4 oAy
du At

Recall that E/3u = A is the Jacobian (for this model equation, A = u). Therefore,
(taking the partial derivative of the equation above)

(3) = (%) + &6

Substitution into (6-45) yields
wtl—up  1[(8E\" (BE\" 8 wtl  om
-3 {(5)+ (&), + At -]

or
1 OE

ut =} - §At {2 (—6;)? + 535 [A (u}l+l - u:‘)]} (6-46)
8

For the term & [A (u?“ - u}')], a second-order central differencing is used so that

n ,ntl n o ntl n n
i [ A (’u.'fﬂ _ u")] — Atnuin — At ulsy Afgudy — AR u,
' 20z 2Azx

Note that lagging of the Jacobian is employed, ie., the value of A at the known
time level n is used to produce a linear equation. Finally, (6-46) is written by the
following FDE:

u"tl =y — lAt 2E?+1 - E¢, + Apuil — AR ull] _ AN, — AT,
: o2 2Azx 2Azx 27z
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This equation may be rearranged and represented as a tridiagonal system; thus,

At n a1, At
A A T g Al =
. 1At - At At 4n n

The resulting finite difference equation is second-order accurate and is uncondi-
tionally stable.

The solution of the proposed problem at several time intervals is shown in Fig-
ure 6-26 and Table 6-8. Because the method is second-order accurate, the solution
has a dispersion error that is indicated by oscillations within the domain. Indeed,
the oscillations are so large that the solution is clearly unacceptable. To reduce
the oscillations, a fourth-order smoothing (damping) term is explicitly added to
the FDE. Since the added damping term is fourth-order, it does not affect the
second-order accuracy of the method; however, the solution will be stable only if
0<e.<0.125.

1.6
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Figure 6-26. Solution of the inviscid Burgers equation by the Beam
and Warming implicit method, Az = 0.1 and At = 0.1.
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The fourth-order damping term has the form

D feud —Ee (u?+2 _— 4U?+1 + 611.:' - 4“?_1 + u:"__z) (6‘48)

Further discussion on various damping terms is provided in Section 6.7. The
resulting solution with the damping term and €. = 0.1 is shown in Figure 6-27 and
Table 6-9. The oscillations near the discontinuity still persist; however, the overall
solution is reasonable. The effect of various step sizes on the solution is shown in
Figure 6-28. The solutions are at ¢ = 1.8 sec and were generated with the damping
factor of €, = 0.1. For a large time step, i.e., when At/Azx = 2.0, the solution has
too great a dispersion error, as the large oscillations near the discontinuity suggest.
Here, as with the linear hyperbolic equation, the drawbacks in using the implicit
schemes to solve nonlinear hyperbolic equations are illustrated. The advantages of
implicit methods in terms of stability and the large step sizes they allow are lost,
since the solution for large step sizes becomes unacceptable.

1.6

1.4 =

1.2 —

1.0 o T - -
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t=0.0sec
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1 | I
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Figure 6-27. Solution of the inviscid Burgers equation by the Beam and
Warming implicit method with damping of e, = 0.1, Az = 0.1
and At = 0.1.
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Figure 6-28. Effect of step sizes on the solution of Burgers equation
by the Beam and Warming method with ¢, = 0.1.

6.6.5 Explicit First-Order Upwind Scheme

A first-order forward difference approximation in time and a first-order back-
ward difference approximation in space yield the following equation.

ut! —uf _ _E'-E7,
At T Az
or
n o At
utt = u; — Az (EY - E,) (6-49)

The formulation is O(At, Az), and it is stable for ¢ < 1. A typical solution is
shown in Figure 6-29.

6.6.6 Implicit First-Order Upwind Scheme

An implicit first-order upwind scheme can be written as

ntl 2 n+1 2
ool ),
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Figure 6-29. Solution of the inviscid Burgers equation by the explicit
first-order upwind scheme, Az = 0.1 and At =0.1.

Now a simple lagging scheme is used to linearize Equation (6-50) to obtain

uftl — o 1

At =~ T2Az

() = (14 gl ) ol = - (6-51)

The solution at several time levels is shown in Figure 6-30. Observe that the
error is larger for the solution obtained by the implicit scheme compared to the
equivalent explicit scheme. Recall that a similar conclusion was reached earlier in
the analysis of linear equations in Section 6.5.

6.6.7 Runge-Kutta Method

A numerical scheme commonly used to solve initial value problems for ODE’s
is the Runge-Kutta (RK) method. This scheme essentially utilizes the weighted
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average of several solutions over the interval At in order to improve accuracy of
solution. To clarify the statement made above, consider the model equation (6-33),

1.6

1.4 —
12 =

]_0 ::=::;::=::::::;:::-j':f‘:‘?::_

0.8
=
0.6
—O— t=003cc
04 —
—A—-‘ t=0.6 sec
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Figure 6-30. Solution of the inviscid Burgers equation by the implicit
first-order upwind scheme Az = 0.1 and At = 0.1.

du oF

= —_——-—

Bt Ox
A first-order forward differencing provides

uft! = u! — At (QE) (6-52)
or

Several approximations are available to evaluate the convective term (OE/dz)". For
example, one may use central differencing of second order to obtain Euler’s FTCS
explicit scheme. Recall that, due to stability consideration, a modification was
introduced and the resulting FDE is known as the Laz method.

Now consider evaluating the convective term (OE/8z) at several time sub-
intervals within a time interval A¢ and subsequently obtain the final solution by
averaging of these values. For example, first evaluate a value of u; using a time
step of At/2 designated by u‘(-z). The superscripts with parentheses will be used
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to designate values at a time level of aAt within the specified time step where
0 < a < 1. It is common to set the value of variable at time level of “n” to the time
level designated by (1).

Now, the formulation is written as

W = P (6-53)

A n
W = P - —2£ (g—f) (6-54)

Note that Equation (6-53) is written in order to designate it as the first stage of
Runge-Kutta method and to be consistent with the order of the method as it will
be seen shortly. In fact, it is not required to define it in the programming process.

Again, as discussed previously, any spatial finite difference approximation can
be used for the convective term (8E/8z). Once u?’ is determined, a final solution

@@ e

for u?*" is computed from

The scheme given by Equations (6-53) through (6-55) is known as a two-stage
Runge-Kutta method and is second-order accurate; it will be referred to as a second-
order Runge-Kutta method. The order of accuracy is determined by comparison
of the scheme with Taylor series expansion. Note that, in Equation (6-55), equal
weight is given in the averaging process of the convective term. In fact, Equation
(6-55) can be expressed in a general form as

oE\"  (8E\®
where a and b are weighted factors and, in Equation (6-55), were set to 0.5. Note
that the sum of weighted factors in the averaging process must be equal to one.
That is, the sum of a and b in Equation (6-56) must be one. Furthermore, note
that in evaluation of usz) in Equation (6-54) the time interval was set at midpoint,
ie., At/2. In fact, the coefficient of At can be set to any value between zero and
one. Therefore, it is seen that several (indeed infinite) number of second-order RK
schemes can be developed. The second-order scheme given by Equations (6-53)
through (6-55) is the most common.

A general Q-stage Runge-Kutta scheme can be written as follows:

n n 1
u"+1 =u'- - At {§

uMt! = ol — At
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u' = (6-57)
u,(-2) = u] — At (%f—)(l) (6-58)
u,(-s) = u} —azAt (—gf—) fQ) (6-59)
uw = U — oAt (%ZE—) f3) (6-60)
u‘{Q) = u; —oaglt (%f—)feﬂl) (6-61)

and

=2 (OE\*
wt=ur~At|Y 5, (——) (6-62)
| Oz
Note that 3, represent the weight factors such that ZZ:? B; = 1 and the coefficient,
a's are specified within zero and one.
Among a variety of RK schemes, the fourth-order RK scheme is perhaps the
most commonly used. A fourth-order scheme for Equation (6-33) can be written as

u? = o (6-63)

4 = u;‘-%At (g—f-)fl) (6-64)

u® = u?—%At (%g)fz) (6-65)

W = u; — At (G_E)(a) (6-66)
oz ],
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Runge-Kutta schemes are typically expressed in explicit form. Implicit RK
schemes are computationally expensive and are rarely used.
Some of the advantages of Runge-Kutta schemes are:

1. Runge-Kutta schemes are usually expressed as explicit formulations, and,
therefore, the schemes are easy to program.

2. Runge-Kutta schemes possess better stability criteria than comparable ex-
plicit schemes. Recall that, for most linear hyperbolic equations, the stability
requirement of explicit formulations is ¢ < 1. It can be shown that, for a
fourth-order RK scheme with central differencing of convective term, the sta-
bility requirement is ¢ < 2v/2. It is emphasized, however, that the scheme
may be unstable for nonlinear hyperbolic equations when central differencing
of convective term is used. Therefore, damping terms are typically included
to stabilize the solution. To reduce computational cost, these damping terms
may be evaluated only once at time level of n and augmented to the solution
after the final stage.

The primary disadvantages are:

1. Since several computations are performed for each interval, the scheme re-
quires significantly more computation time per step.

2. Error estimates are typically difficult to obtain.

In the following applications, a second-order central difference approximation is
used to compute the convective terms, that is,

O0E  Ein — Eig
dr 2Az

The solution of the proposed problem in Section 6.6 with a fourth-order RK
governed by Equations (6-63) through (6-67) is shown in Figure 6-31 and provided
in Table 6.10. The spatial and temporal steps are 0.1 and 0.1, respectively. The
solution has developed large and unacceptable oscillations. That is not surprising
since the central difference approximation used in the formulation possesses a large
dispersion error. Similar behavior was observed in the solution by the Beam and
Warming scheme. To reduce the oscillations to an acceptable level, a fourth-order
damping term must be added. For this purpose, Equation (6-48) is evaluated at
time “n” and augmented after the last stage. That is, after Equation (6-67), ult!
is augmented according to u?*! = ul*! + D. Now, the solution with the added
damping term and ¢, of 0.1 is shown in Figure 6-32 and presented in Table 6-11.
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-0.2

0.0 1.0 2.0 3.0 4.0

Figure 6-31. Solution of the inviscid Burgers equation by the fourth-order
Runge-Kutta method, Az = 0.1 and At = 0.1.
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Figure 6-32. Solution of the inviscid Burgers equation by the fourth-order
Runge-Kutta method with e, = 0.1, Az = 0.1, and At = 0.1
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Observe that the large oscillations in the solution have been eliminated and that
the solution is reasonable. In fact, the solution is very similar to that of Beam
and Warming implicit scheme, shown in Figure 6-27. The effect of step size on the
solution is shown in Figure 6-33 for two different Courant numbers.

6.6.8 Modified Runge-Kutta method.

In order to reduce the storage requirement of the RK scheme, a modification is
introduced to eliminate the averaging step. Therefore, the equivalent formulation
for a second-order RK scheme is written as

o) = up (6-68)
A E ¢}

) = u’,f‘—Tt' (%;)' (6-69)
@

uM!l = ol - At (?)_f) (6-70)

and a fourth-order RK scheme is

usl) = ul (6-71)
u? = - —Af (a—f):l) (6-72)
o = P - %f (3—5):2) (6-73)
W = % (a_f):a) (6-74)
ut! = Wl - At (g—f):“) (6-75)

Again, a central difference approximation of second-order accuracy is used for
the convective term 0E /@z. The solution by the modified fourth-order RK is shown
in Figure 6-34 and is provided in Table 6-12. The solution is similar to that of the
fourth-order RK shown in Figure 6-31. Again, the addition of a damping term is
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necessary to produce acceptable solution. The solution with the damping term of
(6-48) and a specified coefficient of £, = 0.1 is shown in Figure 6-35 and given in
Table 6-13. Note that the addition of a damping term is similar to that of the
previous section, that is, u?*! = u}*! + D, which is applied after (6-75).

1.6

0.0 1.0 20 3.0 4.0
X

Figure 6-33. Effect of step sizes on the solution of the inviscid Burgers
equation by the fourth-order Runge-Kutta method with
€. = 0.1.
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Figure 6-34. Solution of the inviscid Burgers equation by the modified
fourth-order Runge-Kutta method, Az = 0.1 and Af =0.1.
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Figure 6-35. Solution of the inviscid Burgers equation by the modified
fourth-order Runge-Kutta method with damping of ¢, = 0.1,
Az =0.1, and At =0.1.
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6.7 Linear Damping

At this point further elaboration on the appearance of oscillations within the
solution domain and methods to alleviate them is appropriate. The root cause of
such oscillations will be reviewed by considering the simple wave equation. Recall
the approximation of the wave equation by a first-order scheme. For example,
consider the explicit first upwind scheme given by

u™l = n

1 3 3

—c{ul —ul,) a>0

To identify the dominant error term, the modified equation must be investigated,
which, for the explicit first upwind scheme was derived previously and is given by

u du 1 u 1 2 Fu
_é? + G.E = —2-an(1 - C)-a—:? - ga(A.’B) (262 -3¢+ 1)59:—3-

The dominant error term is the even derivative term on the right-hand side of the
equation. Recall that even derivative error terms are associated with dissipation
error. Thus, sharp gradients within the solution are smeared, resulting in an inaccu-
rate solution. In order to increase accuracy, i.e., reduce smearing of sharp gradients,
grid refinement is required. However, that would lead to a computationally inten-
sive and expensive operation. Indeed, in most practical applications, it would be
impossible due to limited capacity of available hardware. Thus, it is desirable to in-
crease the accuracy by incorporating higher order finite difference equations, such as
second-order methods. Unfortunately, as seen previously, this approach has its own
disadvantage in that second-order schemes possess a dominant odd-order derivative
in their modified equations. Such error terms are associated with oscillations, i.e.,
dispersion error.

A simple scheme to reduce oscillations within the solution is to add second-order
or fourth-order damping terms, as was shown in the previous section. Generally,
the coefficients of the damping terms are specified by the user and remain constant
throughout the domain as well as in the computational process. Therefore, such
damping terms are referred to as linear damping or equivalently linear dissipation
terms. The addition of such linear damping terms to the finite difference equation
is relatively simple. The difficulty, however, is associated with the specification of
the damping coefficient. It should be noted that, in general, a bound on the value of
damping coefficients can be determined or estimated by stability analysis. However,
the optimum value is not known a priori and is problem dependent. One must
be extremely careful in the specification of the damping term(s), in particular for
problems where physical dissipation (i.e., viscosity for example) is present. Addition
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of too much damping into the solution (unintentionally, of course) will clearly pollute
the viscous region and may smear the sharp gradients in the inviscid region as well.

Obviously, inaccuracies in the solution of the viscous region would result in inac-
curate velocity and temperature gradients. Recall that these gradients are used to
determine skin friction and heat transfer coefficients. The inaccuracies could result
in predictions of skin friction and heat transfer which may be off by as much as
100%. Since these quantities are important parameters in the design of machin-
ery and vehicles, accurate computation of these parameters is extremely important.
Therefore, it is strongly suggested that the damping coefficient be kept to a mini-
mum value, just sufficient enough to damp out the oscillations within the solution.

Before proceeding further, some essential conclusions from numerous investiga-
tions with regard to linear damping terms are summarized.

1. Addition of a fourth-order damping term to a second-order scheme does not
affect the formal order of accuracy of the algorithm.

2. Fourth-order damping terms are generally added explicitly, that is, they are
added to the right-hand side of the equations. Therefore, as mentioned previ-
ously, stability analysis will impose an upper limit on the value of the damping
coefficient. It is then clear that when performing computations by implicit
schemes where larger step sizes (or correspondingly larger Courant numbers)
can be used, the amount of added damping may be insufficient to damp out
the oscillations. To overcome this limitation, a second-order damping term is
added to the left-hand side of the equation (in addition to the fourth-order
damping term on the right-hand side). The selection of a second-order implicit
damping term will preserve the tri-diagonal nature of the implicit formulation.

3. The addition of damping terms not only eliminates or reduces oscillation in the

solution, it helps stabilize the solution. That is, a solution at larger step sizes

. may be obtained which otherwise would have been unstable. In applications

where density is being computed, oscillations in the solution may result in

negative values of density. Addition of damping terms could help to alleviate
this difficulty. ‘

4. A typical fourth-order damping term for a one-dimensional problem may be
expressed as

D.= —-s,(Am)‘g% (6-76)

This term is added explicitly to the right-hand side of the finite difference
equation. A negative sign is required to produce positive dissipation. The
fourth-order derivative in (6-76) is approximated by a central difference ex-
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pression as follows:
Wea”
(Ax) 9 = W2 iy + 6ug — duipr + Ui (6-77)
The damping term given by (6-76) is easily extended to multidimensional
problems. For a two-dimensional problem, for example, it may be written
&u d*u
, = — A 47 ¥ 4¥ =
D = ~edl(8z)' gt + (B0)* 5 (6-78)
A second-order implicit damping term may be added to the left-hand side of
an implicit formulation, generally defined by
Di = e bz &Y 6-79
i = e(Az) o (6-79)
The second-order derivative may be approximated by
8u
(Ax)zw = Ui-1 — 24 + Ui (6-80)
5. Stability analysis performed on simple model equations provides a bound on

the values of explicit damping coefficients &, and provides a relation between
the explicit and implicit damping coefficients. The value/relation given in this
section is provided as a general benchmark value to provide an estimate on the
values of the coefficients. Clearly, these values will vary from one scheme to
another. To obtain a more accurate value for a particular scheme, a stability
analysis will be required. For example, an upper limit value of €, = % for the
Beam and Warming scheme is obtained. It should be recalled that stability
analysis is performed on linear equations. Therefore, the actual values for

nonlinear problems may be more restrictive.

If a formulation includes both a fourth-order explicit damping term as well as
a second-order implicit damping term, a typical relation is given by ; = 2e..
Of course, the difficult task of specification of €. still remains. The typical
values given above can be used as a starting point. Obviously one would like
to select the damping coefficients €, and ¢; as small as possible to damp out
oscillations with minimum infusion of numerical viscosity into the solution.
User experience with numerical schemes, specific application and physical

insight is probably the best guide in the selection of values for the damping
coeflicients.
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6. In applications where viscous effects are confined to a particular region (for ex-
ample, the boundary layer region) physical viscosity may be sufficient enough
to prevent oscillations in that region. Therefore, the damping terms are turned
on only in the inviscid regions where formation of shock waves, i.e., large gra-
dients could cause oscillations in the solution.

A logical procedure by which one may increase the accuracy of linear damping
terms is by introduction of techniques in which the amount of damping is selectively
added in regions where required. For this purpose, one would introduce a sensor
which detects the gradients in the flowfield, e.g., computes the pressure gradient.
Now, in regions where the gradient is large, the damping term is activated. Fur-
thermore, the amount of added damping can be varied according to information
provided by the sensor, i.e., in regions with severe gradients, a large amount of
damping is added whereas in regions with moderate gradient, a smaller amount of
damping is introduced.

Permitting such a dependency is logical from the standpoint of accuracy. Damp-
ing is increased in the vicinity of a discontinuity to maintain monotonicity, whereas
damping is decreased in smooth regions, which otherwise would increase the trunca-
tion error. A procedure may also be devised whereby a second-order scheme switches
to a first-order scheme by the use of a sensor. Recall that a typical first-order scheme
is oscillation free; therefore, in the vicinity of large gradients, oscillations will not
develop. The sensor in this case, which essentially plays the roll of limiter param-
eter, is defined as a flux limiter. These are used extensively in Total Variation
Diminishing (TVD) schemes. Further discussion of flux limiters is postponed to
Section 6.10.

6.7.1 Application

Consider the sinusoidal disturbance of Section 6.5 with a = 250 m/sec. The
Lax-Wendroff scheme applied to the wave equation is given by

n+1

1 1
wh =g - 50(“?4-1 —ugg) + '2'02(“?“ - 2uf +uy,) (6-81)

The solution as illustrated in Figure 6-10 includes oscillations within the domain.
The solution obtained with a spatial step of 5.0 and temporal step of 0.01 seconds
at time levels of 0.15, 0.3 and 0.45 seconds is shown in Figure 6-36.
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Figure 6-36. The solution of the wave equation by the Lax-Wendroff scheme.

Note that the initial profile is given by Equation (6-25). Now consider the addition

of an explicit second-order damping term given by (6-80). Thus, the Lax-Wendroff
scheme is expressed as

1 1
U?H =u; — EC('U?H —u_y) + §Cz(u?+1 - 2u + u?—l) + D,

where
n n n
D, = e (uj,, — 2ui + ui_,)

The solutions with damping factors &, of 0.03, 0.06 and 0.12 are shown in Figure
6-37. The step sizes specified previously for the solution shown in Figure 6-36 are
used in this solution as well. Solution is also attempted with £, = 0.40; however,
the damping coefficient of 0.40 exceeds the requirement imposed by the stability
condition and an unstable solution is developed. As a comparison, the solution is
shown in Figure 6-37(d).

As discussed previously, note that the addition of a damping (dissipation) term
will reduce the amplitude of the wave. That is clearly evident in Figure 6-37. The
larger the amount of damping, the larger the decrease in the amplitude. Thus, the

amount of damping must be kept to a minimum, just sufficient enough to damp out
the oscillations.

'v!
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Figure 6-37. The solution of the wave equation by the Lax-Wendroff
scheme with a second-order damping term.

6.8 Flux Corrected Transport

The addition of damping terms was suggested in the previous section in order
to eliminate or reduce oscillations within the domain in the neighborhood of sharp
gradients. Consider now an extension of the procedure whereby a second equation is
added. In essence, the finite difference equation is modified to a predictor /corrector
type, where in the predictor step a damping term is added and in the corrector step
a certain amount of damping which may have been excessive is removed. Such a
scheme is known as the Flux Corrected Transport (FCT) and was develped in Ref.
[6-1]. The term which is introduced in the corrector step to remove the excessive
damping is known as an anti-diffusive term.
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To illustrate the procedure, consider the Lax-Wendroff scheme applied to the
wave equation given by

1 n 1 n
utt! = — §C(u?+1 —uy) + Ecz(u?H - 2u +ugy)

A second-order damping term of the form
D = & (uyy — 2u} + ) (6-82)

may be added such that the finite difference equation is written as

* 1 n n 1 n n
U =ud — QC(“;'H — )+ (61 + 502)(u¢+1 - 2uf +ul,) (6-83)

Equation (6-83) is the predictor step, which provides an intermediate value for 1.
Now, a corrector step where an anti-damping term is included is used to provide
the value of u at time level n + 1. The equation is expressed as

u?"'.l = u: - 62(U$+1 - 2“: + u:-—l) (6—84)

Expressions for the damping coefficients €, and &, may be developed for a specific
scheme applied to a model equation. Such expressions for the Lax-Wendroff scheme
applied to the continuity equation are recommended in Ref. [6-2], where

e = %(1 +20%) (6-85)

and ]

In order to preserve the conservative form of the equation for the general case of a
nonlinear problem, the anti-diffusive term may be applied at 3 points, i.e.,

ut =) — (B - By) (6-87)

where

gy = E2(ufyy — ) (6-88)
and
Uiy = ea(uf —ui,) (6-89)
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Further investigations, however, suggest the use of alternate expressions for (6-
88) and (6-89). These expressions are developed in order to prevent the injection
of maxima or minima into the solution at the anti-diffusive step. The expressions

to be used in (6-87) are

tl;y = Sgn(Au,, })Max{0.0, min[Au,_) Sgn(Au;_3), €2 | Au,,y l,

Sgn(Aus+§)Au¢+g]}

where
A“m{. = Uy — Y
Augyy =iy — uip,
Sgn(A) = AJABS(A)
and
i;_y = Sgn(Av;_y)Max{0.0, min[Au;,) Sgn(Qu,, ), €2 | Auy l,
Sgn(Au,_y)Av,_g]}
where
Aul_i = u: - u:—l
and

— ¥ ¥
Aug =1y, — Uy

6.8.1 Application

(6-90)

(6-91)

The FCT formulation of (6-83) and (6-84) is applied to the previous example
as described in Section 6.5. The solution with the damping coefficients of 0.026 and

0.002 for £, and &,, respectively, is shown in Figure 6-38.
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Figure 6-38. The solution of the wave equation by the Lax-Wendroff
scheme with FCT.

6.9 Classification of Numerical Schemes

It is appropriate at this point to review/introduce some additional termi-
nologies and to further classify equations utilized in conjunction with numerical
approximations of hyperbolic equations. Initially, the concepts are introduced with
the least amount of reference to mathematical details and equations. Subsequently,
various formulations are explored.

6.9.1 Monotone Schemes

It was previously shown that certain first-order schemes, such as the upwind
differencing scheme, produce oscillation-free solutions even in the presence of large
gradients. Oscillation-free schemes are generally known as monotone schemes. It
can be proven that monotone schemes are only first-order accurate. Therefore, as
seen previously, monotone schemes are dissipative and, in general, a discontinuity
would be smeared over several grid points, even though grid refinement will reduce
the smearing somewhat. A formal requirement of monotonic scheme is stated by:
(1) as the solution proceeds in time, no new local extremes are developed; and (2)
the local minimum is non-decreasing whereas the local maximum is non-increasing.
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6.9.2 Total Variation Diminishing Schemes

Define the total variation of a variable such as u by
Ju
TV (u) = f | 52 ld

where in a discrete form, the total variation of numerical solution may be expressed

by +00
TV(@") =3 | ulh —uf |

A numerical scheme is said to be Total Variation Diminishing (TVD) in time if

TV (™) < TV (u")

TVD schemes can be classified as either a first-order TVD scheme or a second-
order TVD scheme.

It is beneficial at this point to introduce some essential remarks about the TVD
schemes, some of which will be explored in the upcoming section.

1. It can be shown that all monotone schemes are first-order TVD schemes, i.e.,
monotone schemes are a subset of TVD schemes.

2. A general explicit formulation for the wave equation may be expressed as

utl =of + A"+.1,Au?+§ - Bi—-iAu?—i (6-92)
where
AuPy = Uig1 — U and Au:'_% = Ui — Ui-1

and the coefficients A and B are to be determined for a specific scheme. The
scheme is said to be TVD if the following sufficient conditions are satisfied:

Ay 20 (6-03)
and
0< Ayy+Byy <1 (6-95)

3. TVD property is valid only for homogenous scalar hyperbolic conservation
equations. Extension to non-homogeneous hyperbolic equations is limited to
special cases.
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4. Second-order TVD schemes can be developed by the use of flux limiters. In
such schemes, the formulation is second-order within the smooth region of
the domain whereas it switches to first-order in regions of high gradients to
prevent any oscillations.

5. As in any other scheme, implementation of boundary conditions may create
some difficulty. Generally it is difficult to prove the TVD property for the
combined interior and boundary formulation.

6. The formal extension of TVD property to systems of nonlinear equations and
multi-dimensional systems has not been established. However, numerical ex-
periments with these systems have shown that the TVD property may be
preserved. Therefore, TVD schemes for multi-dimensional systems are com-
monly used.

7. TVD schemes possess desirable properties for the computation of domains
with discontinuities. However, they are more expensive in comparison to
schemes employing simple linear dissipation terms.

8. TVD schemes eliminate oscillations within the domain while shock smearing
is reduced.

9. TVD schemes which are based on central difference approximations of the con-
vective terms as well as the flux limiters are usually referred to as symmetric
TVD schemes. Similarly, TVD schemes which employ one-sided differences
are referred to as upwind TVD schemes.

6.9.3 Essentially Non-Oscillatory Schemes

Generally speaking, the so-called Essentially Non-Oscillating (ENO) schemes
use similar principles as those of TVD schemes. The main difference between the
two schemes is that some ENO schemes can retain the same order of accuracy for
the entire domain. These schemes are not used as extensively as the TVD schemes;
therefore, no further discussion will be presented.

6.10 TVD Formulations

Numerous TVD schemes have been developed by various investigators over
the last several years and more are being introduced at present. The various TVD
schemes can be broadly categorized and subcategorized. First, TVD schemes may
be classified as first-order TVD schemes, second-order TVD schemes which are
usually referred to as high resolution schemes, and predictor-corrector type TVD
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schemes. Furthermore, in each category, the formulation may be explicit or im-
plicit. In terms of the finite difference approximation, the resulting formulation
may be classified as symmetric or upwind. Furthermore, for each formulation, dif-
ferent functions may be available for the flux limiters. Thus, within each category,
numerous formulations can be written. Since the objective at this point is to famil-
iarize the reader with typical TVD schemes, only a selected number of schemes are

introduced. Interested readers should consult Refs. [6-3] through [6-10].

6.10.1 First-Order TVD Schemes

Consider the inviscid Burgers equation given by Equation (6-33) as

ou, 0 _,
ot 8z

An explicit, first-order upwind algorithm can be written by the following:

At
Az

EYy, — E} for o} <0
u;t =l -

E} - EY, for a,4>0

where o may be defined as in Ref. [6-10] by

L 3 n —
ul if Aui+% =0
1 =
t+5 n_ _ kR
TR i Auy, #0
Uiy — Uy z

Equation (6-97) can be expressed in a combined form by the following:

1At
U?H =yl — EE[I - Sgn(a.-+§)](E?+1 - E:‘)
1 At

_EE[l + Sgn(ai—,})](E? - E)

(6-96)

(6-97)

(6-98)

(6-99)
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where a;_, is defined similar to that of (6-98) by

up if Aup, =0

o1 = o (6-100)
U S Aup , #0

Relations (6-98) and (6-100) can be used to recast Equation (6-99) in different
forms. Commonly used forms of the equations are as follows:

umt =] 2As [ H_%/_\.u |a‘-+§ | Au;‘ﬁ +a‘-_§Au:'_*
+ | oy | Aul ] (6-101)
" 1 At En n
wt = - E_A_x[( i1 — B+ (E7 — B )~ | Q) | AUH-;

+logylAaur,)  (6-102)

n+4-1 n 1 At

Uy =u; — 3 AL (B + EY)— | Oy | Au?+5 — (B + EL,)
+1lay | Au:‘_é] (6-103)
Wt = [( i~ EL)— ey | Auly+ | oy | Aug_,] (6-104)

Equation (6-103) is often used in conjunction with flux limiters. It is commonly
rewritten as

utt =l — A [h,+, hi_y] (6-105)
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where )
try = SlE + B = Laggy [ Audy] (6-106)

and 1
Wy = GlED + EL)— Loy | A ] (6-107)

The expressions defined above by “h” are known as the numerical flux functions.

Recall that, in order to establish the TVD nature of the scheme, the requirements
specified by (6-93) through (6-95) need to be checked. Thus, Equation (6-101)
should be rewritten in the general explicit form of Equation (6-92). For this purpose,
Equation (6-101) is rearranged as

e n 1At 1 At "
uptt = uf + E_A_;_c_(l oy | "ai+-ir)Au?+‘z B EE(l oy | +oyy)Buiy

or
u;‘“ == u:‘ + AH%AU::_& - B,-_%Au?_i (6-108)
where
1 At .
A,-+; = 53_1—:“ Qi } | -—a,-+%) (6-109)
and
1At
By =50yl +aiy) (6-110)
Furthermore, define
1 At
By, = —2-A_a:(| iy} | +ai+§) (6-111)

Recall that a numerical scheme is said to possess TVD property if the following
conditions are satisfied:

Ay 20 (6-112)
B,_; >0 (6-113)

and
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0< Ay + By <1 (6-114)

Requirements (6-112) and (6-113) are always satisfied as seen by (6-109) and (6-
110). Requirement (6-114) is rearranged with the use of (6-109) and (6-111) to
provide

At

0 <| a”%ZE

<1 (6-115)

which is a Courant number type requirement. Thus, it is seen that the first-order
upwind scheme has TVD property and must satisfy the Courant number restriction
imposed by (6-115).

Now consider formulation (6-104) given by

. 1AL, . 1 At
u,-“ = u:‘ - E-A_.'D(EH-I - E?_l) + E-A_.’E(I ai+i I Au?%—é

Observe that Equation (6-116) is composed of a central difference approximation of
the convective term plus a correction term which is dissipative. Equation (6-116)
may be split and solved in a multi-step fashion by the following:

1 At

u; =uf — §E(E?+l - E},) (6-117)
and
n * 1 At n 1)
ui+1:ui+§A_x( i+v1|_¢i“é) (6‘118)
where
?+‘, = Qi | Au?ﬁ} (6-119)
Gy =l oy | Aup,y (6-120)

The expressions defined by (6-119) and (6-120) are known as the flux limiter func-
tions. These quantities introduce dissipation which eliminate oscillations within the
solution. The scheme given by (6-117) and (6-118) suggests a simple procedure by
which TVD dissipation can be incorporated to a numerical scheme. That is, an
equivalent step similar to (6-118) may be added to an existing code in order to
include TVD dissipation without major modifications.
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6.10.2 Entropy Condition

Weak solutions (solutions with discontinuities such as shocks) of the conservation
laws, e.g., inviscid Burgers equation, subject to an imposed initial data may not be
unique. For example, the solution may produce a nonphysical expansion shock
accompanied by a decrease in entropy. To exclude nonphysical solutions and to
seek a physically relevant solution, additional conditions must be imposed. Such a
requirement in fluid mechanics is provided by the second law of thermodynamics,
which simply states that the entropy cannot decrease. Recall that the increase
of entropy is due to irreversible processes such as viscosity or shock waves among
others. In order to obtain a unique solution of the governing equation, an additional
condition is imposed, known as the entropy condition.

It should be noted that some schemes provide unique solutions where the en-
tropy condition is automatically satisfied. For example, it has been shown that
[6-11, 6-12], monotone schemes applied to a single conservation law always corre-
sponds to a physically relevant condition. On the other hand, not all TVD schemes
automatically satisfy the entropy condition. In order to enforce the entropy re-
quirement, a dissipative mechanism must be present in the numerical scheme. In
the previous scheme given by Equation (6-105), the term | o | provided such a
mechanism. However, a difficulty may appear when a becomes zero. To overcome
this problem, a is replaced by an entropy correction term denoted by %, where

| a for |a|>¢

Y= (6-121)

o + g2
2e

for |a|<e

The positive constant ¢ is selected within the range of 0.0 < ¢ < 0.125.

6.10.3 Application

The nonlinear problem proposed in Section 6.6 will be used to illustrate the
application of a first-order TVD scheme. Recall that the objective of the proposed
problem is to solve the Burgers equation subject to an initial condition which in-
cludes a discontinuity as shown in Figure 6-19. The TVD formulation given by
(6-117) and (6-118) is utilized to obtain the solution. The spatial and temporal
step sizes are 0.1 and 0.1, respectively, which result in a Courant number of one.
The solution at time increment of 0.6 seconds is shown in Figure 6-39 and is pre-
sented in Table 6-14. The lack of any oscillation within the domain of solution is
clearly evident.
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Figure 6-39. The solution of inviscid Burgers equation by the
first-order TVD scheme, Az = 0.1 and At = 0.1.

6.10.4 Second-Order TVD Schemes

As in the case of the first-order TVD schemes, there are numerous second-
order TVD formulations. Only a selected number of schemes are introduced in this
section. Additional schemes are discussed in Ref. [6-6).

One way to increase the order of accuracy from first-order to second-order is to
introduce a modified flux E as proposed by Harten, Ref. [6-7] where

E =E + G (6-122)

The function G is defined so as to provide a second-order TVD, referred to as
limiter.

The governing equations are written in a similar form as Equation (6-105).
Therefore,
ntl _ . n

At
u; u;

P (ki — Ry (6-123)

i+g
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where ]
g = 5 [Ein+1 + E7 4+ ¢1y4 (6-124)
and

n 1 n n
h‘-_% = ‘2" [E‘ + E?—l +¢‘_%] (6‘125)

where ¢ is the flux limiter function. The introduction of various limiters will be
accompanied by the application of the second-order TVD scheme to the example
problem of Sec. 6.6.

6.10.4.1 Harten-Yee Upwind TVD Limiters. In this scheme, the flux limiter function
is defined as

(}5,-_'_% = (GH.] + G.) — ’l,b(a“_,lj + ﬁ,-ﬁ)Au:‘ﬂ (6—126)
with
lyl for |y[>e
P(y) = 2, 3 (6-127)
@%6— for |yl<e

where 0 < £ < 0.125, and

E# for Au, i #0
i} = i (6-128)
Uipy + Uy
% for Aug; =0
(GZL lG') for Augy #0
Bivy = 1 (6-129)
0 for Au;; =0
The limiter G may be specified as follows:
Gi = S * max{0,minfo;, 1 | Au,yy |, S * ;1 Ay, 4]} (6-130)

where

Duyyy

S = Sgn(AuH,}) = IA'U,—1|
g
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and

1 At
Tip) = §[¢(an+§) - A_I(awé)zl

The flux limiter given by (6-126) has also been modified [6-3] as follows
iy = a(a,.+§) (Gir1 + i) — 9 (o + Biry) Aul, (6-131a)

d"'—i = 0 (a,-_%) (Gi+ Gi_y) — o (a"“i -+ ,5,-_&) Au:“i (6-131b)

where 1 N |
o (a,-+§) = 51.0 (a¢+§) + =~ (a‘,_ké)
and
ﬂi+i =0 (C!,-_{_i) Aut’+§ ? AUH—! #0
0 ’ Aui+,1, =0

A variety of limiters have been introduced to evaluate G. Several choices are as
follows

G = minmod (Au,_;, Augy,y ) (6-132)
G_ _ Au"_i,i Aui_é + |Au"+% Aui_%l (6_133)
) Augyy + Ay,

If Au"_’_% + Au"_% = 0, then G“ = O

‘. _ Au,_y [(Au‘t},)z _:w] + Aui+;2[(Aui_%)2 +w:‘ 107 <w< 107
(Aui+§) + (Au‘-_%) + %

(6-134)

>
I

ﬁ—! 1

minmod [2Au. § o 2Bugy, (A“ihi; + Au,_y )] (6-135)

1
2

G; = S *max [0, min (2 ’Au¢+i| , S * Au,-_i) ,min ('Auﬂil , 285 * AAu,-_*)]
(6-136)

Recall that

minmod (a,b,¢,...,n) = S+max [0, min(la], S*b, S*c, ..., S*n)]
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where S = sgn(a).

The solution for the second-order TVD scheme given by Equation (6-123) and
the flux limiter function (6-131) and limiter G given by (6-132) is shown in Figure
6-40 for several time levels and provided in Table 6.15. The solution at time level
of 1.8 sec is also shown in Figure 6-41 where the effect of step size on the solution
is illustrated. The solutions using limiters (6-132) through (6-136) are compared in
Figure 6-42. Note that the solution by limiter (6-134) is less than desirable! The
solution by limiter (6-132), which is the simplest choice, appears to be the best
choice as well.

6.10.4.2 Roe-Sweby Upwind TVD Limiters. The flux limiter function is defined as

G; At

biry = ["‘2"(| ity | +Ea.'2+,})“ | oy |]Au,-+§ (6-137a)
G- At

by = [T oy |+ g )=l oy | Buy  (6137)

Several choices have been proposed for the function G, among which are:

G; = minmod (1,7) (6-138)
relr]
= 6-1
Gi=- +r (6-139)
G; = max[0, min(2r, 1), min(r, 2)] (6-140)

where

_ Uiti14o — Uito
Auih‘,

o = Sgn (04;)

If at a point Au,, } is zero, then r is set equal to zero in order to prevent a division
by zero.

The solution by limiter (6-138) is shown in Figure 6-43, and solutions by limiters
(6-138) through (6-140) are shown in Figure 6-44. It is observed that the solution
with limiter (6-138) provides the better solution of the three limiters examined. The
solution with limiter (6-138) is also presented in Table 6-16 for several time levels.
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Figure 6-40. Solution of the inviscid Burgers equation by the second-order
TVD method with the Harten-Yee upwind limiter (6-132),
Az = 0.1 and At =0.1.
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Figure 6-41. Effect of step sizes on the solution of the inviscid Burgers
equation by the second-order TVD method with the Harten-
Yee upwind limiter {6-132).
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Figure 6-42. Solution of the inviscid Burgers equation by the second-order
TVD method with the Harten-Yee upwind limiters at £ = 1.8
sec, Ar = 0.1 and At =0.1.

1.6
14
1.2
1.0 —NEEE - I DT I 2T I O A ]
0.8
3
0.6
—5— 1=0.0s¢cc
04 —
—A— t=006sec
0.2 — —5F— t=12sec
0.0 — —— t=1.8sec
-02 1 T T
0.0 1.0 2.0 3.0 4.0

Figure 6-43. Solution of the inviscid Burgers equation by the second-order
TVD method with the Roe-Sweby upwind limiter (6-138),
Az = 0.1 and At = 0.1.
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Figure 6-44. Solution of the inviscid Burgérs equation by the second-order
TVD method with the Roe-Sweby upwind limiters at ¢t = 1.8
sec, Az = 0.1 and At = 0.1.

6.10.4.3 Davis-Yee Symmetric TVD Limiters. The flux limiter function is defined as

by = = o (r) Gurg + ¥ (oy) (Busey - Giy)|  (6141a)
¢¢_,}, = - [%ﬁ_— (a,'_é)ZG,-_é + (a‘-_é) (Au,‘_é - Gi—-‘,)] (6-141b)

Again, several choices are available for the limiters as follow

G,;; = minmod —2Aui_i ) 28,y 200, %(Au‘_% +Au,.+g)] (6-142)

I

minmod [Ax,_, Aug,y AuH;] (6-143)

I.—! Y

G;;y = minmod -AUH; , Au,-_,_n,] + minmod [Au,ﬂ , AuH;] — Ay (6-144)

The solution by the second-order TVD scheme given by Equation (6-123) with
flux limiter function defined by (6-141) and limiter (6-142) is shown in Figure 6-45

m
Y



Hyperbolic Equations 251

for several time levels and is presented in Table 6.17. The solutions by limiter (6-
142) through (6-144) are shown in Figure 6-46. The solutions with all three limiters
are similar and well behaved.

6.11 Modified Runge-Kutta Method with TVD

In the previous sections, it was observed that schemes which utilize central
difference approximation of second-order will develop oscillations in the vicinity of
large gradients. That is, of course, due to the dispersion error in these schemes.
The Beam and Warming implicit scheme and the Runge-Kutta scheme or the mod-
ified Runge-Kutta scheme are examples of such schemes. To eliminate or reduce
the oscillations and thereby improve the solution, damping terms are added, as
discussed previously. Since TVD essentially performs in a similar fashion, that is,
it eliminates or reduces oscillations in the solution, it can be added to the finite
difference equations to provide a mechanism for reducing oscillations. An example
of this procedure is the addition of a fourth-order damping term to the modified
Runge-Kutta scheme discussed in Section 6.6.8. Typically, TVD is added at the
final stage. Thus, the formulation (6-71) through (6-75) repeated here

W = P (6-145)
E (1
WP = uP - %t (-‘2;) (6-146)
@
@ _ o_At(0E
U, L ( >3} (6-147)
(3
WM = o B (Q-}'E) (6-148)
2 x /.
(4
O0FE
upt! = ul— At (-—) (6-149)
oz /,
is augmented by the following step.
At n
WMt =yt — e ( - i—é) (6-150)

where any one of the flux limiter functions given by (6-131), (6-137), or (6-141),
along with appropriate limiters, can be used. The solution with Davis-Yee limiter
(6-142) is provided in Table 6-18.

Note that this simple approach can be easily implemented into any existing code
which requires the addition of a numerical damping,.
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Figure 6-45. Solution of the inviscid Burgers equation by the second-order
TVD method with the Davis-Yee symmetric limiter (6-142),
Az =0.1 and At = 0.1.
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Figure 6-46. Solution of the inviscid Burgers equation by the second-order
TVD method with the Davis-Yee symmetric limiters at
t =18sec, Ar = 0.1 and At = 0.1,
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6.12 Summary Objectives

After studying this chapter you should be able to do the following:

1. Describe:

c e

g0

R o o

A

s

e

L2 'v

b

Euler's FTFES explicit method

Euler's FTCS explicit method

The explicit first upwind differencing method
The Lax method

The midpoint leapfrog method

The Lax-Wendroff method

Euler’s BTCS implicit method

The implicit first upwind differencing method
The Crank-Nicolson method

Splitting methods

Multi-step methods

The Richtmyer/Lax-Wendroff multi-step method
The MacCormack method

A Jacobian

The Beam and Warming implicit method
The Runge-Kutta method

The modified Runge-Kutta method

A smoothing (damping) term

Flux corrected transport scheme

Monotone schemes

TVD schemes

Essentially non-oscillating schemes

Entropy condition

2. Solve the problems for Chapter Six.
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6.13 Problems

6.1 A wave is propagating in a closed-end tube. Compute the wave propagation
up to ¢ = 0.15 sec by solving the first-order wave equation. Assume the speed of
sound to be 200 m/sec. The wave has a triangular shape (see Figure P6-1) which
is to be used as the initial condition at ¢ = 0.0. Solve the problem by the following

methods.

u(x,1)
20.0 1
0.0 T T T T X
0.0 5.0 15.0 25.0 70.0
I=1 6 26 71

Figure P6-1. Initial wave distribution for problem 6.1.

(a) First upwind differencing
(b) Lax-Wendroff
(c) Euler’s BTCS implicit
Three sets of step sizes are specified as follows:
(I) Az =1.0 (IM="71), At = 0.005 (NM = 31)
(II) Az =1.0 (IM=T1), At =0.0025 (NM = 61)
(III) Az =1.0 (IM=T1), At =0.00125 (NM =121)

Print the solution at intervals of 0.025 sec up to ¢t = 0.15 sec.

6.2 Use each of the following methods to solve the Burgers equation:

(a) Lax
(b) Lax-Wendroff
(¢) MacCormack
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(d) Beam and Warming

The initial condition is specified as:

u(z,0) = 5.0 0.0<z<20.0
u(z,0) = 0.0 20.0 < 2 <£40.0

Print the solution at intervals of 0.4 sec up to t = 2.4 sec. The following step-sizes
are suggested:

() Az =1.0, At = 0.1

(II) Az =10, At=02

6.3 An initial velocity distribution representing a compression wave is given by
the following:

1 , z < 0.25
u(z,0)=¢ 1.26—z , 025<z<1.25
0 s z > 1.25

The inviscid Burgers equation is used to solve for the wave propagation within a
domain of 0.0 € z < 4.0. The solution is sought up to 6.0 seconds. Note that
the initial wave is compressed (steepens) with time and subsequently forms a shock
wave. Within the specified time and space intervals, no shock reflection occurs, and
therefore, the boundary conditions are simply specified as

1(0.0,t) = 1.0
w(4.0,1) = 0.0

Use the Lax-Wendroff scheme with a spatial step of 0.05 m to obtain the solutions

for the following cases:
(I) At=0.01
(II) At =0.025
(IIT) At =0.05
(IV) At=01

(a) Print the solution for Case II at time levels of 0.0, 2.0, 4.0, and 6.0 seconds.

(b) Plot the solutions for all cases at time levels of 0.0, 2.0, 4.0, and 6.0 seconds.

(c) Discuss the effect of the time step on stability, accuracy, and efficiency.
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6.4 Use the Lax-Wendroff scheme with a second-order damping term to solve the
wave propagation described in Problem 6.3. Use spatial and temporal steps of
0.05 m and 0.025 seconds, respectively. Investigate the numerical solutions for the
following damping coefficients, .

(I) e=0.1
(I} €=0.2
(II) €=0.3

(a) Print the solution for Case I at time levels of 0.0, 2.0, 4.0, and 6.0 seconds.

(b) Plot the solutions for all three cases at time levels of 0.0, 2.0, 4.0, and 6.0
seconds.

(c) Discuss the effect of the damping coefficient on the solution.

6.5 Solve the wave propagation described in Problem 6.3 by the Lax-Wendroff
scheme with added flux-corrected transport. Use spatial and temporal steps of 0.05

m and 0.025 seconds, respectively. Print and plot the solution at time levels of 0.0,
2.0, 4.0, and 6.0 seconds.

6.6 An initial velocity distribution is given by

1.0 z < 0.75
w(z,0) ={ 1.75 -z 0.75 <z < 1.75
0.0 z > 1.75

Compute the wave propagation up to 6.0 seconds within a domain of 0.0 <z<5.0

For the specified domain and time intervals, we will enforce the following boundary
conditions:

u(0.0,¢) = 1.0
u(5.0,£) = 0.0

The governing equation is the inviscid Burgers equation and the numerical scheme
to be used is the Beam and Warming implicit method. The spatial and temporal

steps are 0.05 m and 0.025 seconds, respectively. The following tasks are to be
investigated.
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(I) Beam and Warming scheme with no damping term.
(I) Beam and Warming scheme with a fourth-order damping term and € = 0.1.

(III) Beam and Warming scheme with added flux-corrected transport. (Use g, =
—0.1 and g4 = —0.2.)
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x t=0.00 1=0.10 t=0.20 t=0.30 1=0.40 =0.50
0.0 0.000 0.000 0.000 0.000 0.000 0.000
10.0 0.000 0.000 0.000 0.000 0.000 0.000
20.0 0.000 0.000 0.000 0.000 0.000 0.000
30.0 0.000 0.000 0.000 0.000 0.000 0.000
40.0 0.000 0.000 0.000 0.000 0.000 0.000
50.0 0.000 0.000 0.000 0.000 0.000 0.000
600  50.000 0.000 0.000 . 0.000 0.000 0.000
700  86.603 0.000 0.000 0.000 0.000 0.000
80.0  100.000  25.882 0.000 0.000 0.000 0.000
900 86603  70.711 0.000 0.000 0.000 0.000
1000 50000  96.593 0.000 0.000 0.000 0.000
110.0 0.000 96593  50.000 0.000 0.000 0.000
120.0 0.000 70711  86.603 0.000 0.000 0.000
130.0 0000 25882  100.000  25.882 0.000 0.000
140.0 0.000 0.000 86603  70.711 0.000 0.000
150.0 0.000 0.000  S0.000  96.593 0.000 0.000
160.0 0.000 0.000 0.000 96593  50.000 0.000
170.0 0.000 0.000 0000 70711  86.603 0.000
180.0 0.000 0.000 0.000 25882  100.000  25.882
190.0 0.000 0.000 0.000 0000 86603  70.711
200.0 0.000 0.000 0.000 0.000  50.000  96.593
2100 0.000 0.000 0.000 0.000 0000  96.593
220.0 0.000 0.000 0.000 0.000 0000 70711
230.0 0.000 0.000 0.000 0.000 0.000  25.882
240.0 0.000 0.000 0.000 0.000 0.000 0.000
250.0 0.000 0.000 0.000 0.000 0.000 0.000
260.0 0.000 0.000 0.000 0.000 0.000 0.000
270.0 0.000 0.000 0.000 0.000 0.000 0.000
280.0 0.000 0.000 0.000 0.000 0.000 0.000
290.0 0.000 0.000 0.000 0.000 0.000 0.000
300.0 0.000 0.000 0.000 0.000 0.000 0.000
310.0 0.000 0.000 0.000 0.000 0.000 0.000
320.0 0.000 0.000 0.000 0.000 0.000 0.000
330.0 0.000 0.000 0.000 0.000 0.000 0.000
340.0 0.000 0.000 0.000 0.000 0.000 0.000
350.0 0.000 0.000 0.000 0.000 0.000 0.000
360.0 0.000 0.000 0.000 0.000 0.000 0.000
370.0 0.000 0.000 0.000 0.000 0.000 0.000
380.0 0.000 0.000 0.000 0.000 0.000 0.000
390.0 0.000 0.000 0.000 0.000 0.000 0.000
400.0 0.000 0.000 0.000 0.000 0.000 0.000

Table 6-1a. Solution of the first-order wave equation by the explicit first upwind
differencing scheme, Ax=5.0, At=0.02, ¢=1.0.
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0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
50.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
2300
2400
250.0
260.0
2700
280.0
290.0
300.0
310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.10

0.000
0.000
0.000
0.000
0.000
0.000
0.706
8.582
32.346
64.019
85.192
84.812
62.532
30.862
9.109
1.492
0.129
0.006
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.20

0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.149
1.622
8.231
24.363
48.199
69.770
77923
68.207
46.141
23.493
8.786
2373
0.458
0.063
0.006
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1=0.30

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.032
0.327
1.923
7.256
19.115
37372
56.721
68.880
67.970
54.654
35.623
18.669
7.808
2.591
0.680
0.141
0.023
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.40

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.007
0.068
0.438
1.936
6.238
15.303
29.577
46.249
59.647
64.235
58.113
44225
28.268
15.137
6.774
2.528
0.786
0.203
0.044
0.008
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.50

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.015
0.099
0.489
1.823
5311
12.407
23.751
37.904
51.109
58.787
58.035
49.332
36.151
22.836
12.429
5.84
2.349
0.815
0.243
0.062
0.014
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table 6-1b. Solution of the first-order wave equation by the explicit first upwind
differencing scheme, Ax=5.0, At=0.005, ¢=0.25.
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X t=0.00 t=0.10 t=0.20 =0.30 =040 t=0.50

0.0 0.000 0.000 0.000 0.000 0.000 0.000
10.0 0.000 0.000 0.000 0.000 0.000 0.000
20.0 0.000 0.000 0.000 0.000 0.000 0.000
30.0 0.000 0.000 0.000 0.000 0.000 0.000

40.0 0.000 0.000 0.000 0.000 0.000 0.000

50.0 0.000 0.000 0.000 0.000 0.000 0.000

60.0 506.000 3.585 0.175 0.007 0.000 0.000

70.0 86.603 17.629 1.796 0.132 0.008 0.000

80.0 100.000 40.508 7.394 0.867 0.078 0.006

90.0 86.603 62.930 18.670 3.208 0.418 0.042
100.0 50.000 14.727 34.239 8.730 1,520 0.202
110.0 0.000 68.696 49.511 17.725 4.138 0714
120.0 0.000 51.043 58.804 29.229 8.996 1.983
130.0 0.000 30.755 58.812 40.559 16,279 4.527
140.0 0.000 16.034 50.653 48.521 25.235 8.717
150.0 0.000 7.508 38.388 50.986 34218 14,787
160.0 0.000 3.240 26.105 47.807 41.250 22,039
170.0 0.000 1.312 16.197 40,550 44.794 29.465
180.0 0.000 0.505 9.297 31.488 44.309 35.744
190.0 0.000 0.187 4.993 22.618 40,313 39.723
200.0 0.000 0.067 2,532 15.165 34.019 40.777
210.0 0.000 0.023 1.222 9.564 26.825 38.946
220.0 0.000 0.008 0.565 5.711 19.893 34 827
230.0 0.000 0.003 0.251 3.248 13.954 29.325
240.0 0.000 0.001 0.108 1.767 9.305 23.365
250.0 0.000 0.000 0.045 0.924 3.925 17.695

260.0 0.000 0.000 0.018 0.466 3.617 12.789
270.0 0.000 0.000 0.007 0.228 2.124 8.852
280.0 0.000 0.000 0.003 0.108 1.203 5.887

290.0 0.000 0.000 0.001 0.050 0.660 3772
300.0 0.000 0.000 0.000 0.022 0.351 2,335
310.0 0.000 0.000 0.000 0.010 0.181 1.400

320.0 0.000 0.000 0.000 0.004 0.091 0.814
330.0 0.000 0.000 0.000 0.002 0.045 0.460

340.0 0.000 0.000 0.000 0.001 0.022 0.254
350.0 0.000 0.000 0.000 0.000 0.010 0.136
360.0 0.000 0.000 0.000 0.000 0.005 0.072
370.0 0.000 0.000 0.000 0.000 0.002 0.037
380.0 0.000 0.000 0.000 0.000 0.001 0.018
390.0 0.000 0.000 0.000 0.000 0.000 0.009
400.0 0.000 0.000 0.000 . 0.000 0.000 0.000

Table 6-2a. Solution of the first-order wave equation by the implicit first upwind
differencing scheme, Ax=5.0, At=0.02, c=1.0.
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X

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
2200
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.0
3100
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

t=0.00

0.000
0.000
0.000
0.000
0.000
0.000
50.000
86.603
100.000
86.603
50.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000 -

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

=0.10

0.000
0.000
0.000
0.000
0.000
0.000
1.770
12,778
36.264
63.138
79.939
77.891
57.494
31.585
13.151
4.305
1.151
0.259
0.051
0.009
0.001
0.000
0.000

- 0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.20

0.000
0.000
0.000
0.000
0.000
0.000
0.034
0.621
3.865
13.090
29.470
49.131
64406
68.367
59.547
42941
25914
13.259
5.833
2.238

0.759

0.230
0.063
0.016
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.30

0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.019
0.214
1.249
4.625
12.188
24.566
39.696
53.022
59.706
57434
47.676
34.458
21.873
12.299
6.177
2.793
1.146
0.429
0.148
0.047
0.014
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.40

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.008
0.074
0.418
1.633
4.778
11.020
20.772
32.853
44435
52.121
53.587
48.708
39.433
28.627
18.754
11.152
6.055
3.017
1.387
0.591
0.234
0.087
0.030
0.010
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.50

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.026
0.143
0.579
1.824
4.647
9.849
17.746
27.647
37.733
45.584
49.156
47.653
41,783
33319
24.286
16.256
10.036
5.739
3.051
1.514
0.703
0.307
0.126
0.049
0.018
0.006
0.002
0.001
0.000
0.000
0.000

Table 6-2b. Solution of the first-order wave equation by the implicit first upwind
differencing scheme, Ax=5.0, At=0.005, ¢=0.25.
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X

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
150.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.0
310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

Table 6-3. Solution of the first-order wave equation by the explicit Lax-Wendroff
differencing scheme, Ax=5.0, At=0.02, c¢=1.0.

1=0.00

0.000
0.000
0.000
0.000
0.000
0.000
50.000
86.603
100.000
86.603
50.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0,10

0.000
0.000
0.000
0.600
0.000
0.000
0.000
0.000
25.882
70.711
96.593
96.593
70.711
25.882
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

=0.20

0.000
0.600
0.000
0.000
0.000
0.000

0.000

0.000
0.000
0.000
0.000
50.000
86.603
100.000
86.603
50.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1=0.30

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
25.882
70.711
96.593
96.593
70.711
25.882
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1=0.40

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
50.000
86.603
100.000
86.603
50.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1=0.50

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
25.882
70.711
96.593
96.593
70.711
25.882
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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X

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
50.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.0
310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

=0.00

0.000
0.000
0.000
0.000
0.000
0.000
50.000
86.603
100.000
86.603
50.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.10

0.000
-0.302
0.777
-1.323
-1.041

0.684
-1.430

9.296

36.074
65.288
83.220
82.211
56.301
28.147
11.374

397

1.249

0.363

0.099

0.026

0.006

0.002

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

t=0.20

0.000
-0.380
-0.345
-0.019
-0.137
-0.618
-0.628
-1.215
-0.083

9.559

29.137
52.608
70.691
73.716
60.581
40.536
22.969
11.383

5.061

2.058

0.777

0.275

0.092

0.030

0.009

0.003

0.001

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

t=0.30

0.000
0.390
0.374
0.004
-0.303
-0.408
-0.284
-0.017
0.087
-0.239
1,330
8.663
23.405
42,499
59.121
65.906
60.617
47271
32.042
19.284
10.489
5.230
2419
1.048
0.429
0.167
0.062
0.022
0.008
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

t=0.40

0.000
-0.152
-0.108

0.118

0.364

0.513

0.482

0.338

0.192

0.141

0.006
-0.007

1.673

7.599
19.129

34.698
49.610
58.383
58.201
50.289
38.395
26.326
16.434

9.448

5.051

2.531

1.197

0.538

0.230

0.095

0.037

0.014

0.005

0.002

0.001

0.000

0.000

0.000

0.000

0.000

0.000

differencing scheme, Ax=5.0, At=0.02, ¢=1.0.

1=0.50

0.000
0.128
0.250
0.376
0.497
0.581
0.618
0.594
0.511
0.389
0.276
0.179
0.048
0.183
1.771
6.588
15.791
28.571
41.801
51.387
54.474
50.792
42.333
31.964
22,112
14.150
8.445
4.733
2.506
1.260
0.605
0.278
0.123
0.052
0.022
0.009
0.003
0.001
0.000
0.000
0.000

Table 6-4a. Solution of the first-order wave equation by the implicit BTCS
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X 1=0.00 =0.10 t=0.20 =030 1=0.40 1=0.50
0.0 0.000 0.000 0.000 0.000 0.000 0.000
10.0 0.000 -0.234 -0.250 0.034 0.089 0.082
20.0 0.000 -0.512 -0.404 0.052 0.144 0.173
30.0 0.000 -0.838 -0.392 0.021 0.158 0.272
40.0 0.000 -1.068 -0.246 -0.088 0.162 0.367
50.0 0.000 -0.5%0 -0.227 -0.219 0.185 0436
60.0 50.000 2.548 -0.627 -0.231 0213 0.461
70.0 86.603 19.443 0.739 -0.227 0.231 0.442
80.0 100.000 43.760 7.790 0.511 0.212 0.391
90.0 86.603 64.816 21.376 3.652 0.439 0.329
100.0 50.000 73.640 38.235 10.552 1.725 0.385
110.0 0.000 66.183 52.507 21.037 5.107 0.925
120.0 0.000 45.201 58.362 33.043 11.168 2.545
130.0 0.000 27.532 54.601 42971 19.504 5.845
140.0 0.000 15.743 45.075 48.014 28.552 11.062
150.0 0.000 8.648 33.979 47.586 36.257 17.775
160.0 0.000 4.620 23934 42.896 41.012 24,954
170.0 0.000 2419 16.001 35.847 42.200 31.322
180.0 0.000 1.246 10.266 28.173 40.152 35.802
190.0 0.000 0.635 6.371 21.050 35,784 37.814
200.0 0.000 0.320 3.847 15.078 30.177 37.342
210.0 0.000 0.160 227 10422 24277 34.806
2200 0.000 0.079 1.314 6.987 18.753 30.859
230.0 . 0.000 0.039 0.748 4.562 13.983 26.189
2400 0.000 0.019 0.420 2911 10.108 21.387
250.0 0.000 0.009 0.233 1.820 7.110 16.881
260.0 0.000 0.005 0.127 1.118 4,882 12926
270.0 0.000 0.002 0.069 0.676 3.279 9.632
280.0 0.000 0.001 0.037 0.403 2.160 7.003
290.0 0.000 0.001 0.020 0.237 1.398 4.980
300.0 0.000 0.000 0.010 0.138 0.891 3.471
310.0 0.000 0.000 0.006 0.079 0.559 2.374
320.0 0.000 0.000 0.003 0.045 U.346 1.597
330.0 0.000 6.000 0.002 0.025 0212 1.057
340.0 0.000 0.000 0.001 0.014 0.128 0.689
350.0 0.000 0.000 0.000 0.008 0.076 0.442
360.0 0.000 0.000 0.000 0.004 0.045 0.278
370.0 0.000 0.000 0.000 0.002 0.026 0.169
380.0 0.000 0.000 0.000 0.001 0.014 0.096
390.0 0.000 0.000 0.000 0.001 0.006 0.043
400.0 0.000 0.000 0.000 0.000 0.000 0.000

Table 6-4b. Solution of the first-order wave equation by the implicit BTCS

differencing scheme, Ax=5.0, At=0.05, c=2.5.
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X t=0.0 t=0.3 t=0.6 =09 t=1.2 t=1.5 1=1.8

0.00 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000  1.00000
0.20 1.00000  1.00000 1.00000  1.00000 1.00000 100000  1.00000
0.40 1.00060  1.00000 1.00000 100000 1.00000  1.00000 1
0.60 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000 1
0.80 1.00000  1.00600 1.00000  1.00000 1.60000 100000 1
1.00 1.00000  1.00000 1.00000  1.00000 1.60000  1.06000 1
1.20 1.00000  1.00000 1.00000  1.00000 1.00000 1.00000 1.
1.40 1.00000  1.00000 1.00000  1.00000 1.00000 100000 1
1.60 1.00000  1.00000 1.00000  1.00000 1.00000 100000 1
1.80 1.00000  0.99994 1.00000  1.006000 1.00000 100000 1
2.00 1.00000 092578  0.99997  1.00000 1.00000  1.00000  1.00000
220 0.00000 032428 096045  0.98520 1.00000  1.06000  1.00600
240 0.00000 000000 048537 063793 099605 099929  1.00000
2.60 0.00000 000000 005420 0.11976 0.77501 088082  0.99992
2.80 0.00000  0.00000 000000 000711 0.20861 032732 0.94819
3.00 0.00000 0.00000 0.00000 0.00000 0.01943 0.03965 0.47212
3.20 0.00000  0.00000 0.00000 0.00000 0.00089 000281 0.07313
3.40 0.00000 0.00000 000000 0.00000 0.00000 0.00011 0.00624
3.60 0.00000  0.00000 000000 0.00000 0.00000 0.00000 0.00039
3.80 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00001
4.00 0.00000 0.00000 0.00000 000000  0.00000 000000 0,00000

Table 6-5. Solution of inviscid Burgers equation by the Lax scheme,
Ax = 0.1, At =0.1.

X 1=0.0 t=0.3 - t=0.6 t=0.9 t=1.2 t=1.5 =18

0.00 1.00000  1.00000 1.00000 1.00000 1.00000  1.00000 1.00000
0.20 1.00000  1.00000 1.00000 1.00000 100000 100000 1.00000
0.40 1.00000  1.00000 1.00000 1.00000 1.00000  1.00000 1.00000
0.60 1.00000 100000 1.00000 1.00000 1.00000 1.00000 1.00000
0.80 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000  1.00000
1.00 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000  1.00000
1.20 1.00000 1.00000 1.00000 1.00000 1.060000 1.00000  1.00000
1.40 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.60 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000  1.00000
1.80 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000  1.00000
2.00 1.00000  1.00341  1.00002  1.00000 1.00000 100000  1.00000
2.20 0.00000 033616 1.06496  1.00105 1.00000 1.00000  1.00000
240 0.00000  0.00000 0.03165 1.16745 1.00868 1.00002  1.00000
2.60 0.00000  0.00000  0.00000 0.00024 0.89524 1.00712  1.00003
2.80 0.00000 0,00000 0.00000 000000 000000 032363 1.06544
3.00 0.00000 0.00000 0.00000 0.00000 0.00000 000000 0.03067
3.20 0.00000  0.00000 0.00000  0.00000  0.00000 0.00000  0.00000
3.40 0.00000  0.00000 0.00000  0.00000  0.00000  0.00000  0.00000
3.60 0.00000  0.00000 0.00000 000000 0.00000 0.00000 0.00000
3.80 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
4.00 0.00000  0.00000 000000 0.00000 0.00000 0.00000 0.00000

Table 6-6. Solution of inviscid Burgers equation by the Lax-Wendroff scheme,
Ax=0.1,At=0.1.
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X 1=0.0 1=0.3 t=0.6 t=0.9 t=1.2 t=1.5 t=1.8
0.00 1.00000 1.00000 1.00000 1.00000 1.00000  1.00000 1.00000
0.20 1.00000 100000  1.00000  1.00000 1.00000 1.00000  1.00000
0.40 1.00000  1.00000  1.00000  1.00000  1.00000 1.00000  1.00000
0.60 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.80 1.00000 100000 1.00000 1.00000 1.00000 1.00000 1.00000
1.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.20 1.60000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.40 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.60 1.00000 1.60000 1.00000 1.00000  1.00000  1.00000 1.00000
1.80 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2,00 1.00000  0.99722 1.00000 1.00000  1.00000 1.00000 1.00000
2.20 0.00000 0.52908 0.98402  0.99989  1.00000 1.00000 1.00000
2.40 0.00000 000000 0.12585 0.95309 (.99961 1.00000 100000
2.60 0.00000 0.00000 0.00000 0.00400 0.90062 0.99853 1.00000
2.80 0.00000 0.00000 0.00000 000000 0.00000 0.53880 0.98088
3.00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.12221
3.20 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
3.40 0.00000 0.00000 000000 0.00000 0.00000 0.00000 0.00000
3.60 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
3.80 0.00000  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000
4.00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
Table 6-7. Solution of inviscid Burgers equation by the MacCormack scheme,

Ax=0.1, At=0.1.

X t=0.0 t=0.3 t=0.6 t=0.9 t=1.2 t=1.5 t=1.8
0.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.060000
0.20 1.00000 1.00000 1.00000 1.00004 1.00107  1.01163 1.05227
0.40 1.00000 1.00000 1.00000 1.00027 1.00530  1.03858 1.10826
0.60 1.00000 1.00000 1.00004 1.00170 1.62115 1.09095 1.12052
0.80 1.00000 100000  1.00033 1.00898  1.06480  1.13787  0.99854
1.00 1.00000 1.00002 1.00251 1.03761 1.13405 1.06811 0.83563
1.20 1.00000 1.00029 1.01558 1.11041 1.13168  0.84434 1.02225
1.40 1.00000 1,00308 1.07161 1.17653  0.89280 (093520 1.18901
1.60 1.00000 1.02757 1.19184 098016 0.83288  1.24605  0.73017
1.80 1.00000 1.16399 1.10403  0.71707 1.29572  0.72217 1.10264
2.00 1.060000 1.28523 0.56385 135769  0.69121 1.07562 1.11638
2.20 0.60000 0.26982 1.50247 0.54340 1.10400 1.10630 0.60736
2,40 0.60000 0.00000 0.04774 131217  0.90055  0.63963 1.47633
2.60 0.00000 0.00000 000000 0.00396 0.92439 1.30304 0.27484
2.80 0.00000  0.00000 0.00000 000000 0.00013 (.52559 1.59021
3.00 0.00000 0.00000  0.00000 000000 0.00000 0.00000 0.23271
320 0.00060  0.00000 0.00000 000000 0.00000 0.00000 0.00000
3.40 0.00000 0.00000  0.00000 0.00000 0.00000 (.00000 0.00000
3.60 0.00000 0.00000  0.00000 000000 0.00000  0.00000 0.00000
3.80 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
4,00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000

Table 6-8. Solution of inviscid Burgers equation by the Beam-Warming scheme,
Ax=0.1, At=0.1.
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X t=0.0 t=0.3 1=0.6 t=0.9 t=1.2 =1.5 t=1.8

0.00 1.00000 1.00000  1,00000  1.00000 1.00000 1.00000  1.00000
0.20 1.00000 1.00000 1.00000  1.00000 1.00000 1.00000  1.00000
0.40 1.00000 1.00000  1.00000 1.00000 1.00000 1.00000  1.00000
0.60 1.00000 1.00000  1,00000  1.00000 1.00000 1.00000  1.00000
0.80 1.00000 1.00000  1.00000 100000 1.00000 1.00000 1.00000
1.00 1.00000 1.00000  1.00000  1.00000  1.00000  1.000600 1.00000
1.20 £.00000 100000  0.99999  1.00000 1.00000  1.00000 1.00000
1.40 1.00000  1.00001 099997 099997 1.00001  1.00000 1.00000
1.60 1.00000 099966 100022 1.00008 0.99995  1.00000 1.00001
1.80 1.00000  1.00486  0.99621 1.00033  1.00041  0.99988  0.99999
2.00 1.00000 1.08229 101119 098931 1.00077 1.00080  0.99979
220 0.00000  0.41905 1.13208 1.01986 0.98603  1.00042 1.00093
2.40 0.00000 -0.0588  0.12621 1.04333  1.04934 099240  0.99702
2.60 0.00000 -0.00100 -0.00594 -0.06268 0.78578  1.11332 1.00320
2.80 0.00000  0.00000 0.00147 0.00843 007988 042860 1.14567
3.00 0.00000  0.00000 0.00027 -0.00119 0.00893 -0.03864 0.10703
3.20 0.00000  0.00000 0.00000 0.00005 -0.00087 0.00336 -0.00336
3.40 0.00000  0.00000 0.00000 -0.00002 0.00010 -0.00028 -0.00034
3.60 0.00000  0.00000 0.00000 0.00000 0.000060 0.00002 0.0001}
3.80 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 -0.00002
4.00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000

Table 6-9. Solution of inviscid Burgers equation by the Beam-Warming scheme
with a damping of ¢, = 0.1, Ax=0.1, At=0.1.

X t=0.0 t=0.3 t=0.6 1=0.9 t=1.2 t=1.5 t=1.8

0.00 1.00000  1.00000 100000  1.00000 100000 100000  1.00000
0.20 1.00000  1.00000 1.00000 1.00000 1.00040 1.00922 1.05810
6.40 1.00000  1.00000 1.00000 1.00005 1.00320 1.03779 1.12298
0.60 1.00000  1.00000 1.00000 1.00069 1.01809  1.10047 112165
0.80 1.00000 1.00000 1.00006 1.00612 1.06796 1.15003  0.95036
1.00 1,00000 100000 100109 1.03563 1.14897 1.03556  0.84019
1.20 1.00000  1.00003  1.01201 1.12073 112066 0.81144 1.12040
1.40 1.00000 100130 107384  1.18303 0.83816  1.03705 1.08015
1.60 1.00000  1.02431 1.20528 0.92345 091948 1.18274  0.71304
1.80 1.00000 1.17251 1.05811  0.78059 1.27003  0.65292  1.26079
2.00 1.00000  1.23969 0.61833  1.34386  0.60444  1.24083  0.82269
220 0.00000 031216  1.44482 0.50268 1.23605 0.83760  0.90897
2.40 0.00000  0.00001 0.08645 133564 0.71803 0.89331 1.19113
2.60 0.00000  0.00000 0.00000 001752 1.05190 1.04211  0.52733
2.80 0.00000  0.00000 0.00000  0.00000 0.00259 0.71646  1.33155
3.00 0.00000  0.00000 0.00000 000000 0.00000 000026 041765
3.20 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.0000X
3.40 0.060000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
3.60 0.60000  0.00000 0.00000 000000 0.00000 000000 0.00000
3.80 0.00000  0.00000 0.00000 000000 0.00000 0.00000 0.00000
4.00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000

Table 6-10. Solution of inviscid Burgers equation by the 4th-order Runge-Kutta
scheme, Ax=0.1,At=0.1.
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X t=0.0 t=0.3 t=0.6 t=0.9 t=1.2 t=1.5 t=1.8
0.00 1.00000 1.00000 1.00000 1.00000 1.600060 1.00000 £.00000
0.20 1.06000  1.00000  1.00000  1.00000 1.00000 1.00000 1.00000
0.40 1.00000 1.00000 1.00000 £.00000 1.00000 1.00000 1.00000
0.60 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.80 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.60000 1.00000
1.20 1.00000 1.00000 1.00000 1.00000 1,00000 1.00000 1.00000
1.40 1.00000 1.00000  0.99999 1.00060  1.00000 1.00000 1.00000
1.60 1.00000  (.99944  0.99993 1.000OT  0.99999  0.99999 1.00000
1.80 1.00000 L00576  0.99742 0.99999 1.00024 099996  0.99999
2.00 100000 1.06444 101050 0.99377 1.00026 1.00032 0.99995
2.20 0.00000  0.43611 1.10320 101209  0.99394  0.99990 1.00021
2.40 0.00000  -0.05882 0.15709 1.02820 1.02810 1.00041 0.99754
2.60 0.00000 -0.00092 -0.00831 -0.04253  0.79695 1.07728 1.00726
2.80 0.00000 0.00000 0.00159  0.00697 -0.07710 0.46160 1.10930
3.00 0.00000 0.00000 0.00025 -0.00110 0.00898 -0.04324 0.14324
3.20 0.00000  0.00000 0.00000 0.00005 -0.00091 0.00399 -0.00764
3.40 0.00000 0.00000  0.00000 -0.00002 0.00010 -0.00035 0.00013
3.60 0.00000 0.00000  0.00000  0.00000 0.00000  0.00002 0.00006
3.80 0.00000 0.00000  0.00000  0.00000 0.00000 0.00000 -0.00001
4.00 0.06000 0.00000  0.00000 0.00000  0.00000  0.00000 0.00000
Table 6-11. Solution of inviscid Burgers equation by the 4th-order Runge-Kutta
scheme with a damping of e, = 0.1, Ax =0.1, At= 0.1,

X

0.00
0.20
0.40
0.60
0.30
1.00
1.20
1.40
1.60
1.80
2.00
220
2.40
2.60
2.80
3.00
3.20

- 3.40

3.60
3.80
4.00

Table 6-12. Solution of inviscid Burgers equation by the modified 4th-order

1=0.0

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

=0.3

1.02443
1.17415
1.24551
0.30458
0.00000

t=0.6

1.60000
1.00000
1.00000
1.00000
1.00006
1.00109
1.01208
1.07449
1.20731
1.05852
0.60973
1.45922
0.07750
0.00000
0.00000
0.00000
0.00000
0.00000
0.60000
0.00000
0.00000

t=0.9

1.00000
1.00000
1.00005
1.00069
1.00616
1.03592
1.12181
1.18466
0.92044
0.77694
1.35491
0.48984
1.34527
0.01331
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

=1.2

1.00000
1.00040
1.00322
1.01823
1.068535
1.15018
1.12118
0.83359
0.92000
1.27816
0.59200
1.24544
0.71734
1.05015
0.00150
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

Runge-Kutta scheme, Ax = 0.1, At=0.1.

=15

1.00000
1.00928
1.03810
1.10129
1.15102
1.03457
0.80721
1.04035
1.18761
0.64191
1.25058
0.83496
0.89268
1.05521
0.70288
0.00010
0.00000
0.00000
0.00000
0.00000
0.00000

t=1.8

1.00000
1.05858
1.12386
1.12209
0.94802
0.83768
1.12496
1.08148
0.70484
1.27060
0.81721
0.90978
1.20179
0.51539
1.35335
0.39710
0.00000
0.00000
0.00000
0.00000
0.00000

b
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X

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
240
2.60
2.80
3.00
320
3.40
3.60
3.80
4.00

t=0.0

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1,00000
1.00000
1.060000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

t=0.3

1.00000
0.99944
1.00589
1.06655
0.43394
-0.05888
-0.00095
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

1=0.6

1.00000
1.060000
1.00000
1.00000
1.00000
1.00000
1.60000
0.99999
0.99992
0.99736
1.01063
1.10830
0.15137
-0.00771

©0.00155

0.00026
0.60000
0.00000
0.00000
0.00000
0.00000

t=0.9

1.60000
1.60000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00007
0.99998
0.99355
1.01148
1.03343
~0.04733
0.00741
<0.00114
0.00005
-0.00002
0.00000
0.00000
0.00000

t=1.2

1.00000
1.00000
1.00000

1.02767
0.79890
-0.07855
0.00907
-0.00091
0.00010
0.00000
0.00000
0.00000

t=1.5

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99996
1.00032
0.99996
1.00052
1.07963
0.45866
-0.04276
0.00391
-0.00034
0.00002
0.00000
0.00000

Table 6-13. Solution of inviscid Burgers equation by the modified 4th-order
Runge-Kutta scheme with a damping of g, = 0.1, Ax = 0.1, At = 0.1.

t=1.8
1.00000

1.00000
0.99999
0.99994
1.00021
0.99750
1.00741
1.11457
0.13713
-0.00682
0.00003
0.00007
-0.00001
0.00000

t=0.0

1.00000
1.60000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.000060
0.000060
0.00000
0.00000
0.00000
0.00000

t=0.3

t=0.6

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99996
0.13381
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

1=0.9

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1,00000
1.00000
1.00000
1.00000
0.99099
0.00901
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

t=1.2

t=1.5

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.50000
0.00000
0.00000
0.00000
0.60000
0.00000
0.00000

Table 6-14. Solution of inviscid Burgers equation by the first-order TVD scheme,
Ax=0.1,At=0.1.

=18
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X 1=0.0 =0.3 t=0.6 =0.9 t=1.2 t=1.5 t=1.8
0.00 1.60000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.20 1.00000  1.00000  1.00000 100000 1.00000 1.00000 1.00000
0.40 1.00000 1.00000  1.00000 1.00000 1.00000 1.00000 1.00000
0.60 1.00000  1.00000  1.00000 100000 100000 1.00000  1.00000
0.80 1.00000  1.00000 100000 100000 100000 1.00000 1.00000
1.00 1.00000  1.00000 1.00000  1.00000 1.00000 1.00000 1.00000
1.20 1.006000 1.00000  1.00000 100000  1.00000  1.00000 1.00000
1.40 1.00000 1.00000  1.00000 1.00000 1.00000  1.00000 1.00000
1.60 1.00000 1.00000  1.00000 1.00000  1.00000  1.00000 1.00000
1.80 100000  1.00000 100000 100000 1.00000 1.00000 1.00000
2.00 1.00000  1.00000 100000 1.00000 1.00000 1.00000  1.00000
2.20 0.00000 0.48462  1.60032 1.00000  1.00000  1.00000 1.00000
2.40 0.00000  0.00000 0.03052 1.01351 L.00000  1.00004 1.00000
2,60 0.00000  0.00000 0.00000 0.00023 0.97055 0.9979% 0.99878
2.80 0.00000  0.00000  0.00000 0.00000 0.00000 0.48130 1.00409
3.00 0.00000  0.00000 000000 0.00000 0.00000 0.00000 0.03080
3.20 0.00000  0.00000 0.00000 000000 0.00000 0.00000 0.00000
3.40 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3.60 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3.80 0.00000 0.00000  0.00000  0.00000 0.00000  0.00000 0.00000
4.00 0.00000  0.00000  0.00000  0.00000 0.00000 0.00000  0.00000
Table 6-15. Solution of inviscid Burgers equation by the second-order TVD scheme

with a Harten-Yee limiter, Ax =0.1, At=0.1.

b t=0.0 t=0.3 t=0.6 t=0.9 t=1.2 t=1.5 t=1.8
0.00 100000  L0O0000  1.00000 1.00000 100000 1.00000  1.00000
0.20 1.00000 1.00000  1.00000 1.00000 1.00000  1.00000 1.00000
0.40 1.00000 1.00000  1.00000 100000 100000 1.00000 1.00000
0.60 1.00000 1.00000  1.00000 1.00000  1.00000  1.00000 1.00000
0.80 100000  1.00000  1.00000 100000 100000 1.00000 1.00000
1.00 100000  1.00000 1.00000 1.00000 100000 1.00000  1.00000
1.20 1.00000 1.00000  1.00000 1.00000 1.00000  1.00000 1.00000
1.40 1.00000 160000  1.00000 100000  1.00000  1.00000 1.00000
1.60 1.00000 1.00000 1.00000 1.00000  1.00000  1.00005 0.999%90
1.80 100000  1.00000 1.00000 100162 099915 0.99975  1.00062
200 1.60000 1.19231  0.99664 099714 1.00333  0.99968  0.99887
2.20 0.00000  0.35138 1.19100 096737 098957 1.00756 1.00074
2.40 0.00000  0.00000 0.03827 093191  1.20954 0.97366  1.0042]
2.60 0.00000  0.00000 0.00000 0.00022 056346 1.42878  0.97672
2.80 0.00000  0.00000  0.00000  0.00000 0.00000 0.16949 123845
3.00 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.01495
3.20 0.00000  0.00000  0.00000 0.00000 0.00000 0.00000  0.00000
3.40 0.00000  0.00000  0.00000  0.00000 0.00000 0.00000  0.00000
3.60 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000  0.00000
3.80 0.00000  0.00000  0.00000 0.00000 0.00000 0.00000  0.00000
4.00 0.00000  0.00000  0.00000  0.00000 0.00000 0.00000  0.00000

Table 6-16. Solution of inviscid Burgers equation by the second-order TVD scheme
with a Roe-Sweby limiter, Ax = 0.1, At=0.1.
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X 1=0.0 {=0.3 t=0.6 t=0.9 t=1.2 t=L.5 t=1.8
0.00 1.00000 1.00000  1.00000 1.00000 1.00000  1.00000 1.60000
0.20 1.00000 1.00000 1.00060 1.00000 1.00000  1.00000 1.00000
0.40 1.00000 1.060000 1.00000 1.00000 1.00000 1.00000 1.00000
0.60 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.80 1.00000 1.00000 1.00600 1.00000 1.60000 1.00000 1.00000
1.00 1.00000 1.060000 1.00000 1.00000 1.60000 1.00000 1.00000
1.20 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.40 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.60 1.00000 1.00000 100000  1.00000  1.00000  1.00000 1.00000
1.80 1.00000 1.00000  1.00000 1.00000  1.00000  1.00000 1.00600
2.00 1.00000 1.00000  1.00000 1.00000  1.00000  1.00000 1.00000
220 0.00000  0.48438  0.99997 1.00000  1.00000  1.00000 1.00000
2.40 0.00000  0.00000 0.12361 1.00778  1.00000  1.00000 100000
2.60 0.00000 0.00000 0.00000 000767 0.87639  1.00000  1.00000
2.80 0.00000 0.00000 0.00000 0.00000 0.00004 048455 0.99997
3.00 0.00000  0.00000 0.00000 0.00000 0.00000 000000  0.12361
3.20 0.06000 0.00000  0.00000  0.00000  0.00000 0.00000  0.00000
3.40 0.00000 0.00000 0.00000 000000 000000 0.00000  0.00000
3.60 0.00000  0.00000 0.00000 000000 0.00000 0.00000  0.00000
3.80 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
4.00 0.00000  0.00000  0.00000  0.00000 0.00000  0.00000  0.00000

Table 6-17. Solution of inviscid Burgers equation by the second-order TVD scheme

with a Davis-Yee limiter, Ax =0.1, At=0.1.

2,60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

1=0.0

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.60000
0.00000
0.00000

1=0.3

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
100000
1.00000
0.99953

1=0.6

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99997
0.98977
0.22436
0.60002
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

t=0.9

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99987
0.94295
0.06731
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

t=1.2
1.00000

t=1.5

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99797
0.49126
0.00067
0.00000
0.00000
0.00000
0.00000
0.00000

=18

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

Table 6-18. Solution of inviscid Burgers equation by the modified 4th-order
Runge-Kutta scheme with a Davis-Yee limiter, Ax = 0.1, At =0.001.




Chapter 7

Scalar Representation of the
Navier-Stokes Equations

7.1 Introductory Remarks

In the previous chapters, simple scalar model equations were used to investigate
solution procedures for parabolic, elliptic, and hyperbolic equations. It is beneficial
at this point to study a scalar model equation which is of similar character as the
Navier-Stokes equations. That is, the model equation is unsteady and includes both
convection and diffusion terms. Such an equation is the viscous Burgers equation.

Before proceeding with the model equation and numerical schemes, a summary
of approximation for each term in the model equation is reviewed. (1) The time
derivative is typically approximated by either a forward difference or a backward
difference approximation resulting in an explicit or an implicit formulation, re-
spectively. This approximation is typically first-order, even though second-order
accuracy may be used. (2) There are several methods by which the convective
term can be approximated. That includes central difference approximation, for-
ward /backward difference approximations, TVD formulation, and the Runge-Kutta
scheme. Furthermore, the addition of damping terms or TVD terms may be required
for some of the schemes in order to reduce or to eliminate oscillations (due to dis-
persion error) in the solution. (3) The diffusion term is typically approximated
by a central difference (usually second-order) formulation. A limited number of
numerical schemes will be investigated in this chapter.

This chapter also serves as a divider between the introductory material and
intermediate/advanced topics. The introductory topics were primarily studied by
scalar model equations. Furthermore, coordinate transformation and complex ge-
ometries were avoided. In the upcoming chapters these issues will be addressed and
the equations of fluid motion in various forms will be investigated as well.
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7.2 Model Equation

The viscous Burgers equation may be written in a general form as

5 *u

= Vo
where o« and 3 are some prescribed parameters. When a = a, the speed of sound,
and 8 = 0, the familiar linear Burgers equation is produced, i.e.,

du Bu B

'a_t + GE = U@ (7-2)

Note that a and v are assumed to be constants. When o = 0 and § = 1, the
standard nonlinear Burgers equation is produced as

2 =+ (a+ ﬁu) (7-1)

Au du 8*u

e + Ug- = Vg (7-3)
This equation may be rearranged such that
where E = (1/2)u
A two-dimensional Burgers equation may be expressed by the following

gﬂ+u@-+v§2=u(@+@) (7-5)
ot Oz Oy 0z = Oy’

and o v B v v
B—t-+u§;+va—y=u(-a—53+%—5) (7-6)

Observe that Equations (7-5) and (7-6) represent the z and y components of the
momentum equation for an incompressible flow in the absence of a pressure gradient.
If the incompressible continuity equation is incorporated into Equations (7-5) and
(7-6), the conservative form of the equations is obtained as follows

Ou A 32u)

E _( W) + —(uv) =y (69:2 + %) (7-7)

and 5 5 5
v n v v :
5 + -—(u'u) + m(v )= (8:1:2 + _Byz) (7-8)
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Equations (7-7) and (7-8) can be written in a vector form by the following

8Q 8B OF  (2Q . 6°Q
Bt o Ty T (”_ )

0x?  Oy?
U u? uy
o-[v] . e=[n] s =[¥]

Before proceeding with a review of the numerical schemes, the equations of
fluid motion are briefly reviewed. A summary of the equations of fluid motion is
provided in Appendix D, and the nondimensional form and the transformation of
the equations from physical space to computational space are given in Chapter 11.

(7-9)

where

7.3 Equations of Fluid Motion

The equations of fluid motion include conservations of mass, momentum, and
energy. These equations in a differential form are known as the Navier-Stokes
equations. The nondimensionalized conservative form of the equations are:

1. Continuity:

ap* 0
o T an P

., * 0 €6\
v )+%(p w') =0 (7-10)

2. X-component of the momentum equation:

a LI L 6  * 6 P
3t'( 2 6y‘(puv)+a‘(puw) =
g, ., lij
Fge (T2z) + 3y 3 )+ 5 .( ) (7-11)
3. Y-component of the momentum equation:
* % $ot * 9 . 42 * d T
att ay,(pv +p)+az.(pvw =
a . i B a
or* (T?-'ll) + ay. (Tyy) + 6_2*-(7-!"2) (7—12)

4. Z-component of the momentum equation:

a ¥ [ ] 6 *_ & * i . _ & [ 6 * ‘2 * —
m,(pw)+ (puw)+ay.(pvw)+3z,(pw +p*) =

a ,, a ., J , .
'5;67(7-::) + _a?(’ryz) + '52_.(7-:2) (7'13)
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5. Energy:
8 " 8 *_« & * & 6 * .k ¥ LI
5;@@)+§;@uq+pu)+avaq+pv)+
] * ¥ . L] a «__¥ * __¥ v __¥ *
az.(pwet+pw) = azt[usz+vT:y+WT:z_q:]+

* 0 * ¥ *
[U‘T;z + U'T;y + w‘T;&‘ - qy] + "—[’U. Tox TV T::y + w‘T;z - q,:] (7'14)

oy* 0z*

These equations may be written in a vector form as

& aEi aF‘ ;] * & *
8Q L OF  0G* 0B, OF 0G,

+ = 7-15
otr  Or*  dy* 8 Oz Oy O (7-15)
where
)
ptui
Q‘ — p#v#
p#w$
| plef
r p.U‘ 1 - 0 -
pu +p* Tax
E* = | ptuv* E, = | 12,
prutw TZ
L (p‘e: + p.)u‘ d § U*T;: + U‘T;y + w"r;z - Q; -
T . ‘0 -
ptvlu' T;:
F* = th¢2 + pt FJ — T;y
ptvtw‘ T;z
| (p*e +p" )" | utry + vt 4w — g
[ ptwt 9 0 -
p#wtut T:x
Gt = ptwt;ut | G; = T;y
ptw‘ + pt T:z
| (ot + Pt | wrs, vt - 4
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When the right-hand side of Equation (7-15) is set equal to zero, the Euler equation
is produced, i.e.,

o + OE* N oF* 4+ oG* —0

ot* 9z Byt 02
This vector equation is a hyperbolic equation. The Navier-Stokes equations are
in general a mixed hyperbolic (in inviscid region), parabolic (in viscous region)
equation. Note that both sets of equations, ie., (7-15) and (7-16), are solved by
marching in time. When the Navier-Stokes equation is reduced by imposing the
steady-state assumption, then it is classified as a mixed hyperbolic (in the inviscid
region), elliptic (in the viscous region) equation. It is clear that for the steady-state
forms of the equations, space marching procedures are utilized.

The brief review of the Navier-Stokes equations was presented above to identify
the similarity of the terms in Equation (7-15) to that of the scalar model equation
given by (7-4). In the subsequent sections, several numerical schemes are presented
for the solution of the viscous Burgers equation. The numerical schemes are ex-
tended to a system of equations in the following chapters.

(7-16)

7.4 Numerical Algorithms

In this section a limited number of numerical schemes for the solution of the
model scalar equation (7-1) is investigated.

7.4.1 FTCS Explicit

In this explicit formulation, a first-order forward difference approximation and
second-order central difference approximation for the time derivative and spatial
derivatives are used, respectively. Hence, the FDE of the PDE given by (7-2) is

ntl _ ..n
1

U + au?ﬂ —u, - V"?ﬂ -l +ul,
At 2Azx (Azx)?

u (7-17)

with a truncation error of [(At), (Ax)?. The amplification factor for this FDE was
obtained in Chapter 4 as

G = [1+ 2d(cos ~ 1)] — I [csin¥)]
which resulted in the following stability requirements:

d< and Re. < 2/c (7-18)

N =

e



Scalar Representation of the Navier-Stokes Equations 277

7.4.2 FTBCS Explicit

In this explicit scheme, a first-order forward difference approximation for the
time derivative and a second-order central difference approximation for the diffusion
term is used. When a first-order backward difference approximation (a > 0} for the
convective term is employed, then the FDE is expressed as

n+t n n n n n n
u" - ’U.‘ + au‘ - ’U.i_l _ u'+1 - 2?1.: + ’U,l-__l
At Az (Az)?

(7-19)

However, the first-order approximation of the convective term may introduce ex-
cessive dissipation error (artificial viscosity) such that it is of the same order as
the natural viscosity. As a result, an accurate solution is not achieved. To over-
come this problem, one may use a second-order approximation. However, as it was
shown previously in Chapter 6, this approximation may produce dispersion error
with oscillations near discontinuities. To solve this problem, damping terms must
be added. The addition of damping is problem-dependent, and it should be handled
with extreme care. The third alternative is to use a third-order scheme resulting in
the following finite difference equation for (7-2):
uft! —uf n (u?+l —uly  uly —dul+3up, — u?—2)
At 2Az 6(Azx)

n n n
Uiy —2uf +ur,

AT (7-20)

7.4.3 DuFort-Frankel Explicit

The DuFort-Frankel method is obtained by modification of Richardson’s scheme.

Second-order central difference approximations for all the derivatives are used in this
method. The FDE is

ntl n-1 n n n n-1 n+1 n
Uy — U Ugpr — Uiy Ui — (u)™ 4w+l

oAt % 9Ar Y (Az)?

and the truncation error is O[(At)?, (Azx)?, (At/Az)?). This FDE may be rear-

ranged as
1-2d\ ,, fc+2d\ , [c-2d\ ,
ut = (m) W (1 n Zd) u ('H—zd) Wao(20)

The stability requirement of the scheme is ¢ < 1.
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7.4.4 MacCormack Explicit

This multi-step or predictor-corrector scheme is performed in two steps as fol-
lows:

At At
L owl=ul— o~ (uly, —ul) + U(A 72 (ul,, — 2u? +ul ) (7-22)
n A A [ L]
2. urtl= 2 ul + uf — ar (uf —uf_;) + V(A 2 (ufyy — 2uf + ul_,) (7-23)
The method is second-order accurate with the stability requirement of
At < —1
e
Az = (Azx)?
Equations (7-22) and (7-23) may be written in a delta form as:
At , . At .
Au? = —aA_I(ui+l U ) + V(A.’B)2 (u|+1 211,- + u?-l) (7'248‘)
1.
u; = uf + Au] (7-24b)

A
A = —a2 (uf —up ) +v

Ar - 2u; +u_,) (7-25a)

t *
(’A’;)_g (ui+1

n+l __
Uy =

B | =

(uf +u! + Au}) (7-25b)

7.4.5 MacCormack Implicit

This scheme is an implicit analog of the explicit method just described. The
formulation is as follows:

(1 + ,\ﬁ) §ul = AuD + A 2 bul,, (7-26a)
1.
ul = u + by (7-26b)
where Aul is computed from Equation (7-24a).
ALY o At s v
22 st u" -2
(1+,\A )6u‘ — Au! +,\A5 (7-27a)
2.
utt = l(’u + uf +6u"+1) (7-27b)
! 2

AL
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In this equation, Au} is provided from Equation (7-25a). The parameter, A,
used in Equations (7-26a) and (7-27a) is selected such that

1 v Az
> - 2-— — == Q.
A —ma‘x[z (lal+ Az At 00)]
Equations (7-26a) and (7-27a) form bidiagonal systems which can be solved effi-
ciently by various routines. The method is unconditionally stable and second-order
accurate as long as the diffusion number v[At/(Azx)?] is bounded for the limiting
process for which At, Ax approaches zero.

7.4.6 BTCS Implicit

This implicit formulation utilizes a first-order backward difference approxima-
tion for the time derivative and a second-order central difference approximation for
the spatial derivatives. The resulting FDE is

ult! —of i au}'j:ll —upt) _ V‘“?++11 = 2uft! 4+ upt]
At 2Azx (Ax)?
which may be rearranged as
1 1
- (—2-c +d)ul + (1+ 2d)ul* + (-2.c ~ dyulf = o] (7-28)

This formulation will result in a system of equations with a tridiagonal coefficient
matrix. As seen in Chapter 3, an efficient method for solving such a system is
available.

7.4.7 BTBCS Implicit

In this implicit scheme, a first-order backward difference approximation for the
time derivative and a second-order central difference approximation for the diffusion
term are used. As stated previously, the convective term may be approximated by
a backward difference approximation which is either first-, second-, or third-order
accurate (a > 0). Again, the use of the first-order approximation may introduce
too much artificial viscosity, whereas a second-order approximation may cause some
oscillations (dispersion error) in the solution. The finite difference formulations are
as follows:

a.  First-order approximation of the convective term

ntl n ntl n+l n+l n+l ntl
U — Y u e ugy — 2w+ wh

At 7% Az (Az)
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which may be rearranged as a tridiagonal system as

At At] At At
Y =" 4 1 2 - - fl+l
[ V(A:L_)2 aAa::'u"l + {1+ U(AI)2+an‘ U
At n
b.  Second-order approximation of the convective term
it -] + au}‘le — 4l + 3u}t! — Vu?:l1 — 2ul gt
At 2(Ax) (Azx)?

which is rearranged as

[ At 20_%]1&14_[”2” At At ]

VB T Pag Az T 399az | %
At nt+l _ ,n _ At n
- [V W] Uipy =W —agn— Uiy (7-30)

Note that, in order to preserve the tridiagonal nature of the system, the i — 2
point was moved to the right-hand side and evaluated explicitly.

c.  Third-order approximation of the convective term

! —up +a ui — uft! _ w — uPt! + Bult! - upty
At 24z 6Azx
A T S N
- (Az)?
which is rearranged as
At At] .o At At ] o
[ "BzE “H] Uort | M et egag | W
At At At
[—U(Az)Q + a3A:c} ultl =l - Gpr U2 (7-31)

7.5 Applications: Nonlinear Problem

Various algorithms described in the previous section are now used to illustrate
their applications. In order to generalize the schemes just introduced, the nonlinear
Burgers equation will be used. After all, the Navier-Stokes equations are nonlinear
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and, therefore, this application should provide some fundamental insight into the
procedures and steps required for the solution of the Navier-Stokes equation.
The nonlinear Burgers equation is

du du 6%u

5 T ¥z = Vo (7-32)
This equation is nondimensionalized by the following:
e Z . ul .V
"= T u = vl t = th
Hence,
u* a * 62 *
pur 22 (7-33)

ot 0r*  Oz*?

In Reference {7-1], 35 different analytical solutions of Burgers equation are given.
One such stationary solution will be used to verify the numerical solutions and
estimate the accuracy of the methods. The selected solution is

2sinhz*
* —_ " 4
v coshz* — e ¥ (7-34)
which is shown in Figure 7-1 and tabulated at various time levels in Table 7-1. The
notation “*”, which is used to designate the nondimensional quantities, is dropped
in the following discussions. Equation (7-33) may be expressed in a conservative
form as

du OE O%u
EREE (7-85)
where
E= %u2

Rearranging this equation in terms of the Jacobian, one has

fu du B%u
Bt + A—a; = 32 (7-36)
where
_0E
" u

Note that the second term, i.e., convection term in either of the Equations (7-35)
or (7-36), introduces nonlinearity into the equation.
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X
Figure 7-1. Analytical solution given by Equation (7-34) at various
time levels.

7.5.1 FTCS Explicit

When Equation (7-36) is approximated by FDE (7-17) introduced previously,

one obtains
n+1 n n n n n n
U —u Uipy — Uiy _ Uiy — 200 +ul,

i n
ac T A 20z (Ax)?

An important point about Equation (7-37) is explored as follows. When an explicit
scheme is used, the nonlinear term in Equation (7-36) is evaluated at the known
location and, therefore, no linearization is required. That is not the case when
an implicit formulation is employed; as a result, a linearization procedure must be
introduced. An alternate way to evaluate the coefficient A in Equation (7-37) is to
use an average value, in which case the formulation becomes

(7-37)

il _.m g o yh no oty
U, » U +§(A}‘+1+A§‘_1)u'+l Uiy U ug -+ Uy

Az (Bz)?

(7-38)

The FTCS explicit formulation may be directly applied to Equation (7-35), in



Scalar Representation of the Navier-Stokes Equations 283

which case the FDE becomes

upt! —uf + Ef - BL, _ vl — 2l +ud,
At 2Azx (Ax)?

(7-39)

Again, since the nonlinear term E is applied at the known time level “n”, no
linearization is required. Either one of the FDEs, (7-37), (7-38), or (7-39) may be
used to obtain a solution.

To start the solution, an initial condition must be specified. This initial condition
is taken from the analytical solution at ¢ = 0.1 and is shown in Figure 7-1. The
spatial domain is taken to be between —9 and 9. The boundary conditions at z = —9
and z = 9 are specified as u = 2.0 and u = —2.0, respectively. This imposition is an
approximation. Indeed, the value of u at the boundaries will change as a function
of time. However, these changes are small (see for example Table 7-1) and, for the
sake of simplicity, they will be neglected. If the exact values of u at the boundaries
are desired, they may be obtained from Equation (7-34) and input to the numerical
code.

The next consideration is the selection of step sizes. The FTCS explicit scheme
requires the following constraints for stability:

d< % and Re. < 2/c

For the result given in Table 7-2 obtained from the formulation of (7-39), the fol-
lowing step sizes which satisfy the stability requirements are used:
Ar = 0.2

At = 0.01

The solution starts from £ = 0.1 and proceeds to ¢ = 1.0 and is illustrated in
Figure 7-2.

It is interesting to compare the solutions obtained by the three finite difference
equations of (7-37), (7-38), and (7-39). For this purpose, the error distributions at
time levels of 0.4 and 1.0 are shown in Figures (7-3) and (7-4), respectively. Observe
that the formulation (7-38) has the least error and that the errors decrease as the
solutions proceed in time. The error is simply defined as the difference between the
analytical solution and the numerical solution.
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Figure 7-2. Solution of the viscous Burgers equation by FTCS
explicit scheme of Equation (7-39).

x —a—(7-37)

E —o—(7-38)

w —o—(7-39)

X
Figure 7-3. Comparison of error distributions for FT'CS

formulations at ¢ = 0.4.
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-0.08

0.06 +

-0.04 A

-0.02 A

—a—(7-37)
g |~—e—(7-38)
—o—{7-39)

ERROR
(=

0.02 A1

0.04 +
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X 6.4 -3.4 0.4 26 6.6 8.6

X

Figure 7-4. Comparison of error distributions for FTCS
formulations at £ = 1.0.

7.5.2 FTBCS Explicit

This formulation is similar to the method just used, except a first-order back-
ward approximation is employed for the convective term. The resulting FDE for
PDE (7-35) is

n+l n n n n
o Ml EY —EF, _ uwly, — 2w +ul,

At Az~ (B (7-40)
and for (7-36) is
uftt —u} WUT Ul udy —2ultul
A AT Az T (Bop (7-41)

The argument on linearity, stability, and imposition of initial and boundary condi-
tions discussed previously applies to this scheme as well.

7.5.3 DuFort-Frankel Explicit
Application of Equation (7-21) to the model equation (7-36) yields

uv.:l+1 _ u?-l

2At

n n n-1 n+l n
P Uy udy — (T ul)

2”r (Az)?

+ AP u'i‘+
1
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This equation may be rearranged as

g (1=2d wel c+2d g (c—2d "
I WY ¥ 1+2d) 1 \1+424) i+t

h
where ) A:.ﬂ y A
TN Az : ~ (Az)?
When Equation (7-35) is used, the following FDE is obtained:
ut! — ! n EY, - E, S (U + ) 4 U
2At 2Azx (Azr)?
From which

1—-2d 2d c
ntl _ [ <~ n—1 n n _ .
“ (1 + 2d) wWo (1 + Zd) (us+l +u 1+ 2d (El':l E:'—l)

(7-42)

(7-43)

As seen previously in Chapter 3, a minor difficulty is encountered with regard to
the starting procedure. This scheme requires two sets of initial conditions. Various
procedures may be used to provide the second set of necessary data. Usually, a
one-step scheme such as FTCS explicit is used to provide the required second set
of data. However, the stability requirement of the starter solution must be checked

to ensure a stable initial set of data.

For the results shown in Table (7-3), the second set of data was also provided

by the analytical solution.

7.5.4 MacCormack Explicit

Application of this multi-step scheme given by Equations (7-24) and (7-25) to

the model equation (7-35) provides the following FDEs:

n_ At At ny.n
Ay = —A—x(EFH - EY) + (A—m);(U?H = 2ui + )
ui = u + Au?
and
. At & * At L * *
Auj = __A"E(E‘ —EL)+ m(um —2ui +u,)

uftl = (Ul + uf + Au))

DO =

(7-44a)

(7-44b)

(7-45a)

(7-45b)
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7.5.5 MacCormack Implicit

In this implicit formulation, the FDEs are

(1 + A—g—i) Sul — /\ZA%M;'H = Ayl (7-46a)

u] = ul + bu; (7-46b)
and

(1 + ,\2—::) Sultt — A%éum = A (7-47a)

W = ]+l + BuPt) (7-47b)

The right-hand sides of Equations (7-46a) and (7-47a), i.e., Aul and Awuj, are
evaluated by Equations (7-44a) and (7-45a). The parameter A is selected such that

A\>maxi=Ilu +—_———— 0.0

Equations (7-46a) and (7-47a) form upper and lower bidiagonal systems, respec-
tively. To clearly identify the bidiagonal system, define the following:

At
1+AE—G

At
A =b

Thus, Equation (7-46a) may be expressed as
a;bu; + bidug,, = Auy (7-48)

Now apply this equation to grid points from i = 2 to 1 = IMM]1, to obtain the
following equations:

i=2:  abus+ babul = Auy
1=3 : 03511.; -+ b;;b‘uj = Aus
t=IMM2 : armmabulyye + bimmebulyan = Auimme

1=IMM1 : a;Mmﬁu;MMl + b;Mm&u}M = Ausmm
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In the last equation, duj, is provided by the boundary condition. Since in this
example the boundary condition at I M is specified as a constant, du},, will be zero.
Now, the equations above are combined in a matrix formulation as

[ Qg b2 T 6‘“5 [ AUQ
a3 b3 5’U.§ Au;;
arMM2 brmmz Ul prara Aurpmme
i ammy 1| Sufpnn | | Aursan

This system is an upper bidiagonal system which may be solved efficiently by
the following:
Sul = (Au); — bi(yy,,)
a;
Now, consider Equation (7-47a), which may be expressed as

aibul™! + bibult! = Au? (7-49)
For grid points ¢ = 2 to i = IM M1, the following equations will result:
i=2:  aduit + bebuit! = Aug
i=3 :  axbugt' + babult! = Aug
i=IMM2 :  armmabulifyg + bimmabulitus = Auarags
t=IMM1 :  amumbulifan + bramr6ufifue = At

Since at the boundary ¢ = 1, the value of u is assigned a constant value of 2 for
all time levels; therefore §u}*' = 0. The system of equations above form a lower
bidiagonal system as

- . 1 7 1
as [ 6u3+ [ Au;
b3 as 6u;+l Au;
brame QrMM2 SuTfhn Aulya
1
brmmr a1 | bulian | | Aufyan |

The solution of this system is given by
Au: - b.-éu?fll
ay

ntl __
oul™ =
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7.5.6 BTCS Implicit

The implicit formulation previously described is applied to the model equation
(7-36) where lagging of the Jacobian is used for linearization purposes. The FDE is

n+l n+l n+t n+l n+1 n+l
U ul + Anuﬂ-l — Ui — Ui 2u + ;-
At 2Azx (Azx)?

which is rearranged as

At CAt] At ],
“[(sz A'zA] +1+[1“(Az)2]“‘“

At VAV I n
+ [_ (Aa:)2 + A AT ] uly =1y (7-50)

Equation (7-50) may be expressed as a general tridiagonal system by the following
relations:

oAt At
="~ oAz
At
e _____At + "_ét_
G= T TN oA
and
D.’, = ‘U?
Hence,

au?} + bl + qultl = D;
This tridiagonal system is easily solved by the method introduced in Chapter 3. The

solution is presented in Table 7-4. The stepsizes used are Az = 0.2 and At = 0.01.

7.5.7 BTBCS Implicit

The implicit formulations, where backward difference approximations of first,
second, or third order is used for the convective terms, may be expressed as

aaul! + bl + cult) = D
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where
= (fgf)? b (Ag_i)
b = 1+2(£:)2+92(A§—i)
¢ = (£:)2+93(A-§%)
and

The coefficients 8, through 8, are defined as

Order of Approximation
for the 66,61 8,
the Convective Term
First-Order 1/1]0] 0
Second-Order 2|3lo0|-%
Third-Order 1 % % _%

A comparison of errors by the three approximations described above is shown in
Figure (7-5). The error is determined as the difference between the analytical and
numerical solutions. As expected, the third-order accurate approximation of the

convective term provides the solution with the least error.

7.5.8 Modified Runge-Kutta

The modified Runge-Kutta scheme, described in Section 6.6.8, is now applied
to Equation (7-35). There are several methods by which the viscous term can be
incorporated into the finite difference equation. In the first scheme, the viscous

terms are evaluated at each stage, resulting in the following equations.

usl) =

!
£

u® = yn B (BE)(I) LAt (@

W = At (BE){Q)_*_E(@

(7-51)

(7-52)

(7-53)



Scalar Representation of the Navier-Stokes Equations 291

L At (OEN® At (2P
W = —7(5;)_ +7(@). (754

4 2, \ @)
W = U — At (%f—)‘ + At (g—;’;)_ (7-55)

where O B E
(a) — '+12A$ i—1 (7"56)
u Uiy — 20 + Uy

(ax’-).= +1 oL ! (7-57)

A solution by the modified Runge-Kutta scheme given by Equations (7-51)
through (7-55) is provided in Table 7.5.

A second method of approximation of the viscous term is to evaluate it only at
the first stage and to use it at the subsequent stages. Finally, a third method is
to compute only the convective term using the modified Runge-Kutta scheme and,
subsequently, add the viscous term after the final stage, that is,

6211. n+l
1 _
upt! =t 4+ At (F)
Obviously, the second and third methods identified above require less computation
time; however, accuracy may be compromised.

0.50

0.00

-0.50 —

ERROR

-1.00 —

—&— Ist-order
-1.50 A —2v— 2nd-order
—3F—  3rd-order
-2.00 T T T | I
-9.00 -6.00 -3.00 0.00 3.00 6.00 9.00

X

Figure 7-5. Comparison of errors for the BTBCS implicit scheme
at t =1, for Az = 0.2, At = 0.01.
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7.5.9 Second-Order TVD Schemes

Numerous TVD schemes along with their applications were presented in Chap-
ter 6. The general formulation is reviewed in this section, and a sample application
is illustrated. Recall that the concept of TVD is introduced to eliminate or reduce
oscillations in the solution due to dispersion error. In fact, a TVD scheme oper-
ates similarly to that of the addition of a damping term. For equations such as
(7-35), which contains both convective and diffusive terms, TVD is considered on
the convective term only. Recall some of the criteria for TVD schemes presented in
Section 6.9.2. The finite difference equation following (6-123) through (6-125) may
be expressed as

n n At n n At n n
ultl =yt — Az (h‘+, h‘_!) Bz )2 (ud, —2u} +ul ) (7-58)
where iy = [E:‘+1 + E + ¢; +1] (7-59)
1
and By =3 [Br + By + 67 (7-60)

Several flux limiter functions were introduced in Chapter 6 for Harten-Yee up-
wind TVD, Roe-Sweby upwind TVD, and Davis-Yee symmetric TVD. These func-
tions are given by Equations (6-131), (6-137), and (6-141), respectively. Further-
more, several limiters are provided for each of these limiter functions.

A solution by the Davis-Yee symmetric TVD and limiter (6-143) is illustrated
in Figure (7-6) and provided in Table 7.6.

Comparison of the numerical solutions obtained by various methods and ana-
lytical solution reveals the accuracy of the methods and, indeed for the stepsizes
used, all methods considered provide accurate solutions.

For the specified stepsizes of Az = 0.2 and At = 0.01, all schemes investigated
are stable. Comparison of errors at time levels 0.4 and 1.0 are shown in Figures 7-7
and 7-8. The schemes employed are the FTCS explicit, the Dufort-Frankel explicit,
the MacCormack explicit, the BTCS implicit, and the modified Runge-Kutta. Note
that the error is decreased as the solution proceeds forward in time for all three
schemes.

It is also interesting to note that the BTCS implicit scheme produces more error
compared to the FTCS explicit scheme. Recall that a similar conclusion was reached
in Section 6.6.6.
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Figure 7-6. Solution of the viscous Burgers equation by the Davis-
Yee symmetric TVD scheme and limiter 6-143.
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Figure 7-7. Comparison of errors at time level 0.4 for the FTCS
explicit, DuFort-Frankel explicit, MacCormack
explicit, modified Runge-Kutta, and BTCS implicit.
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Figure 7-8. Comparison of errors at time level 1.0 for the FTCS
explicit, DuFort-Frankel explicit, MacCormack
explicit, modified Runge-Kutta, and BTCS implicit.

7.6 Summary Objectives

After studying the material in this chapter, you should be able to do the fol-

lowing:

1. Describe:

a.

PR - Ao o

—

j-
k.

Burgers equation and its relation to Navier-Stokes equation

Linearization of Burgers equation
FTCS explicit scheme

FTBCS explicit scheme
DuFort-Frankel explicit scheme
MacCormack explicit scheme
MacCormack implicit scheme
BTCS implicit scheme

BTBCS implicit scheme
Modified Runge-Kutta scheme
Second-order TVD scheme

2. Solve the Problems for Chapter Seven.
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7.7 Problems

7.1 Solve the viscous Burgers equation by the following schemes: (a) FTCS ex-
plicit, (b) MacCormack explicit, (¢) BTCS implicit. The domain of interest is
—9 <z <9, and the initial distribution of u is given as

2sinhx
coshz — e~ 0!

i.e., at t = 0.1. Compare the numerical solutions to the analytical solution given by

2sinh x
coshx — et

Assume that the values of u at the boundaries are fixed according to
z=-9 u=20
r=9 u=-2.0

Use stepsizes of Az = 0.2 and At = 0.01. Print and plot the solutions for all
locations at ¢ = 0.1 (initial distribution), 0.4, 0.7, and 1.0.

To investigate the effect of stepsizes on accuracy and stability, consider the
following cases:

(a) Az =02 At =0.02
(b) Az =0.2 At =0.05
(c) Az =0.5 At =0.01
(d) Az =0.5 At = 0.05

7.2 Consider a fluid with a temperature of T, and a constant velocity of u travelling
from left to right in a channel. The temperature at the end of the channel is suddenly
changed to T} and is maintained at that constant value. It is required to compute
the time-accurate solution for the temperature distribution within the channel. The
governing equation is given by the one-dimensional energy equation as

or o _ oT

5t TV T Yo
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where a is the thermal diffusivity, which is assumed constant for this problem. The

initial and boundary conditions are specified as

t=0; T(z,0)=T:

t>0, z=0 , T =T,
r=1L ,T=Th
(a) Nondimensionalize the equation by
. tu, . I u T-T,
= — = — e T':—
P=7 =g Yoo Th—T,
and define
a* = o
Ly,

(b) Obtain the analytical solution.

(¢} Use a first-order backward differencing of the convective term and a second-
order central difference approximation of the diffusion term to write an explicit
formulation. The time derivative is approximated by a first-order accurate

differencing.

(d) Repeat (c), but use a second-order backward differencing for the convective

term.

(e) Repeat (c), but use a second-order central differencing for the convective term.

(f) Repeat (e), but write an implicit formulation.

(g) Obtain the numerical solutions with the formulations developed in (c), (d),
(), and (f). Use a time step of 0.01 sec. and 21 equally spaced grid points,
ie., IM = 21. Assume a fluid with a diffusivity of 0.04 m?/sec., a velocity of
0.2 m/s, temperature of T, = 20°C. The sudden change in temperature T}, at

the boundary is T}, = 100 °C and the length of the channel is 2 m.

Print the solutions at time levels of 1.0, 2.0, and 3.0 seconds for all schemes.
Plot a typical temperature profile at these time levels from the solution of (c).
Plot the error distributions at a time level of 3.0 sec. for all schemes, where

Error = ABS (TA - TN)
TA = Analytical solution

TN = Numerical solution.
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7.3 A fluid with a temperature of T, and a constant velocity of u, is travelling
from left to right in a channel of length L. The temperature at the end of the
channel is suddenly changed to 7}, and is maintained at the constant value of T}.
The governing equation for this one-dimension flow is given by
or tu or N o°T
ot 0z Oz?
where a is the thermal diffusivity assumed to be a constant. The initial and bound-
ary conditions are specified as

(7.3.1)

t>0; z =0, T=T,
z=1L, T=T,

(a) Nondimensionalize the equation according to

t._tua xa_f ut___"_"_ T,_T""Tc
o L ’ L ’ uo ’ Th - n
and define
of = 2
Lu,

For the following, the nondimensional equation is to be used.
(b) Obtain the analytical solution.

(c¢) Use a second-order central differencing for the spatial derivatives to write an
explicit, first-order in time finite difference equation.

(d) Repeat (c), but use nonequal grid spacing. Denote the variable spatial step
as follows:

z(1—1) z(1) z(i+1)

‘-<— AzL(3) —:‘+ AzR(i) -——l

where AzL(i) =z() —z(i—1)




298

Chapter 7

(e)

(D

(1)
(IID)

and AzR(i) = z(i + 1) — z(3)

The ratio of stepsizes is defined as

__ AzR(3)
%= AzL(i)

To simplify the formulation, use
AzL(i) = Az , AzR(i) =~Ax

However, bear in mind that Az and v will change from grid point to grid
point.

In this problem, the grid point clustering near the boundary at z = I is
desired to better resolve the temperature gradient within that region. The

grid point clustering procedure suggested in problem 3.9 may be used in this
problem.

Obtain the numerical solutions for the following set of data:
T, =20°C , T,=100°C , u,=0.2 m/sec.
a=004m?/sec. , L=2m

At =0.01sec. , IM =21

Use the formulation developed in (c)

Use the formulation developed in (d) with a clustering parameter 8 of 1.2.
Repeat (II) with 8 = 1.1.

Print the solutions at time levels of 1, 2, and 3 seconds. Plot the temperature
and error distributions at a time level of 3 seconds, where the error distribution is
determined as defined in problem 7.2, part (g).
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X t=0.1 =04 =07 t=1.0 X t=0.1 t=04 =07 t=1.0
-9.00 2.0004 20003 2.0002 2.0002 -9.00 2.0000 2.0000 20000 2.0000
-8.60 2.0007 2.0005 2.0004 2.0003 -8.60 2.0007 2.0002 20001 20001
-8.20 2.0010 2.0007 2.0005 2.0004 -8.20 2.0010 20005 2.0003 2.0002
-7.80 2.0015 2.0011 20008 2.0006 -7.80 2.0015 2.0010 2.0006 2.0004
-7.40 20022 2.0016 20012 2.0009 -7.40 20022 20016 2.00I0 20007
-7.00 20033 2.0024 20018 2.0013 -7.00 20033 20024 20017 2.0011
-6.60 2.0049 2.0036 2.0027 2.0020 -6.60 20049 20036 20026 2.0018
-6.20 2.0074 2.0054 2.0040 2.0030 =6.20 2.0074 20054 2.0039 2.0028
-5.80 2.0110 20081 2.0060 20044 -5.80 20110 20081 2.0059 2.0043
-5.40 20164 20121 2.0089 2.0066 -5.40 20164 20120 2.0088 2.0064
-5.00 2.0245 20180 2.0133 2,0098 -5.00 2.0245 20180 2.0132 2.0096
-4.60 20366 2.0269 2.0198 2.0145 -4.60 20366 20268 2019 20143
-4.20 2.0549 20401 20293 20214 <420 20549 20399 20290 2.0211
-3.80 2.0823 2.0597 20434 20314 -3.80 2.0823 20594 2.0429 2.0310
-3.40 2.1237 2.0889 20639 2.0457 -3.40 21237 20884 2.0632 2.0450
-3.00 2.1866 2.1321 20934 20656 -3.00 21866 21312 2.0923 2.0646
2,60 22833 21955 2.1347 20917 -2.60 22833 2.1940 21331 2.0905
-2.20 24335 2.2871 2.1895 2.1224 -2.20 24335 22846 12,1874 2.1209
-1.80 26715 2.4144 22538 21479 -1.80 2.6715 24107 2.2512 2.1462
-1.40 3.0565 2.5724 23022 21360 -1.40 3.0565 2.5678 2.2993 2.1339
-1.00  3.6826 2.6931 2.2460 2.0000 -1.00 3.6826 26881 2.2408 11,9952
0.60 45374 24717 18484 15574 0.60 4.5374 24558 1.8347 1.5465
0.20 3.4945 11513 0.7692 0.6174 -0.20 3.4945 11250 0.7564 0.6091

020 -3.4945 -1.1513 -0.7692 -0.6174 0.20 -3.4945 -1.1250 -0.7564 -0.6091

0.60 -4.5374 -24717 -1.8484 -1.5574 0.60 -4.5374 -2.4558 -1.8347 -1.5465

1.00 -3.6826 -2.6931 -2.2460 -2.0000 1.00 -3.6826 -2.6881 -2.2408 -1.9952

1.40 -3.0565 -2.5724 -2.3022 -2.1360 140 -3.0565 -2.5678 -2.2993 -2.1339

1.80 -26715 -2.4144 -2.2538 -2,1479 1.80 -2.6715 -24107 -2.2512 -2.1462

220 -24335 -2.2871 -2.1895 -2.1224 220 -2.4335 -2.2846 -2.1874 -2.1209

2,60 -22833 -2.1955 -2.1347 -2.0917 2,60 -2.2833 -2.1940 -2.1331 -2.0905

3.00 -2.1866 -2.1321 -2,0934 -2,0656 3.00 -2.1866 -2.1312 -2.0923 -2.0646

340 -2.1237 -2.0889 -2.0639 -2.0457 340 -2.1237 -2.0884 -2,0632 -2.0450

3.80 -2.0823 -2.0597 -2.0434 -2.0314 3.80 -2.0823 -2,0594 -2.0429 -2.0310

420 -2.0549 -2.0401 -2.0293 -2.0214 420 -2.0549 -2.0399 -2.0290 -2.0211

460 -20366 -2,0269 -2.0198 -2.0145 460 -2.0366 -20268 -2.0196 -2.0143

5.00 -2.0245 -2.0180 -2.0133 -2.0098 5.00 -2.0245 -20180 -2.0132 -2.0096

540 -2.0164 -20121 -2.008%9 -2.0066 5.40 -2.0164 -20120 -2.0088 -2.0064

5.80 -2.0110 -2.0081 -2.0060 -2.0044 580 -2.0110 -2.0081 -2.0059 -2.0043

6.20 -2.0074 -2.0054 -2.0040 -2.0030 6.20 -2.0074 -2.0054 -2.0039 -2.0028

6.60 -2.0049 -2.0036 -2.0027 -2.0020 6.60 -2.0049 -2,0036 -2.0026 -2.0018

7.00 -2.0033 -2.0024 -2.0018 .2.0013 7.00 -2.0033 -2.0024 -2.0017 -2.0011

7.40 -2.0022 -2.0016 -2.0012 -2.0009 740 -2.0022 -20016 -2.0010 -2.0007

7.80 -2.0015 -2.0011 -2.0008 -2.0006 7.80 -2.0015 -2.0010 -2.0006 -2.0004

8.20 -2.0010 -2.0007 -2.0005 -2.0004 8.20 -2.0010 -2.0005 -2.0003 -2,0002

8.60 -2.0007 -2.0005 -2.0004 -2.0003 8.60 -2.0007 -2,0002 -2.0001 -2,6001

9.00 -2.0004 -2.0003 -2.0002 -2.0002 9.00 -2.0000 -2.0000 -2.0000 -2.0000

Table 7-1. Analytical solution given by  Table 7-2. Solution of the viscous Burg-
Equation (7-34). ers equation by the FTCS
scheme.
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X t=0.1 =04 =07 t=1.0 X t=0.1 =04 t=0.7 =10
-9.00 2.0000 20000 2.0000 2.0000 -9.00 2.0000 2.0000 2.0000 2.0000
-8.60 2.0007 20002 20001 2.0001 -3.60 20007 20002 20001 2.0001
-8.20 2.0010 20005 20003 2.0002 -8.20 2.0010 20003 2.0003 2.0002
-7.80 2.0015 2.0010 2.0006 2.0004 -7.80 20015 20010 20006 2.0004
<740 2.0022 20016 20010 2.0007 =740 20022 20016 20010 2.0007
-7.00  2.0033 20024 20017 2.0011 -1.00 20033 20024 20017 2.0012
6.60 2.0049 20036 2.0026 2.0018 6.60 2.0049 20036 2.0026 2.0018
-6.20 2.0074 20054 20039 2.0028 6.20 2.0074 20054 2.0040 2.0029
-5.80 2.0110 2.0081 20059 20043 -5.80 2.0110 20081 20060 2.0043
=540 20164 20121 20089 2.0065 -5.40 20164 20121 2.0089 20065
-5.00 20245 20180 20132 2.0096 -5.00 2.0245 20180 2.0132 2.0097
460 20366 20268 20196 2.0143 -4.60 2.0366 20269 20197 2.0144
420 2.0549 20399 20291 20211 -4.20 2.0549 20400 20292 2.0213
-3.80 2.0823 2.0595 20430 20310 -3.80 20823 20596 20432 20313
-3.40 2,1237 20885 20633 20452 -3.40 2.1237 20887 20637 2.0456
-3.00 2.1866 2.1313 2.0925 2.0649 -3.00 2.1866 2.13183 2.0932 20657
<260 2.2833 2.1942 21334 2.0909 <260 22833 21951 2.1347 2.0924
=220 2.4335 22851 21880 2.1216 <220 24335 22868 21906 21246
-1.80 2.6715 24117 22525 21474 -1.80 2.6715 24153 2.2583 2.1542
-1.40 3.0565 25702 23018 2.1360 -1.40 3.0565 25800 23166 21513
-1.00 3.6826 2.6939 22453 19984 -1.00 3.6826 2.7277 2.2827 2.0311
060 45374 24672 18410 1.5504 0.60 4.5374 25747 19144 1.6023
0.20 3.4945 1.1334 07599 06111 -0.20 3.4945 12556 0.8136 0.6432

0.20 -3.4945 -1.1334 -0.7599 -06111 0.20 -3.4945 -12556 -0.8136 -0.6432

0.60 -4.5374 -24672 -1.8410 -1.5504 0.60 -4.5374 -2.5747 -1.9144 -1.6023

1.00 -3.6826 -2.6939 -2.2453 -1.9984 1.00 -3.6826 -2.7277 -2.2827 -2.0311

1.40 -3.0565 -2.5702 -2.3018 -2.1360 140 -3.0565 -2.5800 -2.3166 -2.1513

1.80 26715 -24117 -2.2525 -2.1474 1.80 -2.6715 -2.4153 -2.2583 -2.1542

220 -2.4335 -2.2851 -2.1880 -2.1216 220 -2.4335 -2.2868 -2.1906 -2.1246

260 -2.2833 -2.1942 -2.1334 -2.0909 260 -2.2833 -2.1951 -2.1347 -2.0924

3.00 -2.1866 -2,1313 -2.0925 -2.0649 3.00 -2,1866 -2.1318 -2.0932 -2.0657

3.40 -2.1237 -2.0885 -2.0633 -2.0452 3.40 -2.1237 -2.0887 -2.0637 -2.0456

3.80 -2.0823 -2.0595 -2.0430 -2.0310 3.80 -2.0823 -2.0596 -2.0432 -2.0313

420 -2.0549 -2.0399 -2.0291 -2.0211 4.20 -2.0549 -20400 -2.0292 -20213

4.60 -20366 -2.0268 -2.019 -2.0143 4.60 -2.0366 -2.0269 -2.0197 -2.0144

500 -2,0245 -20180 -2.0132 -2.0096 5.00 -2.0245 -2.0180 -2.0132 -2.0097

540 -2.0i64 -2.0121 -2.0089 -2.0065 5.40 -2.0164 -20121 -2.0089 -2.0065

580 -2.0110 -2.0081 -2.0059 -2.0043 5.80 -2.0110 -2.0081 -2.0060 -2,0043

6.20 -2.0074 -2.0054 -2.0039 -2.0028 6.20 -2,0074 -2.0054 -2.0040 -2.0029

6.60 -2.0049 -2.0036 -2.0026 -2.0018 6.60 -2.0049 -2.0036 -2.0026 -2.0018

7.00 -2.0033 -2.0024 -2.0017 -2.0011 7.00 -2.0033 -2.0024 -2.0017 -2.0012

7.40 -2.0022 -2.0016 -2.0010 -2.0007 740 -2,0022 -2.0016 -2.0010 -2,0007

780 -2.0015 -2.0010 -2.0006 -2.0004 7.80 -2,0015 -20010 -2.0006 -2.0004

820 -2.0010 -2.0005 -2.0003 -2.0002 820 -2.0010 -2,0005 -2.0003 -2.0002

8.60 -2.0007 -2.0002 -2.0001 -2.0001 8.60 -2.0007 -2.0002 -2.0001 -2.0001

9.00_-2.0000 -2.0000 -2.0000 -2.0000 9.00 -2.0000 -2.0000 -2.0000 -2.0000

Table 7-3. Solution of the viscous Burg- Table 7-4. Solution of the viscous Burg-
ers equation by the DuFort- ers equation by the BTCS
Frankel scheme. scheme.
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X t=0.1 =04 t=0.7 =10 X t=0.1 t=04 =07 =10
-9.00 2.0000 20000 2,0000 2.0000 -9.00  2.0000 20000 2.0000 2.0000
-8.60 2.0007 2.0002 20001 2.0001 -8.60 2.0007 20006 20006 2.0006
-8.20 2.0010 20005 20003 2.0002 -8.20 2.0010 20008 20007 20007
-7.80 20015 2.0010 20006 2.0004 -7.80 2.0015 20011 2.0009 2.0008
-7.40 20022 2.0016 20010 2.0007 -7.40 20022 20017 20013 2.0011
-71.00 2.0033 2.0024 20017 20011 -7.00 2,0033 2.0025 2.0019 2.0015
=6.60 20049 20036 20026 20018 -6.60 2.0049 2.0037 2.0028 2.0021
-6.20 20074 20054 20040 20028 -6.20 2.0074 2.0055 2.0041 20031
-5.80 2.0110 2.0081 2.0059 2.0043 -5.80 2.0110 2.0082 2.006% 2.0045
-5.40 20164 20121 20089 2.0065 -540 20164 20122 20090 2.0067
-5.00 2.0245 2.0180 20132 2.0097 -5.00 2,0245 20182 20135 2.0100
-4,60 20366 20268 20196 20143 -4.60 20366 20271 2.0200 20148
-4.20 2.0549 2.0400 2.0291 2.0212 -4.20 2.0549 2.0404 2.0297 2.0217
-3.80 2.0823 2.0595 20431 2.0311 -3.80 2.0823 20601 20439 2.0319
-3.40 21237 20885 20634 20453 -3.40 2.1237 2.0895 2.0646 2.0462
-3.00 21866 21315 2.0927 2.0651 -3.00 2.1866 2.1329 2.0942 2.0660
-2.60 22833 2.1945 2.1338 2.0912 -2.60 22833 2.1967 2.1354 2.0918
-2.20 24335 22856 2.1887 21222 <220 2.4335 2288 2.1898 2.1211
-1.80 2.6715 24128 22537 2.1486 -1.80 26715 24162 22512 21381
-1.40 3.0565 2.5726 23042 21380 -1.40 3.0565 25710 22805 2.1124
-1.00 3.6826 26995 22498 20016 -1.00 3.6826 2.6421 2.1980 1.9615
0.60 4.5374 24780 18471 1.5541 0.60 4.5374 23669 1.7891 1.5183
0.20 3.4945 1.1414 0.7634 06130 -0.20 3.4945 10982 0.7461 0.6038

0.20 -3.4945 -1.1414 -0.7634 -0.6130 0.20 -3.4945 -1.0982 -0.7461 -0.6038

0.60 -4.5374 -24780 -1,8471 -1.5541 0.60 45374 -23669 -1.7891 -1.5183

1.00 -3.6826 -2.6995 -2.2498 -2.0016 1.00 -3.6826 -2.6421 -2.1980 -1,9615

1.40 -3.0565 -2.5726 -2.3042 -2.1380 1.40 -3.0565 -2.5710 -2.2805 -2,1124

1.80 -2.6715 -2.4128 -2.2537 -2.1486 1.80 -2.6715 -2.4162 -2.2512 -2,1381

2.20 -2.4335 -2.2856 -2.1887 -2.1222 2,20 -2.4335 -2.2886 -2,1898 -2.1211

2.60 -22833 -2,1945 -2.1338 -20912 2,60 -2.2833 -2.1967 -2.1354 -2.0918

300 -2.1866 -2.1315 -2.0927 -2.0651 3.00 -2.1866 -2.1329 -2.0942 -2.0660

3.40 -2.1237 -2.0885 -2.0634 -2.0453 340 -2.1237 -2.0895 -2.0646 -2.0462

3.80 -2.0823 -2.0595 -2.0431 -20311 380 -2.0823 -2.0601 -2.0439 -2.0319

420 -2.0549 -2.0400 -2,0291 -20212 4.20 -2.0549 -2.0404 -2.0297 -2.0217

460 -2.0366 -2.0268 -2,0196 -2,0143 460 -2.0366 -2.0271 -2.0200 -2.0148

500 -2.0245 -2.0180 -2.0132 -2.0097 500 -2.0245 -20182 -2.0135 -2.0100

540 -2.0164 -2.0121 -2.0089 -2.0065 - 5.40 20164 -2.0122 -2.009%0 -2.0067

5.80 -2.0110 -2.0081 -2.0059 -2.0043 5.80 -2.0110 -2.0082 -2.0061 -2.0045

6.20 -2.0074 -2.0054 -2.0040 -2,0028 6.20 -2.0074 -2.0055 -2.0041 -2.0031

6.60 -2.0049 -2.0036 -2.0026 -2.0018 6.60 -2.0049 -2.0037 -2.0028 -2.0021

7.00 -2.0033 -2.0024 -2.0017 -2.0011 7.00 -2.0033 -2.6025 -2.0019 -2.0015

7.40 -2.0022 -20016 -2.0010 -2.0007 7.40 -2.0022 -2.0017 -2.0013 -2.0011

7.80 -2.0015 -2.0010 -2.0006 -2.0004 7.80 -2.0015 -2.0011 -2.0009 -2,0008

820 -2.0010 -2.0005 -2.0003 -2.0002 8.20 -2.0010 -2.0008 -2.0007 -2.0007

8.60 -2,0007 -2.0002 -2.0001 -2.0001 8.60 -2.0007 -2.0006 -2.0006 -2.0006

9.00 -2.0000 -2.0000 -2.0000 -2.0000 9.00 -2.0000 -2.0000 -2.0000 -2.0000

Table 7-5. Solution of the viscous Burg- Table 7-6. Solution of the viscous Burg-
ers equation by the modified ers equation by the second-
Runge-Kutta scheme. order TVD scheme.
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Incompressible Navier-Stokes Equations

8.1 Introductory Remarks

The equations of motion for a homogeneous fluid in the absence of a finite
rate chemical reaction or mass diffusion are based on three physical conservation
laws. If a fluid is composed of various chemical species with mass diffusion and/or
chemical reaction, additional conservation laws may be required, e.g., conservation
laws for species. Since, for most engineering applications, the average measurable
values of the flow properties are desired, the assumption of continuous distribution
of matter is imposed. This assumption is known as continuum and is valid as long
as the smallest length in a physical domain is much larger than the mean free path
of molecules.

The fundamental equations of fluid motion in differential form are derived from:

1. Conservation of mass (continuity)
2. Conservation of linear momentum {Newton’s second law)
3. Conservation of energy (first law of thermodynamics)

The resulting system of equations is known as the Navier-Stokes equations and was
introduced in Chapter 7.

For applications for which the density remains uniform throughout the domain,
the assumption of incompressible flow is invoked. Therefore, for an incompressible
flow, the density is constant and no longer an unknown. Furthermore, variations
in the coefficient of viscosity are essentially negligible and it is assumed constant
as well. The incompressible Navier-Stokes equations can be obtained from the
Navier-Stokes equations for the limiting case of M — 0 (a -~ o0). Before the




Incompressible Navier-Stokes Equations 303

governing equations are reviewed, some essential remarks with regard to the in-
compressible Navier-Stokes equations are in order. First, the energy equation is
decoupled from the system of equations composed of the continuity and momentum
equations. Therefore, the velocity and pressure fields are computed initially, and
subsequently the energy equation may be solved for the temperature distribution if
required. Second, due to the reduction of unknowns within the domain, the com-
puter storage and memory requirements are reduced. Third, depending on the for-
mulations employed, a specific numerical scheme must be utilized which will permit
coupling the velocity and the pressure. Fourth, using the Navier-Stokes equations!
to solve for incompressible flowfields is not computationally efficient. In addition
to the storage and memory requirements identified earlier, the computational time
would be excessive due to the stability requirement of the numerical schemes. For
example, as was seen in the previous chapter, the time step for most schemes is
limited by Courant number. A typical restriction of most explicit schemes for the
Navier-Stokes or Euler equations in the computational space may be expressed as

AT
(CFL)y = (a)uscyy <1
From which Ny An
(An) max
where

(Ap)max = Mz + MV + ay/ nz + 0

(The exact details will be shown later.) Note that as the speed of sound, “a”, ap-
proaches infinity (as for incompressible flow), An/(Ay)max Will approach zero. Thus,
an extremely small time step is required. To reach a steady state solution, a tremen-
dous amount of computations will be required. Therefore, efficient solution of in-
compressible flows requires utilization of appropriate incompressible Navier-Stokes
equations. However, the application of the incompressible Navier-Stokes equations
requires special considerations with regard to domain discretization, boundary con-
ditions and solution procedures. The implications described above, along with the
special considerations, are explored in the following sections.

8.2 Incompressible Navier-Stokes Equations

In this section, the incompressible Navier-Stokes equations are reviewed. As
mentioned previously, since the energy equation is decoupled from the continuity

!Note that whenever one refers to Navier-Stokes equations, it normally implies unsteady com-
pressible Navier-Stokes equations.
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and momentum equations, its discussion will be postponed to the latter part of this
chapter. Generally speaking, the governing equations for an incompressible flow
may be expressed in two different formulations based on the dependent variables
used. First is the primitive variable formulation expressed in terms of the pressure
and velocity. The second form of the equations is the so-called vorticity-stream
function equations which are derived from the Navier-Stokes equations by incorpo-
rating the definitions for the vorticity and the stream function. This formulation is
primarily used for two-dimensional applications. Obviously the implication is due
to the definition of stream function, which exists for a two-dimensional (planar or
axisymmetric) flow only. It should be noted that for a three-dimensional flow, it is
possible to extend the approach of stream function by the use of the so-called vec-
tor potential [8.1]. However, additional complications arise. Therefore, extension
of the vorticity-stream function formulation for three dimensions is not explored
further. Interested readers are encouraged to consult Refs. [8.2] through {8.4]. For
three-dimensional applications, the extension of the equations in primitive variable
formulation is recommended.

Either one of the formulations described above can be expressed in dimensional
or nondimensional form. Furthermore, they may be either in conservative or non-
conservative form. For completeness, various forms of the incompressible Navier-
Stokes equations without body forces are provided.

8.2.1 Primitive Variable Formulations

(I) Dimensional, conservative form

1. Vector form

vV-V=0 (8-1)
OV oo Up
“r . = = -2
6t+v VV) + p vV (8-2)

2. Two-dimensional Cartesian coordinate (Extensions to three-dimensions
is straightforward)

du v

a3y =" (8-3)
du O (, 3, (0w
ot e (“ + p) gy =¥ (_B:c"’ * o (8-4)

v 8 (,, p\_ (8% &%
Bt—-i-%(uv)—f-a—y(v +;) —U(@-{'Tyz (8-5)
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(II) Dimensional, nonconservative form
1. Vector form
V-V=0 (8-6)
S v/ S
S+ (V- IV + =V (8-7)
2. Two-dimensional Cartesian coordinate
du Ov
&' + 'a—y' =0 (8-8)
Ou Ou Ou 18 Fu 8
E+U%+U-a;+;-a—$-—l/(@+5‘§5) (8-9)
v v  Ov 18p v 6%
Yo b Yo f e =y = -1
6‘t+u6:n+v6y+p6y V(6m2+6y2 (8-10)
(III) Nondimensional, conservative form
1. Vector form
vVr=0 (8-11)
av* o 1 e
* . * * * ¥ —_— * * 8_12
&,-FV (V'V)+V'p Rev |4 (8-12)
2. Two-dimensional Cartesian coordinate
out o
= -13
or* + oy* 0 (8-13)
w8, o 0 1 (6% &%
el ¥ # oty = [ el .14
8+ + dx* (w™+p) + dy* (uv) Re (6;{:‘2 + oy*? (8-14)
ot 8, ., . 0,2 . 1 (8% O
5 ") T g “’)—m(w*‘é‘iﬁi (8:15)
(IV) Nondimensional, nonconservative form
1. Vector form
V-V =0 (8-16)
W (7 v 4V = -Rl—(a-v"t?* (8-17)

att
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2. Two-dimensional Cartesian coordinate

du* v’
— 4+ 8-18
Ox* t oyt 0 ( )
ou* ou* dut  Op 1 (% O
y y i A A i 8-19
5t " Ygge TV Oy* T dz* Re (61:‘2 + Oy*? (8-19)
ov* ov* dvt  op* 1 (0% &
' . =%+ 8-20
ot tu Oz +v Sy* N 8yt Re (6:1:‘2 t oy*? (8-20)
The variables in the equations above are nondimensionalized as follows,
o B .z =Y
t" = T T o= T Yy =
(8-21)
u" = l 'U‘ = -—v— p‘ = —p—
Ugo Uoo Poctl,

where L is a characteristic length, and p, and u are the reference (e.g., freestream)
density and velocity, respectively. The nondimensional parameter Reynolds number
is defined as
Poolool
Hoo

It should be emphasized that other reference variables can be used to nondi-
mensionalize the equations. For example, one may nondimensionalize the pressure
with respect to the free stream pressure, po, or nondimensionalize the velocity with
respect to the free stream speed of sound (for high speed flows). Therefore, in re-
viewing various publications, one should pay close attention to the procedure by
which the equations have been nondimensionalized. At this point, a comment with
respect to nondimensionalization of time is in order. For applications where the
Reynolds number is high (i.e., Re > 1), time is nondimensionalized with respect
to tue/L as defined previously. That is due to the fact that in these types of
problems, the convective term dominates the viscous term and L/uy is a natural
representation of the time interval for the problem, i.e., the time by which a particle
with the free stream velocity of u,, is convected a characteristic length of L. On
the other hand, for a low Reynolds number flow (i.e., Re < 1), diffusion dominates
over convection and L?/v is a more appropriate factor to nondimensionalize time.
Thus, t* = tv/L>.

As an example, the nondimensional momentum equation in conservative form
using the nondimensionalized time defined for diffusion-dominating problems be-
comes

Re =

‘7‘ - = —
637 +Re [V* - (V*V*) + V*p*| = V27 (8-22)
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8.2.2 Vorticity-Stream Function Formulations

The vorticity at a fluid point is defined as twice the angular velocity and is
Q=20=VxV

which, for a two-dimensional flow, is reduced to

v  Ou
Q,=—_== )
*= 5z " By (8-23)
Now, for a two-dimensional, incompressible flow, a function may be defined which
satisfies the continuity equation. Such a function is known as the stream function

and, in Cartesian coordinate system, is given by

_ov
=5 (8-24)
__ %

=5 (8-25)

From a physical point of view, the lines of constant i represent stream lines, and
the difference in the values of ¥ between two streamlines gives the volumetric flow
rate between the two.

In order to derive the vorticity transport equation, the pressure is eliminated
from the momentum equations by cross-differentiation. Differentiation with respect
to y of Equation (8-9) yields

u  Budu u  Bvdu B 1 8% Fu  Fu
-y v (W + a—ya—) (8-26)

dyot + By Oz + “axay + 8y 8y + ”ay2 ~ pOzdy
whereas the differentiation with respect to z of Equation (8-10) yields
v Budv 8%  Bvdv Fv 18 (631) Py

520t T 528z T V55 T Bzdy T Vady ~ pdwdy U \am —axayz) (8-27)

Subtract Equation (8-27) from Equation (8-26) to obtain
0 (du_Bv), 0 (Bu_Bv) 0 (0 0v) (0 0v\(0u_ ov
ot\dy Oz Yoz oy Ox v@y dy Oz 0z Oy/)\Oy Oz

_ |8 (Ou_Gv), & (0u 0Oy
TV lex2\oy Oz yr \dy Oz
Note that the fourth term on the left-hand side is zero by continuity. Now, upon
substitution of the vorticity defined by (8-23), one obtains
N o 0N Y (320 629)

+ U— +v —a'z'—z E-?F

T B :9; (8-28)
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where the subscript z is dropped from §2,. Thus, in the remainder of this sec-
tion, 2 will designate the z-component of the vorticity, unless otherwise specified.
Equation (8-28) is known as the vorticity transport equation and is classified as a
parabolic equation with the unknown being the vorticity 2.

Now, reconsider the definition of vorticity given by

v Ou
=2_% i
5 3 (8-29)
Substitution of relations (8-24) and (8-25) yields
8%y 8y
—6—5'2- + Ey—z' = - (8-30)

This equation is known as the stream function equation and is classified as an
elliptic PDE. The unknown is the stream function v, whose 2 is provided from
the solution of Equation (8-28). Once the stream function has been computed, the
velocity components may be determined from relations (8-24) and (8-25).

The vorticity equation may be expressed in a nondimensional form by using
the nondimensional quantities defined previously and a nondimensional vorticity
defined as Ry’

Uoo

n‘
The nondimensional form of the vorticity equation can be expresséd as

o o _ 1 (o &
U8y T Rew \ Oz T By?

L
at " g

(8-31)

Similarly, the nondimensional form of the stream function equation given by Equa-
tion (8-30) is
62w¢ 62,¢"
LS P o U 8-32
6.’13‘2 + 6yt2 Q ( )

where

v =Y

Ugo L
A summary of the vorticity-stream function formulations is provided below.

(I) Dimensional, conservative form in Cartesian coordinate

N a d 9 80
— + —('U,ﬂ) + —a-y'(’vﬂ) = (W + W)

iR (8-33)

% o _

- = _ 8-34
or? = gy? & ( )
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(II) Dimensional, nonconservative form in Cartesian coordinate
%tg+ug§+vg—2=u(%l—?+%) (8-35)
i gfg - -0 (8-36)

(III) Nondimensional, conservative form in Cartesian coordinate
o ) + 5%(1;'9') == (%g ¥ %}?}) (8-37)
A %‘-’j; ~ @ (8-38)

(IV) Nondimensional, nonconservative form in Cartesian coordinate

6{;‘: +ur gi’_' +° ?,2 - (%g + %g%;) (8-39)
%; + % = - (8-40)

8.2.3 Comments on Formulations

Before proceeding to the numerical algorithms, a few comments with regard to
the incompressible Navier-Stokes equations expressed in either the primitive variable

or the vorticity-stream function formulation are in order.

1. Primitive variable formulation

(a) The governing equations are a mixed elliptic-parabolic system of equations
which are solved simultaneously. The unknowns in the equations are velocity

and pressure.

(b) There is no direct link for the pressure between the continuity and momentum
equations. To establish a connection between the two equations, mathematical
manipulations are introduced. Generally speaking there are two procedures
for this purpose. The first is that of the Poisson equation for pressure which is
developed in the next section; and the second is the introduction of artificial
compressibility into the continuity equation. This procedure will be addressed
shortly in Section 8.5.1.1. Note that this difficulty does not exist for the com-
pressible Navier-Stokes equations. That is because there is a linkage between
the continuity and momentum equations through the density which appears

in both equations.
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(c) Specification of boundary conditions and in particular for pressure may be

nonexistent. To overcome this difficulty, a special procedure must be intro-
duced.

(d) Extension to three dimensions is straightforward with the least amount of
complications.

2. Vorticity-stream function formulation

(a) By introduction of new variables, namely the vorticity and the stream func-
tion, the incompressible Navier-Stokes equations are decoupled into one ellip-
tic equation and one parabolic equation which can be solved sequentially.

(b) Vorticity-stream function formulation does not include the pressure term.
Therefore, the velocity field is determined initially and, subsequently, the
Poisson equation for pressure (which is described in the next section) is em-
ployed to solve for the pressure field.

(c) Due to lack of a simple stream function in three dimensions, extension of the
vorticity-stream function formulation to three dimensions loses its attractive-
ness.

8.3 Poisson Equation for Pressure: Primitive Vari-
ables

In this section an equation is developed which may be used for the computation
of the pressure field. The reason for incorporating the Poisson equation for pressure,
which is usually used in lieu of the continuity equation, is the lack of a direct link for
pressure between continuity and momentum equations. A typical numerical scheme
for the solution of the Poisson equation for pressure is investigated in the subsequent
sections. For the time being, the steps required to obtain such a formulation are
illustrated. The conservative form of the z- and y-components of the momentum
equation obtained previously are

ou dp 08

Fri --( V4o 5540 = —V2 (8-41)
6‘0 2 6}7

5 +—(uv) ‘“ay( v+ 5 5y —R Vi (8-42)

Equations (8-41) and (8-42) are differentiated with respect to z and y, respectively,
to provide

9 (6u * ., &p b 1 8 ,.,
— | = —_— —_— -4
Bt (6:1:) * 52t 5 ¥ T2y ) T Rema (VY (8-43)
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and

d (ov d? p 138 .,
Y (a—y) + B:r:By(uv) + 5y 2( ) y2 Eé-a; V<) (8-44)
Addition of equations (8-43) and (8-44) yields
8 [6u v i & 32 8p 0%
"&(ax ay)-i-"a“"i )+2 (uv)+ )+3§+'a—y—2'
=112 vy 4 v
= he [ Bz(v u) + 3y (V 'u)] (8-45)

The right-hand side is rearranged as

o (Fu, Fu), 0 (Pv Fu)_ O (0 50\, & (Bu 00
Oz \6z? Oy? oy \oz? " y?) 0z \0x Oy oy: \dr Oy

Finally, Equation (8-45) can be rewritten in the form of Poisson equation

Fp Op_ 0D & , & & o L[ &
s o~ e o) " 2aey ™) " o)t ke |52 P) D)
(8-45)
where by B
U v
Pty

is known as dilatation.

It is obvious that for an incompressible flow, the dilatation term is zero by
continuity. However, due to numerical considerations, this term will not be set to
zero in Equation (8-46). Indeed it must be evaluated within Equation (8-46) to
prevent error accumulation in the process of iterative solution of the equation, as
well as to prevent nonlinear instability.

8.4 Poisson Equation for Pressure: Vorticity-Stream
Function Formulation

Consider the conservative form of the momentum equation given by Equa-
tions (8-14) and (8-15) as repeated here with the asterisk dropped,

du o . Op _ Fu  Fu
Bt + -a—I'(u ) + '—( v) Re (3.’)‘:2 + Ty’) (8-47)
v

3 o2 Op 1 [&*v O
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Equation (8-47) is now differentiated with respect to x to provide
d (Ou 0 du 0 (dp a [ Ov Ouy 1 4, ,
oz (E) NS (25;) "oz (%) t oz (“a—y + a—y) = RedzV ¥
or

s, (Bu) zauc?u &u &%p Oudv v Ovdu B 1 8

—_— - —_ -_— - —_— - . —_— _—_— = 2
ot \ Oz + 3:1:3:1:+2u3x2+8z2+62:3y+u81:3y+31:3y+v6x(9y Rc@x(v u)

The second term (only one) and the fifth term are combined to provide

bu (Bu  00) _
0z \bz 0dy)

due to continuity. Similarly, term three (only one) and term six are added to yield

P P o (e
dz8y Yoz2 = Yoz \ 0z oy/

Thus, one has

8 (8u du\’ 8w ovou &u &p 1 0,
( )+( ) +U‘6—z5+a—'a—y+v——axay -a—x—Q—Eéz;(V u) (8-49)

ot

o

ox

Similarly, the y-component of momentum becomes

d (v w\* v Gudv M p 18,
E(%) (a—y) +Uw+a—'y'%+u%§+w—mbz(v v) (8-50)

Addition of Equations (8-49) and (8-50) yields
2 (ou, o) (ou\' (60\' dudw  (%u &v
ot\ozx 8y ox dy Oy 0z 0x*  fz8y

u  O% p O\ 18 ,_, i R
+U(a_.’l:—é§+5?)+u(@+§§5) —'R-E[a(v u)+;,:E(V ‘U) (8-51)

Note that the first, fifth, and sixth terms each contain the continuity equation and

therefore disappear
i) (6u Bv)
—_— | —4+——1]1=0
9y

ot \ Oz
u O 8 (Bu OBv
@+6x3y—55(§+%)“0
and
Pu Py _ 0 (Bu )
dz8y 62 By \dzx 8y)
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The right-hand side is now rearranged to provide

g Qitﬁ+3_%z_ +_6_ 32v+62v _33u+ Fu N Fu +&'1v
dr? = 9y? Az " Oyt)  O8r®  Ozdy? ' Bybz? | Oz’

—_ iz_ @ + @ + .__ai 6_u 4 — 6U = ()
~ 0z’ \O0z ' 8y) By \ox ' Oy
Therefore Equation (8-51) is reduced to
au\®  [ov\®  Ou ov _ (3% 0%
(g) + (55) + 261/ 6.’1.' (55:—2 + ‘—9?) (8—52)

Now, the left-hand side can be further reduced by considering the continuity equa-

tion as follows
Ou , O0)'_ (Bu)" (0w 2+2 a“ %) _o
ox  Oy)  \éoz By dy

(5) + (&) - () ()

Substituting into Equation (8-52) yields

&p 8% udv Oudv
— (8:1:2 + — 6y ) =2 ("a—ya - aa—y) (8-53)

from which

This equation can be written in terms of the stream function by using relations
(8-24) and (8-25)

_ (& P\ _ (O (_\ _ (& [ %
0z Oy? &y )\ Bx? dzdy ) \ 8zdy
&p  &p 1% (6% &y \?
ot i 2{(&2) (%) - (a_a—y)] &0

Observe that Equation (8-54) is in nondimensional form. However, it may be ex-
pressed in a dimensional form as

&p  &p 8P\ (6% 8% \?
32 5 37 =2p [(Ba:’) (6y ) - (m) ] (8-55)

or
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8.5 Numerical Algorithms: Primitive Variables

The incompressible Navier-Stokes equations in primitive variables expressed
in various forms were reviewed in Section 8.2.1. From a physical point of view,
a problem may be classified as steady state or unsteady. Obviously, for a steady
state problem, time dependent terms are omitted from the governing equations.
However, due to numerical considerations, the solution of steady incompressible
Navier-Stokes equations, in general, incorporates a pseudo-transient scheme. In
this technique a nonphysical time dependent term is added to the continuity equa-
tion and, along with the momentum equation, an equivalent unsteady system of
equations is constructed. Subsequently, unsteady forms of the equations are solved
numerically. Note that the basic philosophy of the pseudo-transient method was
explored previously in Chapter § where the relation between the iterative solution
of an elliptic equation and the time marching solution of a parabolic equation was
identified. It was observed that the solution during the iterative process leading up
to the converged solution is physically meaningless and is only a vehicle to reach the
desired steady-state solution. A similar philosophy is used in the pseudotransient
method. Namely, a time dependent term is added, thus allowing time marching of
the solution until the steady state solution is achieved. It is therefore obvious that
time plays the role of iteration in this type procedure with no physical significance.
Consequently it can be argued that the numerical procedure for both categories
of steady and unsteady flows is similar. However, a few important points, some
of which were mentioned previously, are outlined at this time. First, for unsteady
problems a physically correct and reasonably accurate initial condition must be
provided; whereas for steady problems, the solution may start with an assumed
(i.e., arbitrary) set of initial data. For example one may impose the free stream
conditions over the entire domain to initialize the numerical procedure. Second, the
numerical time step for an unsteady problem must be consistent with the physical
time and with regard to changes which could occur during that time period. On the
other hand, as mentioned previously, the intermediate solutions of steady problems
are physically meaningless and, therefore, for steady-state solutions the maximum
allowable time step imposed by the stability requirement can be used.

In light of the above discussion and based on the similarity of the numerical ap-
proaches for steady and unsteady flows, selected numerical schemes commonly used
for steady problems will be explored in detail. Extension to unsteady problems
is rather straightforward. The concern, however, lies in the specification of ini-
tial conditions, time step, and, in some applications, the specification of boundary
conditions.

Before proceeding with specific numerical schemes, it is essential to emphasize
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a difficulty which exists with respect to the solution of the incompressible Navier-
Stokes equations. To make the point clear, revisit the governing equations given

by

du Ov

5 + e (8-56)
ou 8  , 3, 1 (8Pu O
5t TP M) T Re (5; * 5;7) (8-57)
dv 8 8, 1 (v B
7t e g = R (5; * Ia?) (8-58)

Obviously, the system of equations given by (8-56) through (8-58) includes three
unknowns: u, v, and p. If one considers a simple explicit formulation, it would seem
logical to use Equation (8-57) to solve for u (where p and v are lagged), whereas
one would solve Equation (8-58) for v. Now, one is left with Equation (8-56) to
solve for the pressure, but unfortunately pressure does not appear in that equation!
This difficulty is overcome, however, by manipulation of the continuity equation to
include the pressure term. Two procedures have been introduced for this purpose.
One procedure involves the manipulation of the momentum equation along with
the continuity equation. The mathematical details were described previously which
resulted in the Poisson equation for pressure. A second procedure incorporates
the addition of a time-dependent pressure term to the continuity equation, i.e., to
Equation (8-56). This approach is generally known as the artificial compressibility
method which is investigated in the following section.

8.5.1 Steady Flows

In this section various numerical schemes commonly used to solve the steady
incompressible Navier-Stokes equations within the pseudotransient category are ex-
plored. The schemes include the application to the artificial compressibility formu-
lations, as well as to the Poisson equation for pressure in the subsequent sections.

8.5.1.1 Artificial Compressibility

The application of the scheme to the steady incompressible Navier-Stokes equa-
tions was introduced by Chorin (Ref. [8-5]). The continuity equation is modified by
inclusion of a time-dependent term and is given by

8 1(8u Ov

Y L 222422 =0 8-
8t+'r(6:c+8y) (8-59)
where 7 can be interpreted as the “artificial compressibility” of the fluid. Following
the equation of state the compressibility can be related to a pseudo-speed of sound
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and to an artificial density by the following relations

1
T=F
=2

P

where all the quantities are in nondimensional form. Note that in the limit, as
one approaches steady state, i.e., t — 0o, Equation (8-59) is indeed reduced to the
incompressible continuity equation.

Thus, the steady incompressible Navier-Stokes equations (two-dimensional Carte-
sian coordinates) are expressed in a pseudotransient form as

Op  of0u  Ov\

2 To (_6x + ”—ay) =0 (8-60)
u 8 ,, i} 1 (u Ou
§+am+m+@wwfﬂﬁw+aﬂ (8-61)
v 8 a,, 1 (0% 8%
- + -é—a;(uv) + 55(’0 +p) = Re (@ + Ty”) (8-62)

Note that Equations (8-60) through (8-62) are in nondimensional form, where the
asterisk denoting nondimensional quantities has been dropped. The nondimensional
quantities were defined previously and in addition

*

a42 — p_

where
N
P oo

'The numerical solutions of the system of equations composed of Equations (8-60)
through (8-62) can be placed in two categories depending on the grid system em-
ployed. In the first category, the equations are solved on a regular grid whereas the
second category involves the solution of the equations in a staggered grid.

8.5.1.2 Solution on Regular Grid

To facilitate the application of the finite difference formulations, the conservative
form of the governing equations from Equations (8-60) through (8-62) are written
in a flux vector form as

0Q OE OF

1
o+ S+ B = ANV (8-63)
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a’v
uv
v+ p

where

and

00O
010
0 01

Obviously, Equation (8-63) is a nonlinear system of equations. As was seen previ-
ously, explicit formulation of nonlinear equations can be formulated with no diffi-
culty. However, when implicit formulations are utilized, a linearization procedure
must be introduced. For this purpose, consider the following Taylor series expansion

OE

E'=E"+ 'a_tAt + O(At)?
which may be rewritten as
. OF 0Q
+1 _ m —ZFA 2
E" E +6Q6t t + O(At)
o SEAQ
+1 _ oL Ay 2
E' =E"+ 50 At At + O(At)
from which -
E"!' =E"+ %AQ + O(At)? (8-64)
and
AQ = Qn+1 _ Qn
oF . . . .
Terms such as -a—Q— are known as flux Jacobian matrices. The Jacobian matrices
-gg and g—é will be denoted by A and B, respectively. The Jacobian matrix A is
given by

" OE, OE, OE;
0@, 0Q: 0Qs
__O|E\ Ey,E5] | OE; OE, OF,
T 0[Q1,Q2,Qs | 0@ 9Q: 9Qs
8E; 8E; OEj
L 0Q1 8Q: 9Qs |
The elements of the Jacobian matrix are determined as follows. First, the compo-
nents of vector E are written in terms of the components of @ and are subsequently

A
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differentiated. Recall that the vectors Q and E are

P Q1 a*u a*Q; E,
Q=|ul=|Q: and E=|u?+p|= Qi+ | =| E;
v Q3 uv Q2Qs Ey
Thus,
3E1 _ a(azQz) -0
o0Q, oy
6E1 _ B(ang) — G.2
0Q, 0Qq
8E1 - B(ang) =0
0Qs 0@

The remaining elements are determined in a similar fashion resulting in

0 a*® 0
A=11 20 0
0 v u

Similarly, the Jacobian matrix B is obtained as

0 0 a?
B=|0 v u

1 0 2v

Now Equation (8-63) can be written as

AQ 8

d 1
A+ 5 (B +AMQ) + a—y—(F" +BAQ) = £-[N]V*Q (8-65)

Consequently, one may rearrange (8-65) to provide
0 i) N (& &
AQ+ At [—a—x-(AAQ) + E-y-(BAQ) ~ R (W + ;9—3?) AQ]

At[ 9E" 9F" N (aﬂcg 629)]

—_— _+___

" Oz Oy + Re \ 0z = Oy?

or

8A 8B N [ & i
{I+At [a—x-'*'a—y—'ég(gm—z-i-@):'}AQ—RHs (8-66)

Among the various options available for the finite difference formulation of Equation
(8-66), an implicit formulation is investigated initially and, subsequently, other
schemes are explored.
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Prior to writing an implicit finite difference formulation, two points must be
noted. First, for the two-dimensional problems under consideration, the implicit
formulation will result in a block pentadiagonal system of equations. As seen previ-
ously, the solution of such a system is expensive. To overcome this problem, approx-
imate factorization, which was introduced previously, will be implemented. Second,
to overcome any possible instability in the solution, artificial viscosity (damping
terms) will be added to the equations. Thus, with the stated considerations, Equa-
tion (8-66) is formulated as

dA N & 0B N &
reae(Z - 22 [ (2 - 22| a0 -ras

The solution will proceed in two steps as

2
[I At(g‘: g;z) e:(Az)? ] AQ*

ip

= RHS — ¢, [(A:z:)4 + (Ay )4 (8-67)

7@
and

7] N &
{I+At (af B 2) +e.(Ay)28 2] AQ =AQ* (8-68)

Note that implicit and explicit damping terms have been added to Equations
(8-67) and (8-68), where ¢; and ¢, are damping coefficients to be specified by the user.
Typical values of the damping coefficients for the Burgers equation was investigated
in Chapter 6.

Now, a second-order central difference approximation is applied spatially to
Equation (8-67) to provide

AQ: (Al+laAQs+1g Ai—l.jAQ:—-l,j)

N At
RG (A$)2 (AQ'.-HJ 2AQ,J + AQ|_1,J) + C‘(AQ1+1’J 2AQ‘J + AQc—la)

_ At{ _ By —FBiay  Fijn — Fija + N Qir1y — 2Qi5 + Qi1
2Azx 2Ay Re (Az)?

N Qijy1 —2Qi; + @iy

Re (Ay)?

+ (Qij-2 — 4Qij-1 + 6Qi; — 4Qi 41 + Qi,j+2)} (8-69)

+

} - Ce{(Qi—z,j —4Qi_1; + 6Qiy — 4Qi1j + Qisayj)



320 Chapter 8

Equation (8-69) is now rearranged to provide a block tridiagonal system as follows

At N At oN At )
B (Bge) o ] e (Be) -]
At N At
+ [(2A :l:) Ai+1|j - (Re (A )2) + Es] AQl‘f‘l,J = HS‘J (8"‘70)

Similarly, Equation (8-68) is expressed in a block tridiagonal form:

At N At 2N At '
(&) (B e )

T I
Equations (8-70) and (8-71) are written in a compact form as

CAM;;AQ;_,; + C’A.,JAQ,‘J + CAP;AQ;,, ; = RHS;; (8-72)
and

CBM;JAQ;Jq + CB,'JAQ.'J + CAP,'J'AQ,-J.}.l = AQ:J (8-73)

where
CA;; —I+§g(£;2 2¢;
CAR; = (2AA_Z) Airj — %(AA—:)Q +

At N At
CoMy =~ (m) 9T Re (g €
2N At
CB,J = I+R—6(Ty)3—2f|
At N At
0B = (5ay) Buon = Rgagy

A procedure to solve block tridiagonal systems such as (8-72) and (8-73) is provided
in Appendix E,

Other numerical techniques investigated previously in Chapters 3 and 7, such as
Dufort-Frankel, Beam and Warming implicit, or Crank-Nicolson schemes, may be
applied to Equations (8-67) and (8-68) as well. For example, the Crank-Nicolson
scheme is briefly described in the following section.

PEREPSINRERE
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8.5.1.3 Crank-Nicolson Implicit

Recall that the Crank-Nicolson formulation requires an averaging of the terms
at time levels of n and n + 1. Thus, the formulation applied to Equation (8-63)

yields
A n n+1 n n+l
aQ  1[(8B\", (8B\™"| 1[(8F\"  (oF
At 2|\ Oz or 2 |\ oy 8y

11 i & n o mtl
2Re[ ]{63:2 yz}(Q A

Linearization such as (8-64) is employed to provide
AQ 1[[8E aF\" K

11 .
SRS [Nl{axz a2}(c2+1 @ +2¢7)

from which
N 2 82
AQ+ At [—(AAQ)+—(BAQ) (az2+6_y2) AQ]
_ BE" OF" N (8Q  &Q
At[ oz aﬂﬁz(w*sa)]

AtfOA 8B N [(6'Q &*Q _
{I+T[E+EE—E§(W+W)]}AQ—RHS (8-74)

Application of approximate factorization and addition of damping terms results

[I+ ~At (aA N 32)+e.(Aa:)2 & ]AQ‘

in

8r Redz?

= RHS — ¢, [(Az)‘* & + (Ay)* 34] (8-75)
and OB N &
[I+ At( 5% ~ Red 2)+e.( y)2 | AQ = AQ* (8-76)

Now central difference approximations are apphed to Equations (8-75) and (8-76)
to provide block tridiagonal systems.



399 Chapter 8

8.6 Boundary Conditions

Physical boundaries of a specified domain upon which boundary conditions are
generally required or where the values of the dependent variables must be deter-
mined as a part of the overall solution can be categorized into five groups. They are:
Body surface, far-field, symmetry line (or surface in 3D), inflow, and outflow bound-
aries. Various categories of physical boundaries are illustrated in Fig. 8-1. Physical

Far-Ficld 7

D

Inflow
Outflow

]

Figure 8-1. Illustration of typical boundaries.

or numerical specification and implementation of the boundary conditions along
various boundaries are generally challenging. Specification of the boundary condi-
tions for incompressible Navier-Stokes equations is no exception. Of course physical
considerations usually provide some clues on boundary conditions, some of which
are relatively simple to implement. For example, at a solid surface the condition
of no slip is used to specify the boundary condition on the velocity. However, the
specification of boundary conditions for the velocity components at the inflow, out-
flow, or the far-field is not usually straightforward. Obviously the manner by which
any boundary condition is specified would depend largely on the physics as well as
the domain of the problem. For example, if the far-field boundary is truly set far
from the region where all of the “Aow activity” takes place, one may indeed impose
the freestream conditions along the boundary. However, if the far-field boundary is
relatively close to the “action,” then the far-field boundary may be treated as an
inflow /outflow boundary depending on the sign of the normal (to the boundary)
component of the velocity. Primarily two factors must be considered as one sets the
boundary conditions on the inflow and outflow. First, the velocity and/or pressure
at the outflow is usually not known a priori and must be determined as the overall
solution evolves. Second, due to the influence of the interior solution on the inflow
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or the far-field (if treated as inflow) conditions, updating of the boundary values
may be required. Of course, these factors are due to the physical phenomenon of
signal propagation, i.e., for an incompressible flow, a disturbance is propagated in
all directions! Therefore, it is clear that the specification of the boundary conditions
is very much dependent on the specific problem of interest. That is, the location
of the inflow, outflow, and far-field boundaries with respect to the location where
changes in the flow properties occur. With these comments in mind, some of the
options available in the specification of boundary conditions are reviewed.

Recall that the incompressible Navier-Stokes equations in primitive variable for-
mulation in two space dimensions involve three unknowns, namely, 4, v, and p. In
this section the boundary conditions for the velocity and pressure are investigated.
Discussion of the necessary boundary conditions for the vorticity-stream function
formulation is deferred until Section 8.9.

8.6.1 Body Surface

No slip velocity boundary conditions are used at the body surface. Therefore,
the surface velocity is imposed at the boundary. For most applications where there is
no relative motion between the solid surface and the fluid, the velocity components
are set to zero according to the no slip condition. If the surface is porous where fluid
is injected or extracted at some specified velocity, the injection or extraction velocity
is used. Usually the pressure at the surface is not known and must be determined
as a part of the overall solution. Generally speaking, the Neumann-type boundary
condition is imposed for the pressure. For this purpose a relation involving the
normal pressure gradient is obtained from the appropriate momentum equation.
For example, the following expression can be utilized along the solid boundary
aligned parallel to the y-coordinate:

3% ~ Rod? (8-77)

This pressure boundary condition may be specified along the boundary AB of the
classical steady flow over step as illustrated in Fig. 8-2. Similarly, the condition

dp 1 0%

8y Redy

would be imposed along the boundary BC. These boundary conditions are imple-
mented in the solution of the Poisson equation for pressure. The Neumann con-
ditions stated above may be reduced to the simple zero normal pressure gradient
for applications where the primary flow is parallel to the surface and the Reynolds
number is high. Note that this requirement is consistent with the boundary layer
assumption.
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Figure 8-2. Schematic of step flow.

A few comments with regard to pressure are in order. First, specific numerical
schemes have been developed which do not require specification of any boundary
condition for the pressure. The Marker and Cell formulation used on a staggered
grid, for example, is well adapted for this purpose. Second, computation of pressure
over the entire domain may not be required, in which case the appropriate equations
may be solved to provide the velocity field. Third, the value of pressure may be
required only along the surface, for which there is no need to compute the pressure
over the entire domain. For example one may need to compute the pressure force
acting on an airfoil. For such applications, subsequent to the computation of the
velocity field, the tangential derivative of pressure {which is obtained from the
appropriate momentum equation) is integrated along the surface to provide the
required pressure distribution along the body. Fourth, when applying Neumann-
type boundary condition on pressure, e.g., dp/0n = 0 along the surface of internal
flows for the solution of the Poisson equation, an additional global integral constraint
must be satisfied. The application of the divergence theorem to the Poisson equation
provides the global constraints given by

f j (3—2’? + i) dzdy Z—Z de (8-78)

where A is the area of the computational domain enclosed by the boundary C' and
df is a differential length along the boundary. Failure to satisfy the requirement
stated by (8-78) could result in either a slow convergence or, most likely, a slow
divergence of the solution for the Poisson equation for pressure.
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8.6.2 Far-Field

Specification of boundary conditions on the far-field boundary is very much
problem dependent. If the boundary is located far away such that the flow proper-
ties on the boundary are not influenced by the interior solution, then it is indeed
far-field and usually the freestream conditions are imposed. On the other hand,
if the boundary is located relatively close to the “action,” the boundary can no
longer be considered as far-field and must be dealt with as an inflow and/or outflow
boundary. Whether the boundary is considered as an outflow boundary or an inflow
boundary depends on the sign of the velocity component normal to the boundary.
If the velocity is into the domain, that portion is considered as inflow boundary;
otherwise it is considered as an outflow and appropriate boundary conditions must
be incorporated.

8.6.3 Symmetry

For applications where the configuration and the domain of solution are sym-
metrical, the axis of symmetry (or surface of symmetry) may be used as a boundary.
The boundary location may be defined in two fashions. First, the boundary is set
on the axis of symmetry as shown in Fig. 8-3.

b mm e m e, m e, -

Figure 8-3. Illustration of boundary set on the axis of symmetry.

In this case the net flow across the symmetry line is zero. Therefore, the component
of the velocity normal to the boundary is set to zero. Furthermore, the shear stress
along the axis of symmetry may be zero in some applications. Thus, the velocity
gradient is set to zero. Second, the boundary may be set below the axis of symmetry
as shown in Fig. 8-4, in which case the symmetry of flow variables are used as the
required boundary conditions.
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Figure 8-4. Illustration of boundary set below the axis of symmetry.

8.6.4 Inflow

Usually two boundary conditions are required at the inflow. For most appli-
cations, pressure and one component of the velocity are provided. Typically then
u(y) = u, and p are provided. The y-component of the velocity may be set to zero
or may be determined by setting the velocity gradient dv/dzr to zero. If one uses
a first-order approximation, then v, 4 = V2. Higher order approximations can be
used as well; for example a second-order approximation yields

'U]J = 2'02J — V3j

8.6.5 Outflow

Generally speaking the value of the velocity and /or pressure are not known at
the outflow boundary. Therefore, for most applications Neumann type boundary
conditions are imposed. The specification of zero velocity gradient at the outflow
may be appropriate for most applications.

8.6.6 An Example

The classical step problem shown in Fig. 8-5 is used as an example to illustrate
the specification of various boundary conditions. The domain of solution is con-
tained within the region specified by ABCDEF, where flow enters at surface EF
and exits at CD. Furthermore, surfaces AB, BC, and FA are solid surfaces. But
what about surface ED? If the surface ED is located sufficiently far from the step
where all the “action” takes place, one may consider it as a far-field boundary.
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Figure 8-5. Illustration of various boundaries for the step flow.

Thus, freestream conditions are imposed. Otherwise, the boundary ED could be
either an inflow or an outflow boundary depending on the sign of the y-component
of the velocity. In reality, the physical domain of interest and the specified flow
conditions play a dominant role in how the boundary conditions must be specified.
The following boundary conditions for the step problem shown in Fig. 8-5 should
not be used universally, but instead are given here to illustrate a set of typical
boundary conditions. Indeed, some of the boundary values may not be available
and special procedures such as extrapolation or solution of the momentum equation
at the boundary must be used. Specifications of typical boundary conditions for
the step problem shown in Fig. 8-5 are:

Boundary EF (Inflow):

U= Ug
ov
H1<y<H v=0 or "a'E=0
i) 1 8%u
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Boundary FA (Solid surface):

(u=0
O<z < L] J v=0
o _ 1 o
\ 8y Redy?
Boundary AB (Solid surface):
[(u=0
0<y< H, {v=_0
o _ 1 &
\ 8z Redz?
Boundary BC' (Solid surface):
=0
Li<z<lL v=
Op _ 1 &%
8y  Redy?
Boundary C'D (Outflow):
4 _(21_1’ _
or
O<y< H $ @ =
Oy
Op
P=po Or == =0
\ Oz
Boundary ED (Far-Field):
U= Uy
O0<z<L v=20
P =DPx

8.7 Staggered Grid

For a certain class of problems where the governing equations can be solved
sequentially, it is advantageous to write the finite difference formulations suited
for a so-called staggered grid. The procedure allows the coupling of variables and
consequently improves stability constraints. Staggered grids may be constructed
by several methods. For example, one may shift the grid along a coordinate line
one-half of a grid spacing or shift the grid diagonally. A commonly used staggered
grid is shown in Fig. 8-6, which will be used as a prototype to investigate numerical
solutions. Since it is apparent that two superimposed grids are involved, they will
be identified as primary and secondary grids. The grid points of the primary system
are identified as in a standard grid by 1, 7, whereas the grid points of the secondary
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Figure 8-6. Typical staggered grid and assignment of the flow

variables.
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System are distinguished by increments of one-half. The primary grid is shown in
Fig. 8-6 by solid lines, whereas the secondary grid is shown as dashed lines,

Different variables are assigned to specific grid points on the primary or sec-
ondary systems. To illustrate the procedure, consider the solution of the incom-
pressible Navier-Stokes equations which, after all, is the subject of this chapter,
The unknowns are the velocity components 4 and p (for two-dimensional problems)
and the pressure p. A typical assignment of the variables at different grid points
is as follows. The pressure is defined on the primary grid whereas the velocity
components are defined on the cell faces of the secondary grid. More precisely, the
Z-component of the velocity, u, is assigned on the one-half grid line in the z-direction
at the same y-location on the primary grid. The ¥-component of the velocity, v, is
defined in a similar fashion. The specification of the flow variables is illustrated in
Fig. 8-6. A typical formulation applied to the incompressible Navier-Stokes equa-
tions is provided in the following section.

8.7.1 Marker and Cell Method

A formulation well adapted for application on a staggered grid is the Marker
and Cell (MAC) scheme introduced by the Harlow and Welch [8-6]. The Navier-
Stokes equations (8-60) through (8-62) are used to illustrate the application of the
scheme on the staggered grid shown in Fig. 8-7. To write an explicit formulation, a
first-order approximation is used for temporal derivative, and second-order central
difference approximations are used for space discretization. The continuity equation
given by (8-60) is applied at grid point (i, ) providing the following finite difference
equation:

n+i n un+1 _ un+1 vn+1 _ vn+1
Di; —pt il il i g i1
13%] 1,7 +a2 3. 7.7 + JT g J—y — 0 (8-79)

At Az Ay

Observe that the velocity components are specified at the (n + 1) time level. How-
ever, no difficulty is created because the momentum equation will be solved first to
provide u and v at the n + 1 level, Subsequently, Equation (8-79) is solved for the
pressure. The z-momentum equation is applied on the secondary grid at grid point
(i + 3,7) to provide

+1
u:"+§a' B u?+§.j " Pl — DL " (UQ)?+1J' — (u2)?J 4+ (uv)?ﬁ,ﬁ} B (uv)?+§j—§
At Ax Az Ay
_ __1_”?-.1,,1' ~ 2“?+§g‘ + “?+§,j iu?+.},j—1 - 2“?+§.j + u?+§,j+1 (8-80)
Re (Azx)? Re (Ay)?

Similarly the y-component of momentum is applied at grid point 3,7 +% resulting
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Figure 8-7. Assignment of the variables on the staggered grid.

in the following finite difference equation

+1 n
U?.H, B vt,.1+z n ("w)ﬂf‘,ﬂ‘ B (uv)i—é,ﬁi n (v )1,_1-}-1 (v? )m P?,jﬂ — DLy
At Az Ay Ay
_ 1 v: 15+ 2} 1,J+-} + vs-i-l,.1+l _]-_v?j T 2vtg+§ + vi,J'l'!' (8-81)
Re (Az)? Re (Ay)?

Since the values of the velocity components are known only on the secondary
grid (i.e., half points), as provided from Equations (8-80) and (8-81), all the values
appearing in terms of the primary grid point must be replaced by their approximate
values on the secondary grid. For this purpose, the following approximations are
used:

1
(ua)ﬁld =1 (ut+g._1 + us+,g)2
2 — 1 2
(u)iy = 1 (ui+i,j + “e—h’)
1
('Uz)i'..‘Hl = Z ('Us,]+§ + vt.:]+i)2
('v2)5;7' (vs,_y+’ + U - !)

1
(W)H;.ﬁi =1 (Ui+.},j + "i+§.1+1)(1’u+.1. + ”i+1.f+§)

. e e o e .
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(uv)£+%,j—% = (u¢+§,j + ui+i,j-1)(vi,j—é + U¢+1,j—,})

o= ]

(UU);_;J+§ = (ui-g,j + ui—,{;.j+1)(”¢',j+g + Ui—lj—i--g';)

8.7.2 Implementation of the Boundary Conditions

Due to lack of boundary conditions for pressure in most applications, the use
of a staggered grid and the MAC formulation provide an advantage. That is, one
may locate the secondary grid along the boundaries of the domain where only
specification of velocity boundary conditions is required but not that of pressure.
However, this advantage is accompanied by a disadvantage. That is due to the fact
that some values of the velocity outside the domain will be required. These values
are essentially obtained by extrapolation of the interior points or equivalently by
approximation of the derivatives at the boundaries. To illustrate the implementation
of the boundary conditions consider the staggered grid at a boundary as shown in
Fig. 8-8.
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Figure 8-8. Illustration of specification of the boundary conditions on
a staggered grid.
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Assume a solid surface aligned along j = % and an inflow boundary aligned along
i = 3. Since the surface is specified as solid, the no slip condition is imposed.

Therefore,

vl’l ='02,%="'=0

Similarly, u3 1 =0, from which u 301s approximated by

1
ugy = 5(ugo+ugs) =0
or
Ugo = ~Uia

At the inflow boundary, the u components are specified directly, i.e., terms like

Upys Upgy +o e However, the v components are approximated by extrapolation as
Vo3 = 2'0%,% -V (8-82)

where vy 1 is provided by the specified inflow boundary. At the outflow boundary
one may use zero velocity gradient, e.g., Ou/0z = 0.

8.7.3 Dufort-Frankel Scheme

Recall that Dufort-Frankel algorithm for the linear diffusion equation is uncon-
ditionally stable. However, the scheme was shown to be inconsistent and, indeed,
the equation to be solved was equivalent to

ot otz " Ox?
At . .
where k = —. Extending the scheme to the z-momentum equation for example,

Az

one has )
ou 0 B Lo B 1o
5 T a:c(u +p) + ay(uv)+ Re(k’+k’)6t2 = ReV U

where

At At
ke = Az and ky = Ay

To obtain the finite difference equations, second-order approximations for the time
derivatives are introduced. The continuity equation is applied at (4, 7) to provide

P =iyt o (s T Mdg  Yeseh %o _
2A¢ ta Az + Ay =0 (8-83)

- R P



334 Chapter 8

The z-momentum is applied at (i + 1 5»J) resulting in the following finite difference
equation

ntl n—1
Uird s ™ Uil 4 (w1 5)® — (udy)? 4Py TP (W)l pyey = 04504
2At Az Az Ay
— _l_u?—kd — 2u?+£,j + u?+§,i + — L u‘*iﬁ 1 2u:,"+“ + u?+'3=-7'+1
Re (Az)? Re (Ay)?
1 (ﬂ)z-k At : “?:ilJ B N 1..1 (8-84)
Re |\Azx Ay (At)?

Similarly the y-component of the momentum equation is applied at point (z, 5 + 1)
to yield

n+1 —1 n n T
Yij+ T v'-J+1r + (uv)"+%d+é _ (uu)?-i.ﬂi n (vz)i,j+l — (Uz)?j Pij+1 — DLy
2A¢ Az Ay Ay
_ _1_”?—1,;4{, — 200+ Ve i'u?,j—% ~ 200541 00
Re (Az)? Re (Ay)?
_ 1 (At )2 4 At ? v?;:‘ - 2vtg+§ + ‘Um_}_: (8-85)
Re (\Az Ay (At)?

The computation proceeds with Equation (8-84) and (8-85) which provide the
values of u,, 1j and v g+} at the time level n+1, respectively. Subsequently, Equation
(8-83) is solved for the pressure. The scheme is subject to stability requirement.
For example, the following constraints have been suggested

\/§(u2+v2)i§—251

for Az = Ay. Note that this restriction is a Courant number type requirement.

8.7.4 Use of the Poisson Equation for Pressure

An alternate approach for solving Equation (8-60) directly is the use of the Pois-
son equation given by Equation (8-46). Thus the system of equations is composed
of the z- and y-components of the momentum equation and the Poisson equation
expressed as follows:

2 2 2 2
o = - Tl - L [ Loy 4 2 (D)) ©30)
Ou + -—(u +p)+ —(uv) = —LV2 (8-87)

ot
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ot | Oz Re

The solution approach begins with Equation (8-86), where the value of the pressure
at n + 1 time level is computed. Subsequently, Equations (8-87) and (8-88) are
solved for the values of u™! and v™*}, respectively. A typical numerical scheme on
a staggered grid is described in this section. The right-hand side of Equation (8-86)
is formulated as follows:

b )+ (04 p) = oV (5-59)

Dn (U i-13d 2(“ + (u l+]J ('02 ?,j 17 2(” + (U $,7+1

(RHS),; = &y (Ba)t oy
(U’U)H_%‘.H_E ('U,’U)‘_%J_l_i (U'U)H_%‘J ?I + (’U/U) ’11
AzAy
+ 1 DLy, - 2D} + DY,y hi-1 — 2D} + Dy
Re (Aa:)2 (Ay)

Note that D"+1 in the first term has been set to zero, i.e., the continuity requirement
at n+1 tune level is enforced. Obviously, all the values appearing on the (RHS),;
term are known at the time level n. To solve the elliptic Equation (8-86), an iterative
scheme is usually used. For example, if one selects the point Gauss-Seidel scheme,
the formulation is expressed as

1
k-t k] 2 1

Equation (8-89) is solved at each time level to provide p;; at the n+1 time
level. Subsequently, Equations (8-87) and (8-88) are solved for u,; and v;; at the
time level of n + 1. A typical finite difference formulation on a staggered grid would
be Equations (8-80) and (8-81).

8.7.5 Unsteady Incompressible Navier-Stokes Equations

The solution procedures discussed previously for the steady incompressible
Navier-Stokes equations can be easily extended to the unsteady problems. Among
the two procedures identified to overcome the difficulty associated with the conti-
nuity equation (namely the artificial compressibility and the Poisson equation for
pressure), the latter is more commonly used for unsteady problems. As a prototype,
the MAC formulation is considered in this section. Revisit the (nondimensional)
governing equations provided in Section 8.2 given by

Ou Ov
5;:4'-55 0
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Ou (0] 2,
§+_( +p)+—(uv)—R—V
dv &8 0 2,
ot T g+ y( +p)+ R_V

The MAC formulation apphed to the momentum equation, from Equations (8-80)
and (8-81) provides

n At L) n
ui:{:g = ut+%‘3 A:L‘ [ s-l.-*-llg - psH) + (u i+1,7 (u2 i,j]
At n 1 At n
Ay [(u )|+ J+l (’u'v)i-f-é.j—!] Re (A )2(u‘"!J 2ui+%j + u:"f'g'd)
1 At n
+ 5 Re (Ay)2 (us+,.;—1 2“i+§g' + “?+§.j+1)
At
=~ :-110_ - p?’;:l) + RHSUH_! J (8-90)
and
o n At
vi;-l-l% = UI'J"F% [(uv)i‘i"l‘d'f'l (uv)l—!',J*f*!]
n 1 At
[('U §,7+1 (v2)s',j + :ij:l +1)] + _W( i-1,5+4 2Ut,_1+i + vt+1g+1)
1 At At vir arl
+ 5 Re (A )2( Wi-% 2'0“’_& + vid+i) A_y ?;'H P ) + RHSV'»J"‘! (8-91)
Now, the continuity equation is applied at n + 1 to yield
ntl _ . .n+l ntl __ ,n+l
Yirtg ~ Uit 4 Yij+t ~ Yij-4 _0 (8.92)
Az Ay

Substitution of Equations (8-90), (8-91) and similar terms into Equation (8-92)
provides

1 At . At n
_A_x {[_A_x- 1:11,1 -1 +1) + RHSUH_ ,J] - [ A:D p‘J"l — p|jlla) + RHSU‘_QJ]}

1 At At
+____{|i__ ntl "p?jl) + R'HSVL.H%] —_ [__ ntl _ . on+l )+ RHSV:J_%]}

Ay ||~ Ay Piat Ay D T Pu-t
=0
Rearranging terms yields
P:‘Jr]l,, - 219, 4+ p?flla pl'j 11 — P:l; Y+ P?;Jh
(Az)? (Ay)?

1 [RHSU+£J RHSU; ny RHSV;LH_& RHSV -}

At Az Ay ] (8-03)

._3
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Equation (8-93) may be solved by any iterative scheme for the value of p}‘jl over
the entire domain. Subsequently, Equations (8-90) and (8-91) are used to compute
the velocity components u and v.

8.8 Numerical Algorithms: Vorticity-Stream Function
Formulation

The governing equation for the incompressible Navier-Stokes equations for two-
dimensional applications in vorticity-stream function formulation were reviewed in
Sec. 8.2.2. Fundamentally, the system is composed of the vorticity transport equa-
tion and the stream function equation. One of the advantages of this formulation is
that the pressure term does not appear explicitly in either of the equations. There-
fore, the system of equations is solved to provide the velocity field. Now, if the
pressure field is required as well, then the Poisson equation for the pressure is sub-
sequently solved. A major disadvantage of the formulation which was previously
mentioned is the direct extension to three dimensions. Furthermore, a difficulty
associated with the formulation is the specification of the boundary condition on
the vorticity, which is due to the lack of physical boundary conditions for vorticity.
Therefore, numerical boundary conditions for the vorticity must be derived.

At this point, it is useful to revisit the system of governing equations and review
some of its features.

1. The system is composed of:

a. Vorticity transport equation

on 00,00 _1 (o0, o0 (8-94)
ot Oz 0y  Re \Or* 0y° i
and
b. Stream function equation
Py Y

2. The governing equations given by (8-94) and (8-95) can be used for either
steady or unsteady flows. Note that time appears explicitly in the vorticity
transport equation which is classified as a parabolic equation. Thus, any
scheme previously introduced for the solution of parabolic equations can be
utilized to solve Equation (8-94). But, what about Equation (8-95)? Even
though time does not appear in that equation, it is still used for unsteady flows.
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Therefore, for unsteady fow computations, the stream function equation is
solved at each time step by any scheme previously introduced for the solution
of elliptic equations.

3. For steady state problems, three options are available.

a. The unsteady equations are solved until steady state is achieved. If

this approach is used, one must pay attention to the total computation
time in that it may be too excessive. Obviously, this would be problem
dependent and in particular, Reynolds number dependent.

- The steady state form of the equations are given by

20,00 1 (2 o0
Oz 8y  Re \ 012 oy?
and
az,d, 62,‘/)
527 Ty =70

These equations may be solved directly. Note that the system is now
composed of two elliptic equations which may be solved by iterative
scheme.

. A pseudotransient approach similar to that previously used with regard

to the primitive variable formulation may be developed for the vorticity-
stream function formulation. The construction of pseudotransient equa-

tions yields

o, e s 1 (#a g
ot " Bz vay_Re oz? ' Oy?

and

ot @‘{‘—8'?2-4-9

Consequently, one now solves two parabolic equations. The equations
may be solved sequentially or as a coupled system.

-3 500

In the following section a limited number of finite difference formulations for

the vorticity transport equation and, subsequently, the stream function equation is

explored.

8.8.1 Vorticity Transport Equation

Recall that numerous schemes for the solution of parabolic equations were

discussed previously in Chapters 3 and 7. These schemes can be adapted for the
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solution of the vorticity transport equation. The formulation may be explicit or
implicit.

Perhaps one of the most simple finite difference formulations applied to a parabolic
system is the FTCS scheme. In this method the time derivative is approximated by
a first-order forward difference expression whereas second-order central difference
relations are used for the spatial derivatives. The resulting finite difference equation
of the nonconservative vorticity transport equation is written as

n+1 n n n n n
Qij - Qs‘,j n Y4+ T k-1 o W+l T ni,j—l
At W 2Azx e 2Ay

Re

1 [, — 260, + Q8 n D — 200, + O
(Azx)? (Ay)?

If the conservative form of the equation is used, the convective terms are approxi-
mated by
Up1, 01y — W1, 1 4 Vi SWa1 — Ui
2Azx 2Ay

Recall that central difference approximation of convective terms does not model
the physics of the problem accurately in that it does not correctly represent the
directional influence of a disturbance. Therefore, the use of an upwind differencing
scheme may be more appropriate in particular if the flowfield of interest is convection
dominated. First-order approximation of the convective terms yields

n+1 n n Om 7 n %

1 ult O 1 u®. -
iJ —(1- SRR ) 1,7° g ~(1 _ .7 i—1,5
A tall-e) Az +3l+e) Az
1 Wi — U 1 G TR It L
201 — : (1 J =155,
+2(1 €y) Ay + 2( +€y) Ay
iﬂ?ﬂ,j 20+, 1 50— 200+ 054 (8-96)

~ Re (Az)? Re (Ay)?

Note the following features of the finite difference equation given by Equation (8-96)
above: (a) If u is positive, a backward approximation must be utilized. Thus, ¢; is.
set to one. If u is negative, a forward approximation is used and therefore ¢, is set
equal to —1. The same analogy is applied to v and the corresponding coefficient
€y- It is emphasized again that the upwind formulation allows the information to
be convected only to the points in the flow direction and, therefore, more appropri-
ately models the physics of the problem. The formulation (8-96) with appropriately
defined coefficients provides this option. One may increase the accuracy by incorpo-
rating a second-order approximation. For example, a forward approximation would

U T
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yield

i(uﬂ) _ T3ua g+ Ay Qi — U2, 40,5

Ox 2Azx
However, note that at the boundary one may have to revert to the first-order scheme.
(b) If e; and ¢, are both set to zero, second-order central difference approximation
of the convective terms are recovered.

Recall that the implicit formulation of multi-dimensional problems requires ap-
proximate factorization to improve their efficiency. To gain a flavor of finite differ-
ence formulations of both nonconservative and conservative forms of the governing
equations, the nonconservative form is used in the first formulation, whereas the
conservative form will be employed for the second finite difference equation. The
nonconservative form of the vorticity transport equation is

ol 4 8 1 ( 90 829)

E-ﬁ-u&--l-va—y:E 3_x5+6_y2-

The ADI formulation results in the following two equations which are solved se-
quentially:

n+1 n 1 1 n
(U Sl L) R OV il N 0/
At/2 YT 9Az W oAy
n+} +3 n+} n n
_ iﬂi-:l'{j - 29:,- 40 + LQUH — 208+ O, (8-97)
Re (Az)? Re {(Ay)?
and
O0f =Y | e -0 o -,
At/2 W 2Ax W 24y
_ropd ety ot L LM ean
Re (Azx)? Re (Ay)?

Note that in linearization of (8-98) one may use the values of u and v at &, time
level of n. In that case there is no need to solve for the stream function at level
n-+ %, which would be necessary to provide u and v at n + % if the values of u and v
at n+ % are used in Equation (8-98). Obviously, the computation time is reduced
if linearization is based on the values of u and v at the n time level. With this

argument, Equations (8-97) and (8-98) are rearranged to provide
1r1 | atl 171 L
- (Ec, + d,) O+ 1+ a4 2 (—2-c,, - d,.,) QL =D,  (8-99)

and

1/1 n n 171 n
~3 (5cy + dy) UL+ U+ ) + 5 (Ecy - d,) ML =D,  (8-100)
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where the Courant numbers and the diffusion numbers are defined as

_ A _ At
G=URy 0 9T Ay
d
an 1 At 1 At

“=Reaay ' T R

The right-hand sides of (8-99) and (8-100) defined by D, and D,, respectively, are

171 I | 1
D, = 3 (ECy + dy) Q?,.1'—1 +(1- dv)ﬂia' + 2 (-——z-cy t dy) Q?JH

and 1/1 ! p 17 1 :
+ nt 7
D, = 3 (-2'Cz + dr) Q?_u +(1—do); + 3 (—50:: + d:) Qi:ﬂ;'
Note that, based on previous arguments, the values of u and v used in ¢, and v,
which are incorporated in Equation (8-100) may be at n or at n+ 3. If the latter
option is used, the stream function equation must be solved for at n + % level, thus
requiring additional computation time. Further definition of the coefficients would

provide

AT+ B O + GO, = D (8-101)
and
A Q0 + B, QR+ G Q04 = Dy (8-102)
where
1 /1
A = ""2' (Ecx + dz)
B.’E = 1 + d;p
1/1
6 =3 (3~ 4)
1/1
A== (5o + &)
B,=1+d,

The tridiagonal systems given by Equations (8-101) and (8-102) are solved sequen-
tially by the procedure described in Appendix B.
Now consider the conservative form of the equation given by

N 0 0 1 [(98*Q 8%
3 + —6;(“0) + BE(UQ) = Re (5:[:—2- + 5:;}—2')
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As mentioned previously, upwind differencing will be used to approximate the con-
vective terms. In order to preserve the tridiagonal nature of the system, first-order
approximation is used. As shown in previous chapters, if higher order upwind ap-
proximations are utilized, the off tridiagonal elements may be treated explicitly in
order to preserve the tridiagonal nature of the system. As in the explicit formula-
tion, coefficients ¢, and ¢, will be incorporated to provide the option of second-order
central difference approximation. The sequential steps required for ADI formulation
are

n+} n+} :

(Q ' - .,;) __( —e) |+1,jﬂi+1!;j'_u?jﬂyji
At/2 € Az
ur O ul Q"+11’ U Ay — VR
+= (1+ €)W Wl o (1 €y) LN B4
Az Ay

1 U?JQ?J I,J lﬂsg 1

+§(1+€y) Ay

1ot ettt ot 1o, 200
Re (A:r:)2 Re (Ay)2
which is rearranged as

171 n 1
Y [_(1 + 6:r:)c:l:(i—l,;i) + d.'l::f Q:fli,g + (1 +d; + zezc::(m)) Qm%

1 13
+§ [5( — €)Caiy15) ~ d ] Qz++1,1 D, (8-103)
where
111 . 1 i
D==3 [5(1 + &) + dv] o+ (1= dy — 56,66)0;
1 1 "
+ 2 ["5(1 — €)CGig+1) + dv] Qi,j+l
and
n ﬂ n n4 1l +1
(Q - +!) + (1 )Ui+1,jﬂi+1'i'i - urJQ:J :
At/2 € Az
KoL I i Vit — vy
4= (1+€ )u‘a %1 [ 13 += ( ) g+ 1 T Vig
* A.'E y Ay
'U‘JQ"' U‘IJ 1Q|J 1
+=(1+e
31+ Mt 2
_roph-oartaart 1 apt - oapr v an,

Re (Az)? Re (Ay)2
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which is rearranged as
1 1 H+1 n+1l

171
+§ [5(1 - fy)cy(iJH) - dy] Q‘g+1 y (8‘104)

where
1 1 1 n
Dy = 5 [5(1 -+ GI)C;;(.‘ulJ‘) + dz] '—1,] + (1 26403("]))“ +%
1 1 n+d
+ 2 [—“-(1 — €)Cz(i+15) T dx:\ Qi

As discussed previously, the Courant numbers in Equation (8-104) may be eval-
uated at the n+ 3 1 level in which case the stream function equation at n + 3 ! needs
to be solved subsequent to the solution of Equation (8-103).

8.8.2 Stream Function Equation

The stream function equation is given by

a2,¢ 321[1

5 o =8 (8-105)

which is classified as an elliptic equation. Any numerical scheme introduced in
Chapter 5 can be used for its solution. For example, the point Gauss-Seidel formu-
lation yields

1 n o §
5‘1 = 2—(1TE2_) [(A )29 "4 ¢|+lg 1j—110 + '62(¢‘J+1 .Jll)] (8-106)

where § = %—Z

The computation begins with the solution of the vorticity equation within the
domain. Subsequently, the vorticity in Equation (8-106) is updated and the equation
is solved for the stream function 1. The process is repeated until the desired solution
is reached.

8.9 Boundary Conditions

In order to solve the vorticity transport and the stream function equations by
the numerical scheme described in the previous section, boundary conditions must
be prescribed. Generally speaking, boundary conditions are categorized into the

e A
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following five groups: body surface, far-field, symmetry line, inflow, and outflow
boundaries. The specification of boundary conditions for the primitive variable in
each category was discussed in Section 8.6. In this section the boundary conditions
for the stream function and vorticity are explored.

8.9.1 Body Surface

A solid surface can be considered as a stream line and, therefore, the stream
function is constant and its value may be assigned arbitrarily. As mentioned previ-
ously, boundary conditions for the vorticity do not exist. Therefore, a set of bound-
ary conditions must be constructed. The procedure involves the stream function
equation along with Taylor series expansion of the stream function. As a result,
a different formulation with various orders of approximation can be derived. At
this point, the construction of a first-order expression is illustrated. Subsequently,
a second-order relation is provided. For illustration purposes, assume non-porous
and stationary surfaces and a rectangular domain, as shown in Fig. 8-9. The ex-
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Figure 8-9. The rectangular cavity with fixed surfaces.

pression for the vorticity to be applied at boundary A is determined initially and,
subsequently, the result is extended to the other boundaries at B, C, and D.
Consider Equation (8-105) at point (1, ), i.e.,

Oy P\ _
(@ + Ty”)u = —Qy (8-107)
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Along the surface, the stream function is constant, and its value may be specified
arbitrarily; for example, ¥1; = ¢1. Then, along A,

2
0 ¢ _o
Eah
and Equation (8-107) is then reduced to
%y
hallk ol B O -

To obtain an expression for the second-order derivative in the equation above, con-
sider the Taylor series expansion

Yag = Y15+ g::/’) (A;)z o
Along boundary A
h, = “ Bz |1 =0
Therefore,
oy %meyﬁﬂmmf
from which PY| _ 2ty — ) +0(Az) (8-109)
8z |y (Azx)?

Substitution of (8-109) into (8-108) yields

Qs = 2(¢1,5 — Yay)
YT (A

A similar procedure is used to derive the boundary conditions at boundaries B,
C, and D. The appropriate expressions are, respectively,

(8-110)

2 o ;
s = =gty = 1)
PP 20— i)
=T T T (G &1
2 , — 2
Qugm = _‘_g;f oM 2(%‘”{( Ayl)p;'JMMl) (8-113)

Now suppose a boundary is moving with some specified velocity. For example,
assume that the upper surface is moving to the right with a constant velocity wuo.
Following the procedure described previously, the Taylor series expansion yields

3y (Ay)
ay %] 2

";bl 1_¢l ‘A +
J— % B y
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or

(Ay)?
2

Yigmm = Yiam — Ay — Qgm

from which
_ 20hiam — Yigmm) | 2uo

92 8-11
- (Ay)? Ay (8114
A second-order equivalent of (8-110) can be expressed as
Q= LB Ty | gy (8-115)

2(Ax)?
For a moving boundary with a constant velocity of ug at j = JM, one has

Q. oy — — VM + 8o — Thiammr  3uo
m 2(Ay)? Ay

(8-116)

which is a second-order equivalence of (8-114). Higher order implementation of the
boundary conditions in general will increase the accuracy of the solution. However,
it has been shown that it may cause instabilities in high Reynolds number flow.
A comparative study of the first-order and second-order boundary conditions is
reported in Reference [8-7].

8.9.2 Far-Field

For a true far-field boundary which is set parallel to the free stream, the bound-
ary represents a streamline. Therefore, a constant value for the stream function
along this boundary can be specified. However, the assignment of a value for the
stream function along various boundaries must be consistent with respect to the con-
tinuity equation. After all, recall that the difference between the values of stream
function represent mass (or volumetric) flow rate. This consideration is important
in particular for domains where there are multiple ports for inflow and outflow.

8.9.3 Symmetry

When the symmetry boundary is set along the axis of symmetry and the flow
is truly symmetrical, it can be considered a streamline. Therefore, the value of the
stream function along this boundary can be specified. Keep in mind the previous
discussion on the relation for the values of the stream function and the continuity
equation. Obviously, the velocity components normal to the symmetry boundary
would be zero, whereas generally the streamwise component is extrapolated from
the interior solution.



Incompressible Navier-Stokes Equations 347

8.9.4 Inflow

At the inflow the stream function is usually specified whereas the vorticity is
determined with the various approximations. First, consider the stream function at
the inflow:

(a) The values of ¥ along the inflow are specified
(b) Its value is determined from the interior; for example,
1
Yy = 5 (g — ) (8-117)
The vorticity at the inflow may be determined by either one of the following proce-
dures:

(a) The equation for the stream function is applied at point (1,7) to yield

&y O\

Utilizing approximation (8-109) and a second-order central difference expres-
sion for the y-derivative, one has

Q.= 2(¢1J - %J) _ 'ﬂbl.j+1 - 2'!/)1J + wlj-l
H (Ax)? (Ay)?

(8-118)

(b) The specified value of u at the inflow may be used directly by incorporation
of the vorticity. Recall that

Q_Bv du

T 8z Oy

or

This equation is used at (1,j) to evaluate the vorticity at the inflow. A
second-order forward difference approximation utilizing the interior values of
the stream function is used for 8%/8x*, whereas a second-order central dif-
ference approximation is used for the velocity gradient. Thus, one has

Q= _ TS Ay — sy Uy — Ui
14 (Az)? 5Ay

(8-119)
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8.9.5 Outflow

At the outflow boundary, the value of the stream function is usually extrapolated
from the interior solution. Utilizing 8/8z = 0, a second-order approximation will

provide

1

Yimg = 5(4¢1M—1j ~ Vim-2,) (8-120)

The condition 8%)/0x® = 0 has also been used at the outflow boundary, as well. A
second-order backward approximation yields

1
Yimg = ‘2-(¢1M—3,j — dPrpr-2,5 + SYim-14) (8-121)
whereas a first-order approximation yields
Vimj = —Vim—2j + 2¥1im-14 (8-122)

As in the case of the inflow boundary, the vorticity at the outflow may be
determined by numerous methods; for example,

2(imy — Yrumrg)  (Yimger — 20ruy + Yrar 1)

= -12
Qrumy (B2)? ) (8-123)
A simple extrapolation may be used for which one sets
N
7 0
to provide
1
Qumj = 5(4QIM—1J - Qp-25) (8-124)

8.10 Application

Consider the rectangular cavity shown in Figure 8-10 where the upper plate
moves to the right with a velocity of ue. In addition, an inlet on the left boundary
and an outlet at the right boundary are specified. Note that, when the inlet and
the outlet are shut, the problem is reduced to the classical driven cavity problem.

The boundary conditions are specified as follows (the nomenclature is shown in
Figure 8-10).
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Figure 8-10. The rectangular cavity and the specified boundary conditions.
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V=1
{ J=1ltoJ3-1 . u=0
v=20
=IM : { j=J3toJ4 : {6 _ _
i J B%—O (v=0)
¥ =0.0
| I=J4+1toJM =0
v=20
V=1
i=1: i=1toIM : ©u=0
v=_0
¥=0

j=JM : t=1toIM U=y,
v=1_0

The kinematic viscosity v is specified as 0.0025 m?/sec, the velocity of the upper
plate is 5 m/sec, and the cavity is 30 cm by 30 cm. Furthermore,

IM=31 | JM=31
J1=20 |  J2—95
J3=5 ,  J4=10

Thus, the spatial step sizes are

Az =001m and Ay=00lm
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1

Figure 8-11. The streamline pattern within the rectangular cavity.

The convergence criterion for Equation (8-106) is set by CONGS = 0.001; and,
to achieve a steady-state solution, CONSS is set to 0.002.

The streamlines (lines of constant 1) are shown in Figure 8-11, whereas the
velocity vector plot is illustrated in Figure 8-12. A large circulation region within
the domain is clearly evident. The solution converged after 123 iterations, where
the computation time on a Cyber 175 was 750 seconds.

8.11 Temperature Field

As discussed previously, the energy equation for an incompressible flow with
constant properties is decoupled from the continuity and momentum equations.
Therefore, the energy equation can be solved subsequent to the computation of the
velocity field to provide the temperature distribution if required. In the following
sections, the governing equation, numerical schemes, and the boundary conditions
are reviewed.,

o
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Figure 8-12. The velocity vector plot for the rectangular cavity.

8.11.1 The Energy Equation

The energy equation can be written in various forms depending on the specific
form of the energy used. Typically it is written in terms of either one of the
following , to name a few: enthalpy, total energy, internal energy, kinetic energy or
temperature. Usually the energy equation expressed in terms of the temperature
is used for incompressible flow calculations. The energy equation, with no heat
generation, and constant flow properties along with the Fourier heat conduction
law and Newtonian fluid for a two-dimensional incompressible flow, is expressed as

or 8T 8T

8T  &T du\*  (0v\*] | (Bu . ov\?
_k(a_xg+w)+ﬂ{2 [(a) +(a):'+(5§+—a;) (8-125)
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The last term is known as the viscous dissipation term and is usually defined by

au\® (8v\’| [Ou Ov\®
¢ =2 [(a’;) + (B_y) + (3_y + -5;) (8-126)
Thus, one may write
arTr oT oT\ .
pCp (E + ’U;E + ’Ua—y) = kV°T + po (8-127)

Observe that Equation (8-127) is written in a nonconservative form. The conserva-
tive form is expressed as

pCy [%—f + :%(uT) + %(UT)] = kV2T + pé (8-128)

The energy equation in either form may be written in terms of the thermal diffusivity
and kinematic viscosity. For example,

aTr 8T oT 2 v

pell = bl T+ — -12

5 +u6m+vay aV +cpd> (8-129)
Recall that the thermal diffusivity and kinematic viscosity are, respectively, defined

as
W

a=-— and v
PCp p

The variables in the energy equation are nondimensionalized according to rela-
tion (8-21). To nondimensionalize the temperature various reference quantities can
be used, among which are the freestream temperature T, or the difference in tem-
perature (T, — Two). Implementation of T* = T/Tx, yields

I A (6T 0T) 0y e
whelreas T = T T yields

A = L
where E = ﬁﬁ is called the Eckert number.

Note that the coefficient of the dissipation term E/Re can be manipulated to
provide
E _ (y~1)Mg
Re ~ ( To )
T 1) Re

(8-132)
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Therefore, Equation (8-131) can also be expressed as

oT LT 0T _ 1 (8T @T'\ . (y- 1ML
o TWgm TV dy*  PrRe (6z'2 + By”) + T, (8-133)
T 1) Re

Before proceeding to the discussion of numerical schemes, a few comments are
in order.

a. The energy equation (in either form, such as (8-130), (8-131), or (8-133)) is
linear. Note that the velocity field has been evaluated previously and is fixed
for the time level for which the temperature is being computed.

b. Any procedure described in Chapter 7 may be used to solve the energy equa-
tion. Furthermore, observe the similarity of the energy equation and the
vorticity transport equation discussed in Section 8.2.2. Thus, the numerical
procedure reviewed in Section 8.8.1 can be extended to the energy equation.

c¢. The retention of the viscous dissipation term does not create any difficulty,
because it may be computed easily from the velocity field prior to the solution
of the energy equation. However, for some applications, the viscous dissipation
term is relatively small and may be dropped from the energy equation. A
simple order of magnitude analysis of relation (8-132) will provide a guideline
on the retention or deletion of the viscous dissipation term. Since M, for an
incompressible flow is relatively small, relation (8-132) indicates that E would
be small as well if T},/Ts > 1. On the other hand, it is observed that the
value of E ( and subsequently of viscous dissipation) would be appreciable if
(Tw/Tw — 1) is a small quantity. Therefore, the viscous dissipation term is
retained. It is strongly recommended that the viscous dissipation be retained
if there is any doubt on the magnitude of the term.

8.11.2 Numerical Schemes

Consider the energy equation given by, for example, Equation (8-131). Note
that the equation is parabolic in time, linear, and involves only one unknown,
namely T*. Any of the numerical procedures for the solution of parabolic equations
described previously may be used to solve the energy equation. Since these pro-
cedures were extensively described and revisited in conjunction with the vorticity
transport equation, no further discussion is warranted at this point, However, some
deliberation of the boundary conditions are appropriate.
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8.11.3 Boundary Conditions

The boundary conditions along the inflow and far-field are typically specified
as that of the temperature of the freestream. The value at the outflow may be
extrapolated from the interior solution similar to that of the velocity. The treatment
of the boundary condition at the solid surface, however, warrants some deliberation.
Typically two types of boundary conditions are frequently specified. In the first
category, the wall temperature (or its distribution along the wall) is provided. Thus,
the boundary condition is a Dirichlet type. Implementation of such a boundary
condition is straightforward. In the second category, an adiabatic wall is specified
requiring zero heat transfer at the surface. At this point a brief review is in order.
Recall that the heat transfer rate is frequently expressed in terms of the heat transfer
coefficient, h, given by

~+(5)
h = m (8- 134)

where n designates the direction normal to the surface and k is the thermal con-
ductivity. Furthermore, a popular nondimensional heat transfer parameter is the
Nusselt number which is defined as

hL

NU = — (8-135)
Nondimensionalization of {8-134) along with the use of (8-135) yields
aTt
NU = - -13
on* (8-136)

To incorporate the adiabatic boundary condition, instead of directly setting the

normal gradient to zero, consider the following Taylor series expansion, where index

k represents grid points along the surface normal,
ar 8T (An)?

T+ =Tk+%An+%5 2

where the superscript * has been dropped. Utilizing (8-136) one has

+ O(An)® (8-137)

Teyr = Ts — (NU)An + O(An)?

Now, for an adiabatic wall, the heat transfer is zero, implying that NU = 0, and
therefore,

Tir1 = T + O(An)?

Application of the adiabatic wall condition to the surface shown in Fig. 8-13
provides
Ty =Tz (8-138)
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Ti; =Ty (8-139)

An important point to emphasize here is that the approximations (8-138) and (8-
139) are indeed second-order accurate!
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8.12 Problems

8.1 The upper plate of a rectangular cavity shown in Figure P8-1 moves to the
right with a velocity of u,.
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Figure P8-1. The domain of solution for the driven cavity problem.

The rectangular cavity has dimensions of L by H. The fluid within the cavity has
a kinematic viscosity of 0.0025 m?/sec. Use the FTCS explicit scheme and the
point Gauss-Seidel formulation to solve for the vorticity and the stream function
equations, respectively. The following data are specified

L=40cm, Az =00lm, IM=41
H=30cm, Ay=00lm, JM=31
u, = 5 m/sec. , At =0.001 sec.
Use a convergence criterion of 0.001 for the point Gauss-Seidel formulation and set
the convergence to steady state at 0.002 for the vorticity equation.
Print the steady-state solution at increments of 0.1 m and 0.05 m in the z- and
y-directions, respectively. The values of the vorticity and stream function, and the

z-component, of the velocity are to be printed. Plot the streamline pattern and the
velocity field.

Y. e L
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Grid Generation — Structured Grids

9.1 Introductory Remarks

In order to numerically solve the governing partial differential equations (PDEs)
of fluid mechanics, approximations to the partial differentials are introduced. These
approximations convert the partial derivatives to finite difference expressions, which
are used to rewrite the PDEs as algebraic equations. The approximate algebraic
equations, referred to as finite difference equations (FDEs), are subsequently solved
at discrete points within the domain of interest. Therefore, a set of grid points
within the domain, as well as the boundaries of the domain, must be specified.

Typically, the computational domain is selected to be rectangular in shape where
the interior grid points are distributed along grid lines. Therefore, the grid points
can be identified easily with reference to the appropriate grid lines. This type grid
is known as the structured grid and is the focus of this chapter. A second category
of grid system may be constructed where the grid points cannot be associated with
orderly defined grid lines. This type grid system is known as the unstructured grid
and will be introduced in Chapter 15. In the remainder of this chapter, structured
grid generation is implied wherever we refer to grid generation.

The generation of a grid, with uniform spacing, is a simple exercise within a
rectangular physical domain. Grid points may be specified as coincident with the
boundaries of the physical domain, thus making specification of boundary conditions
considerably less complex. In the previous chapters, this restriction on the physical
domain was enforced, i.e., all applications were limited to rectangular-type domains.

Unfortunately, the majority of the physical domains of interest are nonrectan-
gular. Therefore, imposing a rectangular computational domain on such a physical
domain will require some sort of interpolation for the implementation of the bound-
ary conditions. Since the boundary conditions have a dominant influence on the

-
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solution of the equation, such an interpolation causes inaccuracies at the place of
greatest sensitivity. In addition, unequal grid spacing near the boundaries creates
further complications with the FDEs since approximations with nonequal stepsizes
must be used. This form of the FDE changes from node to node, creating cumber-
some programming details.

E=E(x,y,2)
n=m(x,y,z)
L=0(x,y,2}

E=E(x)
n=n{x,y,z)
L=84(x,y,2)

Figure 9-1. Nomenclature for the generalized coordinate system.

To overcome these difficulties, a transformation from physical space to compu-
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tational space is introduced. This transformation is accomplished by specifying a
generalized coordinate system which will map the nonrectangular grid system in the
physical space to a rectangular uniform grid spacing in the computational space.
The generalized coordinate system may be expressed in many ways. Two examples
are illustrated in Figure 9-1. The first example shows the so-called body-fitted coor-
dinate system where two coordinate lines, £ and ¢, are aligned on the surface along
the streamwise and circumferential directions, and where the third coordinate, 7, is
normal to the surface. In the second example, the £ coordinate is aligned along the
body axis, { is in the circumferential direction and 7 is normal to the body axis.

For illustrative purposes, two-dimensional (2-D) problems will be considered in
detail, with a description of the three-dimensional (3-D) problems to follow. A 2-D
domain is illustrated in Figure 9-2.

Physical Domain

Figure 9-2. A typical 2-D domain for the axisymmetric blunt body problem.

In order to eliminate the difficulty associated with the nonequal stepsizes used in
the FDEs, the physical domain is transformed into a rectangular, constant step-size,
computational domain. A typical computational domain is shown in Figure 9-3.
Note that the computational domain is obtained by deformation of the physical
domain, i.e., by twisting and stretching, etc.

‘The central issue at this point is identifying the location of the grid points in
the physical domain. That is, what are the z and y coordinates of a grid point
in physical space (Figure 9-2) that correspond to a grid point (i, j) specified in
the computational domain (Figure 9-3)? In determining the grid points, a few
constraints must be imposed. First, the mapping must be one-to-one; i.e., grid lines
of the same family cannot cross each other. Second, from a numerical point of view,
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a smooth grid point distribution with minimum grid line skewness, orthogonality
or near orthogonality, and a concentration of grid points in regions where high flow
gradients occur are required. Obviously, all of the desired features may not be met
by the use of a particular grid generation technique. Grid generation techniques

which emphasize any one or a combination of these features will be presented in the
following sections.
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Figure 9-3. Computational domain with constant stepsizes A{ and An.

In general, grid generation techniques may be classified as (1) algebraic meth-
ods, (2) partial differential methods, or (3) conformal mappings based on complex
variables. In addition, the grid system may be categorized as fixed or adaptive.
Obviously, a fixed grid system is generated prior to the solution of the governing
equations of fluid motion and remains fixed independent of the solution. On the
other hand, an adaptive grid system evolves as a result of the solution of the equa-
tions of fluid motion. For example, grid points may move toward regions of high
gradients such as in the neighborhood of a shock wave.

Conformal mappings based on complex variables are limited to 2-D problems and
require a reasonable knowledge of complex variables. In addition, the determination
of the mapping function is sometimes a difficult task. Therefore, this method will
not be discussed here. In the following sections, grid generation techniques based
on algebraic and PDE methods are presented.




362 Chapter 9

9.2 Transformation of the Governing Partial
Differential Equations

The equations of fluid motion include the continuity, momentum and energy
equations. For a single phase continuum flow, the transformation of this system of
equations will be presented in Chapter 11. In this section, a simple 2-D problem is
proposed to familiarize the reader with the processes involved in the transformation
of a PDE and the complexity of the resultant equation. It should be mentioned that
the form and type of the transformed equation remains the same as the original
PDE; i.e., if the original equation is parabolic, then the transformed equation is
also parabolic. A mathematical proof is given in Reference [9-1). Now, define the
following relations between the physical and computational spaces:

£ = &(z,p) (9-1)
n = n(z,y) (8-2)
The chain rule for partial differentiation vields the following expréssion:

RN
92 Bz 3_6 + 3z 6_77 (9-3)
The partial derivatives will be denoted using the subscripts notation, i.e., gi = ;.
Hence,

7] ) 0
% = 515&-' + 77::'35 (9'4)
and similarly, 5 5
a
5y = T gy (9-5)
Now consider a model PDE, such as
Ju du
3z + a% =0 (9-6)

This equation may be transformed from physical space to computational space using
Equations (9-4) and (9-5). As a result,

du ou ou du
f:a—é. + 7].1:'5; +a (gya_é. -+ T]y‘a—n) =0

which may be rearranged as

Ou du
(& + a&y)b‘é‘ + (7 + m?y)"a"y_’ =0 (9-7)



Grid Generation — Structured Grids 363

This equation is the one which will be solved in the computational domain. Also
note that the transformation derivatives &, &y, 7z, and 7y must be determined from
the functional relations (9-1) and (9-2). The determination of the transformation
derivatives will be addressed briefly in the next section and in more detail for a 3-D
case in Chapter 11, Comparing the original PDE (9-6) and the transformed equation
given in (9-7), it is obvious that the transformed equation is more complicated
than the original equation. Generally that is always the case. Thus, a trade-off
is introduced whereby advantages gained by using the generalized coordinates are
somehow counterbalanced by the resultant complexity of the PDE. However, the
advantages by far outweigh the complexity of the transformed PDE.

9.3 Metrics and the Jacobian of Transformation

Recall that in Equations (9-4) and (9-5), terms such as &, &, 7, and 7, appear.
These transformation derivatives are defined as the metrics of transformation or
simply as the metrics. The interpretation of the metrics is obvious considering the
following approximation:

_ % A¢
E:c t -6_1-‘ = K;
This expression indicates that the metrics represent the ratio of arc lengths in the
computational space to that of the physical space. The computation of the metrics
is considered next.
From Equations (9-1) and (9-2) the following differential expressions are ob-

tained
df¢ = &dr+§dy (9-8)
dn = mnzdz+ndy (9-9)

which are written in a compact form as

HRENIN o
dn Nz Ny dy

Reversing the role of independent variables, i.e.,

r = z(§n)
y = y&n
The following may be written
dr = z¢df+ Tqdn (9-11)

dy = yedf +yndn (9-12)
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In a compact form they are written as

dz
N (9-13)
dy Y Un dn
Comparing Equations (9-10) and (9-13), it can be concluded that
-1
f:l: Ey — Te In
Nz Ty Ye n
from which
& = Jiy (9-14)
& = —Jx, (9-15)
e = —Jy (9-16)
mo= Jrg (9-17)
where I
J=— (9-18)
Teln — YeZn

and is defined as the Jacobian of transformation.

The Jacobian, J, is interpreted as the ratio of the areas (volumes in 3-D) in the
computational space to that of the physical space.

Note that the actual values of the metrics or the Jacobian could be negative.
Obviously, the values depend on the specification of physical and computational
grid systems. The computed values of the metrics for various grid systems will
be presented shortly. For grid generation methods where analytical expressions
for the metrics can be written, they may be analytically evaluated or determined
numerically by the use of finite difference expres§ions. This point is illustrated in
the example problem given in Section 9.5.

9.4 Grid Generation Techniques

Before proceeding with the investigation of various grid generation techniques,

the objectives will be summarized. A grid system with the following features is
desired:

(1) A mapping which guarantees one-to-one correspondence ensuring grid lines of
the same family do not cross each other;

(2) Smoothness of the grid point distribution;
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(3) Orthogonality or near orthogonality of the grid lines;
(4) Options for grid point clustering.

As mentioned previously, some of the features enumerated, as in (2)—(4) above,
may not be achievable with a particular grid generation technique. In the next few
sections, various grid generation techniques are introduced.

9.5 Algebraic Grid Generation Techniques

The simplest grid generation technique is the algebraic method. The major
advantage of this scheme is the speed with which a grid can be generated. An
algebraic equation is used to relate the grid points in the computational domain
to those of the physical domain. This objective is met by using an interpolation
scheme between the specified boundary grid points to generate the interior grid
points. Clearly, many algebraic equations (or interpolation schemes, if preferred)
can be introduced for this purpose. To illustrate the procedure, consider the simple
physical domain depicted in Figure 9-4.
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Figure 9-4. The physical space which must be transformed to a
uniform rectangular computational space.
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Introducing the following algebraic relations will transform this nonrectangular
physical domain into a rectangular domain:

£ =1z (9-19)
_ ¥ .
"= (9-20)

In (9-20), y, represents the upper boundary which is expressed as

_ H, — H,
ye =H, + —1 %
Thus, it may be written that
£ ==z (9-21)
"= —g— (9-22)
H, + 7
which can be rearranged as
z=¢£ (9-23)
and
H, - H
= (i Bz o2

The grid system is generated as follows. The geometry in the physical space is
defined. For this particular problem, it is accomplished by specifying values of L,
H,, and H;. Next, the desired number of grid points defined by IM (the maximum
number of grid points in £) and JM (the maximum number of grid points in )
is specified. The equal grid spacing in the computational domain is produced as
follows:

Ag

-2
IM-1 (9-25)

1.0
JM -1

(9-26)
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i=1 > {prfe— =M

Figure 9-5. The rectangular computational domain with uniform
grid spacing.

Note that in Equation (9-20),  has been normalized, i.e., its value varies from
zero to one. With the equal step-sizes provided by Equations (9-25) and (9-26),
the uniform computational domain is constructed, which is shown in Figure 9-5 for
a 17 x 13 grid system. Therefore, the values of £ and 7 are known at each grid
point within this domain. Now Equations (9-23) and (9-24) are used to identify the
corresponding grid points in the physical space. For illustrative purposes, the grid
system generated for a physical domain defined by L = 4, Hy =2, and H; =4 is
shown in Figure 9-4.

As discussed previously, the metrics and the Jacobian of the transformation must
be evaluated before any transformed PDEs can be solved. In many instances, when
an algebraic model is used the metrics may be calculated analytically. This aspect is
obviously an advantage of the algebraic methods, since numerical computation of the
metrics will require additional computation time and may introduce some errors into
the system of equations of motion that are to be solved. To illustrate this peint, the
metrics in the proposed example are computed both analytically and numerically.

From Equation (9-21), metrics &; and &, can be determined analytically, resulting
in

E:: =1 (9—27)
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Sy = 0 (9—28)
Similarly, the following is obtained from Equation (9-22)
e _ (Hy — Hy)y/L s or
[Hy + (Hz ~ Hi)z/L]
H, - H, n
r = — 9-29
" I [Hi+ (H - B/ &29)
and
= 1 or
W = H,+ (Hy - H)z/L
1
n = (9-30)

H,+ (Hy— H))¢/L
and the Jacobian of transformation is
1
Zeln — YeTy
To compute the metrics numerically, Equations (9-14) through (9-18) are used.
Thus, the terms =z, y¢, =y, and y, are computed initially, from which the Jacobian
may be evaluated. These expressions are computed numerically using finite differ-
ence approximations. For example, a second-order central difference approximation
may be used to compute the transformation derivative z,, for the interior grid points,
ie.,
o Tl — Tij-1
Tn = 2A7
The transformation derivatives at the boundaries are evaluated with forward or
backward second-order approximations. For example, z, at the 7 = 1 boundary is
computed using the forward difference approximation
I = =31 +4Zi2 — i3
K 24An
A comparison of the metric 7, evaluated numerically and analytically by Equa-

tion (9-29) and the error introduced in the numerical computations is shown in
Table (9-1).

| j | Analytic | Numerical | ERROR |
4 | —.52632E — 01 | —.52632E — 01 | .44409F — 15

8 | —.12281F 00 [ —.12281E + 00 | —.13323F — 14
12 | —.19298E + 00 | —.19298F 4 00 | —.26645E — 14

Table 9-1. Comparison of the metric 1, at ¢ = 4 evaluated analytically

and numerically.

3
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Notice that for this simple grid the errors in the numerical computation of the
metrics are extremely small (practically zero!). The distributions of metrics are
shown in Figures 9-6a through 9-6d. Each tic mark on the vertical axis represents
a numerical change of 0.25 in Figures 9-6a and 9-6b, —0.1 in Figure 9-6¢, and
0.125 in Figure 9-6d. These figures illustrate the smooth variations of the metrics.
Erratic metric distributions, especially those with some sort of discontinuity, will
certainly invite disaster! It is strongly recommended that the metric distributions
be investigated prior to solving the governing PDEs of fluid motion.

The simple algebraic model just investigated does not include an option for
clustering. Next, some algebraic expressions which employ clustering techniques
are presented.

For flow problems where large gradients are concentrated in a specific region,
additional resolution of the flow properties is essential. As an example, flow in the
vicinity of a solid surface in a viscous fluid possesses large flow gradients. Accurate
computation of flow gradients in this region will require many grid points within
the domain. Rather than using a nearly uniform grid distribution in the physical
domain, grid points may be clustered in the regions of high flow gradients, which
reduces the total number of grid points and thus increases efficiency. Some examples
of such algebraic expressions with clustering options are provided below. As a first
example, consider the transformation given by

£ =z (9-31)

_ {8 1— /BB~ 1+ /H))
(A In{(8 + 1)/ (5~ 1) (%:32)

In this equation, 8 is the clustering parameter within the range of 1 to co. As
the value of § approaches 1, more grid points are clustered near the surface, where
y = 0. From Equations (9-31) and (9-32), the inverse of the transformation can be
written as

r = ¢ (9-33)

y = H B+1) - (8- {[(B+1)/(8 - 1]'™)
B+ 1)/(B-1]'7+1

(9-34)
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(c) (d)
Figures 9-6a, b, ¢, d. Distribution of metrics for the domain
shown in Figure 9-4.

The metrics of transformation may be determined analytically from the algebraic
relations (9-31) and (9-32) and are given below:

£ =1 (9-35)
e = 0 (9-36)
& = 0 (9-37)
W = 20 (9-38)

H{F -1 - (y/H)PHn[(B+1)/(8 - 1]}
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The physical and computational domains, using the transformations (9-31) and
(9-32), are shown in Figures 9-7a, 9-7b, and 9-7c. The grid system is generated for
a 21 x 24 grid, and clustering parameter values of 1.05 and 1.2 are used, respectively.
The distributions of metric 5, are shown in Figures 9-8a and 9-8b. Each tic mark on
the vertical axis represents a change of 0.5 in Figures 9-8a and 9-8b. Obviously, this
type of grid is suitable for boundary-layer type computations, where grid clustering
near the surface is required.

For a physical domain enclosed by lower and upper solid surfaces, clustering at
both surfaces must be considered. A flow field within a 2-D duct is such an example.
The following algebraic equations may be employed for this purpose:

E=gz (9-39)

In ({8 + (e + Dy/H] — 20}/{8 — [(2a + L)y/H] + 221}
B+ D/(5=1)

n=a+(l—a)
(9-40)

where 3 is the clustering parameter, and « defines where the clustering takes place.
When a = 0, the clustering is at y = H; whereas, when o = 1/2, clustering is
distributed equally at y = 0 and y = H. The inverse transformation is given by

T | = £ (9-41)

(2a+ 8) [(B+1)/(8 — 1)]-2V(1-2) 4 20 —

¥ = H i) 1+ (B /(@ - D]

(9-42)

Analytical expressions for the metrics are determined from Equations (9-39) and
(9-40) as

f:: = 1 (9—43)
6 = 0 (9-44)
= = 0 (9-45)

_ 28(2a + 1)(1 — o)
T H{F—[Ra+ Dy/H - 20F} In[(f+ 1)/(B - 1)]

(9-46)
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(a) B=1.05 (b} B =12

(¢) Computational domain.

Figures 9-7a, b, ¢. The physical and computational domains generated by
transformation functions (9-31) and (9-32).

Figures 9-8a, b. Metric distributions for the domains of Figures
9-7a and 9-7b.
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Grid systems generated for a domain with 21 x 24 grid points are shown in Figures 9-
9a and 9-9b for o = 1/2 and clustering parameters of 1.05 and 1.2, respectively.
The corresponding 7, metric distributions are shown in Figures 9-10a and 9-1Cb.
Each tic mark on the vertical axis represents a change of 0.5 in Figures 9-10a and
9-10b.
For problems where clustering in the interior of the domain is required, the
following relations may be utilized

§ =« (9-47)

n = A+ %sinh‘l [(% - 1) sinh(ﬁA)] (9-48)

‘where

1 1+ (ef — 1)(D/H)
A=gp'n [1 F(e? —1)(D/H)

In Equation (9-48), 3 is the clustering parameter in the range of 0 < 8 < oo,
and D is the y coordinate where clustering is desired. The inverse transformation
is given by:

r = ¢ | | (9-49)

_ sinh[8(n — A)] ‘
y =D _{1 + sinh(8A) (.9-50)
(a) B=1.05 (b) =12
Figures 9-9a, b. Grid system generated by the transformation
function (9-42).
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Figures 9-10a, b. Metric distributions for the domains shown
in Figure 9-9.

Note that for 8 = 0, no clustering is enforced, while a denser clustering of grid
points near D is produced for larger values of 8. Analytical expressions for the
metrics are determined from Equations (9-47) and (9-48) and are given by:

£ =1 - {9-51)
& = 0 (9-52)
n: = 0 (9-53)
n = sinh(A) (9-54)

BD {1+ [(y/D) - 1 sink?(BA)}

The algebraic expressions given by (9-49) and (9-50) are used to generate the
grid systems shown in Figures 9-11a through 9-11c. The clustering is specified at
D = H/2 for the domains shown in Figures 9-11a and 9-11b and at D = H/4 for
the domain shown in Figure 9-11c. The values of 3 are 5, 10, and 5, respectively.
The distributions of metric 7, are illustrated in Figures 9-12a through 9-12¢c. Each
tic mark on the vertical axis represents a change of 0.5 in Figures 9-12a through
9-12¢.

Next, an algebraic expression for generating a grid system around an arbitrary
shape is investigated. For simplicity, a conical body shape with a circular cross-
section will be assumed. The grid system is determined at cross sections where the
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relevant PDEs are to be solved. An example would be the solution of parabolized
Navier-Stokes equations over a conical configuration in a supersonic flow field. The
flow field is depicted in Figure 9-13 where cross-sectional planes are normal to the
body axis.

An alternate choice would be the selection of a grid system normal to the bedy
surface. For many applications where the flow is symmetrical, only half of the
domain needs to be solved. With that in mind, consider the generation of a grid
system at a cross section.

(a) D=H/2, B=5 (b) D=H/2, =10

(c) D=H/4, B=5

Figures 9-11a, b, c. Grid systems generated by the transformation
functions {9-49) and (9-50).

Note that since the physical domain is changing at each streamwise station, a new
grid system must be generated at each station. However, no difficulties arise since
the grid generating procedure is coded as a subroutine and called at each z-station.

e
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First a domain bounded by the body, the plane of symmetry, and the free stream
must be defined. The outer boundary in the free stream must be far enough away

A typical procedure is described next.

An alternate

selection for the outer boundary would be at the bow shock itself. However, the

to include the bow shock generated by the conical configuration.
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shock location is unknown; therefore, Rankine-Hugoniot relations must be utilized
to determine its location. This procedure is known as shock fitting and will be

investigated later in Chapter 13.
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Figures 9-12a, b, c. Metric distributions for the domains

&

shown in Figure 9-11.
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For now, the outer boundary is specified as the free stream. This specification
is accomplished by defining two elliptical shapes (or any other geometries you may
choose) with semi-major and semi-minor axes denoted by a, b1, and bs. This specifi-
cation is illustrated in Figure 9-14. The inner boundary represents the circular cone
and will be defined by its radius, R. The number of grid points in the circumferen-
tial direction is specified by KM, and for this example they are distributed equally
around the body. This distribution is accomplished by defining the incremental
angle DELTHET as DELTHET = n /(KM — 1), and subsequently computing 8 at
each k. The nomenclature is shown in Figure 9-15. Note that k£ = 1 is chosen on
the windward side of the body and k = KM is on the leeward side. The y and z
coordinates of the grid points on the body are easily computed from

y(1,k) = —Rcosf (9-55)
z(1,k) = Rsiné (9-56)

The corresponding grid points on the outer boundary are defined by rays emanating
from the origin with the appropriate angular positions.

Figure 9-13. The grid system in the physical domain.
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For this purpose, the length of the rays are obtained from the equation of an ellipse

as 1

{(59)+ (59

where appropriate values of a and b are used. Subsequently, the y and z coordinates
of the grid points on the outer boundary are determined by similar expressions given
in Equations (9-55) and (9-56).

For viscous flow computations, clustering in the vicinity of the body is desirable.
For this purpose the following expression is used:

wr-ef-al B PG )] e

In (9-57), 4 is the radial distance between the body and the outer boundary, i.e.,
6(k) = r(k) — R(k) (9-58)

Figure 9-14. Nomenclature required to describe the physical domain.
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and f is the clustering parameter. The clustering function given by Equation (9-57)
places = 0.0 at the outer boundary and n = 1.0 at the surface. The computational
domain is shown in Figure 9-16. A computational domain for the entire problem
equivalent to the physical space depicted in Figure 9-13 is shown in Figure 9-17. The
y and z coordinates within the physical domain are evaluated from the following
equations

y(k,5) = y(k,1) — c(k, 7) cos a(k) (9-59)

and

z2(k,j) = z(k,1) + c(k, 7) sina(k) (9-60)

where « is defined as the angle between the normal to the body in the cross-sectional
plane and the vertical direction. This relationship is also shown in Figure 9-15.

I
k=1

Figure 9-15. Nomenclature required to define the grid system.
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Shock

Figure 9-16. Computational grid system at a cross section.
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Figure 9-17. Computational domain for the 3-D problem.
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Figure 9-18. Cross-sectional grid system generated for a circular
conical configuration.

A grid system generated for a 37 x 26 grid is shown in Figure 9-18 for 8 = 1.4,
The configuration is defined by R = 1.0, ¢y = 2.0, b = 1.8, and b = 3.0. For
this problem the metrics are evaluated numerically by using a second-order central
difference approximation in the interior of the domain and by second-order forward
and backward difference approximations at the boundaries. The metric distribu-
tions are illustrated in Figures 9-19a through 9-19d, where the smoothness of the
metrics is clearly evident. Note that if the metric distribution had discontinuities,
further investigation of the suggested grid system and the solution procedure used
to obtain the grid and the metrics would be required.

The algebraic expressions used to generate the grid systems just presented are
a few among many appearing in various literature. However, the procedures used
to generate grids by algebraic methods are fundamentally similar.

For many applications, algebraic models provide a reasonable grid system with
continuous and smooth metric distributions. However, if grid smoothness, skewness,
and orthogonality are of concern, grid systems generated by solving PDEs must be
used. This option includes elliptic, parabolic, or hyperbolic grid generators, which
will be discussed in the next section. For the time being, briefly consider the elliptic
grid generators. In this technique, some type of elliptic PDEs is solved to identify
the coordinates of the grid points in the physical space. This approach is similar to
what was just accomplished with algebraic models, except now a system of PDEs
must be solved.
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(d)

, ¢, d. Metric distributions for the doma
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(1) Computationally, they are very fast;
(2) Metrics may be evaluated analytically, thus avoiding numerical errors;

(3) The ability to cluster grid points in different regions can be easily imple-
mented.

The disadvantages are:

(1) Discontinuities at a boundary may propagate into the interior region which
could lead to errors due to sudden changes in the metrics;

(2) Control of grid smoothness and skewness is a difficult task.

Some of the disadvantages of the algebraic grid generators are overcome by
the use of PDE grid generators which is, of course, accomplished with increased
computational time. This procedure will be described in the following section.

9.6 Partial Differential Equation Techniques

A grid generation scheme which is gaining popularity is one in which PDEs
are used to create the grid system. In these methods, a system of PDEs is solved
for the location of the grid points in the physical space, whereas the computational
domain is a rectangular shape with uniform grid spacing. These methods may be
categorized as an elliptic, parabolic, or hyperbolic system of PDEs. The elliptic
grid generator is the most extensively developed method. It is commonly used for
2-D problems and the procedure has been extended to 3-D problems. Parabolic and
hyperbolic grid generators are not as well developed but have some very interesting
features. In this section all three methods will be introduced.

The presentation of various schemes will be limited to 2-D problems; however,
methods which can be extended to 3-D problems will be identified. By 3-D problems
(in grid generation), we refer to situations where all three coordinates are trans-
formed. For some 3-D applications, a coordinate transformation in the streamwise
direction may not be required, i.e., £ = z. For such problems, the grid system will
be generated only in a 2-D sense at each streamwise location as needed. Thus,
the 2-D grid generators are used extensively for 3-D computations. A typical grid
system was shown in Figure 9-13.

Due to the advantages previously introduced, the generalized coordinate system
will be used in the grid generation techniques which are presented next.

9.7 Elliptic Grid Generators

For domains where all the physical boundaries are specified, elliptic grid genera-
tors work very well. A system of elliptic equations in the form of Laplace’s equation
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or Poisson’s equation is introduced, which is solved for the coordinates of the grid
points in the physical domain. Any iterative scheme such as Gauss-Seidel, point
successive over relaxation (PSOR), etc., may be used to solve the elliptic PDEs.

Before proceeding with the mathematical development, consider the fundamen-
tal reasoning behind this procedure. Recall that the heat conduction equation for a
steady, 2-D problem is reduced to an elliptic PDE. If a rectangular domain with the
values of temperature on the boundaries is specified, the temperature distribution
within the interior points is easily obtained by any iterative scheme. The solution
provides the isothermal lines. Consider two such solutions shown in Figure 9-20.

2 L
o o
[=] o
n "]
o1 o7
s >~
(1] 1)
™~ o~
o7 S
[ o K \
=] o s N
o T u o T T T
0.00 Q.25 0. 50 0.75 1.00 0.00 0.25 0. 50 0.75 1.00
X X
Figure 9-20. Isothermal lines for the two rectangular domains.

Superimposing the two solutions yields a solution shown in Figure 9-21.

Figure 9-21. The superimposed solution for the rectangular domain.

Note that the governing equation is linear; thus, addition of solutions is allowed.
If a heat source within the domain is specified, the isothermal lines will be altered

)
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and can be oriented to a particular region. Now, the following question is posed.
What if the isothermal lines are to represent grid lines? Indeed, that is precisely the
fundamental idea of using elliptic PDEs to generate a grid system. The dependent
variables are the z and v coordinates of the grid points in the physical space. Thus,
for a closed domain, the distribution of grid points on the boundaries are specified
and a set of elliptic PDEs is solved to locate the coordinates of the interior grid
points.
Consider a system of elliptic PDEs of the form

Ezz+ &y = 0 (9-61)

ez + Ty = 0 (9-62)
where ¢ and 7 represent the coordinates in the computational domain. Equations (9-
61) and (9-62) may be solved by any of the iterative techniques introduced previ-
ously in Chapter 5. However, computation must take place in a rectangular domain
with uniform grid spacing as described earlier. To transform the elliptic PDEs,
the dependent and independent variables are interchanged. The mathematical ex-
pressions employed for this purpose are derived in Appendix F. With the use of
Equation (F-10), the elliptic equations (9-61) and (9-62) become:

azege — 2bxen + Ty = 0 (9-63)
ayee — 2bygn +cym = 0 (9-64)
where
a=z+y ' (9-65)
b = zexy + Y (9-66)
c = z¢+y; (9-67)

The system of elliptic equations (9-63) and (9-64) is solved in the computational
domain (£, 1) in order to provide the grid point locations in the physical space (z, y).
Note that the equations are nonlinear; thus, a linearization procedure must be
employed. For simplicity, lagging of the coefficients will be used, i.e., the coefficients
a, b, and ¢ are evaluated at the previous iteration level.

Three categories of physical domains will be considered here. They are: (1) a
simply-connected domain, (2) a doubly-connected domain, and (3) a multiply-
connected domain. The description of each domain, specification of boundary points
(conditions), examples, and analyses are given next.

9.7.1 Simply-Connected Domain

By definition a simply-connected region is one which is reducible and can be con-
tracted to a point. Thus, for a simply-connected region, there are no objects within

-
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the domain. An example of a simply-connected domain is shown in Figure 9-22a,
The corresponding computational domain is shown in Figure 9-22b. Another ex-
ample is shown in Figure 9-23a, whereas Figure 9-23b represents the corresponding
computational domain.

Figure 9-22a. Physical domain for simply-connected region.

i=IM

Mlb rrrorrrrrrrrryrogrirosrrasiny 5
i=1 i=1M

Figure 9-22b. Computational domain.

Now return to the elliptic equations (9-63) and (9-64). In order to investigate a
few iterative solution schemes, the FDE is obtained by replacing the partial deriva-
tives with a second-order central difference approximation. From Equation (9-63):
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[$i+1,j — 225+ -’Ei—1,j] 9% [$i+1,j+1 = Tit1,4-1 + Li-1,j-1 — Ti-1,j+1

(Ag)? 4484

Tije1 — 2045 + Iu~1]
+c =0
[ (An)?

If the Gauss-Seidel iterative method is used, the equation is rearranged as:

a c a
2 [(Aﬁ)’ + (A"?)Q] Tij = '(“A_E')_Q[Z'ng’ + Ti-14]

¢ b
+'('W[xi,j+l + 2 51) — M[ﬂiﬂuﬂ = Lip1-1 + Tic14-1 — Tic1441]

j=iM
"
1
j=11
i=1 i1
Figure 9-23a. Physical domain.
j=IM
j=1 Il Pl d e Ll iadd ST AT, ./////
i=1 1 12 13 IM

Figure 9-23b. Computational domain.
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From which

Tij = L[E-'+1 i+ Tioyg] + *‘C—[Ii vl + Tij-1)
e X

b a c
—M[Jiiﬂjﬂ — Tit15-1+ Tio1 -1 — $¢~1J+1]} /2 {(AE)Q + (A'fl)z] (9-68)
Similarly, from Equation (9-64)

a c
Yij = m[ﬂmg + Yim15] + W[ﬁ%‘g‘ﬂ + ¥ij-1]

b
_—2A€An[y¢+m‘+1 = Yi+1j-1+ Yi-15-1 — yi—1J+1]} /2 [(Aag)2 + (Acfl)zl (9-69)

To start the solution, an initial distribution of z and y coordinates of the grid
points within the physical domain must be provided. As discussed previously, this
distribution may be obtained by using an algebraic model. The coefficients a, b,
and c appearing in Equations (9-68) and (9-69) are determined from Equations (9-
65) through (9-67) using finite difference approximations. The = and y values in
these expressions are provided by the initial distributions for the first iteration, and
subsequently from the previous iteration, i.e., the computation of coefficients lag
by one iterative level. The iterative solution continues until a specified convergence
criterion is met. For this purpose the total changes in the dependent variables are
evaluated as

j=JMM1
i=IMM1

ERRORX = Y, ABS [z} -zf)]
§=2

LY
i=2

j=JMM1
i=IMM1

ERRORY = Y. ABS[yf' -]

=2
j=2

ERRORT = ERRORX + ERRORY

where k represents the iterative level. The convergence criterion is set as ERRORT
< ERRORMAX where ERRORMAX is a specified input.

Other iterative schemes may be used to solve the system of equations given by
(9-63) and (9-64). For example, the line Gauss-Seidel formulation yields:
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(AE)? Tivig — (AE)2 (An)g (AR Tty =
-——b c
2AEA7] [zf+l|j+1 f‘:-ll‘_? 1+ -Tfjlld—— zf-—l,j+l] - (An)2 [ ;J+1 -+ zk-i—l ] (9_70)

a
k
+ =

a 1 a c
(Ag)zyt:-lg [(A&) (An)z] yﬁ}l‘l (Ag)zys 14 —

b c
ZAEAn [y1+1,3+1 ’!If:l],g 1+ yffll,j-l - yf—1,j+1] - “(‘51‘755 [ny+1 + yfj—ll] (9-71)
and the line SOR results in
| Lkl a c k+1 T+ a ok —
(Aﬁ)2 g~ (A"S)2 (An)? (AgyT" W =

—2(1 — w) [(Aag)a + (A(;)?] ¥,

b
——— | * k1 k+1
+w2AEAT] [zl'+l,j+1 x‘+1,] 1 + :L',_la 1 .'E“__lj_l_l]

c
w——( An)? [xf,j+1 + xfj_l.l (9-72)

k+1

a ] 1
mﬂ”"*” [(A&)ﬁ (An)Q] i

+RgR =

Qa c
-2(1 — w) [(A€)2 + (An)z] vt

b
+w 2AEAT] [y1+1,_1+1 y|+1g 1 + ykjlld 1 yf—l,j+1]

(A B [ys,g+1 + 5 11] (9-73)

Next, an example is given where the elliptic grid generator just described is
used to create the required grid system. Consider an axisymmetric blunt body
at zero degree angle of attack. The configuration is an elliptical shape defined by
the semi-major axis a; and semi-minor axis b;. Similarly, an elliptically shaped
outer boundary is defined by specifying a; and b;. The nomenclature is shown in
Figure 9-24. Since the grid system generated here will be used in the future to solve
the Euler equations, the first grid line, i.e., 1 = 1, is specified below the stagnation

i
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line (which is aligned along the z-axis). Symmetry of grid lines about the T-axis
for grid lines i = 1 and i = 2 is enforced.

® [x(i, M), y(i,Im))
@ [x(i,j), (i, j)]
y @ [xti, 1), y(i, 1)

Figure 9-24. Tllustration of the nomenclature for the proposed example.

The reason for this selection of grid lines is that some difficulty in solving the Euler
equations is observed if grid line ¢ = 1 is chosen along the stagnation line. Before the
elliptic equations (9-63) and (9-64) can be solved, the grid point distribution along
the boundaries and an initial grid point distribution within the domain must be
specified. The distribution of grid points along the boundaries may be accomplished
by using various procedures. One may select equal spacing of grid points on the
body or distribute them by defining an angular position 6. Clustering of points
may be specified in different regions. For example, one may choose to cluster grid
points in the vicinity of the stagnation point. For the application shown, an equally
divided angular position is used. The intersection of a ray originating from point B
(Figure 9-24) at an angular position 6(i) with the body surface will define the z and
Yy coordinate of grid point % at the surface where J = 1. Similarly, the grid point
distribution on the outer boundary, where j = JM, is determined. In the radial
direction, an algebraic expression with a clustering option is used to distribute the
grid points. Since the step-size in the computational domain denoted by A¢ and
An can be selected arbitrarily, it is sometimes set to unity, i.e., Af = Anp = 1.0.
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That is the case for the algebraic expression given by
1177

-6
1)1

[+ ()]

where v = (j — 1)/(JM — 1). The radial location of grid points is determined from

c(i,3) = 6()) {1+ 8

(9-74)

DL(3, j) = RDIS(i, 1) + c(i, j) (9-75)

where the nomenclature is given in Figure (9-24). This procedure is also employed
to distribute the grid points on the radial boundaries along i = 2 and 7 = I'M.

A grid system constructed by the algebraic procedure just described is shown in
Figure 9-256a.

Figure 9-25a. Algebraic grid system for the simply-connected domain.

The relevant data includes a; = 2, by = 1.25, a = 3.0, by = 3.5, IM = 16,
JM = 12, and the clustering parameter is set to 5. With this high value of 3,
clustering of grid points is not reinforced. This setting is chosen for the purpose
of clarity in the figure. With the initial grid point distribution available, it is
now possible to use the elliptic grid generator, i.e., Equations (9-63) and (9-64).
The convergence criterion ERRORMAX is set to 0.1. The solution is presented
in Figure 9-25b. The metrics &, &, 7., and 7, are computed numerically using a
second-order approximate finite difference scheme. A central difference expression is

-~
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used for the interior points, whereas forward and backward approximation schemesg
are utilized at the boundaries. The metric distributions are presented in Figures 9-
26a through 9-26d. Smooth distribution of the metrics is evident. It must be
emphasized again that before an attempt is made to solve the governing PDEs of
fluid motion in a grid system, the metrics must be very carefully investigated. This
step will prevent many unnecessary problems due to the failure of a code which may
have its roots in the grid generation routine.

Figure 9-25b. Grid system obtained by solving a system of elliptic
partial differential equations.

Hence, it is a good practice to analyze the metric distributions prior to solving
the equations of fluid motion. The analysis is facilitated by plotting the metric
distributions as shown in Figure 9-26.

Two observations can be made with regard to the grid system shown in Figure 9-
25b. First, there is clearly a high degree of skewness in some regions of the domain.
This skewness will cause some difficulty and inaccuracy in the computation of the
normal gradients of flow properties at the surface. To overcome this problem, the
grid lines should be perpendicular at the surface, which will improve the accuracy
and simplify the computation of the normal gradients at the surface. For example,
heat transfer calculations require the normal gradient of the temperature at the
surface. Thus, it seems extremely useful to include an option where orthogonality
of the grid lines can be reinforced at the surface. This issue will be addressed in
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the section entitled “Coordinate System Control”.

To

The second observation is related to grid point clustering. The elliptic equa-

tions (9-63) and (9-64) do not include an option for grid point clustering.
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Figures 9-26a, b, ¢, d. Metric distributions for the grid system
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However, the clustering option is not within the elliptic grid generator; and, in
a classical sense, grid point control is not being used in the elliptic system. Ty
illustrate this point, the previous domain is used with a grid clustering parame.-
ter of # = 1.2 for the algebraic model. The results are shown in Figures 9-275

TS

Figure 9-27a. Grid system generated by the é,lgebraic model.

Figure 9-27b. Grid system generated by elliptic system.
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and 9-27b. A wide range of grid clustering options are available for elliptic grid
generators which will be reviewed shortly.

9.7.2 Doubly-Connected Domain

A doubly-connected domain is defined as a region which is not reducible. A
detailed description of doubly- and multiply-connected regions is given in Refer-
ence [9-2]. For our purposes, a domain which includes one configuration within the
region of interest is classified as a doubly-connected domain. A doubly-connected
region may be rendered simply-connected by introducing a suitable branch cut.
This procedure is accomplished by inserting a branch cut that extends from a point
on the body (interior boundary) to a point on the outer boundary. As an example,
consider the airfoil shown in Figure 9-28. Select an outer boundary by specifying
some geometrical configuration such as a circle, ellipse, rectangle, ete. In order to
unwrap the domain such that a rectangular computational domain can be created,
a branch cut, shown as line AC in Figure 9-28, is introduced. An intermediate step
is shown in Figure 9-29.

Figure 9-28. Doubly-connected region and the branch cut.
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Figure 9-29. Unwrapping of the doubly-connected region.

The domain is stretched and deformed to create a rectangular shape (computa-
tional domain) as shown in Figure 9-30.

A
/////////////////y////////////////// A

B,
g

Figure 9-30. Computational domain.

The boundaries of the domain are identified by B, Ba, Bs, and B,. A uniformly
distributed grid system is constructed in the computational space; therefore, the
location of every grid point in the computational domain, including the boundaries,
is known. The object then is to employ the elliptic grid generator to determine
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the location of grid points in the physical space. Thus, the elliptic equations to be
solved are Equations (9-63) and (9-64). The procedure is similar to the one used
for simply-connected regions. That is, the grid point distribution on the boundaries
of the physical domain must be defined and an initial grid point distribution for
the interior region must be provided. One distinct difference is the treatment of
grid points on the boundaries B3 and By, i.e., on the branch cut. These points
must be free to float, i.e., the location of the grids along line AC must be updated.
This update is accomplished by computing new values of r,; and y,; after each
iteration. It is not necessary to compute the values of zyx; and yim,, since grid
lines i = 1 and 4 = I'M are coincident; therefore, Tium,; = 1, and yrmy = y1,4- For
the Gauss-Seidel formulation, z,; and y,; are computed according to

Ty = {_(_A_ag_)_g 24 + Zrin ) + _(Kcn_)_ﬁ— [z1541 + T15-1] (9-76)

__l_’_[._.+._z.]/2a+c
2AEAY Tai+1 — T2,5-1 T TIM1,5-1 IM1j+1 (A§)2 (Aﬂ)2

g = {'(EGE)E [v2g + wrmgl + (ch)—g w1541 + Y15-1] (9-77)

___b_._[._‘_|.._.]/za+c
2A¢AD Yo s+1 — Y2,-1 T YIM1 -1 — YIM1j+1 (AE) d

where IM1=IM — 1.

These equations are used after each iteration to determine the new location of
the grid points on the branch cut. Note that if the grid points on the branch cut are
kept fixed, highly skewed grids at the branch cut are produced, which is undesirable.

To illustrate the solution procedure, the following example is proposed. Consider
an airfoil whose geometry is given by

y= O—ti(o.zgegxi — 0.126z — 0.35162% + 0.2843z° — 0.1015z*) (9-78)

In this equation, t is the maximum thickness in percentage of the chord and the
origin of the coordinate system is located at the leading edge. It is required that a
grid system be generated between the airfoil and an outer boundary defined by a
circle of radius, R, with the origin at the mid-chord. The physical domain is shown
in Figure 9-31. The grid point distribution on the boundaries may be specified using
various methods. Here an increment, Az, is determined as
c
Axr =
TE UM 21
where I M must be specified as an odd number, forcing grid points at the leading and
trailing edges and symmetry of grid point distribution between the upper and lower
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surfaces. Thus, the z coordinates of the grid points on the body can be defined for
each (i, 1) around the airfoil. Once the z coordinates are known, the y coordinates
are evaluated by employing Equation (9-78). The grid points on the outer boundary
are evaluated as follows. Locate the origin of the circle at the mid-chord and use
equally spaced angular positions for each point on the outer boundary, i.e.,

2r

DE =
LTAI T —1

DELTA(i) = i (DELTAI)

2(i,JM) = R+*cos(DELTA(4))

y(i,JM) = —Rx*sin(DELTA(:))

where R is the radius of the circle defining the outer boundary. Since all the grid

i=IMP1/2

Figure 9-31. The physical domain used to illustrate the application
of an elliptic grid generator to a doubly-connected
region.
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points should be expressed in the same coordinate system, a shift of the coordi-
nates of the inner grid points on the airfoil to mid-chord is imposed. Now, the
corresponding grid points for each i on the body (where j = 1) and on the outer
boundary (where j = JM) are connected by straight lines. The grid points in the
interior region are distributed along these lines. This distribution may be equally
spaced, or some sort of grid clustering scheme employed. Thus, an algebraic grid
system is constructed which is shown in Figure 9-32.

_ Figure 9-32. Algebraic grid system used as initial grid point distribution
required by the elliptic grid generator.

Now the elliptic PDEs given by Equations (9-63) and (9-64) can be solved. The
resulting grid system is shown in Figure 9-33.

Figure 9-33. Grid system obtained by elliptic grid generator.

-
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Clearly the selection of the physical domain is dependent on the particular fluid
mechanics problem to be solved. The methods by which the initial grid distribution
is created is arbitrary and any procedure may be used for this purpose.

Before solving the differential equations of fluid motion, the grid system must
be investigated carefully for grid point smoothness, skewness, orthogonality, and
the metric distributions. The distributions of the transformation derivatives z¢, ¥,
Tn, and y, are shown in Figures 9-34a through 9-34d, which indicate well-behaved
distributions.

9.7.3 Multiply-Connected Domain

The same procedure which applied to a doubly-connected region may be ex-
tended to a multiply-connected region. For a multiply-connected region, more than
one object is located within the domain. A branch cut is introduced to connect one
body to the outer boundary. In addition, other cuts are inserted between various
objects within the domain. A graphical illustration is shown in Figure 9-35 which
represents the physical domain.

Figure 9-35. Physical domain for a multiply-connected region.

Figure 9-36 shows a typical intermediate step, and Figure 9-37 represents the com-
putational space.

The elliptic equations (9-63) and (9-64) may be solved by any iterative method
for this domain. The procedure for specifying the boundary points and initial
distribution of the grid points within the domain is similar to that of a doubly-
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connected region. Again, the grid points on the branch cuts must be computeq
after each iteration level, i.e., the grid points on the branch cuts and, thus, the
shape of the branch cuts, are changing from one iteration to the next. The iterative
procedure is continued until a specified convergence criterion is satisfied.

s
s
v
'////f//// /; / l[///// 7 //7// //////’77/1l / il//// s
B7 BS B1 Bs Ba

Figure 9-37. Computational domain.

For illustrative purposes, consider the airfoil described in the previous application.

Now, insert two such airfoils within the circular domain. Grid points are distributed
on the bodies and the outer boundary as well as the branch cuts. Once the grid
points on the boundaries are specified, the grid point distribution within the domain
can be determined by any algebraic procedure. For example, grid points may be

_— ‘i
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distributed on straight rays with equal spacing. This method was used to generate
the grid system shown in Figure 9-38.

21101

13414

1

Figure 9-38. Algebraic grid point distribution for the multiply-connected region.

i

Figure 9-39. Grid system generated by elliptic PDEs.

The crude distribution of grid points within the domain is clearly evident. This
distribution is used as an initial condition to start the elliptic grid generator, i.e.,
Equations (9-63) and (9-64). The solution is shown in Figure 9-39. Two observations
can be made. First, the grid points are distributed smoothly within the domain;
second, the original branch cuts have been reshaped due to readjustment of the grid
points.
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9.8 Coordinate System Control

The elliptic PDEs given in Equations (9-61) and (9-62) do not include any op-
tion for grid point control within the domain. The location of grid points around the
body and outer boundary is input; therefore, control of grid spacing on the bound-
aries is established by the user. In order to use the grid point control within the
domain, Poisson’s equation must be introduced. The logic behind the fundamenta}
idea is similar to that found in the previous discussion which is briefly reviewed
here. Consider the steady state heat conduction in 2-D with a source term. By
varying the location and strength of the heat source, the isothermal lines are mod-
ified. This reasoning is adapted to a grid generation technique produced by elliptic
PDEs. Thus, a source term is added to the right-hand sides of Equations (9-61)
and (9-62). The resulting Poisson equations are:

Ezz+§yy = P(f,ﬂ) (9'79)
N2z + Ny = Q(ﬁs 77) (9"80)

Since the numerical solution of Equations (9-79) and (9-80) is performed in a rect-
angular domain with equal spacing, a transformation of equations and associated
boundary conditions is required. For this purpose, equations derived in Appendix F
are used. The resulting transformed equations are:

1
aZge — 2bzey + ey = “ﬁ(P‘”E + Qz,) (9-81)

1
aYee — 2bYeq + CYyy = —'j;(P Ve + Quy) (9-82)

These elliptic equations may be solved by any iterative scheme, provided P and Q
are given.

"The functions P and Q are selected according to a specific need. The requirement
may be a clustering of grid points at some prescribed location or forcing orthogo-
nality at the surface. Among several expressions available, two such functions will
be investigated here.

9.8.1 Grid Point Clustering

Grid point clustering is enforced by selection of the functions P and Q. The
selection is based on grid point attraction in the vicinity of a defined grid line(s)
or grid point(s) or a combination of both. For example, it might be desirable to
cluster the grid points in the vicinity of line 7; or near point (&,m;)- A particular
functional relation with such capabilities was introduced in Reference [9-1]. The
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relations are given in exponential form as

NI
P = — % a(IS)mgitaiey expl-c(IS)ABS(I ~ IALUIS))] + (9.83)
NJ 1
- b(J8) apsr-Tazcrsy) ©XP { ~d(JS) [(I — TAL(JS))? + (J — JAL(_]S))2]!}
NI
Q = - ¥ alIS)psi sty expl-c(IS)ABS(J — JAL(IS))} + (9-84)

- J‘;s; b(J ) AL exp { d(IS) [(I - TAL(JS))? + (J — JAL(JS))?]*}

Note that these equations are used when An = A{ = 1. Otherwise,

P = —Zam|£ Emlexp( ~Cml€ = &ml)

Zlb é g: exp {—df. [(E — &)+ (- n,,)’]*} (9-85)

M

Q = —z_laml"_ " exp(~ml7 = 1)

N
SR ep{-n€-er+0-nr]'}  ©80)
where the amplification factors a and b and the decay factors ¢ and d are inputs.
NI or M is the number of constant grid lines £ and/or n around which clustering
is enforced, whereas TAL(IS) and JAL(IS) specify the lines. Similarly, NJ or N
is the number of grid points around which clustering is enforced with TAL(JS) and
JAL(JS) specifying the points.

Each term in these equations has a special role. The first exponential term in
Equation (9-83) attracts the lines of constant £ to the vicinity of lines &;, where &
may be specified as one line or a series of lines. For example, it may be advantageous
to attract grid lines toward a particular grid line corresponding to ¢ = 16, in which
case NI =1 and TAL(1) = 16. For grid line attraction toward a set of grid lines
(such as i = 15, 16, and 17), NI = 3 and

TAL(1) = 15
TAL(2) = 16
TAL(3) = 17
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¢. Clustering at { = 16 d. Clustering at { = 16, j = 14
Figure 9-40. Grid systems generated by elliptic PDEs.

Similar effects are produced by Equation (9-84) for the lines of constant 7.
The inclusion of the sign function [term [I - TAL(IS)]/[ABS(I — TAL(IS))] in
Equation (9-83) and similar term in Equation (9-84)] enables the attraction on
both sides of & and 7 lines. Elimination of this term will cause attraction on one
side and repulsion on the other side.

The second term in Equation (9-83) clusters the lines of constant € around
point(s) &, n;. A similar effect is produced by the second term of Equation (9-84),
where the lines of constant 7 are attracted toward point(s) &;, ;-

To illustrate the effect of each term, they are investigated separately. Consider
the symmetrical airfoil described in Equation (9-78), where a value of 0.25 is used
for t. When P and Q are set equal to zero, a grid system with no clustering is
generated, i.e., Equations (9-63) and (9-64) are solved. The grid system is shown
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in Figure 9-40a where IM and JM are set to 21 and 18, respectively. When the
first term of Equation (9-84) is employed, clustering in the vicinity of constant n
lines is enforced. For the example shown in Figure 9-40b, clustering at a grid line
corresponding to j = 14 was enforced. An amplification factor of a = 40 and a
decay factor of ¢ = 2.0 was used. A similar effect is shown when the first term of
Equation (9-83) is used. The result is illustrated in Figure 9-40c, where the grid line
attraction is enforced toward the line 7 = 16 with ¢ = 10 and ¢ = 1.2. Finally, the
second terms in P and Q are used to cluster grid points near point i = 16, j = 14.
The amplification and decay factors were specified as 200 and 1.5, respectively. The
result is shown in Figure 9-40d.

An obvious question at this point is: How does one decide on the values of the
amplification and decay factors required for P and Q? These values depend on
the particular problem, i.e., the given physical domain, the number of grid points
used, boundary points, etc. However, there is no dependency function which will
automatically provide the values of a, b, ¢, and d. Thus, a trial and error procedure
is used. Note that the values used in one problem are not necessarily valid for a
different problem. Usually a few sets of values must be investigated in order to
obtain the desired grid point distribution.

9.8.2 Orthogonality at the Surface

In the previous section the option of grid point clustering was investigated.
The grid system generated by these methods may not be satisfactory for some
applications due to large skewness of the grid lines, especially when they occur at
the surface. The difficulty is encountered when normal gradients of flow properties
are required. To overcome this deficiency, a forcing function is used which will
enforce orthogonality of grid lines at the surface. The resulting grid system simplifies
the computation of the normal gradients and increases their accuracy. A forcing
function to meet this criterion was introduced in Ref. [9-3]. The proposed functions
are

P = Piexp[-a(n— m)] (9-87)
and
Q = Quexp[-b(n — m)] (9-88)
where a and b are specified as positive constants and P, and @, are given by
P = J{yRi — z4R) g, (9-89)
Q] = J(—’yERl + I£R2)|ﬂ=’h (9-90)
whereas

R = —J*azg — 2b2gn + cZop) ly=m (9-91)
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Ry, = _Jz(ayfi ~ 2bYen + cym)ln=m (9“92)

The governing elliptic PDEs with the forcing functions are

aze — ey + cay = —%{PI [exp{—-a(’q - m)}]xe
+Qu | exp{=bl 1)}z | (6-93)
and
aYee — 2byen + cym = _%{Pl [em{—a(n - m)}}ye
+Q [exp{—b(n - Th)}} yn} (9-94)

At this point the central issue is how the constraints must be imposed on orthog-
onality and clustering. The orthogonality of the grid lines, &, to the body surface
defined by n = 7, is considered first. This condition implies that

VE-Vn = |VE(|Vn|cosb (9-95)

where 8 of 90°provides orthogonality. This equation is expanded as

&ne + &y = [(&+ ) (2 + 7)) ¥ oos8 (9-96)

The following equation results after substitution of the transformation derivatives
given by Equations (9-14) through (9-17):

ToTe + Yelhy = — [(a:f7 + y,";) (:cg + yg)] ' cos (9-97)

A second condition is introduced to define the grid line spacing between 7, (at
the surface) and 7,. This specification is accomplished by considering ds = [(dz)? +
(dy)?)}, where s is the distance along the constant £ lines. Utilizing Equations (9-1 1)
and (9-12), ds can be expressed as

ds = [(zedf + -'1717d7i)2 + (yed§ + yﬂdn)z]%

which may be reduced to
ds = [(zy)" + (v4)*]7dn (9-98)

when applied along the lines of constant &, e, when d€ = 0.

In order to solve the elliptic equations given by (9-93) and (9-94), the forcing
terms on the right-hand sides must be computed. This procedure will require com-
putation of Ry, Ry, P}, and Q,, which are all evaluated at 7 = m. Since the grid
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line n, is the body surface, grid point distribution along this boundary is specified.
Therefore, the £ derivatives along the surface may be computed according to

Tip1,1 — Ti-1,1

ze(i1) = TR (9-99)
ye(i,1) = % (9-100)
Teli, 1) = THb “é”;;fx“"l (9-101)
vee(i, 1) = Yi+1,1 “(iyg;z'*'yi—l,l (9-102)

To compute the i derivatives, Equations (9-97) and (9-98) are solved for z, and

Yn, yielding :

1

Ty = sp(—T¢cos B — yesinb)/(z} + yz)?
and '

1

Yn = 8p(—ye cos O + ¢ sin 0)/(3:2 + yg)’

When 4 is equal to 90°, the equations above are reduced to

Ty = 85(—yg)/ (2 + y?)* (9-103)
and
1
Yn = sn(ze)/(z} + v3)? (9-104)
where
5y =2 _As (9-105)

- d_T] £=constant N -A—":,'-
The second-order derivatives with respect to n are computed according to

—73:,‘,1 -+ 8.’17,',2 — X

Zm(iy1) = =575 £ - 3z,(i, 1)/An (9-106)

d
- 1) = Wt 82 T U g gy 9-107
yfm(z, )"' 2(AT])2 yfl(z: )/ n (' )

This completes the equations necessary to evaluate all the derivatives at n = m
used in the computation of P, and .

The second-order derivatives on the left-hand sides of Equations (9-93) and
(9-94) are approximated by central difference expressions. The first order deriva-
tives appearing on the right-hand side are approximated by forward or backward
formulas. The reason for this approximation is to prevent any instabilities associ-
ated with central differencing, which could occur for large values of P} and ;. For
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example, if P, is positive, z; and Y are approximated by forward differencing; and
if P is negative, a backward differencing is used. Similarly, if @, is positive, zy and
Yo are approximated by forward differencing—otherwise a backward differencing is
used.

To solve the elliptic system given by Equations (9-93) and (9-94), any iterative
scheme may be used. A typical solution is shown in F igure 9-41.

Figure 9-41.  Grid systems generated with.and without orthogonality
condition.

In this example, a grid system is generated for a blunt body configuration. For
comparative purposes a similar grid system with no orthogonality at the surface is
also shown. The values of constants a and b were specified as 1.0, whereas As was
given as a function of 7 locations, i.e., As increased along the surface.

Before closing this section, consider the following observations on elliptic grid
generators. The advantages of this class of grid generators are:

(1) Will provide smooth grid point distribution, i.e., if a boundary discontinuity
point exists, it will be smoothed out in the interior domain;

(2) Numerous options for grid clustering and surface orthogonality are available;

(3) Method can be extended to 3-D problems.

Among disadvantages of the method are:

(1) Computation time is large (compared to algebraic methods or hyperbolic grid
generators);

(2) Specification of the forcing functions P and Q (or the constants used in these
functions) is not easy;

(3) Metrics must be computed numerically.
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9.9 Hyperbolic Grid Generation Techniques

It has been shown how elliptic PDEs are used to generate grid systems for
closed domains. For open domains, where the outer boundary cannot be prescribed,
hyperbolic PDEs may be developed to provide the required grid generators. Since a
marching procedure is used to solve such a system, computationally they are faster
than elliptic grid generators.

The mathematical development is based on two constraints. The first constraint
imposes orthogonality of grid lines at the surface as well as the interior domain.
Mathematically the orthogonality is described by the slopes being negative recipro-
cals. The slope of constant £ and 7 lines are determined as follows. Along a line of
constant £, the differential df is zero. Considering a 2-D problem, it may be written
that

df = &dx + §ydy
For d§ = 0, the slope is P :
Y T
a4 = —2= 9-108
= My (9-108)
Similarly, for lines of constant 7,
dn = n.dz + n,dy
from which is obtained p
Y Nz
2l o=k 9-109
= M=y (9-109)
Now, imposing the orthogonality condition,
gyl dy __,
dm £=c dz n=c¢ -

or using Equations (9-108) and (9-109),

or
£ate + &7y = 0 (9-110)
Equation (9-110) is rearranged using Equations (9-14) through (9-17) to give

Zely + Yetyp = 0 (9-111)

The second constraint must include some geometrical consideration. To achieve
this objective two approaches are investigated. In the first approach, the Jacobian
of transformation is specified. Various schemes can be used for this purpose which
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will be discussed shortly. This method will be referred to as the cell area approach.
In the second approach, the arc length from one grid point to the next is prescribed.
This procedure will be referred to as the arc-length approach.

In the first approach, the definition for the Jacobian of transformation is used
as the second hyperbolic equation, i.e.,

TeYy — TyYe = F(E,7) (9-112)

Thus, a system of hyperbolic equations which is solved for the grid point distribution
in the physical space is

Ty + Yy = 0 (9-113a)
Ty — Tnle = F (9-113b)

In order to solve this hyperbolic system, F must be provided. Three procedures
described in References [9-4], [9-5], and [9-6] are considered here. Reference [9-4]
suggests employing concentric circles to determine F(¢,) distribution. To do so, &
circle is defined, whose perimeter is that of the inner boundary of the physical do-
main. Then a set of concentric circles at various radii is specified. This specification
could be accomplished by using an algebraic function (similar to those used for grid
point clustering). Subsequently, grid points on the inner circle (whose perimeter is
that of the inner boundary) are distributed and grid points on all concentric circles
are determined by rays emanating from the origin, as shown in Figure 9-42. Now,
the Jacobian F is computed for this grid point distribution. Note the manner in
which concentric circles are specified is used for grid line clustering.

Figure 9-42. Concentric circles used to determine F'.

A second approach to determine F is discussed in Reference [9-5]. In this pro-
cedure, the length of the inner boundary is drawn as a straight line with the same
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grid point distribution. Subsequently, parallel grid lines (constant 7) are created
to produce a nonuniform grid spacing in a rectangular domain. Again clustering of
grid lines may be used in this procedure. Now, the Jacobian is calculated to provide
the cell area function, F'. This procedure is illustrated graphically in Figure 9-43.

A third scheme is given in Reference [9-6]. In this procedure, an algebraic grid
system is used to determine the cell area function. This scheme proved to be more
robust and clustering of grid points can be implemented with ease.

Now return to the system of PDEs given by Equations (9-113a, b). Before
considering a solution procedure, a few observations are made with regard to this
system. First, the system is nonlinear and, therefore, a linearization procedure
must be utilized. Second, since the system is hyperbolic, a marching procedure will
be used. For this formulation, marching will be in the n direction. Third, for a
hyperbolic system, an initial condition and a set of boundary conditions must be
specified. Finally, to prevent any oscillation in the solution, a fourth-order damping
term may be added to the right-hand sides of the equations.

To linearize the equations, Newton’s iterative scheme is used. Recall that a
nonlinear term is approximated according to

AB = AM1B* 4 Bk Ak _ g*BF (9-114)

where the level k is the known state. For this formulation, the k& + 1 notation will

Domain of Solution

Figure 9-43. Rectangular grid point distribution used to determine
cell area function, F.




414 Chapter 9

be dropped; thus, any variable without a superscript denotes the unknowns at the
k + 1 level. For example, a nonlinear term such as ZeYn is linearized to provide

Teln = Telly + TgYn — TEYy
Hence, the system of hyperbolic equations is expressed in linear form as
TeTy + TETy — TETE + Veyt + Yy —viyE = 0 (9-115a)

Tely + TeYo — TEYE — ToUf — shye+ iyt = F (9-115b)

These equations are simplified by observing that
zé‘zﬁ + yé‘y,',‘ =0
obtained from Equation (9-113a), and
ToUg — Tgty = —F*
according to Equation (9-113b). Thus, the reduced form of the equations is
ey + TETy + Yeyk + Yy = O
Ty + Thyy — Toys — zkye = F+ F*

This system of equations is written in a compact form as

[AlR: + [B|R, = H (9-116)
where
T x5 gk ok ok
R= A= n ] . B= § ¢
y Yy —7p Y %
and
0
H =
F 4 F*

By definition, the system of equations given by (9-116) is hyperbolic if the
eigenvalues of [B] 1{A] are real. Note that,
1 | = v

BI” = bx

v§ oz
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and

ko k .k k K,k o ok k
[C] — [B]_l[A] _ 1 TeZn — Yely Tely + Tnle
DN

Ty + onyf —(wEen — viv,
where
DN = (&§)? + @f)?
The eigenvalues of [C] are
1
(z5)* + (y,'J)QI ’

1\1,2==*=|. DN

It is recognized that the eigenvalues are always real; however, it is required that
(=) + W) #0

To obtain the FDE of (9-116), a second-order central difference approxima-
tion for £ derivatives and a first-order backward difference approximation for the 5
derivatives are employed. The resulting FDE is

Rij— Rij1 Ri15— Rij
An 2A¢

+[B]7[4] = [B] ' H; (9-117)

where [A] and [B] ! are evaluated at (j—1) grid line. Equation (9-117) is rearranged
for Aé =Ap=1as

1 1
—5Clig-1Rirj + I Rij + 5[Clij1 Ring = [Blij-1Hij + Rig

where [I] is the identity matrix. Further simplification is introduced by the following
definitions:

[A4] = —3[Clyo
(BB} = [I]
[cC] = _;'[C]ij—l
and
[DD] = [B]i_j]—lHiJ + Rij1
Hence,

[AA]Ri-1; + [BB]Riy + [CC|Ris15 = [DDliy (9-118)
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Once Equation (9-118) is written for all 1's at a 7 level, a block-tridiagonal system
is obtained

[BB], [CC): (R, ] [[DD], ]
[44), [BB], [0, RI [DD],
Al BBluss 0% | | R | | DY,

“ [Adly BBlna | | 2] _{w}jﬁu

Note that the boundary conditions affect [DD]; and [D D] according to
[DD], = [DD],-[AA], R,
[DD]um = [DD]u.n - [Colnm Rim

The block-tridiagonal system (9-118) is solved by marching in the % direction, pro-
vided an iritial distribution of grid points on the surface and boundary lines are
given. With the known grid point distribution at the surface, the derivatives a:’f‘ and
yg are computed by central difference approximation. At the boundaries, forward
or backward approximations are used. To evaluate z¥ and 4, Equations (9-113a)
and (9-113b) are employed. These equations at level k are

ko k k,k

ot = P
which, when solved simultaneously, give

o= vt
T TG
k
g = ¢
" (z§)? + (1f)?

With all the metrics at level k computed, the block matrices [AA], [BB], and [CC]
are determined. Subsequently, the block-tridiagonal systern (9-118) is solved by
any standard technique (a procedure is described in Appendix E). Note that the
boundary points which are specified a priori to the solution must be free to float
during the solution procedure, i.e., their values along the two boundaries are up-
dated according to the interior solution. Some difficulty is observed if this updating
procedure is not used. The reason for this problem is that the boundary points
cannot be specified and kept fixed since that would define an outer domain for the
hyperbolic system along these boundaries, which is not allowed. To achieve this



Grid Generation — Structured Grids 417

goal, the orthogonality condition at the boundaries i = 1 and ¢ = IM is used to
update the boundary points.
The result obtained for a simply-connected region is shown in Figure 9-44.

|- -

Figure 9-44. Grid system generated for the axisymmetric blunt
body by hyperbolic PDEs.

As mentioned previously, a second set of hyperbolic equations may be developed.
This second set is referred to as the arc-length approach. In this system, the first
equation is the same as the cell-area approach, i.e., the equation is obtained by
imposing orthogonality of the grid lines. Thus,

D@y + Y = 0 (9-119)
The geometric constraint is provided by considering
(ds)® = (dz)* + (dy)?
which may be rearranged by using Equations (9-11) and (9-12), i.e.,
(ds)? = (zedE + zqdn)” + (yed€ + yodn)® (9-120)

or
(As)? =zf + 1y + 25 + ] (9-121)

when A¢ = An = 1.0 . The value of As is specified by the user. The system of
hyperbolic equations composed of (9-119) and (9-121) may be solved to generate
the grid system. Some difficulty was observed using this form of the equation.
To overcome this problem, As along lines of constant £ was specified. Therefore
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Equation (9-120) was applied along the lines of constant €, which will then reduce
Equation (9-120) to
(As)® =z} + 42 (9-122)

The system composed of Equations (9-119) and (9-122) works very well. Note that
As distribution may be used for clustering purposes, since these values are specified
by the user. The same procedure discussed previously for linearization and finite
difference approximations is used for this hyperbolic system.

This section is closed by summarizing the following. The advantages of hyper-
bolic grid generators are:

(1) The grid system is orthogonal in two-dimensions;

(2) Since a marching scheme is used for the solution of the system, computation-
ally they are much faster compared to elliptic systems;

(3) Grid line spacing may be controlled by the cell area or arc-length functions.
The disadvantages are:

(1) Extension to three-dimensions where complete orthogonality exists is not pos-
sible;

(2) They cannot be used for domains where the outer boundary is specified;
(3) Boundary discontinuity may be propagated into the interior domain;

(4) Specifying the cell-area or arc-length functions must be handled carefully. A
bad selection of these functions easily leads to undesirable grid systems.

9.10 Parabolic Grid Generators

At this point, two sets of PDEs have been investigated in order to generate grid
systems: elliptic and hyperbolic grid generators. Some advantages and deficiencies
of each technique have been identified. One of the benefits of the elliptic system is
that it smoothed out the grid point distribution, i.e., a boundary discontinuity does
not propagate into the domain. This smoothness is due to the diffusive nature of
the elliptic equations. On the other hand, a boundary discontinuity may propagate
into the domain when a hyperbolic system is used because the hyperbolic system
lacks a diffusive mechanism. Another distinct difference between the two systems
was identified by the relative computation time. A hyperbolic system is much faster
than an elliptic system, because a marching scheme is used for the solution of the
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system compared to an iterative solution of an elliptic system. Specification of the
boundary conditions was also different for each method.

To combine the benefits of elliptic and hyperbolic systems, a parabolic system
provides a compromise. A parabolic system includes a second-order derivative which
introduces natural diffusion; as a consequence, propagation of boundary discontinu-
ity is prevented. On the other hand, marching schemes are used to solve parabolic
PDEs, thus reducing computation time compared to an elliptic system.

Development of parabolic systems is relatively new; therefore, much work re-
mains. As a result, they will be reviewed here briefly for conceptual purposes only.

A parabolic system proposed in Reference {9-7] for investigative purposes is

%_A% = 5, (9-123)
8y &
a_i"Ab'f% = 8, (9-124)

where S; and S, are source terms and A is a specified constant. The solution
procedure is similar to that of hyperbolic systems. The boundary grid points on
the body surface are specified and a marching scheme is used to advance in the
outward direction. Grid point clustering similar to that used in elliptic systems and
local orthogonality may be enforced. Detailed discussion is given in Reference [9-7].
The method is extended to 3-D in Reference [9-8].

Much work needs to be done for perfection and robustness of this technique,
especially in relation to the specification of control functions. Therefore, only a
brief introduction has been presented to familiarize the reader with the concepts
involved.
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9.11 Problems

9.1 A grid system for a blunt conical configuration at zero degree angle of attack
is required. The configuration is defined by its radius R, cone angle §, and body
length L as shown in Figure P9.1.

Figure P9.1. Nomenclature used for problem 9.1.

An outer boundary is defined by an ellipse with semi-major and semi-minor axes
a and b. The following criteria are set for the grid system: (1) Grid line i = 2 must
be above the body axis, whereas grid line i = 1 is determined by symmetry about
the body axis; (2) Include an option for grid point clustering in the vicinity of the
blunt nose. This option may be accomplished either by angular clustering or length
clustering; (3) The grid system is generated (a) by an algebraic scheme and (b) by
an elliptic method; (4) The following set of data are specified: R = 1.0, § = 5.0°,
L=30,a=4.0,b=35,IM =30, JM = 22; and (5) The following results are
required: (a) Plot of the grid system generated by both schemes (i.e., algebraic and
elliptic), and (b) Plot of the metrics 7z, 7, &, and &, for both schemes.

9.2 A symmetrical airfoil is to be tested in a wind tunnel. Being a CFD expert,
your help in determination of the flow field is desperately needed. Your computed
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results will be used to locate instruments in critical areas and, in addition, to verify
experimental work! Thus, a set of equations of fluid motion is to be solved within
the specified domain. The objective of this assignment is to generate the required
grid system. The airfoil is described by the following equation:

y = 6% (0.29692% ~ 0.126z — 0.351622 + 0.2843z° — 0.1015z4)

The domain of interest is shown in Figure P9.2, where ¢ = 1 is the chord length.

- 3C -

Figure P9.2. Physical domain for problem 9.2.

Grid point distribution on the body surface is determined by specifying the z-
coordinates by two different methods: (a) the z-spacing of grid points are equal,
and (b) clustering near the leading and trailing edges are used. Set ¢ = 1.0, ¢ = 0.2,
IM = 35, JM = 21, then plot the grid system obtained by (a) an algebraic scheme
and (b) by an elliptic scheme. Also, compute and plot the metrics 7z, 1, &, and

3%

9.3 Use Taylor series expansion to derive Equation (9-106).

9.4 Consider a circular cylinder of radius R located in a rectangular domain with
dimensions of L and H as shown in Figure F9.4. Distribute grid points on the
cylinder and the rectangular boundary with equal spacing, though grid spacing
along L is not equal to grid spacing along H. (a) Generate an algebraic grid
where grid points in the radial direction are equally spaced; (b) use an elliptic grid
generator; and (c) use an elliptic grid generator with clustering option.
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The following data are specified:
R=10 , H=40 , L=6.0
IM =53 (Maximum grid points along the cylinder)

JM =14 (Maximum grid points along the radial)

For part (c), enforce clustering of the first five grid lines near the cylinder, with
clustering coefficients of a = —75.0 and ¢ = 2.0.

<————-L/2—>l

H/2

Figure P9.4. The nomenclature for problem 9.4.

9.5 The domain shown in Figure P9.5 is defined by the following data: Al =
30, A2=2.0, D=20, H=4.0. Generate a grid by (a) an algebraic scheme
with an option for grid clustering near the cylindrical surface, and (b) an elliptic
scheme. Use the following data: 1 =10 , IMID=14 , I2=18 , IM =28 ,
and JM = 30.
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\ /)

\ / "
i=IMI ]
i=11 i=12
i=1 i=IM Y
|<——————-A Pl D ———>f—————A2 —>]

Figure P9.5. The nomenclature for the domain of problem 9.5.

9.6 Consider an airfoil whose geometry is described by Equation (9-78). An outer
C-shaped domain is specified by a half circle and two parallel lines, as shown in
Figure P9.6a. Grid point distribution on the airfoil surface is to be clustered near
the leading and trailing edges.

(a) Generate a grid by an algebraic method with grid point clustering near the
airfoil surface and the wake region, similar to the one shown in Figure P9.6b.

(b) Generate a grid by the elliptic scheme with no grid clustering.
(c) Generate a grid by the elliptic scheme with grid clustering. Specify clustermg
of the first 20 grid lines near the surface. The clustering coefficient a is spec-

ified as —200 for the first 10 grid lines and —150 for the next 10 grid lines.
The clustering coefficient ¢ is set to 5.0 for all lines.

The following set of data is to be used:

t=0.2 , c=1.0 , L=15
IT1=20 , IL=38 , JM =30
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i=1T1 i=l

Figure P9.6a. The nomenclature for problem 9.6.

r's » ) T
11111
T o | i

Figure P9.6b. A typical algebraic grid system to be generated.
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9.7 Consider the flow described in Problem 7.3. The governing equation in nondi-
mensional form is expressed by

aT* Tt |, 8T
=

where
t‘—-tU" z__.'x: u,_u T*—T—T”
- L - L’ A T T, -T.
and
a' = o
LU,

The initial and boundary conditions are specified as

=0 T*z*0)=0.0
#>0 z¢=00 T*=00
=10 T*=10

(a) Transform the governing equation from the physical space (z) to a computa-
tional space (§).

(b) Write an explicit finite difference equation which is first order in time and
second order in space.

(c) Implement the grid clustering scheme proposed in Problem 3.9 to obtain the
numerical solution for the following set of data:

T.=20°C , T,=100°C , U,=0.2m/sec
0=004m?/sec. , L=2m , At=0.01 sec.
IM=21 , =11

Print the solutions at time levels of 1, 2, and 3 seconds. Plot the temperature
and error distributions at a time level of 3 seconds where the error distribution is
determined, as defined in Problem 7.2, Part (g).

Hint: Use the following relation in Part (a)

a 0

Fraaly T



APPENDIX A:

An Introduction to Theory of
Characteristics: Wave Propagation

A.1 Introductory Remarks

A technique which has been proven to be a powerful scheme for the solution
of two-dimensional hyperbolic equations is known as the method of characteristics.
Generally speaking, the application of the scheme in fluid mechanics is limited to
two-dimensional, steady, isentropic, adiabatic, irrotational flow of a perfect gas.
However, the scheme has been extended to inviscid rotational flows as well as three-
dimensional problems. Furthermore, special procedures to cross discontinuities such
as shock waves have been developed. Due to the introductory level of this appendix,
the extension to three dimensions and special considerations will not be explored.
Instead, the objectives are to review the theory of characteristics and to introduce
the concepts of compatibility equations, Reimann invariants, and specification of
boundary conditions.

These concepts are to be explored in one-dimensional space at first, and subse-
quently they will be extended to two-dimensional problems in Appendix G. In the
process, the mathematics will be related to the physical aspect of the flowfield.

A.2 The Wave Equation

Perhaps the simplest hyperbolic equation to employ as a model equation, for
the purpose of exploring the various concepts of characteristics, is the simple wave
equation in one-space dimension.

Consider a disturbance which is gradually being transmitted into an undisturbed
domain. For example, the disturbance can be created by applying an impulse to
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a piston in a tube. The small disturbance, which travels with the speed of sound,
creates changes in the flow properties. Designate the properties in the undisturbed
region by “oo” and the change in properties by “1,” which may be referred to as
perturbation properties. It is assumed that the changes are small. Now, the pressure,
density, and velocity of the fluid are expressed as

P=DPot+h (A-Ia)
P = Pt p1 (A-1b)
U =1u (A-1c)

Keep in mind the assumption of small disturbance, ie., p; € P, 1 € P
and u; < @. Furthermore, u,, = 0. Assuming a one-dimensional flow, then in
general the disturbed properties are functions of z and ¢. Schematically, the wave
propagation of sinusoidal shape is shown in Figure A-1. In order to describe the

t=t, X

t=0 = X

Figure A-1. Propagation of sinusoidal wave.

changes in the flowfield due to wave propagation, the conservation laws must be
utilized. Re-emphasizing the assumptions of inviscid, adiabatic flow, the governing
equations are:

Conservation of mass
% 4 v-(p7) =0 (A-2)
at
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and Conservation of momentum

p (%t‘f +V- vv) =-Vp (A-3)

For a one-dimensional flow in the Cartesian coordinate system, the equations are
expressed as

L -a{’;(pu) 0 (A-4)
Relations (A-1) may be substituted into (A-4) to provide
% (Poo + p1) + 6_(1 [u1(p + p1)} =0
” %-}-Poo%ul +.01‘?.3 +u1% =0 (A-6)

At this point, the assumption of small disturbance is imposed. Thus, all the second-
order terms which are assumed to be much smaller compared to the first-order terms

are dropped, resulting in
6p1 6

Now, recall from Thermodynamics that any thermodynamic property can be ex-
pressed in terms of any two-state variables; for example, one may write

p = p(p, s)

o-@or@a

For an isentropic flow ds = 0, and relation (A-8) is reduced to

_ (o
= (%), @

8p _(Op\ Op
oz 6p oz

Furthermore, recall that the speed of sound is given by

from which

or
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Therefore, a_p _ g éﬁ (A-10)
Or Jx
Now Equation (A-5) becomes
Ou Gu 1 ,0p
A Tl ™
Upon substitution of relations (A-1), one has
6“1 6’&1 _ 1 2 ad
9t + U oz = (pm+pl)a ax(poo+pl)
or u, Bu, du ou )
pooat+ lat"l"poo 161+Pl 1"6-51'=—02'£' (A-11)
Imposing the assumption of small dlsturbance, Equation (A-11) is reduced to
3‘1&1 . 2 6p1

Recall that, from basic fluid mechanics, one may write

1
a®=al - 5(’7 — )u?

Based on the assumption of small disturbance, since u; < ao, the relation above is
reduced to
o’ =al
Thus, Equation (A-12) can be written as
du 6p1
Poo5¢ = 0o By Bz
Finally, the governing equations of wave propagation are summarized by

9py Ou;
B ~+ Poo — 3 =0 (A-13)
and
6u1 3 p1
0 Zr +a © By =0 (A-14)

Equations (A-13) and (A-14) are referred to as the acoustic equations which describe
the changes in the domain due to passage of a sound wave. An important aspect of
these equations is that they are linear. The acoustic equations given by (A-13) and
(A-14) may be combined by the following manipulations. Taking the derivative,
with respect to ¢ of Equation (A-13) and with respect to = of Equation (A-14), one

has
i o p Fu

B TP 5p9; =0
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and & o
u P
ben Bt T % Gt = O
From which . 5
[ 2 P

57~ % 3 =0 (A-15)
Similarly, eliminating p;, one has

32u1 9 62 Uy

52 0oz 0 (A-16)
and, in terms of the pressure,

621’1 2 Fm

52 Gwggz = 0 (A-17)

The second-order, linear partial differential equation, given by any one of Equa-
tions (A-15) through (A-17), is called the wave equation, which can be expressed in
a general form as

&P, 0%

B = Yo pg2
Now, consider Equation (A-17), where its general solution is given by arbitrary
functions f and g, by the following

::—1 = f(Z — Geot) + 9( + Qo) (A-18)
Since functions f and g are arbitrary, select a family of solutions such that g = 0.

Therefore, one may write

P+ (2~ axt) (A-19)
Peo
Referring to Figure (A-1), solution (A-19) at various time levels can be written as
t=0 : % = f(x0) (A-20a)
t=t, : -;’—‘ = f(z1 — auoty) (A-20b)
t=ty : ho_ f(z2 — acota) (A-20c)
P

Substitution of z; = z¢ + @t and z; = Ty + aty into Equations (A-20b) and
(A-20c) show that both of these equations are represented by

;’,’:—o = f(z0)
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which is valid for the subsequent time levels as well. Therefore, one may conclude
that
T — @t = constant

which represents the propagation of the pressure change to the right with the prop-
agation speed of ax. It is important to note that the shape of the disturbance does
not change as it propagates within the domain. Of course, that is due to the linear
nature of the governing equations. Similarly, if one considers the solution g, it may
be concluded that

I + axt = constant

That is, the disturbance (in this example, the pressure change) propagates to the
left with the speed of a.. If one now plots the lines of constant pressures on an z-¢
plane, a family of straight lines with slopes of +ae 0or —ac is obtained, as shown
in Figure A-2.

g(x+g,t) = constant f(x-a,t) = constant
x+a_} = constant x-a,4 = constant

X

Figure A-2. Illustration of characteristics of the one-dimensional wave
equation.

The lines of constants f and g are known as the characteristic lines or, simply, the
characteristics. Those with positive slopes are called right-running characteristics,
and those with negative slopes are called left-running characteristics.



432 Appendix A

Before proceeding to the next section, the following observations are made:
1. The wave equation is linear;

2. A small disturbance propagates along lines called characteristics with the
speed of sound;

3. The shape of the disturbance remains the same;
4. The characteristics are straight lines with slopes of +a., or —ag,.

At this point, the assumption of small disturbance is removed, and one allows
large changes to occur as the wave propagates within the domain.

The description of the flowfield is governed by Equations (A-2) and (A-3) where,
for a one-dimensional flow, they are expressed as

dp &

"gt" + a‘(ﬂ’lt) =0 (A'21)

d
an u  Ou  18p
__+u_-— —_—

ot ' 8z  poz

The development of equations follows that of Reference [A-1).
Recall from previous discussion that, for an isentropic flow, one may write

1

(A-22)

Now, rewrite Equation (A-21) as
dp Ju Op
bl — - = A-24
R TR (4-24)

Differentiate Equation (A-23) with respect to time and with respect to z to obtain

— == -2
ot a2 Ot (A-252)
and
9p_ 1 0p (A-25b)
0r a? Oz

Substitution of relations (A-25a) and (A-25b) into Equation (A-24) yields

1 [dp op ou
— (% hd — = A-2
a%, (3t +u 81") T 0 (A-26)
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Multiplication of the modified continuity equation (A-26) by a./p and subsequent
addition to the momentum equation given by (A-22) provides

ou 1 [Bp

6t+(u+ )—+—— + (u+ ) =0 (A-27)

Similarly, subtraction of the two equations provides
1 |3 ]
[ P 9| _ g (A-28)

+( _)_—— a‘)az

+ (u

Now, since u = u(z,t), a change in u, namely du, corresponding to dz and dt is

given by

du ou
du _*ét*dt"' a—da: (A-29)
At this point, consider a specific path upon which the changes take place; in par-

ticular, consider the change given by

= (u+ a)dt (A-30a)
Substitution into (A-29) yields
du = %: + (u+ a) — | dt . (A-31a)
Similarly, ‘a h
_ | 9 i
d?— Bt + (u++a) oz, dt (A-31b)

Thus, from Equation (A-27), one obtains
du + L dp=0 (A-32a)
pa

which represents changes in u and p along the path specified by Equation (A-30).
Similarly, along the path defined by

dz=(u—a)dt (A-30b)

one has 1
du — 2a dp=0 (A-32b)

At this point, let’s pause a moment and review the mathematical work. A
specific path given by Equation (A-30a) was selected, and it was shown that the
governing partial differential equation given by (A-27) is reduced to an ordinary
differential equation given by (A-32a) along that path. This path is the charac-
teristic line along which a disturbance propagates with the speed of (u + a). The
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ordinary differential equation (A-32) is called the compatibility eguation. Since two
characteristics are identified, they will be designated as C* and C~ characteristics.
Schematically, they are shown in Figure A-3. It is then obvious that the primary
advantage of the method of characteristics is the reduction of the governing partial
differential equation to an ordinary differential equation along the characteristics.
Solution of an ordinary differential equation is much simpler than that of partial
differential equations.

¢ C* characteristic
C" characteristic dx = (u + a)dt along
dx = (u - a)dt along which du+ 92 =¢

. d po
which du - 55 =0

/

Figure A-3. Ilustration of right- and left-running characteristics.

Proceeding with the solution of the compatibility equations (A-32a) and (A-
32b), one integrates the equations along the corresponding characteristics to obtain

Rt =u+ / dr = constant (A-33a)
pa
and

R =u-— % = constant (A-33b)
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A relation between the density and pressure can be established by an equation
of state. If one imposes the assumption of perfect gas, then

p = pRT
and the speed of sound can be expressed as
2 p
a” == =~yRT
v P v

Furthermore, recall that for an isentropic process

P _ (ﬁ)‘fﬁ _ (,,_)'v _ (Ez)%
" T‘1 M a;
or
2
p=car!
from which
2y gas )
dp=c|— 1 a7-lda (A-34a)
and )
p=cyar? (A-34b)

Substitution of (A-34a) and (A-34b) into (A-33a) and (A-33b) yields

2a

(A-35a)

and
2a

v—1
where Rt and R~ are defined as the Riemann invariants.
Now, the following conclusions with regard to the finite wave are stated.

R =u— (A—35b)

1. The governing equations are nonlinear.

2. Property changes, which can be large, propagate along the characteristics with
the speed of u % a.

3. The shape of disturbance may change with time.

4. The characteristics are curved lines,
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It is helpful to relate the preceding mathematical analyses to the corresponding
physical analog. Recall from basic fluid mechanics that Equations (A-21) and (A-
22) may be used to describe propagation of an expansion wave in a tube, as shown
in Figure (A-4a). Flow properties continuously change across the expansion wave,
and a typical distribution is illustrated in Figure (A-4b).

P T R L T e

Figure A-4. Propagation of an expansion wave.
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However, if one considers the gradient of the property, such as du/8z, disconti-
nuities at the leading and trailing edges are encountered, as shown in Figure (A-4c).
From this simple example, one can generalize an important aspect of characteristics
as follows:

1. Characteristics are paths of propagation of physical disturbance.

2. Along the characteristics, the governing partial differential equations are re-
duced by one space dimension, which are called compatibility equations. For
example, the governing partial equations in two-space dimensions are reduced
to one-space dimension and, hence, to an ordinary differential equation.

3. The physical properties are continuous across the characteristics, whereas
there may be discontinuities in their derivatives.

4. With regard to physics of fluid motion, the following observations are made:

(a) For a steady, two-dimensional, isentropic, irrotational flow, real charac-
teristics exist only for supersonic flow.

(b) Mach lines are characteristics of the flow.
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Tridiagonal System of Equations

The formulation of many implicit methods for a scalar PDE results in the fol-
lowing equation: _
afut] + ut! + Jull = D} (B-1)

Once this equation is applied to all the nodes at the advanced level, a system of
linear algebraic equations is obtained. When these equations are represented in
a matrix form, the coefficient matrix is tridiagonal. We will take advantage of
the tridiagonal nature of the coefficient matrix and review a very efficient solution
procedure.

To see the matrix formulation of the equations, consider the Laasonen implicit
formulation of our diffusion model equation, i.e., Equation (3-12), presented here as

(@uy = (2d+ D™ + (duf) = ] (B-2)

where d = aAt/(Az)? is the diffusion number. Define the following coefficients of
(B-2) according to the formulation of (B-1):

a = d

b = —(2d+1)
c = d

D = RHS

Applying Equation (B-2) to all the grid points will result in the following set of
linear algebraic equations:

1 =2 aguy + byug + couz = Dy (B-3)
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1=3 azug + b3’U.3 + C3Uy = D3
t=4 asug + b4u4 + cqus = D4
i=IM2 arMauims + bimouime + crvotirmy = Do
i =IM1 anmitiime + dnunn + ety = D (B-4)

where IM1 =IM -1, IM2 =IM —2, and so on. In addition, note that the super-
script n+ 1 has been dropped from the equations. Assume that Dirichlet boundary
conditions are imposed and, therefore, the values of the dependent variable u at
¢ = 1 (the lower boundary) and at ¢ = IM (the upper boundary) are given. Then
the first equation, (B-3), and the last equation, (B-4), can be written as:

bous + cous = Dy — agquy

and

arMiuimMz + bIMluIMl = Dpp — CiMuIM

Now, the set of equations in matrix formulation is

b o Up D; — ayu,
a3 b cs us Dy
as b o Uy Dy
aiM2  bim2  cim2 UM Dy
] armr b | | unn | | Dimn— conurm |

Applying other types of boundary conditions does not change the tridiagonal
form of the coefficient matrix, and can be easily implemented. An example is given
below, where the Neumann boundary condition at i = I'M is applied. Impose the
boundary condition 8u/8z =0 (at i = IM). Then

Ou _ ump —um
Oz Ax
or

UIM = UTMP1
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Note that we have introduced a fictitious boundary at IM Pl = IM + 1. The
grid points are shown in Figure B-1. Now, at ¢ = IM (the upper boundary), we
have

armurm + brpmury + crmurmpr = Dy

or
armurm + (biv + cim)urm = Dy

fFictitious Boundary

I=IMPI @errmeem S * * e
i=IMAX§c s ' ¢ * ‘ *
i =IMMI ¢——¢ * ' * b 1

* * + ’ * * 4

A ¢ —e —¢ ’ ! - *
Ax
b o— 3 -~ ¢ ®
i=2e ¢ ’ — L 3
i=1e ® ® L 3 * .
n=1 n=2 n=3
— At

Figure B-1. Illustration of grid points with fictitious boundary.
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and the matrix representation takes the following form:

sz C2 ] [ ug ] —D2—a2u1“
as ba C3 Uz D3
as by ¢ Uy Dy
e bpn Cim UIM1 D
ary b+ | | wiw | | Dim ]

In the example above, a first-order approximation for the gradient was used. If
a second-order approximation is utilized, then

Ou _ urMpi = umn
Ox 20z
or
UIMP1L = UM

Thus, the equation at ¢ = I'M is modified according to

armurmy + biyurm + crpupn = Dy

or
(arm + erm)ursn + bryury = Dyy

To proceed with the solution technique, assume a solution of the form
w = —Hu + G (B-5)

where u; is unknown, w4, is known from the imposed boundary condition, and H;
and G are yet to be determined. Apply Equation (B-5) at node i — 1, then

Uiy = —H;_yu; + Gy (B-6)
Upon substitution of (B-6) into Equation (B-1), one has
ai(—Hi_1ui + Gio1) + bivi + ciuir = Dy

or
(b — aHi)u;i + ciugy = Dy — a,Giy

from which
G D; — ;G

U = —musﬂ + (B-7)
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Comparing Equations (B-7) with (B-5), one concludes that
i

Hy = bi — a;H; (B-8)

and D c
G = e B ot B-9
bi — a;H;, (B-9)

Now that H; and G; have been determined, the recursion equation, (B-5), can be
used to solve for all the unknowns.

To see how this procedure is applied, consider the parabolic equation investigated
in Chapter 3, i.e., the suddenly accelerated plane. At the lower boundary i = 1,
u; = UWALL is specified for all times; therefore, (B-5) at i = 1 becomes

u; = —Hyuy + Gy

Since this equation must hold for all u3, H, =0 and G, = u; = UWALL. With the
values of H; and G provided from the boundary condition, Equations (B-8) and
(B-9) can be solved for the values of H; and G; at the second node. Subsequently,
(B-8) and (B-9) are sequentially applied to all grid points to obtain the values
of H; and G;. Note that the computation of H; and G; starts from the lower
boundary and proceeds upward. Now, Equation (B-5) is used for the computation
of ;. This calculation is performed inward from the upper boundary. At i = IM1,
Equation (B-5) provides

umm = —Hpnuin + Gin

In this equation, u; is specified from the upper boundary condition, with H and G
at IM1 previously determined. Once uy is computed, Equation (B-5) is applied
to compute usy2 and so on. The solution procedure may be coded in the program
or as a subroutine.



APPENDIX C:

Derivation of Partial Derivatives
for the Modified Equation

To determine 8%u/8¢?, take the derivative of Equation (4-81) with respect to
to obtain

H*u _ @_g u +aAa:6‘3u
8zt "0 2 0z ' 2 0%

_(Ar)? &u a(Ax) 8w
6 0zt 6 art
Similarly, the derivative with respect to ¢ of Equation (4-81) is

+0 [(At), (Az)Y] (C-1)

Fu _ Pu At + adz Fu  (At)® du
2 - “Gtoz 200 2 102 6 OB
a(Az)? fu 3 3
~ =% B T 0|8’ (Azy] (C-2)
Multiply Equation (C-1) by —a and add it to Equation (C-2) to obtain
otz 3 2 2 |T8zx012 O3

+£ Bu 6311.
2 |“Btozr ~ ¢ 853

This equation requires that we determine 8*u/8t%, (8%) /(8t0z?), and (8%u)/(8t20z),
which are first-order accurate. One such calculation is as follows. Taking the second
derivative of Equation (4-81) with respect to time, we obtain

Bu Pu  u At Fu Az

—_— 2 2
56 = ~°pmps ~ o6 3 t%gwen 7 TOl@YN (8] (9

] +0[(a)?, (Az)?] (C-3)
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and the derivative with respect to z of (C-3) is

Pu 263u+ At [ d'u &*u ]

oot @ 83 ' 2 “azzatz_ Oz ot3

+

Az [ 8u ,O'u

\2 2
- (%38 — aﬁ] + 0 [(A1)?, (Az)?] (C-5)
Multiplying Equation (C-5) by —a and adding it to Equation (C-4), we obtain

Fu 593_11, At [ 8u  , &u 8
“oz08 ~ * 9708~ Bt

W - Sast g

Az [ & & &u 30%u
) [“atzazz 51927 T % Bz

| +ofa, ]

Since we are interested in the first-order accurate relation, we may write

Fu 63u
W = aza + 0[(At)1 (Ax)] (0'6)
Similarly, we may derive
Bu Bu
maat = 95 T OlAY), (Az)] (C-7)
and 5 33
u u
30 = 6 =3 + O[(At), (Azx)] (C-8)

Substituting (C-6) through (C-8) into (C-3) yields:

& Fu At [ &
SE = Tt { 2o+ 0l(AY), (Ax)]}

A { AN (Aa:)]} e { oZ% 1 of(as), (A:c)]}
Az Pu 2 2
- a5 25+ O[(AL, (Aa)]
Hence,
% = 2222+( 3At—a2Az:)a 3

+O[(At)?, (Az) (At), (Az)?] (C-9)



APPENDIX D:

Basic Equations of Fluid Mechanics

D.1 Introductory Remarks

The fundamental equations of fluid motion are based on three conservation
laws. Additional conservation equations will also be required if, for example, a
fluid is composed of various chemical species with mass diffusion and/or chemical
reactions. Since, for most engineering applications, the average measurable values of
the flow properties are desired, the assumption of continuous distribution of matter
is imposed. This assumption is known as continuum and is valid as long as the
characteristic length in a physical domain is much larger than the mean free path
of molecules. The assumption of continuum is imposed on the equations of fluid
motion presented throughout the text.

The basic equations of fluid motion are derived in either integral form or differ-
ential form from the

1. Conservation of mass (continuity),
2. Conservation of linear momentum (Newton’s second law),

3. Conservation of energy (first law of thermodynamics).

The conservation of linear momentum is a vector equation and, therefore, provides
three scalar equations for a three dimensional problem. The conservation of linear
momentum in differential form was derived originally by Stokes and independently
by Navier and, therefore, is known as the Navier-Stokes equation. It is common to
refer to the entire system of equations in differential form composed of conservations
of mass, momentum, and energy as the Navier-Stokes equations.

The system of equations may contain nine unknowns which include p (density),
u, v, w {(components of the velocity vector), e; (total energy [or h (enthalpy)] ), p
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(thermodynamic pressure), T’ (temperature), u (dynamic viscosity), and k (ther-
mal conductivity). The system of equations is closed by introducing thermodynamic
relations and auxiliary relations for the coefficient of viscosity and thermal conduc-
tivity. Functional relations for thermodynamic properties may be expressed as

p=p(pT)

and

h = h(p: T)

which may be in the form of equations or tables (or charts). The transport properties
u and k are expressed as

1= u(p,T)

and
k= k(p,T)

Hence, a system of nine equations is available which must be solved simulta-
neously for the nine unknowns. Other variables may also appear in the governing
equations, depending on the choice of dependent variables. For example, the energy
equation may include the specific heats ¢, and ¢,. But in either case, there are ex-
pressions by which ¢, and ¢, are related to thermodynamic properties. In general,
specific heats are functions of temperature and are slightly pressure dependent. The
complexity of the system is further increased by the introduction of turbulence and
chemistry.

The analytical solution of such a system does not exist. Therefore, numerical
techniques are employed to obtain a solution for a specified problem. Since, even
with the advancement of computer technology, most solutions are time-consuming
and difficult, various assumptions are imposed on the system of equations in order
to simplify the solution procedure and to reduce computation time.

In this appendix the governing equations of fluid motion are reviewed. The
derivation of equations is not included; however, references are provided for those
interested in the derivation of equations. Furthermore, the differential form of the
equations is expressed in Cartesian coordinate system. Ref. [D.1] may be consulted
for the equations expressed in other coordinate systems.

D.2 Integral Formulations

Integral forms of the equations are used if an average value of the fluid properties
at a cross-section is desired. This approach does not provide a detailed analysis of
the flow field; however, the application is simple and is used extensively. In general,
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the integral form of the equation is derived for an extensive property and then the
conservation laws are applied.

If N represents an extensive property, then a relation exists between the rate of
change of extensive property for a system and the time rate of change of the property
within the control volume plus net effiux of the property across the control surfaces.
Defining 7 as the extensive property per unit mass, then

dN a 4 —
dt ot /c.v. np d(va) + fc:.s. n(eV - @)dS (B-1)

where t represents time, p is the density of the fluid, V is the velocity vector and 7
is the unit vector normal to the control surface in the outward direction as shown in
Figure D.1. The derivation of Equation (D.1) may be found in any standard fluid
mechanics text such as (D.2-D.4). d/dt is used to represent the total or substantial
derivative and is composed of a local derivative 8/8t and a convective derivative

V- V. Thus, N
a=a+V'V (D-2)

and in Cartesian coordinates it is expressed as

d 0 i 0 i)
E—'gt"*'u’é‘;'l'va—y'i'Wa (D-3)

Figure D.1 Illustration of control volume.
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D.2.1.

D.2.2.

D.2.3.

Conservation of Mass: This conservation law requires that mass is neither
created nor destroyed; mathematically this is expressed as dM /dt = 0. Using
Equation (D-1), where N = M and 5 = 1, the integral form of the conserva-
tion of mass is obtained as

6 oy S
= fc 0 d(w) + ]C PV - 7idS =0 (D-4)

The physical interpretation of Equation (D-4) is as follows: The sum of the
rate of change of mass within the control volume and net eflux of mass across
the control surfaces is zero.

Conservation of Linear Momentum: Newton's second law applied to a nonac-
celerating control volume which is referenced to a fixed coordinate system,
will result in the integral form of the momentum equation once Equation
(D-1) is utilized. In this case the linear momentum G = mV is taken to
be the extensive property and therefore = V. Newton's second law in an
inertial reference is expressed as ©F = dG /dt. Thus, use of Equation (D-1)
yields

- 6 hy 'y 7 =
TF = 3 fc' - pV d(vol) + /c o V(pV - i)dS (D-5)

This equation states that the sum of the forces acting on a control volume is
equal to the sum of the rate of change of linear momentum within the control
volume and net efflux of the linear momentum across the control surfaces.
The forces acting on a control volume usually represent a combination of
body force (such as gravity) and surface forces (such as viscous force). Note
that Equation (D-5) is a vector equation from which scalar components may
be obtained. For example, the z-component is expressed as

0 5o
Y F = 5t Jow P d(ver) + /c . u(pV - t)dS (D-6)

Conservation of Energy: This conservation law is based on the first law of
thermodynamics, which may be expressed as
d(pe:) _ aQ W

& ~a e (B-1)

~ In this relation, e; represents the total energy of the system per unit mass, while
0Q /0t and OW/8t represent the rate of heat transfer to the system and the rate
of work done on the system, respectively. Usually heat added to the system and
work done on the system are defined positive. In order to use Equation (D-1)}, pe;
is selected to represent the extensive property N, and n = €;, the total energy per
unit mass. Hence,
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3 Lo L
- jc  pec d(va) + /c _aloV RS = Q+W (D-8)

In general, the total energy is the sum of the internal energy, kinetic energy and
potential energy, or in terms of energy per unit mass,

ee=e+3iVi+gz (D-9)

It is convenient to categorize the work as either flow work or shaft work. Flow
work W; is due to stresses producing work on the control surfaces where there is
fluid flow.

The work transferred through the control surfaces is called the shaft work, Ws.
With such classification of work, the energy equation may be expressed as

O [ e dva)+ [ [h+ 1V2 4 g2 (o7 - B)dS = @+ W (D-10)
ot Jew. C.S.

where the rate of flow work given by [(p/p) (pV - fi)ds is moved to the left-hand
side and added to the internal energy. Recall that the combination of e+ p/p = h
is called enthalpy.

D.3 Differential Formulations

The differential forms of the equations of motion are utilized for situations
where a detailed solution of the flow field is required. These equations are obtained
by the a.pplicé.tion of conservation laws to an infinitesimal fixed control volume. A
typical differential element for a Cartesian coordinate system is shown in Figure
D.2. The flow properties at the control surfaces are expanded in Taylor series and
integral forms of the equations are used. After a limiting process for which the
differential element approaches zero, all the higher order terms are dropped and the
differential form of the equations are produced. The differential equations which
are derived based on fixed coordinate system and control volume are known as
Eulerian approach. On the other hand, if we were to move with the fluid element,
the approach is called Lagrangian. Clearly the Eulerian approach is much desirabie
in fluid mechanics, and in this text methods based on Eulerian formulation are used.
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Figure D.2 Differential element for Cartesian coordinate system.

D.3.1 Conservation of Mass

The differential form of the conservation of mass is known as the continuity
equation, and in a vector form it is expressed as

6 . —
iV (o) =0 (D-11)
ot

The derivation of this equation may be found in any standard fluid mechanics
text such as (D.2-D.4). This equation may be written in terms of the total derivative
as

%‘-:1+pv-17=o (D-12)

For a steady state problem 8/0t = 0, and, therefore,
V- (V) =0

For an incompressible flow, where the density variations are considered negligi-
ble, continuity is reduced to
V-V=0 (D-13)
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Note that this equation is valid for unsteady problems as well. In Cartesian co-
ordinate system, where the velocity vector is V=ui+vj+ wk, Equation (D-11)
becomes

Bp 0 _
il (P’U) + y(ﬂv) + E(Pw) =0 (D-14)
and, for an incompressible flow,
ou Ov Ow
R il (B-12)

D.3.2 Conservation of Linear Momentum

The linear momentum equation, also known as the Navier-Stokes equation, is
obtained by the application of Newton's second law to a differential element in an
inertial coordinate system. If o is used to represent stresses acting on the differential
element, the components of the Navier-Stokes equations in a Cartesian coordinate
system takes the following form:

du 0 0 0
_d—t' = pf:+ a(azz) + a_z"(o'yz) + '02(0::) (D'lﬁ)
dv 8 0 0
T ply+ a("w) + B_y(aw) + 'a‘;(azv) (D-17)
dw 0 0 ad

p‘&" = pfi+ '5;(0::) + Eg(ayz) + 5;(0'31) (D-18)

Shear stress o usually is written in terms of pressure p and viscous stress 7. In
tensor notation this is expressed as

oy = —pbij + Tij (D-19)

where §;; is the Kronecker delta,

The subscripts assigned to the components of stress are as follows. The first sub-
script denotes the direction of the normal to the surface on which stress acts, and
the second denotes the direction in which the stress acts. This is illustrated in
Figure D.2.

The components of the linear momentum equation given by Equations (D-16
through D-18) can be written in terms of viscous stresses as

du Op Otz Oy + 072z

FER LI =

ox Sy 0z (D-20)
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dv Op  Ory Oy Oy
T T e > (D-21)
dw Op  Or  Ory  Ory,
at 2L . ar t 8y * Bz (D-22)

Viscous stresses are related to the rates of strain by a physical law. For most
fluids, this relation is linear and is known as Newtonian fluid. For a Newtonian
fluid, viscous stresses in a Cartesian coordinate system are

Tor = 2&% +AV.-V (D-23)
n = g +AV-T (D-24)
Ty = 2,{;%%’ +AV-V (D-25)
Toy = Tyz =} (g—: + —g%) (D-26)
S o
v - (2 2) o

where u is known as the coefficient of viscosity or dynamic viscosity and ) is defined
as the second coefficient of viscosity. The combination of 1 and A in the following
form is known as the bulk viscosity k, i.e.,

k=A+2p (D-29)
If bulk viscosity of a fluid is assumed negligible, then
A=—24 (D-30)
This is known as Stokes hypothesis.

After substitution of viscous stress terms for a Newtonian fluid given by Equa-
tions (D-23) through (D-28) into the Navier-Stokes Equations (D-20) through (D-
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22), one obtains

% = pf,-.+ai[ p+2,ug +AV. V] :[ (Z—Z+%)]
2b(2-3)
p% = pfy+ a[ (g:+gg)]+%[—p+2ug—:+w-ﬁ]
o)
@ =@ s kG5
+2 [-p+zu%§+w.v] (D-33)

In applications where the temperature variations are small, viscosity may be as-
sumed constant and in addition to negligible changes in density, the flow is assumed
incompressible. For such a flow, the Navier-Stokes equations are reduced to

du dp Su  H%u  Hu

& = Pt (aa:2 tap T azz) (D-34)
dv dp v v 8%

@ = Ph- oy (8:!:2 + oy? t o= (D-35)
dw Op Fw w w

- pfs = 3z " (6:1:2 + oy? t o (D-36)

The linear momentum equation can be written in a conservative form by addition
of the continuity equation to the left hand side of the equation. For the z-component
of the equation given by Equation (D-20) one may add the continuity equation
multiplied by the u-component of the velocity to obtain

LI LS LS
Poz T Pz TPV, TPYE, T8 B T B Y

5300+ 35 0)| = = P2t ) + () + () (D30

The terms on the left hand of Equation (D-37) may be combined to yield
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i)+ 5 () + (o) + 5 () = pfa = T2+ () + (1) + ()
(D-38)
Finally, one may write the scalar components of the linear momentum equation

in conservation law form as

x-component:

bs] 07 ] o ba ) a e} a
a(ﬂu) + %(Pﬂz +p) + a—y(ﬂu’v) + 5;(.0"“”) = pfz + %(7’::) + a_y(Tzv) + E(Tzz)
(D-39)

y-component:

d o a 9 0o} _ a, 0i ) a
'52(9”) + 5’5(!’“’”) + %(PU +p) + gg(ﬂvw) =pfy+ '&'("w) + B_y(TW) + B‘(;(Tvz)
D-40)

z-component:

d 0 o s} 9 _ d o o
'a—t(Pw) + '(E(Puw) + 3—y(PUw) + éz(ﬁw +p) =pf: + *6;("':,) + “6;(7'9:) + %)(Tu;
-41

D.3.3 Energy Equation

The energy equation derived from the first law of thermodynamics may be
written in various forms. One such formulation written in terms of the total energy
€t is

d 0
= = pufe + vy + WE) [P+ UTes + Uy + 0T — ]

a 0
+ a—y[—pv + uryr + VT + WTy — @) + -C,E[—pw + UTyz + UToy + WTy — @) (D-42)
where g represents heat flux.

Equation (D-42) may be expressed in a conservative form by the addition of the

continuity equation as

ad a8 d e
g (ped) + m-(pues + pu) + %(Pvet +pv) + o (pwe: + pw) =

o 0
55 [UTzz + UTzy + WTzy — qz] + 5'1; [U'Ty-f + LS + WTyz — q!l]

a
+ E [uTz: + UTay + wr,, — q:] (D—43)
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D.3.4 Flux Vector Formulation

The conservative form of the equations of motion in a Cartesian coordinate
system assuming negligible body forces is:
Continuity, Equation (D-14)

dp 3] 0 _
"t '”E(P’Ul) + B—y(pv) + a(ﬁw) =0

z-component of the momentum, Equation (D-20})
7] o, , 7] 0 _ 0 9 d
5P + g (pu” + ) + a—y(puv) + - (puw) = 5-(722) + 55(%) + 5 (722)
y-component of the momentum, Equation (D-21)
a 0 0, o 0 0 8 a
Et—(p") + E(Pm’) + gg(mf +p)+ 6—Z(PU"J) = E(T”’) + 6—y('fw) + a—z("'yz)
z-component of the momentum, Equation (D-22)
7] d 0 a8, , _ o K 8
a(ﬂw) + 'a';(puw) + %(pvw) + 9z (pw* + p) = '5;(7':1) + Ay (Tyz) + 92 (T22)
Energy, Equation (D-43)

2 (pe) + - (puec+ pu) + o (ovee + pu) + - (owe, + pu) =
g¢(pet) + g (ouec+pu) + 5 (pver + pu) + 5= (pwer + pu) =

7] a
+55‘ [UT,:: + szy + 'LUTH qz] + y [u'ryz + 'UTW + wTyz - Qy]

7]
+5; [UTer + V7o + WTor — @]
It is convenient to write the Cartesian form of the equations of motion in a flux
vector form. This formulation may be expressed in a Cartesian coordinate system

as
0Q OE OF 0G O08E, O0F, 4 0G,

6t+3:c+3+5;—6z+6y Oz

(D-44)

where

(D-45)

T
RBRE
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_ ou 0 -
p'u2 +p Tzz
E =1 puv (D-46) Ey=| Ty (D-47)
puw Tzz
i (per + p)u 3 UTzz + UTgy + WTgy — Qs
. v 0 ;
pru Tyz
F=|p?+p (D-48) Fy=|m, (D-49)
pYw Tyz
| (pee +p)v ] | uTyz + Uy 4 wTy — gy |
- pw - 0 -
pwu Tax
G=| pwv (D-50) Gy,=| Ty (D-51)
pw2 +D Tax
| (pe: + p)w ] | UTez + Uy + WTr — ¢y |

D.3.5 Two-Dimensional Planar and Axisymmetric
Formulation

The equations of fluid motion may be expressed in a combined form for a two-
dimensional planar flow and an axisymmetric flow. This form of the equation is
particularly useful when numerical schemes are utilized for solution. Therefore one
computer code may be developed for the solution of two different types of fiows.

The equations of motion in a combined form are expressed as
0Q OE Q9F 0E, OF,
oo oL OY | LH= H, D-52
6t+8$+6y+a 6:1:+3y+a ( )
{ 0 for 2-D planar flow
where a =

1 for 2-D axisymmetric flow

Note that for a 2-D planar flow, the formulation is based on a Cartesian coordi-
nate system whereas for a 2-D axisymmetric flow, the formulation is based on a
cylindrical coordinate system. The flux vectors in Equation (D-52) are defined as

] pu pv
_ | pu _ | +p _ | pyu
Q= pv E=1 puw F=1 4
per | (pe: + p)u (per + p)v
pv 1 0 0
H= l pu;v E, = Tazp F, = Tay
yipv Tzy Tyyp
(pe: + p)v | UTrzp + UTzy — Gz UTry + UTyyp — Gy



i

* e wTE i 1 T AR SR R W P ML it

Basic Equations of Fluid Mechanics 457

o~ 3 (1)
Ty — Tos — SHE — Y32 (’”')
Usz+”Tyw Qy_gﬂ'f yﬂv (3“ ) Ves (guuu)

W

where for a Newtonian fluid with Stokes hypothesis,

4 Ou 2 v
T = 308z T 35y (D-53)
Txz = Txxp — g‘ﬂvs (D-54)
4 v 2 Ou
o = 3h5y " 345 (>-59)
' 2 v
Ty = Tyw — “3"#5 (D-56)
ou Ov
Tzy = Y (_BTU + %) (D—57)
2 (6u Ov 4 v
Too = —gh (—6_::: + '55) + 3y (D-58)
or
qz = —k‘a—:; (D-59)
or .
o=~k (D-60)

Note: Subscript p represents 2-D planar flow.

D.4 Modification of the Navier-Stokes Equation

The Navier-Stokes equation given by (D-44) may be reduced or amended, de-
pending on a particular application. Typically the Navier-Stokes equation is reduced
to the thin-layer Navier-Stokes equation by retaining only the normal gradient of
the viscous stresses and neglecting the gradients of viscous stresses parallel to the
surface. The resulting equation is given by Equation (11-155). For applications
where the flow is steady and streamwise flow separation is not an issue, the steady
Navier-Stokes equation is modified by neglecting the streamwise gradient of viscous
stress and modification of streamwise pressure gradient within the subsonic portion
of the viscous region near the surface. The resulting equation is the parabolized
Navier-Stokes equation and is given by Equation (11-157).
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The reduction of the Navier-Stokes equation to either thin-layer Navier-Stokes
equation or parabolized Navier-Stokes equation is primarily introduced from nu-
merical point of view. These reductions reduce the computation time required for
a solution.

The Navier-Stokes equation can also be reduced based on the physics of the
problem. If the flow can be assumed to be inviscid, then the viscous shear stresses
are neglected. The resulting equation is known as the Euler equation and is given
by Equation (12-2). For problems where the density variation is negligible, the flow
is considered as incompressible, and the Navier-Stokes equation is reduced to the
incompressible Navier-Stokes equation given by Equation (11-231).

The Navier-Stokes equation given by (D-44) may be modified and/or amended
to account for physical phenomena such as turbulence and chemistry. The consid-
eration for turbulence is addressed in Chapter 21, and chemistry effect is addressed
in Chapter 16. A summary of the various forms of the Navier-Stokes equation is
provided in Figure D.3.

Navier-Stokes Equation:
Chapters 11, 14

Incompressible Thin-Layer
Navier-Stokes Equation: Navier-Stokes Equation:
Chapter 8 Chapters 11, 14

Parabolized
Navier-Stokes Equation:
Chapters 11, 13

Euler Equation:
Chapter 12

Turbulence: Chapter 21 Chemistry: Chapter 16

Figure D.3 Summary of the Navier-Stokes IEquations.
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D.5 Auxiliary Relations

The governing equations of fluid motion typically involve more unknowns than
available conservation equations which include conservations of mass, momentum,
and energy. Therefore, in order to close the system, additional relations such as the
equation of state and relations for the transport properties such as viscosity and
thermal conductivity must be introduced. This section will review the appropriate
relations which may be required for the solution of the system of equations of fluid
motion.

D.5.1 Viscosity

Viscosity of a fluid is a property used to describe the response of a fluid to the
imposed shearing forces. In a fluid flow, the rate of deformation is proportional to
the shear stress. The constant of proportionality is called the coefficient of dynamic
viscosity. Typically, it is referred to as the coefficient of viscosity or just as viscosity.
If the relation between the shear stress and the rate of deformation is linear, then
the fluid is called a Newtonian fluid. These relations are provided as Equations
(D-23) through (D-28).

In general, the coefficient of viscosity is a function of composition of the fluid, its
temperature, and pressure. In most cases, the pressure dependency is negligible and
the coefficient of viscosity is expressed as a function of temperature only. Pressure
dependency, however, should be included at very high or at very low pressures.

There are several expressions relating the coefficient of viscosity to the tempera-
ture. Perhaps the most commonly used relation for dilute gases is the Sutherland’s
law, which can be expressed as

T3/2
T+ec

h=a (D-61)

where the constants ¢; and ¢; are given in Table D.1 for selected gases.
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Table D.1: Sutherland’s constants for various gases.

SI system British system

c; x 108 ¢ x 108
Gas kg cz (K) Ibf sec c2 (°R)

sec m K172 f2 °R1/2
Air 1.458 110.4 2.27 198.6
Carbon dioxide CO, 1.550 233.0 2.42 420.0
Carbon monoxide CO 1.400 109.0 2.18 196.2
Hydrogen H, 0.649 70.6 1.01 127.0
Nitrogen N, 1.390 102.0 2.16 183.6
Oxygen 0, 1.650 110.0 2.57 198.0

The temperature in Equation (D.61) must be in °R or K, providing the values

. S : Ibf sec __ _slug kg _ N i
of viscosity in the units of =F* or & = 25% respectively.

T ft sec BeC m m? ?

D.5.2 Thermal Conductivity

The Fourier’s heat conduction law states that the heat conduction per unit area
is proportional to the normal gradient of temperature. Mathematically,

a,.9T
A on
Expression (D-62) can be expressed as an equation by introducing a constant of

proportionality defined as thermal conductivity k. Therefore,

(D-62)

q4_ ;& (D-63)

It should be observed that the equation above involving thermal conductivity has
similar mathematical form as viscosity. In fact, thermal conductivity also depends
on the composition of material, pressure, and temperature. Just as viscosity, the
dependency of thermal conductivity at moderate pressures is secondary and, in
those applications, it can be determined based on temperature alone.

The thermal conductivity of air below 2000 K at atmospheric pressure may be
calculated from the following relation.

T3/2
T+ 112.0
where T is in (K) and k is in [cal/(cm sec K)].

For most applications the thermal conductivity is determined from Prandtl num-
ber, as discussed in Section D.5.5.

k=476 x107° (D-64)



Basic Equations of Fluid Mechanics 461

D.5.3 Specific Heats

Specific heat represents the amount of heat §Q required to produce a variation
dT in the temperature of a substance. Specific heat may be defined under a constant
pressure process or a constant volume process. Specific heat at constant pressure is

defined as oh
o= (57). (D-65)
and specific heat at constant volume is defined as
de
= &), o
The ratio of specific heats is defined as
¢
= -L D-67
=G (D-67)

In general, the enthalpy h and the internal energy e are functions of two thermo-
dynamic properties such as pressure and temperature. If one assumes that h and e
are only functions of temperature, then the gas is called thermally perfect gas. For
a thermally perfect gas, relations (D-65) and (D-66) can be expressed as

dh ‘
=5 Or dh = ¢, dT (D-68)
d ' ,
" _ de or de=c¢dT (D-69)
Cy = dT =&

In general, specific heats are a function of both pressure and temperature. Typ-
ically, the influence of pressure is less significant, and, therefore, it may be ignored.
That is particularly the case for liquids. The effect of pressure on specific heats of
liquids becomes important only at extremely high pressures. Even the temperature
dependency of specific heats is slight for relatively moderate changes in temperature.
However, the temperature effect on the specific heats of gases is more appreciable,
and some pressure dependency at extreme values of pressure is present. Typically,
the influence of pressure is less at higher temperatures.

For a calorically perfect gas, the specific heats ¢, and ¢, are constants. Thus,
relations (D-68) and (D-69) can be written as

h=c,T (D-70)

and
e=cT (D-71)
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For a thermally perfect gas, the following relations hold

p—c =R (D-72)
YR
%=1 (D-73)
R
Cy = ﬁ (D-74)

where R is the gas constant, defined in Sec. D.5.4. According to Kinetic Theory,
the ratio of specific heats is

1.67  for monatomic gases

=2
I

for diatomic gases

1.33  for polyatomic gases

2 2
il il
oo e ~3 Wl en
I
Pt
i
()

D.5.4 Equation of State

A relation between the density, pressure, and temperature of a fluid is known as
the eguation of state. This relation may be presented in the form of tables, charts,
or an equation. For a thermally perfect gas, the equation of state is

p=pRT : (D-75)

where R is the gas constant defined by the universal gas constant R divided by the
molecular weight, i.e.,

R
R=1w
The universal gas constant is
831434 " _ 1987 — 8L
R = kg mole K gm mole K
B ft Ibf .  ftlbf
1545.33 lbm mole °R 49723 x 10 Slug mole °R
The gas constant for air is
287.05 21
R kg K
53.34 ft Ibf = 1716.16 M)f—

lbm°R Slug °R
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D.5.5 Prandtl Number

Prandtl number is defined as the ratio of kinematic viscosity to thermal diffu-
sivily, v e

= v = e—— D'76

Pr S ( )

The Prandtl number represents the ratio of diffusion of momentum by viscosity
to the diffusion of heat by conduction.

It should be noted that the Prandtl number is also pressure- and temperature-
dependent. In fact, that is easily recognized by considering relation (D-76), because
u, k, and ¢, are all pressure- and temperature-dependent. Since expressions or
tables are available to estimate the values of u, k, and ¢, they can be used to
determine the Prandtl number.

The Prandtl number for air at standard conditions is 0.72. Since, for most gases
the ratio of %’; is approximately constant, once viscosity is determined the thermal

conductivity is computed from
k= H%
Pr



APPENDIX E:
Block-Tridiagonal System of Equations

When a system of PDEs is approximated by implicit formulation involving three
grid points at each level, a block-tridiagonal system is produced. The resulting
block-tridiagonal system may be expressed in a general form as

SAQ=R (E-1)

where AQ and R are m component vectors. The coefficient S represents the block
tridiagonal coeflicient expressed by

| By Cy ]
Az By Cs
S — A4 B4 C4

Az Bz Cima

i A B |
where A;, B;, and C; are matrices of order m.
To investigate a solution scheme, consider the following factorization

S=LU =

[ Qg [ I ﬁg
A3 Q3 I ,63
Ay oy I ﬂl& (E—2)
Aim2  Qime I Bima
i A amn | | I
where I is the identity matrix of order m. The square matrices o; and f3; are
determined as follows:
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a; =B; and B2 = B;'Cy (E-3)

at-=B‘-'—A,-ﬂ,-_1 fOI"l:=3,4,...,IM1 (E—4)
and

Bi = o 'C; fori=3,4,..., IM2 (E-5)

The system of equations given by (E-1) is now equivalent to

LY =R (E-6)
where
Y =UAQ (E-7)
Rewriting (E-6), one has
- a2 S },2 - - R2
A3 Q3 Ya R3
Ay O Y, = Ry
A eaemn ) LYl | Ron |
from which
Y, =0;'R, (E-8)
and
Yi=o;'(Ri- AY:.;) for i=3,4,...,IM1 (E-9)
Equation (E-7) is expressed as
[T [ 17 AQ: [ Y;
I Ba AQs Y;
I Ba AQ, Y,
I B AQ1me Yiume
I | LAQunl LY
from which
AQrmi =Y (E-10)
and

AQi=Yi— BiAQir  for i=IM1,IM?2,...,3, 2 (E-11)
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A subroutine which employs the procedure outlined above is listed. This sub-
routine or other available subroutines may be used to solve the block-tridiagonal

system obtained in previous chapters.

To validate this subroutine (or others which may be accessed), a simple problem
is proposed. Obviously it is important to verify any external subroutines which are
utilized in a program. In this problem the vector X, composed of two components,
is the unknown. For simplicity, only three unknown vectors are considered. The

problem is formulated as follows:

-

|
|

1
3
9
7

|
4

-

00 =3 O Ot N =

9
13

L

11
15
2
5

The solution of the stated problem is

A test program and the required subroutines are provided below.

|

X,
Xz

Il

X
X,

Il

|

Xs
Xe

|

|

|

1
1

|

L14-
46 ]

55

e
| 20 | |
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c ———————————————————————————————————————————————————————————————————
c-- TEST is the main program of an example which shows how a

c—— block-tridiagonal system of equations can be solved by

c=-- calling the subroutine trisol.

-

c~~** Notice: parameter (nn=60) defines the maximum size of the
C--** system. nn should be greater than nb, where nb is the
pr— upper index value of the system.

g-—%% make sure to change the value of nn in subroutine

c——¥¥ (invb) and (trisol) if your nb is greater than 60

Cm—tx Also, the maximum order of the matrices is limited
C—=** to be 3 for the time being, i.e., m should be less
cm—** than 5, However, you may modify this by changing

L il the 58 in the common block /rlh/ to the value

Cm=—t* you need.

C-—**

Cm—t* output will be saved in file "tri,out"

c--

G o o 48 e e e e 8 4 S e e

PROGRAM TEST
parameter (nn=60)
common/rlh/ ca{nn,5,5),ck(nn,5,5),cc{nn,5,5),beta{nn,5,5),
# binv{5,5},cy{(nn, 5),cr(nn,s)
open(unit=6,£file='tri.out’,status="unknown’,form=’ formatted’)
c
cc-~~read the lower (na) and upper (nb) index value of the system
read(5,*)na,nb
c
cg---read the order of the matrices
read(5,*)m
c
cc~-~read the elements of the matrix a (ca), i.e., the
cc---sub-diagonal matrix
do 100 k=na+l,nb -
do 100 i=1,m
read(5,*) (ca(k,%,3),j=1,m}
100 continue
c
cc-~=read the elements of the matrix b (cb), i.e., the
cc---diagonal matrix
de 110 k=na,nb
do 110 i=1,m
read(S, *) {cb(k,i, ]}, j=1,m)
110 continue
c
ce--~-read the elements of the matrix ¢ (cc), i.e., the
cg---super-diagonal matrix
do 120 k=na,nb-1l
do 120 i=l,m
read (5, *) (cec(k, i, j) ,j-l,m)
120 continue
c
cec---read the elements of the r.h.s. r vectors (cr)
do 130 k=na,nb
do 130 i=1l,m
read(5,*}cr (k, i)
130 continue
(o4 N
cec---call trisol to solve the system, solution of delta q is
cc-=-~saved in cr
call trisol{na,nb,m)
c
cc---print the solution
do 140 k=na,nb
do 140 i=1,m
write(6,600)k,i,cr(k, i)
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1490 continue
O mm e m e e e
600 format (' cr(’,i3,*,*,13,")= *,£10.5)
stop
end

CCCCCCCCCECCCCCCCeCeCCeCCCCCCCCCECCCCECCCCCCCCCCCCLeeccee
invb: is the supporting subroutine of trisol,
invb calculates the inverse matrix of cb{i,m,m)

input: cb{i,m,m),i,m
cutput: binv(m,m)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCLCCeeClCaceeee
subroutine invb{(i,m)
parameter {(nn=60)
common/rlh/ ca(nn,5,5),cb(nn,5,5},cc{nn,s,5),beta(nn,5,5),
# binv(5,5),cy(nn,5),cr(nn,5)
dimension a(%,5),b(5)
do 200 ii=1,m
do 100 ia=1l,m
do 100 jb=1,m
100 a{ia,jb)=cb{i,ia, jb)

o]
C
c
c
c
c

do 150 jj=1,m
if(ii,eq.jjlthen
b(jj}=1.0
else
b(33}=0
endif
150 continue
call slnpd(a,b,d,m,5)
do 170 jj=1l,m
170 binv(jj iiy=b(i
200 continue
return
end
CCCCCCCCCCCCCLCCCCCCCCCCCOCCCECECCCCCCCCCCCCCCCCCCCCCCCCCCeCeceee

has value only when a is singular

c slnpd : gauss elimination method to solve linear equations
c a*x=b, output of x is saved in b (i.e. the original
c b will be eliminated)

c slnpd is used to support subroutine invb

c

c input: a : the l.h.s. n by n matrix

¢ b : the r.h.s. n by 1 vector

c n : the actual dimension used in a and b

c nx: the dimension of a and b claimed in the calling
c subroutine

[ output:

c b : the solved x vector

¢ d : the determinant of diagonal matrix of a;

¢

¢

c

CCCCCCCCCCCCCCCCCCCECCCCCCCCCCCeCCCCCCCCCCCECCCCCCCCCCCEEECCeeae
subroutine slnpd{a,b,d,n,nx)
dimensien a(nx,nx),b({nx)
nl=n-1
do 100 k=1,nl

ki=k+1
c=alk,k)
if (abs(c)-0.000001)1,1,3
1 do 7 j=kl,n
if (abs(a(j,k))=-0.000001)7,7,5
5 do 6 1=k,n
c=a (kll)
a(k,1)=a{j, 1)
6 alj,y=c
c=b{k)
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10
100

600

101

200

250
300

b{k)=b(3)
b(j}=c
c=a(k, k)
go to 3
continue
d=0,
go to 300
c=a(k,k}
do 4 j=kl,n
a(k,jy=a(k,j)/c
b(k)=b(k)})/c
do 10 i=kl,n
c=a{i, k)
do 9 j=kl,n
a{i,j)=a(i, j)~c*a(k, 3}
b(i)=b{i)-c*b(k)
continue
if(abs(a(n,n))-0.000001)8,8,101
write({§,600)
format (2x,’... singularity in row’}
b(n}=b{n)/a(n,n)
do 200 1=1,nl
k=n-1
kl=k+1
do 200 j=ki,n
b(k)=b{k)~a(k,3)*b(])
d=1.
do 250 i=1,n
d=d*a (i, i)
return
end

CCCCCCCCCCCLLeCeeCCCCCCCCCCCCCCCCCCCeCCCCCCeCCCCCCCeCaCceCCCccece

ce
ce
ce
(o]
ce
ce
ce
ce
ce
cc
ce
ce
ce
cc
ce |
ce |
1B
cc |
ce |
ce |
cc |
ce |
ce |
cc |
ce
(o] ]
cc
cec
ce

CCCCCCCCCCCCCCLeCCCCCCCCCCCCCCCLCECCeCCCCCCCeeCoecececeaeecaceeecec

#

trisol: block tri-diagonal matrix solver, solving for
S*({Delta Q)=cr and solution of (Delta Q) is saved

back to cr; i.e. ‘original values of cr will be removed

Reference:

"Computational Fluid Dynamics - Volume I ™

K.A. Hoffmann and S.T. Chiang, EES, 1998

the subdiagonal, diagonal, and superdiagonal of marix S
are named as c¢a, cb, and cc. the lower index of §
is defined as na and the upper index of S is nb. m

is the dimension of the element matrix.
expressed as (the non-zero tri~diagonal is written vertically)

0. cb{na, m,m) cc(na,m,m)
ca{na+l,m,m) ¢cb (na+1l,m,m) ce(na+l,m,m)

ca (na+2,m,m) cb{na+2,m,m) ce(na+2,m,m)

.

.

ca(nb-1,m,m) cb{nb=-1,m,m) cc(nb-1,m,m)

ca(nb,m, m) cb{nb,m,m) 0.

input: na,nb,m,ca,ch,cc,cr

output: c¢r

subroutine trisol (na,nb,m)
parameter (nn=60)

therefore S can be

common/rlh/ ca(nn,5,5),cb(nn,5,5),cc(nn,5,5),beta{nn,s,5),

binv(5,5),¢cy(nn,5),cr{nn, 5)
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do 200 i=na,nb
if(i.eq.na)then

. .iml)

c
cc~---determine the inverse matrix of B(2) in eq. E-3
cc
call invb (i, m)
c
cc----determine beta(2) by using eq. E-3
ccC
do 50 j=1,m
do 45 k=1,m
d=0.
do 40 1l=1,m
40 d=d+binv{(j,1)*cc(i,1,k)
45 beta (i, j, k)=d
50 continue
c
cc--—--determine y(2) from eqg. E-8
cc
do 55 j=1,m
d=0.
do 53 k=1,m
53 d=d+binv(j, k) *cr (i, k)
55 : cy(i,j)=d
go to 200
endif
c
cc-—--~determine the alpha{i})=B(i)~A(i)*beta(i~1l) f£from eq. E-4
cc--—-note that the value of alpha{i) is saved intoc cb{(i, j.k).
ce
do 85 j=1,m
do 75 k=1l,m
d=Q.
do 70 l1=1i,m
70 d=d+ca(i, j,1) *beta(i-1,1,k)
75 cb(i,j, k)=cb(i,j.k)=d
85 continue
c
cc--~-determine the inverse value of alpha(i) (for im=3,4,
cc
call invb{i,m)
ce

cc---~determine the beta(i) from eq. E-5
cc
if(i.ne.nb)then
do 100 j=1,m

do 95 k=1,m
d=0.
do 90 1=1,m
90 d=d+binv{j, 1) *cc(i, 1, k)
95 beta(i,j, k}=d
100 continue
endif
cc
cc----determine the value of R(i)~A(i)*¥Y(i-1) in eq. E-9
ce
do 115 k=1,m
d=0.
de 110 l=1,m.
110 deca (i, k,l)*cy(i-1,1)+d
115 cr(i,ky=cr(i,k)-d
cc
cc~---determine Y(i) from eq. E-9
cc

do 120 j=1,m
d=0.
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do 118 1=1,m

118 d=d+binv{(j, 1) *cr{i,l)

120 cy(i, j)=d

200 continue

cc

cc~~~~determine the delta Q(iml) £from eq. E-1¢0
ce

do 400 i=na,nb
ix=nb-i+na
if(ix.eq.nb)then
do 210 k=l,m
210 cr{ix, k)=cy(ix, k)
go te 400
endif
ce
cc----determine the delta Q(i) from eq. E-11
cc
do 300 j=1i,m

d=0.
do 290 k=1,m
290 d=beta (ix, j, k) *cr (ix+l, k) +d
300 cr(ix, j)=cy(ix, j)-ad
400 continue
return

end

[ LI, U NI
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Input Data File

2,4

2

9., 8.

7. 6.

7. 5.

8. 3.

1. 2.

3. 4,

5. 4.

6. 8.

3. 2.

4, 5,

1. 3.

2. 5.

9. 11.

13. 15

7.

14,

46,

55.

17.

20.
Output
cr{ 2,
cr{ 2,
cr{ 3,
cx{ 3,
cr( 4,
cr( 4,

NERENE N

AAAAAAAANANAANAAANAANAANAANANANANA

na,nb: lower and upper index of the system

m: order of matrices Ai, Bi, and Ci

A3(1,1)y, A3(1,2)

A3(2,1), A3(2,2)
A4(1,1), A4(1,2)
Ad(2,1), A4(2,2)

B2(1,1), B2({(1,2)

B2(2,1), B2{2,2)
B3(1,1), B3(1,2)
B3(2,1), B3(2,2)

B4(1,1), B4(1,2)
B4(2,1), B4(2,2)

c2(1,1), C2(1,2)

€c2(2,1), C2(2,2)
c3(1,1), C3(1,2)
c3(2,1), C3(2,2)

R2(1)

R2(2)

R3(1)

R3(2)

R4 (1)

R4 (2)

.00000
.00000
.00002
.00000
.99999
.00000

O e



APPENDIX F:

Derivatives in the Computational Domain

Consider a function f, where it is required to determine its first- and second-
order derivatives in the computational domain. The first-order derivatives are eval-
uated by using Equations (9-4) and (9-5). Recall that,

a 7] o
3z fxa_é. + nza_n (F-1)
ij 0 0
- fy'&: + Tlvgq' (F-2)
Therefore,
of
E’L'- = fz =§zf£+’7::fn
of

-6—3} = fy=$yf£+77y.fn

These equations may be rearranged by utilizing Equations (9-14) through (9-17).
Hence,
fz = Jypfe — Jyefo = J(ynfe — vefy)
and
fy = —Jzofe+ Jzefy = J(zefy — 20 fe)

To determine the second-order derivatives, f;, and f,,, the following mathemat-
ical manipulations are performed:

Of 9 (8f\_ 8
327 = E(%)—EZ(E’&*‘"J")

a
= (&gz + 7’:5;) (&ff + nzfn)
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ad ad
= Eza_f(fxff + n:fn) + Wz'a_n(écff + le.fn)
s} %)
= E.szf + Esz"a"g('fz) + fznzf&r + 'Ezfﬂgcg("?:)

3} 3]
+ na:f.tffn + n:cff%(fr) + Uﬁfm + n:rfq'é‘ﬁ(n:)

This equation is reduced to the following if relations (9-14) through (9-17) are used,
ie.,

i
5az = T nfee — etnfen + ¥ fom)

+ Iy, [ff;%(s,) + f,,%(n,)]

8 7]
+ (- T10) | fege € + g )] (F-3)
At this point, the derivatives of the metrics are determined as follows:

ey = 8 py_8 _y,,_)
3{,: (EZ) 66 (Jyﬂ) BE(xfyq — Toye

= J*[yen{Teyn — ZTn¥e) — UnlUnTee + Telen — Toliee — YeTen)]

or
3 2 2
B_§(EI) = J(Tekmlen — TnYelen — YnTec — Lelnlen

+ ToUnYee + YelnTen) (F-4)

Similarly,

—J*(ZeynYee — ToUeVee — YelnTee = TeWelen

i,
6_6(77:)
+ ZyVevee + YiTen) (F-5)
6 2 2
a—n(&) = JHZeYnYm — ToVeYnm — TelnYm — YnTen
+ YeUnTnn + Tn¥nYen) (F-6)
a 2
a—n(fi:) = —J(TeYqlen — Tu¥eYen — YeTelm — YeUnTen

+ ygzvm + xnyfyfq) i (F'7)
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Substitution of Equations (F-4) through (F-7) into Equation (F-3) and rearranging
terms yields:

32
'55); = J*(U3fec — WeynSen + Vi fm) +
J? {('yf,yff — 2YnYelien + yfyw)(xnfe —~ Zefo)+
(WrTee — 2UnYeTen + YiTm) (Wefo — Unfe) ) (F-8)
Similarly,
& f 2/, 2 2
W - S (@ fee — 2TeTpfen + Tefm) +

J {(-T?;yff ~ 2T¢TyYen + Tgym) (Tofe — Tefy)

(z3Tee — 2TeTnTen + Tion) Wefy — Un fg)} (F-9)
Now, consider the Laplacian,
&f O*f
2 I et—— —
V=52t 5y

and substitute Equations (F-8) and (F-9). After simplification and collection of
terms, we obtain

Vf = P+ ) fee — 2men + Yetn) fen
+ (o} + ¥ fm] + I {{(22 + 0D)wee — 2Azezy + Une)ven
+ (@ + ¥)m| @nfe — zef) + [(@F + 1)zee
— 2(T¢Zy + Yole)Ten + (2F + y?)zw] (vefo — ynff)}
Define the following:
Ta+Y: = a
T¢Tn+ Yy = b
TiH+YE = ¢
Then
Vif = J¥afee ~ 2bfen + cfom)
+J° {(ayee — 2byen + cym)(zn fe — Tefy)

+ (azge — 2bzgy + cxpn) (Yefyy — 1fe)}
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and finally,
Vif = J¥afe — 2bfen + Cfy + dfy + €f¢) (F-10)
where
d = J(yea —ze0)
e = J(z,0— pa)
and

o = azg — 2bzey + cxon
B = ayg — 2byg + cym
For illustration purposes, consider the elliptic system
V% =0 (F-11)

and
Vin =0 (F-12)

We wish to i:ransfer this system to a computational domain. To do so, Equation (F-10)
is used—thus, f = £ for Equation (F-11). The required gradients in Equation (F-10)
are

_ %€ _
b = g =1
& =0

_ a [0¢ _
fee = 3—5(55)—0
Efm =0
€n = 0

Therefore, Equation (F-10) yields:
Je=0

or
T2 — ) = 0

Similarly, V?n = 0 yields
Jd=0
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or
Jyea — z¢B) =0
Since J # 0, then
T —ypx = O (F-13)
yea—zef = 0 (F-14)
Eliminating a from Equations (F-13) and (F-14) yields:
Blzeyy — Toye) =0

But

1
Teln — Tolle = 5
Thus, )
7P=0
Since, J # 0, then
g=0

or
aYes — 2byen + Cym =0
We showed that # = 0 and, therefore, a must also be zero, which results in

aZge — 2bZen + CTyy =0
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